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Preface 

There are several good current probability books — Billingsley (1995), Durrett 
(1991), Port (1994), Fristedt and Gray (1997), and I still have great affection 
for the books I was weaned on — Breiman (1992), Chung (1974), Feller (1968, 
1971) and even Loeve (1977). The books by Neveu (1965, 1975) are educational 
and models of good organization. So why publish another? Many of the exist­
ing books are encyclopedic in scope and seem intended as reference works, with 
navigation problems for the beginner. Some neglect to teach any measure theory, 
assuming students have already learned all the foundations elsewhere. Most are 
written by mathematicians and have the built in bias that the reader is assumed to 
be a mathematician who is coming to the material for its beauty. Most books do 
not clearly indicate a one-semester syllabus which will offer the essentials. 

I and my students have consequently found difficulties using currently avail­
able probability texts. There is a large market for measure theoretic probability by 
students whose primary focus is not mathematics for its own sake. Rather, such 
students are motivated by examples and problems in statistics, engineering, biol­
ogy and finance to study probability with the expectation that it will be useful to 
them in their research work. Sometimes it is not clear where their work will take 
them, but it is obvious they need a deep understanding of advanced probability in 
order to read the literature, understand current methodology, and prove that the 
new technique or method they are dreaming up is superior to standard practice. 

So the clientele for an advanced or measure theoretic probability course that is 
primarily motivated by applications outnumbers the clientele deeply embedded in 
pure mathematics. Thus, I have tried to show links to statistics and operations re­
search. The pace is quick and disciplined. The course is designed for one semester 
with an overstuffed curriculum that leaves little time for interesting excursions or 
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personal favorites. A successful book needs to cover the basics clearly. Equally 
important, the exposition must be efficient, allowing for time to cover the next 
important topic. 

Chapters 1, 2 and 3 cover enough measure theory to give a student access to 
advanced material. Independence is covered carefully in Chapter 4 and expecta­
tion and Lebesgue integration in Chapter 5. There is some attention to comparing 
the Lebesgue vs the Riemann integral, which is usually an area that concerns stu­
dents. Chapter 6 surveys and compares different modes of convergence and must 
be carefully studied since limit theorems are a central topic in classical probability 
and form the core results. This chapter naturally leads into laws of large numbers 
(Chapter 7), convergence in distribution, and the central limit theorem (Chapters 8 
and 9). Chapter 10 offers a careful discussion of conditional expectation and mar­
tingales, including a short survey of the relevance of martingales to mathematical 
finance. 

Suggested syllabi: If you have one semester, you have the following options: 
You could cover Chapters 1-8 plus 9, or Chapters 1-8 plus 10. You would have 
to move along at unacceptable speed to cover both Chapters 9 and 10. If you have 
two quarters, do Chapters 1-10. If you have two semesters, you could do Chapters 
1-10, and then do the random walk Chapter 7 and the Brownian Motion Chapter 
6 from Resnick (1992), or continue with stochastic calculus from one of many 
fine sources. 

Exercises are included and students should be encouraged or even forced to do 
many of them. 

Harry is on vacation. 

Acknowledgements. Cornell University continues to provide a fine, stimulating 
environment. NSF and NSA have provided research support which, among other 
things, provides good computing equipment. I am pleased that AMS-TgXand 
LATgX merged into AMS-LATgX, which is a marvelous tool for writers. Rachel, 
who has grown into a terrific adult, no longer needs to share her mechanical pen­
cils with me. Nathan has stopped attacking my manuscripts with a hole puncher 
and gives ample evidence of the fine adult he will soon be. Minna is the ideal 
companion on the random path of life. Ann Kostant of Birkhauser continues to be 
a pleasure to deal with. 

Sidney I. Resnick 
School of Operations Research and Industrial Engineering 
Cornell University 



Sets and Events 

1.1 Introduction 

The core classical theorems in probability and statistics are the following: 

• The law of large numbers (LLN): Suppose {Xn,n > 1} arc independent, 
identically distributed (iid) random variables with common mean E(X„) = 
fjL. The LLN says the sample average is approximately equal to the mean, 
so that 

An immediate concern is what does the convergence arrow **-•*' mean? 
This result has far-reaching consequences since, if 

1, if event A occurs, 
0, otherwise 

then the average 53?=i ̂ i/^* the relative frequency of occurrence of A in 
n repetitions of the experiment and ^ = P(A). The LLN justifies the fre­
quency interpretation of probabilities and much statistical estimation theory 
where it underlies the notion of consistency of an estimator. 

Central limit theorem (CUT): The central limit theorem assures us that sam­
ple averages when centered and scaled to have mean 0 and variance 1 have 
a distribution that is approximately normal. If [Xn^n > 1} are iid with 
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This result is arguably the most important and most frequently applied re­
sult of probability and statistics. How is this result and its variants proved? 

• Martingale convergence theorems and optional stopping: A martingale is 
a stochastic process {Xn^n > 0} used to model a fair sequence of gam­
bles (or, as we say today, investments). The conditional expectation of your 
wealth Xn+\ after the next gamble or investment given the past equals the 
current wealth Xn. The martingale results on convergence and optimal stop­
ping underlie the modern theory of stochastic processes and arc essential 
tools in application areas such as mathematical finance. What are the basic 
results and why do they have such far reaching applicability? 

Historical references to the CLT and LLN can be found in such texts as Breiman 
(1968), Chapter I; Feller, volume I (1968) (see the background on coin tossing and 
the de Moivre-Laplace CLT); Billingsley (1995), Chapter 1; Port (1994), Chapter 
17. 

1.2 Basic Set Theory 

Here we review some basic set theory which is necessary before we can proceed 
to carve a path through classical probability theory. We start by listing some basic 
notation. 

• An abstract set representing the sample space of some experiment. The 
points of Q correspond to the outcomes of an experiment (possibly only a 
thought experiment) that we want to consider. 

• P(J2): The power set of that is, the set of all subsets of 

• Subsets i4, 5 , . . . of ^ which will usually be written with roman letters 
at the beginning of the alphabet. Most (but maybe not all) subsets will be 
thought of as events^ that is, collections of simple events (points of Q). 
The necessity of restricting the class of subsets which will have probabili­
ties assigned to them to something perhaps smaller than V{Q) is one of the 
sophistications of modern probability which separates it from a treatment 
of discrete sample spaces. 

• Collections of subsets A, By.,, which will usually be written by calligraphic 
letters from the beginning of the alphabet. 

• An individual element o{Q:<o€ 

common mean E(X„) = fx and variance VarC-Y )̂ = a^, then 
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• The empty set 0, not to be confused with the Greek letter (f>. 

ViQ) has the structure of a Boolean algebra. This is an abstract way of saying that 
the usual set operations perform in the usual way. We will proceed using naive set 
theory rather than by axioms. The set operations which you should know and will 
be commonly used are listed next. These are often used to manipulate sets in a 
way that parallels the construction of complex events from simple ones. 

1. Complementation: The complement of a subset A C ^ is 

A' := [toicD^ A). 

2. Intersection over arbitrary index sets: Suppose T is some index set and for 
each r € r we are given Ai C J .̂ We define 

f]A, := {<o:<o€ At, V / e T } . 
/€?• 

The collection of subsets {At,t € T] is pairwise disjoint if whenever/, t' 6 
T, but t ^ t\ we have 

AtnAt' = 0. 

A synonym for pairwise disjoint is mutually disjoint. Notation: When we 
have a small number of subsets, perhaps two, we write for the intersection 
of subsets y4 and B 

AB=Ar\B, 

using a "multiplication'* notation as shorthand. 
3. Union over arbitrary index sets: As above, let T be an index set and suppose 

At C Define the union as 

\^At :={(t>:a>€ At, for some t € T]. 

When sets Ai, ^2. • • • are mutually disjoint, we sometimes write 

Ai A2 •\-. >. 

or even ^ J ^ i Ai to indicate U?Jji4/, the union of mutually disjoint sets. 

4. Set difference Given two sets A, B, the part that is in A but not in B is 

A\B:= AB"". 

This is most often used when B A\ that is, when AB = B, 

5. Symmetric difference: UA,B are two subsets, the points that are in one but 
not in both are called the symmetric difference 

A^B = (A\B)UiB\A). 
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You may wonder why we are interested in arbitrary index sets. Sometimes the 
natural indexing of sets can be rather exotic. Here is one example. Consider the 
space USC+([0, oo)), the space of non-negative upper semi-continuous functions 
with domain [0, oo). For / € USC+([0, oo)), define the hypograph hypo(/) by 

hypo(/) = { (5 , J:) : 0 < A: < f(s)), 

so that hypo(/) is the portion of the plane between the horizontal axis and the 
graph of / . Thus we have a family of sets indexed by the upper semi-continuous 
functions, which is a somewhat more exotic index set than the usual subsets of 
the integers or real line. 

The previous list described common ways of constructing new sets from old. 
Now we list ways sets can be compared. Here arc some simple relations between 
sets. 

1. Containment: A is a subset of 5 , written A C B or B D A/itf AB = A or 
equivalently iff to € A implies we B, 

2. Equality: Two subsets A,B are equal, written A = B, \f( A C B and 
B C A. This means a> € A iff co € B. 

Example 12,1 Here are two simple examples of set equality on the real line for 
you to verify. 

(0 U^i[0'"/('» + l)) = [0'l)-

(") nS=i(O.Vn) = 0. • 

Here are some straightforward properties of set containment that are easy to 
verify: 

ACA, 
AC B d^ndB CC implies A C C, 
AcCandB CC implies AUB CC, 
A DC ind B DC implies ABDC, 
AcBlffB''CA"" 

Here is a list of simple connections between the set operations: 

1. Complementation: 

2. Commutativity of set union and intersection: 

AUB = BUA, AnB = BnA. 
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Note as a consequence of the definitions, wc have 

AUA=A, AnA=A, 
AU0^A, An0=^0 
i 4 U f i = fi, A n ^ ^ A , 
AUA' = ^, Ar\A' = 0. 

3. Associativity of union and intersection: 

(AUB)UC =AU{BUCh (A D B)nC = An{B DC). 

4. DeMorgan's laws, a relation between union, intersection and complemen­
tation: Suppose as usual that T is an index set and Ai C CI, Then we have 

( U = fjMf), (fl A,y = y (Af). 
ler rer i^T teT 

The two De Morgan's laws given are equivalent. 

5. Distributivity laws providing connections between union and intersection: 

B n f l j A , ) = \J(BA,), 

B 

1.2.1 Indicator functions 

There is a very nice and useful duality between sets and functions which empha­
sizes the algebraic properties of sets. It has a powerful expression when wc see 
later that taking the expectation of a random variable is theoretically equivalent to 
computing the probability of an event. If i4 C ft, we define the indicator function 
of A as 

1, '\iw€.A, 

0, i f a ) € A ^ 

This definition quickly yields the simple properties: 

U < \B iff a C 

and 
V = l-1>4. 

Note here that we use the convention that for two functions / , g with domain Q 
and range R, we have 

f <g\fL f{(jo) < g{(D) for all a> € S2 

and 
/ = 5 if / < 5 and ^ < / . 



1. Sets and Events 

1.3 Limits of Sets 

The definition of convergence concepts for random variables rests on manipula­
tions of sequences of events which require limits of sets. Let A„ C We define 

00 00 

inf Ak := n i4A, supi4it := N Ak 
, k>n L - k=n k=n 

OO 00 

liminf>l„ = ( 1 0 ^ * ' 
n=lk=n 

00 OO 

limsupi4„ = n U ^ * -

The limit of a sequence of sets is defined as follows: If for some sequence {B„] of 
subsets 

lim sup B„ — lim inf B„ = B, 
n-*oo 

then B is called the limit of B„ and we write lim„_voo B„ = B or B„ ^ B.U will 
be demonstrated soon that 

and 

liminfi4n = lim ( inf Ak ] 
rt-voo n-voo \k>n ) 

„ = lim (supi4A I. lim supi4 
n-^oo 

To make sure you understand the definitions, you should check the following 
example as an exercise. 

Example 13,1 Check 

lim inffO, n/(n + 1)) = lim sup[0, n/(n + 1)) = [0,1). 

We can now give an interpretation of lim inf„_.oo A„ and lim sup^^o^ A„. 

Lemma 13.1 Let {A„ ] be a sequence of subsets of Q. 
(a) For lim sup we have the interpretation 

• 

lim sup i4,, = 
n-^oo 

00 

0): ^ U „ ( W ) = GO 

/i=i 
=:[a):co e A„^,k = 1, 2 . . . | 

for some subsequence nk depending on co. Consequently, we write 

lim sup i4,, = [A„ i.o. ] 
n-^oo 
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where i.o. stands for infinitely often. 
(b) For lim inf we have the interpretation 

lim inf A„ ={co : co e A„ for all n except a finite number ] 
n-*oo 

= { w : ^ L A ^ ( a j ) <oo} 
n 

={(o : o) 6 An, Wn > no(co)]. 

Proof, (a) If 
00 00 

CO e limsupi4„ = U ^it. 
/I=L k=n n-*oo 

then for every n,co e \Jic>nAic and so for all n, there exists some k„ >n such that 
(o e Ak„y and therefore 

00 

J2 (oj) > J2 w = 
; = 1 n 

which implies 

CO e 
00 

CO : ^ 1 A „ M = oo 
n=l 

thus 
00 

limsupi4„ C {oj: ̂  U / ^ ) = oo]. 
j=i n-*oo 

Conversely, if 
oo 

coe{co:J2^Aj(co) = oo], 

then there exists ^„ —• oo such that co e Aic„, and therefore for all n,co e ^j>nAj 
so that CO € limsup„_,.oo A „ . By defininition 

00 

{co : ^2 ^A,(co) = oo} C limsupi4„. 
FL-^OO 

This proves the set inclusion in both directions and shows equality. 
The proof of (b) is similar. • 
The properties of lim sup and lim inf are analogous to what we expect with real 

numbers. The link is through the indicator functions and will be made explicit 
shortly. Here are two simple connections: 

1. The relationship between lim sup and lim inf is 

liminfi4n C lim sup 
n-*oo n-foo 
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since 

{co : oj & A „ , for all n > no(a))] C {co : co € An infinitely often} 
= limsup i 4 „ . 

2. Connections via de Morgan's laws: 

(lim in{A„y — limsupA^ 
/l-.>00 

since applying de Morgan's laws twice yields 

(un^*y=n(n^*y 
\n=lk>n I n=\ \k>n / 

n=\ \k>n I 
= lim supA^. 

For a sequence of random variables {Xn^n > 0}, suppose we need to show 
Xfi —• Xq almost surely. As we will see, this means that we need to show 

P{a) : lim X„(co) = Xo(a))] = 1. 
n->oo 

We will show later that a criterion for this is that for all £ > 0 

P{[\X„ - Xo\ > e] i.o.}=:0. 

That is, with A„ = [\Xn — Xo\ > e], we need to check 

P I lim sup A„ I = 0. 
\ /I-.-00 / 

1.4 Monotone Sequences 

A sequence of sets {A„] is monotone non-decreasing if Ai C A2 C • • •. The 
sequence {A„] is monotone non-increasing if Aj D A2 D A3 • • •. To indicate a 
monotone sequence we will use the notation A„ /' or A„ t for non-decreasing 
sets and A„ \ or A„ | for non-increasing sets. For a monotone sequence of sets, 
the limit always exists. 

Proposition 1.4.1 Suppose {A„] is a monotone sequence of subsets. 

(]) If An A then lim„_oo A„ = U ^ , A „ . 
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(2) If An \ , then lim„_oo A„ = n ^ j A „ . 

Consequently, since for any sequences B„, we have 

inf B i t s u p Bit \ , 
*>« k>n 

it follows that 

lim inf B„ = lim ( inf Bk ], Hm sup B„ = lim ( sup Bk \ 

Proof. (1) We need to show 

oo 
liminfA„ = limsupi4„ = I \An. 

Since Aj C Aj+iy 

f]Ak==An. 
k>n 

and therefore 

lim infi4 
oo / \ oo -=u n *̂ =u^-

, 1=1 \it>,i / , 1=1 

Likewise 

00 

limsupi4„ = n U"̂ * ^ U"̂ * 
,i=lit>,i * > ! ,1-vOO 

= liminfi4„ (from (1.1)) 
,i-*oo 

C lim sup A„. 
,1-vOO 

Thus equality prevails and 

limsupi4„ C y Ait C lim sup A „ ; 
it>i ,l-»'00 ,1-vOO 

(1.1) 

therefore 
00 

lim supAn 
,l-»'00 

This coupled with (1.1) yields (1). 
The proof of (2) is similar. • 
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n 

and if the sequence {A, ] is mutually disjoint, then equality holds. 

3. We have 

l l imsup„^^ A„ = lim sup 1A„ , liim inf,,^cc A„ = ĵ̂ ^̂ inf 1^,, • 
«-»-00 

4. Symmetric difference satisfies the relation 

IAAB = U + Ifl (mod 2 ) . 

Note (3) follows from (1) since 

llimsup„_ooA„ = linf„>isupt>,,>\*. 

and from (1) this is 

Again using (1) we get 

mf lsup^,„A*. 

inf sup IAI^ = lim sup 1A„ , 

from the definition of the lim sup of a sequence of numbers. 
To prove (1), we must prove two functions are equal. But linf„>tA„(aj) = 1 iff 

CO € inf„>it A„ = A„ iff CO € A„ for a\\ n > k iff 1A„ (CO) = 1 for a\\n>k 
iffinf„>itlA„(a^) = l . • 

Example 1.4.1 As an easy exercise, check that you believe that 

lim [0, 1 - 1/n] = [0,1) 

lim [0,1 - 1/n) = [0,1) 
/I—vOO 

lim [0,1 + l/n] = [0,1] 
/I—vOO 

lim [0,1 + 1/n) = [0,1]. 

Here are relations that provide additional parallels between sets and functions 
and further illustrate the algebraic properties of sets. As usual let {A„] be a se­
quence of subsets of ^ . 

1. We have 
linf„>* A„ = inf 1A„ , lsup„>t A„ = sup 1A„ . 

~ n>k 

2. The following inequality holds: 
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00 n A,. 

(6) Finite intersection: As in (3), the finite intersection is 

(7) Complementation: If 4̂ e C, then A^ is the set of points not in A. 

(8) Monotone limits: If {A„ ] is a monotone sequence of sets in C, the monotone 
limit 

lim A„ 
n-voo 

is D^LyAj in case {A„] is non-decreasing and is D^^Aj if {A„} is non-
increasing. 

1.5 Set Operations and Closure 

In order to think about what it means for a class to be closed under certain set 
operations, let us first consider some typical set operations. Suppose C C Vi^) 
is a collection of subsets of ^ . 

(1) Arbitrary union: Let T be any arbitrary index set and assume for each 
t e T that At e C. The word arbitrary here reminds us that T is not nec­
essarily finite, countable or a subset of the real line. The arbitrary union 
is 

\jAt. 

(2) Countable union: Lei A„,n > 1 be any sequence of subsets in C. The 
countable union is 

OO 

(3) Finite union: Lti Ai,..., A„ be any finite collection of subsets in C. The 
finite union is 

n 

(4) Arbitrary intersection: As in (1) the arbitrary intersection is 

(5) Countable intersection: As in (2), the countable intersection is 
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Definition 1.5.1 (Closure.) Let C be a collection of subsets of Q. C is closed 
under one of the set operations 1-8 listed above if the set obtained by performing 
the set operation on sets in C yields a set in C. 

For example, C is closed under (3) if for any finite collection A i , . . . ,A„ of 
sets inCUj^ jAy G C. 

Example 1.5.1 1. Suppose ^ = E , and 

C — finite intervals 
= [{a, b\, - G O < a <b < o c } . 

C is not closed under finite unions since (1,2] U (36, 37] is not a finite 
interval. C is closed under finite intersections since (a,b]r\ (c, d] = (a v 
c, dAb]. Here we use the notation a vfe = max{a, b} andaAb = min{a, b]. 

2. Suppose ^ = E and C consists of the open subsets of R . Then C is not 
closed under complementation since the complement of an open set is not 
open. 

Why do we need the notion of closure? A probability model has an event space. 
This is the class of subsets of ^ to which we know how to assign probabilities. 
In general, we cannot assign probabilities to all subsets, so we need to distinguish 
a class of subsets that have assigned probabilities. The subsets of this class are 
called events. We combine and manipulate events to make more complex events 
via set operations. We need to be sure we can still assign probabilities to the re­
sults of the set operations. We do this by postulating that allowable set operations 
applied to events yield events; that is, we require that certain set operations do not 
carry events outside the event space. This is the idea behind closure. 

Definition 1.5.2 A field is a non-empty class of subsets of Q closed under finite 
union, finite intersection and complements. A synonym for field is algebra. 

A minimal set of postulates for >t to be a field is 

(i) neA. 

(ii) A e A implies A^ e A. 

(iii) A,B eA implies ADB eA. 

Note if Ai , A 2 , A 3 6 A then from (iii) 

Ai U A 2 U A 3 = (Ai U A 2 ) U A 3 € A 
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and finally 

by de Morgan's laws so A is closed under finite intersections. 

Definition 1.53 A or-field is a non-empty class of subsets of ^ closed under 
countable union, countable intersection and complements. A synonym for or-field 
is or-algebra. 

A mimimal set of postulates for to be a or-field is 

(i) neB. 

(ii) B eB implies e B. 

(iii) B, eB,i>l imp l i e sUgj^ , e B. 

As in the case of the postulates for a field, if 5 , e By for / > 1 , then H/Si ^ ^• 
In probability theory, the event space is a a-field. This allows us enough flexi­

bility constructing new-events from old ones (closure) but not so much flexibility 
that we have trouble assigning probabilities to the elements of the cr-field. 

1.5.1 Examples 
The definitions are amplified by some examples of fields and or-fields. 

(1) The power set. Let = ViQ), the power set of ^ so that V{Q) is the 
class of all subsets of Q. This is obviously a or-field since it satisfies all closure 
postulates. 

(2) The trivial cr-field. \j&iB — {0, Q.]. This is also a or-field since it is easy to 
verify the postulates hold. 

(3) The countable/co-countable or-field. Let = R, and 

= {A C K : A is countable } U {A C K : A*̂  is countable }, 

so B consists of the subsets of E that are either countable or have countable com­
plements, is a or-field since 

and similarly if A\,... , A„ e A, then U"_ji4/ € A. Also if A,- e Ay i — 
1 , . . . ,n, then HjLj A, € . 4 since 

A, 6 . 4 implies A^ e A (from (ii)) 
n 

Af € . 4 implies [ J Aĵ  6 . 4 (from (iii)) 
1 = 1 

j j A f implies ^U^f^ ^ - ^ (from(ii)) 
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(i) ^ € B (since fi*^ = 0 is countable). 

(ii) A e B implies e B. 

(iii) A,eB implies nfZ^Aj e B. 

To check this last statement, there are 2 cases. Either 

(a) at least one A, is countable so that Hj^jA,- is countable and hence in B, or 

(b) no Ai is countable, which means A*: is countable for every /. So Uj^j AJ" is 
countable and therefore 

00 oo 
{[j{A'i)Y=^^AieB. 

1 = 1 1 = 1 

Note two points for this example: 

• If A = (—OO, 0], then A^ — (0, oo) and neither A nor A^ is countable 
which means A ^ jB. So ^ 7^(^). 

• B\s> not closed under arbitrary unions. For example, for each r < 0, the 
singleton set {r} 6 B, since it is countable. But A — U,<o{/} = (—oo, 0] ^ 
B. 

(4) A field that is not a or-field. Let Q. — (0,1] and suppose A consists of 
the empty set 0 and all finite unions of disjoint intervals of the form («, a% 0 < 
a <a' <\. K typical set in A is of the form Uj^j(a,, where the intervals are 
disjoint. We assert that ^ is a field. To see this, observe the following. 

(i) ^ = (0,1] € A. 

(ii) A is closed under complements: For example, consider the union repre­
sented by dark lines 

0 

which has complement. 

FIGURE 1.1 

0 

which is a disjoint union. 

FIGURE 1.2 
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(iii) A is closed under finite intersections. (By the de Morgan laws, verifica­
tion of this assertion is equivalent to showing closure under finite unions.) 
Closure under finite intersections is true because 

{a,a']n(b, b']^(avb,a' Ab'l 

Note that A is NOT a or-field. The set 

1 1 1 1 1 1 1 1 1 , 

is a countable union of members of A but is not in A. • 

1.6 The a-field Generated by a Given Class C 

It is a sad fact that or-fields cannot always be constructed by a countable set of 
operations on simple sets. Sometimes only abstraction works. The exception to 
the sad fact is if Q is finite, in which case construction and enumeration work. 
However, in general, the motto of the budding measure theorist is "induction nqt 
construction". 

We now discuss how to guarantee a desired or-field exists. 
Let O be one of the 8 set operations listed starting on page 11. For example, O 

could be "countable union". Let {Cf, r e 7} be an indexed family of subsets such 
that for each t,Ct is closed under O. Then 

C = PI Cr is closed under O. (1.2) 
teT 

(This is NOT true for UreT" ̂ t-) Observe that the intersection can be with respect 
to an arbitrary index set. This will be used when we discuss the minimal or-field 
generated by a class. 

Here is a sample verification of (1.2) when O is countable union: Suppose for 
/ > 1 that B, e C. Then for any i > h B, e Ct for all r € 7 . Due to the fact that 
Ct is closed under O, we conclude U,^jB/ e Ct for all r 6 T. Since Uj^jB/ 6 Ct 
for all r, U ^ , B, e (^teTCt. Thus Hr^rCr is closed under O. 

Applying the principle in (1.2) using the set operations of complementation and 
countable union, we get the following result. 

Corollary 1.6.1 The intersection of o-fields is a o-field. 

Definition 1.6.1 Let C be a collection of subsets of The or-field generated by 
C, denoted or (C), is a or-field satisfying 

(a) or(C) D C 
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1.7 Borel Sets on the Real Line 

Suppose ^ = R and let 

C = {(a, b], -oo <a <b < oo]. 

Define 
B{R) : = or(C) 

and call B(R) the Borel subsets of M . Thus the Borel subsets of M are elements of 
the or-field generated by intervals that are open on the left and closed on the right. 
A fact which is dull to prove, but which you nonetheless need to know, is that 

(b) If B' is some other or-field containing C, then B' D cr{C). 

Another name for cr{C) is the minimal or-field over C. Part (b) of the definition 
makes the name minimal apt. 

The next result shows why a or-field containing a given class exists. 

Proposition 1.6.1 Given a class C of subsets of ^, there is a unique minimal 
o-field containing C. 

Proof. Let 

i<={B:Bisa(7-f\e\d,BDC} 

be the set of all or-fields containing C. Then ^:^0 since V(^) e i<. Let 

B'=f)B. 

Since each class 6 <̂ is a or-field, so is B^ by Corollary 1.6.1. Since B e ^ 
implies BDC,we have B"- D C. We claim B- = or(C). We checked B- D C and, 
for minimality, note that if B' is a or-field such that B' D C, then B' ei< and hence 
B' C B'. • 

Note this is abstract and completely non-constructive. If Q is finite, we can 
construct or(C) but otherwise explicit construction is usually hopeless. 

In a probability model, we start with C, a restricted class of sets to which we 
know how to assign probabilities. For example, if ^ = (0,1], we could take 

C={ia,blO<a<b<l} 

and 
P((a,b]) = b - a . 

Manipulations involving a countable collection of set operations may take us out­
side C but not outside or (C). Measure theory stresses that if we know how to assign 
probabilities to C, we know (in principle) how to assign probabilities to o(C). 
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there are many equivalent ways of generating the Borel sets and the following are 
all valid descriptions of Borel sets: 

B(R)=o({a,b),-oo<a <b<oo) 

= G([a, b), - o o < a <b <oo) 

= cr([a, b], —oc < a <b < oo) 

= or((—GO, A: ] , JC 6 

= or (open subsets of 

Thus we can generate the Borel sets with any kind of interval: open, closed, semi-
open, finite, semi-infinite, etc. 

Here is a sample proof for two of the equivalences. Let 

C^^ = ((a, 5), - o c <a <b<oo} 

be the open intervals and let 

C Ĵ = ((a, bl-oo<a <b<oo] 

be the semi-open intervals open on the left. We will show 

Observe (a, b) = U ^ i ( « . ^ " V'O- Now {a, b - 1/n] e C<1 C or(C<J), for 
all n implies U ^ i ( « ' ^ " V'O e or(C )̂). So (a, b) e CT(C^J) which implies that 
C^^ C o(C^h- Now a(C^h is a or-field containing ^ and hence contains the 
minimal or-field over \ that is, cr{C^^)Co 0 J). 

Conversely, = n ^ j ( « , f e + 1/w). Now + 1/n) e C<> C or(C^>) 
so that n j i , ( « , f e + 1/w) 6 or(C^^) which implies («,fe] e o{C^^) and hence 
C Ĵ CcT(C<^).This implies ( T 0 b c o r (C<)). 

From the two inclusions, we conclude 

a{C^h = <J{C^^) 

as desired. 
Here is a sample proof of the fact that 

B(R) = cr (open sets in R). 

We need the result from real analysis that if O C R is open, O = ( J J ^ i ^y. where 
Ij are open, disjoint intervals. This makes it relatively easy to show that 

or( open sets) = or(C^̂ ). 

If O is an open set, then we can write 

oo 
o = U I J. 

7 = 1 



18 1. Sets and Events 

We have Ij eC^^ C cr(C^^) so that O = U ^ j / y € or(C^^) and hence any open 
set belongs to or(C^^), which implies that 

or( open sets) C cf(C^^). 

Conversely, is contained in the class of open sets and therefore cr(C^^) c 
cr( open sets ). 

Remark. If E is a metric space, it is usual to define B(E), the or-field on E , to be 
the or-field generated by the open subsets of E . Then B(E), is called the Borel 
or-field. Examples of metric spaces E that are useful to consider are 

• R, the real numbers, 

• R*', ^-dimensional Euclidean space, 

• R ° ° , sequence space; that is, the space of all real sequences. 

• C[0, oc), the space of continuous functions on [0, oc). 

1.8 Comparing Borel Sets 

We have seen that the Borel subsets of R is the or-field generated by the intervals 
of R. A natural definition of Borel sets on (0,1], denoted B((0,1]) is to take 
C(0,1] to be the subintervals of (0,1] and to define 

BaO,l]) :=or (C(0 ,1 ] ) . 

If a Borel set A e B{R) has the property A c (0,1], we would hope A e 
B((0,1]). The next result assures us this is true. 

Theorem 1.8.1 Let Qq C Q. 
(l)IfB is a o-field of subsets of ^, then Bq := {A^q : A e B] is a o-

field of subsets ofQo. (Notation: Bq = : B D ̂ o- We hope to verify B((0,1]) = 
iB(R)n(0.1] .) 

(2) Suppose C is a class of subsets ofQ, and B = a (C). Set 

C n ^ 0 = : Co = U ^ o lAeC). 

Then 

or(Co) = o r ( C ) n ^ O 

in Qq-

In symbols (2) can be expressed as 

o r ( C n ^ o ) = o r ( C ) n ^ o 
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so that specializing to the Borel sets on the real line we get 

B{0,1] = B(R) n (0,1]. 

Proof. (1) We proceed in a series of steps to verify the postulates defining a or-
field. 

(1) First, observe that e BQ since = ^ 0 and Q e B. 

(ii) Next, we have that if B = A^o e BQ, then 

Qo\B =:Qo\AQQ = ^ o ( ^ \ A ) eBo 

since ^ \ A e B. 

(iii) Finally, if for /̂ > 1 we have B„ — A„^o, and A„ € B, then 

00 00 oo 
\Jb„ = \J A„no = (U A„) nQoeBo 

71=1 n = l rt=l 

since U„ e B. 

(2) Now we show O{CQ) = or(C) D ^ O - We do this in two steps. 
Stepl: We have that 

C o : = c n ^ o c o r ( C ) n ^ o 

and since (i) assures us that or (C) D is a or-field, it contains the minimal or-field 
generated by Co, and thus we conclude that 

or(Co) C o r ( C ) n ^ o • 

5rc/7 2: We show the reverse inclusion. Define 

Q'.= [Ac ^ : A^o eor(Co)}. 

We hope to show ^ D or(C). 
First of all, Q DC, since if A 6 C then A^o e Co C or (Co). Secondly, observe 

that ^ is a or-field since 

(i) ^eQ since ^ ^ o = ^o e or (Co)). 

(ii) If A 6 ^ then A<̂  = ^ \ A and we have 

A^ n ^ 0 = (^\A)J^o = ^o \A^o-

Since A e ^ , we have A^o ^ or(^o) which implies ^o \ -^^o ^ or (Co), so 
we conclude A*̂  6 Q. 
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(iii) lfA„ eQ,{oTn> 1, then 

00 00 

Since A„^o e cr(Co), it is also true that L}^^A„Qo e or (Co) and thus 

So ^ is a or-field and ^ D C and therefore ^ D or(C). From the definition of Q, 
if A 6 o(C), then A eQ and so A^o € or (Co). This means 

or (C )n^O Cor(Co) 

as required. • 

Corollary 1.8.1 IfQo e or(C), then 

or(Co) = {A : A C ^ 0 , A e or(C)}. 

Proof. We have that 

or(Co) =or(C) n Ĵ o = (A^O : A 6 or(C)) 
={B : B ecr(C),B cQo] 

i f ^ o e o r ( C ) . • 

This shows how Borel sets on (0,1] compare with those on R. 

1.9 Exercises 

1. Suppose ^ = {0,1} and C = {{0}}. Enumerate the class of all or-fields 
containing C. 

2. Suppose ^ = {0,1, 2} and C = {{0}}. Enumerate the class of all or-fields 
containing C and give a (C). 

3. Let A„, A. Brt, B be subsets of Q. Show 

lim sup A„ U B„ = lim sup A„ U lim sup B„. 
n-voo rt-*oo rt->oo 

If A„ -> A and B„ -> B, is it true that 

A„UB„ ALiB, A„nB„ -> AHB? 
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Define 

Find 

7. Let 

lim a„ = 0, lim b„ = 1. 
n-^oo «->oo 

A„ = {x:a„<x < b„}. 

lim sup A„ and lim inf A„. 
fi—oo oo 

/ = { ( ^ , 3 ' ) : | ^ I < 1 , \y\<l] 

be the square with sides of length 2. Let /„ be the square pinned at (0,0) 
rotated through an angle 27rn^. Describe lim sup„_^oQ and lim inf„_„oo 
when 

(a) e = 1/8, 

(b) 6 is rational. 

(c) 6 is irrational. (Hint: A theorem of Weyl asserts that {e^^"^, n > 1} is 
dense in the unit circle when 6 is irrational.) 

8. Let 

and define 

What is 

9. Check that 

B CQ, C CQ 

A„ = 
B, if n is odd, 
C, if n is even. 

lim inf A„ and lim sup A„? 

ALB = A'^AB^. 

4. Suppose 
A„ = {— :m eN), n € N, 

n 

where N are non-negative integers. What is 

lim inf Art and lim sup A„? 

5. Let fn, f he real functions on fi. Show 

oo oo oo J, 

{CO: f„(co) A / M l = U n U • - ^ r)-
k=lN=ln=N 

6. Suppose a„ > 0, fe„ > 1 and 
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10. Check that 
An-^ A 

iff 
1^ 

pointwise. 

11. Let 0 < a„ < oo be a sequence of numbers. Prove that 

sup[0,a„) = [0,supa„) 
«>i «>i 

„>\ n-\-l ,i>i + 1 

12. Let ^ = {1, 2 , 3 , 4 , 5 , 6} and let C = {{2,4}, {6}}. What is the field gener­
ated by C and what is the or-field? 

13. Suppose 5 = Ur€7-Cr, where FL C/ = 0 for all 5 , r € 7 and s 7^ r. 
Suppose .7^ is a or-field on ^ = {C/, / € 7} . Show 

[A = IJCr : A 

is a or-field and show that 

is a 1-1 mapping from T to 

14. Suppose that An are fields satisfying An C An+i- Show that U„>1„ is a 
field. (But see also the next problem.) 

15. Check that the union of a countable collection of or-fields Bj, j > I need 
not be a or-field even if Bj C Bj+i. Yet, a countable union of or-fields 
whether monotone or not is a field. 

Hint: Try setting Q equal to the set of positive integers and set 

C; = { 1 , 2 , . . . , ; } , Bj=G(Cj). 

In fact, if jB,, I = 1,2 are two or-fields, Bi U B2 need not be a or-field. 

16. Suppose ^ is a class of subsets of ^ such that 

• neA 

• A € A implies A'^ € A. 

• ^ is closed under finite disjoint unions. 
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Show A does not have to be a field. 

Hint: Try ^ = {1,2,3,4} and let A be the field generated by two point 
subsets of ^ . 

17. Prove 
lim inf A„ = {ct> : lim l^„(ct>) = l} . 
«-»-OO ,i-»-OO " 

18. Suppose A is a class of sets containing ^ and satisfying 

A,B i m p l i e s A \ B = AB'^ ^T. 

Show .4 is a field. 

19. For sets A, B show 

and 
l ^ n f l = 1A A Ifl. 

20. Suppose C is a non-empty class of subsets of Q.. Let Aip) be the minimal 
field over C. Show that .4(C) consists of sets of the form 

m n, un^./. 
. = 1 ; = 1 

where for each i , ; either Aij € C or A^j € C and where the m sets 

'̂ 7=1'̂ '̂ ' 1 — ' — "̂"̂  disjoint. Thus, we can explicitly represent the 
sets in .4(C) even though this is impossible for the or-field over C. 

21. Suppose A is a field and suppose also that A has the property that it is 
closed under countable disjoint unions. Show A is a or-field. 

22. Let ^ be a non-empty set and let C be all one point subsets. Show that 

or(C) = {A C ^ : A is countable } [J{A C ^ : A*" is countable }. 

23. (a) Suppose on R that t„ i t. Show 

(-oo,t„] i ( - o o , r ] . 

(b) Suppose 
t„ t r, t„ < t. 

Show 
( -oo , r„] t ( - 0 0 , / ) . 
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24. Let ^ = N , the integers. Define 

^ = {A C N : A or i4<^ is finite.} 

Show A is a field, but not a or-field. 

25. Suppose Q = {e'^""^, 0 <$ < 1} is the unit circle. Let A be the collection 
of arcs on the unit circle with rational endpoints. Show ^ is a field but not 
a or-field. 

26. (a) Suppose C is a finite partition of ^ ; that is 

it 

C = { A i , . . . , Ait}, Q = Y1a,, AiAj = 0, / ^ 
1 = 1 

Show that the minimal algebra (synonym: field) A(C) generated by C is the 
class of unions of subfamilies of C; that is 

A(C) = {\JjAj : / C { l k]}. 

(This includes the empty set.) 

(b) What is the or-field generated by the partition Ai,... .An"^, 

(c) If Ai , A 2 , . . . is a countable partition of ^ , what is the induced or-field? 

(d) If ^ is a field of subsets of ^ , we say A & A is an atom of ^ ; if A ^ 0 
and ifQ^BcA and B & A, then B = A. (So A cannot be split into 
smaller sets that are nonempty and still in A.) Example: If ^ = M and A 
is the field generated by intervals with integer endpoints of the form (a, b] 
(a, b are integers) what are the atoms? 

As a converse to (a), prove that if ^ is a finite field of subsets of then the 
atoms of A constitute a finite partition of ^ that generates A. 

27. Show that B(R) is countably generated; that is, show the Borel sets are 
generated by a countable class C. 

28. Show that the periodic sets of R form a or-field; that is, let B be the class 
of sets A with the property that x e A implies x ± n e A for all natural 
numbers n. Then show Bis a or-field. 

29. Suppose C is a class of subsets of R with the property that A e C implies 
A*̂  is a countable union of elements of C. For instance, the finite intervals 
in R have this property. 

Show that or(C) is the smallest class containing C which is closed under the 
formation of countable unions and intersections. 

30. Let Bi be or-fields of subsets of ^ for / = 1, 2. Show that the or-field Bi VB2 
defined to be the smallest or-field containing both B] and B2 is generated 
by sets of the form Bi fl B2 where Bi € B, for / = 1, 2. 
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1 - U I 

from [—1,1] to [—00, 00]. (This transformation is designed to stretch the 
finite interval onto the infinite interval.) Consider the usual topology on 
[—1,1] and map it onto a topology on [—oc, 00]. This defines a collection 
of open sets on [—00,00] and these open sets can be used to generate a 
Borel or-field. How does this or-field compare with / 3 ( R ) described above? 

34. Suppose is a or-field of subsets of and suppose A ^ B. Show that 
o{B\J [A]), the smallest or-field containing both B and A consists of sets 
of the form 

AB\JA''B\ A,A'&B. 

35. A or-field cannot be countably infinite. Its cardinality is either finite or that 
of the continuum. 

36. Letfi = andC = {a,n]]. Findor(C). 

37. Suppose ^ = Z, the natural numbers. Define for integer k 

kZ = {kz:z€: Z]. 

Find B(C) when C is 

31. Suppose Q is uncountable and let Q be the or-field consisting of sets A such 
that either A is countable or A^ is countable. Show Q is NOT countably 
generated. (Hint: If Q were countably generated, it would be generated by 
a countable collection of one point sets.) 

In fact, if Q is the or-field of subsets of ̂  consisting of the countable and 
co-countable sets, Q is countably generated iff ^ is countable. 

32. Suppose Bi, Bi are or-fields of subsets of such that B\ C B2 and B2 is 
countably generated. Show by example that it is not necessarily true that Bi 
is countably generated. 

33. The extended real line. Let R = R U {-00} U {00} be the extended or 
closed real line with the points —00 and 00 added. The Borel sets B(R) 
is the or-field generated by the sets {—oo,x],x € R , where [—oo,jc] = 
{—oc}U(-oo, x]. Show i B ( R ) is also generated by the following collections 
of sets: 

(i) [ - O O , A : ) , A C € R , 

(ii)(Ac,oo],;c € R , 

(ii) all finite intervals and {-00} and {00}. 

Now think of R = [—00,00] as homeomorphic in the topological sense to 
[—1, 1] under the transformation 
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(CFCO)j = 
Xa(j), if j < n , 

Xj, if > n. 

A finite permutation is of the form o for some n; that is, it juggles a finite 
initial segment of all positive integers. A set A C ^ is permutable if 

A = orA : = [oto : € A } 

for all finite permutations o. 

(i) Let B„, n > 1 be a seqence of subsets of R . Show that 

n 

[co = {xi,X2....) - Y^Xi ^ B„ i.o.} 
1=1 

and 
n 

[(JL>= {x\,X2,...) : \/Xi e B„ i.o.} 
1=1 

are permutable. 
(ii) Show the permutable sets form a or-field. 

39. For a subset A C N of non-negative integers, write card(A) for the number 
of elements in A . A set A C (A'̂ ) has asymptotic density d if 

c a r d ( A n { l , 2 , . . . , n } ) 
lim = d. 

Let A be the collection of subsets that have an asymptotic density. Is ^ a 
field? Is it a or-field? 

Hint: A is closed under complements and finite disjoint unions but is not 
closed under finite intersections. For example, let A be the set of odd inte­
gers in (22", 22"+2] and ̂  the set of all even integers in [22' '+^ 2^"-^^). 
Then A , B € ^ b u t A B i A. 

(i) {3Z}. 
(ii) {3Z,4Z}. 

(iii) {3Z,4Z,5Z}. 

(iv) {3Z, 4Z, 5Z, 6Z}. 

38. Let ̂  = the space of all sequences of the form 

co= (Xi,X2,...) (**) 

where Xi € R . Let or be a permutation of 1 , . . . , n; that is, or is a 1-1 and 
onto map of { 1 , . . . , n} { 1 , . . . , n}. If is the sequence defined in (**), 
define o r t o be the new sequence 
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4 0 . Show that jB((0, 1 ] ) is generated by the following countable collection: For 
an integer r, 

{[kr-", (k + L ) R - " ) , 0 < A: < R " , N = 1, 2 , . . . . } . 

4 1 . A monotone class is a non-empty collection of subsets of ^ closed 
under monotone limits; that is, if A„ /" and A„ € then lim„_„oo = 
U„A„ € M and if A„ \ and A„ e M, then l i m „ _ o o A „ = n „ i 4 „ € M. 
Show that a or-field is a field that is also a monotone class and conversely, 
a field that is a monotone class is a or-field. 

4 2 . Assume 7^ is a TT-system (that is, V is closed under finite intersections) and 
is a monotone class. (Cf. Exercise 4 1 . ) Show V C M does not imply 

o{V) C M. 

4 3 . Symmetric differences. For subsets A, B, C, D show 

LAAFL = LA + L B (mod 2 ) , 

and hence 

(a) (AAB)AC = AA(BAC), 

(b) (AAB)A(BAC) = (AAC), 

(c) (AAB)A(CAD) = (AAC)A(BAZ)), 

(d) A A B = CiffA = BAC, 

(e) AAB = CAD iff AAC = BAD. 

4 4 . Let >1 be a field of subsets of Q and define 

A = {A C ^ : 3A„ € Aand A„ A]. 

Show Ac A and . 4 is a field. 



2 
Probability Spaces 

This chapter discusses the basic properties of probability spaces, and in particular, 
probability measures. It also introduces the important ideas of set induction. 

2.1 Basic Definitions and Properties 

A probability space is a triple B, P) where 

• ^ is the sample space corresponding to outcomes of some (perhaps hypo­
thetical) experiment. 

m Bis the or-algebra of subsets of ^ . These subsets are called events. 

• P is a probability measure; that is, P is a function with domain B and range 
[0,1] such that 

(i) P(A) > 0 for all A € B. 

(ii) P is or-additive: If {A„, n > 1} are events in B that are disjoint, then 

00 00 

p(U "̂) = I]^(^")-
n=l ,1=1 

(iii) P ( ^ ) = 1. 

Here are some simple consequences of the definition of a probability measure 
P . 
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P(A U B) = P ( A B ^ U BA"^ U AB) 
=P(AB^) + P(BA^) + P(AB) 
= P ( A ) - P(AB) + P(B) - P(AB) + P(AB) 
= P ( A ) + P ( B ) - P ( A B ) . 

4. The inclusion-exclusion formula: If A i , . . . , i4„ are events, then 

+ ^ P(A, A^Ait) - • • • 

(-l)"P(Ai---A„). (2.2) 

We may prove (2.2) by induction using (2.1) for n = 2. The terms on the 
right side of (2.2) alternate in sign and give inequalities called Bonferroni 
inequalities when we neglect remainders. Here are two examples: 

1. We have 
P(A^) = 1 - P(A) 

since from (iii) 

1 = P(n) = P(A U A*') = P(A) + P(A^), 

the last step following from (ii). 

2. We have 
P(0) = 0 

since P(0) = P (^^ ) = 1 - P ( ^ ) = 1 - 1 . 

3. For events A,B v/e have 

P(A UB) = PA-\-PB - P(AB). (2.1) 

To see this note 

P(A) =P(AB'^) + P{AB) 

P(B) =P(BA'') + P(AB) 

and therefore 
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( OO \ 00 

,1=1 / ,1=1 To verify this we write 

OO 

| J a „ =Ai+A5A2+A3A5A5 + . . . , 
rt=l 

and since P is or-additive, 

00 

P ( | J A „ ) = P ( A i ) + PiA\A2) + P ( A 3 A ^ A 5 ) + • • • 

,1=1 

< P ( A i ) + P(A2) + P ( A 3 ) + - - -

by the non-decreasing property of P . 

7. Continuity: The measure P is continuous for monotone sequences in the 
sense that 

(i) If A „ t where A,, € then P ( A „ ) t P{A). 

(ii) If A „ i A , where A„ € B, then P ( A „ ) | P ( A ) . 

To prove (i), assume 

A i C A 2 C A 3 C - - C A „ C - - -

and define 

B\ = A\, B2 = A2\A\,... , Bn = A „ \ A „ _ i , . . . . 

Then {B,} is a disjoint sequence of events and 

,1 00 

\Jb, = a „ , \ J b , = \ J a , = a . 
1=1 1=1 

5. The monotonicity property: The measure P is non-decreasing: For events 
A,B 

If A c B t h e n P ( A ) < P(B) , 

since 

P{B) = P{A) + P{B \A)> P{A). 

6. Subadditivity: The measure P is or-subadditive: For events A„, n > 1, 

P 
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By or-additivity 

00 00 n 
P ( A ) = P ( M 5 , ) = V p ( 5 , ) = lim ^Tp(B,) 

1=1 1=1 1=1 
n 

= lim ^P([\Bi)= lim t / ^O^n) -
1=1 

To prove (ii), note i{A„ i A, then A^ A^ and by part (i) 

P(A'„) = 1 - P(A„) t P(A') = 1 - P(A) 

so that PA„ i PA. • 

8. More continuity and Fatou's lemma: Suppose A„ e B, for n > 1. 

(i) Fatou Lemma: We have the following inequalities 

PiViminfAn) < \im\n{P(A„) 
n-*oo n-*oo 

< limsup P(A„) < P(limsup A„). 

(ii) UA„ A, then P(A„) P(A). 

Proof of 8. (ii) follows from (i) since, if A„ A, then 

lim sup A„ = lim inf A„ = A. 

Suppose (i) is true. Then we get 

P(A) = P(liminfA„) < liminfP(A„) 
«-»-00 f l - v O O 

< limsupP(A„) < P(limsupA„) = P(A), 
n-voo n-^oo 

SO equality pertains throughout. 

Now consider the proof of (i): We have 

P ( l i m i n f A „ ) = P ( l i m ^ (HAk)) 
n-*oc n-*oo J • 

k>n 

= lim tPiHAk) 
n->oo ] ' k>n 

(from the monotone continuity property 7) 

<l iminfP(A„) 
«-»-oo 
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since P(nic>nAic) < P(An). Likewise 

P(limsupA„) = P ( l i m iilJAk)) 

= lim i P([\Ak) 
k>n 

(from continuity property 7) 

> lim sup P(A„), 
n-voo 

completing the proof. • 

Example 2.1.1 Let = R , and suppose P is a probability measure on R . Define 
F(x) by 

F(x) = P ( ( - o o , x]), xeR. (2.3) 

Then 

(i) F is right continuous, 

(ii) F is monotone non-decreasing, 

(iii) F has limits at ±oo 

F(oo) := lim F(x) = 1 

F(-oo) := lim F(x) = 0. 
xl-oo 

Definition 2.1.1 A function F : R K-> [0,1] satisfying (i), (ii), (iii) is called a 
(probability) distribution function. We abbreviate distribution function by df. 

Thus, starting from P, we get F from (2.3). In practice we need to go in the 
other direction: we start with a known df and wish to construct a probability space 
(Q, B, P) such that (2.3) holds. 

Proof of (i), (ii), (iii). For (ii), note that \ix < y, then 

( -oo , j t ] C (-00,3;] 

so by monotonicity of P 

Fix) = Pii-oo,x]) < Pa-oo,y]) < F(y). 
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= P(P |(-oo,;c„]) = P(0) = O. 

For the proof of (i), we may show F is right continuous as follows: Let jc„ i x. 
We need to prove F(x„) i F(x). This is immediate from the continuity property 
7 of P and 

(-oo,j t„] i ( - o o , x ] . • 

Example 2.1.2 (Coincidences) The inclusion-exclusion formula ( 2 . 2 ) can be 
used to compute the probability of a coincidence. Suppose the integers 1 , 2 , . . . , n 
are randomly permuted. What is the probability that there is an integer left un­
changed by the permutation? 

To formalize the question, we construct a probability space. Let Q be the set of 
all permutations of 1 , 2 , . . . , n so that 

^ = {(xiy..,x„) :x, e{l n},i = 1, ...,n;x, =^Xj]. 

Thus Q is the set of outcomes from the experiment of sampling n times without 
replacement from the population 1 , . . . , We let = P(f i ) be the power set of 
Q and define for (xi,...,x„) e Q. 

P((xu...,x„) = ^ , 
ni 

and forBeB 

P(B) = —# elements in B. 
ni 

For / = 1 , . . . , 77, let i4 , be the set of all elements of Q with / in the iih spot. 
Thus, for instance, 

M = { ( 1 , A:2, . . . , x„) : ( 1 , X2y..., x„) e fi}, 

A2 = { ( x i , 2 , . . . , J t „ ) : ( j t i , 2 x„) e fi}. 

Now consider (iii). We have 

F(oo) = lim F(xn) (for any sequence AC„ t oo) 

= lim ^Pa-oo,x„]) 
x„too 

= P( lim t (-00, x„]) (from property 7 ) 

= P(U(-oo,x„]) = P ( ( -oo ,oo ) ) 

= P ( R ) = P(Q) = 1 . 

Likewise, 

F ( - o o ) = lim F(x„)= lim i P{(-oo,x„]) 
x„i-oo x„i-oo 

= P ( lim (-00, x„]) (from property 7 ) 
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P(\^Ai)^l-e-^ % 0.632. 
' = 1 • 

2.2 More on Closure 

A a-field is a collection of subsets of Q satisfying certain closure properties, 
namely closure under complementation and countable union. We will have need 
of collections of sets satisfying different closure axioms. We define a structure Q 
to be a collection of subsets of Q satisfying certain specified closure axioms. Here 
are some other structures. Some have been discussed, some will be discussed and 
some are listed but will not be discussed or used here. 

• field 

• a-field 

• semialgebra 

• semiring 

• ring 

• a-ring 

• monotone class (closed under monotone limits) 

and so on. We need to compute P(\J"_^Ai). From the inclusion-exclusion formula 
(2.2) we have 

« n  

i=l i=l 1 < ' < / < ' J 1 < | < ; < A : < « 

- ...(-l)"P(AiA2...A„). 

To compute P( i4 , ) , we fix integer i in the ith spot and count the number of ways 
to distribute n — I objects in n — 1 spots, which is — 1)! and then divide by n\. 
To compute P{AiAj we fix i and ; and count the number of ways to distribute 
n — 2 integers into n — 2 spots, and so on. Thus 

Taking into account the expansion of for A: = —1 we see that for large n, the 
probability of a coincidence is approximately 
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X-system postulates 
old new 

Xi 6 £ 
A,BeC,AcB^B\A^C A^C^A'^^C 

^3 A„ \,A„ 6 £ = > U „ A „ X3 n ^ m,AnAm = 0, 
A„ 6 r => U„A„ e C. 

The old postulates are equivalent to the new ones. Here we only check that 
old implies new. Suppose Xj, Xj, X3 are true. Then Xi is true. Since 6 £ , if 
A G £ , then A C and by Xj, \ A = A<̂  6 £ , which shows that X2 is true. If 
A,B e Care disjoint, we show that AUB e C. Now fi\A6£andBcfi\A 
(since co e B implies co ^ A which means co e A^ = \ A) so by Xj we have 
(Q\A)\B = A'^B'^ e C and by X2 we have (A< 5̂< )̂<^ = AUB e C which is 
X3 for finitely many sets. Now if A^ g £ are mutually disjoint for ; = 1 , 2 , . . . , 

• 7r-system ( P is a jr-system, if it is closed under finite intersections: A, B e 
V implies AHB eV). 

• X-system (synonyms: a-additive class, Dynkin class); this will be used ex­
tensively as the basis of our most widely used induction technique. 

Fix a structure in mind. Call it S. As with a-algebras, we can make the follow­
ing definition. 

Definition 2.2.1 The minimal structure S generated by a class C is a non-empty 
structure satisfying 

(i) SDC, 

(ii) If S' is some other structure containing C, then S' D S. 

Denote the minimal structure by S(C). 

Proposition 2.2.1 The minimal structure S exists and is unique. 

As we did with generating a minimal a-field, let 

H = {G:G\s2istructure ,GDC} 

and 
S(C) = ng^i,G. 

2.2.1 Dynkin's theorem 
Dynkin's theorem is a remarkably flexible device for performing set inductions 
which is ideally suited to probability theory. 

A class of subsets £ of is a called a X-system if it satisfies either the new 
postulates Xi, X2, X3 or the old postulates X\, Xj, X3 given in the following table. 
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define B„ — U"^yAj. Then B„ g £ by the prior argument for 2 sets and by X3 
we have U„B„ = lim„_^oo t B„ e C. Since U„B„ = U„A„ we have U„A„ e C 
which is X3. • 

Remark. It is clear that a a-field is always a X-system since the new postulates 
obviously hold. 

Recall that a jr-system is a class of sets closed under finite intersections; that 
is, P is a 7r-system if whenever A,B G P we have AB eV. 

We are now in a position to state Dynkin's theorem. 

Theorem 2.2.2 (Dynkin's theorem) (a) IfV is a n -system and Cisa k-system 
such that V CC, then a{V) C C. 

(b) If V is a Jt-system 

that is, the minimal o-field over V equals the minimal k-system over V. 

Note (b) follows from (a). To see this assume (a) is true. Since V C >C(P), we 
have from (a) that g{V) C C{V). On the other hand, o{V), being a a-field, is a 
X-system containing V and hence contains the minimal X-system over P , so that 
g(P) D C(P). 

Before the proof of (a), here is a significant application of Dynkin's theorem. 

Proposition 2.23 Let P\, Pi be two probability measures on (fi, B). The class 

£:= [A e B : PiiA) = P2{A)] 

is a k-system. 

Proof of Proposition 2.23. We show the new postulates hold: 

(Xi) QeC since Pi(fi) = Pzi^) = 1. 

(X2) A e C implies A^ e £ , since A e C means Pi(A) = PiiA), from which 

PUA') = 1 - Pi(A) = 1 - P2(A) = P2(A% 

(X3) If [Aj] is a mutually disjoint sequence of events in £ , then Pi(Aj) = 
P2(Aj) for all y, and hence 

P^ij^j) = Ê l(>i>) = E^2(A,) = P2([JAj) 
J J J J 

so that 

' D 
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Corollary 2.2.1 / / Pi , Pi are two probability measures on (fi, B) and ifV is a 
7T-system such that 

WAeV: Pi(A) = P2(A), 

then 

WB eaCP): Pi(B) = PiiB). 

Proof of Corollary 2.2.1. We have 

C = [A e B : Pi(A) = P2(A)] 

is a X-system. But CDV and hence by Dynkin's theorem C D o{V). • 

Corollary 2.2.2 Let = R. Let Pi , P2 be two probability measures on (R, B(R)) 
such that their distribution functions are equal: 

VAC 6 R : Fiix) = P I ( ( - O O , A C ] ) = P2(^) = Piii-oo^x]). 

Then 

on B(R). 

So a probability measure on R is uniquely determined by its distribution func­
tion. 

Proof of Corollary 2.2.2. Let 

V = [{-oo,x]:x^Wi. 

Then P is a 7r-system since 

(-00, x] n (-00, y] = (-00, X r\y]eV. 

Furthermore o{V) = B(R) since the Borel sets can be generated by the semi-
infinite intervals (see Section L7). So F\{x) = Fiix) for all g R, means Pi = 
P 2 o n 7 ' a n d h e n c e P i = P2ona(7 ' ) = jB(R). • 

2.2.2 Proof of Dynkin's theorem 
Recall that we only need to prove: If is a TT-system and £ is a X-system then 
V C £ implies a (7^) C C. 

We begin by proving the following proposition. 

Proposition 2.2.4 / / a class C is both a TT-system and a k-system, then it is a 
o-field. 

Proof of Proposition 2.2.4. First we show C is a field: We check the field postu­
lates. 
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(i) Q eC since C is a X-system. 

(ii) A e C implies A*̂  g C since C is a X-system. 

(iii) If Aj 6 C, for ; = 1 , . . . , n, then n"^yAj g C since C is a 7r-system. 

Knowing that C is a field, in order to show that it is a or-field we need to show 
that if A J G C, for ; > 1, then U ^ , A ; e C. Since 

OO n 

> = 1 7 = 1 

and U"^j A^ G C (since C is a field) it suffices to show C is closed under monotone 
non-decreasing limits. This follows from the old postulate X3. • 

We can now prove Dynkin's theorem. 

Proof of Dynkin's Theorem 2.2.2. It suffices to show C{V) is a jr-system since 
C{V) is both a jr-system and a X-system, and thus by Proposition 2.2.4 also a 
or-field. This means that 

C D CCP) D V. 

Since C^P) is a a-field containing P , 

from which 

C > CCP) D oCP)y 

and therefore we get the desired conclusion that 

C D aCP). 

We now concentrate on showing that C(V) is a jr-system. Fix a set A e B and 
relative to this A, define 

GA = {BeB:AB e C(V)}. 

We proceed in a series of steps. 

[A] If A G CCP)y we claim that QA is a X-system. 

To prove [A] we check the new X-system postulates. 

(i) We have 

since Afi = A g C(V) by assumption. 
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2.3 Two Constructions 

Here we give two simple examples of how to construct probability spaces. These 
examples will be familiar from earlier probability studies and from Example 2.1.2, 

(ii) Suppose 5 € ^ A - We have that B'^A = A\AB.B\x\. B ^ QA means 
AB ^ C{V) and since by assumption A e C(V), we have A\AB = 
B^A G j C ( P ) since X-systems are closed under proper differences. 
Since B'^A e C(V), it follows that G GA by definition. 

(iii) Suppose [Bj] is a mutually disjoint sequence and Bj G GA- Then 

OO OO 

An(\jBj) = \jABj 

is a disjoint union of sets in C(V), and hence in C(V). 

[B] Next, we claim that ifAeV, then CCP) C ^ A -

To prove this claim, observe that since A eV C C(P), we have from [A] 
that GA Js a X-system. 

For B G we have AB e V since by assumption A e V and P is a 
TT-system. So if 5 G V, then A 5 G P C >C(P) implies B G ^ A ; that is 

VCGA- (2.4) 

Since is a X-system, D > C ( P ) . 

[B'] We may rephrase [B] using the definition of GA to get the following state­
ment. If A e V, and B e C(V\ then AB e C{V). (So we are making 
progress toward our goal of showing C{V) is a jr-system.) 

[C] We now claim that if A G C{V), then C{V) C GA-

To prove [C]: If B G V and A G £ ( P ) , then from [B'J (interchange the 
roles of the sets A and B) we have AB G £ ( P ) . So when A G £ ( P ) , 

V^GA-

From [A], is a X-system so £ ( P ) C GA-

[C] To finish, we rephrase [C]: If A G £ ( P ) , then for any B G B G ^ A -
This says that 

ABe CCP) 

as desired. • 
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but can now be viewed from a more mature perspective. The task of constructing 
more general probability models will be considered in the next Section 2.4 

(i) Discrete models: Suppose Q = {co\,co2,.. •} is countable. For each i, asso­
ciate to coi the number p, where 

OO 

Vi > 1, p , > 0 and ] ^ p, = 1. 
i = i 

Define B = V(Q\ and for A e B, set 

P(A)= J2P,. 

a),eA 

Then we have the following properties of P: 

(i) PW > 0 for all A e B. 

(ii) P(Q) = E;SI a = 1-

(iii) P is a-additive: If ^4;, ; > 1 are mutually disjoint subsets, then 

OO 

(̂U ̂ ) = E A = E E A 

J 

Note this last step is justified because the series, being positive, can be 
added in any order. 

This gives the general construction of probabilities when Q is countable. Next 
comes a time honored specific example of countable state space model. 

(ii) Coin tossing N times: What is an appropriate probability space for the ex­
periment "toss a weighted coin N times"? Set 

Q = {0, 1}^ = {(coi,... ,a)N) :coi = 0 or 1}. 

For p > 0, <y > 0, p -I- <y = 1, define 

Construct a probability measure P as in (i) above: Ltl B = V(Q) and for A C 
define 
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N P(c.,.....^)=n^"'̂ '""' 
1=1 

so 

! ^ 1 tof/i=l 

= E n p v - ° ^ ( / ' V + A ' ) = • • • = 1 -
1=1 J |--| 

2.4 Constructions of Probability Spaces 

The previous section described how to construct a probability space when the 
sample space Q is countable. A more complex case but very useful in applications 
is when Q is uncountable, for example, when Q = R , R * , R ° ° , and so on. For 
these and similar cases, how do we construct a probability space which will have 
given desirable properties? For instance, consider the following questions. 

(i) Given a distribution function Fix), let = R . How do we construct a 
probability measure P on B(R) such that the distribution function corre­
sponding to P is F: 

P ( ( - o o , A C ] ) = F(AC). 

(ii) How do you construct a probability space containing an iid sequence of 
random variables or a sequence of random variables with given finite di­
mensional distributions. 

A simple case of this question: How do we build a model of an infinite 
sequence of coin tosses so we can answer questions such as: 

(a) What is the probability that heads occurs infinitely often in an infinite 
sequence of coin tosses; that is, how do we compute 

P[ heads occurs i.o. ]? 

(b) How do we compute the probability that ultimately the excess of 
heads over tails is at least 17? 

(c) In a gambling game where a coin is tossed repeatedly and a heads 
results in a gain of one dollar and a tail results in a loss of one dollar, 
what is the probability that starting with a fortune of x, ruin eventually 
occurs; that is, eventually my stake is wiped out? 

As in (i) above, this gives a probability model provided Ylioe^ Pio = Note the 
product form 
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For these and similar questions, we need uncountable spaces. For the coin toss­
ing problems we need the sample space 

Q ={0, if 

={(ajl,ci>2,...) : (o, e {0,1}, I > 1}. 

2,4.1 General Construction of a Probability Model 

The general method is to start with a sample space Q and a restricted, simple class 
of subsets «S of to which the assignment of probabilities is obvious or natural. 
Then this assignment of probabilities is extended to a («S). For example, if = R, 
the real line, and we are given a distribution function F , we could take S to be 

S — [{a, b]: - o o <a <b <oo] 

and then define P on «S to be 

P((fl,fe]) = F ( fe ) -F ( f l ) . 

The problem is to extend the definition of P from S to B(R), the Borel sets. 
For what follows, recall the notational convention that ^11=1 means a dis­

joint union; that is, that Ai,...,A„ are mutually disjoint and 

1=1 1=1 

The following definitions help clarify language and proceedings. Given two 
structures Qi, Q2 of subsets of Q such that Qi C G2 and two set functions 

P, : ^ h-. [0,1], / = 1,2, 

we say P2 is an extension of Pi (or Pi extends to P2) if P2 restricted to Gi equals 
Pi . This is written 

P2\G, = Fl 

and means P2(Ai) = Pi (AO for all Ai G Qi. A set function P with structure Q 
as domain and range [0,1], 

P : ^ [0,1], 

is additive if for any n >1 and any disjoint A i , . . . , A„ eQ such that Yll=i ^ 
G we have 

n n 

(̂Ê '> = Ê (̂ ')- (2.5) 
1=1 i=l 

Call P o-additive if the index n can be replaced by 00; that is, (2.5) holds for 
mutually disjoint {A„, w > 1} with Aj e j >1 and Yl%i ^G-

We now define a primitive structure called a semialgebra. 
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0 

FIGURE 2.1 Intervals 

(b) Let 

Q = R'' = {{xu...,xk):xi eRJ = \ k] 

Sic = all rectangles (including 0, the empty set ) . 

Note that we call A a rectangle if it is of the form 

A = I\ X "' X Ik 

where Ij G «Si is an interval, ; = 1 , . . . , A: as in item (a) above. Obviously 
0, Q. are rectangles and intersections of rectangles are rectangles. When 
k = 2 and A is a rectangle, the picture of A^ appears in Figure 2.2, showing 
A*̂  can be written as a disjoint union of rectangles. 

Definition 2.4.1 A class S of subsets of is a semialgebra if the following pos­
tulates hold: 

(i) 0, G .S. 

(ii) «S is a jr-system; that is, it is closed under finite intersections. 

(iii) If A G «S, then there exist some finite n and disjoint sets C i , . . . , C^, with 
each d G S such that A'̂  = Y!i=\ Ci-

The plan is to start with a probability measure on the primitive structure «S, 
show there is a unique extension to A{S), the algebra (field) generated by S 
(first extension theorem) and then show there is a unique extension from A{S) 
Xoo{A{S)) — o{S), the or-field generated by S (second extension theorem). 

Before proceeding, here are standard examples of semialgebras. 

Examples: 

(a) Let = R, and suppose S\ consists of intervals including 0, the empty 
set: 

.Si = {(«,h\ : - o o <a <b < oo}. 

If / i , /2 G «Si, then / 1 /2 is an interval and in «Si and if / G «Si, then is a 
union of disjoint intervals. 
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FIGURE 2.2 Rectangles 

For general k, let 

A = / i X • • • X /IT, = p j 

so that 

A 

{(xi,...,Xk) :x, € /,} 

Since /,• G .Si, we have I^^ — I[ 4- // ' , where / / , //' G .SI are intervals. 

Consider 

P := {f/i X . • • X L̂ IT : L̂ O = /« or I'„ or / ; ' , « = ! , . . . , k). 

When L̂ O = / A . OF = 1 , . . . , A:, then U\ x . . . x L̂ IT = A. So 

L̂ i X • • • X Uk-

Not all Ua=Ia,a=\ IT 

This shows that .S^ is a semialgebra. • 
Starting with a semialgebra . S , we first discuss the structure of A{S), the small­

est algebra or field containing . S . 

Lemma 2.4.1 (The field generated by a semialgebra) Suppose . S is a semial­
gebra of subsets ofQ. Then 

A(S) = {J2S,:I finite, {5/, / G / } disjoint, 5, G . S } , (2.6) 
! € / 

is the family of all sums of finite families of mutually disjoint subsets of Q in . S . 

Proof. Let A be the collection on the right side of (2.6). It is clear that A D .S (take 
/ to be a singleton set) and we claim A is a field. We check the field postulates in 
Definition L5.2, Chapter 1 on page 12: 
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(i) Q € A since Q eS. 

(iii) If Yliel ^' ^jeJ ^'j members of A, then 

Kiel I \j€J I (i.j)€JxJ 

since {5,5^, (/, ; ) G / x J } is a finite, disjoint collection of members of the 
;r-system S. 

(ii) To check closure under complementation, let YlieJ ^ ^ ^nd observe 

(Ê .y=n̂ .̂ -
\ l € / / I G / 

But from the axioms defining a semialgebra, 5, G S implies 

J€J, 

for a finite index set and disjoint sets {5/;, ; G / ,} in S. Now observe 
that r\iejSf G A by the previously proven (iii). 

So A is a field, A D S and hence A D A(S). Since also 

J ] 5 , G A implies J^^i ^ 
I G / !€ / 

we get A C A{S) and thus, as desired, A = A(S). • 

It is now relatively easy to extend a probability measure from S to A(S). 

Theorem 2.4.1 (First Extension Theorem) Suppose S is a semialgebra of sub­
sets of Q and P : S y-^ [0,1] is a-additive on S and satisfies P{Q) = 1. There is 
a unique extension P' of P to A(S), defined by 

P'iJ2Si) = J2P(Sih (2.7) 
I G / l € / 

which is a probability measure on A(S); that is P'{^) = 1 and P' is o-additive 
on A{S). 

Proof. We must first check that (2.7) defines P' unambiguously and to do this, 
suppose A G AiS) has two distinct representations 

I G / J€J 
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1=1 

Since A e A(S), A also has a representation 

^ = E'̂ *' -Sit e .S, A: G 

where is a finite index set. From the definition of P\ we have 

P'iA) = J2 
keK 

Write 
OO OO 

5it = SkA = E*̂ *̂ ' = E E ^''^'J-
1=1 1=1 ;€y, 

We need to verify that 

Y^PiSi) = Y,P(S'j) (2.8) 
!€/ jeJ 

so that P' has a unique value at A. Confirming (2.8) is easy since 5, C A and 
therefore 

J2 (̂-̂ '̂  = E = E ^ E -^P 
! € / l € / ! € / 

and using the fact that 5,- = YljeJ ^'^'j ^ ^ ^ additive on «S, we get the 
above equal to 

!€/ jeJ jeJ !€/ 

Reversing the logic, this equals 

=Ê (̂ ;) 
as required. 

Now we check that P' is or-additive on A(S). Thus suppose for i > 1 , 

'̂ = E -̂ 'V ^ -̂ '̂  ^ 

and {At,i > 1} are mutually disjoint and 

OO 
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Now Sic Si j G S and H>ey, = S/c € S, and since P is or-additive on 
«S, we have 

OO OO 

E = E E E = E E E 
it€A- keK 1=1 ;€y, 1=1 ;€y, keK 

Again observe 
^ 5itS,7 = A Si J = 5,7 € S 
keK 

and by additivity of P on «S 
00 OO 

i = l jeJ, keK i = l YEJ, 

and continuing in the same way, we get this equal to 

OO OO 

= E^(E5.;> = Ê (̂ ') 
1=1 jeJ, 1=1 

as desired. 
Finally, it is clear that P has a unique extension from S to A{S), since if Pj 

and Pj are two additive extensions, then for any 

A = J2SieA(S) 
iel 

we have 
P'(A) = J2P{Si) = Pi{A). 

tel 
• 

Now we know how to extend a probability measure from S to A{S). The next 
step is to extend the probability measure from the algebra to the or-algebra. 

Theorem 2.4.2 (Second Extension Theorem) A probability measure P defined 
on a field A of subsets has a unique extension to a probability measure on o ( . 4 ) , 
the o-field generated by A. 

Combining the First and Second Extension Theorems 2.4.1 and 2.4.2 yields the 
final result. 

Theorem 2.43 (Combo Extension Theorem) Suppose S is a semialgebra of sub­
sets ofQ and that P is a a-additive set function mapping S into [0,1] such that 
P{Q) = 1. There is a unique probability measure on cr(S) that extends P . 

The ease with which this result can be applied depends largely on how easily 
one can check that a set function P defined on S is or-additive (as opposed to just 
being additive). Sometimes some sort of compactness argument is needed. 

The proof of the Second Extension Theorem 2.4.2 is somewhat longer than the 
proof of the First Extension Theorem and is deferred to the next Subsection 2.4.2. 
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G= lim \ Bn= lim t B' 
n-*oo n-*oo 

then 
lim t P{B„) = lim t P{B'„). 

This is verified in the next lemma whose proof is typical of this sort of uniqueness 
proof in that some sort of merging of two approximating sequences takes place. 

Lemma 2.4.2 If {B„] and {B'„] are two non-decreasing sequences of sets in A 
and 

oo oo 

n=l n=l 
then 

lim t P{B„) < lim t P(B'„). 
rt-^oo n-»-oo 

Proof. For fixed m 

lim ^B^B'„ = B^. (2.10) 
w—•oo 

2.4.2 Proof of the Second Extension Theorem 

We now prove the Second Extension Theorem. We start with a field A and a 
probability measure P on ̂  so that P(fi) = 1, and for all A ^ A, P{A) > 0 and 
for [AA disjoint, Ai e A, ESi ^ A we have Pi^Zi ^i) = E £ i 

The proof is broken into 3 parts. In Part I, we extend P to a set function n on 
a class ^ D ^ . In Part II we extend n to a set function n* on a class V D cr(A) 
and in Part III we restrict n* to o r ( ^ ) yielding the desired extension. 

PART I. We begin by defining the class G'-

G'mQAJ'.AJ eA) 
1=1 

={ lim ^ B„:B„eA,B„C B„+u Vn}. 
n-*oo 

So G is the class of unions of countable collections of sets in A, or equivalently, 
since A is a field, G is the class of non-decreasing limits of elements of A. 

We also define a set function FT : G ^ [0,1] via the following definition: If 
G = lim„_„oo ^ Bn €G, where B„ G A, define 

n(G)= lim t P(5„). (2.9) 
«-»-oo 

Since P is or-additive on A, P is monotone on A, so the monotone convergence 
indicated in (2.9) is justified. Call the sequence [Bn] the approximating sequence 
to G. To verify that FI is well defined, we need to check that if G has two approx­
imating sequences [Bn] and {B'„], 
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Since also 
BmB'„ C B'„ 

and P is continuous with respect to monotonely converging sequences as a con­
sequence of being or-additive (see Item 7 on page 31), we have 

lim \P(B'„)> lim \ P(B„B'„) = P{B„h 
n-*oo n-*oo 

where the last equality results from (2.10) and P being continuous. The inequality 
holds for all m, so we conclude that 

lim 'tP{B'„)> lim t ^ m ) 
«-^oo m-^oo 

as desired. • 

Now we list some properties of Fl and G-

Property 1. We have 

0eG, n ( 0 ) = O, 
QeG. n ( f i ) = 1, 

and for G G ^ 

0 < n ( G ) < l . (2.11) 

More generally, we have Ac G and 

n u = P ; 

that is, n (A) = P(A), for A G A. 
The first statements are clear since, for example, if we set B„ = Q for all 

then 
A3 B„ = nt^, 

and 
n(Q) = lim t P(^) = 1 n-^oo 

and a similar argument holds for 0. The statement (2.11) follows from 0 < 
P{B„) < 1 for approximating sets {B„} in A. To show U(A) = P(A) for 
A„ e Aj take the approximating sequence to be identically equal to A. 

Property 2. If G, G ^ for / = 1, 2 then 

G i U G 2 G ^ , G i n G 2 G ^ , 

and 

n ( G i u G 2 ) + n ( G i n G 2 ) = n c G o -F- n(G2) . (2.12) 
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1=1 1=1 

So n is or-additive on G-

For each w, G„ has an approximating sequence G ^ such that 

lim t5m.« = C;„. (2.14) 

Define Dm = Since ^ is closed under finite unions, D,„ G A 
We show 

lim \Dm^G, (2.15) 

and if (2.15) is true, then G has a monotone approximating sequence of sets 
in A, and hence G eG-
To show (2.15), we first verify {D„} is monotone: 

tn m 
Dm—\^ Bm.n C ^m+\,n 

,1=1 n=l 

This implies FT is additive on G-

To see this, pick approximating sets B„i, B„2 e A such that B„, t G, for 
I = 1, 2 as n —• oo and then, since A is a field, it follows that 

A3B„iUB„2\GiUG2. 

A3 B„ir\B„2\ Gir\G2, 

showing that Gi U G2 and Gi fl G2 are in Q. Further 

P(B„i U B„2) + P(B„i n B„2) = P{B„i) + P(B„2), (2.13) 

from (2.1) on page 30. If we let n 00 in (2.13), we get (2.12). 

Property 3. fl is monotone on G- If G, G G, i = 1,2 and G\ C G2, then 
n (Gi) < n(G2). This follows directly from Lemma 2.4.2. 

Property 4. If G„ G ^ and Gn t then G G ^ and 

n ( G ) = lim n(G„). 
n -^oo 

So G is closed under non-decreasing limits and Fl is sequentially mono-
tonely continuous. Combining this with Property 2, we get that if 
{At,i > 1} is a disjoint sequence of sets in G, A, e G and 

n ( y ; A , ) = n ( i i m t y " ^ ' ) = '̂"̂  "tmTA,) 
1=1 1=1 1=1 

n 00 
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(from ( 2 . 1 4 ) ) 

n=l 

Now we show {Dm} has the correct limit. If n < m, we have from the 
definition of Dm and ( 2 . 1 4 ) 

m m 

Bnt,n C D;„ = IJ BmJ C |J = 
7 = 1 ; = i 

that is, 

Bm,n CDmC Gm- ( 2 . 1 6 ) 

Taking limits on m, we have for any n > 1 , 

G„ = lim t Bm,n C lim t C lim ^Gm=G 
m->oo m->oo m-*oo 

and now taking limits on n yields 

G = lim T C lim T C lim T C M = G ( 2 . 1 7 ) 
n^oo m-*oo wi-»>CX) 

which shows Dm t G and proves G eQ. Furthermore, from the definition 
of n, we know n(G) = l im;„_OO t ^Wm). 

It remains to show W{G„) t n(G). From Property 2 , all sets appearing in 
( 2 . 1 6 ) are in Q and from monotonicity property 3 , we get 

n{Bm,n) < mDm) < n(Gm). 

Let m oo and since G„ = lim„_VOO t Bm,n we get 

U(Gn)< lim tn(Dm)< Hm t mGm) 

which is true for all n. Thus letting n oo gives 

Hm t n(G„) < lim 0(0,^,) < lim f n(G;;,), 
N-^OO M-^OO m->oo 

and therefore 
lim t n ( G „ ) = lim n(D;;,). 

The desired result follows from recalling 

lim n(Dm) = TKG). 
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1 = 1 , 2 , 

n*(Ai)+'->n(Gi). 

Adding over 1 = 1, 2 yields 

n*(Ai) -I- n*(A2) + € > n ( G i ) -i- n (G2) . 

By Property 2 for Fl (see ( 2 . 1 2 ) ) , the right side equals 

= n ( G i U G 2 ) + n(Gi n G2). 

Since G 1 U G 2 D Ai UA2, G i n G 2 D Ai n A 2 , we get from the definition 
of n* that the above is bounded below by 

> n*(AiUA2) + n*(Ai n A 2 ) . 

This extends P on . 4 to a or-additive set function n on ̂ . • 
PART 2 . We next extend n to a set function fl* on the power set Vi^) and 

finally show the restriction of fl* to a certain subclass V of V(^) can yield the 
desired extension of P. 

We define U* : P ( ^ ) K-> [ 0 , 1 ] by 

VA G V{Q) : n*{A) = inf{n(G) lAcGeQ], (2 .18) 

so n* (A) is the least upper bound of values of fl on sets G containing A. 
We now consider properties of n*: 

Property 1. We have on G-

n*\g = U (2 .19) 

and 0 < n*(A) < 1 for any A e Vi^). 

It is clear that ifAeG, then 

Ae{G:AcG eG) 

and hence the infimum in (2 .18) is achieved at A. 

In particular, from (2 .19) we get 

n*(^) = n(^) = 1, n*(0) = n ( 0 ) = o. 

Property 2. We have for Ai, A2 G V(Q) 

n*(Ai UA2) + n*(Ai n A2) < n*(>\i) -i- n*(>\2) ( 2 . 2 0 ) 

and taking A1 = A, A2 = A^ in ( 2 . 2 0 ) we get 

1 = U*{n) < n*{A) + n*{A% ( 2 . 2 1 ) 

where we used the fact that n*(fi) = 1. 

To verify ( 2 . 2 0 ) , fix e > 0 and find G, e G such that G/ D A,, and for 
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n*(A„)+€j22-' >n(G'„). (2.23) 
i=l 

We prove the claim by induction. For n = 1, the claim follows from (2.22) 
and the fact that G\ = Gi. Make the induction hypothesis that (2.23) holds 
for n and we verify (2.23) for w 4-1 . We have 

A„ CG„ C G'„ and A„ C A„+i C G„+i 

and therefore A„ C G'„ and A„ C G „ + i , so 

A„ C G ; n G„+i G (2.24) 

Thus 

n ( G ; + i ) = n ( G ; u G „ + i ) 

= n ( G ; ) 4- n ( G „ + , ) - O C G ; n g „ + , ) 

from (2.12) for n on ^ and using the induction hypothesis, (2.22) and the 
monotonicity of FT*, we get the upper bound 

< (n*(A„) + ^ Ê "') + {^*(An+l) + ^ ) 

- n\A„) 

1=1 

which is (2.23) with n replaced by n + 1. 

Let /2 oo in (2.23). Recalling n* is monotone on P(^), n is monotone 
on G and G is closed under non-decreasing limits, we get 

00 

lim t n * ( > \ „ ) 4 - ^ > lim ^ n{G'„) = U{\\G'.). 

Property 3. U* is monotone on V(^). This follows from the fact that U is mono­
tone on G. 

Property 4. n* is sequentially monotone continuous on V{Q) in the sense that 
\fA„ t A, then U*(A„) t U*(A). 

To prove this, fix € > 0. for each n > 1, find Gn G Q such that Gn D A^ 
and 

n * ( > \ „ ) 4 - | ^ > n ( G „ ) . (2.22) 

Define G'„ = U^_jG;„ . Since G is closed under finite unions, G'„ e G and 
{GJ,} is obviously non-decreasing. We claim for all w > 1, 
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00 

A = lim t C M G) G 

we conclude 
lim t n*(>\„) > n*(>\). 

n-voo 

For a reverse inequality, note that monotonicity gives 

n*(A„) < U*{A) 

and thus 
Um t n*(A„) < n*(A). 

/l-»-00 • 

PART 3. We now retract n* to a certain subclass V oiV{Q) and show n*|x> is 
the desired extension. 

We define 

P := {D G V{Q.) : n*(D) + U*{D'') = 1.} 

Lemma 2.4 J T/ie c /«s5 "D has the following properties: 

1. V is a o-field. 

2. W*\x>isaprobability measure on V). 
Proof. We first show P is a field. Obviously ^ G X> since n*(^) = 1 and 
n*(0) = 0. To see V is closed under complementation is easy: If D G P , then 

n*(D) 4- n*(D^) = 1 

and the same holds for D^. 
Next, we show V is closed under finite unions and finite intersections. If D\,D2 G 

P , then from (2.20) 

n*(Di u D2) 4- n*(Di n D2) <n*(Di) 4- n*(D2) (2.25) 
n*((Di u D2)") 4- n*((Di n D2)") <n*(Dj) 4- n*(D|). (2.26) 

Add the two inequalities (2.25) and (2.26) to get 

n*(DiUD2 )4 -n*((DiUD2)^) 

4- n*(Di n D2) + n*((Di n 02^) < 2 (2.27) 

where we used Dj G P , i = 1,2 on the right side. From (2.21), the left side of 
(2.27) is > 2, so equality prevails in (2.27). Again using (2.21), we see 

n*(Di U D2) 4- n*((Di U D2)^) =1 
n*(Di n D2) 4- n*((Di n D2f) =i. 

Since 
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= lim n*CpDi) 
n-*oo ^—f 

1=1 

and because H* is finitely additive on "D, this is 

n 00 

as desired. 
Since X> is a or-field andV D A,V D o(A). The restriction n*|̂ (̂ ) is the 

desired extension of P on .4 to a probability measure on or (.4). The extension 
from A to a (A) must be unique because of Corollary 2.2.1 to Dynkin's theorem. 

• 

Thus Di UD2, Di nD2 G P and is a field. Also, equality must prevail in (2.25) 
and (2.26) (else it would fail in (2.27)). This shows that Fl* is finitely additive on 
V. 

Now it remains to show that Visa or-field and Fl* is or-additive on V. Since V 
is a field, to show it is a a-field, it suffices by Exercise 41 of Chapter 1 to show 
that X> is a monotone class. Since V is closed under complementation, it is enough 
to show that D„ e V, D„ 'I D implies D eV. However, D„ D implies, since 
n* is monotone and sequentially monotone continuous, that 

00 

£ m ^ t n*(D„) = n*(|J D„) = n*(D). 

Also, for any m > 1, 
00 00 

n*((|J Dnf) = n*(f| Df,) < n*(D^) 
n=l n=\ 

and therefore, from (2.21) 
00 00 

1 < n*(|J D„) + n*((U Dnf) < lirn^ n*(D„) + n*(D^) (2.28) 

and letting m oo, we get using Dn eV 

1 < lim n*(Dn)+ lim n*(Df,) 

= lim (n*(D„) + n*(Dj)) = 1, 
n—•oo 

and so equality prevails in (2.28). Thus, Dn t D and D„ eV imply D eV and 
V is both an algebra and a monotone class and hence is a or-algebra. 

Finally, we show n*|p is or-additive. If {D„] is a sequence of disjoint sets in 
P , then because H* is continuous with respect to non-decreasing sequences and 
X> is a field 

00 n 

n'(T"A)=n*(i im y;z),) 
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( J 
fl b 

FIGURE 2.3 Abutting Intervals 

Then X(a, b] = b — a and 

k k 
^k(a„b,] = J2{b,-ai) 
1=1 1=1 

= 4>i — a\ + b2 — a2 -\ \-bic —ak 

= bic — cii = b — a. 

This shows X is finitely additive. 

2.5 Measure Constructions 

In this section we give two related constructions of probability spaces. The first 
discussion shows how to construct Lebesgue measure on (0,1] and the second 
shows how to construct a probability on R with given distribution function F . 

2.5.1 Lebesgue Measure on (0,1] 

Suppose 

^ = ( 0 , 1 ] , 

S={{a,b]:0<a <b<l]. 

Define on S the function X : .S K-> [0,1] by 

X(0) = O, Ha,b] = b-a. 

With a view to applying Extension Theorem 2.4.3, note that k{A) > 0. To show 
that X has unique extension we need to show that X is or-additive. 

We first show that X is finitely additive on S. Let («, fe] e S and suppose 

k 
{a,b] = \J{a,ybi], 

1=1 

where the intervals on the right side are disjoint. Assuming the intervals have been 
indexed conveniently, we have 

ai =a,bk = b, bj = a,+i, i = 1 k — 1. 

file:///-bic
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(a,b] = \J(a,,bi] 
1=1 

and we first prove that 

00 

b - a < ^ ( f e , - « , ) . (2.29) 
1=1 

Pick s < b — a and observe 

oo 
[ a + e , b ] c [ J ( a , , b , + ^ ) . (2.30) 

1=1 

The set on the left side of (2.30) is compact and the right side of (2.30) gives an 
open cover, so that by compactness, there is a finite subcover. Thus there exists 
some integer N such that 

[ a + e , b ] c \ j ( a i , b , + ^ ) . (2.31) 
1=1 

It suffices to prove 

b - a - e < Y ^ ( b i - a i + ^ ) (2.32) 

since then we would have 

I 
1 

b - a - e <J2{b, - a, + <J2^b, -a,) + e; (2.33) 

that is. 

00 

b-a< J2(bi -a,)+ 2e. (2.34) 
1 

Since e can be arbitrarily small 

00 

b - a < Y^ibi-Qi) 

1 

as desired. 

We now show X is o--additive. Care must be taken since this involves an infinite 
number of sets and in fact a compactness argument is employed to cope with the 
infinities. 

Let 
00 
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Rephrasing relations (2.31) and (2.32) slightly, we need to prove that 

N 

[a.b]c[J{ai.bi) (2.35) 
1 

implies 

N 

b-a < Y^{bi-a,). (2.36) 
1 

We prove this by induction. First note that the assertion that (2.35) implies 
(2.36) is true for A'̂  = 1. Now we make the induction hypothesis that whenever 
relation (2.35) holds for TV - 1, it follows that relation (2.36) holds for TV - 1. We 
now must show that (2.35) implies (2.36) for N. 

Suppose = vj^^,-, and 

ON <b<bN. (2.37) 

with similar argument if (2.37) fails. Suppose relation (2.35) holds. We consider 
two cases: 

Qj^ a b bff 

FIGURE 2.4 Case 1 

a Off b b ^ 

FIGURE 2.5 Case 2 

C A S E 1: Suppose <a Then 

N 

b - a <bN -QN < ^{bi - at). 
1 

C A S E 2: Suppose a^ > a. Then if (2.35) holds 

1 

so by the induction hypothesis 

[a.ON] C U(f lx,fc.) 

ON - a < ^ { b i - ai) 
1=1 
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so 

b — a =b — Gff -\- Gff — a 

N-\ 
<b - ON-\-^{bi - ai) 

1=1 

N-\ 
<bN-aN + ^{bi - at) 

1=1 

N 
= Y^{bi-ai) 

1=1 

which is relation (2.36). This verifies (2.29). 
We now obtain a reverse inequality complimentary to (2.29). We claim that if 

(a,b] = Yl^\(«i. t>i], then for every w, 

n n 

Hia, b]) = b-a> J2^aai, bi]) = J^ib, - a,). (2.38) 
1=1 1=1 

This is easily verified since we know k is finitely additive on S. For any w, 
Uj'^jCa,, fo,] is a finite union of disjoint intervals and so is 

n m 

[ a , f e ] \ | J ( a „ 6 , ] = : U ^ r 
. = 1 j=\ 

So by finite additivity 

m 
X{{a,b]) =MU(«,,fc,]uU/y), 

. = 1 ; = 1 

which by finite additivity is 

m 
= Y.^{{ai,bt])^Y.^{Ij) 

. = 1 y=i 

>EM(«.'fci]). 
1=1 

Let /2 ->> oo to achieve 

oo 

H{ayb])>Y.^{{aiybt\). 
1=1 

This plus (2.29) shows X is or-additive on S. 
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2.5.2 Construction of a Probability Measure on R with Given 
Distribution Function F{x) 

Given Lebesgue measure k constructed in Section 2.5.1 and a distribution func­
tion F(x), we construct a probability measure on R , P/r, such that 

Pf{{-oo,x]) = F{x). 

Define the left continuous inverse of F as 

F'^iy) = inf{5 : F{s) > y), 0<y <l (2.39) 

F^(y) 

FIGURE 2.6 

and define 
A{y) := {s:F{s)>y}. 

Here are the important properties o{A(y). 

(a) The set A{y) is closed. If 5^ G A(y), and 5 „ 4- Sy then by right continuity 

y < FiSn) i F ( 5 ) , 

so F(s) > y and 5 G i4(y). If 5 „ t ^ and s„ G A( j ) , then 

J' < F ( 5 „ ) t Fis-) < F(s) 

and y < F{s) implies s G ̂ ( j ) . 

(b) Since A(y) closed, 

that is, 

(c) Consequently, 

or equivalently 

mfA{y) eA(y); 

F(F^(y))>y. 

F^CV) > r iff>; > F(t) 

F^(y)<tiffy<F{t). 
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The last property is proved as follows. U t < F'*~(y) = inf A(y), then t ̂  
A{y), so that F{t) < y. Conversely, if F^{y) < t, then t e A{y) and F{t) > y. 

Now define for A C R 

^F{A) = {xe{0,l]:F^(x)eA}. 

If A is a Borel subset of ( R ) , then (A) is a Borel subset of ( 0 , 1 ] . 

Lemma 2.5.1 If A G B{R), then (A) G B{(0, 1 ] ) . 

Proof. Define 

Q = {A c R : ̂ FiA) e B{{0,1])}. 

^ contains finite intervals of the form («, 5] C R since from Property (c) of F**" 

^Fda, b]) ={xG ( 0 , 1 ] : F " - ( ; c ) G ( « , b]} 

= ( A : G ( 0 , < F ^ ( A : ) < b ) 

= { ; c G ( 0 , l ] : F ( « ) < ; c < F ( f e ) } 

= ( F ( « ) , F ( 5 ) ] G 5 ( ( 0 , 1 ] ) . 

Also ^ is a a-field since we easily verify the a-field postulates: 

(i) We have 
R G ^ 

since ^ f ( R ) = ( 0 , 1 ] . 

(ii) We have that A implies A^ since 

(A^) = (;c G ( 0 , 1 ] : F * - ( ; c ) G A^} 

= {xe ( 0 , 1 ] : F^ix) e A}' = (^f (A))^ 

(iii) Q is closed under countable unions since if A„ G ̂ , then 

^F(U^") = U^ (̂̂ ") 
« n 

and therefore 
[JAneQ. 
n 

So Q contains intervals and ^ is a a-field and therefore 

Q D iB( intervals) = B ( R ) . • 
We now can make our definition of PF. We define 

PFiA) = H^FiA)), 
where k is Lebesgue measure on ( 0 , 1 ] . It is easy to check that PF is a probability 
measure. To compute its distribution function and check that it is F , note that 

PF(-OO,X] = H^Fi-oo,x]) = k{y G ( 0 , 1 ] : Fiy) < x] 

= My G ( 0 , 1 ] : 3; < Fix)] 

= mo. Fix)]) = Fix). a 
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P ( £ ) = 0, if E is finite, 
1, if is finite. 

(b) If Q is countably infinite, show P is finitely additive but not cr-additive. 
(c) If Q is uncountable, show P is a-additive on TQ. 
Hint: Use Exercise 20 of Chapter 1. 

2. Let A be the smallest field over the TT-system V. Use the inclusion-exclusion 
formula (2.2) to show that probability measures agreeing on V must agree 
also on A. 

3. Let {Q,13, P) be a probability space. Show for events B, C A, the follow­
ing generalization of subadditivity: 

P ( U , A , ) - PiUiB,) < E ( ^ U i ) - Pi^i))-

4. Review Exercise 34 in Chapter 1 to see how to extend a a-field. Suppose P 
is a probability measure on a cr-field B and suppose A ^ B. Let 

Bi=a(B,A) 

and show that P has an extension to a probability measure Pi on B. (Do 
this without appealing directly to the Combo Extension Theorem 2.4.3.) 

5. Let P be a probability measure on B{R). For any B G B(R) and any € > 0, 
there exists a finite union of intervals A such that 

P{AAB) < 6 . 

Hint: Define 

Q : = {B G B(M.) : V 6 > 0, there exists a finite union of intervals 
Af such that P(AAB) < 6 } . 

6. Say events A i, A2, • . • are almost disjoint if 

P ( A , n A ^ ) = 0, / ^ ; . 

Show for such events 
00 00 

2.6 Exercises 

1. Let ^ be a non-empty set. Let TQ be the collection of all subsets such that 
either A or A^ is finite. 

(a) Show that TQ is a field. 

Define for E e To the set function P by 
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and 

Set 

P\m) = Pi({c}) = PiW) = P2{[d}) = i 

C = {{aybl{d.c}Aa,cl{byd}}. 

9. Background: Call two sets Ai, A2 G B equivalent if P(Ai AA2) = 0. For 
a set A G By define the equivalence class 

A*^ = [B eB: P{BAA) = 0]. 

This decomposes B into equivalences classes. Write 

P*(A*) = P(A), VA G A*. 

In practice we drop #s; that is identify the equivalence classes with the 
members. 

An atom in a probability space {Q,B, P ) is defined as (the equivalence 
class of) a set A e B such that P(A) > 0, and if B C A and B e By then 
P{B) = 0, or P(A \B) = 0. Furthermore the probability space is called 
non-atomic if there are no atoms; that is, A e B and P(A) > 0 imply that 
there exists aB eB such that B c A and 0 < P(B) < P(A). 

(a) UQ = Ry and P is determined by a distribution function F{x)y show 
that the atoms are [x : F{x) — F(x—) > 0}. 

(b) If (fi, B, P ) = ((0,1], B(iOy 1]), X), where X is Lebesgue measure, 
then the probability space is non-atomic. 

(c) Show that two distinct atoms have intersection which is the empty set. 
(The sets A,B are distinct means P(AAB) > 0. The exercise then 
requires showing P{ABA0) = 0.) 

7. Coupon collecting. Suppose there are N different types of coupons avail­
able when buying cereal; each box contains one coupon and the collector 
is seeking to collect one of each in order to win a prize. After buying n 
boxes, what is the probability p„ that the collector has at least one of each 
type? (Consider sampling with replacement from a population of N dis­
tinct elements. The sample size isn > N. Use inclusion-exclusion formula 
(2.2).) 

8. We know that Pi = P2 on if Pi = P2 on C, provided that C generates B 
and is a 7r-system. Show this last property cannot be omitted. For example, 
consider Q = {a,b,c, d] with 

P\i{a]) = Pi(W}) = Piiib]) = Pliic]) = \ 
o 
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P(f]B„) = l. 
n=l 

12 . Suppose C is a class of subsets of Q. and suppose B C ^ satisfies B ecF(C). 
Show that there exists a countable class CB CC such that B G O{CB)-

Hint: Define 

Q :=[B <Z^:3 countable CsCC such that B G ^ ( C B ) } . 

Show that ^ is a a-field that contains C. 

1 3 . If {Bit} are events such that 

^ P ( B , ) > n - l , 
k=\ 

then 

P ( N Bk) > 0 . 
k=\ 

(d) A probability space contains at most countably many atoms. (Hint: 
What is the maximum number of atoms that the space can contain 
that have probability at least I / /2? 

(e) If a probability space (fi, B, P) contains no atoms, then for every 
a G ( 0 , 1 ] there exists at least one set A e B such that P{A) = a. 
(One way of doing this uses Zorn's lemma.) 

(f) For every probability space (fi, B, P) and any 6 > 0 , there exists 
a finite partition of by sets, each of whose elements either has 
probability < 6 or is an atom with probability > €. 

(g) Metric space: On the set of equivalence classes, define 

rf(A*[,A*) = P ( A I A A 2 ) 

where A,- G A* for i = 1 , 2 . Show is a metric on the set of equiva­
lence classes. Verify 

| P ( A i ) - P ( A 2 ) | < P ( A I A A 2 ) 

so that is uniformly continuous on the set of equivalence classes. 
P is or-additive is equivalent to 

B3A„ 10 implies d{A^„, 0*) ^ 0 . 

10 . Two events A, B on the probability space (^ , B, P) are equivalent (see 
Exercise 9 ) if 

P ( A n B ) = P ( A ) v P ( B ) . 

1 1 . Suppose {B„,n > 1} are events with P{B„) = 1 for all n. Show 
00 
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14. If F is a distribution function, then F has at most countably many discon­
tinuities. 

15. If «Si and «S2 are two semialgebras of subsets of fi, show that the class 

SiS2:= {AiAi'.Ai G . S I , A 2 G . S 2 } 

is again a semialgebra of subsets of ^ . The field (a-field) generated by 
S1S2 is identical with that generated by «Si U ̂ 2. 

16. Suppose Bis a or-field of subsets of Q and suppose Q : B t-^ [0,1] is a set 
function satisfying 

(a) Q is finitely additive on B. 

(b) 0<Q{A)<1 for aWAeB and G(fi) = 1. 

(c) UA, eB are disjoint and Yl^i Ai = fi, then Yl^i Q{A,) = 1. 

Show ^ is a probability measure; that is, show Q is a-additive. 

17. For a distribution function F{x), define 

Friy)=inf[t:F{t)>y} 
Fr(y)=mt:F{t)>y]. 

We know Fl*~{y) is left-continuous. Show F/~(_y) is right continuous and 
show 

MwG(0, l]:Fi^{u)^Friu)] = 0, 

where, as usual, k is Lebesgue measure. Does it matter which inverse we 
use? 

18. Let A , C be disjoint events in a probability space with 

P ( A ) = .6, PiB) = .3, P ( C ) = . 1 . 

Calculate the probabilities of every event in or ( A , B, C). 

19. Completion. Let {Q,B, P) be a probability space. Call a set A'̂  null if 
N e Band P{N) = 0. Call a set B C negligible if there exists a null 
set such that B C N. Notice that for B to be negligible, it is not required 
that B be measurable. Denote the set of all negligible subsets by J^f. Call B 
complete (with respect to P) if every negligible set is null. 

What if B is not complete? Define 

B*:={AUM:AeB,M eAf]. 

(a) Show B* is a a-field. 
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(b) If A, GiBandM, G A" for / = 1,2 and 

Ai UA/i = A2 U M 2 , 

thenP(Ai) = P(A2). 

(c) Define P* : B* [0,1] by 

P*{A \JM) = P(A), AGB, M Gj\f. 

Show P* is an extension of P to B*. 
(d) UB C fiandA, e BJ = 1,2 and Ai C 5 C A2 a n d P ( A 2 \ A i ) = 

0, then show B GB*. 
(e) Show B is complete. Thus every a-field has a completion. 

(f) Suppose Q = RandB= B(R). Let pk > 0, Y,k Pk = 1- Let {^it} be 
any sequence in R . Define P by 

P{{ak]) = Pk, PiA) = P*' ^ ^ ^• 

What is the completion of B'> 

(g) Say that the probability space {Q,B, P ) has a complete extension 
iQ,BuPi) \{ B C Bi and P i le = P . The previous problem (c) 
showed that every probability space has a complete extension. How­
ever, this extension may not be unique. Suppose that (fi, B2, Pi) is 
a second complete extension of (fi, B, P ) . Show Pi and P2 may not 
agree on B\ D B2. (It should be enough to suppose Q has a small 
number of points.) 

(h) Is there a minimal extension? 

20. In (0,1], let B be the class of sets that either (a) are of the first category 
or (b) have complement of the first category. Show that Bis a a-field. For 
A e B, define P(A) to be 0 in case (a) and 1 in case (b). Is P or-additive? 

21. Let ^ be a field of subsets of Q and let p. be a finitely additive probability 
measure on A. (This requires fj.{Q) = 1.) 

(a) If ^ 3 A„ 4- 0, show fi(A„) i 0. 

(b) (Harder.) UA3A„-^0, show fi{A„) ^ 0. 

22. Suppose F{x) is a continuous distribution function on R . Show F is uni­
formly continuous. 

23. Multidimensional distribution functions. For a, b, x € /3 (R^) write 
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a < bifffl, < b,, i = l,...,k; 

( - 0 0 , x] = {u G : u < x} 

(a ,b] = { u € i B ( ] R * ) : a < u < b } . 

Let P be a probability measure on iB(R*) and define for x G R* 

F(x) = P ( ( - o o , x ] ) . 

Let S/c be the semialgebra of /:-dimensional rectangles in R*. 

(a) If a < b, show the rectangle := (a, b] can be written as 

Ik = ( - 0 0 , b] \ ( ( - 0 0 , (ai,b2,..., bk)p 

( - 0 0 , (fei, «2 bk)]U---U ( - 0 0 , (bi, bi ak)]) 

(2.40) 

where the union is indexed by the vertices of the rectangle other than 
b. 

(b) Show 
/ 3 ( R * ) = a ( ( - o o , x ] , x G R * ) . 

(c) Check that {(—00, x], x G R*} is a TT-system. 
(d) Show P is determined by F(x) , x G R*. 
(e) Show F satisfies the following properties: 

(1) If AC, ^ 00, / = 1 , . . . , A:, then F(x) 1. 
(2) If for some i e [I,... ,k] x , ^ -00, then F(x) 0. 
(3) For Sk 3 Ik = (a. b], use the inclusion-exclusion formula (2.2) to 
show 

P(/it) = A , , F . 

The symbol on the right is explained as follows. Let V be the vertices 
of Ik so that 

V = {(xi,...,Xi):xt = a, orbt, i = l , . . . , k ] . 

Define for G V 

sgn(x) = 

Then 

-1-1, if card{/ : x i = ai] is even. 
—1, if card{/ : x , = ai] is odd. 

A / , F = J]sgn(x)F(x). 
X G V 



2.6 Exercises 69 

and so on. 

(a) Show the probability {\ <m <n) 

pirn) = P[J2 U, = nt] 
1=1 

(f) Show F is continuous from above: 

lim F(x) = F(a) . 
a<xia 

(g) Call F : R * h-*' [ 0 , 1 ] a multivariate distribution function if properties 
( 1 ) , ( 2 ) hold as well as F is continuous from above and A/^F > 
0 . Show any multivariate distribution function determines a unique 
probability measure P on ( R * , i B ( R * ) ) . (Use the extension theorem.) 

2 4 . Suppose A.2 is the uniform distribution on the unit square [ 0 , 1 ] ^ defined by 
its distribution function 

X2([0, ^ i ] X [ 0 , ̂ 2]) = 0162, {Ou $2) e [ 0 , 

(a) Prove that X2 assigns 0 probability to the boundary of [ 0 , 1 ] ^ . 

(b) Calculate 

A 2 { ( ^ l , ^ 2 ) G [ 0 , l ] 2 : ^ i A ^ 2 > 

(c) Calculate 

X2 { (^ i , ^2) e [ 0 , if : ^1 A 2̂ < Jc, ^1 A 2̂ < y). 

2 5 . In the game of bridge 5 2 distinguishable cards constituting 4 equal suits are 
distributed at random among 4 players. What is the probability that at least 
one player has a complete suit? 

2 6 . If A i , . . . , i4„ are events, define 

n 
SI = J2P{A,) 

1=1 

5 2 = J2 ^ ( ^ ' ^ y ) 
i < i < y < « 

\<i<i<k<n 
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(a) Show R* 6 C, 0 € C. 

(b) Show C is closed under complements and countable unions. 

(c) Let TiMl") be the closed subsets of R*. Show 

.F(R*) C C. 

(d) Show iB(R*) C C; that is, show regularity. 

(e) For any Borel set A 

P(A) = sup[P(K) :K CA,K compact.} 

of exactly m of the events occurring is 

p(m) =Sm - I ^ + I ^ )^m+2 

-+...±(j^y„. (2.41) 

Verify that the inclusion-exclusion formula (2.2) is a special case of 
(2.41). 

(b) Referring to Example 2.1.2, compute the probability of exactly m co­
incidences. 

27. Regular measures. Consider the probability space (R*, /3(R*), P ) . A Borel 
set A is regular if 

P(>\) =inf{P(G) : G D A, G open,} 

and 

P(A) =sup{P(F) : F C A, F closed.} 

P is regular if all Borel sets are regular. Define C to be the collection of 
regular sets. 



3 
Random Variables, Elements, 
and Measurable Maps 

In this chapter, we will precisely define a random variable. A random variable is 
a real valued function with domain ^ which has an extra property called measur­
ability that allows us to make probability statements about the random variables. 

Random variables are convenient tools that allow us to focus on properties of 
interest about the experiment being modelled. The ^ may be rich but we may 
want to focus on one part of the description. For example, suppose 

n = {0. i r 
= {(ct>i,... , a)„) : o), = 0 or 1, / = 1 , . . . , w}. 

We may imagine this as the sample space for n repeated trials where the outcome 
is 1 (success) or 0 (failure) at each trial. One example of a random variable that 
summarizes information and allows us to focus on an aspect of the experiment of 
interest is the total number of successes 

A ' ( ( w i , . . . , w „ ) ) =coi + aj„. 

We now proceed to the general discussion. 

3.1 Inverse Maps 

Suppose ^ and ^ ' are two sets. Frequently ^ ' = R . Suppose 
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meaning is a function with domain ^ and range Then X determines a 
function 

X-^ : V(Q') K-> V{n) 

defined by 

X-\a') = [co e n : X(co) e A'} 

for A' C X~^ preserves complementation, union and intersections as the 
followingproperr/es show. For A' C Aj C and T an arbitrary index set, 
the following are true. 

(i) We have 
X-\0) = 0, x-\q') = q. 

(ii) Set inverses preserve complements: 

X-^A'*") = {X-\A')y 

so that 

X-\n'\A') = n\X-\A'). 

(iii) Set inverses preserve unions and intersections: 

X-\[jA[) = [Jx-\A',)y 
teT teT 

and 
x-\pia:) = pix-\a',). 

teT teT 

FIGURE 3.1 Inverses 

Here is a sample proof of these properties. We verify (ii). We have co G 
X-Ha"') mX(co) € (A'f ifiXico) iA'ifiwi X-^A') iff w € (X-\A')f. 

Notation: If C C Vi^') is a class of subsets of Q\ define 

X-\C') := {X-\C'):C' e C ) . 
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Proposition 3.1.1 IfB' is a a-field of subsets of then X'^ (B') is a G-field of 
subsets of Q. 

Proof. We verify the postulates for a cr-field. 

(i) Since ^' e B\ we have 

X-\Q') = Q e X-\B') 

by Property (i) of the inverse map. 

(ii) If A' € B', then (A'Y e B\ and so \ fX - \A ' ) e X'HB'), we have 

X-\(Ay) = (X-^ (A')y e X-\B') 

where we used Property (ii) of the inverse map. 

(iii) lfX-\B'„) G X-\B\ then 

\Jx-\B'„)=X-'(\jB'„)eX-\B') 
n n 

since \Jb'„ € B'. • 
n 

A related but slightly deeper result comes next. 

Proposition 3.1.2 IfC is a class of subsets of then 

X-\G{C'))^G{X-\C')), 

that is, the inverse image of the G-field generated by C in Q! is the same as the 
G-field generated in Q. by the inverse images. 

Proof. From the previous Proposition 3.1.1, X~^(G(C')) is a cr-field, and 

X-\G(C'))DX-\C'), 

since G(C') D C and hence by minimality 

X-\G(C')) D G(X-\C')). 

Conversely, define 

T' : = {B' € V(n') : X'^B') G G(X-\C')). 

Then T' is a cr-field since 

(i) Q' e T', since ^ -^ ( f i ' ) = ^ G (C)). 

file:///fX-/A'
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(ii) A ' € T' implies {A'f G T' since 

i f^-^(>\ ' ) G a ( ^ - ' ( C ' ) ) . 

(iii) € T' implies U „ B ; G T' since 

A : - ^ U „ B ; ) = U „ ^ - ^ B ; ) G a ( ^ - ^ C ' ) ) 

i f ^ - l ( B ; ) G a ( ^ - l ( C ' ) ) . 

By definition 

X-\T')<ZG{X-^{C'y). (3.1) 

Also 

since X'^ip) C CT(^-VC')). Since . F ' is a tr-field, 

a (C ' )C . ; ^ ' (3.2) 

and thus by (3.1) and (3.2) 

^-Ua(C')) C X-^{T') C G{X-^{C')Y 

This suffices. • 

3.2 Measurable Maps, Random Elements, Induced 
Probability Measures 

A pair B) consisting of a set and a or-field of subsets is called a measurable 
space. (It is ready to have a measure assigned to it.) If ( ^ , B) and (^ ' , B') are 
two measurable spaces, then a map 

is called measurable if 
X-\B') C B. 

X is also called a random element of We will use the notation that 

X G B/B' 

or 
X :{n,B)^ {n\B'). 
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A special case occurs when (^ ' , B') = ( M , B(W)). In this case, X is called a 
random variable. 

Let (Q, B, P) be a probability space and suppose 

X:{n,B)i-^ (n\B') 

is measurable. Define for A ' C ^ ' 

[X € A'] : = ^ - ^ A ' ) = {(V : ^ ( w ) € A']. 

Define the set function P o X~^ on B' by 

P o ^ - ^ ( A ' ) = P(X-\A')). 

P o X~^ is a probability on (^ ' , iB') called the induced probability or the distri­
bution of X. To verify it is a probability measure on B\ we note 

(a) PoX'H^') = ^ ( ^ ) = 1-
(b) P o ( A ' ) > 0, for all A ' G iB'. 

(c) If {A^, /2 > 1} are disjoint, 

P o A T - ^ I J A ; ) = P ( | J ( A ; ) ) 

n n 

n 

n 

since {X~^ (A'„)}n>i are disjoint in B. 

Usually we write 
P o ^ - ^ ( A ' ) = P [ ^ € A ' ] . 

If A ' is a random variable then P o X~^ is the measure induced on E by the 
distribution function 

P o X-\-oo, x] = P[X < x]. 

Thus when A ' is a random element of B\ we can make probability statements 
about X, since X~^(B') e B and the probability measure P knows how to assign 
probabilities to elements of B. The concept of measurability is logically necessary 
in order to be able to assign probabilities to sets determined by random elements. 

Example. Consider the experiment of tossing two die and let 
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Define 
X :Qt-^ {2,3,... ,12]=: Q' 

by 
j)) = i + 

Then 
^-^({4}) = = 4] = ((1,3), (3,1), (2, 2)} C ^ 

and 

X-\{2,3}) = [ A : € {2,3}] = {(1,1). (1,2), (2,1)). 

The distribution of X is the probability measure on Q,' specified by 

PoX-'^{{i]) = P[X = i], i eQ'. 

For example, 

P[X = 3] = 1 
P [ ^ = 4 ] = | , 

and so on. 

The definition of measurability makes it seem like we have to check X ^ {A') e 
B for every A' eB'\ that is 

X-^{B') C B. 

In fact, it usually suffices to check that X~^ is well behaved on a smaller class 
than B'. 

Proposition 3 J . l (Test for measurability) Suppose 

X :Q\-^Q' 

where {'D.,B), and {Q!, B') are two measurable spaces. Suppose C generates B'; 
that is 

B' = o(C'). 

Then X is measurable iff 

X-\C')CB. 

Remark. We do not have to check that 

X-\G{C'))CB, 

which is what using the definition would require. 
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Corollary 3.2.1 (Special case of random variables) The real valued function 

is a random variable iff 

X~\{-oo, X]) = [X <X]eB, V X € R . 

Proof of Proposition 3.2.1. If 

X-\C')CB, 

then by minimality 
G{X-\C'))CB. 

However, we get 

X-\G{C')) = X-\B') = G(X-\C')) C B, 

which is the definition of measurability. • 

Proof of Corollary 3.2.1. This follows directly from 

or ( ( - G O , X ] , X € R ) = i B ( R ) . 

3.2.1 Composition 

Verification that a map is measurable is sometimes made easy by decomposing the 
map into the composition of two (or more) maps. If each map in the composition 
is measurable, then the composition is measurable. 

Proposition 3.2.2 (Composition) Let X\, X2 be two measurable maps 

Xi:{nuBi) ^ (n2,B2), 

X2:{n2,B2) K-> (n^yB^) 

where (Q,,B,),i = 1,2,3 are measurable spaces. Define 

X2oX\ : J^i H> ^ 3 

by 

X2oX\{a)\) = X2{X\(a)i)), coi € ^ i -

Then 
X20X1 eBi/B3. 
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FIGURE 3.2 

Proof. It is elementary to check that 

{XioXxV^ = x - \ x - \ - ) ) 

as maps from ViSi^) The reason is that for any B 3 C ^ 3 

{X2oXi)-\Bi)=W, : X2oX^{w^) e B3} 

= {aji:Xi(aJi)GX2\B3)] 

= {(OI:(OIGX;\X2\B3))]. 

If B3 € then 

( ^ 2 0 ^ l ) - ^ ( 5 3 ) = ^ r ' ( ^ 2 " ^ ( ^ 3 ) ) € Bu 

since A:^U53) G IB2. Thus 

—1 X2oX-'(B3)cBu 

as required. 

3.2.2 Random Elements of Metric Spaces 
The most common use of the name random elements is when the range is a metric 
space. 

Let (S, d) be a metric space with metric d so that : 5 x 5 E + satisfies 

(i) d{x,y) > 0, ioxx^y G 5. 

in) d{x,y) = 0\fix = y, for any AC, G 5. 

(iii) d{x, y) = d{y, x), for any 3; G 5. 

(iv) d{x, z) < d{x, y) + d{y, 2 ) , for any 2 G 5. 
Let O be the class of open subsets of 5. Define the Borel cr-field S to be the 

smallest cr-field generated by the open sets 

S = o{0). 
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If 
^ : ( ^ , / 3 ) H > ( 5 , 5 ) ; 

that is, X 6 B/S, then call X a random element of 5. Here are some noteworthy 
examples of random elements. 

1 . Suppose 5 = M and d{x, y) = \x — y\. Then a random element A' of 5 is 
called a random variable. 

2. Suppose 5 = and 

^(x,y) = 
\ 1 

Then a random element AT of 5 is called a random vector. We write X = 
( A ' l , . . . . Xk). 

3. Suppose 5 = R ° ° , and the metric d is defined by 

Then a random element X of 5 is called a random sequence. We write 
X = (A'l, A'2, • • • )• 

4. Let S = C[0, oc) be the set of all real valued continuous functions with 
domain [0, oo). Define 

\\x(')-y()\\m= sup | ^ ( 0 - > ' ( 0 I 
0<r<»i 

and 
oo 

= 1 : 2 - " ( i i ^ - ^ i i " V 

A random element A' of 5 is called a random (continuous) function. 

5. Let (E, S) be a measurable space where E is a nice metric space and £ are 
the Borel sets, that is the sets in the or-field generated by the open sets. Let 
S = M+(E) be the set of all measures on (E, £) which satisfy the property 
that if pi € M+(E), then fx{K) < 00 if is a compact subset of E. Such 
measures which are finite on compacta are called Radon measures. There 
is a standard metric for E called the vague metric. A random element X of 
5 is called a random measure. 

A special case is where M+(E) is cut down to the space Mp(E) of non-
negative integer valued measures. In this case the random element X is 
called a stochastic point process. 
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g{x\,... ,Xk) = ^^Xi, (component sum) 
1=1 
k 

= ^^xjk, (component average) 
1 
it 

= \ J Xi, (component extreme) 
1=1 
k 

r 

Xi, (component product) = N 
it 

= ^ x^, (component sum of squares) . 
1=1 

Another interesting example of g is the projection map 

g = :7r, : R * R 

3.2.3 Measurability and Continuity 

The idea of distance (measured by a metric) leads naturally to the notion of conti­
nuity. A method, which is frequently easy for showing a function from one metric 
space to another is measurable, is to show the function is continuous. 

Proposition 3.23 Suppose (5,, ^ , ) , / = 1, 2 are two metric spaces. Let the Borel 
G-fields (generated by open sets) be Si, / = 1, 2. / / 

X:Si-^ S2 

is continuous, then X is measurable: 

XeSi/S2. 

Proof. Let O, be the class of open subsets of 5/, / = 1, 2. If X is continuous, 
then inverse images of open sets are open, which means that 

X-\02)C0iCo(0i) = S,. 

SoX eSi/S2 by Proposition 3.2.1. • 

Corollary 3.2.2 IfX = {X\,... ,Xk) isa random vector, and 

g : R * E , ge / 3 ( R * ) / / 3 ( R ) , 

then from Proposition 3.2.2, g(X) is a random variable. In particular, if g is con­
tinuous, then g is measurable and the result holds. 

Some examples of the sort of g's to which this result could apply: 

k 
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defined by 
7r,(xi,... ,xic) — X,. 

Then 7r,- is continuous and if X = (X\,..., Xk) is a random vector, ;r,(X) = Xi 
is a random variable for / = 1 , . . . , A:. 

This observation leads in a simple way to an important fact about random vec­
tors: A random vector is nothing more than a vector of random variables. 

Proposition3.2.4 X = (Xi, ...,Xk) is a random vector, that is a measurable 
map from {Q,B) iff Xi is a random variable for each i — 
1 f • • • y 

Proof. If X is a random vector, then Xi = jr, o X is measurable since it is the 
composition of two measurable functions X and the continuous function TT, . 

The converse is easily proved if we know that 

/ 3 ( M * ) = orCO) = (T (RECTS) 

where RECTS is the class of open rectangles. We assume this fact is at our dis­
posal. Suppose Xi,... ,Xk are random variables. Write 

B — I\ X . . . X Ik 

for a rectangle whose sides are the intervals / i , . . . , Ik- Then 

k 
X-\B) = f]xr\li). 

1=1 

Since Xi is a random variable, X^^(It) G B, SO X~^{B) G B and 

X - ^ RECTS) C j B 

so X~^ is measurable. • 

The corresponding basic fact about random sequences, stated next, is proved in 
an analogous manner to the proof of the basic fact about random vectors. It says 
that X is 3 random sequence iff each component is a random variable. 

Proposition 3.2.5 X = (X\,X2, •••) is a random sequence iff for each i = 
1,2 , . . . the ith component X, is a random variable. Furthermore, X is a random 
sequence iff {X\,... ,Xk) isa random vector, for any k. 

3.2,4 Measurability and Limits 

Limits applied to sequences of measurable functions are measurable. 

Proposition 3.2.6 Let Xi,X2,..- be random variables defined on {Q, B). Then 

(i) v„X„ and A„X„ are random variables. 
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Proof, (i) We have 

iV̂ " ̂ ]̂ = n[̂ " ^̂ l̂ -̂
since for each n. 

Similarly 

[X„ <x]eB. 

This suffices by Corollary 3.2.1. 
(ii) We have that 

lim inf X„ sup inf Xic-
n>lk>n 

By (i) infit>« Xk is a random variable and hence so is sup„>i(infit>„ X^). 
(iii) If l im„_oo Xn(co) exists for all co, then 

lim X„(co) = lim sup A',, (a;) 

is a random variable by (ii). 
(iv) Let Q be the set of all rational real numbers so that Q is countable. We have 

[co : lim A'„(ct>) exists ]^ — [co : lim inf A'„(ct>) < lim sup A'„(aj)} 

= U 
r € Q L 

lim inf Xn <r < lim sup Xn 
«—oo ,,_^oo 

= U lim inf Xn < r 
L n-»-oo n lim sup Xn <r 

n->oo 
eB 

since 

and 

[lim inf ^ „ <r]eB 

[limsupA'n <r]eB. 
n-*cx> 

(ii) lim inf„_voo and lim sup„_,.oo Xn are random variables. 

(iii) //lim„_voo Xn (w) exists for all to, then lim„_„oo is a random variable. 

(iv) The set on which [Xn} has a limit is measurable; that is 

[w : limA'„(iu) exists ] G B. 
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3.3 a-Fields Generated by Maps 

Ltt X : {Qy B) i-^ ( E , B(M)) be a random variable. The a-algebra generated by 
Xy denoted or (A"), is defined as 

GiX)=X-\B(R)). (3.3) 

Another equivalent description of a (X) is 

(j(X) = {[X eA],AeB(m]^ 
Th\s is the or-algebra generated by information about Xy which is a way of isolat­
ing that information in the probability space that pertains to X. More generally, 
suppose 

X:(QyB)\^ (Q'yB'). 

Then we define 

(7(X)=:X-\B'). (3.4) 

UT C Bis a sub -or-field of By we say X is measurable with respect to Ty written 
X eTy\io{X)<zT. 

If for each t in some index set T 

Xt:{QyB)v-^ ( ^ ' , / 3 ' ) , 

then we denote by 

o{XtyteT) = \J a{Xt) 
teT 

the smallest or-algebra containing all or (A",). 

Extreme example: Let A'(ct>) = 17 for all co. Then 

o{X) = {[X GB]yB GB(R)] 

= or(0, ^ ) = {0, Q). 

Less extreme example: Suppose A' = ly\ for some A e B. Note X has range 
{0,1). Then 

X-\{0})=A', X-\{1]) = A 

and therefore 

a(X)=={&yQyA,A'']. 

To verify this last assertion, call 

{ 0 , f i , A , A ' ' } = RHS 
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and 

o r ( ^ ) = LHS. 

Then RHS is a or-field and is certainly contained in LHS. We need to show that 
for any B e B(R), 

[\A € fi] G RHS . 

There are four cases to consider: (i) 1 6 B, 0 f« B\ (ii) 1 G B, 0 e B; (iii) 0 G B, 
\ ^ B\ (iv) 0 ^ Byl ^ B. For example, in case (i) we find 

and the other cases are handled similarly. 

Useful example: Simple function. A random variable is simple if it has a finite 
range. Suppose the range of A" is . . . , «it}, where the «'s are distinct. Then 
define 

Ai := X-\{ai]) = [X = a,]. 

Then (A,, i = 1 , . . . , A:} partitions fi, meaning 

1=1 

We may represent X as 

k 

1=1 

and 

or(A') = or(Ai Ait) = 

l€l 
In stochastic process theory, we frequently keep track of potential information 

that can be revealed to us by observing the evolution of a stochastic process by 
an increasing family of or-fields. If {Xf,,n > 1} is a (discrete time) stochastic 
process, we may define 

B„:=o(Xi X„), n>l. 

Thus, Bn C Bn+i and we think of B„ as the information potentially available at 
time n. This is a way of cataloguing what information is contained in the prob­
ability model. Properties of the stochastic process are sometimes expressed in 
terms of n > 1}. For instance, one formulation of the Markov property is 
that the conditional distribution of A'n+i given Bn is the same as the conditional 
distribution of Xn+\ given Xn - (See Chapter 10.) 

We end this chapter with the following comment on the or-field generated by a 
random variable. 
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3.4 Exercises 

1. In the measurable space (^,B), show A e BIEIA e B. 

2. Let B, P) = ((0,1], B({0,1]), k) where k is Lebesgue measure. De­
fine 

Xi(co)=0, Wcoen, 

X2(co) =l[i/2)(co), 

X3(co) = 1Q(CO) 

where Q C (0,1] are the rational numbers in (0,1]. Note 

P[Xi = ^ 2 = ^ 3 = 0] = 1 

and give 
G(Xi), i = 1,2,3. 

3. Suppose 

/ : R* R , and / G B(mfy/B(R). 

Let A ' l , . . . , A'it be random variables on jB). Then 

f{X\y... ,Xic) G G(X\, . . . ,Xic)-

4. Suppose A': ^ R has a countable range K. Show X G B/B(R) iff 

X-\{x]eB, >/xen. 

Proposition 33.1 Suppose X is a random variable and C is a class of subsets of 
R such that 

or(C) = /3 (R) . 

Then 

G{X) = O{[X eB^B ^C). 

Proof. We have 

o{[X G B], B G C) = o{X-^{B), BeC) 

= a(X-\C))=X-\cr{C)) 

= X-\B{m))=a{X). 

A special case of this result is 

G(X) = G([X <klXGR). 
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X(co), if COG A , 
Y(co), if CO GA"^ 

is a random variable. 

9. Suppose that {B„,n > 1} is a countable partition of Q and define B = 
cf(Bn, n > 1). Show a function A': ^ (—oo, oc] is /3-measurable iff X 
is of the form 

oo 

1=1 

for constants {c,}. (What is B'i) 

10. Circular Lebesgue measure. Define C := [e^""'^ : ^ G (0,1]} to be the 
unit circle in the complex plane. Define 

T : (0,1] C, 7(6) = e^""'^. 

Specify a or-field BiC)) of subsets of C by 

B(C) := {A c C : T-\A) e B((0, 1]). 

(Why is this a or-field?) Define a probability measure fi on B{C) by = 
k o and call this measure fi circular Lebesgue measure. 

(a) Identify the complex plane with R^. Show 

B(C) = B(R^) n C. 

5. If 
F(x) = P[X < x] 

is continuous in x, show that Y — F(X) is measurable and that Y has a 
uniform distribution 

P[Y<y]=-y, 0 < 3 ; < 1 . 

6. If A" is a random variable satisfying P[\X\ < oo] = 1, then show that for 
any ^ > 0, there exists a bounded random variable Y such that 

P[X ^Y]<€. 

(A random variable Y is bounded if for all co 

\Y(<o)\ < K 

for some constant K independent of co.) 

7. If A' is a random variable, so is \X\. The converse may be false. 

8. Let X and Y be random variables and let A e B. Prove that the function 
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0, if r ^ ct>, 

1, if r = o). 

Show that each Xt is a random variable. What is the or-field generated by 
{ ^ r , 0 < r < ! } ? 

12. Show that a monotone real function is measurable. 

13. (a) If A' is a random variable, then o{X) is a countably generated or-field, 

(b) Conversely, if B is any countably generated or-field, show 

B = o{X) 

for some random variable X. 

14. A real function / on the line is upper semi-continuous (use) at if, for 
each there is a 6 such that |A: — ŷl < 8 implies that 

f{y) < fix) €. 

Check that if / is everywhere use, then it is measurable. (Hint: What kind 
of set is {;c : /(x) < r}?) 

15. Suppose —oo < a < b < oo. Show that the indicator function l{a,b](x) 
can be approximated by bounded and continuous functions; that is, show 
that there exist a sequence of continuous functions 0 < /„ < 1 such that 
fn l(fl,6] pointwise. 

Hint: Approximate the rectangle of height 1 and base (a, b] by a trapezoid 
of height 1 with base (a, b + n~^] whose top line extends from a -I- to 
b. 

16. Suppose B'xsa or-field of subsets of E . Show B(R) C iff every real valued 
continuous function is measurable with respect to B and therefore B(R) is 
the smallest or-field with respect to which all the continuous functions are 
measurable. 

(b) Show that B{C) is generated by arcs of C. 

(c) Show /J. is invariant with respect to rotations. This means, if 5^0 : 
C C via 

then fl = f i o . 

(d) If you did not define /i as the induced image of Lebesgue measure on 
the unit interval, how could you define it by means of the extension 
theorems? 

N. Let (Q,B, P) be ( [ 0 , 1 ] , / 3 ( [ 0 , w h e r e k is Lebesgue measure on 
[0,1]. Define the process {AT,, 0 < r < 1} by 
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17. Functions are often defined in pieces (for example, let /(x) be x^ or as 
;c > 0 or jc < 0), and the following shows that the function is measurable 
if the pieces are. 

Consider measurable spaces ( ^ , B) and (Q\ B') and a map T : Q Q'. 
Let Ai, ^ 2 , . . . be a countable covering of by sets. Consider the cr-
field B„ = {A : A C A„, A e B) in A„ and the restriction T„ of T to A„. 
Show that T is measurable B/B' iff Tn is measurable B„/B' for each n. 

18. Coupling. If X and Y are random variables on ( ^ , B), show 

sup \P[X G A] - P [ y G A]| < # Y]. 

19. Suppose r : ( ^ i , B\) H> (J^2. ^2) Js a measurable mapping and A' is a 
random variable on fii. Show X e cr(T) iff there is a random variable Y' 
on (^2. ^2) such that 

X{OJl)=::Y{T{COi)), Vo î G ^ i . 

20. Suppose {X,,t > 0] is a continuous time stochastic process on the proba­
bility space (fi, B, P) whose paths are continuous. We can understand this 
to mean that for each r > 0, A"/ : H > R is a random variable and, for 
each ct> G ^ , the function r H> A'/ (co) is continuous; that is a member of 
C[0, 00). Let T : K->> [0, 00) be a random variable and define the process 
stopped at r as the function Xj : Qy-^ [0, 00) defined by 

Xr(co) := XT{a))(co), CO eQ. 

Prove Xx is a random variable. 

21. Dyadic expansions and Lebesgue measure. Let S = {0,1} and 

§ ° ° = { (ACi , ; c2 , . . . ) :^ . G S , / = 1 ,2 , . . .} 

be sequences consisting of O's and I's. Define B(S) = V(S) and define 
B(S°°) to be the smallest or-field of subsets of containing all sets of the 
form 

{ / i } x { / 2 } x . . . x { / i t } x S ° ° 

for A: = 1 ,2 , . . . and /'i, 12, some string of O's and I's. 

For A: G [0,1], let 
x = {dk(x),k>l) 

be the non-terminating dyadic expansion (^it(O) = 0 and didx) = 0 
or 1.) Define U : [0,1] by 

U(x) = (di{x),d2(x),...). 
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Define V : [0,1] by (x = (h, / 2 , . . •)) 

, 1=1 ^ 

Show U G B([0, 1])/B(S°°) and V G B(S'^)/B([0, 1]). 

22. Suppose {Xfl, /I > 1} are random variables on the probability space (Qy By P) 
and define the induced random walk by 

,1 

5o = 0, 5„ = E^'' ri >1. 
1 = 1 

Let 
T := inf{n > 0 : 5„ > 0} 

be the first upgoing ladder time. Prove T is a random variable. Assume we 
know T(CO) < O C for all co e^. Prove Sj is a random variable. 

23. Suppose {Xi,..., A'n} are random variables on the probability space (Qy By P) 
such that 

P [ T i e s ] : = P { U [Xi=Xj]] = 0. 

Define the relative rank R„ of X„ among {Xiy..., A'„} to be EUMX,>X„] on [ Ties r, 
17, on [ Ties ] . 

Prove R„ is a random variable. 

24. Suppose (Si,«Si) is a measurable space and suppose T : 5i H > 52 is a 
mapping into another space 52. For an index set F, suppose 

/ly : 52 M , y G r 
and define 

G:==cr(hyyye F) 

to be the or-field of subsets of 52 generated by the real valued family 
{hyyy e F}, that is, generated by {h-\B)yy G F, B G B(R)]. Show 
T e Si/Q iff hy o T is a random variable on (5i, «Si). 

25. Egorov's theorem: Suppose Xn, X are real valued random variables de­
fined on the probability space (^ , By P). Suppose for all ct> G A G we 
have X„(a)) -» X(a)). Show for every ^ > 0, there exists a set such that 
P{Af) < € and 

sup \X(co) - Xn(co)\ 0 oc). 
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Thus, convergence is uniform off a small set. 

Hints: 

(a) Define 

î*̂  = [V \X{co)-Xt{co)\nA. 

(b) Show BH'^ i 0 as /I - i - OO. 

(c) There exists {nk] such that < 6 /2*. 

(d) Set B = Uit̂ if so that P(B) < €. 

26. Review Exercise 12 of Chapter 2. Suppose C is a class of subsets of Q. such 
that, for a real function X defined on J^, we have X e B{C). Show there 
exists a countable subclass C* cC such that X is measurable C*. 



4 
Independence 

Independence is a basic property of events and random variables in a probabil­
ity model. Its intuitive appeal stems from the easily envisioned property that the 
occurrence or non-occurrence of an event has no effect on our estimate of the 
probability that an independent event will or will not occur. Despite the intuitive 
appeal, it is important to recognize that independence is a technical concept with 
a technical definition which must be checked with respect to a specific probability 
model. There are examples of dependent events which intuition insists must be in­
dependent, and examples of events which intuition insists cannot be independent 
but still satisfy the definition. One really must check the technical definition to be 
sure. 

4.1 Basic Definitions 

We give a series of definitions of independence in increasingly sophisticated cir­
cumstances. 

Definition 4.1.1 (Independence for two events) Suppose (Q,B,P) is a fixed 
probability space. Events A, B e B art independent if 

P(AB) = P(A)P(B). 

Definition 4.1.2 (Independence of a finite number of events) The events 
A i , . . . , A„ (n > 2) are independent if 

p ( p j > i , ) = ]~[p(>i,), for all finite / C {!, . . . (4.1) 
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(Note that (4.1) represents 

k=2 

equations.) 

Equation (4.1) can be rephrased as follows: The events Ai,... yA„ are inde­
pendent if 

n 
P(Bi n B2 • • • n B„) = fl p(B,) (4.2) 

1 = 

where for each i = 1 , . . . , n, 

Bi equals Ai or Q. 

Definition 4.13 (Independent classes) Let C, C B,i = 1 , . . . ,n. The classes 
C, are independent, if for any choice A i A„, with A, 6 C,, / = 1 n, we 

have the events A i , . . . ,A„ independent events (according to Definition 4.1.2). 

Here is a basic criterion for proving independence of cr-fields. 

Theorem 4.1.1 (Basic Criterion) If for each i = 1 w, C, is a non-empty 

class of events satisfying 

1. d is a Tt-system, 

2. C,, I = 1 , . . . , n are independent, 

then 
a ( C i ) , . . . ,G(Cn) 

are independent. 

Proof. We begin by proving the result for w = 2. Fix A^ 6 C2. Let 

r = U 6 : P{AA2) = P{A)P{A2)\. 

Then we claim that £ is a X-system. We verify the postulates. 
(a) We have 6 £ since 

P (^A2) = P(A2) = P(^)P(>\2) . 

(b) If A 6 r, then e £ since 

P(>\^A2) = P ( ( ^ \ A ) A 2 ) = P(>\2\A>\2) 

= P(A2) - P (AA2) = P(A2) - P(A)P(A2) 

= P(>\2)(1 - P(A)) = P(A^)P(>\2). 



4.2 Independent Random Variables 93 

(c) l{B„eC are disjoint (w > 1), then J ^ ^ j B„ e C since 

00 00 oo 

P(([JB„)A2) = P ( U B „ > \ 2 ) = E^(^"^2) 
« = 1 « = 1 « = 1 

00 oo 
= J2 PiBn)P{A2) = P ( U B „ ) P ( > \ 2 ) . 

,1=1 ,1=1 

Also C D Ci , so £ D or(Ci) by Dynkin's theorem 2.2.2 in Chapter 2. Thus 
or(Ci), C2 are independent. 

Now extend this argument to show o{C\),o{C2) are independent. Also, we 
may use induction to extend the argument for n = 2 to general n. • 

We next define independence of an arbitrary collection of classes of events. 

Definition 4.1.4 (Arbitrary number of independent classes) Let T be an arbi­
trary index set. The classes Ct,t 6 7 are independent families if for each finite 
/ , / C r , Cr, r 6 / is independent. 

Corollary 4.1.1 If {Ct,t G T] are non-empty TT-systems that are independent, 
then {o(Ct),t e T] are independent. 

The proof follows from the Basic Criterion Theorem 4.LL 

4.2 Independent Random Variables 

We now turn to the definition of independent random variables and some criteria 
for independence of random variables. 

Definition 4.2.1 (Independent random variables) [Xt,t e 7} is an indepen­
dent family of random variables if {o(Xt), t e T] are independent or-fields. 

The random variables are independent if their induced or-fields are independent. 
The information provided by any individual random variable should not affect 
behavior of other random variables in the family. Since 

a ( U ) = {0 , ^ ,A,A") , 

we have 1A,,--- . 1A„ independent iff A i , . . . , A„ are independent. 
We now give a criterion for independence of random variables in terms of dis­

tribution functions. For a family of random variables {Xt,t e T) indexed by a 
set T, the finite dimensional distribution functions are the family of multivariate 
distribution functions 

Fj(xt, teJ) = P[X, <xt.te J] (4.3) 

for all finite subsets J C T. 
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for all Xi 6 R , i = 1 k. 

For the next result, we define a random variable to be discrete if it has a count­
able range. 

Corollary 4.2.2 The discrete random variables Xi,... yX/c with countable range 
TZ are independent iff 

k 
P[Xi=XiJ = l k] = Y 

1 = 

P[X, = Xil (4.5) 

for all Xi e1Z, i = 1,... ,k. 

Proof. If A ' l , . . . , A'n is an independent family, then or (AT,), / = 1 , . . . , A: is inde­
pendent. Since 

[Xi=x,]ea{Xi) 

we have [Xi = Xi], / = 1 , . . . , A: are independent events and (4.5) follows. 

Theorem 4.2.1 (Factorization Criterion) A family of random variables 
{X,, teT] indexed by a set T, is independent iff for all finite J cT 

Fj(A : , , r 6 J ) = ] " [ P L A - , < A : , ] , V X , 6 R . (4.4) 

Proof. Because of Definition 4.1.4, it suffices to show for a finite index set J that 
[Xt,t 6 J } is independent iff (4.4) holds. Define 

C, = {[X, <xlx eR). 

Then 

(i) Ct is a ;r-system since 

[Xt<x]f)[Xt<y] = [Xt<xAy] 

and 

(ii) G(Ct) = G(Xt). 

Now (4.4) says [Ct,t e J] is an independent family and therefore by the Basic 
Criterion 4.1.1, {cr(Cr) = cr{Xt),t 6 J } are independent. • 

Corollary 4.2.1 The finite collection of random variables Xi,... ,Xk is inde­
pendent iff 

k 
P{Xi <xi Xk<Xk\^Y[ P{X, < Xil 
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r P{Xi <x,]. 
• 

4.3 Two Examples of Independence 

This section provides two interesting examples of unexpected independence: 

• Ranks and records. 

• Dyadic expansions of uniform random numbers. 

4.3.1 Records, Ranks, Renyi Theorem 

Let [X„, n > 1} be iid with common continuous distribution function F(x). The 
continuity of F implies 

P[Xi = Xj] = 0, (4.6) 

so that if we define 

[Ties] = U[;̂ ,=;̂ ,], 
then 

P [ T i e s ] = 0. 

Call X„ a record of the sequence if 
, 1 - 1 

Xn > 
1=1 

Conversely, suppose (4.5) holds. Define z < x to mean z, < x,,i = 1 , . . . ,k. 
Then 

P[Xi<Xi,i = l k]= J2 P[X,=z,J = l k] 
z<x 

1=1 it 

z<x i = 
z,en 

1=1 it 

Z2^X2 Zk<xicZi<xx i = 2 
z,en,i=2 it 2 1 €7^ 

22<X2 2tc<xtc 1=2 
z,eJl,i=2 it 
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and define 

A„ = [X„ is a record ]. 

A result due to Renyi says that the events (Ay, ; > 1} are independent and 

P(Aj) = j > 2. 

This is a special case of a result about relative ranks. 
Let R„ be the relative rank of X„ among Xi,... ,X„ where 

n 

So 

R„ = 1 iff X„ is a record, 
= 2'ifiX„ is the second largest of A ' l , . . . ,X„, 

and so on. 

Theorem 4.3.1 (RenyiTheorem) Assume {X„,n > 1] are iid with common, 
continuous distribution function F(x). 

(a) The sequence of random variables {Rn, n >1] is independent and 

P[R„=k] = -, 
n 

fork = 1 , . . . , w. 
(b) The sequence of events {A„, n > I] is independent and 

PiA„) = -. 
n 

Proof, (b) comes from (a) since A„ = [R„ = 1]. 
(a) These are n\ orderings of A ' l , . . . ,X„. (For a given co, one such ordering is 

X\(aj) < • • • < X„(co). Another possible ordering is X2(co) < ... < Xn(co) < 
X\(co), and so on.) By symmetry, since X i , . . . ,X„aTe identically distributed and 
independent, all possible orderings have the same probability -p, so for example, 

P [ ^ 2 < ^ 3 < - - - < A : „ < A ' I ] = ^ . 
nl 

Each realization oiRi,... , R„ uniquely determines an ordering: For example, 
if n = 3, suppose Ri(aj) = 1, R2(co) = I, and R3(co) = 1. This tells us that 

Xi(co) < X2((o) < X3((o), 

and if Ri(co) = 1, R2(co) = 2, and R3(co) = 3, then this tells us 

X3(co) < X2(co) < Xi(co). 
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Therefore 

P[Rl = ri,... , R„ = r„]=— 

= P[Ri=ri]--P[R„=r„]. • 
Postscript: If {X„,n > 1} is iid with common continuous distribution F ( J C ) , 

why is the probability of ties zero? We have 

P[Tits] = P{\J[X, =Xj]) 

and by subadditivity, this probability is bounded above by 

Thus it suffices to show that 

P[Xi = X2] = 0. 

Note the set containment: For every n, 

[Xi=X2]C U [-^<Xi, X2<-]. 

Each realization of . . . , /?„ has the same probability as a particular order­
ing of A ' l , . . . , X„. Hence 

P[Rl = n,... , 7?„ = r „ ] = — 

for r,- € {1, . . . , / } , / = 1 , . . . , n. 
Note that 

P[Rn=r„] = ^ P[Ri=ri R„.i = r„.u R„ = r„] 
ri ' ' n - l 

ri r„_i 

Since r, ranges over / values, the number of terms in the sum is 

1 . 2 . 3 . . . . - n - l = ( / ? - ! ) ! . 

Thus 

P[Rn = r„] = —^ = —, n = 1, 2 , . . . . 
nl n 
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(4.7) 

A - 1 A , ^ ^ k - \ k ^ 
< max F ( , — ] > F ( — — , —] 
- -oo<it<oo 2" 2 " \ ^ ^2" 2"^ 

k=-oo 

< max F ( — — l - l 
-00<it<00 2" 2" 

= max F(——, — 1 . 
-00<it<00 2" 2" ^ 

Since F is continuous on R , because F is a also a probability distribution, F is 
uniformly continuous on R . (See Exercise 22 in Chapter 2.) Thus given any e > 0, 
for n > no(e) and all A:, we have 

^ k-1 k ^ ^ k k-1 

Thus for any e > 0, 

P[Xi = ;̂ 2] < f, (4.8) 
and since e is arbitrary, the probability in (4.8) must be 0. 

4.3.2 Dyadic Expansions of Uniform Random Numbers 
Here we consider 

(Q,B, P ) = ((0,1], Bm 1]),X), 

where k is Lebesgue measure. We write co e (0,1] using its dyadic expansion 

^ = E = -^1 ( ^ ) ^ 2 ( w ) ^ 3 ( ^ ) • • • , 
,1=1 

By monotonicity and subadditivity 

i t= -oo 

Write 

F[a,b] = F{b)-F{a) 

and the above (4.7) is equal to 

^ 2 " ' 2 « ̂  ^ 2 " ' 2 " ^ 
i t= -oo ^ ^ z z 

oo 
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where each d„(co) is either 0 or 1. 
We write 1 as 

oo 
0 . 1 U 1 1 . . = ^ 2 - " = : j - ^ = 1, 

and if a number such as j has two possible expansions, we agree to use the non-
terminating one. Thus, even though 1/2 has two expansions 

1 ° ° 1 

^=E:r= M l " - -2 ^ 2 
/ I = 2 

and 

i = l + 0 - | - 0 + - - = . 1 0 0 0 - , 

by our convention, we use the first expansion. 

Fact 1. Each d„ is a random variable. Since d„ is discrete with possible values 
0 , 1 , it suffices to check 

[d„ = 0] 6 B((0,1]), [d„ = 1] 6 B((0,1]), 

for any n > 1. In fact, since [d„ = 0] = [d„ = 1]*̂ , it suffices to check [d„ = 1] e BaO, 1]). 
To verify this, we start gently by considering a relatively easy case as a warm-

up. For n = 1, 

[di = 1] = (.1000 • . . , .1111 . •. ] = ( i , 1] 6 B((0,1]). 

The left endpoint is open because of the convention that we take the non-terminat­
ing expansion. Note P[di = 1] = P[di = 0] = 1/2. 

After understanding this warmup, we proceed to the general case. For any 
n>2 

[dn = 1] 

= U ( . M l M 2 . • Mfi-llOOO. . . , . M 1 M 2 . . . M , i - l l l l l • • • ] 
("l."2 «„-i)€{0,l}"-> 

(4.9) 

= disjoint union of 2""^ intervals e B((0,1]). 

For example 
[''2 = l] = ( J , i ] u ( ^ , i ] . 
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1 - ^ 2" 

= f\P[di=Ui] 
1=1 

where the last step used (4.10). So the joint mass function of d\,... ,dn factors 
into a product of individual mass functions and we have proved independence of 
the finite collection, and hence of {dn,n > 1}. 

4.4 More on Independence: Groupings 

It is possible to group independent events or random variables according to dis­
joint subsets of the index set to achieve independent groupings. This is a useful 
property of independence. 

Fact 2. We may also use (4.9) to compute the mass function of f/„. We have 

P[dn = 1] 

= E P ( ( . M i M 2 . . . M n - l l 0 0 0 - - - , . M i M 2 . . . M / i - l l l l l " - ] ) 
( " l . "2 U n - O G f O , ! } " - ' 

1 = 1 i=n 1 = 1 
00 . 1 

=^"-'I.E,^L= • 
i = n + l 

The factor 2"~^ results from the number of intervals whose length we must sum. 
We thus conclude that 

/ ' K = 0 ] = PK = l ] = i. (4.10) 

Fact 3. The sequence [dn,n > 1} is iid. The previous fact proved in (4.10) that 
{df, ] is identically distributed and thus we only have to prove {d„ ] is independent. 
For this, it suffices to pick n > 1 and prove {di,... ,dn] is independent. 

For ( M l , . . . , M„) 6 (0,1}", we have 
n 

f^[di = M,] = ( .MiW2 . . .M„000. . . , .WiM2 . . . M„ 111 . . . ]. 
1 = 1 

Again, the left end of the interval is open due to our convention decreeing that we 
take non-terminating expansions when a number has two expansions. Since the 
probability of an interval is its length, we get 

/ ' ( n w = " ' ] ) = E | + E ^ - E 7 
1=1 1=1 ^ i=n+l ^ 1=1 ^ 

2-(n+l) 1 
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Lemma 4.4.1 (Grouping Lemma) Let [Bt,t e T] be an independent family of 
o-fields. Let S be an index set and suppose for s e S that Ts C T and {Ts,s G S] 
is pairwise disjoint. Now define 

Then 

{BT,,seS] 

is an independent family of cr-fields. 

Remember that \/,^Ts^t is the smallest or-field containing all the B,'s. 
Before discussing the proof, we consider two examples. For these and other 

purposes, it is convenient to write 

when X and Y are independent random variables. Similarly, we write B\ _||_ B2 
when the two or-fields B\ and B2 are independent. 

(a) Let {X„, /2 > 1} be independent random variables. Then 

cr(Xj,j<n) _||_ G(XjJ>n), 
n n+k 

1=1 i = n + l 

n n+k 

yxi JL V ^j-
1=1 ; = w + l 

(b) Let [An] be independent events. Then U^=i Aj and U^A^+I A j are inde­
pendent. 

Proof. Without loss of generality we may suppose S is finite. Define 

CT, :={f]Ba:BaeBa,K C TS, K is finite.} 

Then CT^ is a TT-system for each 5 , and {Cj-,, 5 e S] are independent classes. So 
by the Basic Criterion 4.1.1 we are done, provided you believe 

cr(CT,) = BT,. 

Certainly it is the case that 

CL C BT, 

and hence 

O(CT,)CBT,. 
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Also, 

(we can take K = [a]) and hence 

o{CT,)DBa, WaeTs. 

It follows that 

^ ( ^ 7 i ) D U Ba, 

and hence 

<yiCT,)Do(\jBa\ =: y Ba • 

4.5 Independence, Zero-One Laws, Borel-Cantelli 
Lemma 

There are several common zero-one laws which identify the possible range of a 
random variable to be trivial. There are also several zero-one laws which provide 
the basis for all proofs of almost sure convergence. We take these up in turn. 

4.5.1 Borel-Cantelli Lemma 
The Borel-Cantelli Lemma is very simple but still is the basic tool for proving 
almost sure convergence. 

Proposition 4.5.1 (Borel-Cantelli Lemma.) Let [An] be any events. If 

J2P(A„) < O O , 

then 
P([A„ i.o. ]) = /'(lim sup A„) = 0. 

n-*oo 

Proof. We have 

P{[An i.o. ]) = P ( lim M Aj) 

= L̂IRN̂  /'((J Aj) (CONTINUITY OF P) 
oo 

< lim sup P(Aj) (subadditivity ) 
j=n 

= 0, 

since P(A„) < oo implies ^JL„ P(Aj) ^ 0, as w -» oo. 
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P([A„ i.o.]) = 

^P(A„) < oo, 

then 
P([A„ i.o. ]) = 0. 

Example 4.5.1 Suppose {X„, n > 1} are Bernoulli random variables with 

P[X„ = 1] = p„ = 1 - P[X„ = 0]. 

Note we have not supposed {X„ ] independent and certainly not identically dis­
tributed. We assert that 

P [ l i m ^ „ = 0 ] = 1, (4.11) 

if 

Y^Pn <oo. (4.12) 
n 

To verify that (4.12) is sufficient for (4.11), observe that if 

n n 

then by the Borel-Cantelli Lemma 

P{[Xn = 1] i.o.) = 0. 

Taking complements, we find 

1 = P(limsup[^„ = 1]*̂ ) = P(liminf[^„ = 0]) = 1. 
n-»-oo "—00 

Since with probability 1, the two valued functions [Xn] are zero from some point 
on, with probability 1 the variables must converge to zero. • 

4.5.2 Borel Zero-One Law 

The Borel-Cantelli Lemma does not require independence. The next result does. 

Proposition 4.5.2 (Borel Zero-One Law) / / {A„] is a sequence of independent 
events, then 

Proof. From the Borel-Cantelli Lemma, if 
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= 1- P(\im'm{A^„) 
n-*oo " 

= 1 - P ( lim N AD 
k>n 

= 1 - lim PiCiAl) 
k>n 

m 
= 1 - lim P{ lim i N AD 

k=n 
m 

= 1 - lim lim Pif^A^) 
n-*ocm-*oo \ • " 

m 
= 1 - lim lim RID - P(/lit)), 

where the last equality resulted from independence. It suffices to show 

m 
lim lim Y\0^ - P^Ak)) ^0. (4.13) 

n-voo wi-voo *• 
k=n 

To prove (4.13), we use the inequality 

l-x-se-"". 0<x<\. (4.14) 

To verify (4.14), note for 0 < A: < 1 that 

oc ^ „ 

-\og{\-x) = Y.-^ 
,1=1 

so exponentiating both sides yields 

1 

_ X 
n 

l-x 
or 

e * > 1 - jc. 

Now for (4.13). We have 

m m 
lim Y\{\-P{Ak)) < lim f] 

m-*oo *• *• m-*oo f- *• it=,i k=n 
= lim e-^"-"^^^*> 

,n-»-oo 

Conversely, suppose 5Z„ = oo. Then 

P{[A„ i.o.]) = POimsupA,,) 
n->oo 
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since 5Z„ F(A„) = oo. This is true for all w, and so 

m 
lim lim Tlil - P{Ak)) = 0. 

n-*oom-*oo * •»• „ 
k=n • 

Example 4.5.1 (continued) Suppose {Xn, n > 1} are independent in addition to 
being Bernoulli, with 

P[Xk = 1] = Pit = 1 - P[Xk = 0]. 

Then we assert that 

P[X„-^0]^imJ^Pk<oo. 
n 

To verify this assertion, we merely need to observe that 

P[{X„ = 1] i.o.} = 0 

iff 

; ^ p [ ; ^ „ = i ] = 5^p„ < o o . 
n n 

Example 4 J . 2 (Behavior of exponential random variables) We assume that 
{F„, n > 1} are iid unit exponential random variables; that is, 

P[En > x] = e'"", x>0. 

Then 

P[ l imsup£„/ log„ = 1] = 1. (4.15) 
«-»-00 

This result is sometimes considered surprising. There is a (mistaken) tendency 
to think of iid sequences as somehow roughly constant, and therefore the division 
by logn should send the ratio to 0. However, every so often, the sequence {E„] 
spits out a large value and the growth of these large values approximately matches 
thatof {log/2,n > 1}. 

To prove (4.15), we need the following simple fact: If [B/c] are any events 
satisfying P(Bk) = 1, then P((~]^ Bk) = 1. See Exercise 11 of Chapter 2. 

Proof of (4.15). For any ct> G fi. 

lim sup = 1 
rt-voo log/2 

means 

(^) > 0' < 1 + for all large / 2 , 
and 
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(b) We > 0, > 1-e, for infinitely many n. log 

Note (a) says that for any there is no subsequential limit bigger than 1 + f and 
(b) says that for any e, there is always some subsequential limit bounded below 
by I — e. 

We have the following set equality: Let i 0 and observe 

En 
[lim sup; = 1] 

„_voo logn 

n 
k 

lim i n f [ - ^ ^ 
n-.-oo log/2 

nn . E„ 

log/2 
> 1 - f i t ] i.o.} (4.16) 

To prove that the event on the left side of (4.16) has probability 1, it suffices to 
prove every braced event on the right side of (4.16) has probability 1. For fixed k 

TP[z^>'^-Sk] = y ; P [ £ : „ > ( ! - £ * ) log/2] 

= J]exp{-(1 -e i t ) logn} 
n 

= — = oo. 

So the Borel Zero-One Law 4.5.2 implies 

[r^ > l-Sk] i.o. 
log/2 

= 1. 

Likewise 

En En 

log/2 
>l-{-ek] = ^ e x p { - ( l 4-eit)logn} 

n 

= T- < oo. 

so 

implies 

P I lim sup 
\ n-*oo 

En 

Llog/2 > l + f * ]) = 0 

lim inf 
n-»-oo 

En 

Llog/2 = 1 - P lim sup 
rt-vOO 

F 

Llog/2 
= 1. 

• 
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4.5.3 Kolmogorov Zero-One Law 

Let [Xn} be a sequence of random variables and define 

= or(A'n+i, • • • ) , /2 = 1,2, . . . . 

The tail o-field T is defined as 

T — \\T'„— lim i o{XnyX„+\,...). 
I " rt-vOO 

n 
These are events which depend on the tail of the [Xn} sequence. MA 6 T , we 
will call A a tail event and similarly a random variable measurable with respect 
to T is called a tail random variable. 

We now give some examples of tail events and random variables. 

1. Observe that 
00 

[co : ^^A'nCco) converges } 6 T . 

To see this note that, for any m, the sum Xn{co) converges if and only 
if Y!^=m ^ n ( ^ ) converges. So 

00 

Xn converges ] = [ ^ " converges ]eT'„. 

n n=m+\ 
This holds for all m and after intersecting over m. 

2. We have 

limsupA'n 6 T , 
n-*oo 

liminf A'n 6 T , 
n-*oo 

[co : lim A'nCco) exists } 6 T . 
n-voo 

This is true since the lim sup of the sequence [X\yX2,...} is the same as 
the lim sup of the sequence [X^y X^+i^ • • •} for all m. 

3. Let 5„ = ^ 1 + • • • + X„. Then 

CO : lim = 0 
n-»>oo n 

since for any m, 

lim 
n-voo fl 

and so for any m. 

rt-*oo /2 n-*oo n 

hm G 
rt-»>oo n 
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Call a or-field, all o f whose events have probability 0 or 1 almost trivial. One 
example of an almost trivial or-field is the or-field {0, Q]. Kolmogorov's Zero-One 
Law characterizes tail events and random variables of independent sequences as 
almost trivial. 

Theorem 4 . 5 3 (Kolmogorov Zero-One Law) //[Xn] are independent random 
variables with tail o-field T, then A € T implies P(A) —0 or 1 so that the tail 
cr-field T is almost trivial. 

Before proving Theorem 4.53, we consider some implications. To help us do 
this, we need the following lemma which provides further information on almost 
trivial or-fields. 

Lemma 4.5.1 (Almost trivial or-fields) Let Q be an almost trivial o-field and let 
X be a random variable measurable with respect to Q. Then there exists c such 
thatP[X ^c]=^\. 

Proof of Lemma 4.5.1. Let 

F{x) = P[X < x]. 

Then F is non-decreasing and since [X < x] e o(X) C 

Fix) = 0 or 1 

for each x G R . Let 

c = supJA:: F(x) = 0}. 

The distribution function must have a jump of size 1 at c and thus 
P[X = c] = 1. ^ 

With this in mind, we can consider some consequences of the Kolmogorov 
Zero-One Law. 

Corollary 4.5.1 (Corollaries of the Kolmogorov Zero-One Law) Let [X„]be in­
dependent random variables. Then the following are true. 

(a) The event 
Xft converges] 

n 
has probability 0 or 1. 

(b) The random variables lim sup„_^QQ A'n and lim infn-^oo are constant 
with probability 1. 

(c) The event 
{co : S,t(co)/n —• 0} 

has probability 0 o r 1. 
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We now commence the proof of Theorem 4.5.3. 

Proof of the Kolmogorov Zero-One Law. Suppose A g T . We show A is inde­
pendent of itself so that 

P(A) = P(A n A) = P(A)P(A) 

and thus P (A) = (P(A))2. Therefore P(A) = 0 or 1. 
To show A is independent of itself, we define 

00 

so that J^n t and 

00 00 

J^OO =^G(Xl,X2,...) = \/cF(Xj)= \/T„. 
j=\ n=\ 

Note that 

A 6 T = G(X„+i, X„+2,...) C o r ( ^ i , ^ 2 . . . . ) = ^ o o . (4.17) 

Now for all /i, we have 

so since Tn \\ J-'n, we have 

for all / 2 , and therefore 

n 

Let C\ - {A} , and C2 = UN-̂ "- Then C, is a TT-system, / = 1,2, C\ X ^2 and 
therefore the Basic Criterion 4.1.1 implies 

or(Ci) = (0, fi, A . A^} and or(C2) = \/T„=TOC 
n 

are independent. Now 
A g G(CI) 

and 

A G \ / ^ N = ^ o o N 
by (4.17). Thus A is independent of A . • 
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4.6 Exercises 

1. Let 5 i , . . . ,B„be independent events. Show 

Pi^Bi) = \-Y[{^-P{B,)). 
1=1 1=1 

2. What is the minimum number of points a sample space must contain in 
order that there exist n independent events Bi,... ,B„y none of which has 
probability zero or one? 

3. If {A„,n > 1} is an independent sequence of events, show 

oo 00 

P(f]A„) = Y[P(A„). 
n=\ ,1=1 

4. Suppose (Q, B, P) is the uniform probability space; that is, ([0,1], B, X) 
where X is the uniform probability distribution. Define 

X(co) = CO. 
(a) Does there exist a bounded random variable that is both independent of 
X and not constant almost surely? 

(b) Define Y = X(l — X). Construct a random variable Z such that Z and 
Y are independent. 

5. Suppose A' is a random variable. 

(a) X is independent of itself if and only if there is some constant c such that 
P[X = c] = 1. 

(b) If there exists a measurable 

g : ( R , BiR)) ( E , BiR)), 

such that X and g(X) are independent, then prove there exists c eR such 
that 

P[g{X) = c] = 1. 

6. Let [Xic, k > 1} be iid random variables with common continuous distribu­
tion F. Let 7r be a permutation of 1 n. Show 

(Xi, . . . , Xn) = (Xjr(l), • • • » Xjj(n)) 

where = means the two vectors have the same joint distribution. 

7. 1{A,B,C are independent events, show directly that both A\JB and A\B 
are independent of C. 
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8. If X and Y are independent random variables and / , g are measurable and 
real valued, why are /{X) and g{Y) independent? (No calculation is nec­
essary.) 

9. Suppose [An ] are independent events satisfying P(A„) < 1, for all n. Show 

00 

(̂U^") = ^ ' ^ ^ ( ^ " i.o.) = l . 
, 1=1 

Give an example to show that the condition P(A„) < 1 cannot be dropped. 

10. Suppose [Xn,n > 1} are independent random variables. Show 

P[sup^„ < 00] = 1 
,1 

iff 
^ P[Xn > A/] < 00, for some M. 
n 

11. Use the Borel-Cantelli Lemma to prove that given any sequence of random 
variables [Xn,n > 1} whose range is the real line, there exist constants 
Cn 00 such that 

P[ lim ^ = 0] = 1. 
« ^ o o Cn 

Give a careful description of how you choose c„. 

12. For use with the Borel Zero-One Law, the following is useful: Suppose 
we have two non-negative sequences [an] and [bn] satisfying fl„ ~ bn as 
n —• 00; that is, 

hm — = 1. 
n^oobn 

Show 
y^fln < 00 iff ^ 5 , 1 < 00. 

,1 ,1 

13. Let [Xn.n> 1} be iid with P[Xi = 1] = p = 1 - P[Xi = 0]. What is 
the probability that the pattern 1,0,1 appears infinitely often? 

Hint: Let 
Ak = [Xk = \, Xk+i = 0, Xk+2 = 1] 

and consider A1, A ^ , Ay, 

14. In a sequence of independent Bernoulli random variables [X„, n >\] with 

P[Xn = 1] = p = 1 - P[Xn = 0], 

let An be the event that a run of n consecutive I 's occurs between the 2" 
and 2"'*''st trial. If p > 1/2, then there is probability 1 that infinitely many 
An occur. 
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l € l € 

(One direction is immediate. For the opposite direction, prove the result 
first for positive simple functions and then extend.) 

(b) If {Bt,t e T] is an arbitrary independent family of or-algebras in 
B, P ) , the family {B[, / 6 7} is again independent if Bt D B\, (/ 6 T). 

Deduce from this that {//(A'r), / 6 7} is a family of independent random 
variables if the family {Xt,t e 7} is independent and the // are measurable. 
In order for the family {X,,t e T] of random variables to be independent, 
it is necessary and sufiicient that 

(n/.(̂ .))=n E{fi(Xj)) 

for every finite family [fj, j e J] of bounded measurable functions. 

16. The probability of convergence of a sequence of independent random vari­
ables is equal to 0 or 1. If the sequence [Xn] is iid, and not constant with 
probability 1, then 

P[Xn converges ] = 0. 

17. Review Example 4.5.2 

(a) Suppose {X„, n > 1} are iid random variables and suppose is a 
sequence of constants. Show 

P[[X„ > an] i.o.} = 
0, iff E« ^ [ ^ 1 > < 00, 

1, iff Y.n P[^\ > = ^• 

(b) Suppose [Xn,n > 1} are iid N(0,1) random variables. Show 

P [ l i m s u p - | ^ i = = V2] = l . 
n-»>oo y/Xogn 

Hint: Review, or look up Mill's Ratio which says 

x-*-oo n(x)/x 

where n(x) is the standard normal density. 

Hint: Prove something like 

P(A„) > 1 - (1 - p"f"^^ > 1 - e-^2/»"/2n 

15. (a) A finite family e I of cr-algebras is independent iff for every 
choice of positive iB,-measurable random variable y,, / 6 / , we have 
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£ ; ( P ( A „ ) / \ ( l - P ( A „ ) ) = o o . 

Show P is non-atomic. 

23. Suppose {A„} are independent events. 

(c) Suppose {X„, /2 > 1} are iid and Poisson distributed with parameter 
X. Prove 

in yri 
-e-"- < P[Xi >n]<-, 
ni n\ 

and therefore 

P[ l imsup, ^" = 1 ] = 1. 
rt_00 log log/2 

18. If the event A is independent of the 7r-system V and A e o(V), then P(A) 
is either 0 or 1. 

19. Give a simple example to show that 2 random variables may be independent 
according to one probability measure but dependent with respect to another. 

20. Counterexamples and examples: 

a) Let = {1, 2,3,4} with each point carrying probability 1/4. Let Ai = 
(1,2}, A2 — (1,3}, A3 = {1,4}. Then any two of A \ , A2, A3 are inde­
pendent, but Ai , A2, A3 are not independent. 

b) Let (Ai, 1 < / < 5} be a measurable partition of Q, such that P{A\) = 
P(A2) = P(A3) = 15/64, P(A4) = 1/64, P{As) = 18/64. Define 
B = Ai U A 4 , C = A 2 U A 4 , D = A3 U A 4 . Check that 

P(BCD) = P(B)P(C)P(D) 

but that 5 , C, D are not independent. 

c) Let Xi, X2 be independent random variables each assuming only the 
values 4-1 and —1 with probability 1/2. Are Xi,X2, X1X2 pairwise inde­
pendent? Are Xi,X2, X1X2 an independent collection? 

21. Suppose {A„] is a sequence of events. 

(a) If P(A„) 1 as /2 —• 00, prove there exists a subsequence [nk] tend­
ing to infinity such that PiOkAn^) > 0. (Hint: Use Borel-Cantelli.) 

(b) Show the following is false: Given € > 0 such that P(A„) > €, it 
follows that there exists a subsequence [n/c] tending to infinity such 
that PiDicAn^) > 0. 

22. Suppose {A„] are independent events such that 

00 
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(a) If for each k 

00 « - l 

n=k i=k 

show P(limsupA„) = 1. 
«-^oo 

(b) What is the relevance to the Borel Zero-One Law? 

(c) Is it enough to assume 

00 n - 1 

5^P(/\„ |f |A^) = oo? 

(d) Show 

iff 

« = i 1=1 

P(limsupA„) = 1 
n-»>oo 

oo 
^ P ( A A „ ) = oo 
n=l 

for all events A such that P{A) > 0. 

24. If P(A„) >€ >0, then P(A„ i.o.) > €. 

25. Use Renyi's theorem to prove that if {Xn,n > 1} is iid with common con­
tinuous distribution 

P{[X„=\/Xi]i.o.] = l. 
1=1 

26. (Barndorff-Nielson) Suppose {£„} is a sequence of events such that 

lim P (£„ ) = 0, T P (£„£„+ i ) < 00. 
n-^oo *—' 

n 
Prove 

P(E„ i.o.) = 0. 

Hint: Decompose U^^^Ej for m > n. 

27. If [Xn.n > 1} are independent random variables, show that the radius of 
convergence of the power series Yl^\ ^nz" is a constant (possibly infinite) 
with probability one. 

Hint: The radius of convergence of ^nz" is given by 

R-^ = l i m s u p | c j * / " . 
n-^oo 
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(b) Define 

InicS) := length of the run of O's starting at dn(co), 

k>h if = 0 , . . . , d„+k~i((o) = 0, dn+k{(^) = 1, 
0, if dn{aj) = I. 

Show 

/•[/„=*] = (!)*+', P[I„>r] = {^y. (4.18) 

(c) Show {[/„ = 0], n > 1} are independent events. 

(d) Show P{[1„ = 0] i.o.} = 1. (Use the Borel Zero-One Law.) 

(e) The events {[/„ = l],w > 1} are not independent but the events 
iUln = 1], 2̂ > 1} are, and therefore prove 

P[[l2r, = 1] i.O. } = 1 

SO that 
P{[1„ = 1] i.o. } = 1. 

28. Show {X„, /2 > 1} are independent if 

crCA'i ^ n - i ) _ ! !_^^^«) 

are independent for each n >2. 

29. Let 

= {1, . . . , r } " = [(xiy...,x„) '.Xi 6 { l , . . . , r } , / = l , . . . , / 2 } 

and assume an assignment of probabilities such that each point of Q is 
equally likely. Define the coordinate random variables 

Xi{,{X\, . . . , X f l ) ) = AT/, 1 = 1, . . . , / 2 . 

Prove that the random variables A ' l , . . . , A'n are independent. 

30. Refer to Subsection 4.3.2. 

(a) Define 

A = [[d2n = 0] i.o. }, B = [[d2n+i = 1] i.O. }. 

Show A II B. 
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(f) Let log2 n be the logarithm to the base 2 of n. Show 

P[limsup < 1] = 1. (4.19) 
n^oo \0g2n 

Hint: Show 
^ P [ / „ > ( H - € ) l o g 2 n ] < o o 
n 

and use Borel-Cantelli. Then replace t by Q i 0. 
(g) Show 

P [ l i m s u p - ^ > 1] = 1. 
« - o o log2n 

Combine this with (4.19). 
Hint: Set r„ = log2 n and define n/t by n 1 = 1, ^2 = l+z"!, • • •, "/t+i = 
rik + r„^ so that Wit+i - = r„^. Then 

[Ink ^ '•«*] ^ rik <i < nk+i) 

and hence > /"nt], A: > 1} are independent events. Use the Borel 
Zero-One Law to show 

P{[/«. > r „ J i.o.} = 1 

and hence 
> r „ ] i . o . } = l. 

31. Suppose {B„,n > 1) is a sequence of events such that for some 6 > 0 

P(Bn) > 6 > 0, 

for all n > 1. Show lim sup„_^oo 5„ 7^ 0. Use this to help show with 
minimum calculation that in an infinite sequence of independent Bernoulli 
trials, there is an infinite number of successes with probability one. 

32. The Renyi representation. Suppose Ei,...,E„ are iid exponentially dis­
tributed random variables with parameter X > 0 so that 

P [ £ i <x] = l-e-^, x>0. 

Let 
E\.n < Ezn < • < En,n 

be the order statistics. Prove the n spacings 

are independent exponentially distributed random variables where Ek+\,n — 
Ek,n has parameter {n — k)X. Thus 

(Ei.rt < E2,n < < En.n) = ( —. En)-
n n - 1 

Intuitively, this results from the forgetfulness property of the exponential 
distribution. 

file:///0g2n


5 
Integration and Expectation 

One of the more fundamental concepts of probability theory and mathematical 
statistics is the expectation of a random variable. The expectation represents a 
central value of the random variable and has a measure theory counterpart in the 
theory of integration. 

5.1 Preparation for Integration 

5.1.1 Simple Functions 
Many integration results are proved by first showing they hold true for simple 
functions and then extending the result to more general functions. Recall that a 
function on the probability space (Q, B, P) 

is simple if it has a finite range. Henceforth, assume that a simple function is 
B/B(M.) measurable. Such a function can always be written in the form 

it 
X(oj) = ^ailA,(oj), 

1=1 

where fl, 6 R and A, e B and A i , . . . , A^ are disjoint and Yl'i=i = ^. 
Recall 

B{X) = B(AiJ =:l,...k) = \jAi:Ic[l k] 
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Let S be the set of ail simple functions on ^ . We have the following important 
properties of S. 

1. £ is a vector space. This means the following two properties hold. 

(a) If ^ = Ef=i e Sy then aX = ^f^^ a^ . l^ , € S. 

(b) If ^ = ^ f ^ i ail A, and y = Yl^^^ bjlsj and X ^ € ^ , then 

^ + y = X!(«/+^;)UnB, 

and {A,5; , 1 < I < A:, 1 < ; < m} isapartitionof ^ . S o A ' + y € S. 

2. If ^ , y 6 then e ^ since 

XY = y^^ifcjl/\,nfl,» 

3. If ^ , y 6 Sy then ^ v y, X A Y eS, since, for instance, 

5.1.2 Measurability and Simple Functions 
The following result shows that any measurable function can be approximated by 
a simple function. It is the reason why it is often the case that an integration result 
about random varables is proven first for simple functions. 

Theorem 5.1.1 (Measurability Theorem) Suppose X(o)) > 0, for all co. Then 
X e B/B(R) iff there exist simple functions Xn e £ and 

0 < ^„ t ^• 
Proof. If Xn e 5 , then Xn e B/B{R), and if ^ = lim„^oo t ^n, then X e 
B/B{R) since taking limits preserves measurability. 

Conversely, suppose 0<Xe B/B(R). Define 

/A: - 1 \ 

Because X e B/B(R), it follows that Xn e S. Also Xn < Xn+\ and \{X(co) < 
00, then for all large enough n 

\X(co)-Xn(co)\<-^-^0. 

If X(oj) = 00, then Xn (co) = n cx). • 
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5.2 Expectation and Integration 

This section takes up the definition of expectation, or in measure theory terms, the 
Lebesgue-Stieltjes integral. Suppose iB, P) is a probability space and 

X : ( ^ , j B ) h ^ R , B{R) 

where ( R = [—oo, oo] so X might have ±oo in its range. We will define the 
expectation of X, written E{X) or 

XdP 

or 
( X((o)P(daj)y 

as the Lebesgue-Stieltjes integral of X with respect to P. We will do this in stages, 
the first stage being to define the integral for simple functions. 

5.2.1 Expectation of Simple Functions 
Suppose A' is a simple random variable of the form 

1 = 1 

where \a, \ < oo, and Ylt=i^i = ^ - Define for A' 6 £̂  the expectation as 

f * 
E(X) = / XdP = : J^a^PA,. (5.1) 

J 1=1 

Note this definition coincides with your knowledge of discrete probability from 
more elementary courses. For a simple function (which includes all random vari­
ables on finite probabilty spaces) the expectation is computed by taking a possible 
value, multiplying by the probability of the possible value and then summing over 
all possible values. 

We now discuss the properties arising from this definition (5.1). 

Note if 
M := sup \X{a))\ < oo, 

then 
sup \X(aj)-X„(aj)\^0. 



120 5. Integration and Expectation 

X = Y^aiU,, and at > 0, 
1=1 

and therefore E{X) = Yl^^i a,P{A,) > 0. 

3. The expectation operator E is linear in the sense that if A', K G then 

E(aX 4- m = c'EiX) 4- fiE{Y) 

for a, ^ G R. 

To check this, suppose 

k m 

1=1 y = i 

and then 

aX^PY:= Y^^aai + pbj)\A,B,, 

so that 

E{aX -\- m ^Y^ioia, + ^bj)P{A,Bj) 

k m m k 

1=1 j = i j = i 1=1 

it m 
= a'YaiP{Ai) + fiJ2^jP{Bj) 

1=1 > = i 

= aE{X)-{-^E(Y). 

1. We have that 

£(1) = 1, andE{lA) = P{A). 

This follows since 1 = 1 Q so £(1) = P ( ^ ) = 1 and 

so 
£ (1^ ) = 1 P ( A ) + 0 P ( A ^ ) . 

2. If ^ > 0 and ^ G £: then E(X) > 0. 

To verify this, note that if A' > 0, then 

k 
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4. The expectation operator E is monotone on S in the sense that \{ X <Y 
and X,Y eS, then E{X) < E{Y). 
To prove this, we observe that we have Y — X > 0 and Y — X e S.So 
E{Y -X)>0 from property 2, and thus 

E{Y) = E{Y -X •¥X) = E(Y - X)E{X) > EX 

since £ ( y - ^ ) > 0. 

5. If ^ G £: and either ^ „ t ^ or ^ „ ; X, then 

E(X„)\E(X) oiE(X„)iE{X). 

Suppose Xn e and X„ i 0. We prove E{X„) i 0. As a consequence 
of being simple, Xi has a finite range. We may suppose without loss of 
generality that 

sup Xi (co) = K < oo. 

Since {X„} is non-increasing, we get that 

0<X„<K 

for all n. Thus for any 6 > 0, 

0 <Xn = X„l[x„>(] 4- X„l[x„<(] 

<Kl[X„>(]-\-€l[X„<(]. 

and therefore by the monotonicity property 4, 

0 < E(X„) < KP[X„ > 6 ] 4- €P[X„ < €] 
<KP[X„ > 6 ] 4 - 6 . 

Since Xn i 0, we have, as n ^ oo, 

[X„ > 6 ] i 0, 
and by continuity of P 

P[X„ >€]iO. 
SoE(,X„)>E(X„+i)and 

limsupiE;(A'„) < €. 
n-*oo 

Since € is arbitrary, E(X„) i 0. 
I f^„ i ^ , t h e n ^ „ - ^ i O , s o 

E(X„)-E(X)=^E(^X„-X)iO 

from the previous step. 
I f^„ t ^ , t h e n ^ - ^ „ i O a n d 

E(,X)-E(,X„) = E(,X-X„) iO. 
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implies 

lim t ^« < lim t Ym (5.3) 
n-*OQ m-*oo 

lim 'tE(X„)< lim tE(Y,„)- (5.4) 
,i->-oo m-*oo 

To prove (5.4), note that as m ^ oo 

S+ 3 X„ AYm t X„ e 

5 . 2 . 2 Extension of the Definition 

We now extend the definition of the integral beyond simple functions. The pro­
gram is to define expectation for all positive random variables and then for all 
integrable random variables. The term integrable will be explained later. 

It is convenient and useful to assume our random variables take values in the 
extended real line M (cf. Exercise 33). In stochastic modeling, for instance, we 
often deal with waiting times for an event to happen or return times to a state or 
set. If the event never occurs, it is natural to say the waiting time is infinite. If the 
process never returns to a state or set, it is natural to say the return time is infinite. 

Let be the non-negative valued simple functions, and define 

S+:={X >0:X : (^, B) ( M , BiR))] 

to be non-negative, measurable functions with domain Q. \{ X e S+ and 
P[X = oo] > 0, define E{X) = oo. 

Otherwise by the measurability theorem (Theorem 5.1.1, page 118), we may 
find X„ e S+y such that 

0<X„\X. 

We call {X„} the approximating sequence to X. The sequence {E{X„)} is non-
decreasing by monotonicity of expectations applied to S+. Since limits of mono­
tone sequences always exist, we conclude that lim„-.oo ^(A^^) exists. We define 

E(X) := lim E(X„). (5.2) 
«-*oo 

This extends expectation from SioS+. 
The next result discusses this definition further. 

Proposition 5.2.1 (Well definition) E is well defined on S+, since if X„ e S+ 
and Ym e S+ and X„ f ^ , t X, then 

lim E(X„) = lim EiYm)-

Proof. Because of the symmetric roles of X„ and Ym, it suffices to prove the 
following assertion. If X„,Ym e S+ and both sequences [X„} and [Ym) are non-
decreasing, then the assumption 
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since 
lim Ym > lim Xm >. X„. 

m-^oo m-*oo 

So from monotonicity of expectations on 

E{X„)^ lim \E{X„AYm)< lim E{Ym). 
m-¥OQ m-*oo 

This is true for all w, so let /z oo to obtain 

lim t£(^«)< Hm \E{Y„). 
n-*oo n-*oo 

This proves (5.4). 

5.2.3 Basic Properties of Expectation 
We now list some properties of the expectation operator applied to random vari­
ables in S+. 

1. We have 
0<E{X) < o o , 

and if ̂ , y G S+ and X <Y, then E{X) < E(Y). 

The proof is contained in (5.4). 

2. E is linear: For a > 0 and > 0, 

E(aX 4- fiY) = aE{X) 4- fiE(Y). 

To check this, suppose X„ \ X,Y„ 'I Y and X„,Y„ eS+. For c > 0 

EicX) = lim E(cX„) 
W - V O O 

= lim ciE^(A'„) (linearity on £̂ +) 
f l - v O O 

= c £ ( ^ ) . 

We also have 

£ ( ^ 4 - y ) = lim £ ( ^ „ 4 - y „ ) 
,i-^oo 

= lim {E(X„) + E(Y„)) (linearity on S+) 
n-*oo 

= £ ( ^ ) 4 - £ ( y ) . 

3. Monotone Convergence Theorem (MCT). If 

0<X„\X, (5.5) 
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then 

E{X„) t E{X), 

or equivalently, 

£ ( lim t X„) = lim t E{X„). 
\n-*oo / «-»>oo 

We now focus on proving this version of the Monotone Convergence Theorem, 
which allows the interchange of limits and expectations. 

Proof of MCT. Suppose we are given Xn,X e S+ satisfying (5.5). We may find 
simple functions Ym^ G to act as approximations to Xn such that 

y^"> t oo. 

We need to find a sequence of simple functions [Zm] approximating X 

Zm^X, 

which can be expressed in terms of the approximations to [Xn). So define 

Note that {Z„} is non-decreasing since 

Z„<VYIRL, ( since K r < 0 

^ V D = ' Z " . + " -
n<m+\ 

Next observe that for n < m, 

(A) <>!""< V j< .y« ' ' = z „ ; 

(B) Z„<\/j^„Xi=X„, 

since Ym^ < Xj, which is monotone in ; and so 

(C) Yi,"^ <Zm<Xm. 

By taking limits on m in (C), we conclude that for all n 

Xn = lim y^"> < lim Zm < Hm X„,. 
m-*oo m-*oo m-^oo 

So 

X = lim Xn < lim Z„ < lim X^ = X. 

Therefore 
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lim E{X„) < E(X) < lim E(X„), 
«->oo m - * o o 

hence the desired equality follows. • 

We now further extend the definition of E(X) beyond S+. For a random vari­
able X, define 

Thus 

^ + = ^ V 0, X- = (-X) V 0. (5.6) 

= ^ , if ̂  > 0 (and then = 0), 

X- = -X, ifX <0 (and then Ar+ = 0). 

X"^ > 0 , 

1̂ 1 = x+-\-x-

X e B/B(m) iff both X"^ e B/BiR)-

Call X quasi-integrable if at least one of E{X'^), E{X~) is finite. In this case, 
define 

E{X) :^E{X-^)-E{X-). 

Therefore 

and 

and 

(D) X = lim„_^oo X„ = l im„_voo 
and it follows that [Zm] is a simple function approximation to X. 

(E) Now because expectation is monotone on 

E{X„) = J jm^ t EiXm^) (expectation definition) 

< lim "tEiZm) (from(C)) 

< lim EiXm) (from(C)). 
m —* oo 

However Z^ e S+ and [Zm] is a simple function approximation to X. Therefore, 
we get from the definition of expectation on £+ and (D) 

iE:(^) = iE:( lim t Z „ ) = lim t £ ( ^ / n ) . 
m-*oo m-*oo 

So (E) implies for all n that 

E(X„)<E{X)< lim t £ ( ^ m ) , 
m-»>oo 

and taking the limit on n 
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E{X) = / xf(x)dx. 

If 

fix) = 

then E{X) exists and E(X) = oo. 
On the other hand, if 

X ^, if;c > 1, 
0, otherwise. 

^ 1 -2 
0, 

- 2 ifx > 1, 
otherwise, 

then 
E{X+) = E(X-) = oo. 

and E{X) does not exist. The same conclusion would hold if / were the Cauchy 
density 

fix) - — ^ , X 
7T{\^-x^y 

We now list some properties of the expectation operator E. 
• 

1. If ^ is integrable, then P[X = ±oo] = 0. 

For example, if P[X = oo] > 0, then E{X'^) = oo and X is not integrable. 

2. If iE:(^) exists. 

If either 

E{cX) = cE{X). 

£ ( ^ + ) < oo and £(7"*") < oo, 

UE(X-^) and iE:(^-) are both finite, call X integrable. This is the case iff iE:|^| < 
oo. The set of integrable random variables is denoted by L i or L i (P) if the prob­
ability measure needs to be emphasized. So 

Li(P) — {random variablesX : E\X\ < oo}. 

If E{X+) < oo but E{X-) = oo then E{X) = - o o . If £(A'+) = oo but 
E(X-) < 00, then E(X) = oo. If iE:(^+) = oo and EX' = oo, then E{X) does 
not exist. 

Example 5.2.1 (Heavy Tails) We will see that when the distribution function of 
a random variable X has a density f(x). The expectation, provided it exists, can 
be computed by the familiar formula 
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or 

E(X~) < oo and E(Y~) < oo, 

then X -\-Y is quasi-integrable and 

E{X-\-Y) = E{X) + E{Y). 

To see this, observe that 
\X-hY\eS+y 

and since 
+ < 1^1 + I N , 

we have from monotonicity of expectation on S+ that 

iE:i^ 4- y | < iE:(i^i + I N ) = £ 1 ^ 1 + iE:|y| < 00, 

the last equality following from linearity on S+. Hence X -^Y G Li. 
Next, we have 

+ y)+ - 4- y ) " = ^ + y = ^"^ - ^ " 4- y"*" - y , (5.7) 

so 

LHS := (X + y)+ 4- ^ " 4- y " = 4- Y)' + 4- y*" = : RHS. 

The advantage of this over (5.7) is that both LHS and RHS are sums of positive 
random variables. Since expectation is linear on S+, we have 

E( LHS ) = E(X 4- y)"*" 4- E(X) - -\-E(Y) -
= £ ( RHS ) = E(X 4- Y)- + £ ( ^ + ) + E{Y-^). 

Rearranging we get 

E(X 4- y)+ - E(X + Y)- = E(X-^) - E(X-) + E{Y-^) - £ ( y - ) , 

or equivalently, 

£ : (^4-y) = £ ( ^ ) 4 - £ ( y ) . ^ 

3. If A - > 0, then E(X) > 0 since X = X+. IfX, y G L i , and AT < y, then 

E{X)<E(Y). 

This is readily seen. We have ^ ( y - AT) > 0 since y - A" > 0, and thus by 
property (2) from this list, 

E{Y -X) = E{Y)- E{X)>0. 
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4. Suppose {X„} is a sequence of random variables such that X„ e Li for 
some n. If either 

X„^X 

or 
X„iX, 

then according to the type of monotonicity 

E{X„) t E{X) 

or 

E(X„)iE(X). 

To see this in the case X„ t X, note X~ i X~ so E{X~) < oc. Then 

0 < ^ + = ^ „ < ^ „ + rx-\-x-. 
From the MCT given in equation (5.5) 

0<E{X„-\- X-) tE{X-\- ) . 

From property 2 we have 

E{X„-^X-) = E{X„)-^E{X-). 

Since E{X~) < oo and iE (̂A'j") < oc, we also have 

E{X-^X;) = E{X)-^E(X-), 
and thus 

lim E{X„):=E{X). 
n-*oo 

If X„ i X, proceed similarly by considering —X„ + X^. 

5. Modulus Inequality. UX e L\, 

\Em\ < E{\X\). 

This has an easy proof. We have 

\E(X)\ = \E(X+) - E(X-)\ < E(X-^) -hEiX-) = £(|^|). 

6. Variance and Covariance. Suppose X^ e Li, which we write asX e L2. 
Recall that we define 

V a r W :=E(X-E{X))^, 
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and because of linearity of expectation, this is equal to 

= E{X'')-{E{X)f. 

For random variables X,Y e write 

COV(A:, y) = £ {{X - Eixmv - E{Y))) , 

and again because of linearity of expectation, this is equal to 

= E(XY)-E{X)E(Y). 

Note that if ^ = y, then Cov(;!r, Y) = Var(^). We will prove in Example 
5.9.2 that if ^ J_ y and ^,y € L2, then E(XY) = E{X)E(Y) and 
consequently Cov(A', Y) = 0. 

The covariance is a bilinear function in the sense that if Xi,...,Xk and 
Y\,...,Yi are L2 random variables, then for constants « i , . . . , «it, and 
bi,...,bi 

k / * / 
COVIY^a^X.^Y^bjYj) = 5];5];«,feyCov(^„ Yj). (5.8) 

1 = 1 ]=\ 1 = 1 ] = \ 

This also follows from linearity of expectations as follows. Without loss of 
generality, we may suppose that E{Xi) = EiXj) = 0 for 1 = 1 , . . . , A:, ; = 
1 , . . . , / . Then 

Cov(X]«,^,, ^fe,y,) =E [Ya,X, J^BA 
1 = 1 ; = 1 \ i=l y=i / 

it / 

1 = 1 ; = 1 

k / 

=EÊ '̂ °̂̂ (̂ ''̂ >)-
1 = 1 j=\ 

A special case of this formula is used for computing the variance of a sum 
of L2 random variables Xi,..., X„. We have 

n n n n n 

var(E ) = ̂ °̂ (E E ) = E E ' 
1 = 1 1 = 1 ]=i 1 = 1 y=i 

Split the index set 
{(/, ; ) : 1 < /, j<n] = { ( I , i):\<i<n]U {(/, ; ) : i 7̂  
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and we get 

n 
Var(^^,)=J^Cov(^,- ,^ , ) + 2 Cov(J!r/,^y) 

1=1 1=1 i < i < ; < i 
It 

= ^Var(Ar/)-|-2 Cov(Xi,Xj). (5.9) 
i«l l<i<J<n 

If Cov(Ar,-, A';) = 0 for / 5̂  that is, if A"] , . . . , X„ are uncorrelated, then 

V a r ( ^ ^ / ) = ^ Var(J^,). (5,10) 
*=i 1=1 

In particular, this is true when Xi,..,,Xn arc independent. 

7. Markov Inequality. Suppose A' € L i . For any X > 0 

P[\X\>X.]<k-^Ei\X\). 

This proof is also simple. Note 

* • ' i f - T • - — 

Take expectations through the inequalities. 

8. Chebychev Inequality. We have 

P[\X - £(Ar)| >X]< Var(A')/x2, 

assuming £|A^| < oo and Var(A') < oo. 

This follows from the Markov Inequality. We have 

P[|Ar - £(^)1 > X] = Pl\X-E(X)f>X^] 
< X-^EiX-EiX))^, 

where the last inequality is an application of the Markov Inequality. 

9. Weak Law Large Numbers (WLLN). This is one way to express the fact 
that the sample average of an iid sequence approximates the mean. Let 
[Xn^n > 1} be iid with finite mean and variance and suppose E{X„) = n 
and Var(A'n) = < oo. Then for any € > 0, 

/ I 

lim P[|/i-*5Z-^'"'^'>^l = ̂ -
n-*oc , . 
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To see this, just use Chebychev and (5.10): 

E?=iVar(Jf,) «Var (^ ) 

PI i=l 

0. 

5.3 Limits and Integrals 

This section presents a sequence of results which describe how expectation and 
limits interact. Under certain circumstances we are allowed to interchange expec­
tation and limits. In this section we will learn when this is safe. 

Theorem S3 A (Monotone Convergence Theorem (MCT)) / / 

o<x„^x 

then 
0 < E{X„) t E{X). 

This was proved in the previous subsection 5.2.3. See 3 page 123. 

Corollary S3 A (Series Version of MCT) / / ^; > 0 are non-negative random 
variables for n >1, then 

00 oo 

so that the expectation and infinite sum can be interchanged. 

To see this, just write 

j=i j=i 

00 
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Proof of Fatou. If ̂ „ > 0, then 

£( l iminf^„) = £ ( lim t 
n-*oo n-*oo 

= lim t A A'* (from MCT 5.3.1) 

< l iminf£(^„) . 
rt-»>O0 

For the case where we assume A'n > Z, we have X„ — Z >0 and 

iE:(liminf(A'„ - Z) < l iminf£(^„ - Z) 
rt-»>O0 «-»>00 

so 
iE:(liminf^„) - E{Z) < l iminf£(^„) - E{Z). 

The result follows by cancelling E(Z) from both sides of the last relation. • 

Corollary S3.2 (More Fatou) IfX„ <Z where Z e Li, then 

£'(limsupA'„) > limsup£(A'„). 

Proof. This follows quickly from the previous Fatou Lemma 5.3.2. If A'n < Z, 
then —X„ > - Z e L\, and the Fatou Lemma 5.3.2 gives 

iE:(liminf(-^„)) < liminf £ ( - ^ „ ) , 

so that 
£ ( - l iminf ( -A '„ ) ) > - l iminf(-£A'„). 

The proof is completed by using the relation 

— lim inf — = lim sup. ^ 

Canonical Example. This example is typical of what can go wrong when limits 
and integrals are interchanged without any dominating condition. Usually some­
thing very nasty happens on a small set and the degree of nastiness overpowers 
the degree of smallness. 

Theorem 5.3.2 (Fatou Lemma) IfXn > 0, then 

£(I iminf^„) < lim inf £:(^„). 
rt-vOO rt-vOO 

More generally, if there exists Z e Li and X„ > Z, then 

iE:(liminf^„) < l iminf£(^„) . 
«-»>00 rt-»>00 
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Let 

( ^ . 5 , P) = ([0,l] ,m[0,l]) ,X) 

where, as usual, X is Lebesgue measure. Define 

X„ = /2^1(0 , l / , i ) . 

For any co e [0,1], 

so 

However 

so 

l (0 . i / f l )M 0, 

E{X„)=n^--=::n- oo. 
n 

and 

£( l iminf^„) = 0 < l iminf(£^„) = oo 

fOimsupA^n) = 0, \[msupE{X„) = oo. 
rt-»>00 rt-»>O0 

So the second part of the Fatou Lemma given in Corollary 5.3.2 fails. So obviously 
we cannot hope for Corollary 5.3.2 to hold without any restriction. • 

Theorem S33 (Dominated Convergence Theorem (OCT)) / / 

Xfi —• X, 

and there exists a dominating random variable Z G L i such that 

\X„\<Z, 

then 
E{X„) ^ E(X). 

Proof of OCT. This is an easy consequence of the Fatou Lemma. We have 

-z <x„<z 

and — Z G L1 as well as Z G L i. So both parts of Fatou's lemma apply: 

E{X) =iE:(liminf^„) 
«-»>oo 

< l i m i n f £ ( ^ „ ) 

<l im sup£(A'„) 
rt-»>00 

<£(l im supA'rt) 
«-»>oo 

==E(X). 

Thus all inequalities are equality. 

(Fatou Lemma 5.3.2) 

(since inf < sup) 

(Corollary 5.3.2 ) 
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n=l 
0 0 

= (J^Ei^Un) (from Corollary 5.3.1) 
0 0 /. 

5.4 Indefinite Integrals 

Indefinite integrals allow for integration over only part of the ^-space. They are 
simply defined in terms of indicator functions. 

Definition 5.4.1 If A' G L i, we define 

j XdP : = £ ( ^ U ) 

and call XdP the integral of X over A. Call X the integrand. 

Suppose X >0. For positive integrands, the integral has the following proper­
ties: 

(1) We have 

0 < j XdP<E{X). 

This is a direct consequence of the monotonicity property of expectations. 

(2) We have 

j XdP = 0 
iff 

P(A n[x > 0]) = 0. 

This proof of this important result is assigned in Exercise 6 at the end of the 
chapter. 

(3) If {A„, n > 1} is a sequence of disjoint events 

f XdP = y2f ^dP. (5.11) 
Jyj„A„ JA„ 

To prove (5.11), observe 

f XdP=E{Xlyj„A„) 

J^nA„ 
= E(£XU„) 
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f XdP < f 
JAI JA, ^ 2 

(5) Suppose X e L \ and [A„] is a monotone sequence of events. If 

An/'A, 

then 
f XdP / f XdP 

JA„ JA 

while if 

then 

A„\A, 

f XdP\ f XdP. 
JA„ JA 

Property (4) is proved using the monotonicity property of expectations and 
Property (5) is a direct consequence of the MCT 5.3.1. • 

5.5 The Transformation Theorem and Densities 

Suppose we are given two measurable spaces B) and (Q\ B ' ) , and 

T:{Q,B)>-^ (Q\B') 

is a measurable map. P is a probability measure on B. Define P ' : = P o T"^ to 
be the probability measure on B' given by 

P\A') = P(T-\A')), A ' GB'. 

Theorem 5.5.1 (Tt*ansformation Theorem) Suppose 

X' : (Q\ B') ( E , B(R)) 

is a random variable with domain Q'. (Then X' oT : Q. Ris also a random 
variable by composition.) 

(i) IfX' > 0, then 

f X\T{(D))P{da)) = / X\(D')P'{d(jJ), (5.12) 
Jo. Jo.' 

where P ' = P o T~^. Equation (5.12) can also be expressed as 

E{X' oT) = E\X'), (5.13) 

(4) If 
Ai CA2, 

then 
r r 

XdP. 
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(a) Suppose 

X' = A' e B'. 

Note 

X\T(co)) = \A'iT(w)) = V - M K ^ ) . 

so 

f X'{T{(o))P(dco)= Leftside of {5.12) 

= / lA'(Tico))P{daj) 
JQ 

= f lT-HA')ioj)P(dco) 

= P ( 7 " ^ A ' ) ) = P\A') 

= f lA'(co)P'(d(o') 

= Right side (5.12). 

(b) Let A" be simple: 

1 = 1 

where E' is the expectation operator computed with respect to P'. 
(ii) We have 

X' €Li(P')iffX'oT eLiiP) 

in which case 

f X\T(co))P{d(o) = f X\co')P'(dco'). (5.14) 
JT-HA') JA' 

Proof, (i) Typical of many integration proofs, we proceed in a series of steps, 
starting with X as an indicator function, proceeding to A' as a simple function and 
concluding with X being general. 
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= / Ta'i\A'Y)P\do>'). 

(c) Let A" > 0 be measurable. There exists a sequence of simple functions 
i ^ ; } , such that 

K t X'. 
Then it is also true that 

X'„oT X'oT 

and 

Leftside ( 5 . 1 2 ) = / X'{Tco)P(dco) 

«-»>00 IK = lim t / X„(Tco)P(dco) (MCT) 

= lim t / X'„{co')P\dco') (from Step (b)) 

= f X\w')P\dco') (from MCT). 

The proof of (ii) is similar. To get (5.14) we replace X' in (5.12) by X'l^'. • 

5.5.1 Expectation is Always an Integral on M 
Let A' be a random variable on the probability space (fi, P). Recall that the 
distribution of X is the measure 

F:=:PoX-^ 

on (R, BiR)) defined by (A G B{R)): 
F(A) = P o A'"^ (A) = PfA- G A]. 

so that 

f X\Tco)P(dco)= f T<lA'(Tico))P(dco) 

k . 

1=1 

k 
= Y.a[P{T-\A\)) 

1=1 

1 = 1 

it 
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The distribution function of X is 

Fix) : = F ( ( - O O , A : ] ) = P[X < x]. 

Note that the letter " F ' is used in two ways. Usually, there will be no confusion. 
Here is an excellent example of the use of the Transformation Theorem which 

allows us to compute the abstract integral 

£ m = / XdP 

as 

E{X) = f xF{dx), 

which is an integral on E . 

Corollary 5.5.1 (/) / / X is an integrable random variable with distribution F, 
then 

E{X) = ( xF(dx). 
JR 

(ii) Suppose 
X:iQ,l3)t^ (E,S) 

is a random element ofE with distribution F = P oX~^ and suppose 

g:(E.S)^ (R+,B(m+)) 

is a non-negative measurable function. The expectation of g(X) is 

E(g(X)) = f g(X(co))P(dco) = f g(x)F(dx). 
JQ JxeE 

Proof, (i) For ease of applying the Transformation Theorem, we make the follow­
ing notational identifications: 

X : (Q,B) H > ( R , 5 ( E ) , 
X': (Q\ B') = ( R , 5 ( R ) h ^ - ( R , 5 ( ]R) ) , 

X'(x) =x, 
T =X 

P' =PoX-^ =: F. 

According to the conclusion of the Transformation Theorem, we get the equation 

f X'(T(co))P(dco) = f X'(co')P'(dco') 

and with the identifications listed above, the equation becomes 

/ X(co)P(da)) = I xF(dx). 
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Eg{X)=: f g{x)f(x)dx. 
JR 

Proof. Repeat (a), (b), (c) of the proof of Corollary 5.5.1 (ii) for the case where 
there is a density. • 

5.6 The Riemann vs Lebesgue Integral 

Every probability student is first taught to compute expectations using densities 
and Riemann integrals. How does this the Riemann integral compare with the 
Lebesgue integral? 

Suppose (—oo < a < b < oo) and let / be real valued on (a,b]. Generally 
speaking, if / is Riemann integrable on (a, b], then / is Lebesgue integrable on 
(a, b] and the two integrals are equal. The precise statement is next. 

Theorem 5.6.1 (Riemann and Lebesgue) Suppose f : («, fe] R and 

(ii) We proceed in stages using the usual progression: start with an indicator 
function, proceed to simple functions and graduate to general non-negative func­
tions. Here are the stages in more detail. 

(a) UA € Sandgix) = 1^ (x), then (i) is true. This follows from F = PoX'K 

(b) Check (i) holds for g simple. 

(c) Finish with an application of the MCT. • 

The concluding message: Instead of computing expectations on the abstract 
space fi, you can always compute them on E using F , the distribution of X. 

5.5.2 Densities 
Let X : (fi, B) H+ (E*, 5(E*)) be a random vector on (fi, B, P) with distribution 
F. We say A' or F is absolutely continuous (AC) if there exists a non-negative 
function 

/ : ( M * , B(M!')) H > ( M + , 5 ( R + ) ) 

such that 
F(A) = j f / ( X ) ^ X , 

where ^x stands for Lebesgue measure and the integral is a Lebesgue-Stieltjes 
integral. 

Proposition 5.5.2 Let g : ( R * , i B ( R * ) ) ( R + , B ( R + ) ) be a non-negative mea­
surable function. Suppose X is a random vector with distribution F. If F is AC 
with density f, we have for the expectation ofg{X) 
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(a) f is B{{a,b])/B{R) measurable, 

(b) f isRiemann-integrable on (a, b]. 

Let k be Lebesgue measure on (a, b]. Then 

(i) f e Li([a, b], X ) . In fact f is bounded. 

(ii) The Riemann integral of f equals the Lebesgue integral. 

Proof. If / is Riemann integrable, then from analysis we know that / is bounded 
on (a,b] (and also continuous almost everywhere on {a,b]). For an interval / , 
define 

r ( / ) = sup/(;c) , r ( / ) = inf/(;c). 
xel 

Chop up (a, b] into n subintervals I^"\ ... , l!,"^ where 

^ n n 

Define 

n 
fn(x) = Ylf''iil"^nfinAx), 

so that fn, f^ are simple (and hence measurable) and 

l,<f<fn- (5.15) 

Define 

^n= f fn(x)Hdx) = J2 raj"^^'-"^) 

J(a,b] y=l 
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so 

J(a,b] 

that is, 

fia.b] I / fdk-I\< €. 

This completes the proof. • 

We need the next lemma in order to discuss the subsequent example. 

Lemma 5.6.1 (Integral Comparison Lemma) Suppose X and X' are random 
variables on the probability space {^,B, P) and suppose X ^ L\. 

(a) If 
P[X = X'] = h 

then 
X' ^Lx andEiX) = E(X'). 

(b) We have 
P[X = X'] = 1 

iff 
j XdP = j X'dP, VA e B. 

The condition "for all A e B " can be replaced by "for all A " where V is a 
n-system generating B. 

where = (b ~ a)/n. Let 

/ = j^^ f(x)dx 

be the Riemann integral of / . / has upper Riemann approximating sum d„ and 
lower Riemann approximating sum CT„. Since / is Riemann-integrable, given 
there exists no = no{€) such that n > no implies 

| / - ^ „ l V l ^ - ^ l ^ ^ - (5-16) 

Because of (5.15) and monotonicity of expectations 

J{a,b\ J{a.b] J{a,b] 

and from (5.16 
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Proof. Part (a) basically follows from Exercise 6. Here, we restrict ourselves to 
commenting on why if A' € Li and P[X = X'] = 1, it follows that X' € Li. 
Write N = [X X'] so that P(N) = 0 and then 

E(\X'\) = E(\X\\[^x\=\x'\])-hE(\X'\lf^) 

<E\X\)-\-0<oo, 

where we have applied Exercise 6. A modification of this argument shows E (X) = 
E(X'). 

Now consider (b) which uses the following result also following from Exercise 
6: 

If A- > 0, then E(X) = 0 implies P[X = 0] = 1, (5.17) 

or equivalently 

if ^ > 0, then P[X > 0] > 0 implies E(X) > 0. (5.18) 

Suppose for aWAeB that 

j XdP = j X'dP. 

To get a contradiction suppose P[X ^ X'] > 0. So either P[X > AT'] > 0 or 
P[X < X'] > 0. I f P [ ^ > X'] > 0, then set A = > and ( ^ - A ^ ' ) U > 0, 
and P[(X - X')1A > 0] > P(A) > 0. So from (5.18 we have 

E((X-X'nA)>0; 

that is, 

a contradiction. So P(A) = 0. 
Conversely, if P[X = X'] = 1, then set = X'] and for any A G B 

f XdP = f XdP + f XdP 
JA JAHN JADN^ 

= 0 + / X'dP= f X'dP, 
JAnN*^ JA 

with the 0 resulting from Exercise 6. • 

Example 5.6.1 For this example we set Q = [0,1], and P = X = Lebesgue 
measure. Let X(s) = liQ(s) where Q are the rational real numbers. Note that 

m) = HUreq{r}) = J2^({r}) = 0 
reQ 
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so that 

If >\ C fii X ^2 define 

TT, : Q\ X Q2 ^ Qf 

A(oi = {co2 : (coi,co2) e A] CQ2 

— {coi : ico\,co2) €^ A] C Qi. 

Au), is called the section of Aaico,. 
Here are some basic properties of set sections. 

so that 

= 0]) = 1 = X( [0 ,1 ] \Q) . 

Therefore from the Integral Comparison Lemma 10.1 E(X) = E(0) = 0 since 
X[X = 0] = 1. Note also that X is not Riemann-integrable, since for every 

^ n n n '-^ n n 
^ n n n ^ n 

and thus the upper and lower Riemann approximating sums do not converge to 
each other. We conclude that the Riemann integral does not exist but the Lebesgue 
integral does and is equal to 0. 

For a function to be Riemann-integrable, it is necessary and sufficient that the 
function be bounded and continuous almost everywhere. However, 

{co € [ 0 , 1 ] : iQ(-) is discontinuous at co] = [co G [0,1]} = [0,1] 

and thus 

k{co : 1q (0 is continuous at co] = 0. ^ 

5.7 Product Spaces, Independence, Fubini Theorem 

This section shows how to build independence into a model and is also important 
for understanding concepts such as Markov dependence. 

Let fii, ^2 be two sets. Define the product space 
fii X ^2 = { ( ^ 1 , ^2) : o), € fi,-, / = I, 2} 

and define the coordinate or projection maps by (1 = 1, 2) 

n,icoi,co2) = CO, 
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a a a 

Now suppose we have a function X with domain ^\ x ^2 and range equal to 
some set 5. It does no harm to think of 5 as a metric space. Define the section of 
the function X as 

so 
XQ)y ^2 ' ^ S. 

We think of (JO\ as fixed and the section is a function of varying ct>2. Call X^j^ the 
section of A' at o^i. 

Basic properties of sections of functions are the following: 

(i) {U)m = l/io,, 

(ii) If 5 = M* for some it > 1 and if for / = 1,2 we have 

Xi : fii X ^2 5, 

then 
(Xi -\-X2)(oi = (Xl)(oi + {X2)(oi' 

(iii) Suppose 5 is a metric space, A'n : ^ 1 x ^2 and lim„_>oo exists. 
Then 

lim (X„)a,i = lim (^„)c^,. 
n-voo n-*oo 

A rectangle in fii x ^2 is a subset of fii x ^2 of the form Ai x A2 where 
A, C fi/, for I = 1, 2. We call A1 and A2 the sides of the rectangle. The rectangle 
is empty if at least one of the sides is empty. 

Suppose (Qi, Bi) are two measurable spaces (/ = 1,2). A rectangle is called 
measurable if it is of the form Ai x A2 where A/ G Bi, for / = 1,2. 

An important fact: The class of measurable rectangles is a semi-algebra which 
we call RECT. To verify this, we need to check the postulates defining a semi­
algebra. (See definition 2.4.1, page 44.) 

(i) 0, € RECT 

(ii) RECT is a jr-class: If Ai x A2, A\ x A\ G RECT, then (Ai x A2) D {A\ x 
A2) = AiA'j X A2A2 G RECT. 

(i) UAcQix Q2, then (A^),^, = (A^,r. 

(ii) If, for an index set T, we have Aa C ^ 1 x for all or € T, then 
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(iii) RECT is closed under complementation. Suppose A x A2 € RECT. Then 

fii X n2\Ai X A2 = ( f i i \ > \ i ) X X (^2X^2) 

-\-A\ xA^. 

We now define a a-field on fii x ̂ 2 to be the smallest a-field containing RECT. 
We denote this or-field Bi x B2 and call it the product a-field. Thus 

Bi X B2 : = a ( R E C T ) . (5.19) 

Note if ^ 1 = ^2 = this defines 

BixB2 = o(Ai xA2:A,€ B(R), i = 1, 2). 

There are other ways of generating the product a-field on M^. If C^^ is the class of 
semi-open intervals (open on the left, closed on the right), an induction argument 
gives 

BixB2 = o r ( { / i xh-.Ij^ j = 1, 2}). 

Lemma 5.7.1 (Sectioning Sets) Sections of measurable sets are measurable. If 
A ^B\ XB2, then forallco\ € fii, 

Aa,^ € B2. 

Proof. We proceed by set induction. Define 

= {ACQ\XQ2' Aa,^ G B2]. 

If A G RECT and A = A i x A2 where A, G Bj, then 

Aioi = {co2 • (coi X C02) ^ Ai X A2} 
_ ^2 G B2, if Ct>i G A i 

~ I 0, if o î ^ Ai. 

Thus Aa,i G Can' implying that 
RECT cCo,, . 

Also C(oj is a X-system. In order to verify this, we check the X-system postu­
lates. 

(i) We have 
fii X ^2 e Ca,i 

since Qi x Q2 ̂  RECT. 

(ii) If A G Ca,i then A^ G C<̂ , since (A*^)^ , = (A^;,)*^ and A G C<̂ , implies 
Aa;, G ̂ 2̂ and hence (A^^,)*^ G JB2. This necessitates (A'^)^;, G Cf̂ ,. 
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,1=1 

Now we know that C<̂ , is a X-system. Further we know that 

C D RECT 

which implies by Dynkin's theorem 2.2.2 that 

Co,, D <7( RECT) = 8 1 x 8 2 . • 

There is a companion result to Lemma 5.7.1 about sections of measurable func­
tions. 

Corollary 5.7.1 Sections of measurable function are measurable. That is, if 

X:(QIX Q2, Bi X 82) (5, S) 

then 

Xa,, e 82. 

Proof. Since X isBi x 82/S measurable, we have for A € .S that 

{(o^i, C02) : X(co, co2)^A}=X-^ (A) e 81 x 82, 

and hence by the previous results 

( ^ - ^ A ) ) ^ , € 8 2 . 

However 

{X-\A))a,, ={co2 : ^(c^i ,a;2) e A} 

={(02 : Xa,,(co2) G A} = (X^,r\A), 

which says AT̂ , is 82/S measurable. • 

c) If A„ G C(oi, for n > 1 with {A„} disjoint, then ( i 4 „ ) < ^ , € B2 implies 

00 00 

,1=1 ,1=1 

and hence 
00 
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xA2)= f 

for all Ai xA2e RECT. 

The measure P given in (5.20) is specified on the semialgebra RECT and we 
need to verify that the conditions of the Combo Extension Theorem 2.4.3 on 
page 48 are applicable so that P can be extended to o{RECT) = B\ x B2. 

We verify that P is a-additive on RECT and apply the Combo Extension The­
orem 2.4.3. Let 

{A["^ xA["\n> 1} 

be disjoint elements of RECT whose union is in RECT. We show 
00 00 

,1 = 1 ,1=1 

Note if 5]„ A^^^ xA^^^ = Aix A2, then 

l / \ , ( ^ l ) l / \ 2 ( ^ 2 ) = l / \ , x / * 2 ( ^ l ' ^ 2 ) = X]^/\""x/\"'^^^l'^2) 
,1 

= X] l^('')(^l)l^w(ft;2)-

5.8 Probability Measures on Product Spaces 

We now consider how to construct probability measures on the product space 
(fii X B\ xB2)-In particular, we will see how to constuct independent random 
variables. 

IVansition Functions. Call a function 

K(couA2) : fii X /32 ̂ -> [0,1] 

a transition function if 

(i) for each o^i, K{coi, •) is a probability measure on 82, and 

(ii) for each A2 € B2, K(; A2) is Bi/B([0,1]) measurable. 

Transition functions are used to define discrete time Markov processes where 
K(coi, A2) represents the conditional probability that, starting from coi, the next 
movement of the system results in a state in A2. Here our interest in transi­
tion functions comes from the connection with measures on product spaces and 
Fubini's theorem. 

Theorem 5.8.1 Let Pi be a probability measure on B\, and suppose 

K :QixB2y-^ [0,1]) 

is a transition function. Then K and Pi, uniquely determine a probability on 
Bi X B2 via the formula 

P(AixA2)= I K(ajuA2)Pi(dcoi), (5.20) 
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= F [F lAAcoinA2(<02)K(coi,d(02)]Pi(dcoi) 

Jfi, Jfi2 V ^' ^2 

= I Y\F l.(«,(a^l)l^(«,(co2)A:(wi,Ja^2)]^l(^^l) 

= J2f l.inAco2)K(coudco2)]Pi{dcoi) 

= J2f KI''^(coi)K(couA["^)P,(dcoi) 

= E F ^„^K(couA["^)P,(dcoi) 

• 
Special case. Suppose for some probability measure P2 on B2 that K(coi,A2) = 

^2(^2) • Then the probability measure P , defined in the previous result on Bi XB2 
is 

P(Ai xA2) = Pi(Ai)P2(>i2). 

We denote this P by Pi x P2 and call P product measure. Define a-fields in 
Qi X ^2 by 

5f = {Ai X Q2Ai ^ Bi) 

B^ = { ^ 1 X A2 : A2 G B2]. 

With respect to the product measure P = Pi x P2, we have J | _ ^2 since 

P(Ai X ̂ 2 n fii X A2) = P(Ai X A2) = Pi(Ai)P2(A2) 

= P(Ai X ^ 2 ) ^ ( ^ 1 X M)-

Suppose Xi : (Qi,Bi) ( R , B(R)) is a random variable on fi, for / = 1,2. 
Define on ^ 1 x ^2 the new functions 

Xi(cOi,C02) = XiicOi), X2(COI,(02) = X2((02). 

Now making use of the series form of the monotone convergence theorem we 
have the following string of equalities: 
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With respect to P = Pi x P2, the variables and AT* are independent since 

P [ ^ f <x,X^2<y] = Pi^ P2([(couco2) : ̂ 1(0^1) < X , X2((02) < y}) 

= Pi X P2({a;i : Xiicoi) <x]x {co2 : ̂ 2(^2) < y}) 

= Pi({^i(a^i) < x})P2({a^2 : ̂ 2(c^2) < >'}) 

= P({(a;i,co2): 5̂̂ (̂ 1,0̂ 2) <x}) 

P({(coi,co2) : X^(cou(02) < y}) 

= P[Ar* < Ac]P[;^* < y]. 

The point of these remarks is that independence is automatically built into the 
model by construction when using product measure. Quantities depending on dis­
joint components can be asserted to be independent without proof. We can extend 
these constructions from two factors tod >2 factors and define product measure 
Pi X • • • X P j . Having independence built into the model is a big economy since 
otherwise a large number of conditions (of order 2^) would have to be checked. 
See Definition 4.1.2 on page 91 and the following discussion. 

5.9 Fubini's theorem 

Fubini's theorem is a basic result which allows interchange of the order of inte­
gration in multiple integrals. We first present a somewhat more general and ba­
sic result that uses transition kernels. We continue to work on the product space 
(Qi X ^2 , Bi X B2). 

Theorem 5.9.1 Let Pi be a probability measure on (Qi, Bi) and suppose K : 
Qi X B2 i-^ [Oy I] is a transition kernel. Define P on (Qy x ^2 . ^1 x B2) by 

PiAixA2)= F K(aJi,A2)Piidcoi). (5.21) 

Assume 

X:(nix ^2 , Bi X B2) H-> ( M , B(U)) 

andfiirthermoresupposeX >0(X isintegrable). Then 

Y(coi)= F K((Oi,dco2)Xa,,M 

has the properties 

(a) Y is well defined. 

(b) Y € Bi. 

(c)Y>0 (y GL, (P i ) ) , 



150 5. Integration and Expectation 

and furthermore 

F XdP=F YMPi(dcoi)= F IF K(C0udC02)Xa,,((V2)]Pl(dc0l). 

(5.22) 

Proof. For fixed a>\, we have Xa}^{a)2) is -measurable so Y is well defined. It 
is not hard to show that Y is B\ measurable and we skip this and we proceed to 
show (5.22) under the assumption X >0. Define 

-L LHS := / XdP 
' ^ 1 X ^ 2 

and 

R H S : = / Y{(Dx)Px{da)i). 
Jill 

We begin by supposing 

X = IAIXAJ 

where 

Then 

A i x A 2 e RECT. 

L H S = / dP = P{AixA2) 
IXA2 

and 

R H S = / ' [f Kicoudcv2nA,(coinA2M]Py(dcoi) 

-L K{coi.A2)P\{dwi) = P{Ai X A2). 

So (5.22) holds for indicators of measurable rectangles. Let 

C = [ A e B x x B 2 : (5.22) holds for = 1^), 

and we know RECT C C. 
We claim that C is a X-system. We check the postulates. 

(i) fii X ^2 € C since ^ 1 x ^ 2 ^ RECT. 
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(ii) U A e C then for X = 1^^, we have LHS = P(A*^) = 1 - P{A) so that 

LHS = I - j j K(coi,da>2)lA^^{a>2)Pi{dcoi) 

= j j K{coud(02){l-lA^^{co2))Pi(dcoi) 

= j j K(coud(02)UA^^)c(co2)Pi(da}2) 

= f f K(^ud(02)UA<^)o,^(o)2)Pi(dco2) 

= RHS. 

So A^ € C. 

(iii) If A„ e C, and {A„,n>l} are disjoint events, then 

= T.f f ^ ( ^ i ' ^ ^ ) w , ( ^ 2 ) P i ( r f c ^ i ) 

because An e C; applying monotone convergence we get 

= 11 K(a>ud(02)Y^UA„)^^((02)Pi(dcoi) 

= j j K{a)udco2)l(u„A„)^^ MPddo)!) 

= RHS, 

so J2„ An e C. 

We have thus verified that C is a X-system. Furthermore, 

C D RECT, 

which implies 
C D ( T ( R E C T ) = iBi x B 2 . 

We may therefore conclude that for any A e B i x B 2 / i f X = 1A then (5.22) holds 
for this X. 

Now express (5.22) as LHS(^) =RHS(^ ) . Both LHS(^) and RHS(^) are 
linear in X so (5.22) holds for simple functions of the form 

k 
X = J2",IA.. AieBi x B 2 . 

1=1 
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Proof. Let K(coi,A2) = ^2(^2)- Then Pi and K determine P = Pi x P2 on 
Bi X B2 and 

f XdP = f [f K(coud(02)Xa,,{co2)]Pi{dcoi) 

P2{d(O2)Xa,^((O2)]Pl{d0j0. 

Also let 

K{co2,Ai) = Pi{A0 

be a transition function with 

^ : ^2 X ^1 [0,1]. 

For arbitrary X >0y there exists a sequence of simple X„, such that X„ f X. We 
have 

LHS (Xn) = RHS {X„), 

and by monotone convergence 

LHS (X„) t LHS (X). 

Also, we get for RHS, by applying monotone convergence twice, that 

lim t RHS(A'„)= lim t f f K(coudco2)(X„)a,A(O2)]Pi{dco0 

= f [ l im t /* K(co2,dco2KX„)^,(co2)]Pi(dcoi) 

= f [f \im(X„)a,^(co2)K(coi,dco2)]Pi(dcoi) 

= f [f K(coudco2)Xa,,{(02)]Pi(dcoi) 

= RHS (X). ^ 

We can now give the result, called Fi/fem/'5 theorem, which justifies interchange 
of the order of integration. 

Theorem 5.9.2 (Fubini Theorem) Let P = Py x P2be product measure. IfX is 
By X B2 measurable and is either non-negative or integrable with respect to P, 
then 

f XdP=f [f X^,(oj2)P2(doj2)]Pi(dcoi) 

Xa^{(Ol)Pl{dc0i)]P2{dcO2). 
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Then K and P2 also determine P = Pi x P2 and 

/ XdP=f [f Kiay2,d<oi)Xa^icoi)]P2(da>2) 

= f [f Pi(dcoi)X^(coi)]P2(dco2). 

We now give some simple examples of the use of Fubini's theorem. 

• 

Example 5.9.1 (Occupation times) Let {X{t,co),t e [0,1]} be a continuous 
time stochastic process indexed by [0,1] on the probability space (Q,B,P) sat­
isfying 

(a) The process X(') has state space R . 

(b) The process X is two-dimensional measurable; that is, 

X : ([0.1] X fi, B{[0,1]) xB)i^ B{R) 

so that for A e B(R) 

X-^(A) = {(tyco) : X(t,co) G A} 6 B([0,1]) x B. 

Fix a set A e B(R). We ask for the occupation time of A' in A during times r 6 A, 
for A 6 B{[0,1]). Since A 6 i B ( R ) , 

1A : ( R , B(R)) ^ ({0.1}, {0, {0. 1}, {0}, {1}}) 

is measurable and therefore 

IA(X{S, CO)) : ([0,1] X Q, B{[0,1]) x B) ({0,1}, iB({0,1})). 

Define the random measure 

X(A,co) := j^lA(X{s,co))ds 

and call it the occupation time in A during times r 6 A. 
We have 

dP, £ x ( A , a ; ) = f f lA(X(s,co))ds 
Jn UA 

which by Fubini's theorem is the same as 

= j P[X{s) e A]ds. 

Thus expected occupation times can be computed by integrating the probability 
the process is in the set. • 

ds 
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£ ^ 1 ^ 2 = Eg(X) = f g(x)P o X-^ (^x) 
hi 

gd{Fi X F2) 

" L ""^^f ^I^I(^^I>^^2(^A:2) (Fubini) 

= £ ( ^ 1 ) j X2F2(dx2) = E{Xi)E(X2). 

= 4 

Example 5.9 J (Convolution) Suppose A'l, A'2 are two independent random vari­
ables with distributions F i , F2. The distribution function of the random variable 
ATi + A'2 is given by the convolution Fy * F2 of the distribution functions. For 
X eR 

P[Xi-hX2<x]=:Fi*F2(x)= f Fi(x - u)F2{du) = f F2(x - u)Fi{du). 
JR 

To see this, proceed as in the previous example. Let X = (A'l, A'2) which has 
distribution Fi x F2 and set 

From Corollary 5.5.1 

P [ ^ i +X2<x] = £ g ( X ) = f gd{Fi X F2). 

JR2 

Example 5.9.2 Let Xi > 0, / = 1,2 be two independent random variables. Then 

E{XyX2) = E{Xi)E{X2). 

To prove this using Fubini's theorem 5.9.2, let X = (A'l, A'2), and let g{x\, X2) = 
A:IA:2. Note P o X~^ = Fi x F2 where F, is the distribution of Xj. This follows 
since 

P o X - \ A i x A 2 ) = P [ ( ^ i , ^ 2 ) e Ai X A2] 

= P[XyeAuX2eA2] 
= P[A'i 6 A i ] P [ ^ 2 € A 2 ] 

= Fi{Ay)F2{A2) 
= Fix F2{Ai X A2). 

So P o X-^ and Fi x F2 agree on RECT and hence on B(RECT) = Bi x B2. 
From Corollary 5.5.1 we have 
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= / / h(u,v)GR^:u+v<x](^l^^2)F\(dxi) F2(dX2) 
jR UR 

=L[L 
JR UR 

-L 

l{v€:R.v<x-X2)^X\)Fi{dXx) F2(dX2) 

Fl(X -X2)F2{dX2). 
R • 

5.10 Exercises 

1. Consider the triangle with vertices ( - 1 , 0 ) , (1,0), (0,1) and suppose (A'i,A'2) 
is a random vector uniformly distributed on this triangle. Compute 
£ ( ^ 1 + ^ 2 ) . 

2. Argue without a computation that if A' 6 I 2 and c 6 R , then Var(c) = 0 
andVar(^ + c) = V a r W . 

3. Refer to Renyi's theorem 4.3.1 in Chapter 4. Let 

L1 := inf{; > 1 : A'y is a record.} 

Check = 00. 

4. Let (X, Y) be uniformly distributed on the discrete points (—1,0), (1,0), 
(0,1). (0, - 1 ) . Verify X, Y are not independent but E(XY) = E(X)E(Y). 

5. (a) If F is a continuous distribution function, prove that 

F F(x)F(dx) = i. 
JR 2 

Thus show that if Xi, X2 are iid with common distribution F , then 

P[Xi <X2]=\ 

and E{F{Xi)) = 1/2. (One solution method relies on Fubini's theo­
rem.) 

(b) If F is not continuous 

E{F{X0) = \-h^J2P[Xi=al 
a 

where the sum is over the atoms of F . 

Iterating the multiple integral a la Fubini, we have 
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XdP 0. 
'II^I>"1 

XdP 0. 

'An 

f[\X\>n] 

(b) Show that if P(A„) -> 0, then 

L 
Hint: Decompose 

/ \X\dP= f \X\dP-^ f \X\dP 
JA„ JA„[\X\<M] JA„[\X\>M] 

for large A/. 
(c) Show 

j \X\dP = 0 iff P{A n [\X\ > 0]) = 0. 

(d) If A: 6 L 2 , show V a r W = 0 implies P[X = E(X)] = 1 so that X is 
equal to a constant with probability 1. 

(e) Suppose that (fi, B, P) is a probability space and A, e B, i = 1 ,2 . 
Define the distance d : B x B Rby 

d{AuA2) = P{AiAA2y 

Check the following continuity result: lfA„, A e B and 

diA„,A)^0 

then 
/ XdP^ f XdP 

JA„ JA 

so that the map 

A h ^ J XdP 

is contmuous. 

(c) If X, Y are random variables with distribution functions F{x),G(x) 
which have no common discontinuities, then 

E(F(Y))-hE(G(X)) = l. 

Interpret the sum of expectations on the left as a probability. 
(d) Even if F and G have common jumps, if A' || Y then 

EiFiY)) + EiGiX)) = l-\-P[X = Y]. 

6. Suppose X e Li and A and A„ are events, 

(a) Show 

file:///X/dP
file:///X/dP
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L 1R 

where ^^dx" can be interpreted as Lebesgue measure. 

10. For ;!r > 0, let 

Show 
E{Xl) i E(X). 

11. If X,Y are independent random variables and E(X) exists, then for all 
B e B{R), we have 

XdP = E(X)P[Y e B ] . 
[Y€B] 

7. Suppose X„, n > 1 and X are uniformly bounded random variables; i.e. 
there exists a constant K such that 

If A'rt A' as n oo, show by means of dominated convergence that 

E\X„-X\ 0. 

8. Suppose X,X„,n > 1 are random variables on the space (fi, B, P) and 
assume 

sup \X„(co)\ < oo; 

n>l 

that is, the sequence {X„ ] is uniformly bounded. 

(a) Show if in addition 

sup \X(co) — X„(co)\ 0, n oc, 

t h e n £ ( ^ „ ) E(X). 

(b) Use Egorov's theorem (Exercise 25, page 90 of Chapter 3) to prove: 
If {X„} is uniformly bounded and X„ X, then E{X„) E(X). 
(Obviously, this follows from dominated convergence as in Exercise 7 
above; the point is to use Egorov's theorem and not dominated con­
vergence.) 

9. Use Fubini's theorem to show for a distribution function F(x) 

(F{x-¥a)-F(x))dx = a, 
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12. Suppose X is an uncountable set and let B be the or-field of countable and 
co-countable (complements are countable) sets. Show that the diagonal 

DIAG := {{x,x) :xeX]^BxB 

is not in the product a-field. However, every section of DIAG is measur­
able. (Although sections of measurable sets are measurable, the converse is 
thus not true.) 

Hints: 

• Show that 

BxB = B({[x]xX,Xx [ x l X e X]), 

so that the product or-field is generated by horizontal and vertical 
lines. 

• Review Exercise 12 in Chapter 2. 

• Proceed by contradiction. Suppose DIAG e B x B. Then there exists 
countable S C X such that 

DIAG € B({[x} xX,Xx {x},x e S]) = : G. 

• Define 

7>:={{s} ,5 6 5,5^} 

and observe this is a partition of X and that 

{Ai X A 2 : A / 6 7>; / = 1,2} 

is a partition of A' x A' and that 

G = BiAix A2: A, eVy / = 1,2). 

Show elements of G can be written as unions of sets Ay x A^. 
• Show it is impossible for DIAG e G-

13. Suppose the probability space is the Lebesgue interval 

(fi = [0,1], e([0 ,l]),X) 

and define 

Show Xn ^ 0 and E(X„) 0 even though the condition of domination 
in the Dominated Convergence Theorem fails. 
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14. Suppose X \\ Y and /i : »-> [0, oo) is measurable. Define 

g(x) = E(h{x,Y)) 

and show 

E(g{X)) = E(h{X, Y)). 

15. Suppose A' is a non-negative random variable satisfying 
P[0 < ;!r < 00] = 1. 

Show 

16. (a) Suppose —oo < a < b < oo. Show that the indicator function l{a,b](x) 
can be approximated by bounded and continuous functions; that is, show 
that there exist a sequence of continuous functions 0 < < 1 such that 
fn l(fl,6] pointwise. 
Hint: Approximate the rectangle of height 1 and base (a, b] by a trapezoid 
of height 1 with base {a,b + n~^] whose top line extends from a -I- to 
b. 
(b) Show that two random variables Xi and X2 are independent iff for every 
pair / i , / 2 of positive bounded continuous functions, we have 

EiMXOfiiXi)) = EMXi)Ef2{X2). 

(c) Suppose for each n, that the pair ^„ and r]„ are independent random 
variables and that pointwise 

Show that the pair ^©o and r/oo are independent so that independence is 
preserved by taking limits. 

17. Integration by parts. Suppose F and G are two distribution functions with 
no common points of discontinuity in an interval (a,b]. Show 

f G{x)F{dx) 
J{a,b\ 

= F{b)G{b) - F{a)G{a) - f F{x)G{dx). 
J(a,b\ 

The formula can fail if F and G have common discontinuities. If F and G 
are absolutely continuous with densities / and g, try to prove the formula 
by differentiating with respect to the upper limit of integration. (Why can 
you differentiate?) 
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Define 
1, i f A : = _ y , 

0, o therw ise . 

(a) Compute 

and 

/ [/ f(x,y)f^2(dy)]f^i(dx) 

hi f(x,y)f^i(dx)]fi2(dy). 

(b) Are the two integrals equal? Are the measures or-finite? 

20. For a random variable X with distribution F, define the moment generating 
function ^(X) by 

(a) Prove that 

Let 

0(X) e^F(dx). 

and set 

A = {XeR: (p(X) < 00] 

Xoo = sup A. 

(b) Prove for X in the interior of A that ^(X) > 0 and that 0(X) is continuous 
on A. (This requires use of the dominated convergence theorem.) 

(c) Give an example where (i) Xoo e A and (ii) Xoo A. (Something like 
gamma distributions should suffice to yield the needed examples.) 

Define the measure Fx by 

FK(I) 0(X) 
F(dx), X G A. 

18. Suppose (Q, B, P) = ((0,1], B((0,1]), X) where A is Lebesgue measure 
on (0,1]. Let X x X be product measure on (0,1] x (0,1]. Suppose that 
A C (0,1] X (0,1] is a rectangle whose sides are NOT parallel to the axes. 
Show that 

X X k(A) = area of A. 

19. Define (^/ , Bj, fi,), for / = 1, 2 as follows: Let /^i be Lebesgue measure 
and fM2 counting measure so that p.2(A) is the number of elements of A. Let 

fii = (0 ,1 ) , Bi= Borel subsets of (0,1), 

^ 2 = (0 ,1 ) , B2 = All subsets of (0,1). 
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= / 

(b) Check also that for any a > 0, 

E{X) = I P[X > t]dt. 
00) 

E(X") = a F x"-^P[X > x]dx. 
J[0,oo) 

(c) If A' > 0 is a random variable such that for some S > 0 and 0 < < 1 

P[X > nS] < (const)fi", 

then E(X'=') < oo. 

(d) If A' > 0 is a random variable such that for some 5 > 0, E(X^) < oo. 
then 

lim x^P[X >x] = 0. 
x-*oo 

(e) Suppose A' > 0 has a heavy-tailed distribution given by 

P[X>x] = ^ , x>ll. xlogx 

Show E(X) = oo but yet xP[X > A:] 0 as A: oo. 

(f) IfE(X^) < oo, then for any > 0 

lim xP[\X\ > rjVx] = 0. 

(d) If F has a density / , verify Fx has a density /x. What is /x? (Note that 
the family {/x, X G A} is an exponential family of densities.) 

(e) If F{I) = 0, show Fx(/) = 0 as well for / a finite interval and X G A. 

21. Suppose [pk, A: > 0} is a probability mass function on {0 ,1 , . . . } and define 
the generating function 

oo 
P{s) = ^Pks'', 0 < 5 < 1 . 

Prove using dominated convergence that 

J 0 0 

— P ( 5 ) = ^ P i t A : 5 * - ^ 0 < 5 < 1 , 

that is, prove differentiation and summation can be interchanged. 

22. (a) For a positive random variable, use Fubini to prove 
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1^21 

and that the expectation of Y does not exist, so this is one case where ran­
dom variables converge but means do not. 

25. In cases where expectations are not guaranteed to exist, the following is a 
proposal for defining a central value. Suppose F(x) is a strictly increasing 
and continuous distribution function. For example F could be the standard 
normal distribution function. Define 

g : M h ^ ( - 1 , 1 ) 

by 

Six) = 2{F(x) - i). 

For a random variable X, define 0 : E (—1,1) by 

<P(y) = E(g(X-y)). n 

The central value of X with respect to g, denoted y(X), is defined as the 
solution of 

(p(y) = 0. 

(a) Show <l>(y) is a continuous function of y. 

(b) Show 

lim <l>(y) = - 1 , 

lim <p(y) = 1. 

(c) Show <p(y) is non-increasing. 

(d) Show y(X), the solution of 

4>(y) = 0 

23. Verify that the product or-algebra is the smallest or-algebra making the co­
ordinate mappings TTI , 7r2 measurable. 

24. Suppose A'l, A'2 are iid random variables with common A^(0,1) distribu­
tion. Define 

- -^1 

Use Fubini's theorem to verify that 

E(Y„) = 0. 

Note that as n ->> oo, 



5.10 Exercises 163 

Hm —— 
t-*oo 1 - F(r) 

oo, if 0 < A: < 1, 
0, ifx > 1. 

Verify that if F is normal or gamma, then the distribution tail is rapidly 
varying. 

If A' > 0 is a random variable with distribution tail which is rapidly varying, 
then X possesses all positive moments: for any m > 0 we have EiX'") < 
oo. 

28. Let {Xn,n > 1} be a sequence of random variables. Show 

E(^JX„\^ <OO 

iff there exists a random variable 0 <Y e Li such that 

P[\Xn\<Y]=h V n > l . 

29. Suppose Xn is a sequence of random variables such that 

P[X„ = ±n^] = P[X„ =0] = 1-1. 

Show that using Borel-Cantelli that P[lim„_>oo A'„ = 0] = 1. Compute 
lim^£'(A'„). Is it 0? If not, why does the Lebesgue Dominated Convergence 

Theorem fail? 

is unique. 

Show y(X) has some of the properties of expectation, namely the follow­
ing. 

(e) For any c G E 
y(X + c) = y(X) + c. 

(f) Now suppose g in (*) is g : M (-n/2, n/l) defined by 

g(x) := arctanU), 

so that g{-x) = -g(x). Show 

y{-X) = -y(X). 

26. Suppose {X„, n > 1} is a sequence of (not necessarily independent) Bernoulli 
random variables with 

P[X„ = 1] = p„ = 1 - P[X„ = 0]. 

Show that 53^=1 Pn < ^ implies YlnLi E(X„) < oo and therefore that 
P[X„ -» 0] = 1. (Compare with Example 4.5.1 in Chapter 4.) 

27. Rapid variation. A distribution tail I - F(x) is called rapidly varying if 
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is minimized. 

32. (a) Suppose X has possible values ± 1 , ± 2 and that X assumed each of 
these 4 values with equal probability 1/4. Define Y = X^. Despite this 
functional relationship, show X and Y are uncorrelated; that is, show 

Cov(Ar, Y) = 0. 

30. Prat t ' s lemma. The following variant of dominated convergence and Fatou 
is useful: Let X„,Y„,X,Y be random variables on the probability space 
(Q,B, P) such that 

(0 0 < ^ „ < y „ , 
(//•) x„ -^x, y„ -> y, 

(iii) E(Y„) E(Y). 

Prove E(X„) E(X). Show the Dominated Convergence Theorem fol­
lows. 

3L If A' is a random variable, call m a median of X if 

i < P[X > ml P[X <fn>^. 

(a) Show the median always exists. 
(b) Is the median always unique? 
(c) If / is an interval such that P[X el]> 1/2, show m el. 
(d) When the variance exists, show 

\m-E(X)\ < v/2Var(^). 

(e) If/w is a median of A' G L i show 

E(\X-m\)<E(\X-a\), Wa e R. 

Thus the median minimizes L i prediction. 
(f) If ^ G I 2 , show that for fi = E(X) 

E (\X - < E (\X -a\^y Vfl G R. 

Thus the mean minimizes L 2 prediction. 
(g) Suppose A'l, A '2, . . . , Afn, A'„+i are L2 random variables. Find the 

best linear predictor X„+i based on A ' l , . . . , A'„ of A'„+i; that is, find 
the linear function Yl"=i ^i^i such that 
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(b) Suppose (7, V are independent. Define 

X = U-hV, Y + U-V. 

Show X, Y are uncorrelated. 

(c) Toss two dice. Let X be the sum of the faces and Y be the difference. 
Are X, Y independent? Are they uncorrelated? 

33. Suppose X, Y are two L2 random variables such that {X, Y) and {—X, Y) 
have the same joint distributions. Show that X and Y are uncorrelated. 

34. Suppose {X„,n>l} are iid with E(X„) = 0, Var(^„) = 1. Compute 

Cov(5„,5;„), n <m, 

where 5„ = Xi-¥'"+X„. 

35. Suppose X,Y e Li. 

(a) Show 

E(Y) -E(X) = j (P[X <x <Y]- P[Y <x <X]) dx. 

(b) The expected length of the random interval {X, Y\ is the integral with 
respect to x of P[x e {X, Y]], the probability the random interval 
covers x. 

36. Beppo Levi Theorem. Suppose for w > 1 that X„ e Li are random vari­
ables such that 

sup£'(A'„) < 00. 
,i>i 

Show that if X„ t X, then ^ e L1 and 

E(X„) -> E(X). 

37. Mean Approximation Lemma. Suppose that X e Li(Q, B, P). For any 
€ > Oy there exists an integrable simple random variable X( such that 

E(\X-X,\)<€. 

Hint: Consider A"*" and X~ separately. 

Furthermore, if .4 is a field such that o (A) = B, then X^ can be taken to 
be of the form 

1=1 

where A, G .4 for / = 1 , . . . , A:. Hint: Review Exercise 5 from Chapter 2. 
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P[N{A) = k] = ^ ^ ^ f ^ , i f M ( A ) < o o , 
0, if/i(A) = oo. 

(c) For Ai , A 2 , . . . , Ait disjoint regions, the counting random variables 
A'^(Ai),. . . , N(Ak) are independent. 

Define for a point process the Laplace functional L as follows: L maps 
non-negative measurable functions f : R^ [0, 00) into [0, 00) via the 
formula 

L ( / ) : = £ : ( e x p { - f f(x)N(dx)]) 

= f e x p l - / f(x)N(dx,aj)]P(d(o). 

Show for the Poisson process above that 

Hint: Start with / an indicator function and remember how to compute 
the generating function or Laplace transform of a Poisson random vari­
able. Then go from indicator variables to simple variables to general non-
negative / via monotone convergence. 

40. (a) Suppose is a N(p.,cr^) random variable satisfying £(exp{7/}) = 1. 
Show fj. = - o r 2/2. 

(b) Suppose (^, rj) are jointly normal. If and e'^ are uncorrelated, then so 
are ^ and rj. 

38. Use the Fatou Lemma to show the following: If 0 < A'„ ->> A" and sup„ E(X„) 
K < ooythen E(X) < K and X G Li. 

39. A Poisson process [N(A,co), A e B(R^) on with mean measure fx is 
defined to have the following properties: 

(a) /i is a measure such that if A is a bounded measurable set, M ( A ) < oo. 

(b) For any set A G B{R^), the random variable N{A) is Poisson dis­
tributed with parameter ix{A): 



6 
Convergence Concepts 

Much of classical probability theory and its applications to statistics concerns 
limit theorems; that is, the asymptotic behavior of a sequence of random vari­
ables. The sequence could consist of sample averages, cumulative sums, extremes, 
sample quantiles, sample correlations, and so on. Whereas probability theory dis­
cusses limit theorems, the theory of statistics is concerned with large sample prop­
erties of statistics, where a statistic is just a function of the sample. 

There are several different notions of convergence and these are discussed next 
in some detail. 

6.1 Almost Sure Convergence 

Suppose we are given a probability space (Q,B, P). We say that a statement 
about random elements holds almost surely (abbreviated a.s.) if there exists an 
event N e B with P(N) = 0 such that the statement holds if COG N^. Synonyms 
for almost surely include almost everywhere (abbreviated almost certainly 
(abbreviated a.c). Alternatively, we may say that the statement holds for a.a. 
(almost all) co. The set A'̂  appearing in the definition is sometimes called the ex­
ception set. 

Here are several examples of statements that hold a.s.: 

• Let X, X' be two random variables. Then X = X' a.s. means 

P[X = X'] = 1; 
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X„{s) = 

We claim that for this example 

^ „ 0 a.s. 

since if = {0}, then s e implies Xnis) - > 0 . It is not true for this example 
that X„{s) ^ 0 for all 5 6 [ 0 , 1 ] , since ^ „ ( 0 ) = w -» oo. • 

Here is another elementary example of almost sure convergence. This one is 
taken from extreme value theory. 

Proposition 6.1.1 Let [Xn] be iid random variables with common distribution 
function F{x). Assume that F(x) < 1, /or all x. Set 

n 
M„ = \/Xi. 

that is, there exists an event N e B, such that P(N) = 0 and if ct> e A'̂ *̂ , 
ihenX(co) = X'(co). 

• X < X' a.s. means there exists an event N e B, such that P(N) = 0 and if 
0) e then 

X(co) < X'(co). 

• If [Xn] is a sequence of random variables, then lim„ 
_>.oo Xft exists a.s. 

means there exists an event N e B, such that P(N) = 0 and if co e 
then 

lim Xn(co) 
«-»>00 

exists. It also means that for a.a. co, 
lim sup A'„ (ct>) = liminf A'„(ct>). 

We will write limn-^oo X„ = X a.s. or A'„ A" a.s. or Xn X. 

• If {X„} is a sequence of random variables, then ^ „ Xn converges a.s. means 
there exists an event N e B, such that P(N) = 0 , and co e N*^ implies 
Y,„ converges. 

Most probabilistic properties of random variables are invariant under the rela­
tion almost sure equality. For example, if = A" a.s. then X e L\ iff A '̂ e L\ 
and in this case E{X) = E{X'). 

Here is an example of a sequence of random variables that converges a.s. but 
does not converge everywhere. For this example, the exception set N is non­
empty. 

Example 6.1.1 We suppose the probability space is the Lebesgue unit interval: 
( [ 0 , 1 ] , JB([0, 1 ] ) , X) where X is Lebesgue measure. Define 

/2 , i f O < 5 < i , 
0 , i f ^ < 5 < l . 
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6.2 Convergence in Probability 

Suppose Xn,n > 1 and X are random variables. Then {X„} converges inproba-
p bility (i.p.) to X, written Xn -» X, if for any e > 0 

lim P{\Xn -X\>€] = 0. 
n-*oo 

Almost sure convergence of [Xn] demands that for a.a. Xnico) — X(co) gets 
small and stays small. Convergence i.p. is weaker and merely requires that the 
probability of the difference Xn(co) — X{CJO) being non-trivial becomes small. 

It is possible for a sequence to converge in probability but not almost surely. 

Then 

Mn '\ oo a.s. 
Proof. Recall 

P[M„ <x] = P[Xi <x X„<x] 
n 

= llP[Xi <x] = F"{x). 
1=1 

We must prove that there exists N e such that P(N) = 0 and, for co e N*^y we 
have that 

lim Mn (co) = oo; 
n-»-oo 

that is, for all / , there exists no(co, j) such that if« > nQ(cv, then Mnico) > j. 
Note 

E W < ; ] = E ^ " 0 ) < o o 
n n 

since F{j) < 1. So the Borel-Cantelli Lemma implies 

P([Mn < j] i.o.) = P(limsup[A/„ < ;]) = 0 
«-»-00 

and if 
Nj = limsup[A/„ < ;•] 

we have P(Nj) = 0. Note 

Ar̂  = liminf[M„ > ; ] , 

SO for CO e N^, we get A/„(w) > ; for all large n. 
Let AT = U ; so 

P(N)<Y,P(^Nj) = 0. 
J 

If cy e A^̂ , we have the property that for any y, M„(CJO) > j for all sufficiently 
large n. • 
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and so on. 
For any co e [0,1], Xn(co) 0 since Xn(co) = 1 for infinitely many values of 

p 
n. However X„ 0. • 

We next see that a.s. convergence implies convergence i.p. The previous Exam­
ple 6.2.1 showed the converse false in general. 

Theorem 6.2.1 (Convergence a.s. implies convergence i.p.) Suppose that 
{X„,n >1,X} are random variables on a probability space (Q, B, P). If 

X„ —>• X, a.s., 

then 
p 

Xft —• X. 

Proof. UXn X a.s. then for any 

0 = P([\X„ -X\>€] i.o.) 

= P(limsup[|^„ - ^ 1 > €]) 
n-voo 

= lim P ( | J [ | ^ „ - ^ | > ^ ] ) 

> lim P[\Xn - X \ > €]. 
n-*oo • 

Remark. The definition of convergence i.p. and convergence a.s. can be read­
ily extended to random elements of metric spaces. If {Xn,n > l,X] are ran­
dom elements of a metric space 5 with metric d, then X„ ^ X a.s. means that 
d(X„, X)-^0 a.s. and X„X means d(X„, X) 0. 

6.2.1 Statistical Terminology 
In statistical estimation theory, almost sure and in probability convergence have 
analogues as strong or weak consistency. 

Given a family of probability models {Q,B, Pg), 9 e Q). Suppose the statis­
tician gets to observe random variables Xi,... ,X„ defined on Q and based on 

Example 6.2.1 Here is an example of a sequence which converges i.p. to 0 but 
does not converge a.s. to 0. Let (fi, B, P) = ([0,1], /3([0,1]), X) where X is 
Lebesgue measure and define [Xn ] as follows: 

^ 1 = l [0 . i ] . 
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6.3 Connections Between a.s. and i.p. Convergence 

Here we discuss the basic relations between convergence in probability and almost 
sure convergence. These relations have certain ramifications such as extension of 
the dominated convergence principle to convergence in probability. 

Theorem 63,1 (Relations between i.p. and a.s. convergence) Suppose that 
[Xn, X,n > 1] are real-valued random variables. 

(a) Cauchy criterion: {X„ ] converges in probability iff{X„ ] is Cauchy in prob­
ability. Cauchy in proability means 

p 
X„ — Xm ^ 0, as n,m OO. 

or more precisely, given any e > 0,5 > 0, there exists no = no(€, S) such 
that for all r,s>no we have 

P[\Xr - Xs\ > €] < S. (6.1) 

these observations must decide which is the correct model; that is, which is the 
correct value of 9. Statistical estimation means: select the correct model. 

For example, suppose Q. = M ° ° , B = B(R°°). Let co = (xi,X2,...) and 
define X„(co) = x„. For each ^ G M , let PQ be product measure on which 
makes {Xn,n > 1} iid with common N(6,1) distribution. Based on observing 
Xi,... ,Xn, one estimates 9 with an appropriate function of the observations 

= ^ni^i, . . . , Xn)-

6„(X\,... ,X„) is called a statistic and is also an estimator. When one actually 
does the experiment and observes, 

Xi = x\,... , Xfi — Xfx, 

then 9{x\ Xn) is called the estimate. So the estimator is a random element 
while the estimate is a number or maybe a vector if 9 is multidimensional. 

In this example, the usual choice of estimator is 9n = XI"=i ^t/"-The estima­
tor 6„ is weakly consistent if for all 0 G 0 

Pe[\9n - 9\ > €] ^ 0, w ^ o o ; 

that is, 
9n 9. 

This indicates that no matter what the true parameter is or to put it another way, no 
matter what the true (but unknown) state of nature is, 9 does a good job estimating 
the true parameter. 9„ is strongly consistent if for all ̂  G 0 , ^« 9, Pe-a.s. 
This is obviously stronger than weak consistency. 
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p 

(b) Xn ^ X iff each subsequence [Xn^ ] contains a further subsequence 
t^n* ( i ) ) ^^'^^ converges almost surely to X. 

P 

Proof, (i) We first show that '\iXn-^ X then {Xn \ is Cauchy i.p. For any € > 0, 

[1 ,̂ - ,̂1 > ^] C \\Xr - 1̂ > ^ ] U \\X, - X \ > (6.2) 

To see this, take complements of both sides and it is clear that if 

| ^ , - ^ | < i a n d | ^ . - ^ | < | , 

then by the triangle inequality 
\Xr-X,\<€. 

Thus, taking probabilities and using subadditivity, we get from (6.2) 

P\\Xr -Xs\>€\< P\\Xr - 1̂ > | ] + P\Xs - ^] > 

If 

P\\Xn - 1̂ > ̂ ] < ^ 
for n > /io(^, ^), then 

P\\Xr-Xs\>^\<^ 

for r, s > W Q . 

(ii) Next, we prove the following assertion: If \Xn \ is Cauchy i.p., then there ex­
ists a subsequence \Xn^} such that \Xn^} converges almost surely. Call the almost 
sure limit X. Then it is also true that also 

p 
Xfi > X. 

To prove the assertion, define a sequence by ni = 1 and 

nj = mi{N > : P[\Xr -Xs\> 2'^] < 2'^ for all r, s > A^}. 

(In the definition (6.1) of what it means for a sequence to be Cauchy i.p., we let 
€ = S = 2~J.) Note, by construction nj > so that /ly oc. Consequently, 
we have 

P[\X„^^, - ^ „ J > 2 - M < 2 - > , 

and thus 

f ; p [ i ^ „ ^ „ - ^ „ j > 2 - ' ' ] < o o . 
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The Borel-Cantelli Lemma implies 

P{N) := P{limsup[|^„^^, - > 2->]} = 0. 

For CO G A *̂', 

\X„^^,(co)-X„^(co)\<2-J (6.3) 

for all large ; and thus {X„^(co)} is a Cauchy sequence of real numbers. The 
Cauchy property follows since (6.3) implies for large / that 

E M - {co)\<J2 2"^" = 2 - 2 - ' , 
j>i j>l 

and therefore for any k > I large, we get 

\Xn,(C0) - X„,(C0)\ < J2 M " (co)\ < 2 • 2 " ' . 

J>1 

Completeness of the real line implies 

lim X„ (co) 
J-*CX> ' 

exists; that is 
CO € N*^ implies lim X„(co) exists. 

This means that [Xnj ] converges a.s. and we call the limit X. 
p 

To show X„ X note 

P[\X„ -X\>€]<P[\Xn-Xn^\>^-]-^ P[\X„^ - X \ > ^]. 

Given any r/, pick rtj and n so large that the Cauchy i.p. property guarantees 
P[\X„-X„^\>'-]<^. 

Since Xn^ ^ X implies Xnj X, 

/ > [ | j r „ , - ^ l > l ] < | 

for large tij. This finishes the proof of part (a). 
P 

We now focus on the proof of (b): Suppose Xn X. Pick any subsequence 
p 

[Xn^]. Then it is also true that Xn,, X. From (ii) above, there exists a further 
subsequence [Xn,,^,y ] converging a.s. 

Conversely: Suppose every subsequence has an a.s. convergence subsequence. 
p 

To show Xn X, we suppose this fails and get a contradiction. If [Xn] fails to 
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is continuous, then 

(ii) IfXn X and 

is continuous, then 

g{Xn)"-4: g{X). 

g(X„) ^ g{X). 

Thus, taking a continuous function of a sequence of random variables which con­
verges either almost surely or in probability, preserves the convergence. 

Proof, (i) There exists a null event N e B with P(N) = 0, such that if co e N^, 
then 

Xnico) X{co) 

in R, and hence by continuity, ifcoe N^, then 

g{X„{co))^ g{X(co)). 

This is almost sure convergence of {g{X„)]. 
(ii) Let {g(X„^)] be some subsequence of {g(Xn)]. It suffices to find an a.s. con­

vergence subsequence {g(X„i^^^^)]. But we know {X„^] has some a.s. convergent 

subsequence {Xnk(,^] such that A'̂ ^̂ ,, X almost surely. Thus g(Xn^^,^) g(X) 
which finishes the proof. • 

P 
Thus we see that if X„ X, it is also true that 

X^ X^, and arctanA'n arctanA' 

converge in probability, there exists a subsequence {X„^ ] and a 5 > 0 and 6 > 0 
such that 

Pl\X„,-X\>€]>S. 

But every subsequence, such as [Xn,^ ] is assumed to have a further subsequence 
i^n*(/)) which converges a.s. and hence i.p. But 

P[\X„,^,, -X\>€]>S 

contradicts convergence i.p. • 

This result relates convergence in probability to point wise convergence and 
thus allows easy connections to continuous maps. 

Corollary 6 J . l (i) IfX„ ^' X and 
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^ „ + y„ i ^ + y . 

To see this, just note 

{\{Xn + y „ ) - ( ^ + Y)\ >€]c [\Xn -x\>^-]\j[\Y„ - y | > ^ ] . 

Take probabilities, use subadditivity and let n oo. 

p p 
(2) A multiplicative counterpart to (1): If A'n ^ A' and y„ y , then 

p 
XnYn XY. 

To see this, observe that given a subsequence {/lit}, it suffices to find a fur­
ther subsequence {nk(,)] C [nk] such that 

-^nft(i)^n*(0 XY. 

p 
Since X„^ X, there exists a subsequence {n]̂ } C [n^] such that 

and so on. 
Now for the promised connection with Dominated Convergence: The statement 

of the Dominated Convergence Theorem holds without change when almost sure 
convergence is replaced by convergence i.p. 

Corollary 6.3.2 (Lebesgue Dominated Convergence) If Xn X and if there 
exists a dominating random variable ^ G L i such that 

\Xn\<H, 

then 

E(X„) E{xy 

Proof. It suffices to show every convergent subsequence of E{Xn) converges to 
E{X). 

Suppose E{Xni,) converges. Then since convergence in probability is assumed, 
[Xni,] contains an a.s. convergent subsequence {A'„ ,̂,j} such that A'„j,„ X. The 
Lebesgue Dominated Convergence Theorem implies 

E{X„,„;) ^ E{X). 

SoEiXn,,)-^ E{X). • 

We now list several easy results related to convergence in probability. 

(1) I f ^„ 4 - ̂ a n d y „ 4 - y then 
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Since y„ -> y , given the subsequence {/i^}, there exists a further subse­
quence {wJtd)) ^ i'^iJ ^"'^^ 

A-,,, "4-A-, y„, 4 y 

and hence, since the product of two convergent sequences is convergent, we 
have 

X„' y„' XY. 

Thus every subsequence of [X„Y„] has an a.s. convergent subsequence. 
(3) This item is a reminder that Chebychev's inequality implies the Weak Law 

of Large Numbers (WLLN): If [X„,n > 1} are iid with EX„ = p. and 
Var(^„) = o r 2 , then 

^Xi/n / i . 

1=1 

(4) Bernstein's version of the Weierstrass Approximation Theorem. Let / : 
[0,1] M be continuous and define the Bernstein polynomial of degree n 
by 

«̂(̂ ) = E V * ( ^ - ^ ) " " * ' 0 < ; c < l . 

Then 
Bnix) - fix) 

uniformly for x e [0,1]. The proof of pointwise convergence is easy using 
the WLLN: Let 81,82,... ,8„ be iid Bernoulli random variables with 

P[8i = l] = x==l-P[8,=0]. 

Define 5„ = Yll=i »̂ so that 5„ has a binomial distribution with success 
probability p = x and 

£(5„) = nx, Var(5„) =nx{l-x)< n. 

Since / is continuous on [0,1], / is bounded. Thus, since 

Sn P 
> X, 

n 
from the WLLN, we get 

/(^) - fix) n 
by continuity of / and by dominated convergence, we get 

Ef{-) -> fix), 
n 



6.3 Connections Between a.s. and i.p. Convergence 177 

< sup 
X 

f ( l / A - / U ) | l j , ^ _ , , ^ , j ) 

+ s u p £ ( | / ( ^ ) - / ( ^ ) | l j , ^ _ ^ , ^ ^ j ) 

<co(€)P[ ] + 2 | | / | | s u p P [ | ^ - j i : | > ^ ] 
X n 

Var(^) 
<co(€)-h 2\\f\\ sup (by Chebychev ) 

X f 

211/11 nxil^x) 
< C0i€) + - - ^ sup — 

211/11 1 ]_ 
^2 4 * /I 

where we have used 
sup x{\-x) = i 

0<jc<l 4 

So we conclude 

sup \Bn(,x) - f{x)\ = co{€) + (const) • 
0<x<\ n 

But 

n to " ^''^ 

We now show convergence is uniform. Since / is continuous on [0,1], / 
is uniformly continuous, so define the modulus of continuity as 

co{S)= sup | / ( ; c ) - / ( 3 ; ) | , 
lx-yl<S 

0<x,y<\ 

and uniform continuity means 

lim w{S) = 0. 

Define 
| | / | | = s u p { | / U ) | : 0 < ; c < l } . 

Now we write 

sup \B„(x) - f{x)\ = s u p | £ : ( / ( ^ ) ) - f{x)\ 
0<x<i X n 

< s u p £ : ( | / ( ^ ) - / ( ; c ) | ) 
X tl 
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and therefore 

limsup sup \Bn(x) - f{x)\<co{€). 
,i-*oo 0<J:<1 

Since ^ 0 as e ^ 0, the proof is complete. • 

6.4 Quantile Estimation 

A significant statistical application of convergence in probability is to quantile 
estimation. 

Let F be a distribution function. For 0 < p < 1, the pth order quantile of 
F is f^ip). If F is unknown, we may wish to estimate a quantile. Statistical 
tests, reliability standards, insurance premia, dam construction are all based on 
estimated quantiles. How can one estimate F*"(p) based on a random sample? 

One non-parametric method uses order statistics. Let A'l A'„ be a random 
sample from F ; that is, A'l Xn are iid with common distribution function F . 
The order statistics of the sample are 

X\"^ <X^2"^ <-'-<X^^\ 

so that X\"^ is the minimum of the sample and Xn"^ is the maximum. Define the 
empirical cumulative distribution function (cdf) by 

1 " 

" 1 

which is the percentage of the sample whose value is no greater than x. Note that 
if we think of success at the yth trial as the random variable Xj having a value 
< Xy then 

nF„(x) = # successes in n trials 

is a binomial random variable with success probability F{x). So 

E(nFn(x)) = / iF(x), VsiTinFnix)) = nF(x)(\ - F{x)) 

and the WLLN implies 

Fnix) ^ Fix) 

for each x. In fact, much more is true as we will see when we study the Glivenko-
Cantelli Lemma in the next chapter. 
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From (6.5), this in turn is equivalent to showing that for all ^ > 0: 

\np^ 1 - nX^^L ^ + ^] = 1 - P[nFn{F-{p) + O > \npM 
= P[nF„{F^{p) + O < \np^] 0 (6.9) 

and 

P[nF„{F*-{p) - O > \np-\] ^ 0. (6.10) 

Thus, F„ approximates or estimates F and we hope F„*~ estimates F*". But 
since F„ only jumps at the order statistics, we have 

F„^{p)=mny:F„(y)>p} 

= M{X^f^ : F„{X]"^) > p) 
• • 

= M{X\"^ :^->p] ( since F„{Xf^) = 

= inf{̂ 5"̂  : ; > np] 

where \np} is the first integer > np. We will try X^"Jp^ as the quantile estimator. 

Theorem 6.4.1 Suppose F is strictly increasing at F'*~ip) which means that for 
alU > 0 

F{F*-{p) + O > P , F{F--{p) -€)<p. (6.4) 

Then we have X^"^^^ is a weakly consistent quantile estimator, 

Proof. We begin with a reminder that 

X^;"^ <y\finFn{y)>ot. (6.5) 

We must prove for all ^ > 0, 

P[l-^r»pi - > ^ 0, (6.6) 

which is equivalent to showing that for all ^ > 0, 

P[Xf^,^^F-(p)+e]^0, (6.7) 

Plxf^py ^ P"(P) - «1 ^ 0. (6.8) 
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For (6.10) we have 

P I F „ ( F * - ( p ) - 0 > — ] 
n 

= P[FAF-ip) - € ) - F{F-{p) - O > - F{F*-{p) - €)l 

(6.11) 

where we centered the random variable on the left to have zero mean. Now 
^ /? and by the WLLN 

Fn{F*-{p) - € ) - F{F--{p) 

Also by (6.4), there exists 5 > 0 such that 

8\= p-F{F^{p)-€)>0. 

For all large 

- ! ^ - F ( F * - ( p ) - 0 > ^ > 0 . 

So the probability in (6.11) is bounded above by 

P[\Fn{F^{p) - € ) - F{F--{p) - €)\ > ^ ] ^ 0. 

Similarly, we can show the convergence in (6.9). • 

6.5 Lp Convergence 

In this section we examine a form of convergence and a notion of distance that is 
widely used in statistics and time series analysis. It is based on the Lp metric. 

Recall the notation X e Lp which means E{\X\P) < oc. For random variables 
A", y 6 I p , we define the Lp metric by 

d{X, Y) = {E\X -Y\P)^fP. 

This indeed defines a metric but proving this is not completely trivial. (The trian­
gle inequality is the Minkowski Inequality.) This metric is norm induced because 

ll^llp := {E\X\P)^fP 

is a norm on the space Lp, 
A sequence [Xn] of random variables converges in Lp to X, written 

Xn-^X, 
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since 

E(^-pf = lrE{S„-nfif 
n n^ 

= 4 r V a r ( 5 „ ) 
/22 

n^ 0. 
• 

Here are some basic facts about Lp convergence. 

(i) Lp convergence implies convergence in probability: For p > Q,\iXn^ X 

then Xn X. 

This follows readily from Chebychev's inequality, 

P[\Xn -X\>€]< ^ ' ^ " J ^ ' " " - > 0. (6.12) 

if 
E{\Xn-X\P)^0 

as n oo. 
The most important case is when /? = 2, in which case L2 is a Hilbert space 

with the inner product of X, Y defined by the correlation of X, Y. Here are two 
simple examples which use the L2 metric. 

1. Define [X„] to be a (2nd order, weakly, covariance) stationary process if 
EXn = : tn independent of n and 

C o r r ( ^ „ , ^ „ + i t ) = p(A:) 

for all n. No distributional structure is specified. The best linear predictor 
of Xn+\ based on A ' l , . . . , A'n is the linear combination of X \ , . . . ,X„ 
which achieves minimum mean square error (MSE). Call this predictor 
X„+i. Then X„+i is of the form X„^i = Yll^i^i oii,... ,a„ are 
chosen so that 

n 

E{X„+i-X„+if= min E(Ta,Xi-X„+if. 
a\ o„ ^ 

1=1 

2. Suppose {X„} is an iid sequence of random variables with E(Xn) = p . and 
Var(^„) = or2. Then 
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Xn - 2" 1(0,1)-

Then 

but 

P [ | ^ „ | > 6 ] = p ( ( 0 , i ) ) = i ^ 0 

E(\Xn\P) = 2"P-^oo. 
n 

(iii) Lp convergence does not imply almost sure convergence as shown by the 
following simple example. Consider the functions [Xn] defined on ([0,1], 
B([0,1]), A) where X is Lebesgue measure. 

Xi = X2 = 

X3 = ^ 4 = ^[J.§i 
X5 = X6 = ^[o.Jl 

and so on. Note that for any /? > 0, 

E(\Xi\P)=^y E(\X2\P) = ^, 

E{\X3\P)=\,...,E(\Xen = ^. 
3 4 

SoiE:( |^„ | ' ' ) ->Oand 

Xn^O. 

Observe that [Xn] does not converge almost surely to 0. • 
Deeper and more useful connections between modes of convergence depend on 

the notion of uniform integrability (ui) which is discussed next. 

6.5.1 Uniform Integrability 
Uniform integrability is a property of a family of random variables which says 
that the first absolute moments are uniformly bounded and the distribution tails 
of the random variables in the family converge to 0 at a uniform rate. We give the 
formal definition. 

(ii) Convergence in probability does not imply Lp convergence. What can go 
wrong is that the nih function in the sequence can be huge on a very small 
set. 

Here is a simple example. Let the probability space be ([0,1], iB([0,1]), A ) 
where A is Lebesgue measure and set 
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/ 
J{\x, l>fll 

as « ->> oo, uniformly in r G 7 . 
We next give some simple criteria for various families to be uniformly inte­

grable. 

(1) If r = {1} consists of one element, then 

J{\Xx\>a 
as a consequence of A'l G L i and Exercise 6 of Chapter 5. 

(2) Dominated families. If there exists a dominating random variable y G 1 1 , 
such that 

\Xt\ < Y 

for all r G r, then {X,} is ui. To see this we merely need to observe that 

s u p / \Xt\dP < ( | y | - > 0 , « - ^ o o . 
teTJ{\X,\>a\ J[\y\>o\ 

(3) Finite families. Suppose A', G 1 1 , for / = 1 , . . . , Then the finite family 
(A'l, A'2, •. • ,Xn] is ui. This follows quickly from the finite family being 
dominated by an integrable random variable, 

\Xi\<Y,\Xj\GL, 
1 = ] 

and then applying (2). 

(4) More domination. Suppose for each t e T that X, eL\ and G Li and 

\x,\ < ini. 
Then if {Yt} is ui so is [Xi] ui. 

This is an easy consequence of the definition. 

Definition. A family [Xt,t € 7} of I i random variables indexed by T is uni­
formly integrable (abbreviated ui) if 

supiE: (l^rUiA-^^fll) = sup ( \Xt\dP 0 
t€T t€T J{\X,\>a] 

as « ^ oo; that is, 

file:///Xt/dP
file:///Xt/dP
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as ^ oc. • 

We now characterize uniform integrability in terms of uniform absolute conti­
nuity and uniform boundedness of the first absolute moments. 

Theorem 6.5 .1 Let [Xt,t e T]beL\ random variables. This family is ui iff 

(A) Uniform absolute continuity: For all € > 0, there exists ^ = |(€), such that 

"iAeB: sup / \Xt\dP < € ifP(A) < ^ 

and 

(B) Uniform bounded first absolute moments: 

supE(\Xt\) < oc. 

Proof. Suppose [Xt] is ui. For any X eL \ and fl > 0 

( \X\dP = f \X\dP-\- f \X\dP 
JA JA[\X\<a] JA[\X\>a] 

< flP(i4)+ / \X\dP. 
J[\X\>a] 

(5) Crystal Ball Condition. For p > 0, the family {\X„\P] is ui, if 

sup£( | ^„ | ' ' +* ) < oc, (6.13) 

n 
for some S > 0. 
For example, suppose [X,,} is a sequence of random variables satisfying 
E{X„) = 0, and Var(^„) = 1 for all n. Then {X„} is ui. 

To verify sufficiency of the crystal ball condition, write 

sup f \X„\PdP = sup / \X„\P . IdP 

n J[\X„\P>a] n J[\-^\>\\ 

= sup / \X,AP-\dP 

^su^f^X^jidP 

<a-'/PsupE(\X„\P^') 

n 
^ 0 , 

file:///Xt/dP
file:///X/dP
file:///X/dP-/-
file:///X/dP
file:///X/dP
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teTJ[\X,\>a] 

If 

sup / \Xt\dP < ^. 
[̂1 ,̂1 

a 
then 

5im f \XAf1P < 
2 2 

sup f \X,\dP <^--}-^- = € 
teT JA 

which is (A). 
Conversely: Suppose (A) and (B) hold. Chebychev's inequality implies 

supP[|A', | > a]< supE(\Xt\)/a = const/« 
teT teT 

from (B). Now we apply (A): Given e > 0, there exists ^ such that whenever 
P(A) < ^, we have 

j^\XAdP<€ 
for all t e T. Pick "a" large enough so that P[\Xt\ > a] < ^, for all t. Then for 
all t we get 

which is the ui property. • 

\X,\dP <€, 
A>a] 

Example 6.5.1 Let {X„} be a sequence of random variables with 

P[X„=0] = p,P[X„=n] = q, p-\-q = l. 

Find a value of p = p„ so that 

l = E{X„) = 0-p + nq 

and thus 

n n 
Since Xn > 0, 

sup£:( |^„ |) = l 
W>1 

So 

sup i \Xt\dP < aP(A) + sup f \X,\dP. 
teT JA teT J\X,\>a 

Insert A = Q. and we get (B). To get (A) pick "a" so large that 

€ 

2 

file:///Xt/dP
file:///XAf1P
file:///Xt/dP
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but the family in not ui since 

\X„\dP = 
«1 

1, if a < n, 

0, if > n. 

Tliis entails 
sup / \X„\dP = l. 

a] • 

6.5.2 Interlude: A Review of Inequalities 
We pause in our discussion of Lp convergence and uniform integrability to discuss 
some standard moment inequalities. We take these up in turn. 

1. Schwartz Inequality: Suppose we have two random variables X,Y e L2. 
Then 

\E{XY)\ < E{\XY\) < y/EiX2)E{Y^). 

To prove this, note for any t eR that 

0 < E{X-tYf = E{X^)-2tE{XY)-\-t^E{Y^) (6.14) 

and that q{) is differentiable 

q'it) = -2E{X)E{Y) + 2tE{Y\ 

Set q'{t) = 0 and solve to get 

t = E(XY)/EY^. 

Substitute this value of r into (6.14) which yields 

Multiply through by E(Y^). • 

A minor modification of this procedure shows when equality holds. This is 
discussed in Problem 9 of Section 6.7 

2. Holder's inequality: Suppose p, q satisfy 

1 1 
p > l , ^ > 1 , - + - = 1 

P Q 

and that 
£(1̂ 1'') < oc, £ ( | y | ^ ) < oc. 
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Then 

\E{XY)\ < E{\XY\) < ( iE: |^ | ' ' )^/ ' ' (£ |y |^) ' /^. 

In terms of norms this says 

iî ĵ iii < ii^iipni^. 
Note Schwartz's inequality is the special case p = q = 2. 

The proof of Holder's inequality is a convexity argument. First note that 
if E{\X\P) = 0, then X = Oa.s.. Thus, E{\XY\) = 0 and the asserted 
inequality holds. Similarly if iE^(|y|^) = 0. So suppose the right side of 
Holder's inequality is strictly positive. (This will allow us at the end of the 
proof to divide by 

Observe for a > 0, > 0 there exist 5 , r 6 R such that 

a = exp{/7 ^5} , b = exp{^ V}. - 1 , (6.15) 

Since EXPJA:} is convex on R and + = 1, we have by convexity 

exp{/7~^5 + q~^t] < p~^ exp{5} + q~^ expjr}, 

or from the definition of 5 , r 

ab<p-^aP-\-q-^b'^. 

Now replace a by | ^ | / | | ^ | | p and b by ||^ to get 

\XY\ 
WXWpWYW^ - - ( S ) ' - - ( i ^ ) 

and so, after taking expectations, we get 

^(i^y^i) 
ii^iipiiyii^ 

<p'^-\-q'^ = 1. 

• 
3. Minkowski Inequality: For 1 < p < oo, assume X,Y e Lp. Then X-{-Y e 

l l^ + y | | p < ll^llp + IIJ^IIp. 
Lp and 

To see why I p is closed under addition, note 

\X + Y\P < 2(\X\P V \Y\P) < 2(\X\P + |y | ' ' ) 6 Lp. 

If p = 1, Minkowski's inequality is obvious from the ordinary triangle 
inequality. So assume 1 < p < oo and choose q conjugate to p so that 



188 6. Convergence Concepts 

p ^ - \ - q ^ = 1 and thus p - \ = p / q . Now we apply Holder's inequality. 
We have 

11̂  + Yfp =E{\X + Y\P) = E[\X^ Y\\X + Y\P''^) 

<E {\X\\X + Y\P''^) + E {\Y\\X + Y\Pf'^) 

and applying Holder's inequality, we get the bound 

<(ll^llplll^ + Y\P"i\\q + \\Y\\p\\\X + Y\P"i\\q 

=(\\X\\p + \\Y\\p)\\\X ^Y\P'^\q 

=(ll^llp + ll>'llp) {E\X + Y\Pf~' 

=(ll^llp + ll> l̂lp)ll̂  + >̂ ll?̂ ^ 
=(ll^llp + ll> l̂lp)ll̂  + >'lir'-

Assuming the last factor is non-zero, we may divide through to get the 
result. If the last factor equals zero, both sides of the inequality are zero. • 

4. Jensen's inequality: Suppose u : 
E{\u{X)\) < oo. Then 

i-> R is convex and E{\X\) < oo and 

E(u(X)) > u{E(X)). 

This is more general than the variance inequality Var(X) > 0 implying 
E{X^) > (EX)^ which is the special case of Jensen's inequality for u{x) = 

If u is concave, the inequality reverses. 
For the proof of Jensen's inequality, note that u convex means for each 
^ G R , there exists a supporting line L through w(^)) such that graph of 
u is above the line. So 

u{x)> line L thru ( ^ , M ( ^ ) ) 

and therefore, parameterizing the line, we have 

u{x) > u{^)-\-X{x - ^) 

where X is the slope of L . Let ^ = E{X). Then for all x 

u{x) > u{E{X)) + X{x - E{X)). 

(Note X depends on ̂  = E(X) but does not depend onx.) Now \eix = X 
and we get 

u{X) > u{E{X)) + X{X - E{X)). 

Taking expectations 

Eu{X) > u{E{X)) + kE{X - EX) = u{E{X)). • 



6.6 More on L p Convergence 189 

Example 6.5.2 (An application of Holder's Inequality) Let 0 < or < 3̂ and set 

r = - > 1, 5 = . 

a P - a 
Then 

1 1 a ^-a P , 
7 n = r — = ^ = -̂

Set 
z = i^r, Y = i. 

With these definitions, we have by Holder's inequality that 

£ ( | Z y | ) < {E\Zn^f'{E\Y\')^"\ 

that is. 

so that 

and 

EW) < (£|;!rr)^/''l = (£1̂ 1̂ )"'/̂ , 

{EW)^'" < {E\Xf)^^^, 

\\x\\a < \\xy. 

We conclude that X e implies X e La, provided a < ^. Furthermore 

11̂11, = (£i^r)i/' 

is non-decreasing in t. 
Also if 

and p' < p, then 

X„-^X 

X,i —>• X. 

6.6 More on Convergence 

This section utilizes the definitions and basic properties of Lp convergence, uni­
form integrability and the inequalities discussed in the previous section. We begin 
with some relatively easy implications of Lp convergence. We work up to an 
answer to the question: If random variables converge, when do their moments 
converge? 

Assume the random variables {X,X„,n > 1) are all defined on (fi, B, P). 
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iff 

sup I ( XndP - f XdP\ -> 0. (6.16) 
AeB JA JA 

Note that if we replace A by fi in (6.16) that we get 

| £ ( A ^ „ ) - £ ( ^ ) | < £ | ^ „ - A ' | ^ 0 

so that first moments converge. This, of course, also follows by the modulus 
inequality. 

To verify (6.16), suppose first that X„ ^ X. Then we have 

sup I f X„dP- f XdP\ 
A JA JA 

= sup I /* {X„ - X)dP\ 
A JA 

< sup f \X„ - X\dP 
A JA 

< f\Xn- X\dP 

= £ ( | ^ „ - A ^ | ) ^ 0 . 

For the converse, suppose (6.16) holds. Then 

E\Xn-X\=( {Xn - X)dP + f (X- Xn)dP 
J[x„>x\ J[x„<x\ 

=(/ ^"-/ 
V[^„>^1 J[x„>x] J 

+ (f X - f X„) 
\J[X„<X] J[X„<X] J 

< 2 s u p | f X„- f X\. 
A JA JA ^ 

2. If 

x„Ux 

1. A form ofScheffe's lemma: We have the following equivalence for Li con­
vergence: As n —• oo 

Ei\X„\P) -> E(\X\P) 
then 
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/ \X„-Xm\dP <€/2. (6.20) 

or equivalently 
II^JIp ^ ll^llp. 

For this verification, write 

X = Xn "^r X Xn 

and Minkowski's inequality implies 

ll^llp < + (6.17) 

Interchange the roles of Xn and X in (6.17) to get 

I I ^ J I p < l l ^ l l p + l l ^ - ^ J I p . (6.18) 

So combining (6.17)and (6.18) we get 

III^JIp - ll^llpl < 11^ - XnWp -> 0, (6.19) 

as was to be proved. • 

Towards a resolution of the problem of when moments of a sequence of random 
variables converge, we present the following result which deals with the case 
p = l . 

Theorem 6.6.1 Suppose for n > \ that Xn ^ L\. The following statements are 
equivalent: 

(a) [Xn }isL\ -convergent. 

(b) {X„ ] is Li -cauchy; that is, 

E\X„-Xm\-^0, 

as n,m —> oo. 

(c) {X„ ] is uniformly integrable and {X„ ] converges in probability. 

So if X„ X OT X„ X and {X„} is ui, then the first moments converge: 

\E{X„) - E(X)\ < E(\X„ - X\) 0. 

Later, we will see that convergence i.p. of {X„ ] can be replaced by convergence 
in distribution to X. 

Proof. (a)->(b): L i convergence implies Cauchy convergence because of the tri­
angle inequality. 

(b)->>(c): Given (b) we first show that {X„} is ui. Given € > 0, there exists 
such that 'i{m,n > Nf then 
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To show [X„] is ui, we use Theorem 6.5.1. For any A e B 

f \Xn\dP< f \X„-Xi,^+Xi,JdP 
JA JA 

< ̂  Î AT, \dP f\Xn- XN, \dP. 

For any n > Nf 

that is. 

j^\X„\dP< j^\XNjdP + €/2; 

sup f \X„\dP< f \XNMP + ^/^-
n>Nt JA JA 

and thus 

sup /* \X„\dP< sup f \Xm\dP-{-€/Z 
n JA m<N, JA 

If A = fi, we conclude 

supiE:(|A^„|) < sup £ ( | ^ , ; , | ) - | - ^ / 2 < o o . 
n m<Nt 

Furthermore, since finite families of L i rv's are ui, [Xm, m < Â }̂ is ui and given 
€ > 0, there exists 8 > 0 such that if P(A) < 8, then 

sup f \Xm\dP<€/2 
m<N( JA 

so we may conclude that whenever P{A) < 5, 

sup f \X„\< 
n JA 

€/2 + €/2 = €. 

Hence {X„] is ui. 
To finish the proof that (b) implies (c), we need to check that {X„} converges 

in probability. But 

P[\X„-Xr„\ >€]< E(\X„-Xr„\)/€ -> 0 

SO {X„} is Cauchy i.p. and hence convergent in probability. 
p 

(c)->(a): If X„ X, then there exists a subsequence [nk] such that 

a.s. 
Xfik ~* Xy 
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but [Y„] is NOT ui, since E(Y„) = 0 but E\Y\ = 00. If [Y„] were ui, then by 
Theorem 6.6.1 we would have 

E(y„) ^ E(Y) 

but the expectation of Y does not exist. 
We give more detail about why E(Y„) = 0. Let £1 = £2 be standard normal 

distributions. Then 

^^^") = ff , ^ 1 X F2(dxudx2). JJ Wn * + \X2\ 

and so by Fatou's lemma 

£(1^1) = £ ( l i m i n f | ^ „ J ) < lim inf £(|Ar„J) < sup£(|A^„|) < oo 

since {X„] is ui. So A' G L i . Also, for any ^ > 0 

f \X„-X\dP< f \X„-X\dP-{- f \X„\dP 
J J[\X„-X\<€] J[\X„-X\>i] 

+ f \X\dP 
J[\X„-X\>€] 

<€ + A+ B. 

Since X„ 4- X, 
P[\X„ - ^1 > ^] -> 0 

and hence 5 -> 0 as n ->> oo by Exercise 6 of Chapter 5. 
To verify A -> 0, note that since {X„ ] is ui, given ^ > 0, there exists 8 > 0 

such that 

sup f \Xk\dP<€ 
k>l JA 

if P(A) < S. Choose n so large that 

P[\X„ -X\>€]<8 

and then A < €. • 
Example. Suppose Xi and X2 are iid A^(0,1) random variables and define Y = 
A'l/I A'21. The variable Y has a Cauchy distribution with density 

Define 
Y 

Then 
Y„^Y 

file:///X/dP
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Note that the integrand is in L i (Fi x F2) since 

ffw n - i 4- \X2 
Fl X F2(dxi,dx2) <n \ \ \x\\Fi x F2(dxudx2) 

JJ W 
= nE(\Xi\). 

Thus, from Fubini's theorem 

+ \X2\ JR xiFiidxi) F2(dx2) = 0, 

since the inner integral is zero. • 

We give the extension of Theorem 6.6.1 to higher moments. 

Theorem 6.6.2 Suppose p > 1 and Xn e Lp. The following are equivalent. 

(a) [Xn] is Lp convergent. 

(b) {Xn} is Lp-cauchy; that is 

as n,m 00. 

(c) {\Xn \P} is uniformly integrable and [Xn} is convergent in probability. 

Note that this Theorem states that Lp is a complete metric space; that is, every 
Cauchy sequence has a limit. 

Proof. The proof is similar to that of Theorem 6.6.1 and is given briefly. 
( a )^ (b ) : Minkowski's inequality means \\X\\p is a norm satisfying the triangle 

inequality so 

\\Xn - X^ \\p < \\X„ - X\\p + 11̂  - ^„ 11̂  ^ 0 

as m ->• 00. 
(b )^ (c ) : If {X„} is Lp Cauchy, then it is Cauchy in probability (see (6.12)) 

p 
so there exists X such that Xn -> X. To show uniform integrability we verify 
the conditions of Theorem 6.5.1. Note by (6.19) (with Xm replacing X), we have 
{\\Xn lip, n > 1} is a Cauchy sequence of real numbers and hence convergent. So 
sup„ IIA'MIIP < 00. This also implies that X, the limit in probability of Xn, is in 
Lp by Fatou. To finish, note we have 

\Xn\PdP <j^\Xn-Xn,+ X^,\PdP 

and applying the 2P inequality of Exercise 3 we get the bound 

<2P \X„ - X„\PdP \Xm ?dP 

<2P\\X„ -Xn,\\Pp + 2P \X„\PdP. 
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oo 

£(1^1^) < l iminf£( |^„,n < V ^ d ^ " ! ' ' ) < 
A:-»>oo 

« = 1 

SO A' G Lp. One may now finish the proof in a manner wholly analogous to the 
proof of Theorem 6.6.1. • 

6.7 Exercises 

1. (a) Let {X„] be a monotone sequence of random variables. If 

then 
Xn X. 

(Think subsequences.) 

(b) Let {X„} be any sequence of random variables. Show that 

Xn^'.^X 

iff 
sup \Xk -X\-^0. 
k>n 

(c) Points are chosen at random on the circumference of the unit circle. Y„ 
is the arc length of the largest arc not containing any points when n points 
are chosen. Show Y„ 0 a.s. 

(d) Let [Xn] be iid with common distribution F(x) which satisfies F(xo) = 
1, F{x) < 1 for A: < XO with ;co < oo. Prove 

m a x j ^ i , A ' n } t xo 

almost surely. 

Given ^ > 0, there exists mo such that n > mo implies 

j^\Xn\PdP <^--\-2P J^\Xmo\^dP. 

Since X^Q eLp.we have 2^ \XmQ\PdP -> 0 as P(A) ^ 0(see Exercise 6 of 
Chapter 5). The uniform integrability follows. 

(c)->(a): As in Theorem 6.6.1, since [X„] is convergent in probability, there 
exists X such that along some subsequence X„^ X. Since {|A'„|''} is ui 

file:///XmQ/PdP
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2. Let [X„] be iid, EX„ = M, VarCA",) = o^. Set X = 52,"=i Xi/n. Show 

3. Suppose X >0 and y > 0 are random variables and that p > 0. 

(a) Prove 
E{{X + Y)P) < IP {E{XP) + E{YP)) . 

(b) If p > 1, the factor IP may be replaced by 1 P ~ ^ . 

(c) If 0 < p < 1, the factor IP may be replaced by 1. 

4. Let \Xn,n> 1} be iid, EXn = 0, ^ ^2 Let G R for n > L Set 

S„ = Yl"=i ^iX,. Prove {S„} is L2-convergent iff J^J^i af < oo. 

5. Suppose {X„] is iid. Show {n~^S„,n > 1} is ui provided Xi eL\. 

6. Let [Xn] be ui and let ̂  G L i . Show [X„ - X) is ui. 

7. Let X„ be Ar(0, o^). When is ui? 

8. Suppose {A'n} and {y„} are two families of ui random variables defined on 
the same probability space. Is [Xn + Yn} ui? 

9. When is there equality in the Schwartz Inequality? (Examine the derivation 
of the Schwartz Inequality.) 

10. Suppose [Xn ] is a sequence for which there exists an increasing function 
/ : [0, oo) [0, oo) such that f {x)/x oo 2S x oo and 

s u p £ ( / ( | ^ „ | ) ) < o o . 
,i>i 

Show [Xn ] is ui. 

Specialize to the case where /{x) = xP for p > 1 or f (x) = A:(logA:)'^. 

11. Suppose [Xn, n > 1} are iid and define M„ = v^^^Xj. 

(a) Check that 
P[Mn >x]< nP[Xi > x]. 

(b) If £(Arf) < oo, then Mn/n^'P 0. 

(c) If in addition to being iid, the sequence [Xn] is non-negative, show 

Mn/n 0 iff n P [ ^ i > ^ 0, as n ^ oo. 
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to be the 1 — ^ quantile of F. 
(e) Now suppose {X„ ] is an arbitrary sequence of non-negative random 

variables. Show that 
n 

£(M„1[M„>5]) < Xl^(^itl[A'*>5])-
k=l 

If in addition, [X„} is ui, show E(M„)/n -> 0. 

12. Let [X„] be a sequence of random variables. 

p 
(a) If X„ 0, then for any p > 0 

l + l^^l^^ 

and 

'^0 (6.21) 

E ( ^ 0. (6.22) \1 + \X„\PJ 
(b) If for some p>0 (6.21) holds, then X„ i 0. 

(c) Suppose p > 0. Show X„ 0 iff (6.22). 

13. Suppose [X„, n > 1] are identically distributed with finite variance. Show 
that 

nP[\Xi\>€y^]-*0 

and 

14. Suppose [Xk] are independent with 

0. 

P[Xk=k^]=^ P [ ^ ^ = - 1 ] = 1 - i . 

Show X, —oo almost surely as /? -> oc. 

(d) Review the definition of rapid variation in Exercise 27 of Chapter 5. 
Prove there exists a sequence b{n) —• oo such that 

M„/b(n) -> 1, n oo, 

iff 1 — F(x) := P[Xi > x] is rapidly varying at oc. In this case, we 
may take 

W = ( — ^ ) (n) 
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15. Suppose Xn > 0 for n > 0 and Xn XQ and also E{Xn) -> E{Xo). 
Show Xn Xo in L i . (Hint: Try considering (^o - ^ , 1 ) " ^ . ) 

16. For any sequence of random variables [X„] set S„ = ^"^i X,. 

(a) Show Xn 0 implies Sn/n 0. 

(b) Show X„ ^ 0 implies S„/n^ 0 for any p > 1. 

(c) Show ^ „ 0 does NOT imply S„/n ^ 0. (Try X„ = 2" with proba­
bility and = 0 with probability l—n~^. Alternatively look at functions 
on [0,1] which are indicators of [i/n, (/ + l)/n].) 

p p 
(d) Show S„/n ^ 0 implies X„/n -> 0. 

17. In a discrete probability space, convergence in probability is equivalent to 
almost sure convergence. 

18. Suppose {X„] is an uncorrelated sequence, meaning 

C o v ( ^ , , ^ ^ ) = 0 , i^j. 

If there exists a constant c > 0 such that Var(A'„) < c for all n > 1, then 
for any a > 1/2 we have 

19. If 0 < ^ „ < y„ and Y„ 0, check X„ 0. 

20. Suppose E(X^) = 1 and E(\X\) > a > 0. Prove for 0 < X < 1 that 

P[\X\ > ka] > (1 - k)V. 

21. Recall the notation rf(A, B) = P(AAB) for events A, B. Prove 

22. Suppose [X„, n > 1} are independent non-negative random variables satis­
fying 

E{X„) = fi„. V a r ( ^ „ ) = o r 2 . 

Define for n > 1, 5„ = Yl^^i suppose Yl%i l^n = 00 and < 
p 

Cfi„ for some c > 0 and all n. Show 5„/(£(5„) 1. 
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n=0 

Show that 
lim(l-5)t/(5) = M 

by the following relatively painless method which uses convergence in 
probability: Let T(s) be a geometric random variable satisfying 

P[T(s) = n] = il-s)s\ 

Then T(s) 4> oo. What is £("7(5))? 
24. Recall a random vector {X„, Y„) (that is, a random clement of R^) con­

verges in probability to a limit random vector (X, Y) if 

daX„,Y„)AX,Y))-^0 

where d is the Euclidean metric on R .̂ 

(a) Prove 

iX„.Y„)iX,Y) (6.23) 

iff 

X„-^X and Y„ i Y. 
(b) If / : R 2 !-• R* ' is continuous (^ > 1), (6.23) implies 

f(X„,Y„)-^f{X,Y). 

(c) If(6.23) holds, then 

iX„+Y„.X„Yn)-^{X + Y.XY). 

25. For random variables X^ Y define 

p(X, Y) = inf{5 > 0 : P[\X -Y\>S]< 5). 

(a) Show p{X, y ) = 0 iff PIX = Y] = 1. Form equivalence classes of 
random variables which are equal almost surely and show that p is a 
metric on the space of such equivalence classes. 

(b) This metric metrizes convergence in probability: 
X„^X\ffp{X„,X)'^0. 

23. A classical transform result says the following: Suppose Un>0 and Un 
M as rt 0 0 . For 0 <s < 1, define the generating function 

oo 
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(c) The metric is complete: Every Cauchy sequence is convergent. 
(d) It is impossible to metrize almost sure convergence. 

26. Let the probability space be the Lebesgue interval; that is, the unit interval 
with Lebesgue measure. 

(a) Define 

Then {X„] is ui, E(X„) 0 but there is no integrable Y which dom­
inates [Xn]. 

(b) Define 

Xn = " l ( 0 . , i - ' ) - ' ^ l ( , i - ' . 2 « - » ) -

Then {X„} is not ui but ^ „ 0 and E{X„) 0. 

27. Let A' be a random variable in L i and consider the map 

X : [1, oc] [0, oc] 

defined by x ( p ) = l l ^ l l p . Let 

po := sup{p > 1 : IIA'llp < oc}. 

Show X is continuous on [1, po)- Furthermore on [1, po) the continuous 
function p log | |A' | |p is convex. 

28. Suppose u is a continuous and increasing mapping of [0, oc] onto [0, oc]. 
Let M**" be its inverse function. Define for A: > 0 

U(x) = f u(s)ds, V(x) = f u'^(s)ds. 
Jo Jo 

Show 
xy <U(x)-\-V(y), x,yG[0,oo]. 

(Draw some pictures.) 
Hence, for two random variables X, Y on the same probability space, XY 
is integrable if L^(|A:|) 6 L I and V(\Y\) 6 L i . 
Specialize to the case where u(x) = xP~^, for p > 1. 

29. Suppose the probability space is ((0,1], B((0,1]), X) where X is Lebesgue 
measure. Define the interval 

A„ := [2-Pq, 2-P{q H- 1)], 

where 2P + q =^n'\s the decomposition of n such that p and q are integers 

satisfying p > 0, 0 < ^ < 2' ' . Show IA„ i 0 but that 

lim sup \A„ — 1, liminf = 0. 
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30. The space Loo^ For a random variable X define 

ll^lloo = supfAT : P[\X\ > x ] > 0}. 

Let L o o be the set of all random variables X for which | |Ar|| 
oo < ^ « 

(a) Show that for a random variable X and 1 < p < ^ < oc 

o < i | a : i i i < i i ;^ l lp<l i ;^ l l^<l i ;^ l 

(b) For 1 < p < ^ < oc, show 

L o o C Lq d Lp C. L \ . 

(c) Show Holder's inequality holds in the form 

£ : ( l ^ y | ) < l l ^ l l i l | y | l o o . 

(d) Show Minkowski's inequality holds in the form 

h a : + y | i o o < Halloo+ i i y 0 0 -

31. Recall the definition of median from Exercise 31 of Chapter 5. 
(a) Let [Xn, n > 1} be a sequence of random variables such that there exists 
a sequence of constants {c„} with the property that 

Xn 

If m(Xn) is a median of Xn, show 

0. 

Xn-m(Xn)-^0 

and Cn — m(Xn) 0. 
(b) If there exists a random variable X with a unique median such that 
Xn i X, then m(Xn) m(X). 

32. For a random variable X, let y(X) be the central value defined in Exercise 
25 of Chapter 5. For a sequence of random variables [Xn,n > 0}, suppose 
there exist a sequence of constants {c„) such that Xn — Cn XQ almost 
surely. Show lim„_„oo Xn — y(X„) exists and is finite almost surely, where 
y(Xn) is the unique root of the equation E(2LTctan(X — y) = 0. Show 
lim„_„oo(Cn — y(Xn)) exists and is finite. 

33. Suppose [Xn.k, 1 < k < n,n > l}isa triangular array of random variables. 
For n > 1, set 

5 „ = E Xn,i, M„=\/ XnJ. 
1=1 

P P 
Show that M„ 0 implies Sn/n 0. 

1=1 



7 
Laws of Large Numbers and Sums 
of Independent Random Variables 

This chapter deals with the behavior of sums of independent random variables and 
with averages of independent random variables. There are various results that say 
that averages of independent (and approximately independent) random variables 
are approximated by some population quantity such as the mean. Our goal is to 
understand these results in detail. 

We begin with some remarks on truncation. 

7.1 Truncation and Equivalence 

We will see that it is easier to deal with random variables that are uniformly 
bounded or that have moments. Many techniques rely on these desirable prop­
erties being present. If these properties are not present, a technique called trunca­
tion can induce their presence but then a comparison must be made between the 
original random variables and the truncated ones. For instance, we often want to 
compare 

{A:„}with {X„l[ix„ \<n]l 

where the second sequence is considered the truncated version of the first. 
The following is a useful concept, expecially for problems needing almost sure 

convergence. 

Definition. Two sequences {X„] and {X'„] are tail equivalent if 

J2nXnli^X'„]<00. (7.1) 
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7.2 A General Weak Law of Large Numbers 

Recall that the weak law of large numbers refers to averages of random variables 
converging in the sense of convergence in probability. We first present a fairly 
general but easily proved result. Before proving the result, we look at several 
special cases. 

When two sequences are tail equivalent, their sums behave asymptotically the 
same as shown next. 

Proposition 7.1.1 (Equivalence) Suppose the two sequences {X„] and {X'„] are 
tail equivalent. Then 

0) E , i ( ^ n - K) converges a.s. 

(2) The two series Yl„ ^ « ^f^d X'„ converge a.s. together or diverge a.s. 
together; that is 

X„ converges a.s. iff ^ X'„ converges a.s. 
n n 

(3) If there exists a sequence {a„ ] such that a„ oo and if there exists a random 
variable X such that 

then also 

Proof. From the Borel-Cantelli Lemma, we have that (7.1) implies 

P{[X„ ^ X'„\ i.o.) = 0, 

or equivalently 
P(liminf[^„ = ^«]) = 1-

«-»>00 

So for CO G liminf„_..oc[Ar„ = AT^] we have that Xn{(jo) = X'„{co) from some 
index onwards, say for n > N{co). This proves (1). 

For (2) note 
oo 0 0 

^ ^ „ ( a . ) = 5 ]^; (a . ) . 
n=N n=N 

For (3) we need only observe that 

l±iXj-x'j)'4.o. 
^" j=l • 
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n 
= E(Xil[\x,\<n])^ E(Xi)=p. 

(b) Khintchin's WLLN under the first moment hypothesis. Suppose that 
{X„,n > 1} are iid with E(\Xi\) < oc and E{Xn) = p. (No assumption is made 
about variances.) Then 

p 
Sn/n p.. 

Theorem 7.2.1 (General weak law of large numbers) Suppose {X„,n > I] are 
independent random variables and define S„ = 53y=i Xj. If 

n 

(0 J2P[\Xj\>n]^0, (7.2) 

iE^^;l[l^;l :^"l-^0, (7.3) 
then if we define 

n 

we get 

4. 0. (7.4) 
n 

One of the virtues of this result is that no assumptions about moments need to 
be made. Also, although this result is presented as conditions which are sufficient 
for (7.4), the conditions are in fact necessary as well. We will only prove suffi­
ciency, but first we discuss the specialization of this result to the iid case under 
progressively weaker conditions. 

S P E C I A L CASES: 
(a) WLLN with variances. Suppose {Xn,n > 1} are iid with E{X„) = p. and 

E(Xl) < oc. Then as n oo, 

n 
The proof is simple since Chebychev's inequality makes it easy to verify (7.2) and 
(7.3). For instance (7.2) becomes 

nP[\Xi\>n]< nE{Xif/n^ 0 

and (7.3) becomes 

•^nE(X^^l[^x,\<n] < ^ ^ ( ^ ? ) ^ 0. 

Finally, we observe, as n ^ oc 

an 
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nP[\Xi\>n] =E{nlnx,\ 
<E(\Xi\l[^Xi\>n])^0, 

since £(|A'i |) < oo. 
Next for (7.3), we use a divide and conquer argument. We have for any e > 0 

^EX^,^x,^<„^ < i {E(Xil[^x,\<.V^]) + ^ (^? l [ .v^< i ; r , |<«] ) ) 

€^n 1 
+ -E(n\Xi\l[^^^^Xi\<n]) 

n n 
< * ^ + £ ( | j r , | l , ^ < | ; f , | ) 

asn oo, since E(\Xi\) < oo. So applying Theorem 7.2.1 we conclude 

S„ -niE:(A'il[|j^,|<„]) p 
0. 

n 

Since 
nE(Xil[\Xi\<n]) -E{Xi) < i E : ( | ^ i | l [ I A ' , | > « ] ) ^ 0 , 

the result follows. 

(c) Feller's WLLN without a first moment assumption: Suppose that 
{X„, n > 1} are iid with 

lim xP[\Xi \ >x] = 0. 
Jt-»-OC 

(7.5) 

Then 

S p 
- iE:(A:ii[|A',i<«]) 0-

The converse is true although we will not prove it. Note that this result makes no 
assumption about a finite first moment. 

As before, we show (7.2) and (7.3) hold. The condition (7.2) becomes in the iid 
case nP[\Xi | > / ? ] - > 0 which is covered by (7.5). To show (7.3) holds, we need 
to write it in terms of 

T(X) :=xP[\Xi \ >x]. 

To prove this by means of Theorem 7.2.1, we show that (7.2) and (7.3) hold. 
For (7.3) observe that 
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Let P[Xi < ;c] = F(x) and because of the iid assumption (7.3) becomes 

- f \Xi\h[^x,\<n]dP = - f x^Fidx) 

= - / ( / 2sds)F(dx) 
n J\x\<n Js=0 

= - f 2s[f F(dx)]ds (by Fubini 
" A=o A<|jti<,i 

= - r 2s(P[\Xi\>s]-P[\Xi\> n])ds 
n Jo 
If" If" = - / 2T{s)ds - - / 2sdsP[\Xi\ > n] 
n JQ n JO 

= - f T(s)ds - nP[\Xi I > n] 0 
n Jo ' V ' 

Tin) 

since if T(S) 0 so does its average. • 

Proof of Theorem 7.2.1. Define 

n 
Kj = Xj l[\Xj\<n] and S'„ = E^"r 

Then 

So 

and therefore 

; = 1 j=l 

P[\S„ - S'„\ > < P[S„ ^ S'„] 

<P{\J[X'„j^Xj]] 

<i2nx'„j¥^Xj]^o 

S„-S'„-^ 0. (7.6) 

The variance of a random variable is always bounded above by the second mo­
ment about 0 since 

Var(^) = E(X^) - (E{X)f < E(X\ 
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So by Chebychev's inequality 

Var(S;) S'„-ES'„ 
> « ] < 

where that convergence is due to (7.3). 
Note a„ = £ 5 ; = Yl"=i E^jH\Xj\<nh and thus 

i 0. (7.7) 
n 

We therefore get 

Sn - On _ S„ - S'„ ^ S'„ - a„ _p ^ 
n n n 

where the first difference goes to zero because of (7.6) and the second difference 
goes to zero because of (7.7). • 

Example: Let F be a symmetric distribution on R and suppose 

1 - F(x) = —, x>e 

Suppose {X„, n > 1} is an iid sequence of random variables with common distri­
bution function F . Note that 

Je 2x\ogx 2Ji 
dy 
— = oo. 

so because the distribution is symmetric 

E(X-^) = E(X~) = oo 

and E{X) does not exist. However, 

T ( ; c ) = xP[\XiI > A:] = ^ . — ^ = _ ! _ ^ 0 
xlogx \ogx 

and a„ =0 because F is symmetric, so 

n 

Thus, without a mean existing, the WLLN still holds. When we consider the 
strong law of large numbers, we will see that a.s. convergence fails. • 
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7.3 Almost Sure Convergence of Sums of 
Independent Random Variables 

This section considers the basic facts about when sums of independent random 
variables converge. We begin with an inequality about tail probabilities of maxima 
of sums. 

Proposition 7J.1 (Skorohod's inequality) Suppose {X„, n > 1} is an indepen­
dent sequence of random variables and suppose a > 0 is fixed. For n > I, define 
Sn = j:"=iXn and set 

c := sup P[\SN —Sj\ > a]. 
j<N 

Also, suppose c < 1. Then 

P[sup \Sj\ >2a]< -^P[\SN\ > c.]. (7.8) 
j<N 1 - C 

There are several similar inequalities which bound the tail probabilities of the 
maximum of the partial sums, the most famous of which is Kolmogorov's inequal­
ity. One advantage of Skorohod's inequality is that it does not require moment 
assumptions. 

Note that in the iid case, the constant c somewhat simplifies since we can ex­
press it as 

c = V ^tl-^yl > «1 = V - Sj\ > a] 
j<N j<N 

due to the fact that 
(A ' l , . . . , XN) = (XN, . . •, Xi). 

This means that the sums of the variables written in reverse order (5^^ — Sj, j = 
N,N — 1,... ,1) have the same distribution as ( 5 i , . . . , SN)-

Proof of Proposition 73,1, Define 

J : = inf{; : | 5 y | > 2 a } , 

with the convention that inf 0 = oc. Note that 

[sup \Sj\>2ct]^[J<N] = J2[J = Jl 
J^N pi 

where the last union is a union of disjoint sets. Now we write 

P[\SN\>C(] > P[\SN\>a,J <N] 

N 

N 

> J2P[\SN-Sj\<ot,J = j]. (7.9) 



210 7. Laws of Large Numbers and Sums of Independent Random Variables 

It is also true that 

and 

Since 

we have 

SN-SJ= XJ e B(Xj+i,... ,XN) 

[J = j] = [sup |5,1 < 2a, \Sj \>2a]e B{Xi... Xj). 

BiXj+i XN) ±BiXi...Xj) 

N 

P[\SN\ >C^]>J2 t̂l*̂ ^ - I ^ ̂ l̂ I-̂  = 
N 

> ^ ( 1 - c)P[J = j] ( from the definition of c) 

= ( l - c ) P [ J <N] 
= {l-c)P[snp\Sj\>2a]. 

j<N • 

Based on Skorohod's inequality, we may now present a rather remarkable result 
due to Levy which shows the equivalence of convergence in probability to almost 
sure convergence for sums of independent random variables. 

Reminder: If } is a monotone sequence of random variables, then 

implies (and hence is equivalent to) 

a.s. 

To justify this last step, suppose 

\Sf^(co) — Sj(o))\ < a, and J(ct>) = ; 

so that \Sj(co)\ > 2of. If it were the case that \SN{O))\ < a, then it would follow 
that \Sf^(co) -Sj(a))\ > a which is impossible, so |5;^(co)\ > a. We have checked 
that 

[15;̂  - Sj\ <a,J =j]C [\Ss\ >a,J = j] 

which justifies (7.9). Thus, 

N 

P[\SN\>ct]>J2 ^[15;^ -Sj\<a,J= ;•]. 
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n 

This means that ifS„ = Yl"=i ^t, then the following are equivalent: 

1. [Sn] is Cauchy in probability. 

2. [Sn ] converges in probability. 

3. [Sn ] converges almost surely. 

4. [Sn ] is almost surely Cauchy. 

Proof. Assume [Sn] is convergent in probability, so that {5„} is Cauchy in proba­
bility. We show [Sn] is almost surely convergent by showing [Sn] is almost surely 
Cauchy. To show that {5„} is almost surely Cauchy, we need to show 

= sup |5;„ - 5„| 0 a.s., 

as N OO. But {̂ /v, A'̂  > 1} is a decreasing sequence so from the reminder it 
p 

suffices to show 0 as N oo. Since 

l/v = sup |5;„ -S^-hSf^ - S„\ 

< sup |5;„ - 5A^| -H sup |5„ - Sn 

= 2 sup |5„ -Sn\ 
n>N 

= 2sup|5A^+y - SnI 

it suffices to show that 

sup | 5 A ^ + ; - 5 ^ 1 - ^ 0 . (7.10) 
J>0 

For any € > 0, and 0 < S < 5, the assumption that {5„} is cauchy i.p. implies 
that there exists Nf^s such that 

P[ |5„ - 5„H > | ] < 5 (7.11) 

\{m,m' > Nf^s, and hence 

P[\Sn+j - Ss\ >^-]<S, V; > 0, (7.12) 

Theorem 7.3.2 (Levy's theorem) / / {X„, n > 1] is an independent sequence of 
random variables, 

Xn converges i.p. iff ^ X„ converges a.s. 
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Now write 

P[sup \Ss+j - Ss\ > €] = P{ lim [ sup |5A -̂f.; -Sn\> €]} 
j>0 N'-^oo N'>j>0 

= lim P[ sup |5/v-f.y - 5;^| > t ] . 
N'-fOO N'>j>0 

Now we seek to apply Skorohod's inequality. Let X'^ = Xs+i and 

j j 
S'j = '^X[ = "^Xfj+i = Sn+j - S^. 

1=1 1=1 

With this notation we have 

P[ sup \Sn+j -Sf^\> €] 
N'>j>0 

=:P[ sup \S'j\>€] 
N'>j>0 

< I ^- T—I P[\sU > 
- Vi -v ;<^.p [ i5 ; , , -5 ; . |> i . ] ; ^ ̂ ' 2 J 
< —^ •S<2S 
~ 1-S 

from the choice of S. Note that from (7.11) 

V P[\S'^, _ 5 ; | > 1̂ ] = V P[\Sf,+s' - Sn+j\ > \€] < s. 
)<N' )<N' 

Since S can be chosen arbitrarily small, this proves the result. • 

Levy's theorem gives us an easy proof of the Kolmogorov convergence crite­
rion which provides the easiest method of testing when a series of independent 
random variables with finite variances converges; namely by checking conver­
gence of the sum of the variances. 

Theorem 7 3 3 (Kolmogorov Convergence Criterion) Suppose [Xn, n > 1} is 
a sequence of independent random variables. If 

oo 
^ V f l r ( ^ y ) < o o , 

then 
0 0 

^ ( A ' y — E(Xj)) converges almost surely. 
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so we may conclude 

E ^(Xj-EXj)^=0, 

00 00 

V a r ( ^ ^ ^ ) = ^ V a r ( ; ^ ; ) . 
;=i j=i 

7.4 Strong Laws of Large Numbers 

This section considers the problem of when sums of independent random vari­
ables properly scaled and centered converge almost surely. We will prove that 
sample averages converge to mathematical expectations when the sequence is iid 
and a mean exists. 

We begin with a number theory result which is traditionally used in the devel­
opment of the theory. 

Proof. Without loss of generality, we may suppose for convenience that E(Xj) = 
0. The sum of the variances then becomes 

oo 

J2 FX] < oo. 

This implies that {S„] is L2 Cauchy since (m < n) 
n 

| | 5„ -5 ;„ | |2 = V a r ( 5 „ - 5 ; „ ) = FX]-^0, 
j=m+l 

as m, n 00 since F(XJ) < 00. So {5„}, being L2-Cauchy, is also Cauchy 
in probability since 

n 

P[\Sn - > ^ ] < 6-2Var(5„ -S,„)=J2 V^^C^y) ^ 0 
j=m 

as m —> 00. By Levy's theorem {5^} is almost surely convergent. • 

Remark. Since {5„} is L2 convergent, the first and second moments converge; 
that is, 

n / 00 \ 

0 = E(J2(Xj - EXj)) ^ E J2(Xj - EXj) 
j=\ \j=\ I 

and 
n n 00 

^ Var(^;) = V a r ( ^ ( ^ y - E^^) ) V a r ( ^ ^ y ) . 
>=i i=\ j=l 
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SO 

and 
Xn = a„(r„-i - r„), n > 1, 

it=i it=i 
n - l 

= E^^J+^ -aj)rj -\-airo-anr„. 

Then for n > NQ, 

+ 1^1 + 1^1 

On ^n 

+ aNo+3 — H Van— ^n - l ) + r„ 

< 2€ 4- o( l ) . 

This shows the result. • 
The Kronecker lemma quickly gives the following strong law. 

Corollary 7.4.1 Let [Xn, n > \] be an independent sequence of random vari­
ables satisfying E{X^) < oo. Suppose we have a monotone sequence b„ t oo. 

•£VarA <oo. 

Lemma 7.4.1 (Kronecker's lemma) Suppose we have two sequences [xk\ and 
[an) such that JCit G E and 0 < a„ \ oo. If 

y — converges, 

then 
n 

lim a~^ V!-^* = 0-

Proof. Let r„ = YlkLn+i ^k/ak so that r„ 0 as n oo. Given ^ > 0, there 
exists Â o = NQ{€) such that for n > NQ, we have \r„\ < €. Now 

— = fn-l — fn 
an 
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as n ^ oo. 

then 
Sn — E(Sn) a.s. 

bn " 

Proof. Because the sum of the variances is finite, the Kolmogorov convergence 
criterion yields 

> I I converges a.s. 

and the Kronecker Lemma implies 

n 

Y^iXk - E(Xk))/b„ 0 

almost surely. • 

7.4.1 Two Examples 
This section discusses two interesting results that require knowledge of sums of 
independent random variables. The first shows that the number of records in an 
iid sequence grows logarithmically and the second discusses explosions in a pure 
birth process. 

Example 1: Record counts. Suppose [Xn,n > 1} is an iid sequence with com­
mon continuous distribution function F. Define 

N N 

= E \x, is a record ] = E >̂ 
,=\ j=l 

where 

~ ^[Xj is a record ]• 

So fif^ is the number of records in the first N observations. 

Proposition 7.4.1 (Logarithmic growth rate) The number of records in an iid 
sequence grows logarithmically and we have the almost sure limit 

N-fOO log A' 

Proof of Proposition 7.4.1. We need the following fact taken from analysis: There 
is a constant c (Euler's constant) such that 

l o g n - ^ - 7 - * C , 
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Recall that {ly, ; > 1} are independent. The basic facts about {ly} are that 

P [ / , = l ] = i . £(/>) = j . 

Var(/y) = E(ljf - ( E l , ) 2 = - - - . = 
; r r 

This implies that 

£ v a r ( - ^ ) = f : - - i - ^ V a r ( l , ) 

0 0 

= E 7 

since by the integral test 
0 0 . , 00 . 

00 , 

= V 
^ ; a o g ; ) 2 

4 A : ( l o g A : ) 2 

< oo. 

The Kolmogorov convergence criterion implies that 

> ( H- = > —; r- converges 

p l V l og ; / ^ log ; 
and Kronecker's lemma yields 

p a ^ . E " = i ( i , - y - ' ) ^ e ; = I I J - E"=i r ' ^ - e " = I r ' 
log/I logn logn 

Thus 

J f i _ _ 1 = ^ " - ^ " = 1 - ^ " ' + E ; = i ; - ^ - i o g / i ^ ^ 
log n log n log n 

This completes the derivation. • 

Example 2: Explosions in the Pure Birth Process. Next we present a stochastic 
processes example where convergence of a series of independent random vari­
ables is a crucial issue and where the necessary and sufficient criterion for con­
vergence can be decided on the basis of first principles. 
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Let [Xj, y > 1} be non-negative independent random variables and suppose 

P[Xn >x] = e-^"'',x > 0 

where A.„ > 0, w > 1 are called the birth parameters. Define the birth time process 
S„ = Yl"=\ X, and the population size process {X{t), r > 0} of the pure birth 
process by 

^(0 = 

1, i f O < r < 5 i , 

2, if 5i < r < 52, 

3, i f 5 2 < r < 5 3 , 

Next define the event explosion by 

0 0 

[ explosion ] = [ ^ A ' n < oo] 

= [X(t) = oo for some finite t]. 

Here is the basic fact about the probability of explosion in the pure birth pro­
cess. 

Proposition 7.4.2 For the probability of explosion we have 

P[ explosion ] = 1. ifEnK'<0. 
0. ' / E „ ^ „ - ' = o o -

Recall that we know that P[Y2„ Xn < oo] = 0 or 1 by the Kolmogorov Zero-
One Law. 

Proof. If 5I„ A."̂  < oo, then by the series version of the monotone convergence 
theorem 

oo oo oo 

, 1=1 n=l n=l 

and so P[YlT=i X„ <oo]=l. (Otherwise, recall that EC^„ X„) = oo.) 
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=ZEI lim n̂ ~̂ ") 

= lim £ I If e j (by Monotone Convergence) 

N 
= lim r7£(e (by independence) 

= lim fl / 

Now 

£ ( e x p { - J ^ A - ^ } ) > Oiff - l o g £ ( e - ^ ' ' ' ^ ' ' ) < oo 

n 

iff y - l o g f - ^ ' l < 0 0 

oc 

iff E^ogd + X-^) < o o . 
If X^ î log(l + X-^) < 00, then log(l + X"^) 0 implies A"^ 0. Since 

lim == 1 , 
xiO X 

by L'Hopital's rule, we have 

log(l + A ; ^ ) - A - ^ a s n - ^ o o 

and thus 
oo 0 0 

J2\og{l+k-') < 00 iff < 00. 

/i=l /i=l • 

Conversely, suppose P[Yi„ X„ < oo] = 1. Then exp{- X^̂ i Xn] > 0 a.s., 
which implies that £(exp{— X„]) > 0. But 

0 0 

/i=i 
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7.5 The Strong Law of Large Numbers 
for IID Sequences 

This section proves that the sample mean is almost surely approximated by the 
mathematical expectation. We begin with a preparatory lemma. 

Lemma 7.5.1 Let {X„,n > 1] be an iid sequence of random variables. The fol­
lowing are equivalent: 

(a) E\Xi \ < oo. 

(b) lim„_^oo 1̂ 1 = 0 almost surely. 

(c) For every € > 0 
0 0 

J2n\Xi\>(n]<oo. 

Proof, (a) <-)• (c): Observe that: 

E(\Xi\)= r P[\Xi\>x]dx 
Jo 

= J2 P[\Xi\>x]d: 
n=0 
oo 

n=0 
oo 

<J2P[\X,\>n]. 
n=0 

Thus £(1̂ 11) < oo iff J2T=o P[\X\\ > n] < oo. Set y = ^ and we get the 
following chain of equivalences: 

E ( l ^ i l ) < ooiff E( |y | ) < oo 
oo 

iffJ2n\y\>n]<oo 
, 1 = 0 

0 0 

> €n] < 00. 
n = 0 

(c) (b): Given ^ > 0, 

J2P[\Xi\>^n] = J2n\Xn\ >€n]<oo 
n n 

is equivalent, by the Borel zero-one law, to 

(1 1 • 1 > € I.o. 1 11 L n J 1 J = 0, 
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which is in turn equivalent to 

lim sup < € 
,i-»-oo n 

almost surely. Since limsup„_^oo is a tail function, it is a.s. constant. If this 
constant is bounded by € for any e > 0, then 

lim sup = 0. 
,i-*oo n 

This gives (b) and the converse is similar. • 

We are now prepared to consider Kolmogorov's version of the strong law of 
large numbers (SLLN). 

Theorem 7.5.1 (Kolmogorov's SLLN) Let [Xn, n > 1} be an iid sequence of 
random variables and set 5„ = Xi. There exists c € M such that 

Xn = S„/n c 

iffE(\Xi\) < oo in which case c = E(Xi). 

Corollary 7.5.1 If[Xn} is iid, then 

E(\Xi\) < oo implies X„°-^' fj. = E(Xi) 

and 

1 " 
EX^ < oo implies S„ := - y^(^/ - Xf ^* o^ =: Var(Xi). 

n ^ 

Proof of Kolmogorov's SLLN (a) We show first that 

5,1 a.5. 
y c 

n 

implies E(IA'il) < oo. We have 

Xn _ Sn ~ S„-i 

n n 

n \ n J n — I 
a.5. _ 

c - c = 0. 

Since 
X„/n "4- 0, 
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a.s. 
Lemma 7.5.1 yields E(\X\\) < oo. 

(b) Now we show that E(\Xi\) < oo implies S„/n E(Xi). To do this, we 
use a truncation argument. Define 

X'„ = X„\[\x„\<n], n>l. 

Then 

J2 p[Xn 7^ = E > < ^ 

(since E\Xi\ < oo) and hence {X„] and {X'„] are tail equivalent. Therefore by 
Proposition 7.1.1 

S„/n "4- E{Xi) iff S'„/n = J^K/"" ^ ^ ^ i ) * 

So it suffices to consider the truncated sequence. 
Next observe that 

5; - E{S'„) S'„ - E(S„) 

n 

nE{X,) - Y.%xE{X,\[^x,\<j\) 

0. 

This last step follows from the fact that 

E(^l) - iE:(^ l l [ | ; r , |<«l) l < E{\Xi\\y^x,\>n]) 0, 

and hence the Cesaro averages converge. We thus conclude that 

^ - £(A-,) "4 0 iff g('^;-^<-^;) U- 0. 
n n 

To prove the last statement, it is enough by Kronecker's lemma to prove 

X' 
; ^ V a r ( - ^ ) < o o . 
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However, 

E V a 4 ) = E > a r ( ^ ; ) ^ E ^ 
j J J J j J 

0 0 y J = Z! 72 ̂  (̂ ?ii*-i<î ii<*i) 
]=\ k=\ J 

= DE-i)^(^?i[*-i<i^n<it]). 
k=i j=k J 

Now 
' 1 . 

ax. x^ 

and therefore 

j=kJj-^^ Jk-\X 

1 2 < — 
k - \ - k 

provided A: > 2. So 

0 0 oo 2 ^ 2 

E(E72)̂ (̂ ?i[*-i<î .î *i) ̂  Er̂ (î ii'i[*-i<î .î *i) 
it=2 ;=it k=2 

oo 2 

^Er-^^(i^iii[*-i<i^ii2*i) 
= 2 £ ( | ^ i | ) < 00. 

7.5. i Tvvo Applications of the SLLN 
Now we present two standard applications of the Kolmogorov SLLN to renewal 
theory and to the Glivenko-Cantelli Lemma. 

Renewal Theory. Suppose [X„,n > 1} is an iid sequence of non-negative 
random variables. Assume E{X„) = fi and that 0 < fi < oo. Then 

•^,1 a.s. 
> fl > 0 

n 
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a.s. so that S„ oo. Let So = 0 and define 

oo 

We call N(t) the number of renewals in [0, r]. Then 

[N(t) <n] = [S„ > r] (7.13) 

and 

SNU)-! < t < 5Af(r). (7.14) 

Note that since we assume 5o = 0, we have N(t) > 1. Also observe {N{t),t > 0} 
is non-decreasing in r. We need to show N(t) oo a.s. as r ^ oo and because 

p 
of the monotonicity, it suffices to show N(t) oo. Since for any m 

lim P[N(t) <m]= lim P[S„, > 0, 
r-»-oo r-»-oo 

p 
we get the desired result that N(t) oo. Now define the sets 

Ai = [co: • fi], 
n 

Ai = [co : N{t, co) oo}, 

so that 
P (Ai ) = P(A2) = l . 

Then A := Ai fl A2 has P(A) = 1. For ct> G A, as r 00 

N(t,co) 

and so 

asr 00. From (7.14) 

a.s. 

and 

N(t) - N(t) 

t SNU)-\ SN(t)-\ N(t)-1 
> — . —y n . J Nit) - N{t) N{t) - 1 N{t) 

a.s. SO we conclude that t/N(t) fj. and thus N(t)/t ^. Thus the long run 
rate of renewals is • 
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F(x^,+i,k-)- F(Xv^) < 
k k k' 

Glivenko-Cantelli Theorem. The Glivenko-Cantelli theorem says that the em­
pirical distribution function is a uniform approximation for the true distribution 
function. 

Let {X„,n > 1} be iid random variables with common distribution F. We 
imagine F is unknown and on the basis of a sample A ' l , . . . , A'„ we seek to esti­
mate F. The estimator will be the empirical distribution function (edf) defined by 

1 " 

By the SLLN we get that for each fixed x, F„{x) F{x) a.s. as n oo. In fact 
the convergence is uniform in x. 

Theorem 7.5.2 (Glivenko-Cantelli Theorem) Define 

D„ := sup|F„(jt) - F(x)\. 
X 

Then 
D„ Oa.s. 

as n oo. 

Proof. Define 

Xv,k ••= F'^iv/k), v = l,...,k, 

where F*~(x) = inf(« : F(u) > x). Recall 

F ^ ( M ) < r i f f M < F ( 0 (7.15) 

and 

F(F^(u)) > M, F ( F ^ ( M ) - ) < M, (7.16) 

since for any ^ > 0 F(F*~(u) — €)< u. If Xv,k <x< Xv+i^k, then monotonicity 
implies 

F(x^,k) < F(x) < F(x,+i,k-h Fn(xv,) < F„(x) < F„{x^+i,k-), 

and for such x 

F„(x,,k) - F(x,+i,k-) < F„(x) - Fix) 

<F„(x,+i,k-)-F(x,,k)- (7.17) 

Since 

v + 1 V 1 
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we modify (7.17) to get 

FniX,,) - F(x,,) - i < F„(x) - Fix) 

< Fn(xv+i,k-) - F(x^+U-) + (7.18) 

Therefore 

sup \F„(x)-F(x)\ 

< (\F„(x^,k) - F(x^,k)\ V \F„{x^+i,k-) - F(x^+i,k-)\) + p 

which is valid for v = 1 , . . . , A: — 1, and taking the supremum over v gives 

sup \F„{x)-F{x)\ 
X€[Xlk.Xk.k) 

1 * 
< + V \F„(x^,k) - ^(^i;.it)l V \F„(x^,k-) - F(x^,k-)\ 

v=l 

= RHS. 

We now show that this inequality also holds for x < xi^k and x > Xk,k- If 
X > xk.k, then F(x) = F„(x) = 1 so F„(x) - F(x) = 0 and RHS is still an upper 
bound. If A: < xi^k, either 

(i) F(x) > F„(x) in which case 

\F„{x, (o) - F{x)\ = Fix) - F„(x, CO) 

< Fix) < Fixuk-) 
1 

< -
- k 

so RHS is still the correct upper bound, 

or 

(ii) F„(x) > F(x) in which case 

|F„(;c, CO) - F(x)\ = F„{x, co) - F(x) 

< Fn{xi,k-. CO) - F(xi,k-) + F(xi,k-) - Fix) 

< \F„(xi,k-. CO) - F(xi,k-)\ + \F(xik-) - F{x)\ 

and since the last term is bounded by \ / k we have the bound 

< \ + \F„{xxk-,co)-F{xxk-) 
k 

< RHS. 
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We therefore conclude that 

D„ < RHS. 

The SLLN implies that there exist sets Av,k, and Av,k^ such that 

P{A,,k) = P(K.k) = 1, 

and such that 
Fn{xv,k) F(xvk), n ^ OO 

and 
1 " 

F'„(xv,k-) = - E HXj<x^.k] P[Xi < Xv,k] = F(xv,k-) 
" 1 

provided co G A^k and A^k respectively. Let 

V V 

so P(Ak) = I. Then for co e A^ 

For 0) ef]i^Ak 

lim sup D„ (ct>) < ^ . 

lim D„{co) = 0, 

and PCflit A A ) = L • 

7.6 The Kolmogorov Three Series Theorem 

The Kolmogorov three series theorem provides necessary and sufficient condi­
tions for a series of independent random variables to converge. The result is espe­
cially useful when the Kolmogorov convergence criterion may not be applicable, 
for example, when existence of variances is not guaranteed. 

Theorem 7.6.1 Let [Xn,n > I] be an independent sequence of random vari­
ables. In order for Xn to converge a.s., it is necessary and sufficient that there 
exist c > 0 such that 

(i) E„ P[\Xn\ > c] < oo. 

(ii) E„ yar(X„^x„\<c]) < oo. 

("0 Efl F(X„l[^x„\<c]) converges. 
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p 
X„ = Y^<t>iX„.i+Z„, n = 0 , l , . . . (7.19) 

1=1 

where {Z„] is an iid sequence. When does there exist a stationary process {X„} 
satisfying (7.19)? It is usually possible to iterate the recursion and guess that the 

If X„ converges a.s., then (i), (ii), (iii) hold for any c > 0. Thus if the three 
series converge for one value of c > 0, they converge for all c > 0. 

In this section, we consider the proof of sufficiency and an example. The proof 
of necessity is given in Section 7.6.1. 

Proof of Sufficiency. Suppose the three series converge. Define 

K = ^ « l [ | ^ „ l < c ] -

Then 

n n 

by (i) so {X'„} and {X„} are tail equivalent. Thus X„ converges almost surely 
iff X'„ converges almost surely. 

From (ii) 

^ V a r ( ^ ; ) < o o , 
n 

SO by the Kolmogorov convergence criterion 

^ ( A ' y - E(X'j)) converges a.s. 
n 

But (iii) implies 
E(X'„) converges 

and thus X'j converges, as desired. • 

Remark 7.6.1 In the exercises there awaits an interesting fact for you to ver­
ify. When the independent random variables in the three series theorem are non-
negative, it is only necessary to check convergence of two series; the third series 
involving the truncated variances is redundant. 

Example. Heavy tailed time series models: It is increasingly common to en­
counter data sets which must be modeled by heavy-tailed times series. Many time 
series are defined by means of recursions; for example, pth order autoregressions 
are defined as 
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solution is some infinite series. Provided the infinite series converges, it is rela­
tively simple to show that this infinite sum satisfies the recursion. For instance, 
(7.19) for the case p = 1 is 

X„ = (t>Xn-\ +Z„ = 4){(t>X„-2 + Z„_i) -H Zn 

= 4>^X„-2 + Zn+ 4>Z„-i. 

Continuing the iteration backward we get 

m - l 
Xn =4>'"X„-nt 4- 4>'Z„-,. 

i = 0 

This leads to the suspicion that Yl^o^'^n-i is a solution to (7.19) when p = 
1. Of course, this depends on Yl^o4>'Zn-i being an almost surely convergent 
series. 

Showing the infinite sum converges can sometimes be tricky, especially when 
there is little information about existence of moments which is usually the case 
with heavy-tailed time series. Kolmogorov's three series theorem helps in this 
regard. 

Suppose a time series is defined by 

oo 

Xn = J2f'j^"-J^ /z = 0 , l , . . . (7.20) 

where {p„] is a sequence of real constants and {Z„] is an iid sequence with Pareto 
tails satisfying 

F{x):=P[\Zi\>x]'-kx-'=', x - ^ o o , (7.21) 

for some a > 0, and k > 0. (Tail conditions somewhat more general than (7.21) 
such as regular variation could easily be assumed at the expense of slightly ex­
tra labor in the verifications to follow.) A sufficient condition for existence of a 
process satisfying (7.20) is that 

oo 
^ I p y Z y l < 00, (7.22) 

almost surely. Condition (7.22) is often verified under the condition 

^ | p y | * < o o , 0 < 5 < a A l , (7.23) 

(cf. Brockwell and Davis (1991)) especially when (7.21) is replaced by a condi­
tion of regular variation. 
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We now prove that (7.23) is sufficient for (7.22) and by Remark 7.6.1 we need 
to verify that (7.23) implies convergence of the two series 

oo oo 
(7.24) J2 Pl\PjZj\ > 1] = < oo, 

j=i j=\ 
oo oo 

J ] ;£( |pyZ, | l ip^z , |< i ] ) =:J2^Pj^'"^l/\Pj\) < oo, (7.25) 

where 
m(t) :=iE:(|Zi|l[|z,|</]). 

Verifying (7.24) is relatively easy since, as / —• oc, we have 

pi\PjZj\>i]'-k\pjr 

which is summable due to (7.23). To verify (7.25), we observe that by Fubini's 
theorem 

m (t) = f xF(dx) = f ( du F(dx) 
Jo Jx=0 LJU=Q . 

u = I F{u)du — 
Jo 

F(dx) tF{t) 

(7.26) 

(7.27) 

(7.28) 

= / ' [/' 
< f F(u)du. 

Jo 

From (7.21), given ^ > 0, there exists XQ such that x > xo implies 

F(x) < (l+e)kx-'' =: kix-". 

Thus from (7.26) 

m{t)<\ +/ <c + ki u~"du, t>xo. 
Jo JXQ JXQ 

Now for Of > 1, E( |Zi |) < oo so that 

5^|py|m(c/|p;|) <J2\Pj\E(\Zi\) < oo 
j J 

by (7.23). For a = 1, we find from (7.28) that 

m(t) < c ' + A:2logr, t >xo 

for positive constants c', ki. Now choose > 0 so small that 1 — rj > and for 
another constant c" > 0 

E IP> l"'(<^/IPy I) 5 c" J2 \PJ I + *2 E IPy I '°g ( I T - ) 
I J J ^ 

<c"J2\Pj\+k3'£\Pj\'"' <<=° 
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^ £ ( ^ ? ) = £(52,) = E(SJ,l[r<N]) + £(52,lI,>^r,) (7.29) 
1=1 

= / + / / . 

Note on r > AT, we have v^^j \S, | < A, so that in particular, 5 ^ < A .̂ Hence, 

// < k^P[z > A ]̂ < (A + afP[T > N]. (7.30) 

For / we have 
N 

where we have used (7.23) and 

logx < x~^'^'^, X > x'. 

Finally for or < 1, r > XQ 
m(0 < c i -hkit^-" 

so that 

J j J 

from (7.23). • 

7.6.1 Necessity of the Kolmogorov Three Series Theorem 

We now examine a proof of the necessity of the Kolmogorov three series theo­
rem. Two lemmas pave the way. The first is a partial converse to the Kolmogorov 
convergence criterion. 

Lemma 7.6.1 Suppose [Xn,n > 1} are independent random variables which are 
uniformly bounded, so that for some or > 0 and all co e Q we have \X„(co)\ < a. 
If^„(Xn — E(X„)) converges almost surely, then Yl^i ^ K ^ n ) < oo. 

Proof. Without loss of generality, we suppose E(X„) = 0 for all n and we prove 
the statement: lf{X„,n > 1} are independent, E(X„) = 0, < a, then X„ 
almost surely convergent implies 5Z„ E(Xl) < oo. 

Weset5„ = E"=i^i ' " ^ land begin by estimating Var(5Ar) = E/LI ^iXf) 
for a positive integer N. To help with this, fix a constant A > 0, and define the 
first passage time out of [—A, A] 

r := inf{n > 1 : > A}. 

Set r = oo on the set [ v ^ j | 5 „ | < A]. We then have 
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For j <N 
N 

Note 

= j] = [ V l" '̂' - ^' '"̂ l̂ > ^ ^ ( ^ 1 ' . • •, ^y ) 
i=l 

while 

A', GorCA ' y + i A'AT), 

. = 7 + 1 

and thus 

i=;+l 

Hence, for j < 

E{SJ,lir=j]) = E({SJ-^2Sj E /̂ + ( E ^ ' ) ' ) l l - y } ) 

= E(SJl[r=J]) •^2E{Sjlir=j])E{ J2 ^i) 
i=j+l 

i=J+l 
N 

= ^("^y-l[r=7L) + 0 + F ( ^ ' ) ' ^ [ ^ = 
«=;+l 

N 

< £ ( ( | 5 ; _ i l + l ^ ; l ) ^ l [ r = ; l ) + ^ ( ^ ' ) ^ ^ [ ^ 
.=;+l 

N 

< ( X + a ) 2 p [ R = ; ] + ^ £ ( J ^ , ) 2 p j ^ ^ -̂J 

i=;+l 

Summarizing, we conclude for j < N that 

E(Sil[r=j]) < ((A + + J2 E(Xif)p[T = (7.31) 
^ 1 = 7 + 1 ^ 
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2 . . (^ + C()^ 
P[T > N] 

Let AT ^ oo. We get 

which is helpful and gives the desired result only if P[z = oo] > 0. However, 
note that we assume Xn is almost surely convergent, and hence for almost 
all CO, we have {S„(co), n > 1} is a bounded sequence of numbers. So v„ |5„ | is 
almost surely a finite random variable, and there exists X > 0 such that 

oo 
P[ r = oo] = P [ \ / | 5 n l < > ^ ] > 0 , 

,1=1 

else P [vJ^ j | 5„ | < oo] = 0, which is a contradiction. This completes the proof 
of the lemma. • 

Lemma 7.6.2 Suppose [Xn,n > 1} are independent random variables which are 
uniformly bounded in the sense that there exists or > 0 such that \Xn{cS)\ < a 
for all n > 1 and ct> G fi. Then 5I„ Xn convergent almost surely implies that 

E(Xn) converges. 

Proof. The proof uses a technique called symmetrization. Define an independent 
sequence [Yn^n > 1} which is independent of {X„,n > 1} satisfying y„ = X„. 
Let 

Z„=Xn-Y„, n > l . 

and defining E I ^ A T + I E{X^)^ = 0, we find that (7.31) holds for 1 < j < N. 
Adding over j yields 

/ = E(Sll[r<N]) < ^(X + a ) 2 -\-J2E{Xf)^P[z < N] 

= (^(k-\-af + £ ( 5 ^ ) ^ P [ r < N]. (7.32) 

Thus combining (7.30) and (7.32) 

N 

i=l 

< ((X + af + £ ( 5 ^ ) ) P[T < AT] + a + afP[T > N] 

<(X + a ) 2 + £ ( 5 ^ ) P [ T < AT] 

and solving for £ ( 5 ^ ) yields 
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and |Z„ | < | Z „ | - l - | K „ | < 2 a . 
Since {A'„, w > 1} = w > 1} as random elements of R ° ° , the convergence 

properties of the two sequences are identical and since 5I„ Xn is assumed almost 
surely convergent, the same is true of 5I„ Yn - Hence also 5Z„ ^« Js almost surely 
convergent. Since {Z„} is also uniformly bounded, we conclude from Lemma 
7.6.1 that 

^ Var(Z„) = Y,'^\ar{Xn) < oo. 

From the Kolmogorov convergence criterion we get ^„{Xn — E(Xn)) almost 
surely convergent. Since we also assume 5Z„ Xn is almost surely convergent, it 
can only be the case that 5I„ E(Xn) converges. • 

We now turn to the proof of necessity of the Kolmogorov three series theorem. 

Re-statement: Given independent random variables {Xn,n > 1} such that 
53„ Xn converges almost surely, it follows that the following three series converge 
for any c > 0: 

(i) E«^[ l^" l>4 
(") E«Var(^„li | jr„|<c]), 

(iii) T.nE(Xnl[\x„\<c])-

Proof of necessity. Since 5Z„ Xn converges almost surely, we have X„ 0 and 
thus 

P ( [ | ^ „ | > c ] i.o.) = 0. 

By the Borel zero-one law, it follows that 

J2n\Xn\>c]<oo. (7.33) 
n 

If (7.33) holds, then {Xn} and {Xnl[\x„\<c]} are tail equivalent and one converges 
iff the other does. So we get that the uniformly bounded sequence {Xnl[\x„\<c]} 
satisfies En ^«l[|A'„|<c] converges almost surely. By Lemma 7.6.2, 
53„ ̂ (Xn'^[\x„\<c]) (the series in (iii)) is convergent. Thus the infinite series of 
uniformly bounded summands 

E (^"h\Xn\<c] - ^(^nl[l^„|<c])) 

Then {Z„,n > 1} are independent random variables, E(Z„) = 0, and the distri­
bution of each Z„ is symmetric which amounts to the statement that 

Z ^-Z 

Further, 
Var(Z„) = Var(^„) + Var(y„) = 2Var(^„) 
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is almost surely convergent and by Lemma 7.6.1 

^Var(^„l[IA'„|<c]) < oc 
n 

which is (ii). • 

7.7 Exercises 

1. Random signs. Does IJn converge? Does (—1)" 1/w converge? Let 
{^„}be iid with 

P[X, = ±1] = i. 

Does Yin Xn/n converge? 

2. Let [Xn] be iid, EXn = /x, Var(^„) = or^. Set X = Yl"=iX,/n. Show 
that 

3. Occupancy problems. Randomly distribute r balls in n boxes so that the 
sample space Q. consists of n'^ equally likely elements. Write 

n 

= y ] 1 [ith box is empty] 
1=1 

for the number of empty boxes. Check 

P[/th box is empty] = (1 - -f 
n 

so that E(Nn) = n(l - n~^y. Check that as r/n c 

E{Nn)ln e-' (7.34) 

Nn)ln ^ e-'. (7.35) 

For the second result, compute Var(Ar„) and show Var(Ar„/n^) 0. 

4. Suppose g : [0,1] J - J - R is measurable and Lebesgue integrable. Let 
[Un,n > 1} be iid uniform random variables and define Xj = g{U,). In 
what sense does Yll=\ ^i/n approximate JQ g(x)dx'> (This offers a way to 
approximate the integral by Monte Carlo methods.) How would one guar­
antee a desired degree of precision? 
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5. (a) Let {X„,n > 1} be iid, EX„ = 0, EX^ = o^. Let fl„ G R for n > 1. 
Set 5„ = E " = i « i ^ ' - Prove {S„} is L2-convergent iff < ^ -
E / S i ^? < oo, then w > 1} is almost surely convergent. 

(b) Suppose [X„, w > 1} are arbitrary random variables such that E,i 
converges almost surely for all choices ±1. Show JZn-^n < oo almost 
surely. (Hint: Consider B„(t)X„(co) where the random variables 
[Bn.n > 1} are coin tossing or Bernoulli random variables. Apply Fubini 
on the space of (r, co).) 

(c) Suppose {B„,n > 1} are iid with possible values {1 , -1} and 

P[B„ = ±1] = i. 

Show for constants that 

^^a„B„ converges iff ^ 
n n 

(d) Show E „ B„n-^ converges a.s. iff ̂  > 1/2. 

6. Suppose {Xic,k > 1} are independent random variables and suppose-A'it 
has a gamma density fk(x) 

r ( n ) 

Give necessary and sufficient conditions for E £ i to converge almost 
surely. (Compare with the treatment of sums of exponentially distributed 
random variables.) 

7. Let {£•«} be events. 

(a) Verify 
n n 

Elf* = lu2^,£*El^* 
and then, using the Schwartz inequality, prove that 

(b) Deduce from this that if 

(0 E,i PF„ = oo, and 
(ii) there exists c > 0 such that for all m < w, we have 

P{EM<cP{Em)P{E„.m) 

then 
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(iii) / '(lim s u p „ _ 0 0 ^ , 1 ) > 0. 

Thus, we get a partial converse to Borel-Cantelli: if (iii) fails, that is, if 
P(lim sup„_,.oo E„) = 0, and (ii) holds, then (i) fails so that 5I„ ^ ( £ ^ , 1 ) < 

00. 

(c) Let {y„,w > 1} be iid positive random variables with common distri­
bution function G and suppose {X„ ,n > 1} is a sequence of iid positive 
random variables with common distribution F. Suppose [Xn] and [¥„] are 
independent. Prove using Borel-Cantelli that if for all ^ > 0 

1 ~ G{dy) 
< 00, 1 - F(€y) 

then as /2 ^ 00 
0. 

almost surely. Prove the converse using the converse to Borel-Cantelli proved 
in (b) above. 

8. The SLLN says that if w > 1} are iid with E\Xi\ < 00, then 

SJn°4:E{X,). 

Show also that 

S„/n U E(Xi). 

(Think of uniform integrability.) 

9. Suppose {X„] are iid, £'|A'i| < 00, EXi = 0 and suppose that {c„} is a 
bounded sequence of real numbers. Prove 

1 " 

(If necessary, examine the proof of the SLLN.) 

10. (a) Suppose that [X„] are m-dependent in the sense that random variables 
more than m apart in the sequence are independent. More precisely, let 

B'; = B(Xj Xk), 

and assume that iByJ,..., B'J^ are independent if -I- m < for / = 
2 , . . . , /. (Independent random variables are 0-dependent.) Suppose that the 
[X„} have this property and are uniformly bounded and that EXn = 0. 
Show that n~^S„ ^ 0 a.s. 

Hint: Consider the subsequences Xi, X,+m+it X,^2{m+i)i • • • 
for 1 < / < 

m-\-l. 
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s„\ 

(b) Suppose that {X„] are iid and each X, has finite range xi,...,xi and 

P[Xi = Xi] = p{xi), / = 1 , . . . , / . 

For M I , . . . , M i t , a A:-tuple of the x , \ let N„{u\,... ,uic) be the frequency 
of the A:-tuple in the first n-\-k — l trials; that is, the number of m such that 
I < m < n and 

Xm = W i , . . . , Xm+k-l = Wit. 

Show that with probability 1, all asymptotic relative frequencies are what 
they should be—that is, with probability 1, 

n~^Nn{u\ Mit) p{.u\) • • • piuk) 

for every k and every A:-tuple M I , . . . , Mit. 

11. Suppose [Xn,n > 1} are iid with a symmetric distribution. Then 5Z„ Xn/n 
converges almost surely iff £ ' ( | A ' i |) < oc. 

12. Suppose [Xn] is defined iteratively in the following way: Let XQ have a uni­
form distribution on [0,1] and for w > 1, Xn+\ has a uniform distribution 
on [0, A 'n ] . Show that 

- \ogXn converges a.s. 
n 

and find the almost sure limit. 

13. Use the three series theorem to derive necessary and sufficient conditions 
for 5Z„ Xn to converge a.s. when [Xn} are independent and exponentially 
distributed. 

14. Suppose [Xn, w > 1} are independent, normally distributed with 

E{Xn) = Pn, Var(Ar„) = o r2 . 

Show that Xn converges almost surely iff J^n converges and 

E« < oc. 
15. Prove the three series theorem reduces to a two series theorem when the 

random variables are positive. If V„ > 0 are independent, then 5I„ V„ < oc 
a.s. iff for any c > 0, we have 

J ] P [ V „ > C ] < 0 0 , (i) 
n 

^ £ ( V ; i [ v „ < c l ) < (" ) 
n 

16. If [Xn] are iid with E\Xi\ < oc, EXi ^ 0, show that 

file:///ogXn


238 7. Laws of Large Numbers and Sums of Independent Random Variables 

log/2 

almost surely. 

0 

19. Suppose [Xn, n > 1} are non-negative independent random variables. Then 
E„ A'„ < oo almost surely iff 

< oo 

iff 
J2^(X„ A 1) < 00. 

n 

20. Suppose {X„,n > 1} are independent random variables with E(X„) = 0 
for all n. If 

{^n^\Xn\<\] + L ^ N | L [ I ; r „ | > I L ) < oo. 

then En Xn converges almost surely. 
Hint: We have 

0 = E(X„) = iE:(^„l[|;r„|<il) + E(X„l[^x„\>l])-

21. Suppose {X„(9), w > 1} are iid with common exponential distribution with 
mean 6. Then 

1=1 

Show for any u : R + R + which is bounded and continuous that 

Jo in - 1)! 

Show this convergence is uniform on finite ^-intervals. (Compare this with 
the Bernstein polynomials of item 6.3 on page 176.) 

17. Suppose {X„] are independent with 

P[Xk = k^] = ^ , P[Xk = -l] = l - ^ . 

Prove 
w 

lim / A'jt 
1=1 

exists a.s. and find the limit. 

18. Supppse {X„,n > 1} are iid with E(X„) = 0, and E(Xl) = 1. Set S„ = 
Er=i^.-Show 

S„ 
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22. The WLLN and inversion of Laplace transforms. Let A' > 0 be a non-
negative random variable with distribution function F and Laplace trans­
form 

= / 
^[O.oo) 

e-^F{dx). 

Show that F determines F using the weak law of large numbers and the 
following steps. 

(a) Show 

F < * > ( X ) = f (-l)V 
^ [ 0 , 0 0 ) 

''e'^Fidx). 

(b) Suppose > 1} are iid non-negative random variables with 
a Poisson distribution, parameter ^ > 0. Use the weak law of large 
numbers to prove 

lim P[T^,{e)ln<x] = 
n-*oo 

1=1 

1, [fx > 

0, \ix < 

and therefore 

j<nx 

1, i f A : > ^ , 

0, xix < e. 

(c) Conclude for any x >Q which is a point of continuity of F that 

n' 
j<nx 

23. Suppose {X„,n > 1} are iid and uniformly distributed on (—1,1). What is 
E ( ^ 2 ) 9 Verify 

/ = 1 

SO that if we define 

l|X„||„ = (X^^?)l/2^ 
1=1 

then 

i x „ i i „ / v ^ - ^ y i . 

Now define the n-dimensional annulus 
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Further define the n-dimensional cube 
n 

/„ = ( - l , i r : = { X G R : \ / L ^ . L < L ) -
1=1 

If X,, is n-dimensional Lebesgue measure, show that 

This gives the curious result that for large n, the cube is well approximated 
by the annulus. 

24. Relative stability of sums. Prove the following are equivalent for iid non-
negative random variables {X„, n > 1}. 

(a) There exist constants fl,, > 0 such that 

(b) As n ->> oo 

(c) We have 

1=1 

E?=i^/ 

1>"1 ^ r . r \ = OO. 

x-oo xP[Xi > X] 
(d) We have that the function p.(x) := E{Xil[Xi<x]) is slowly varying; 

that is, 
hm = 1, ^x > 0. 

This is equivalent to 

U{x)= r P[Xi >s]ds 
Jo 

being slowly varying. 
(e) In this case, show we may s e l e c t a s follows. Set H(x) = x/U{x) 

and then set 

where //"*" is the inverse function of H satisfying H(H'*~(x)) ~ x. 
(f) Now apply this to the St. Petersburg paradox. Let [X„, n > 1} be iid 

with 
P[Xi = 2*] = 2"*. k>l. 

What is iE:(A'i)? Set 5,, = ^i-The goal is to show 
5,, p 

(/2 log n) / log 2 

Proceed as follows: 

1. 
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i. Check P[X > 2"] = 2"" , n > 1. 
ii. Evaluate 

\ P[Xx > s]ds = Y I P[Xi > s]ds 
Jo ^ Ju-^ 

to get (̂'> ~ SI-
log 2 

So H(x) = x/U(x) - log2 (A: /LOGA:) and 
a„ ~ log /2) / log 2. 

25. Formulate and prove a generalization OF Theorem 7.2.1 applicable to tri­
angular arrays {X„^icA ^ k < n,n > 1] where {Xn,k,'^ < k < n} is 
independent and where n is replaced by a general sequence of constants 
[b„}. For iid random variables, the conditions should reduce to 

nP[\X„,i\ > b„]0, (7.36) 

^E{Xl,l[\x„.,\<b„])-^0, (7.37) 

If S„ = Yll=i Xn,ti the conclusion for the row iid case is 

S„-nE{Xn^\[\x„A\<bn]) P 
bn 

Apply this to the St. Petersburg paradox of Problem 24. 

26. If [Xn, n > 1} is defined as in the St. Petersburg paradox of Problem 24, 
show almost surely that 

X„ 
hm sup — = oc, 

M _ ^ 0 0 wlogjw 
so that for the partial sums we also have almost surely 

hm sup = oc. 
„-^oo wlogjw 

Thus we have another example of a sequence converging in probability but 
not almost surely. 

27. More applications of WLLN. 

(a) Suppose u(x,y) is continuous on the triangle 

TRI := {{x,y):x>0,y>0,x-hy = l}. 

Show that uniformly on TRI 

^ n n j\k\(n — j — k)\ 
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nl log2 n 
- 1 . 

30. Classical coupon collecting. Suppose {Xk^k > 1} is iid and uniformly 
distributed on { 1 , . . . , w}. Define 

Tn = inf{/n : {X\,...,Xm\ = {!, . . . ,n}} 

to be the first time all values are sampled. 

The problem name stems from the game of collecting coupons. There are 
n different coupons and one samples with replacement repeatedly from the 
population {\,...,n\ until all coupons are collected. The random variable 
Tn is the number of samples necessary to obtain all coupons. 

Show 

n logn 

(b) Suppose M : [0, oo) h-> R is continuous with 

lim u{x) =: M ( O O ) 
x-*-oo 

existing finite. Show u can be approximated uniformly by linear con-
binations of e"^. 

28. Suppose {Xn, w > 1} are uncorrelated random variables satisfying 

E{X„) = IX, Var(^„) < C, Cov(^, ,Xj) = Q,i^ j . 

Show that as n oo that E"=i ^i/n fiin probability and in 12-

Now suppose E(X„) = Oand E(XiXj) < p{i-j) for / > ; and p(n) 0 

as n ->> oo. Show Ei"=i XI In ->> 0. 

29. Suppose {Xn-, n > 1} is iid with common distribution described as follows. 
Define 

' '* = 2*/t(* + l ) ' 

and po = 1 - Pk- Suppose 

P\Xn = 2* - 1] = Pit, ^ > 1 

and PfA'n = - 1 ] = po- Observe that 

and that £ ( ^ „ ) = 0. For 5„ = ^ " = 1 X^, n > 1, prove 

Sn P 
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1=1 1=1 

Check 
VaT(T„/E{T„)) 0. 

31. Suppose {X„, n > 1} are independent Poisson distributed random variables 
with E(X„) = k„. Suppose {S„ = Yl"=i w > 1} and that ^« = ^ • 
Show S„/E{S„) ->> 1 almost surely. 

32. Suppose [X„,n > 1] are iid with P[X, > x] = , ;c > 0. Show as 
n oo 

\/X,/\ogn-^h 
1=1 

almost surely. Hint: You already know from Example 4.5.2 of Chapter 4 
that 

,. Xn 
limsup = 1, 

, i - o o \ogn 
almost surely. 

33. Suppose {Xj, j > 1} are independent with 

P[Xn = n-''] = P[X„ = -n-''] = ^. 

Use the Kolmogorov convergence criterion to verify that if a > 1/2, then 
53„ X„ converges almost surely. Use the Kolmogorov three series theo­
rem to verify that a > 1/2 is necessary for convergence. Verify that 
Y:„E(\X„\)<ooma>l. 

34. Let {Nn,n > 1} be iid N(0,1) random variables. Use the Kolmogorov 
convergence criterion to verify quickly that J2T=i ̂ s i n (n7rO converges 
almost surely. 

Hints: Define 

Tic(n) = inf(/n : cardjA' i , . . . , Xm) = k] 

to be the number of samples necessary to draw k different coupons. Verify 
that T i { n ) = 1 and [ z i c i n ) — Tk-i(n),2 < k < n } are independent and 
geometrically distributed. Verify that 

E{Tn) =n^ - n\ogn, 
1=1 ' 

V a r ( r „ ) = n 2 f ] ^ < n 2 f ] / - 2 . 
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35. Suppose [X„,n > 1} is iid and 

£ ( A : + ) < O O , £ ( ^ - ) = OO. 

Show S„/n - > — O O almost surely. (Try truncation of X~ and use the clas­
sical SLLN.) 

36. Suppose {X„,n > 1} is independent and Xk > 0. If for some 8 e (0,1) 
there exists x such that for all k 

f XkdP<SE{Xk), 
J[Xk>x] 

then almost sure convergence of Xn implies EiXn) < oo as well. 

37. Use only the three series theorem to come up with a necessary and suffi­
cient condition for sums of independent exponentially distributed random 
variables to converge. 

38. Suppose {Xn, n > 1} are iid with 

P[X„=0] = P[X„=2] = ^. 

Show -^,1/3" converges almost surely. The limit has the Cantor dis­
tribution. 

39. If {An,n > 1} are independent events, show that 

- E u - - i : m ) - o . 
n f - f n ^ 

1 = 1 1 = 1 

40. Suppose {X„,n > 1} are independent and set 5^ = Ei"=i A', - Then Sn/n ->> 
0 almost surely iff the following two conditions hold: 

(a) Sn/n 0, 

(b) 52" / 2 " 0 almost surely. 

41. Suppose {Xn, Yn,n > 1} are independent random variables such that Xn = 
Yn for all /2 > 1. Suppose further that, for all n > 1, there is a constant K 
such that 

\Xn\V\Yn\<K. 

Then E n ( ^ n ~ ^«) converges almost surely iff Yin ^a r (A '„ ) < 00. 

42. Suppose {Xn, n > 1} is an arbitrary sequence of random variables that have 
finite means and variances and satisfying 

(a) lim„_„oo £ ( ^ « ) = for some finite constant c, and 
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(b) E ; = i V a r ( A ' „ ) < o o . 

Show Xn ^ c almost surely. (Hint: Define ^„ = X„ — E{Xn) and show 
1 2 < QQ almost surely. Alternatively, try to proceed using Chebychev's 

inequality.) 
p 

If (b) is replaced by the hypothesis Var(A'„) 0, show Xn c. 
43. (a) Fix a real number p € (0,1) and let [Bn,n > 1} be iid Bernoulli random 

variables with 
P[Bn = 1] = p = 1 - P[Bn = 0]. 

Define Y = B „ / 2 " . Verify that the series converges. What is the 
range of Yl What is the mean and variance of Yl Let Qp be the distribution 
of Y. Where does Qp concentrate? 
Use the SLLN to show that '\( p ^ p \ then Qp and Qp' are mutually 
singular; that is, there exists a set A such that Qp(A) = \ and Qp\A) = 0. 
(b) Let Fp(x) be the distribution function corresponding to Qp. Show Fp{x) 
is continuous and strictly increasing on [0,1], Fp(0) = 0, Fp(l) = 1 and 
satisfies 

F p ( x ) = 
( 1 - p )Fp (2A:), i f O < A : < 1 / 2 , 

1 - /? + / 7 F p ( 2 x - 1 ) , if 1 / 2 < A: < 1 . 

44. \jt\\Xn,n > 1} be iid with values in the set 5 = { 1 , . . . , 17}. Define the 
(discrete) density 

Hy) = P[Xi =yl ye S. 

Let fl /o be another probability mass function on 5 so that for G 5, 
we have FiCv) > 0 and Y^i^s MJ) = 1- Set 

z„=n ^fi(X,) 

foix.y n> 1. 

a.s. Prove that Z„ 0. (Consider Y„ = logZ„.) 

45. Suppose {X„, n > 1} are iid random variables taking values in the alphabet 
5 = { 1 , . . . , r ) with positive probabilities p i , . . . , p^- Define 

Pnihi • • • . '« ) = P[Xi = / ' i , . . . , A'rt = /„], 

and set 
Xn(co) := pn(Xi(aj),...,X„(a))). 

Then Xn (co) is the probability that in a new sample of n observations, what 
is observed matches the original observations. Show that 

— logXn(co)H :=-J2PI logA-
1=1 
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46. Suppose {Xn,n > 1} are iid with Cauchy density. Show that 
{S„/n,n > 1} does not converge almost surely but v"_jA',7n converges 
in distribution. To what? 



8 
Convergence in Distribution 

This chapter discusses the basic notions of convergence in distribution. Given a 
sequence of random variables, when do their distributions converge in a useful 
way to a limit? 

In statisticians' language, given a random sample Xy,..., X„,the sample mean 
X„ is CAN; that is, consistent and asymptotically normal. This means that X has 
an approximately normal distribution as the sample size grows. What exactly does 
this mean? 

8.1 Basic Definitions 

Recall our notation that df stands for distribution function. For the time being, we 
will understand this to correspond to a probability measure on M . 

Recall that F is a df if 

(i) 0 < F(x) < 1; 

(ii) F is non-decreasing; 

(iii) F{x-[-) = Fix) Wx € R , where 

F{x+) = \\mF{x+€); 

that is, F is right continuous. 
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Also, remember the shorthand notation 

F(oo) : = lim F{y) 

F ( - o o ) : = lim F(y). 
y i o o 

F is a probability distribution function if 

F ( - o o ) = 0, F(+oo) = 1. 

In this case, F is proper or non-defective. 
l{F(x) is a df, set 

C{F) = {x eR: F is continuous atx]. 

A finite interval / with endpoints a < b i s called an interval of continuity for F if 
both a, b G C(F). We know that 

(C(F))^ = [x : F is discontinuous at x] 

is at most countable, since 

A„ = {x: F({x}) = Fix) - Fix-) > -] 
n 

has at most n elements (otherwise (i) is violated) and therefore 

(CiF))' = [JA„ 
n 

is at most countable. 
For an interval I = {a, 5], we write, as usual, F ( / ) = Fib) — Fia). Ua, b € 

CiF),then Fiia,b)) = Fiia,b]). 

Lemma 8.1.1 A distribution function Fix) is determined on a dense set. Let D 
be dense in R. Suppose Fpi-) is defined on D and satisfies the following: 

(a) Foi) is non-decreasing on D. 

(b) 0 < Foix) < h for allX € D. 

(c) \ i m j c e D . x - * + o o Foix) = 1, \ i m j c e D , x - * - o o Foix) = 0. 

Define for all X e R 

Fix) := inf Foiy) = lim Foiy). (8.1) 
>•>* ylx 

Then F is a right continuous probability df. Thus, any two right continuous df's 
agreeing on a dense set will agree everywhere. 



8.1 Basic Definitions 249 

(3) Weak convergence. The sequence {F„} converges weakly to F , written F„ 
if 

Fn(x) Fix), 

for all X e C(F). (See Billingsley (1968,1994).) 

w 

Remark 8.1.1 The proof of Lemma 8.1.1 below shows the following: We let 
g : M M have the property that for all ;c 6 M 

g{x+) = lim ^(3;) 
yix 

exists. Set h{x) = g{x-\-). Then h is right continuous. 

Proof of Lemma 8.1.1. We check that F , defined by (8.1), is right continuous. 
The plan is to fix x € R and show that F is right continuous at x. Given € > 0, 
there exists x' e D, x' > x such that 

F(x)-{-€> FD(X'). (8.2) 

From the definition of F , for y e {x, x'), 

FD(X) > F{y) (8.3) 

so combining inequalities (8.2) and (8.3) yields 

F{x)-\-€ >F(y), ^^yeix^x'). 

Now F is monotone, so lety i x to get 

F{x)-{-€ > F{x-\-). 

This is true for all small 6 > 0, so let 6 i 0 and we get 

F(x) > F(x-\-). 

Since monotonicity of F implies F(x-\-) > F(;c), we get F(;c) = F(x-\-) as 
desired. • 

Four definitions. We now consider four definitions related to weak conver­
gence of probability measures. Let {F„, n > 1} be probability distribution func­
tions and let F be a distribution function which is not necessarily proper. 

(1) Vague convergence. The sequence {F„} converges vaguely to F , written 
F„ F , if for every finite interval of continuity / of F , we have 

FnU) F ( / ) . 

(See Chung (1968), Feller (1971).) 

(2) Proper convergence. The sequence {F„} converges properly to F , written 
F„ ^ F if F„ 4. F and F is a proper df; that is F ( M ) = 1. (See Feller 
(1971).) 
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(4) Complete convergence. The sequence [F„} converges completely to F, writ­
ten F„ F/if F„ ^ F and F is proper. (See Lx)eve (1977).) 

Example. Define 
F„{x) := F{x-{-{-l)"n). 

Then 

F2„(x) = Fix-h2n) 1 
F2n+i(x) = F(x-(2n + l))^0. 

Thus {F„ (x)] does not converge for any x. Thus weak convergence fails. However, 
for any / = (a,b] 

Finia, b] = F2n(b) - F2„(fl) -> 1 - 1 = 0 
F2n+i(a,b] = F2r,+i(b) - F2„+i(a) - ^ 0 - 0 = 0. 

So F„(I) -> 0 and vague convergence holds: F„ G where G ( R ) = 0. So the 
limit is not proper. 

Theorem 8.1.1 (Equivalence of the Four Definitions) If F is proper, then the 
four definitions (1), (2), (3), (4) are equivalent. 

Proof. If F is proper, then (1) and (2) are the same and also (3) and (4) are the 
same. 

We check that (4) implies (2). If 

F„(x)^F(x), V X G C ( F ) , 

then 

Fnia, b] = F„(b) - Fn(a) -> F(b) - F{a) = F(a, b] 

if (a, b] is an interval of continuity. 
Next we show (2) implies (4): Assume 

Fn(I) ^ F ( / ) , 

for all intervals of continuity / . Let fl, 5 G C(F). Then 

Fn(b)>F„{a,b]^F(a,b], 

so 

liminfF„(fe) > F(a,b], "^a <b,a eC{F). 
/I—•oo 

Let fl i - 0 0 , fl 6 C (F ) to get 

liminfF„(5) > F(5) . 
/l-»>00 
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For n > no, 

Fn{b) = Fnib) - F„{1) + FnQ) 
= F„(l,b] + Fn(l) 

<F„(l,b] + 2€, 

since F „ ( / ) < F „ ( ( / , 5 f ) . So 

lim sup F„ (5) < F{l,b] + 2€ 
/l-»>00 

< F{b) + 2e. 

Since e > 0 is arbitrary 

limsupF„(5) < F{b). 
/l-»>00 • 

Notation: If {F, Fn,n > 1} are probability distributions, write F„ => F to mean 
any of the equivalent notions given by (l)-{4). If Xn is a random variable with dis­
tribution Fn and A' is a random variable with distribution F , we write A'n =^ A' to 
mean Fn => F . This is read "Xn converges in distribution to X" or "Fn converges 
weakly to F ." Notice that unlike almost sure, in probability, or Lp convergence, 
convergence in distribution says nothing about the behavior of the random vari­
ables themselves and only comments on the behavior of the distribution functions 
of the random variables. 

Example 8.1.1 Let be an A^(0,1) random variable so that the distribution func­
tion is symmetric. Define for w > 1 

Xn = (-1)"A^. 

Then Xn = A'̂ , so automatically 

Xn^N. 

But of course [Xn} neither converges almost surely nor in probability. 

For the reverse inequality, suppose I < b < r, l,r e C{F), and / chosen so small 
and r chosen so large that 

Then since F„(/, r ] F{1, r ] , we have 

F„((/,rr)->F((/,rr). 

So given e > 0, there exists no = no(e) such that n>nQ implies 

F„((/,rr)<2^. 
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= ( 1 - ^ - ( * + l o g / » ) j " 

= (1 - — ) " -> e x p { - e - ' } . 
n 

8.2 Scheffe's lemma 

Consider the following modes of convergence that are stronger than weak conver­
gence. 

(a) F„{A)^F(A), WAeBiR). 
(b) sup \F„(A)-F{A)\^0. 

AeB{R) 

Definition (a) (and hence (b)) would rule out many circumstances we would 
like to fall under weak convergence. Two examples illustrate the point of this 
remark. 

Remark 8.1.2 Weak limits are unique. If F„ A F, and also F„ G, then 
F = G. There is a simple reason for this. The set (C{F))^ U (C(G))*^ is countable 
so 

INT = C ( F ) n C ( G ) 

= R \ a countable set 

and hence is dense. For x G INT, 

F„{x)-^F{x), F„{x)^G{x), 

so F(x) = G(x) for x G INT, and hence by Lemma 8.1.1, we have F = G. 

Here is a simple example of weak convergence. 

Example 8.1.2 Let {X„, n > 1} be iid with common unit exponential distribution 

P[X„ >x] = e"^, A: > 0. 

Set M„ = v^ '^ j^ , for n > 1. Then 

M„-\ogn=>Y, (8.4) 

where 

P[Y <x] = exp{-e"^}, x eR. 

To prove (8.4), note that for x eR, 
n 

P[Mn - \ogn <x] = P{f^[X, <x + \ogn]) 
1=1 
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OO 

But if 

we have 

A = { ^ — 1 ^ :k>0,n>0], 
yfnpq 

Weak convergence, because of its connection to continuous functions (see The­
orem 8.4.1) is more useful than the convergence notions (a) or (b). The conver­
gence definition (b) is called total variation convergence and has connections to 
density convergence through Scheffe's lemma. 

Lemma 8.2.1 (Scheffe's lemma) Suppose [F,F„,n > 1} are probability distri­
butions with densities {f, fn,n > 1}. Then 

sup \Fn{B) - F{B)\ = i /* \fn{x) - f{x)\dx. (8.5) 
B€B(R) ^ J 

Example 8.2.1 (i). Suppose F„ puts mass ^ at points | , . . . , If 

F{x)=x, 0<x<l 

is the uniform distribution on [0,1], then for G (0,1) 

Fn{x)=^^-^x = F(x). 
n 

Thus we have weak convergence F„ => F . However if Q is the set of rationals in 
[0,1], 

F„(Q) = 1, F(Q) = 0, 

so convergence in the sense of (a) fails even though it seems natural that the 
discrete uniform distribution should be converging to the continuous uniform dis­
tribution. 

(ii) DeMoivre-Laplace central limit theorem: This is a situation similar to what 
was observed in (a). Suppose [Xn,n > 1} are iid, with 

P[Xn = 1] = p = 1 - P[Xn = 0]. 

Set 5„ = Yl"=i Xi, which has a binomial distribution with parameters p . Then 
the DeMoivre-Laplace central limit theorem states that 

•spm J-oo 
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If fn(x) fix) almost everywhere (that is, for all x except a set of Lebesgue 
measure 0), then 

I \fnix) - f(x)\dx 0. 

and thus Fn F in total variation (and hence weakly). 

Remarks. 

w • If Fn ^ F and Fn and F have densities / „ , / , it does not necessarily 
follow that fn(x) f (x). See Exercise 12. 

Although Scheffe's lemma as presented above looks like it deals with den­
sities with respect to Lebesgue measure, in fact it works with densities with 
respect to any measure. This is a very useful observation and sometimes a 
density with respect to counting measure is employed to deal with conver­
gence of sums. See, for instance. Exercise 4. 

Proof of Scheffe's lemma. Let B e B(R). Then 

1 - 1 = jifnix)- f(x))dx = 0. 

SO 

0= f ifnix)-
JB 

f{x))dx + ( ifnix)-
JB<^ 

f(x))dx. 

which implies 

I f (fnix) - f(x))dx\ = I f (fnix) - f{x))dx\. 
JB JB*' 

This leads to 

2|F„(5) - F ( 5 ) | = 2\ f ifn(x) - fix))dx\ 
JB 

(8.6) 

f (.fnix) - fix))dx\ + I f ifnix) - f ix))dx\ 
JB JB<^ 

< f \fnix)- fix)\dx+ f \fnix)- fix)\dx 
JB JB'' 

fnix) - fix)\dx. -I 
To summarize: 

s u p | F „ ( 5 ) - F ( 5 ) < \ j \fnix)- fix)\dx. 

file:///fnix
file:///fnix)-
file:///fnix)-
file:///fnix)-
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= f \fn{x)-f(x)\dx+ \f \f„(x)-f(x)\dx 
JB JB*^ 

= j \fn(x) - nx)\dx. 

So equality holds in (8.5). 
Now suppose fnix) f{x) almost everywhere. So / — ^ 0 a.e., and 

therefore ( / — /„)"*" 0 almost everywhere. Also 

( / - /«)•' < /, 

and / is integrable on M with respect to Lebesgue measure. Since 

0 = y*(fix) - fn(x))dx = j(f(x) - f„(x))^dx - j(f(x) - f„(x))-dx, 

it follows that 

f \f(x) - fn(x)\dx = j(f(x) - fn(x))^dx + J(f(x) - f„(x))-dx 

=^2J(f(x)-fn(x))-^dx. 

Thus 
(f-fn)^<feLu 

and 
( / - /«)•" ̂  0, 

a.e. and dominated convergence implies 

f \f(x)- f„(x)\dx-^0. 

J • 

8.2.1 Scheffe's lemma and Order Statistics 
As an example of one use for Scheffe's lemma, we consider the following limit 
result for order statistics. 

If we find some set B for which equality actually holds, then we will have 
shown (8.5). Set 5 = [/„ > / ] . Then from (8.6) 

2\F„{B) - Fm = I f (fnix) - nx))dx\ + I f {fn(x) - f{x))dxU 

and because the first integrand on the right is non-negative and the second is non-
positive, we have the equality 



256 8. Convergence in Distribution 

Then the density of ^„ converges to a standard normal density and hence by 
Scheffi's lemma 

sup |P[^„ ^B]- f -^e-"^f^du\ 0 
BeBCR) 

as n OO. 

Proof. The distribution of U^k,n) can be obtained from a binomial probability 
since for 0 < < 1, P[U{ic.n) < x] is the binomial probability of at least k 
successes in n trials when the success probability is x. Differentiating, we get the 
density f„(x) of U^k.n) to be 

(This density can also be obtained directly by a multimomial argument where 
there are 3 cells with proabilities x, dx and (1 —x) and cell frequencies k, 1 and 
n — k.) Since 

He TT Vk _ ( ! _ _ ) , 
n n n n 

as n oo, the convergence to types Theorem 8.7.1 discussed below assures us 
we can replace the square root in the expression for t« by Vk/n and thus we 
consider the density 

Vk y/k ^k  
fn( X + -). 

n ^ n n 
By Stirling's formula (see Exercise 8 of Chapter 9), as n -» oo. 

ni ? 

(k - l ) ! ( n - * ) ! _ i ) « - * + l / 2 • 

Proposition 8.2.1 Suppose {Un,n > \) are iid U(0,1) random variables so that 

P[Uj <x]=:x, 0<x <l 

and suppose 

< ^ ( 2 . , , ) < • • • < U(n,n) 

are the order statistics so that = minjL^i, ...,U„}, U{2.n) is the second 
smallest and U^„^n) is the largest. Assume k = k{n) is a function of n satisfying 
k(n) oo and k/n 0. as n oo. Let 
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: ( ! + — 7 — 7 = ) " - * . 
V2^^^ ' yfk' {n-k)/yfk' 

It suffices to prove that 

or equivalently, 

(* - 1) log(l + ^ ) + (« - *) log(l - ^ ^ ^ ) - ^ . (8.7) 

Observe that, for |r| < 1, 

oo n 
- i o g ( i - o = E r -

and therefore 

r2 
6{t) : = : | - l o g ( l - 0 - ( r + y ) ! 

00 I . i 3 
^ E l ^ l " = T317T^2|r|3, (8.8) 

n=3 

if |r I < 1/2. So the left side of (8.7) is of the form 

where 

o{\) = ( k - 1)5(4=) + - ^ - 7 f ) 0. 
VA: (n - A:)/VA: 

Neglecting o(l) , (8.7) simplifies to 
X 1 1 2 

Neglecting the factorials in the expression for the density, we have two factors of 
the form 

l(jr(;. |)-(i-ir(,-^r. 
Thus we get for the density of the following asymptotic expression 

1 . X L t X 
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then 

Xn ^ " X, 

Xn =>X. 

a.s. Proof. Suppose Xn X and let F be the distribution function of X. Set 

N = [Xn^ Xf 

so that P(N) = 0. For any h > 0 and x G C(F), we have the following set 
containments: 

N'^niX <x -h]C lim'mf[Xn <x]nN'' 
n—•CO 

C limsup[X„ <x]nN'' 

c[x <x]n 

and hence, taking probabilities 

F(x - h) < P(lim inf[^„ < x]) 
n-voo 

< l iminfP[^„ <x] 
n-»>oo 

< limsup P[A'„ < x] 
/ l -»-00 

< P(limsup[^„ <x]) 
n->oo 

(from Fatou's lemma) 

(from Fatou's lemma ) 

< F(x). 

Since x e C{F), let /i i 0 to get 

F(x) < l iminfF„(A:) < l imsupF„(A:) < F(x). 
• The cSnverse if false: Recall Example 8.1.1. 

Despite the fact that convergence in distribution does not imply almost sure 
convergence, Skorohod's theorem provides a partial converse. 

8.3 The Baby Skorohod Theorem 

Skorohod's theorem is a conceptual aid which makes certain weak convergence 
results easy to prove by continuity arguments. The theorem is true in great gener­
ality. We only consider the result for real valued random variables and hence the 
name Baby Skorohod Theorem. 

We begin with a brief discussion of the relationship of almost sure convergence 
and weak convergence. 

Proposition 8 J . 1 Suppose [X, X„,n > 1} are random variables. If 
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and 
^ , 1 ~^ ^ 0 

where a.s. means almost surely with respect to X. 

Note that Skorohod's theorem ignores dependencies in the original {X„] se­
quence. It produces a sequence [X^] whose one dimensional distributions match 
those of the original sequence but makes no attempt to match the finite dimen­
sional distributions. 

The proof of Skorohod's theorem requires the following result. 

Lemma S3.1 Suppose Fn is the distribution function ofXn so that Fn = > F Q . / / 

r G ( 0 , l ) n C ( F n , 

then 

Proof of Lemma 8 J . 1 . Since C(Fo)*^ is at most countable, given e > 0, there 
exists X G C(Fo) such that 

F^{t)-€ <x <F^{t). 

From the definition of the inverse function, x < F^{t) implies that F{x) < t. 
Also, X G C(Fo) implies F„{x) Fo(x). So for large n, we have Fn{x) < t. 
Again, using the definition of the inverse function, we get x < F„'*~(r). Thus 

F^{t)-€ <x<F;r(0 

for all large n and since ^ > 0 is arbitrary, we conclude 

Fo" (0 < l i m i n f F , r ( 0 - (8.9) 

Note that we have not yet used the assumption that r is a continuity point of FQ*" 
and this is used for the reverse inequality. 

Whenever t' > r, we may find y G C(Fo) such that 

FQ-{t')<y<FQ-{t') + €. 

Theorem 83.2 (Baby Skorohod Theorem) Suppose {Xn,n > 0} are random 
variables defined on the probability space (Q, B, P) such that 

X„ => XQ. 

Then there exist random variables {A'J, n > 0] defined on the Lebesgue proba­
bility space ([0,1], JB([0, 1]), X = Lebesgue measure) such that for each fixed 
n>0, 
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This gives 
Foiy) >t' >t. 

Since y e C(Fo), F„{y) Fo(y) and for large /i, F„{y) > r, therefore y > 
F„*"(r), and thus 

FQ-(t') + €>y>F„-(t) 

for all large n. Moreover, since ^ > 0 is arbitrary, 

limsupF„*-(0<Fo*-(0. 
fl-^OO 

Lett' i t and use continuity of FQ*" at t to conclude that 

limsupF„*-(r) < F^{t). (8.10) 

The two inequalities (8.9) and (8.10) combine to yield the result. • 

This lemma only guarantees convergence of F„*" to FQ*~ at continuity points of 
the limit. However, convergence could take place on more points. For instance, if 
F„ — Fo for all n, F„*~ = FQ*" and convergence would be everywhere. 

Lemma 8.3.1 allows a rapid proof of the Baby Skorohod theorem. 

Proof of the Baby Skorohod Theorem. On the sample space [0,1], define the 
random variable U{t) — t so that U is uniformly distributed, since for 0 < < 1 

X[U < A:] = X{r 6 [0,1]: (/(O < Jc} = X[0, x] = x. 
For n > 0 define on [0,1] by 

Xl = FiTiU). 

Then for 3; 6 E 

< J'] = e [0,1]: Frit) <y] = X{r G [0,1]: r < F„iy)] = F„{y). 

So we conclude that X^ ^ X„, for each n >0. 
Next, we write 

k{t e [0,1] :X^„{t) A A-JCO) 

= k{t e [0,1]: F„*-(0 A F^it)}, 

and using Lemma 8.3.1, this is bounded by 

< k{t 6 [0,1]: FQ*" is not continuous at t ] 

= X{ a countable set} = 0. P 
The next corollary looks tame when restricted to M , but its multidimensional 

generalizations have profound consequences. For a map /i : R H> R , define 

Disc(/2) — [x : h is not continuous atx } = {C{h)Y. 
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Corollary 8 J . l (Continuous Mapping Theorem) Let {A'„,n > 0} fee a se­
quence of random variables such that 

Xn => XQ. 

For n >0, assume Fn is the distribution function of Xn- Let A : R h->- R satisfy 

P[Xo e Disc(h)] = 0. 

Then 

h{Xn) =^ h(Xo), 

and ifh is bounded, dominated convergence implies 

Eh(X„) = jh(x)F„(dx) -> Eh{x) = j h{x)Fo{dx). 

Remark. Disc(/i) is always measurable even if h is not. 
As a quick example, if X„ XQ, then X^ XQ which is checked by applying 

the continuous function (so Disc(/i) is empty) h{x) = x^. 

Proof. The proof of the corollary uses the Baby Skorohod Theorem which iden­
tifies new random variables X^ = Xn,n > 0, with X^ defined on [0,1]. Also 
X^„{t) X^it) for a.a. t. UX^{t) e C(h), then h{X^„{t)) h{X^{t)). Thus, 

X[t e [0,1] MX^„(t)) ^ hiX^^m 
> k{t e [ 0 , 1 ] : 4 ( 0 6 (Disc(/2))^} 

= P([Xo e Disc(A)f) = 1. 

So h(X^) hiXg) almost surely with respect to X, and since almost sure con­
vergence implies convergence in distribution, we have 

h{Xn) i h(X'„) =^ h(X'o) ^ h{Xo) 

s o t h a t / 2 ( ^ „ ) = > h{Xo). • 

8.3.1 The Delta Method 
The delta method allows us to take a basic convergence, for instance to a limiting 
normal distribution, and apply smooth functions and conclude that the functions 
are asymptotically normal as well. 

In statistical estimation we try to estimate a parameter 9 from a parameter set 
0 based on a random sample of size n with a statistic 

Tn — Tn{Xi, .. . , Xn)' 

This means we have a family of probability models 

{(Q,B,Pe),9ee], 



262 8. Convergence in Distribution 

and 

Z* ^ a.s. (X). 

Define 

^ * = / i - t - a Z ; / V ^ , 

and we are trying to choose the correct model. The estimator T„ is consistent if 

for every 9. The estimator T„ is CAN, or consistent and asymptotically normal, if 
for all ^ 6 0 

lim Pe[crnan-e)<x] = N(0,Ux), 

for some cr„ ^ oo. 
Suppose we have a CAN estimator of 6, but we need to estimate a smooth 

function g{9). For example, in a family of exponential densities, 6 may represent 
the mean but we are interested in the variance 0^. We see from the delta method 
that giT„) is also CAN for giO). 

We illustrate the method using the central limit theorem (CUT) to be proved in 
the next chapter. Let {Xj, j > 1} be iid with E(X„) - fi and VarCA'n) = or^. 
From the CLT we get 

^ mo, 1 ) . 

where N(0, 1 ) is a normal random variable with mean 0 and variance 1. Equiva­
lently, we can express this in terms of A" = X]?=i ^i/n as 

So X is consistent and an asymptotically normal estimator of fi. The delta method 

asserts that if g{x) has a non-zero derivative g'ifi) at fi, then 

^ / £ m ^ ) = , A , ( 0 . l ) . (8 .11) 

S o g W is CAN for 

Remark. The proof does not depend on the limiting random variable being AT ( 0 , 1 ) 
and would work equally well if Ar (0 ,1) were replaced by any random variable Y. 

Proof of ( 8 . 1 1 ) . By the Baby Skorohod Theorem there exist random variables 
and iV* on the probability space ( ( 0 , 1 ) , JB((0, 1 ) ) , A.) such that 
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so that X = X . Then using the definition of derivative 

g(/i + a Z j / > ) - g ( M ) crZ^„ 

—^ TT^ = N'' = N, 
crg'if^) 

since c rZ* /v^ -> 0 almost surely. This completes the proof. • 

Remark. Suppose {X„, n > 0} is a sequence of random variables such that 

X„ XQ. 

Suppose further that 
/2 : R § , 

where S is some nice metric space, for example, S = R^. Then if 

P[Xo e Disc(/0] = 0, 

Skorohod's theorem suggests that it should be the case that 

h{X„)=^h{X) 

in S . But what does weak convergence in S mean? Read on. 

8.4 Weak Convergence Equivalences; 
Portmanteau Theorem 

In this section we discuss several conditions which are equivalent to weak conver­
gence of probability distributions. Some of these are of theoretical use and some 
allow easy generalization of the notion of weak convergence to higher dimensions 
and even to function spaces. The definition of weak convergence of distribution 
functions on R is notable for not allowing easy generalization to more sophis­
ticated spaces. The modern theory of weak convergence of stochastic processes 
rests on the equivalences to be discussed next. 

We nead the following definition. For A e B(R), let 

9(A) = the boundary of A 

= A~ \ A° = the closure of A minus the interior of A 
= [x :3y„ eA, y„ ^ X and 32„ e A^, z„ ^ x] 

= points reachable from both outside and inside A. 
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Theorem 8.4.1 (Portmanteau Theorem) Let {F„,n > 0} be a family of proper 
distributions. The following are equivalent. 

(1) F„ Fo. 

(2) For all f : R i-> E which are bounded and continuous, 

j fdF„ ^ j fdFo. 

Equivalently, ifXn is a random variable with distribution Fn (n > 0), then 
for f bounded and continuous 

Ef{X„) ^ F/(;^o). 

(3) If A e B(M) satisfies Fo{d(A)) = 0, then 

F„{A) ^ Fo(>\). 

Remarks, (i) Item (2) allows for the easy generalization of the notion of weak 
convergence of random elements , n > 0} whose range S is a metric space. 
The definition is 

iff 
Eifi^n)) -> F(/(^o)) 

as n ^ oo for all test functions / : S h->- R which are bounded and continuous. 
(The notion of continuity is natural since S is a metric space.) 

(ii) The following clarification is necessary. Portmanteau is not the name of the 
inventor of this theorem. A portmanteau is a large leather suitcase that opens into 
two hinged compartments. Billingsley (1968) may be the first to call this result 
and its generalizations by the name portmanteau theorem. He dates the result back 
to 1940 and attributes it to Alexandrov. 

Proof. (1) (2): This follows from Corollary 8.3.1 of the continuous mapping 
theorem. 

(1) ^ (3): Let f{x) = IA{X). We claim that 

a(A) = Disc ( lA) . (8.12) 

To verify (8.12), we proceed with verifications of two set inclusions. 

(i) 9(A) C Disc ( lA) . This is checked as follows. If AC e 9(A), then there exists 

y„ e A, andy„ -> x, 
Zn e A^, andzn x. 

So 
1 = U(> '« ) -^ 1, 0 = 1 ^ ( 2 „ ) ^ 0 

implies AC e Disc ( l^) . 
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/ gkdFo i Fo([fl,fel) = Fo((fl.b]). 
J 

We conclude that 
limsupF„(c,fe] < Fo(a,b]. 

Next, define new functions hk whose graphs are trapezoids of height 1 obtained 
by taking a rectangle of height 1 with base [a + , b - k~^] and stretching the 
base symmetrically to obtain [a, b]. Then hk t l(o.f>) and 

^n(a,b]> jhkdF„^ jhkdFo, 

(ii) Disc(l,\) C 8(A): This is verified as follows. Let A: 6 Disc(l^). Then 
there exists AC„ - > x, such that 

IA(X„)7^ IA(X). 

Now there are two cases to consider. 

Case (i) 1A(X) = I. Then there exists n' such that lA(xn') 0. So for all 
large n\ lA(Xn') = 0 and x„' e A^. Thus x„' e A^, and x„' x. 
Also \eiy„ = x e A and theny„ x,sox e 9(A). 

Case (ii) 1A(X) = 0. This is handled similarly. 

Given A G B(R) such that Fo(d(A)) = 0, we have that Fo({x : x € Disc ( lA)} = 
0 and by the continuous mapping theorem 

j lAdF„ = F„(A) ^ j UdFo = Fo(A). 

( 3 ) ^ ( 1 ) : Let A: G C(Fo). We must show F„ (JC ) -> F(jc). But if 4̂ = (-oo^x], 
then d(A) = [x] and Fo(9(A)) = 0 since Fo({x]) = 0 because x e C(Fo). So 

Fn(A) = F„(x) ^ Fo(A) = Fo(x). 

(Recall, we are using both F„ and F Q in two ways, once as a measure and once as 
a distribution function.) 

(2) (1). This is the last implication needed to show the equivalence of (1), 
(2) and (3). Lei a, be C(F). Given (2), we show F„(a, b] ^ Fo(a, b]. 

Define the bounded continuous function gk whose graph is the trapezoid of 
height 1 obtained by taking a rectangle of height 1 with base [a. b] and extending 
the base symmetrically io[a —k~^,b + . Then gk i ^[a,b] as A: oo and for 
all k, 

FAa, b] = Ua.b]dF„ < j gkdF„ j gkdFo 

as n ^ oo due to (2). Since gk < I, and gk i we have 
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for all k . By monotone convergence 

j hkdFo t Fo((fl, b)) = Fo((fl, b]) 

as A: ^ oo, so that 
\[min{F„aa,b])>Fo{{a,b]). • 

Sometimes one of the characterizations of Theorem 8.4.1 is much easier to 
verify than the definition. 

Example 8.4.1 The discrete uniform distribution is close to the continuous 
uniform distribution. Suppose F„ has atoms at i/n, 1 < i < n of size 1/n. Let 
FQ be the uniform distribution on [0,1]; that is 

F(x) -X, 0 < AC < 1. 

Then 
Fn => FQ. 

To verify this, it is easiest to proceed by showing that integrals of arbitrary 
bounded continuous test functions converge. Let / be real valued, bounded and 
continuous with domain [0,1]. Observe that 

j fdFn^Y.f{i/n)^ 
1=1 

= Riemann approximating sum 
• 1 

/{x)dx {n oo) 

/ 
' 0 

fdFQ 

where FQ is the uniform distribution on [0,1]. • 

It is possible to restrict the test functions in the portmanteau theorem to be 
uniformly continuous and not just continuous. 

Corollary 8.4.1 Let {F„, n > 0} fee c family of proper distributions. The follow­
ing are equivalent. 

(1) F„ => FQ. 

(2) For all f : K R which are bounded and uniformly continuous, 

jfdF.^j fdFQ. 

Equivalently, ifXn is a random variable with distribution Fn in > 0), then 
for f bounded and uniformly continuous 

Ef{X„) -> EfiXQ). 
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8.5 More Relations Among Modes of Convergence 

We summarize three relations among the modes of convergence in the next propo­
sition. 

Proposition 8.5.1 Let [X,X„,n > 1} be random variables on the probability 
space P). 

(i) If 

then 

(ii) If 

then 

Xn X, 

p 
Xn X. 

p 
Xn —> X, 

X„=i^X. 

All the converses are false. 

Proof. The statement (i) is just Theorem 6.2.1 of Chapter 6. To verify (ii), suppose 
p 

Xn X and / is a bounded and continuous function. Then 

f{Xn) ^ f{X) 

by Corollary 6.3.1 of Chapter 6. Dominated convergence implies 

E{f{X„)) ^ E{f{X)) 

(see Corollary 6.3.2 of Chapter 6) so 

Xn-^X 

by the portmanteau theorem. • 

There is one special case where convergence in probability and convergence in 
distribution are the same. 

Proof. In the proof of (2) (1) in the portmanteau theorem, the trapezoid func­
tions are each bounded, continuous, vanish off a compact set, and are hence uni­
formly continuous. This observation suffices. • 
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0, if A: < c, 
1, if A: > c. 

• 

Xn^C 

means P[\X„ - c\ > c] 0 which happens iff 

P[X„ < c - ^ 0 and P[Xn < c + ^] ^ 1. 

8.6 New Convergences from Old 

We now present two results that express the following fact. If X„ converges in 
distribution to X and Y„ is close to Xn, then Y„ converges in distribution to X as 
well. 

Theorem 8.6.1 (Slutsky's theorem) Suppose [X,X„,Y„,^„,n > 1} are ran­
dom variables. 

(a) IfX„ => X, and 

X„-Yn-^ 0, 

then 

Y„=^X. 

(b) Equivalently, ifX„ => X, and^„ 0, then 

X„+^„=^X. 
Proof. It suffices to prove (b). Let / be real valued, bounded and uniformly con­
tinuous. Define the modulus of continuity 

a)8{f)= sup \f{x)-fiy) 
[x-y\<8 

Proposition 8.5.2 Suppose {Xn,n > 1} are random variables. If c is a constant 
such that 

Xn-^c, 

then 

and conversely. 

Proof. It is always true that convergence in probability implies convergence in 
distribution, so we focus on the converse. If 

X„=^c 

then 

P[X„ <x]-^ 

and 
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Because / is uniformly continuous, 

cobif) ^ 0 , 5 ^ 0 . (8.13) 

From Corollary 8.4.1 if suffices to show E / ( ^ „ + ^„) Ef{X). To do this, 
observe 

\Ef{X„+^„)-Ef{X)\ 

< \Ef{Xn + Hn) - Ef{X„)\ + \Ef(X„) - Ef(X)\ 

= E\f{X„+^„) - /(^„)|1[|^„|<5] + 2 sup | / (Ac ) |P [ | ^ J > 8] +oil) 
X 

(since Xn => X) 

= oil) + a^sif) + (const)P[|^„| > 8]. 

The last probability goes to 0 by assumption. Let 5 - ^ 0 and use (8.13). • 

Slutsky's theorem is sometimes called the converging together lemma. Here 
is a generalization which is useful for truncation arguments and analyzing time 
series models. 

Theorem 8.6.2 (Second Converging Together Theorem) Let us suppose that 
{Xun, Xu,Yn, X; n > 1 , M > 1} are random variables such that for each n, 
Yn y Xun, M > 1 cire defined on a common domain. Assume for each u, asn oo, 

Xun =̂  Xui 

and as u oo 
Xu -^X. 

Suppose further that for all ̂  > 0, 

lim XimsuxiP[\Xun - > ^] = 0. 

Then we have 
Yn^X 

as n oo. 

Proof. For any bounded, uniformly continuous function / , we must show 

lim EfiYn) = Ef{X). 
fl-^OO 

Without loss of generality, we may, for neatness sake, suppose that 

sup | / ( j t ) | < 1. 
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Now write 

\Ef(Y„) - Ef(X)\ < E\f(Y„) - f{X,„)\ + E\f{X,„) - f{X,)\ 
+ E\f{X,)-f{X)\ 

so that 

l i m s u p | £ / ( y „ ) - £ / O T | 
«-»-00 

< lim l i m s u p £ | / ( y „ ) - / ( ^ „ „ ) | - | - 0 + 0 

< lim l i m s u p £ | / ( y „ ) - / ( ^ „ „ ) | l [ | y „ _ A ' „ „ | < « ] 
u-*oo „_voo 

+ lim l i m s u p £ | / ( y „ ) - / ( ^ „ „ ) | l [ | y „ _ A ' „ „ | > f ] 
u-»-oo „_>oo 

<sup{\f{x)-fiy)\:\x-y\<€} 
+ lim limsupP[|y„ > €] 

0 

as 6 0. • 

8.6.1 Example: The Central Limit Theorem for m-dependent 
random variables 

This section discusses a significant application of the second converging together 
theorem which is often used in time series analysis. In the next chapter, we will 
state and prove the central limit theorem (CLT) for iid summands: Let {X„, n > I] 
be iid with jj. = E{Xi),cr^ = Var(A'i). Then with 5„ = IZ"=i ^ i . we have partial 
sums being asymptotically normally distributed 

^ = =̂̂ 4̂  ^ ; . ( 0 , 1 ) . (8.14) 
Gy/n VVar(5„) 

In this section, based on (8.14), we will prove the CLT for stationary, m-dependent 
summands. 

Call a sequence {Xn, n > 1] strictly stationary if, for every k, the joint distri­
bution of 

is independent of n for n = 0 , 1 , Call the sequence m-dependent if for any 
integer t, the cr-fields o(Xj, j < t) and cr(Xj, j > r -|- m -|-1) are independent. 
Thus, variables which are lagged sufficiently far apart are independent. 

T^e most common example of a stationary m-dependent sequence is the time 
series model called the moving average of order m which is defined as follows. 
Let {Z„] be iid and define for given constants c i , . . . , C;;, the process 

m 
Xt — ̂  ^cjZt—j, t ~ 0,1,... . 

1=1 
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Cov{Xt,Xt^h) = EiXtXt^h) =: vih). 

Suppose 
m 

Then 

and 

Vm : = K ( 0 ) + 2 j ] > / 0 ) 7 ^ 0 . 

4 = y ; ^ ' =^^(o , i ;„ ) , (8.15) 

nVariXn) u ,̂,, (8.16) 

where X,,=Y.U\Xtln. 

Proof. Part 1: Variance calculation. We have 

nVar(^„) = ^E^J^Xi)^ = ^̂ ÊÊ '̂ ;) 
^ 1=1 ^ 1 = 1 ; = 1 

1=1 j=\ 

= - y^mj)--j-i=k)y{k) 
\k\<n 

|it|<,l \ " / 

This last step is justified by noting that, for example when A: > 0, / could be 
1,2 n —k and ; = A: 4- /. Thus we conclude that 

, /Var(^„)= T {\-—\Yik). 
\k\<n 

Recall that >/(/) = 0 if |/| > m and as n ^ oo 

nVar(^„)-> y(A:) = i;,;,. (8.17) 
|A:|<0O 

Part 2: The big block-little block method. Pick u > 2m and consider the fol­
lowing diagram. 

Theorem 8.63 (Hoeffding and Robbins) Suppose {X„,n > 1} is a strictly sta­
tionary and m-dependent sequence with E{X\) = 0 and 
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1st 
little 
block 

2nd 
little 
block 

• • 
H 1 1 h-

M 2u-m 2u + H 1 

1st 
big 

block 

u-m 

2nd 
big 

block 

Let 
r — 

n 
UJ 

so that r/n l/u and define 

( r - l )M 

rth 
big 

block 

ru-m 

H\ = ^ 1 H 1- Xu-m, 

^2 — Xu+i H f- Xiu-m, 

ru n 
•< • 

remainder 

= A'(r-l)«+l H h Xru-m 

which are the "big block" sums. Note by stationarity and m-dependence that 
are iid because the little blocks have been removed. 

Define 

Xun • — 
^1 + • • • -i-

Note 

as n oo. From the CLT for iid summands, as w ̂  oo 

Xun => N(0, — ) = : Xw 

Now observe, that as M — o o 

Var(^i) V a r ( E r j r ^ / ) _ ( w - ^ ) ^ Var 
u u 

= ( M -m)Var(A^„_„) 

u 
u—m 

u 
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from the variance calculation in Part 1. Thus, as M oo, 

u 

since a sequence of normal distributions converges weakly if their means (in this 
case, all zero) and variances converge. 

By the second converging together theorem, it remains to show that 

lim lim sup P [ 
«-»-00 

For / = 1 , . . . , r — 1, let 

Xun > 6 ] = 0. (8.18) 

B, = { / M — /« 4-1 iu] 

be the m integers in the /th little block, and let 

Br = {ru — m + ly..., n] 

be the integers in the last little block coupled with the remainder due to u not 
dividing n exactly. Then we have 

1 j^x.+.--+ J2 x, + J2x, 
and all sums on the right side are independent by m-dependence. So 

' - Xunj = - ( ( ' • - l ) V a r ( ^ X i ) + Var( ^ Xi)j 

Note that 

h(n) : = n — ru-{-m + l = n — 

<n-{--l)u+m + l 
u 

n 
LUJ 

Thus for fixed M , as w oo, 

/»(") 
Van 

n n ' n 

Also, since rjn 1/u as n oo 

1 / m \ , m 
- (r - l ) V a r ( Y ; ; ^ , ) -Va r (Y ; ; ^ , -
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lim IimsupP[ -X. un 

< lim lim sup 4rVar( ^ ' = L ^ ' -

= lim 
U-VOO 

-Var(X; ,̂) + OJ 
= 0. 

This completes the proof. • 

8.7 The Convergence to Types Theorem 

Many convergence in distribution results in probability and statistics are of the 
following form: Given a sequence of random variables [^n,n > 1} and a„ > 0 
and bn G E , we prove that 

^n-b„ 

a. 
Y, 

where y is a non-degenerate random variable; that is, Y is not a constant a.s. This 
allows us to write 

P[^"~^" <x]^ P[Y < x] =: G(x), 
an 

or by setting y = a„x + bn 

P[^n<y]^Gi^^). 
an 

This allows us to approximate the distribution of ^„ with a location-scale family. 
The question arises: In what sense, if any are the normalizing constants a„ and 

bn unique? If we changed normalizations, could we get something significantly 
different? 

The answer is contained in the convergence to types theorem. The normaliza­
tions are determined up to an asymptotic equivalence and the limit distribution is 
determined up to location and scale. 

Example. As a standard example, supppse [Xn, n > 1} are iid with E{Xn) = p 
and \zi{Xn) = o^. The Central Limit Theorem states that for each x 

as M oo and we have by Chebychev's inequality 
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Theorem 8.7.1 (Convergence to T^pes Theorem) We suppose U(x) and V{x) 
are two proper distributions, neither of which is concentrated at a point. Sup­
pose for n > 0 that X„ are random variables with distribution function F„ and 
the U, V are random variables with distribution functions U (x), V{x). We have 
constants an > 0,a„ > 0, fe„ G R, ^ „ G R 

(a) If 

F„{a„x + b„) ^ U{x), F„{a„x + /3„) ^ V(x) (8.19) 

or equivalently 

^[lLZh.^U, ^^JL^=^V, (8.20) 

then there exist constants A > 0, and B G R such that as n oo 

^ _ ^ A > 0 , ^!LZ^-^B, (8.21) 
On a„ 

and 

V(x)=U{Ax-\-B), V = ^ ^ - ^ . (8.22) 

(b) Conversely, if (8.21) holds, then either of the relations in (8.19) implies the 
other and (8.22) holds. 

Proof, (b) Suppose 

w 
G„(x) F„{a„x + b„)U{X) 

so that 

where N{x) is the standard normal distribution function. 

Definition. Two distribution functions V {x) and V{x) are of the same type if there 
exist constants A > 0 and B G M such that 

V{x) = V{,Ax 4- B). 

In terms of random variables, if X has distribution V and Y has distribution V, 
then 

A ' 
For example, we may speak of the normal type. If A'o.i has 7V(0, \,x) as its 

distribution and A'^.a has N{p, a^) as its distribution, then A'^.a = or A'o.i 4- p. 
Now we state the theorem developed by Gnedenko and Khintchin. 
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and 

a„/a„ A > 0, • B. 
an 

Then 

a„ an ' 

Pick X such that x G C{U{A • 4-B)). 
Suppose A: > 0. A similar argument works if A: < 0. Given € > 0 for large n, 

we have 

{A-€)x + B - e <—x + {^"~^") < (A 4- €)x + (B -H €), 
an an 

so 

lim sup Fnianx + < lim sup G„((A + €)x 4- (B + €)). 
n-*oo n-*oo 

Therefore, for any z e C(U(•)) with z > (A + €)x -H (B + €). we have 

limsupF„(or„Ac + < lim sup G „ ( 2 ) = U{z). 
n-*oo n-*-oo 

Thus 
lim sup Fn {oinX + < mf U (z). 

,i-..oo z>{A+f)x+(,B+() 

Since ^ > 0 is arbitrary. 

lim sup Fn (anx 4- < inf U(z) =:U(Ax + B) 
,i-».oo z>Ax+B 

by right continuity of U (•). Likewise, 

liminfF„(a„A: 4-^„) > lim inf G„((A - 4- B -
«-»-00 «-»-00 

> l i m i n f G „ ( 2 ) = G ( 2 ) 
«-»-00 

for any z < (A — €)x 4- B — e and z 6 C(Ui)). Since this is true for all 6 > 0, 

l iminfF„(a„A:4-^„) > sup U{z) = U{Ax + B), 
z<Ax+B 
zeC(U()) 

sinceAA:4-B GC{U{-)). 
We now focus on the proof of part (a). Suppose 

Fnianx 4- bn) ^ U{x), Fnianx 4" V{x). 



8.7 The Convergence to Types Theorem 277 

Recall from Lemma 8.3.1 that if € „ then also G;J~ ^ G"^. Thus we have 

an 
Fn^(y) - fin 

Since U{x) and V{x) do not concentrate at one point, we can find y\ < yi with 
yi G C(L^^) n C ( V ^ ) , for / = 1,2, such that 

- o o < U'^iyi) < U^(y2) < oo, 

and 

- o o < V^iyi) < V^iyz) < oo. 

Therefore, for / = 1,2 we have 

^^M^^U-'M, ^"^^y'^-^" ^V-(yi). (8.23) 
an 0(„ 

In (8.23) subtract the expressions with i = 1 from the ones with / = 2 to get 

^ ^ ( ^ 2 ) - F„^(yi) 
a„ 

Friyi) - Fr(yi) 
or. 

U^iy2)-U-(yi), 

V^iyO-V^iyO. 

Now divide the second convergence in the previous line into the first convergence. 
The result is 

_^ U^(y2)-u^{yi) ^ . ^ > 0 
an ~^ V--(y2) - V^(yi) 

Also from (8.23) 

an 
^r(yi) - fin _F„^{yi)-fi„ a , , _^ v^(yi)A 

a„ a„ a„ 

so subtracting yields 

^ V^(yi)A - U-'iyi) = : B, 
an 

as desired. So (8.21) holds. By part (b) we get (8.22). • 
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V 

and IJ is non-constant, we can always center by choosing fe„ = F^{y\) 
and we can always scale by choosing fl„ = F„*"(>'2) — F^{y\). Thus quan­
tiles can always be used to construct the centering and scaling necessary to 
produce convergence in distribution. 

(2) Consider the following example which shows the importance of assuming 
limits are non-degenerate in the convergence to types theorem. Let 

Then 

0, if r < c, 
1, i f r > c . 

L^*-(0 = inf{3;:L^(>')>r} = 
- o o , ifr = 0, 
c, i f O < r < l , 
oo, if r > L 

8.7.1 Application of Convergence to Types: Limit Distributions 
for Extremes 

A beautiful example of the use of the convergence to types theorem is the deriva­
tion of the extreme value distributions. These are the possible limit distributions 
of centered and scaled maxima of iid random variables. 

Here is the problem: Suppose [Xn,n > 1} is an iid sequence of random vari­
ables with common distribution F. The extreme observation among the first n 
is 

M„ :=\JXi. 

Theorem 8.7.2 Suppose there exist normalizing constants c, i > 0 and fe„ G R 
such that 

F"(a„x + b„) = < ;c] ^ G(x), (8.24) 
an 

where the limit distribution G is proper and non-degenerate. Then G is the type 
of one of the following extreme value distributions: 

(i) <i>a{x) = expi-x-"], X >0, a > 0, 

Remarks. 

(1) The theorem shows that when 

Xn - b„ 
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exp{-U)"} , X <0, a > 0 
1 X >0, 

(iii) A(x) = exp{-e-^}, x eU. 

The statistical significance is the following. The types of the three extreme 
value distributions can be united as a one parameter family indexed by a shape 
parameter y G E : 

Gy(x) = exp{-( l + yx)-^^y}, l-hyx>0 

where we interpret the case of >/ = 0 as 

Go = exp{-e" ' '} , x GR. 

Often in practical contexts the distribution F is unknown and we must estimate 
the distribution of M„ or a quantile of M„. For instance, we may wish to design a 
dam so that in 10,000 years, the probability that water level will exceed the dam 
height is 0.001. If we assume F is unknown but satisfies (8.24) with some Gy as 
limit, then we may write 

P[M„<x]^Gy(a;Hx-b„)), 

and now we have a three parameter estimation problem since we must estimate 
y,a„,b„. 

Proof. We proceed in a sequence of steps. 
Step (i). We claim that there exist two functions a(t) > 0 and /S(r), r > 0 such 

that for all t > 0, 

^^a(t), ^ ^ I L Z h ^ ^ m , (8.25) 
a[nt] a[„t] 

and also 

G'(x) = G(a(t)x + m ) ' (8.26) 

To see this, note that from (8.24), for every r > 0, we have on the one hand 

F^"'ha[„,^x-\-b[„,^)ZG(x) 

and on the other 

F^"'ka„x + b„) = (F"(a„x 4- b„))^"'^^" G'(x). 

Thus and G are of the same type and the convergence to types theorem is 
applicable. Applying it to (8.25) and (8.26) yields the claim. 

(ii) ^aix) = 
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a[nt] 
is measurable for each n. Since does not depend on r, the previous statement 
is true if the function 

is measurable. Since this function has a countable range {aj, j > 1} it suffices to 
show 

[t >0: a[nt] = aj] 
is measurable. But this set equals 

U [-.—). 
k:atc=aj 

which, being a union of intervals, is certainly a measurable set. 
Step (iii). Facts about the Hamel Equation. We need to use facts about possi­

ble solutions of functional equations called Hamel's equation and Cauchy's equa­
tion. If f(x),x > 0 is finite, measurable and real valued and satisfies the Cauchy 
equation 

f(x+y) = fix) + fiy), x>0,y>0, 

then / is necessarily of the form 

fix) = cx, X > 0, 

for some c G M . A variant of this is Hamel's equation. U (f)ix),x > 0 is finite, 
measurable, real valued and satisfies Hamel's equation 

<t>ixy) = <t>ix)<Piy), x>0,y>0, 

then (p is of the form 
<t>ix)=x^, 

for some p eR. 
Step (iv). Another useful fact. If F is a non-degenerate distribution function and 

Fiax + b) = Ficx +d) Wx e M , 

for some a > 0, and c > 0, then a = c, and b = d. A proof of this is waiting for 
you in the exercises (Exercise 6). 

Step (ii). We observe that the function a(t) and ^( /) are Lebesgue measurable. 
For instance, to prove a ( ) is measurable, it suffices (since limits of measurable 
functions are measurable) to show that the function 

an 
t 
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Step (v). Now we claim that the functions a() and ^ ( 0 satisfy (r > 0, 5 > 0) 

a(ts) = a(t)a(s), (8.27) 

^(ts)=a(t)m + m (8.28) 

= a (5 ) /3(0 4- /3 (5) , (8.29) 

the last line following by symmetry. 
To verify these assertions we use 

G'{x) = G(a{t)x + m ) 

to conclude that 

G(a(ts)x 4- m ) ) = G'Hx) = (G^x))' 
= (G(a(s)x + ^(s))y 

= G(a(t)[a(s)x + m ] + m ) 
= G(a{t)a(s)x 4- a(/)/3(s) 4- /3(/)). 

Now apply Step (iv). 
Step (vi). Now we prove that there exists 6 such that a(t) = t^.lfO = 0, 

then P(t) = c log / , for some c G M. If ^ ^ 0, then fi(t) = c( l - r^), for some 
C G M. 

Proof of (vi): Since a() satisfies the Hamel equation, a(t) = t^ for some 
^ G R. If ^ = 0, then a(t) = l and /3(r) satisfies 

/ 3 ( r5) = /3(5) 4- m -

So exp{/S()} satisfies the Hamel equation which implies that 

exp{^(r)} = 

for some c G M and thus ^(r) = c logr. 
If^ 7«t 0, then 

Pits) = a(t)P(s) 4- /3(r) = a(5)/3(r) 4- /3(5). 

Fix So 1 and we get 

c^(0/3(so) 4- /3(r) = a(so)m + / 3 (5o) , 

and solving for ^(t) we get 

/ 3 ( r ) ( l - a ( so ) ) = / 3 ( so ) ( l - a ( r ) ) . 

Note that 1 — a(so) 0. Thus we conclude 

\ 1 - a ( s o ) / 
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Step (vii). We conclude that either 

(a) G'{x)^G(x + c\ogt), ( ^ = 0 ) , 

or 

(b) G'(x)=^G(t^x + c(l-t^)), ( ^ ^ 0 ) . 

Now we show that ^ = 0 corresponds to a limit distribution of type A(x), that 
the case ^ > 0 corresponds to a limit distribution of type <i>a and that ^ < 0 
corresponds to 

Consider the case ^ = 0. Examine the equation in (a): For fixed x, the function 
G'(x) is non-increasing in /. So c < 0, since otherwise the right side of (a) would 
not be decreasing. If ACQ e IR such that G(xo) = 1, then 

1 = G'(xo) = G(xo + c\ogt), Wt > 0, 

which implies 

Giy) = 1, Vj; G R , 

and this contradicts G non-degenerate. If ACQ ^ 1^ such that G(xo) = 0, then 

0 = G'ixo) = G{xo 4- c logr) , Vr > 0, 

which implies 

G(x) = 0, V X G R , 

again giving a contradiction. We conclude 0 < G(y) < 1, for all y G R . 
In (a), set jc = 0 and set G(0) = e-". Then 

e-'" =G(c\ogt). 

Set y = c log r, and we get 

G(y) = expi-Key^*"] = expl-e-^l^-'^^*^^} 

which is the type of A(x). The other cases ^ > 0 and 0 < 0 are handled similarly. 
• 

8.8 Exercises 

1. Let S„ have a binomial distribution with parameters n and 6 G [0,1]. What 
CLT does S„ satisfy? In statistical terms, 9 := Sn/n is an estimator of 6 
and 

Sn-E(S„) 
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is an approximate pivot for the parameter 6. If 

SW) = log ( ^ ) 

is the log-odds ratio, we would use g(6) to estimate g(0). What CLT does 
g(0) satisfy? Use the delta method. 

2. Suppose {X„, n > 1} is a sequence of random variables satisfying 

n 

P[X„=0] = 1 - - . 
n 

(a) Does [Xn] converge in probability? If so, to what? Why? 

(b) Does [Xn] converge in distribution? If so, to what? W^y? 

(c) Suppose in addition that [Xn ] is an independent sequence. Does [Xn} 
converge almost surely? What is 

limsupA'„ and liminfA^n 

almost surely? Explain your answer. 

3. Suppose [Un,n > 1) are iid (7(0,1) random variables so that 

PWj <x]=x, 0<x<l. 

(a) Show n y = i ^]^" converges almost surely. What is the limit? 

(b) Center and scale the sequence {n ;= i u]^",n > 1} and show the 
resulting sequence converges in distribution to a non-degenerate limit. 
To which one? 

4 . (a) Let [Xn, n > 0} be positive integer valued random variables. Prove 

Xn =» XQ 

iff for every A: > 0 
P[Xn =k]^ P[XQ = kl 

(b) Let {X„} be a sequence of random vectors on such that X„ has a 
discrete distribution having only points with integer components as possible 
values. Let X be another such random vector. Show 

X „ = > X 
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iff 
^ | P [ X „ = x ] - P [ X = x ] | ^ 0 

X 

as n OO. (Use Scheffe's lemma.) 

(c) For events n > 0}, prove 

1A„^IAO iff P(A„) ^ P(AO). 

(d) Let Fn concentrate all mass at x„ for n >0. Prove 

^ , 1 => FQ iffXn XQ. 

(e) Let A'n = 1 — 1/n or 1 + l/n each with probability 1/2 and suppose 
P[X = 1] = 1. Show X„ => X but that the mass function f„(x) of X„ 
does not converge for any x. 

5. If u„(x),x G R are non-decreasing functions for each n and u„(x) ->> 
uo(x) and UQ(-) is continuous, then for any —oo < a < b < oo 

sup \u„(x) - uo(x)\ ^ 0. 
xe[a,b] 

Thus, convergence of monotone functions to a continuous limit implies lo­
cal uniform convergence. 

(b) Suppose F„,n > 0 are proper df's and F„ => FQ. If FQ is continuous, 
show 

sup\Fn(x)-Fo(x)\^0. 
x e R 

For instance, in the central limit theorem, where FQ is the normal distribu­
tion, convergence is always uniform. 

(c) Give a simple proof of the Glivenko-Cantelli lemma under the addi­
tional hypothesis that the underlying distribution is continuous. 

6. Let F be a non-degenerate df and suppose for a > 0, c > 0 and 5 G R , 
^ G R , that for all x 

F(ax+b) = F(cx+d). 

Prove that fl = c and b = d.Do this 2 ways: 

(i) Considering inverse functions. 

(ii) Showing it is enough to prove F(Ax -\- B) = F(x) for all x implies 
A = 1, and 5 = 17 (just kidding, B = 0). UTx = Ax + B then iterate the 
relation F(Tx)=F(x) again and again. 
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12. Suppose Fn has density 

l - cos2n7r ;c , i f O < A c < l , 

0, otherwise. 

Show that Fn converges weakly to the uniform distribution on [0,1] but 
that the densities /„ do not converge. 

7. Let {X„, n > 1} be iid with E(X„) = /x, Var(A'„) = cr^ and suppose N is 
a A^(0,1) random variable. Show 

- M )̂ => 2MorAr (a) 

V^(e^" - ef") => Gef'N. (b) 

8. Suppose A ' l , . . . , A'n are iid exponentially distributed with mean I. Let 

Xi,n < • • • < A'„,„ 

be the order statistics. Fix an integer / and show 

nXi,„ => Yi 

where Yi has a gamma (/, 1) distribution. 

Try doing this (a) in a straightforward way by brute force and then (b) try 
using the Renyi representation for the spacings of order statistics from the 
exponential density. See Exercise 32 on page 116. 

9. Let {X„,n > 0} be random variables. Show X„ => XQ iff E(g(X„)) 
E(g{Xo)) for all continuous functions g with compact support. 

10. Let X and Y be independent Bernoulli random variables on a probability 
space (fi, B, P) with ^ = y and 

= 0] = i = P[X = 1]. 

Let A'„ = y for n > 1. Show that 

Xn=>X 

but that X„ does NOT converge in probability to X. 

11. Levy metric. For two probability distributions F , G, define 

d(F,G) := inf{5 > 0 : VA: G M , F{x-S)-S< G{x) < F{x + 5) + 5}. 

Show this is a metric on the space of probability distribution functions 
which metrizes weak convergence; that is, F „ = > FQ iff ^ ( F „ , FQ ) ^ 0. 
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15. (Weissman) Suppose Y„,n > 1 are random variables such that there exist 
a„ > 0,b„ GR and 

P[Y„<a„x+b„]^G(x), 

non-degenerate, and for each r > 0 

P[Y[nt]<a„x-{-b„]^Gt(x), 

non-degenerate. Then there exists a(t) > 0, )3(r) G R such that 

G(x)==Gdci(t)x+a(t)) 

and a(t) = . If ^ = 0, then ^ ( 0 = clogr, and if ^ 0, then ^(r) = 
c ( l - / ^ 

16. Suppose {Xn,n > 1} are iid non-negative random variables and set Mn = 
v"^jA'l ,n >1. Show that there exists a sequence a„ > 0such that (x > 0) 

lim P[M„/a„ <x] = e x p { - A : " " } , x > 0, a > 0, 

iff the regular variation condition holds: 

lim ^^^pi£ l=;c-" , ; c > 0 . (8.30) 
r-*oo P[Xi > t] ^ ^ 

In this case, what limit distribution exists for logM„? For M^? 

Verify (8.30) for the Cauchy density and the Pareto distribution? 

17. If {X„] are iid (7(0,1) random variables, find a non-degenerate limit dis­
tribution for M„ = vJLjA', under suitable normalization. 

13. Suppose {N„,n > 0} is a sequence of normal random variables. Show 
N„ Â o iff 

E(N„) E(No) and Var(A^„) ^ Var(A^o)-

Derive a comparable result for (a) Poisson random variables; (b) exponen­
tial random variables. 

14. Consider the sphere in M " of radius y/n and suppose X„ is uniformly dis­
tributed on the surface of this sphere. Show that the first component of X„ 
converges in distribution to a standard normal. Hint: If N,,i > 1 are iid 
A^(0,1) random variables, show 
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n v . > « ] = fl(i-^> 
Show as m oo that 

where P[v > x] = txp{—x^/2], x > 0. 

22. Sample median; more order statistics. Let £/i (/„ be iid (7(0,1) ran­
dom variables and consider the order statistics (/i,„ < U2.n < • • • < ̂ «.«-
When n is odd, the middle order statistic is the sample median. Show that 

2(Un,2n+l - \)V2^ 

has a limit distribution. What is it? (Hint: Use Scheffe's lemma 8.2.1 page 
253.) 

23. Suppose [Xn, n > 1} are iid random variables satisfying 

E(Xn) = f i , VaT(Xn)=cr\ 

The central limit theorem is assumed known. Set Xn = Yl"=i Xi/n. Let 
A^(0,1) be a standard normal random variable. Prove 

18. Give an example of a sequence of discrete distributions that converge weakly 
to a limit distribution which possesses a density. 

19. (Second continuous mapping theorem) Suppose that Xn => XQ and that 
for n > 0, x« : K K are measurable. Define 

E :={x :3xn ^ X but Xnixn) -h X0(^)}-

Suppose E is measurable and P\XQ G £ ] = 0. Show x«(^«) => Xo(A'o)-

20. Suppose we have independent Bernoulli trials where the probability of suc­
cess in a trial is p. Let Vp be the geometrically distributed number of trials 
needed to get the first success so that 

P[Vp > n] = (1 - / 7 ) " - \ , 2 > 1 . 

Show as /? ̂  0 
pvp £, 

where £ is a unit exponential random variable. 

21. Sampling with replacement. Let \Xn,n > 1} be iid and uniformly dis­
tributed on the set { 1 , . . . , m}. In repeated sampling, let v„ be the time of 
the first coincidence; that is, the time when we first get a repeated outcome 

v,n '•= Jnf{n > 2 : ^ „ G [Xi,..., Xn-i]]. 

Verify that 
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Show 
7̂ (7̂ ^ - or) => 1~JE(X[)N(0, 1 ) . 

2or 

What is a limit law for Si? 

2 4 . Show that the normal type is closed under convolution. In other words, if 
Ni, N2 are two independent normally distributed random variables, show 
that A^i 4- N2 is also normally distributed. Prove a similar statement for the 
Poisson and Cauchy types. 

Is a similar statement true for the exponential type? 

2 5 . (i) Suppose F is a distribution function and M is a bounded continuous func­
tion on R . Define the convolution transform as 

F*u(t)= f u(t-y)F(dy). 

Let {F„,n > 0 } be a sequence of probability distribution functions. Let 
C[—00 , 00] be the class of bounded, continuous functions on R with finite 
limits existing at ±00. Prove that F „ => FQ iff for each u G C[—00,00], 
U„ := F„*u converges uniformly to a limit U. In this case, U = F Q * 

(ii) Suppose A' is a random variable and set Fn(x) = P[X/n < x]. Prove 
F„ *u ^ u uniformly. 

(iii) Specialize (ii) to the case where F is the standard normal distribu­
tion and verify the approximation lemma: Given any ^ > 0 and any u G 
C[—00,00], there exists an infinitely differentiable v G C[—00,00] such 
that 

sup |i;(;c) — u{x)\ < €. 

(iv) Suppose that u(x,y) is a function on R^ vanishing at the infinities. 
Then u can be approximated uniformly by finite linear combinations 

(i) yf^iXl - p}) => 2 M o r A ^ ( 0 , 1 ) . 

(ii) 7 ^ ( 6 ^ " - en => ef'NiQ, 1 ) . 

(iii) V ^ d o g A'„ - log M) ^ A ^ ( 0 , 1 ) , assuming M 7^ 0 . 

Now assume additionally that E{X^) < 00 and prove 

(iv) > ( log( i Er=l(^i - ^«)̂ ) - Iog0r2) => ^JE(X[)N(0, 1 ) . 

(v) Define the sample variance 

.s2 = i y ; ( ^ , - ^ „ ) 2 . 



8.8 Exercises 289 

fn{x) = 
1, \idn = 1. 

Then show fn(x)dx = 1 so that /„ is a density. The sequence /„ only 
converges on a set of Lebesgue measure 0. If Xn is a random variable with 
density /„ then Xn => U, where U is ( /(0,1). 

29. Suppose {Xt,t > 0} is a family of random variables parameterized by a 
continuous variable t and assume there exist normalizing constants a{t) > 
0, b{t) e K such that as r oo 

a(t) ^ 

Ylk^kgk(x)hic(y) with infinitely differentiate gk^h^. (Hint: Use normal 
distributions.) 

(v) Suppose Fn is discrete with equal atoms at — 0 , What is the vague 
limit of F„ as n ^ oo? What is the vague limit of F„ * F„? 

(vi) Suppose Fn concentrates all mass at l/n and u{x) — s\n{x^). Then 
Fn * u converges pointwise but not uniformly. (Is u € C[—oo, oo]?) 

26. Suppose {Xn,n > 1} are iid random variables with common distribution F 
and set 5„ = Yl"=i A',. Assume that there exist a„ > 0, 4>„ € M such that 

a;^Sn-b„=>Y 

where Y has a non-degenerate proper distribution. Use the convergence to 
types theorem to show that 

a„ oo, On/On+l 1. 

(Symmetrize to remove 5„. You may want to first consider a-m/dn^ 

27. Suppose {Xn-.n > 1} are iid and non-negative random variables with com­
mon density fix) satisfying 

A := lim f{t) > 0. 

Show n A,"=i Xi has a limit distribution. (This is extreme value theory, but 
for minima not maxima.) 

28. Let AC G (0,1) have binary expansion 

, 1=1 ^ 

Set 
' 2 , i f J „ = 0 , 
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n>\ \ a„ I < oo. 

Show the mean and standard deviation can be used for centering and scal­
ing: 

X„ - E{Xn) 
VVar(^„) 

where Y is non-degenerate. 

It is enough for moment generating functions to converge: 

£(e>"'n"'(^"-^")) £(e>'^), 

for y G / , an open interval containing 0. 

31. I f ^„ = » ^ o a n d 
12+5 

n 
show that 

sup£(|;^„|^+*) < o o , 
n 

E{Xn) -> E{XQ), \^X{X„) VarCJ^o)-

(Use Baby Skorohod and uniform integrability.) 

32. Given random variables [Xn] such that 0 < A'n < 1. Suppose for all x G 
(0,1) 

P{Xn <x]-^\-p. 

Show Xn => B where B is a Bernoulli random variable with success prob­
ability p. 

33. Verify that a continuous distribution function is always uniformly continu­
ous. 

where Y is non-degenerate. Show the normah'zing functions can always 
be assumed continuous; that is, there exist continuous functions a(t) > 
0, ^ ( 0 G M such that 

X, - m ^ ^ , 

ait) ^ ' 

where Y' has a non-degenerate distribution. (Hint: The convergence to types 
theorem provides normalizing constants which can be smoothed by integra­
tion.) 

30. Suppose {X„,n > 1} are random variables and there exist normalizing 
constants > 0, b„ eR such that 

^^^=>Y, 
an 

where Y is non-degenerate. Assume further that for 5 > 0 
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34. Suppose [En, n > 1} are iid unit exponential random variables. Recall from 
Example 8.1.2 that 

y E,-\ogn=>Y, 
1=1 

where Y has a Gumbel distribution. 

Ltt [Wn,n > 1) be iid Weibull random variables satisfying 

P[Wn > x] = e'""", a>0,x>0. 

Use the delta method to derive a weak limit theorem for v['_j W,. (Hint: Ex­
press W, as a function of E, which then requires that v"^^W, is a function 
of^UiE,.) 

35. Suppose [Fn,n > 0] are probability distributions such that F„ => FQ. For 
r > 0, let W/(-) : R »-»> R be an equicontinuous family of functions that are 
uniformly bounded; that is 

sup Ut (x) < Af, 
r>0.j :€R 

for some constant M. Then show 

lim / Ut{x)Fn{dx)= I u,{x)Fo{dx), 

uniformly in t. 

36. Suppose Fn FQ and g is continuous and satisfies f^gdFn = 1 for all 
n >0. Define the new measure Gn(A) = gdFn- Show G„ =>• GQ. ( Y O U 
can either do this directly or use Scheffe's lemma.) 



9 
Characteristic Functions and 
the Central Limit Theorem 

This chapter develops a transform method called characteristic functions for deal­
ing with sums of independent random variables. The basic problem is that the dis­
tribution of a sum of independent random variables is rather complex and hard to 
deal with. If X\,X2 are independent random variables with distributions F\, F2, 
set 

g(M, i;) = l(_oo.r](w + i^). 
Then using the transformation theorem and Fubini's theorem (Theorems 5.5.1 and 
5.9.2), we get for r e M 

P[Xi^X2<t] = E{g{Xi,X2) 

gF\ X F2 (transformation theorem) 

F l X F2 

- / . I / , F\{dx)\F2{dy) (Fubini's theorem) 

= f Flit - y)F2(dy) 
JR 

=: Fl * F2(r), 

where the last line defines the convolution between two distributions on the real 
line. Convolution is a fairly complex operation and somewhat difficult to deal 
with. Transform methods convert convolution of distributions into products of 
transforms and products are easier to handle than convolutions. 
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9.1 Review of Moment Generating Functions and the 
Central Limit Theorem 

The moment generating function (mgf) F(t) of a random variable X with distri­
bution F exists if 

Fit) := Ee'^ = f e'^'Fidx) 
Jr 

< oo, Vr 6 / , 

where / is an interval containing 0 in its interior. The problem with using the 
mgf of a distribution is that it does not always exist. For instance, the mgf of the 
Cauchy distribution does not exist and in fact existence of the mgf is equivalent 
to the tail of the distribution of X being exponentially bounded: 

P[\X\ > x]< ATe"", for some AT > 0 and c > 0. 

(So what do we do if the mgf does not exist?) 
The mgf, if it exists, uniquely determines the distribution of X, and we hope 

that we can relate convergence in distribution to convergence of the transforms; 
that is, we hope X„ X if 

Ee'^" -> Ee'^, Wt e /, 

where / is a neighborhood of 0. This allows us to think about the central limit 
theorem in terms of transforms as follows. 

Suppose {Xny n > 1} is an iid sequence of random variables satisfying 

E(X„) = 0, Var(;^„) = E{Xl) = G\ 

Suppose the mgf of Xj exists. Then 

1=1 

= (F( / /v /^ ) )" 

and expanding in a Taylor series about 0, we get 

. ^ tEjXi) ^ t^G^ . „ 
= (1 + - - ^ + — + j u n k ) 

The next section reviews the relation between transforms and the central limit 
theorem. 
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which is the mgf of a N{Q, a^) random variable. Thus we hope that 

How do we justify all this rigorously? Here is the program. 

1. We first need to replace the mgf by the characteristic function (chf) which 
is a more robust transform. It always exists and shares many of the algebraic 
advantages of the mgf. 

2. We need to examine the properties of chf and feel comfortable with this 
transform. 

3. We need to understand the connection between moments of the distribution 
and expansions of the chf. 

4. We need to prove uniqueness; that is that the chf uniquely determines the 
distribution. 

5. We need a test for weak convergence using chf's. This is called the conti­
nuity theorem. 

6. We need to prove the CLT for the iid case. 

7. We need to prove the CLT for independent, non-identically distributed ran­
dom variables. 

This is the program. Now for the details. 

9.2 Characteristic Functions: Definition and 
First Properties 

We begin with the definition. 

Definition 9.2.1 The characteristic function (chf) of a random variable X with 
distribution F is the complex valued function of a real variable t defined by 

0(0 := Ee''^, t e M 
= iE:(cos(r^)) H- /iE:(sin(r^)) 

= f cos{tx)F{dx)-hi f sin{tx)F{dx). 

where "junk" represents the remainder in the expansion which we will not worry 
about now. Hence, as n oo, if we can neglect "junk" we get 
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A big advantage of the chf as a transform is that it always exists: 

\Ee''^\ < E\e''^\ = L 

Note that 

\E{U + 1 = \E{U) + iE{V)\^ = (EUf + {EVf 

and applying the Schwartz Inequality we get that this is bounded above by 

< E(U^) + E(V^) = E(U^ + V^) 

= £ | i / + i V | 2 . 

We now list some elementary properties of chf's. 

1. The chf ^ ( 0 is uniformly continuous on M . For any r 6 M , we have 

m t + A) - 0(01 = \Ee'^'-^^^^ - Ee"^\ 

= \Ee"^(e'''^ - 1)1 

< £ | e ' ' ' ^ - l | - > 0 

ash 4- 0 by the dominated convergence theorem. Note that the upper bound 
is independent of t which accounts for the uniform continuity. 

2. The chf satisfies \4>{t)\ < 1 and </>(0) = 1. 

3. The effect on the chf of scaling and centering of the random variable is 
given by 

4. Let 0(0 be the complex conjugate of 4>{t). Then 

<t>i-t) = m = Rem) - i i m m o ) 

= chf of -X. 

5. We have that 

Re{4>{t)) = j cos{tx)F(dx) 

is an even function, while 

Im{<t>{t)) = j sm(tx)F{dx) 

is an odd function. 
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9.3 Expansions 

The CLT is dependent on good expansions of the chf (p. These in turn depend on 
good expansions of e'^ so we first take this up. 

9.3.1 Expansion of e^^ 
Start with an integration by parts. For n > 0 we have the following identity: 

/ e"{x - s)"ds = + / (x - s)"-^^e"ds. (9.1) 
Jo n -\-1 n -\-1 Jo 

Forn = 0, (9.1)gives 

fX iX _ J fX 

/ e"ds = =x-[-i (x- s)e"ds. 
Jo i Jo 

So we have 

e'-" = 1 + ix + / 2 I {x- s)e''ds 
Jo 

.2 
= l + / ; c + / 2 [ i . + ^ (x-sfe'^ds] 

6. The chf (p is real iff 

iff F is a symmetric function. This follows since (p is real iff 0 = 0 iff 
X and —X have the same chf. As we will see (anticipating the uniqueness 
theorem), this implies X = -X. 

7. If X, has chf 0,-, / = 1, 2 and Xi and X2 are independent, then the chf of 
X\ + X2 is the product (pi (002(0 since 

Compare this with the definition of convolution at the beginning of the 
chapter. 

8. We generalize the previous property in a direction useful for the central 
limit theorem by noting that if Xi,..., X„ are iid with common chf 0, then 
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(from (9.1) with ,2 = 1) 

= 1 + /A: + 

where the last expression before the vertical dots comes from applying (9.1) with 
n = 2. In general, we get for n > 0 and A: e M , 

k ; n + l rx 
(9.2) 

Thus 

JX - E 
k=0 

k\ 

\x\ n+1 

in + 1)! 
(9.3) 

where we have used the fact that = 1. Therefore we conclude that chopping 
the expansion of e^^ after a finite number of terms gives an error bounded by the 
modulus of the first neglected term. 

Now write (9.1) with n — 1 in place of n and transpose to get 

(\x - sf-^e'^ds - — = Lf\x- s)"e"ds. 
Jo n n JQ 

If we multiply through by j^^zyy and interchange left and right sides of the equa­
tion, we obtain 

, n + l rx :n rx (ir^" 
— (x- sre'^ds = —L— / (X - sr-'e'^ds -

n\ Jo (n - 1)! Jo n\ 

Substitute this in the right side of (9.2) and we get 

and thus 

^x _YR^y^ 
^ k\ /t=o 

n\ nl nl 
(9.4) 

Combining (9.3) and (9.4) gives 

JX 

k\ 
i t=0 

x\"+^ 2\x\" 
A 

(n + 1)! nl 
(9.5) 
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Note that the first term in the minimum gives a better estimate for small x, while 
the second term gives a better estimate for large x. 

Now suppose that A' is a random variable whose first n absolute moments are 
finite: 

E{\X\) < oo £(1̂ 1") < oo. 

Then 

k=0 k=0 

and applying (9.5) with x replaced by tX, we get 

m-Y,^^Eix'^)\<Ei^ \tX 

k=Q 
in + 1)! 

2\tX\"\ 
A I 

Next, suppose all moments exist and that for all / e 

lim = 0. 
,1—oo n\ 

In (9.6), let n -> oo to get 

k=o 

A sufficient condition for (9.7) is 

k=0 

which holds if 
^(t) = Ee'^ < oo, Vr G R ; 

(9.6) 

(9.7) 

(9.8) 

that is, if the mgf exists on all of R . (To check this last statement, note that if 
Ee'^ < oo for all r, we have 

Ee^'\^^^ = E(e^'^^l[x>0])^E(e-^'^^l^x<0]) 
< ^ ( k l ) + vI/(-|r|) < o o . 

This verifies the assertion.) 
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-oo y/7ji 
•00 - = e x p { - - ( M 2 - Itu + t^)]du e' / 2 
•oo v2; r 2 

(from completing the square) 

•oo ^ - J ( « - r ) 2 
•du 

7 - 0 0 V27r 
, /•oo 

= / / 2 / ; , ( ^ , i , M ) J M = e ' ' / 2 . 
. / - o o 

Here, n{t,\,u) represents the normal density with mean t and variance 1 which 
integrates to I. Thus we conclude that for all r G M 

Ee'^ < oo. 

We may therefore expand the mgf as well as e'^/^ to get 

Ee tx 

k=0 k = 0 \ ^ / 

that is. 

k=0 1=0 

Equating coefficients yields that the 

coefficient of r^" = = i l l ! . 
(2/2)! n\ 

So we conclude that 

Thus, since 

n\ 2 

Example 9 J . 1 Let A' be a random variable with N{0,1) distribution. For any 

. 0 0 e~"^/2 
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we get 

/=o /=o 
= (9.9) 

This shows one way of computing the chf of the N(0,1) distribution. 

Note that the chf of the normal density has the property that the chf and the 
density are the same, apart from multiplicative constants. This is a useful and 
unusual feature. 

9.4 Moments and Derivatives 

When the A:th absolute moment of a random variable exists, it can be computed 
by taking A:-fold derivatives of the chf. 

Suppose A' is a random variable with finite first absolute moment; that is, 
£(1̂ 1) < oo.Then 

E(iXe"^) =-E^ 

^^^^nx{e''''-'j^-ihX]\ 

Apply (9.4) with n = 1 to get 

h 

Since by (9.3) or (9.5) we have 

e'^^-\-ihX^ h^X^ X^ 
I H l ^ ^ = ' ' T ^ ° 

as /i 4- 0, we get by dominated convergence that 

, . ^ / ^ a + / , ) - ^ ( 0 _ N 

h i Q \ h ) 

= iE:(lime"^( ; ) 
L i n V U I /»iO 

= 0. 



302 9. Characteristic Functions and the Central Limit Theorem 

Thus 

(l>'(t) = E(iXe''^). (9.10) 

In general, we have that if EQXf) < oo, 

(/)f*>(0 = F ( ( / ^ ) V ' ^ ) , V r e M (9.11) 

and hence 
0^* (̂0) = i*£(A'*). 

9.5 Two Big Theorems: Uniqueness and Continuity 

We seek to prove the central limit theorem. Our program for doing this is to show 
that the chf of centered and scaled sums of independent random variables con­
verges as the sample size increases to the chf of the A'^(0,1) distribution which we 
know from Example 9.3.1 is txp{—t^/2]. To make this method work, we need to 
know that the chf uniquely determines the distribution and that when chf's of dis­
tributions converge, their distributions converge weakly. The goal of this section 
is to prove these two facts. 

Theorem 9.5.1 (Uniqueness Theorem) The chf of a probability distribution 
uniquely determines the probability distribution. 

Proof. We use the fact that the chf and density of the normal distribution are the 
same apart from multiplicative constants. 

Let A' be a random variable with distribution F and chf (p. We show that 4> 
determines F. For any distribution G with chf y and any real ^ G R, we have by 
applying Fubini's theorem the Parseval relation 

f e-'^y4>iy)Gidy) = f e-'^y f e'^'Fidx) G{dy) 
JR JyeR LJxeR J 

= f f e'^'^-^^yGidy) F(dx) (9.12) 
JxeRLJyeR J 

= /* y{x-e)F(dx). (9.13) 
Jx€R 

Now let N have a Nip, 1) distribution with density n(x) so that oN has a normal 
density with variance o^. Replace G(dy) by this normal density G~^n{a~^y). 
After changing variables on the left side and taking account of the form of the 
normal chf y given by (9.9) on the right side, we get 

f e-'^''y(t>(oy)n(y)dy = f e-'^'^'-^^'^^Fidz). (9.14) 
JR JzeR 
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Now, integrate both sides of ( 9 . 1 4 ) over 6 from - o o to x to get 

r ( e-'^^y4>ioy)n{y)dyde = T ( e-^'^'-^^'^^F(dz)d9, 
Je=-oo JR Je=-oo JZGR 

and using Fubini's theorem to reverse the order of integration on the right side 
yields 

r , rx ^ -a2{2-e )2 /2 
= / x / 2 ^ [ / .^—de]F{dz). 

JZGR Je=-oo V27r 

In the inner integral on the right side, make the change of variable s = ^ — z to 
get 

r f e-'^''y(t>{oy)n{y)dyde 
Je=-oo Jr 

= - / / -^—ds]F{dz) 

= v ^ o r - ^ f [ r ' n(0, O r - 2 , z)dz]Fidz) 
JzeR J-oo 

= V2nG-^P[(j-^N -\-X <x]. 

Divide through by y/2no~^. Let a oo. Given the chf 0, we find 

lim r { e-'^''y(t>(Gy)n{y)dyd9 
a-*oo Je=-oo J-R 

- 1 = lim P I o r - ' A ^ +X <x] = F(x), VA: G C ( F ) , ( 9 . 1 5 ) 
or—»• 0 0 

by Slutsky's theorem 8.6 .1 of Chapter 8 . So for any x G C ( F ) , 4> determines F(x) 
which is sufficient for proving the result. • 

A quick corollary gives Fourier inversion. 

Corollary 9.5.1 Suppose F is a probability distribution with an integrable chf <f>; 
that is, 101 G L1 so that 

I mt)\dt < oo. 
JR 

Then F has a bounded continuous density f given by 

f(x):=-^ j ^ e - ' y ' < t > ( y ) d y . 

Proof. Examine ( 9 . 1 5 ) . Note 

P[a-^N X < x] -.Fa(x) 
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Note that 

e-'^>'</>(3;)e-^"V/2 < \4>(y)\^Li 

and as a —• oc 

e-'^>'</>(3;)e-^~V/2 _ e-'^y4>(y). 

So by dominated convergence, fa (9) f{9). Furthermore, for any finite inter­
val / 

sup /a (^ ) <^ I my)\e-''~''y'^^dy 
eel 2n 

27r 

So as a ^ oo, we have by Slutsky's theorem 8.6.1 and bounded convergence 

F ( / ) = lim P[cr-^N -{-X el]= lim F fa{E)de = F f^dO. 
( 7 - . - 0 0 O-*00jj Jj 

Thus / is the density of F. • 
We now state and prove the continuity theorem which allows the conclusion 

of weak convergence of probability distributions from pointwise convergence of 
their chf's. 

Theorem 9.5.2 (Continuity Theorem) (i) Easy part: We let [X„,n > 1] be a 
sequence of random variables with X„ having distribution F„ and chf <!>„. If as 
n oowe have 

X„ => XQ, then 

(ii) Deeper part: Suppose 

(a) lim„_.oo 0,1 (0 exists for all t. Call the limit 0oo(O-

(b) 0oo(O is continuous at 0. 

has a density fa since o~^A^ has a density. From the left side of (9.15), 
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Then for some distribution function Foo, 

and 4>oo is the chf of Foo. tf 0oo(O) = 1, then F^Q is proper. 

Proof of the easy part (i). If Xn => A'o, then by the continuous mapping theorem, 
we have e"^" => e^^^^ and since |e"^" | < 1, we have by dominated convergence 
that 

<t>n{t) = Ee''^'^ ^ Ee''^^=4>o{t). • 

The proof of the harder part (ii) is given in the next section. 
We close this section with some simple but illustrative examples of the use of 

the continuity theorem where we make use of the harder half to prove conver­
gence. 

Example 9.5.1 (WLLN) Suppose {Xn, n > \) is iid with common chf (pit) and 
assume £(|A'i |) < oo and E{X\) = p. Then 

Sn/n p. 

Since convergence in probability to a constant is equivalent to weak conver­
gence to the constant, it suffices to show the chf of Sn/n converges to the chf of 
p, namely e''^'. We have 

Ee'tsjn ^ = (1 + i ! ^ + oi-))". (9.16) 
n n ' 

The last equality needs justification, but suppose for the moment it is true; this 
would lead to 

^"(,/„) = (i + i^^i±£(l))-.^^,., 
n ' 

as desired. 
To justify the representation in (9.16), note from (9.6) with n = \ that 

so it suffices to show that 

n n \ 2n^ n I 

nE^-^^A2^\Xi\^^0. (9.17) 

Bring the factor n inside the expectation. On the one hand 
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and on the other 

as n — o o . So by dominated convergence, (9.17) follows as desired. • 

Example 9.5.2 (Poisson approximation to the binomial) Suppose 
the random variable S„ has binomial mass function so that 

P[S„ =k]= - k = 0,...,n. 

If p = pin) 0 as n ^ oo in such a way that np k > 0, then 

S„ => POik) 

where the limit is a Poisson random variable with parameter k. 

To verify this, we first calculate the chf of POik). We have 

it=o 
OO 

k=0 

Recall we can represent a binomial random variable as a sum of iid Bernoulli 
random variables ^\,...,^n where P[^i = 1] = p = 1 — P[^i = 0]. So 

Ee"^" =(Ee"^'Y = (1 - p-\-e''p)" 

= ( l ^ p ( e ' - l ) r = ( l ^ ^ ! ^ < f ^ y 
^ ^ X ( e " - 1 ) 

The limit is the chf of POik) just computed. • 

The final example is a more sophisticated version of Example 9.5.2. In queue-
ing theory, this example is often used to justify an assumption about traffic inputs 
being a Poisson process. 

Example 9.53 Suppose we have a doubly indexed array of random variables 
such that for each n = 1 ,2 , . . . , {^n.k^^ > 1] is a sequence of independent (but 
not necessarily identically distributed) Bernoulli random variables satisfying 

P[Uk = 1] = Pkin) = 1 - P[Uk = 0], (9.18) 
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V Pk(n) =: S(n) ^ 0, n o o , (9.19) 

5̂  Pk(n) = EiJ^Uk) ^ X G (0, 00), n^oo. (9.20) 
* = 1 * = ! 

Then 

J2Uk^POW. 
k=i 

The proof is left to Exercise 13. 

9.6 The Selection Theorem, Tightness, and 
Prohorov's theorem 

This section collects several important results on subsequential convergence of 
probability distributions and culminates with the rest of the proof of the continuity 
theorem. 

9.6.1 The Selection Theorem 
We seek to show that every infinite family of distributions contains a weakly con­
vergent subseqence. We begin with a lemma. 

Lemma 9.6.1 (Diagonalization) Given a sequence [aj, j > 1} of distinct real 
numbers and a family ( M „ ( - ) , n > 1} c>/ real functions from M K, there exists 
a subsequence { M n t ( ' ) } converging at each aj for every j . (Note that ±oo is an 
acceptable limit.) 

Proof. The proof uses a diagonalization argument. 
There exists a subsequence [nk] such that [u„^(ai)] converges. We call this 

{u[^\-),k > 1} so that {u[^\ai),k> 1} converges. 

Now there exists a subsequence kj such that { M ^ | \ f l 2 ) . ; > 1} converges. Call 

this subfamily of functions u^^i), j > 1} so that 

{uf\ai), j >1] and [uf\a2),j>l} 

are both convergent. 
Now continue by induction: Construct a subsequence {u^"\-), j > 1} for each 

n, which converges at a„ and is a subsequence of previous sequences so that 

[uf(a,),j>l} 
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for all i, then define 

This determines a df F^o on M and 

Fooiai) = lim F„(a,). 
fl-vOO 

Fn FoQ. 

Proof. Extend Foo to R by right continuity: Define for any x, 

Fooix) = lim i F o o ( « , ) . 

This makes FQ© right continuous and monotone. Let x G C(FOO)- Since D is 
dense, there exist a, ,a[^ D such that 

at t X, a[ i X, 

and for every k and / 
Fk{ai) < Fkix) < Fkia',). 

Take the limit on k: 

F o o ( « i ) < liminfFit(A:) < limsupFit(x) < Fida'j). 
k^oo k-*oo 

Let o, t X and a^ i x and use the fact that x G C(Foo) to get 

Foo(x) < lim inf Fit (A:) < lim sup Fit (A:) < Fk(x). 

We are now in a position to state and prove the Selection Theorem. 

converges fori = 1 , . . . , n. Now consider the diagonal sequence of functions 

For any a, 

where the sequence on the right is convergent so 

lim Mi"^(fl,) exists 

n-*oo " 

f o r / = 1,2 • 

Remark. If \u„{-)\ < M for all n, then 
lim \ul"\a,)\ < M. 

Lemma 9.6.2 If D = [aj] is a countable dense subset ofR and if{F„} are df's 
such that 

lim F„{ai) exists 
n-*oo 
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9.6.2 Tightness, Relative Compactness, and Prohorov's theorem 

How can we guarantee that subsequential limits of a sequence of distributions will 
be non-defective? 

Example. Let A'„ = n. If F„ is the df of X„, then A'„ oo and so F „ ( A : ) 0 
for all X. 

Probability mass escapes to infinity. Tightness is a concept designed to prevent 
this. Let n be a family of non-defective probability df's. 

Definition. FT is a relatively compact family of distributions if every sequence 
of df's in FT has a subsequence weakly converging to a proper limit; that is, if 
{F„} C n, there exists [nk] and a proper df FQ such that => FQ. 

Definition. U is tight, if for all ^ > 0, there exists a compact set /w C M such that 

F ( A : ) > 1 - ^ , V F G H ; 

or equivalently, if for all ^ > 0, there exists a finite interval / such that 

F ( / ^ ) < € , V F G H; 

or equivalently, if for all ^ > 0, there exists such that 

F ( A / J - F(-M,) <€, V F G n. 

Most of the mass is contained in a big interval for all the distributions. This pre­
vents mass from slip sliding away to one of the infinities. 

Random variables {X„] whose df's {F„} are tight are called stochastically 
bounded. This means, for every ^ > 0, there exists such that 

supP[\X„\> M,]<€. 
n 

Prohorov's theorem shows the equivalence of relative compactness and tight­
ness. 

Theorem 9.6.2 (Prohorov's theorem) The family FT of probability distributions 
is relatively compact iff FI is tight. 

Theorem 9.6.1 (Selection Theorem) Any sequence of probability distributions 
{F„} contains a weakly convergent subsequence (but the limit may be defective). 

Proof. Let D = [a, ] be countable and dense in E . There exists a subsequence 
{F„^] such that 

lim F„^{aj) 

exists for all Hence converges weakly from Lemma 9.6,2. • 
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Proof. Suppose Fl is tight. Let {F„] C Fl. By the selection theorem 9.6.1, for 
some Hit, we have F„^ FOQ. We must show Foo is proper. Given ^ > 0, there 
exists M such that 

s u p F „ ( [ - M , M n < € . 
n 

Pick M' > M such that M' G C(FOO). Then 

e > l - F„(M') + F„{-M') ^ 1 - F o o ( A / ' ) + F^{-M'). 

So Foo{[-M\ M'Y) < and therefore Foo([-M\ M']) > 1 - €. Since this is 
true for all we have F o o ( M ) = 1. 

Conversely, if Fl is not tight, then there exists t > 0, such that for all M, there 
exists F G n such that F([-M, M]) < 1 - So there exist {F„] C U with 
the property that F„([—n, n]) < 1 — €. There exists a convergent subsequence nic 

such that F„j Foo- For any a, 6 G C(FOO), 

[a,b] C [-n,n] 

for large n, and so 

F o o ( [ f l , b]) = ^jim^F„j([a, fe]) < ^\im^F„,([-nk, n^]) <!-€. 

So F o c ( M ) < 1 — ^ and Foo is not proper so Fl is not relatively compact. • 

Here are common criteria for tightness: Let {Xn ] be random variables with df's 
{F„}. 

1. If there exists r > 0 such that 

limsupFdA^nH < oo 
n-+00 

then [F„} is tight by Chebychev's inequality. 

2. If [Xn] and {Y„} are two stochastically bounded sequences, then {Xn + ¥„] 
is stochastically bounded. This follows from the inequality 

P[\Xn +Yn\>M]< P[\Xn\ > M/2] + P[\Yn\ > M/2]. 

3. If Fn concentrates on [a, b] for all n, then {F„] is tight. So for example, 
if Un are identically distributed uniform random variables on (0,1), then 
{c„U„] is stochastically bounded if {c„} is bounded. 

4. If Xn = cFnNn + fin, whcrc Â „ are identically distributed A^(0,1) random 
variables, then {X„] is stochastically bounded if {o„} and {/i„} are bounded. 
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X (1 - Re (t>{t))dt =x / (1 - costy)F{dy)dt 
Jo Jo J-oo 

which by Fubini is 

- 1 

' F{dy) 
poo r rx-' 

= x I / (1 - COS ty)dt 
J-oo Jt=0 

Since the integrand is non-negative, this is greater than 

J\y\>x\ X ^y I 

>a-^F{[-x,xY), 

where 
- 1 • r sinAT V \ 

a * = m f 11 7 — ^ I. 
\x-'y\>\ \ x-^y J • 

This is what is needed to proceed with the deferred proof of the continuity 
theorem. 

Proof of the Continuity Theorem. Suppose for all t G R, we have 0„(r) 
4>oo{t) where <f)oo is continuous at 0. Then we assert {F„} is tight. To understand 

9.6.3 Proof of the Continuity Theorem 

Before proving the rest of the continuity theorem, we discuss a method which 
relates distribution tails and chf's. 

Lemma 9.6.3 / / F is a distribution with chf4>, then there exists a G (0, oo) such 
that for allx > 0 

F([-x, xY) < ax r (1 - Re m)dt. 
Jo 

Proof. Since 
rOO 

R e 0 ( r ) = / costyF(dy)y 
J-oo 

we have 
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why tightness is present, assume M > 0 and apply Lemma 9.6.3: 

lim sup F„ ( [ -A/ , MY) < lim sup a M / (1 - Re 4>„ (t))dt. 

Now0„(r) (pooiO implies that 

Re 4>„{t) -> Re </>oo(0. 1 - Re 0„(r) 1 - Re 0oo(O, 

and since 1 — 0„ is bounded, so is Re (1 — 0„) = (1 — Re 0„). By dominated 
convergence, 

l i m s u p F „ ( [ - M , M n < a M / (1 - Re </>oo(0)^^ 

Since 4>oo is continuous at 0, lim̂ -vô ooĈ ) = 0oc(O) = lim„_».oo0«(O) = 1 as 
t 0. So 1 - Re 4>oo{t) ^ 0 as / 0, and thus for given € > 0 and M 
sufficiently large, we have 

aM f (1 - Re 4>oo(.t))dt <aM f 
Jo Jo 

Hence {F„} is tight. Since {F„} is tight, any two convergent subsequences of {F„} 
must converge to the same limit, because if 

F„' F , and F„" =» G, 

then F and G are proper. So by part (i) of the continuity theorem already proved, 

<t>n' 4>F =<t>oo 

and 
4>n" —*• 4>G = 4>cx>y 

and hence (pp = 4>C' By the Uniqueness Theorem 9.5.1, F = G. Thus any two 
convergent subsequences converge to the same limit and hence {F„} converges to 
a limit whose chf is 0oo- ^ 

9.7 The Classical CLT for iid Random Variables 

We now turn to the proof of the CLT for sums of iid random variables. If {X„} are 
iid random variables with finite mean E{X„) = p and variance V2iT(X„) = a^, 
we will show that as n ^ oo 

^'"-^'""^ ^ N(0.1). 

The method will be to show that the chf of the left side converges to the standard 
normal chf e~' 

We begin with a lemma which allows us to compare products. 
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Lemma 9.7.1 (Product Comparison) For i = 1 , . . . , s u p p o s e that a,- G C , 
b, G C , with I < 1 and \bt \ < 1. Then 

1 = 1 i=l 1 = 1 

Proof. For n = 2, we merely have to write 

fllfl2 - ^1^2 = ai(fl2 - + (fli - ^ l )^2-

Finish by taking absolute values and using the fact that the moduli of a, and b, 
are bounded by 1. For general n, use induction. • 

Theorem 9.7.1 (CLT for iid random variables) Let [X„, n > 1] be iid random 
variables with E{Xn) = p and Var{Xn) = o^. Suppose N is a random variable 
with N(0,1) distribution. IfS„=X^+ \-X„, then 

S„-np 
Gy/n 

Proof. Without loss of generality let E(X„) = 0, E(Xl) = 1, (otherwise prove 
the result for 

and 

Let 

Then 

£:(^;) = o, E(X:f = l.) 

(t>„{t) = Ee"^"^^, 4>{t) = Ee"^'. 

4>n(t) = (Ee"^^^^r = 4>"U/M-
Since the first two moments exist, we use (9.6) and expand (p: 

^ . itEjXi) . ih^EjX.f . t \ 
1 + + + o ( - ) 

y/n 2n n 
r2 r2 

= 1 + 0 - — + o ( - ) 
2n n 

(9.21) 

where 

We claim that 

noit^/n) < E (^-^ A \tXi |2 j 0, n oo. (9.22) 
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To see this, observe that on the one hand 

and 

^\tXi\^x)< 
tXx 

as n ^ oo. So by dominated convergence 

0. 

Now 

(</>(r/x/^)) < n 
n 

(where we have applied the product comparison Lemma 9.7.1) 

Since 

1 - — 1 ^ e - ' l \ 

the chf of the Ar(0, 1) distribution, the resuh follows. • 

9.8 The Lindeberg-Feller CLT 

We now generalize the CLT for iid summands given in Section 9.7 to the case 
where the summands are independent but not identically distributed. 

Let [Xn,n > 1} be independent (but not necessarily identically distributed) and 
suppose Xk has distribution Fk and chf <t>k, and that E{Xk) — 0, Var(A'it) = o^. 
Define 

n 
5 2 = o r 2 + . . . + or2 = V a r ( ^ ^ , ) . 

1 = 1 

We say that [Xk] satisfies the Lindeberg condition if for all r > 0 as n —> oo 
we have 

4E^('^*l[l'./'-l>')) = 3 E f x^F,(dx)^0. (9.23) 
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2 
max - T ^ 0, (n ^ oo). (9.24) 
k<n 

To see this, note that 

= -3^(^kh\Xk/s„\<t]) + ~E(Xll^Xk/Sn\>t]) 

" * = i 

So for any r > 0, 

lim I max ^ | < r^. 
,1-voo \ A:<,i I 

To finish the proof, let t i 0. • 

• Condition (9.24) implies 

max P[\Xk\/s„ >€]^0 (9.25) 
k<n 

by Chebychev's inequality. This condition (9.25) is called uniform asymp­
totic negligibility (UAN). It is typical in central limit theorems that the 
UAN condition holds so that no one summand dominates but each sumand 
contributes a small amount to the total. 

We now state and prove the sufficiency part of the Lindeberg-Feller central 
limit theorem. 

Theorem 9.8.1 (Lindeberg-Feller CLT) With the notation given at the begin­
ning of this section, The Lindeberg condition (9.23) implies 

— Ar(0,1). 

where N(p, 1) is a normal random variable with mean 0 and variance 1. 

Remarks. 

• The Lindeberg condition (9.23) says for each k, most of the mass of Xk 
is centered in an interval about the mean (= 0) and this interval is small 
relative to s„. 

• The Lindeberg condition (9.23) implies 
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We may also conclude that 

must be a chf. 

(2) To show S„/s„ A^(0,1), we need to show that the chf of S„/s„ satisfies 

<Ps„/sAt) = fl ̂*('/̂") = chf of AT (0,1). (9.26) 

This follows from the continuity theorem 9.5.2. We claim that (9.26) holds if 
n 

J2 iM/s„) - 1) + ^ 0 (9.27) 
k=i 

because 

tXp{J2(M/Sn) - 1)} - n ^k{t/Sn)\ 0. (9.28) 
k=l k=l 

Although we shall not prove it, the converse is true in the following sense. If 

(0 vLi^* ^ 0 and 
(ii) 5 „ / > = > A r ( 0 . 1 ) . 

then the Lindeberg condition (9.23) holds. 

Proof. We proceed in a series of steps. 
(1) We begin with a preliminary result. Suppose {Y„yn > 1} is an iid se­

quence of random variables with common distribution F and chf 4>. Let N be 
independent of {Y/c] and assume N is Poisson distributed with parameter c. De­
fine Xn = 5Zi"=i ^ 1 - ̂ e compute the chf of XN as follows: For r 6 R, 

k=o 

oo 

k=0 

and since N is independent of {7*}, this equals 

oo 

= ^iE:(e"^*)P[Ar=^] 

k=o 
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k=l k=l 
n 

it=l * = 1 

and applying the product comparison lemma 9.7.1, we have the bound 

Note that for z e C, 

< ^ , e * * ( / A " ) - i _ < ^ ^ ( r / s „ ) | 

= YI k**^'/'"^"^ - 1 - (Mt/Sn) - 1)|. 

k=2 k=2 

1 
\Z\ 

<2\z\\ i f | 2 | < ^ , 

<S\zU i f | 2 | < ^ < i . 

Now for fixed r G R, we apply (9.6) with n = 1 to get the inequalities 

(9.29) 

\<t>kUM-l\<:^CRL 

, 2 " RR2 

(9.30) 

(9.31) 

Recall (9.24). We conclude from (9.31) that given 5 > 0, if /z is sufficiently large, 
then for A: = 1 , . . . , w 

\Mt/Sn) - 1| < 2 ' (9.32) 

Letzit =4>k(t/sn) - 1 and 

tXip{Yi4>k{t/Sn) - 1 ) } ~W<l>k{t/s„)\ 
k=\ * = 1 

n 
< ^ k ^ * ~ l - 2 , | < ^ 5 | 2 , | 

*=! k=\ 

Thus, assuming (9.28) is true, it will suffice to prove (9.27). 
Here is the verification of (9.28). Recall that exp{<f)k{t/s„) - 1} is a chf from 

step (1) and hence bounded in modulus by 1. Then 
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k=\ 

k=\ ^ S„ Z Sn / 

Let (•) represent what is inside the expectation on the previous line. We get the 
decomposition 

n 

= ^{£'(-)l[i^*IA«<*] + £(-)l|;»rtiA„>f]} 
k=\ 

= 1+11. 

We now show / and / / are small. For / we have using (9.6) with n = 2: 

k=i 
|3 

'-HA 

k=l " 

Xk 

Sn 

^k/s„\<€]j 

k\Xk/Sn\<f]J 

where we used the fact that 
" ^ 2 

k=\ 

for n large, because v]J_j|2jt| < S/2 for n large, and applying (9.30), we get the 
bound 

, 2 n 2 

and since S is arbitrary, we have (9.28) as desired. Thus it suffices to prove (9.27). 
(3) We now concentrate on proving (9.27). Write 
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Now we show why / / i s small. We have 

\II\<J2E(\-\^X,/S„\>.]) 
k=\ 

|2 

h\Xk/. 'sj>*l^ 

(from (9.6) with n = 2) 

,2 n 

by the Lindeberg condition (9.23). This completes the proof of (9.27) and hence 
the theorem is proved. • 

We next present a sufficient condition for the Lindeberg condition (9.23) called 
the Liapunov condition which is relatively easy to verify. 

Corollary 9.8.1 (Liapunov Condition) Let [Xk, k > 1] be an independent se­
quence of random variables satisfying E{Xk) = 0, Var{Xk) = cr^ < oo, s^ = 
ELi ^k' Vfor some S>0 

0, 

then the Lindeberg condition (9.23) holds and hence the CLT. 

Remark. A useful special case of the Liapunov condition is when 8 = 1: 

ELiE\Xk\' 
0. 

Proof. We have 

72 Jl^ [^kh\x,/s„\>t]) = J2^\ 
^" k=i k=i \ 

k=i \ 

Xk 

Xk 

1 • 1 

Xk 

^ 0 . 

ts„ 

1 EUEm^^' 

s„\>l]j 

• 
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log/2 
1. 

Here we will prove 

^ ^ ^ ^ ^ Â CO, 1). 

To check this, recall 

E(h) = 7 , Var (U) = 7 - ^ 

Thus 

k' — - ) t k2-

«̂̂  = Var(.„) = | : ( i - ^ ) 

" 1 " 1 

k=i k=i 

~ logn. 

So 

Now 

si ~ ( log /2)3/ l 

E\\k-E{W\^ =^E\\k-\\^ 
k 

1 1 

and therefore 

si - (logn)3/2 
logn 

(logn)3/2 

Example: Record counts are asymptotically normal. We now to examine the 
weak limit behavior of the record count process. Suppose {X„, n > 1} is an iid 
sequence of random variables with common continuous distribution F , and define 

n 

U = ^Xk is a lecoid ] , fJ-n = T^U-
1=1 

So Pn is the number of records among A ' l , . . . , A'„. We know from Chapter 8 that 
as n —• oc 

M« a.s. 
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So the Liapunov condition is valid and thus 

VVar(/i„) 

Note 

=> N(0,1). 

yVar(M„) ~ 5„ ~ v/logn 

and 

iE:(M») - logn ^ ELi r - ^Qg^ . K ^ Q 

v/log/i y iogn yiog/i 

where y is Euler's constant. So by the convergence to types theorem 

>/logn 
^ ( 0 , 1 ) . 

• 

9.9 Exercises 

1. IViangular arrays. Suppose for each n, that [X/cn* I < k < n) are inde­
pendent and define 5„ = Ylk=\ ^k,n- Assume E{Xk,n) = 0 and Var(5„) = 
1, and 

k=i 
as n oo for every t > 0. Adapt the proof of the sufficiency part of the 
Lindeberg-Feller CLT to show 5„ => ^ ( 0 , 1 ) . 

2. Let {X„, n > 0} be a sequence of random variables. 

(a) Suppose [X„, n > 0} are Poisson distributed random variables so that 
for n > 0 there exist constants k„ and 

P[X„=k] = - j ^ , k>0. 

Compute the characteristic function and give necessary and sufficient con­
ditions for 

X„ => XQ. 
(b) Suppose the [Xn ] are each normally distributed and 

E(Xn) = tx„eR, Var(^„)=or2. 

Give necessary and sufficient conditions for 

X„ => XQ. 
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y/n\ogn 

Hint: Define 

=> NiO, 1). 

Y„ = ^ , i l [ | j r „ | < > ] 

3. Let {Xk,k > 1} be independent with the range of Xk equal to {±1, ± k } 
and 

PlXt = ±1) = i ( l - 1) , PIX, = i t ] = ^ . 

By simple truncation, prove that S„/y/n behaves asymptotically in the same 
way as if A'/t = ± 1 with probability 1/2. Thus the distribution of Snf-s/n 
tends to Ar(0,1) but 

Var(5„/7^) 2. 

4. Let [Uk] be an independent sequence of random variables with Uk uni­
formly distributed on [ — a k \ 

(a) Show that if there exists M > 0 such that \ak\ < M but J^it = oo, 
then the Lindeberg condition and thus the CLT holds. 

(b) If Yk ^k ^^^^ Lindeberg condition does not hold. 

5. Suppose X„ and Y„ are independent for each n and 

X„ => A'o, Y„ => yb. 

Prove using characteristic functions that 

A',! -I- y,i => A"o + YQ. 
6. (a) Suppose X„ has a uniform distribution on (—n, /i). Find the chf of Xn-

(b) Show lim„_^oo 0«(O exists. 

(c) Is there a proper, non-degenerate random variable A'o such that 

X„ = > ^ 0 ? 

Why or why not? What does this say about the continuity theorem for char­
acteristic functions? 

7. Suppose {X„, n > 1} are iid with common density 

fix) = \x\-\ \x\ > 1. 

(a) Check that EiXi) = 0 but EiX^) = oo. 

(b) Despite the alarming news in (a), we still have 

Sn 

file:///x/-/
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and check Liapunov's condition for {Y„] for 8 = 1. Then show 

J2P[X„^Y„]<OO. 

(c) It turns out that for iid random variables {X„} with E(Xn) = 0, the 
necessary and sufficient condition for the CLT is that 

nm = 1, 
r - o o U{t) 

where 
£/(() :=£ (^? l | i ; f , | < , | ) . 

Check this condition for the example in part (a). 

8. Probabilistic proof of Stirling's formula. Suppose {X„} are iid, Poisson 
distributed random variables with parameter 1 and as usual suppose S„ = 
Yl"=i X;. Prove the following: 

where AT is a N(0,1) random variable, 
(c) Show 

(Sn-n\- . . I —p=— I IS U.l. 

k ^n+\/2^-n 

nl 

id) E E(N-) = 

(e) n\ ~ V2nn"+^^^e-", n ^ oo. 

9. (a) Suppose X is exponentially distributed with density 

f(x) = A: > 0. 

What is the chf of A'? Is the function 

a chf? If so, of what random variable? 

(b) Let Xi be Bernoulli random variable with possible values ± 1 with prob­
ability 1/2 each. What is the chf of ^ i ? 
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/ \x\F{dx) = - / -z dt. 

JR TT JO 
10. Suppose Ys is Poisson distributed with parameter s so that 

it! 

Compute the chf of Ys. Prove 

Ys-s 

where AT is a A^(0,1) random variable. 

11. If [Xn,n> 1} is iid with E{Xn) = 0 and Var(^„) = 1, then Sn/^fn => 
Ar(0,1) . Show this cannot be strengthened to Sn/y/n converges in proba­
bility. (USn/y/n X, then S2n/y/2n X. Subtract.) 

12. Suppose {Xn, n > 1} are independent and symmetric random variables so 
that 

Xk = —Xk. 

If for every r > 0, as n oo 

Y,P\\Xk\>tan\-^^ 

a-'•Y^E(Xl\\x,\^,o.^) ^ I. 
k=\ 

where > 0, then show 

Snian Â CO, 1). 

Here5„ = E?=i X,. 
Hint: Try truncating at level fl„r: Set 

^'i =^>l[l^;l<w«]-

Consider 5^ and show it is enough for 5^/fl„ => A^(0,1). 

(c) Is (cosO'^ a chf? Of what random variable? 

(d) Is I cosri a chf? (Try differentiating twice.) 

(e) Is | cosr |2 achf? 

The modulus of a chf need not be a chf but the modulus square is a chf. 

(f) Prove that if A' is a random variable with E{\X\) < oc and with chf <p, 
then 

•oo 
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13. Prove the law of rare events stated in Example 9.5.3. 

14. Assume 0(0 is a chf and G is the distribution of a positive random variable 
Y. Show all of the following are chf's and interpret probabilistically: 

(a) /J 4>{ut)du, 

(b) f^<t>(ut)e-"du, 

(c) f^e-^'^"G{du), 

(d) f^<f>(ut)G(du). 

(For example, if X has chf (p and U is uniform on (0,1) and independent 
of^, what is the chf of ^L^?) 

15. (i) Suppose {E„,n > 1} are iid unit exponential random variables so that 
P[E\ > x] = X > 0. Show (.Yll=\ Ei — n)/Jn is asymptotically 
normal. 

(ii) Now suppose Xt is a random variable with gamma density 

F,(A : ) = e "V~Vr(0 , t >0, X >0. 

Use characteristic functions to show that 

(Xt - t)/Vi => N 

where is a A^(0,1) random variable. 

(iii) Show total variation convergence of the distribution of (Xt — 0/V^ to 
the distribution of N: 

sup eB]- P[N eB]\-^0 

as or ^ oo. (Hint: Use Scheffe; approximate r(t) via Stirling's formula. 

16. (a) Suppose X and Y are iid N(0,1) random variables. Show 

y/2 

(b) Conversely: Suppose X and Y are independent with common distribu­
tion function F(x) having mean zero and variance 1, and suppose further 
that 

Show that both X and Y have a Ar(0, 1) distribution. (Use the central limit 
theorem.) 
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- 1)! Jo 

Hint: consider P[5„ < x] where 5„ is a sum of n iid unit exponentially 
distributed random variables. 

19. Suppose {e„,n > 1} are independent exponentially distributed random 
variables with E(e„) = tx„. If 

" - - = o, 

then 

1=1 
5]M5=>Ar(0, 1). 

20. Use the method of the selection theorem to prove the Arzela-Ascoli theo­
rem: Let {u„(x),n > 1} be an equicontinuous sequence of real valued func­
tions defined on R, which is uniformly bounded; that is, sup„^ |M„(AC)| < 1. 
Then there exists a subsequence {u„'] which is converging locally uni­
formly to continuous limit u. 

21. (a) Suppose {Fx, A. G A} is a family of probability distributions and suppose 
the chf of Fx is 0x- If ^ e A} is equicontinuous, then {Fx, A. G A} is 
tight. 

(b) If {F„,n > 0} is a sequence of probability distributions such that 
F„ => FQ, then the corresponding chf's are equicontinuous. By the Arzela-
Ascoli theorem , uniformly bounded equicontinuous functions converge lo­
cally uniformly. Thus weak convergence of {F„} means the chf's converge 
locally uniformly. 

22. A continuous function which is a pointwise limit of chf's is a chf. (Use the 
continuity theorem.) 

17. (a) Give an example of a random variable Y such that E(Y) = 0 and 

EY^ <oo, £ |y2+«| = oo, 

for all 8 > 0. (This means finding a probability density.) 

(b) Suppose {Y„,n > 1} are iid with EYi = 0, and EY^ = or̂  < oo. 
Suppose the common distribution is the distribution found in (a). Show that 
Lindeberg's condition holds but Liapunov's condition fails. 

18. Use the central limit theorem to evaluate 

e~''x"~^dx. 
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2^ «=-oo 

and show that 

./ —TT K(h)= / e'^''f(x)dx, /i = 0, ± 1 , ± 2 , . . . . (9.34) 

(b) Let {{A'n, n = 0, ± 1 , ± 2 , . . . } be a zero mean weakly stationary pro­
cess. This means E(Xm) = 0 for all m and 

is independent of m. The function y is called the autocovariance (acf) func­
tion of the process {X„}. 
Prove the following: An absolutely summable complex valued function 
>/(•) defined on the integers is the autocovariance function of a weakly sta­
tionary process iff 

1 °° 
f^^^ = E ^"'"V(") > 0, for all k e [-TT, TT], 

2 ^ «=-oo 

in which case 
y(h)= f e''"'f(x)dx. 

J-TT {Soy(-) is a chf.) 

Hint: If y() is an acf, check that 

1 ^ 
^^^^^ " 2 ^ E ^""V(r -5)e"^ > 0 

r,s=l 

and /AT(A.) -» /(A.) as AT -» oo. Use (9.34). Conversely, if y(-) is abso­
lutely summable, use (9.34) to write y as a Fourier transform or chf of / . 

23. A complex valued function (/>(•) of a real variable is called non-negative 
definite if for every choice of integer n and reals ti, ...,t„ and complex 
numbers c i , . . . , c„, we have 

n 

J2 <l>(fr-ts)CrCs > 0. 
r,s=l 

Show that every chf is non-negative definite. 

24. (a) Suppose K(-) is a complex valued function on the integers such that 
ES=-ool^(«)l < o o . Define 

f^^^ = ?- E ^"'""^^C") (9-33) 
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it(b-a) 

U4>(t) is the chf of the distribution F and 4>{t){\-e'^^)/{ith) is integrable 
in t, show the inversion formula 

Hint: Let U-h,Q be the uniform distribution on {—h, 0). What is the chf of 
F * U-h,Q^ The convolution has a density; what is it? Express this density 
using Fourier inversion (Corollary 9.5.1). 

26. Why does the Fourier inversion formula for densities (Corollary 9.5.1) not 
apply to the uniform density? 

27. Suppose for each n > 0 that 0„(O is an integrable chf corresponding to a 
distribution F„, which by Fourier inversion (Corollary 9.5.1) has a density 
/ „ . If as n -» oc 

• oo 
\<t>n{t) - 4>0{t)\dt 0, 

' - O 0 

then show /„ ->> /o uniformly. 

28. Show the chf of F{x) = 1 - e"-", A: > 0 is 1/(1 - if). If £ i , E2 are iid 
with this distribution, then the symmetrized variable £1 —£"2 has a bilateral 
exponential density. Show that the chf of £1 — £2 is 1/(1 + t^). 
Consider the Cauchy density 

Note that apart from a constant, f{x) is the same as the chf of the bilateral 
exponential density. Use this fact to show the chf of the Cauchy density 
is 4>{t) — Verify that the convolution of two Cauchy densities, is a 
density of the same type. 

Check that this makes y non-negative definite and thus there is a Gaussian 
process with this y as its acf. 
(c) Suppose 

q 
X„ = ^r^6,Z„-i, 

1 = 0 

where {Z„} are iid N{0,1) random variables. Compute y(h) and f(k). 
(d) Suppose {X„] and {¥„} are two uncorrelated processes (which means 
E{XmY„) = 0 for all m, n), and that each has absolutely summable acfs. 
Compute y{h) and /(X) for {X„ + ¥„}. 

25. Show the chf of the uniform density on (a, b) is 
gttb __ git a 
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A: > 0. 

31. Suppose F is a probability distribution with chf 0(0- Prove for all a > 0 

j°(F(x + H) - F(x - u))du = i £ ^ ^ ~ ^ ° ' ° ' e - ' " » W » . 

r f%(0.r = 2 r i ^ F ( . . ) . 
Jo J-u J-oo 

32. Suppose X has chf 

3sinr 3cosr 
= - ? 3 —' ' ^ 0 -

(a) Why is X symmetric? 

(b) Why is the distribution of X absolutely continuous? 

(c) Why is P[\X\ > 1] = 0? 

(d) Show E{X^) = 3/(2n + l)(2n + 3). (Try expanding (pit).) 

33. The convergence to types theorem could be used to prove that if A'„ => A' 
and Qn a and bn b, then anXn + bn aX -\-b. Prove this directly 
using chf's. 

34. Suppose [Xn, n > 1} are independent random variables and suppose X„ 
has a N(0, o^) distribution. Choose so that v^^jor^/s^ 0. (Give an 
example of this.) Then 

Sn/Sn = N(0, 1) 

and hence Sn/s„ => Ar(0,1). Conclusion: sums of independent random 
variables can be asymptotically normal even if the Lindeberg condition 
fails. 

29. IViangle density, (a) Suppose Ua,b is the uniform distribution on (a, fe). 
The distribution L^(-i.o) * ^(O.i) has a density called the triangle density. 
Show the chf of the triangle density is 2(1 — cost)/t^. Verify that this chf 
is integrable. 

Check that 
f(x) = (1 - cosx)/(7Tx^), x e R 

is a probability density. Hint: Use (a) and Fourier inversion to show 1 — 
is a chf. Set x = 0. 

30. Suppose Ui,...,U„ are iid L^(0,1) random variables. Use the uniqueness 
theorem to show that Yl"=i has density 
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1 
n 

Does the mean or variance of ^„ exist? 
Prove 

Thus asymptotic normality is possible even when neither a mean nor a sec­
ond moment exist. 

36. Suppose A' is a random variable with the property that X is irrational with 
probability 1. (For instance, this holds if X has a continuous distribution 
function.) Let F„ be the distribution of nX — [nX], the fractional part of 
nX. Prove Y!i=\ ^« =^ uniform distribution on [0,1]. Hint: You 
will need the continuity theorem and the following fact: If 9 is irrational, 
then the sequence [nO — {n9], w > 1} is uniformly distributed modulo \ . A 
sequence [xn] is uniformly distributed if the sequence contains elements of 
[0,1] such that 

iy]e:r.(-)-̂ M), 
where X() is Lebesgue measure on [0, 1], and for B e B([0, 1]), 

1, ifxeB, 
0, ifx^B. 

37. Between 1871 and 1900, 1,359,670 boys and 1,285,086 girls were born. Is 
this data consistent with the hypothesis that boys and girls are equally likely 
to be born? 

38. (a) If {X„, n > 1} are independent and X„ has chf 0„, then if Yl'^i is 
convergent, f l ^ i 4>n(t) is also convergent in the sense of infinite products. 
(b) Interpret and prove probabilistically the trigonometric identity 

sinr ~ 
= Y\ cos(r/2"). 

(Think of picking a number at random in (0,1).) 

35. Let {X„, n > 1} be independent random variables satisfying the Lindeberg 
condition so that Yl"=i is asymptotically normal. As usual, set = 
Var(5^"_i Xi. Now define random variables {^n, n > 1} to be independent 
and independent of [Xn] so that the distribution of t,i is symmetric about 0 
with 

P [ ^ „ = 0 ] = 1 - ^ , 
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^ ^ 1 / 2 ^ - 3 / 2 

40. Suppose X and Y are iid with mean 0 and variance 1. If 

X-\-Y J _ X - Y , 

then both X and Y are A^(0,1). 

41. If 0it, A: > 0 are chf's, then so is YltLo Pk4>k for any probability mass func­
tion {pit, A: > 0}. 

42. (a) For n € Z define 

e„(t) = -^e'"', r € ( - 7 r , 7 r ] . 
V 27r 

Show that {e„,n = 0, ± 1 , ± 2 , . . . } are orthonormal; that is, show 

1, ifA: = 0, 
0, ifk^O. 2n 

(b) Suppose X is integer valued with chf 4>. Show 

P[X = ]̂ = ^ f^^ e-'''4>{t)dt. 

(c) If A ' l , . . . , Xn are iid, integer valued, with common chf 0(r) , show 

P[S„=k]=^ j\-''\<t>{t))"dt. 

43. Suppose [Xn, n > 1} are independent random variables, satisfying 

E { X „ ) = 0, Var(^„) = < oo. 

Set 5 ^ = Yl"i=\ ^f' Assume 

(a) 5 „ / 5 „ => Ar(0,1), 

(b) On/Sn p . 

39. Renewal theory. Suppose {X„,n > 1} are iid non-negative random vari­
ables with common mean fi and variance a^. Use the central limit theorem 
to derive an asymptotic normality result for 

N{t) = sup{/2: S„ < r}, 

namely, 

-iW => N(0,1). 
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45. Suppose f(x)is an even probability density so that f(x) = f{—x). Define 

8(x) = 
X T ^ J s , i f ; c > 0 . 
g(-x), ifx<0. 

Why is g a probability density? 

If / has chf 0(r), how can you express the chf of g in terms of 0? 

46. Suppose {X„, n > 1} are independent gamma distributed random variables 
and that the shape parameter of X„ is a„. Give conditions on {a„} which 
guarantee that the Lindeberg condition satisfied. 

Prove X„/s„ => ^ ( 0 , p^). (Hint: Assume as known a theorem of Cramer 
and Levy which says that if X, Y are independent and the sum A' + y is 
normally distribute, then each of X and Y is normally distributed.) 

44. Approximating roulette probabilities. The probability of winning $1 in 
roulette is 18/38 and the probability of losing $1 is thus 20/38. Let {X„,n> 
1] be the outcomes of successive plays; so each random variable has range 
± 1 with probabilities 18/38, 20/38. Find an approximation by the central 
limit theorem for P[Sn > 0], the probability that after n plays, the gambler 
is not worse off than when he/she started. 
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Martingales 

Martingales are a class of stochastic processes which has had profound influence 
on the development of probability and stochastic processes. There are few areas 
of the subject untouched by martingales. We will survey the theory and appli­
cations of discrete time martingales and end with some recent developments in 
mathematical finance. Here is what to expect in this chapter: 

• Absolute continuity and the Radon-Nikodym Theorem. 

• Conditional expectation. 

• Martingale definitions and elementary properties and examples. 

• Martingale stopping theorems and applications. 

• Martingale convergence theorems and applications. 

• The fundamental theorems of mathematical finance. 

10.1 Prelude to Conditional Expectation: The 
Radon-Nikodym Theorem 

We begin with absolute continuity and relate this to differentiation of measures. 
These concepts are necessary for a full appreciation of the mathematics of condi­
tional expectations. 

Let {Q, B) be a measurable space. Let /i and k be positive bounded measures 
on (^,B). We say that k is absolutely continuous (AC) with respect to fi, written 
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/ 

ka{E) = j Xdp, E GB. 

X is unique up to sets of p measure 0. 

We will not prove Theorem 10.1.1 but rather focus on the specialization known 
as the Radon-Nikodym theorem. 

Theorem 10.1.2 (Radon-Nikodym Theorem) Let (Q, B, P) be the probability 
space. Suppose v is a positive bounded measure and v << P. Then there exists 
an integrable random variable X e B, such that 

XdP, WE G B. 
E 

X is a.s. unique (P) and is written 

dv 
X = 

dP 

We also write dv = XdP. 

A nice proof of the Radon-Nikodym theorem is based on the following Hilbert 
space result (see, for example, Rudin (1966)). 

X < < / i , if fi(A) = 0 implies k(A) = 0. We say that k concentrates on A e B 
if k(A^) = 0. We say that k and /j. are mutually singular, written k ± fi, if 
there exist events A,B e B, such that A 0 B = 0 and k concentrates onA,fj. 
concentrates on B. 

Example. If L^[o,i], (/[2.3] are uniform distributions on [0,1], and [2,3] respec­
tively, then U[o,i] ± U[2,3]' It is also true that L [̂o,i] ± ^ 1 . 2 ] -

Theorem 10.1.1 (Lebesgue Decomposition) Suppose that p and k are positive 
bounded measures on {Q, B). 

(a) There exists a unique pair of positive, bounded measures ka, ks on B such 
that 

k = ka-\-ks 

where 
k(j < < P, kg _L P, kg JL kg. 

(b) There exists a non-negative B-measurable function X with 

Xdp < 00 
J 

such that 
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Proposition 10.13 Let M be a Hilbert space. For x,y e M, denote the inner 
product by (x,y). If L : H R is a continuous linear functional on H , then 
there exists a unique € H such that 

L(x) = (x,y), WxeU. 

Proof. Case l:lfL(x) = 0, ^x, then we may take y = 0 and we are done. 
Case 2: Suppose L (A:) ^ 0 and assume, for simplicity that H is real and define 

M = {x GM:L(X) = 0]. 

L is linear so A/ is a subspace. L is continuous so M is closed. Since L is not iden­
tically 0, we have M ^M. Thus there exists some z' ^ M and by the projection 
theorem (Rudin (1966); Brockwell and Davis (1991)) 

Z' = Zi + 2 2 , 

where zi e M and 22 € A/-*-, the orthogonal complement of A/, and 22 ^ 0. Then 
there exists 2 € M-*-, 2 ̂  0. Thus, it is also true that z ^ M and hence L (2) ^ 0. 
Define 

so that 

ICV) = L (2)2/(2.2). (10.2) 

Soy :^0, y e M-^ and 

from (10.2). Now write 

/ L(x) \ L(x) 
x = [x- - - y + -y =:x -\-x 

and note 

L(x') = L(x)- f^^p^ = L(x) - L(x) = 0, 

from (10.3). So x' e M. Since y e we have {x\ y) = 0, and therefore 

{x,y) = {x\y)^L{x) 

from the definition of x". Thus L (A:) = {x, y) as required. 
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To show uniqueness of y: Suppose there exists y' and for all x 

L(x) = (x,y) = (x,y'). 

Then for all x 

{x,y-y') = 0, 

and so 

Thus y — y' = 0 and y = y'. n 

Before the proof of the Radon-Nikodym theorem, we recall the Integral Com­
parison Lemma which is given in slightly expanded form as Lemma 10.1.1. This 
is needed for conditional expectations and martingales. 

Lemma 10.1.1 (Integral Comparison Lemma) Suppose P) is a proba­
bility space with Q C B a sub a-field of B. Suppose X e Q,Y e Q, and that X 
and Y are integrable. Then 

X =Y a.s. iff VA G XdP = YdP. 
> > 
< < 

Proof of the Radon-Nikodym Theorem. Suppose v << P and define 

QiA) = ^ 
v(^) 

so |2 is a probability measure and Q << P. Set 

^ ~ 2 ' 

which is also a probability measure. Then 

H :=L2(P^)=L2(n,B, P*) 

is a Hilbert space with inner product 

iYuY2) = j YiY2dP\ 

Note that all elements of L2(P*) = L2{Q,B, P*) are jB-measurable. On / / , de­
fine the functional 

L{Y)= f YdQ, (10.4) 

so t h a t ! : ^ 2 ( 0 R is 
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|L(y) | <(const) | |y | |2 

where 

However, 

IIĴ II: = (y, Y)= f Y^dP\ 

L(Y)\< j \Y\dQ< j\Y\dQ-\- j \Y\dP 

= 2J \Y\dP* <2(j |y |2f /P*)i /2 

(by, for instance. Example 6.5.2 on page 189) 

= 2| |y | |2. 

Now, L is continuous and linear on / / = LiiP*). Thus from Proposition 
10.1.3, there exists Z G LiiP*) such that for all Y e LiiP*) 

L{Y) = (y ,Z) = j YZdP* 

= j^YZdP-\- j^YZdQ 

(10.5) 

Consequently, from the definition (10.4), for all Y € LiiP*) 

Z CYZ 
•dP. (10.6) 

Pick any setAeB and substituting y = in (10.5) gives 

j YdQ = Q{A) = j ZdP\ 

Then we get from (10.7) that 

0 ^ QW _f^ZdP* ^f^ZdP* 
- P*(A) P%A) - Q{A)/2 

(10.7) 

(a) linear, 

(b) bounded (and hence continuous). 

To check (b) we must show 

file:///Y/dQ-/-
file:///Y/dP
file:///Y/dP*
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where, to get the right inequality, we applied the fact that 2P* = P + Q > Q. 
Therefore, for a\\ A e B 

0 < j ZdP*<2P*(A) 

that is, 

0 < j ZdP* < j 2dP\ 

From the Integral Comparison Lemma 10.1.1 

0 < Z < 2, fl.5.(P*). 

In (10.6) set Y = l[z=2] to get 

f (1 - Z/2)dQ = f ^dP, 
J[Z=2] J[Z=2] 2 

that is, 
0 = P[Z = 2]. 

Since Q << P , we have 0 = Q[Z = 2] by the definition of absolute continuity 
and hence P*[Z = 2] = 0. So 0 < Z < 2, a.s. (P*). 

In (10.6), set 

Then Y e LziP*) and, in fact, 0 < y < 1 a.s. (P or Q or P*). From (10.6), 

x(fy(-f)'»=/.(i)"f-
Sum both sides over /? = 0 to « = TV̂  to get 

/.(-(r>-/,i s(f)'- <•»••' 
Note, as oo, 

1 - (Z/2)^+^ / 1, a.s. P* 

and hence a.s. Q. If LHS refers to the left side of (10.8), then dominated conver­
gence implies 

LHS j dQ = Q(A). 

If RHS refers to the right side of (10.8), then monotone convergence implies 
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Xdti, VA € B, 
A 

iff 
V « IX. 

Proof. Write = Yl%\ where / i(f i ,) < oo, and v(fi,) < oo, for all /. On 
^,, II and V are finite and if v < < / i , then 

v b , < < M b , 

on (J^,, ^, n iB). Apply the Radon-Nikodym theorem to each ^ , piece and put 
the pieces back together. • 

The next corollary is important for the definition of conditional expectation. 

Corollary 10.1.2 Suppose Q and P are probability measures oniQ^B) such that 
Q << P. Let Q C. Bbea sub-o-algebra. Let Q\Q, P\g be the restrictions of Q 
andPtoQ. Then in {n,Q) 

Q\G « P\G 

and 

^^}£. is Q-measurable. 
dP\g 

Proof. Check the proof of the Radon-Nikodym theorem. In the construction, we 
deal with L 2 ( ^ , ^ , P * ) . • 

10.2 Definition of Conditional Expectation 

This section develops the definition of conditional expectation with respect to a 
or-field and explains why the definition makes sense. The mathematics depends 
on Radon-Nikodym differentiation. 

Suppose X e Li(^, B, P) and let ^ C Bbea sub-or-field. Then there exists a 
random variable E(X\G), called the conditional expectation o f X with respect to 

such that 

Set X = Z/ (2 - Z) and for zWAeB 

(2(A) = \ XdP. ^ 
J A 

In subsequent work we use the notation \A for the restriction of the measure ix 
to the set A. Next we extend the Radon-Nikodym theorem to the case of or-finite 
measures. (Recall that a measure ix is cr-finite if the space Q. can be decomposed 

= ^ 1 where on each piece ix is finite: At(^,) < oo. Lebesgue mea­
sure X on {R) is or-finite since X((n, n + \]) = \ < oo and YlV=\ (^^ n-\-l] = R . ) 

Corollary 10.1.1 Iffx,v are cr-finite measures on(^, B), there exists a measur­
able X eB such that 
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XdP, AeB. 
A 

Then v is finite and v < < P . So 

v\g « P\g. 

From the Radon-Nikodym theorem, the derivative exists and we set 

which by Corollary 10.1.2 is ^-measurable, and so for all G € ^ v\g(G) = v(G) = f ^dP\g 
JG dP c G dP\G 

dv\g 
iGdP\G 

= jf E{X\Q)dP 

dP since P = P\G on Q 

which is (ii) of the definition of conditional expectation. 
If A' € L1 is not necessarily non-negative, then 

E{X^\Q)-E{X-\G) 

satisfies (i) and (ii) in the definition. • 

(i) E{X\Q) is ^-measurable and integrable. 

(ii) For all G 6 ^ we have 

/ XdP^ f E{X\G)dP. 
JG JG 

To test that a random variable is the conditional expectation with respect to 
one has to check two conditions: (i) the measurability condition and (ii) the 

integral condition. 
There are (at least) two questions one can ask about this definition. 

(a) Why does this definition of conditional expectation make mathematical 
sense? 

(b) Why does this definition make intuitive sense? 

Answer to (a): This is relatively easy given the development of Radon-Nikodym 
differentiation. Suppose initially that X >0. Define 
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Notes. 

(1) Definition of conditional probability: Given (fi, B, P ) , a probability space, 
with Q a sub-a-field of define 

P{A\G) = E(1A\Q), AeB. 

Thus P(A\Q) is a random variable such that 

(a) P(A\Q) is ^-measurable and integrable. 
(b) P ( > \ 10 satisfies 

P{A\g)dP = P{A n G ) , VG € a 

(2) Conditioning on random variables: Suppose {Xt,t € T} is a family of ran­
dom variables defined on (fi, B) and indexed by some index set T. Define 

G:=a(Xt,t€T) 

to be the o-field generated by the process {Xt,t e T]. Then define 

E{X\Xt,teT)=^E{X\g). 

Note (1) continues the duality of probability and expectation but seems to place 
expectation in a somewhat more basic position, since conditional probability is 
defined in terms of conditional expectation. Note (2) saves us from having to 
make separate definitions for E(X\Xi), E(X\XiyX2)y etc. 

Example 10.2.1 (Countable partitions) Let {A„,n > 1} be a partition of fi so 
that A, riAy = 0, i and Yn = ^ . (See Exercise 26 of Chapter 1.) Define 

C? = a(A„, / i > 1) 

so that 

ForX e I i ( P ) , define 

5^A, : J C { 1 , 2 , . . . } 

EAAX) = j XP(dco\An) = XdP/Phn, 

if P ( A „ ) > 0 and Et,„{X) = 17 if P ( A „ ) = 0. We claim 
oo 

{a) E{X\G)''dYl^^AX)U„ 
,1=1 

and for any AeB 

oo 
ib) P ( A | 0 " : ^ ; [ ] P ( A | A „ ) 1 A „ . 

,1=1 
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oo 

/ I = L 

Now pick A and it suffices to show for our proposed form of E(X\G) that 

^ E{X\G)dP = ̂  ^E^A„OT1A„^ dP = f^^df"- (10-9) 

Since A e Gy A has the form A = JZ/GY A/ for some J C { 1 , 2 , . . . } . Now we 
see if our proposed form of E(X\G) satisfies (10.9). We have 

oo 
,miA„dP 

• ' ^ ,1 = 1 

,1>1 1 6 7 • '^« 
i ^ A „ ( ^ ) L A „ ^ P ( F O R M OF A) 

= E E ^ A „ ( ^ ) / ' ( A / A « ) 
« > I I € Y 

= Et., {X). P(A,) ({A„} are disjoint) 
1 6 7 

^ /A 
= E p,A.-> • ^ ^ ^ ' ^ (definition of EA(^)) 

, G Y J A , • ' 2 - , €Y^« 

This proves (a). We get (b) from (a) by substituting X = 1A- D 

Interpretation: Consider an experiment with sample space Q. Condition on the 
information that "some event in G occurs." Imagine that at a future time you will 
be told which set A„ the outcome co falls in (but you will not be told co). At 
time 0 

oo 

J2P(A\A„)1A„ 
,1=1 

is the best you can do to evaluate conditional probabilities. 

Proof of (a) and (b). We first check (a). Begin by observing 
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Y^p{A\x=^x,n[x=^,] 
i = l 

where we applied Example 10.2.1(b). 

Note that if we attempted to develop conditioning by first starting with a def­
inition for discrete random variables X, how would we extend the definition to 
continuous X's? What would be P{A\X = x) if P(X = A:) = 0 for all x? We 
could try to define 

P(A\X=^x)=^\\mP(A\X e{x-h,x-{-h)) 

but 

(a) How do we know the limit exists for any x? 

(b) How do we know the limit exists for all x? 

The approach using Radon-Nikodym derivatives avoids many of these prob­
lems. 

Example 10.23 (Absolutely continuous case) Let = and suppose X and 
Y are random variables whose joint distribution is absolutely continuous with 
density f(x, y) so that for A € B(E}) 

P[{X, Y)eA] = j j ^ fix, y)dxdy. 

What is P{Y € C\X] for C € iB(IR)? We use Q = o{X). Let 

Hx):= f f(x,t)dt 
JR 

be the marginal density of X and define and 

0(^) = 

We claim that 

(X) 
17, i f / ( A : ) = 0. 

P[Y € C\X] = 4>{X). 

Example 10.2.2 (Discrete case) Let X be a discrete random variable with pos­
sible valuesxi,X2, Then for A € B 

P{A\X) = P{A\o{X)) 
= P(A\cr{[X = x,],i ^1,2,...)) 

oo 
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/ , f Mdx 
JAn[x:i{x)>0] 'yx) 

f (f f(x,t)dt)dx 
JAn[x:nx)>0) JC 

j (j fix, t)dt)dx = P[X eA,Y eC\ 

= P([y 6 C ] n A ) 

as required. • 

10.3 Properties of Conditional Expectation 

This section itemizes the basic properties of conditional expectation. Many of 
these parallel those of ordinary expectation. 

{\)Linearity. If ^ , y € Li and a, ^ 6 R , we have 

EiiaX + m\Q) =• ctE{X\G) + fiE(y\G). 

First of all, note by Theorem 5.9.1 page 149 and composition (Proposition 3.2.2, 
page 77) that /(X, t)dt isa(A')-measurable and hence <t>{X) isor(A')-measurable. 
So it remains to show for any A € o{X) that 

j <l>{X)dP = P{[Y eC]r\h). 

Since A € G{X), the form of A is A = € A] for some A € B{R). By the 
Transformation Theorem 5.5.1, page 135, 

( 4>{X)dP= f (t>{X)dP= f (p(x)P[Xedx] 

and because a density exists for the joint distribution of (X, Y), we get this equal 
to 

= j^4>{x)[jj{x.t)dt)dx 

= ( <t>{x)nx)dx + f 4>(x)I(x)dx 
JAn[x:nx)>0] J An[x:nx)=0] 

= f <t>{x)nx)dx-ho 
JAn{x:nx)>0] 
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f E{X)dP= f XdP. 
JA JA 

(4) Monotonicity. If A' > 0, and A' € L i , then E{X\g) > 0 almost surely. The 
reason is that for all A 6 ^ 

/ E(X\g)dP=^ f XdP>0= f OdP. 
JA JA JA 

The conclusion follows from Lemma 10.1.1. So if A', y € L i, and X <Y, then 

E(X\g)''< E(Y\g). 

Thus conditional expectation is monotone. 

(5)Modulus inequality. UX e Li 

\E{x g)\ < E{\x\ g) 

To verify this, observe that the right side is ^-measurable and for A € ^ 

f (aE{X\g)-\-pE(Y\g))dP = a f E(X\g)dP^ f E(Y\g)dP 
JA JA JA 

= a f XdP -\-p f YdP 
JA JA 

(from the definition of conditional expectation) 

= f (aX-hmdP-
JA 

(2)UX €g;X eLuthen 

E{x\g) =• X. 

We prove this by merely noting that X is ^-measurable and 

f XdP = f XdP, VA 6 g. 

JA JA 

In particular, for a constant c, c is ^-measurable so 
£:(c |0 =• c. 

(3) We have 
E{X\{<t>, Q})=^E{X). 

The reason is that E{X) is measurable with respect to the a-field {0, fi} and for 
every A € {0, fi} (that is, A = 0 or A = fi) 
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since 

\E(X)\G)\ = \E(x''\g)-E(x-\g)\ 

<E(X-'\g)-hE(X-\G) 

and using linearity, we get 

= £ ( ^ + + ^ - ) | 0 = £ ( m Q) 

(6)Monotone convergence theorem. If X e LiyO < X„ \ X, then 

E{X„\g) t E{X\G) 

almost surely. Note that {E(X„\Q)] is monotone by item (4). Set 

Z := lim t E(X„\g). 
«->oo 

Then Z € ^ and for A € ^ 

f ZdP= f lim t E{X„\G)dP 
JA JA 

= lim f E(Xn\G)dP 

(by the monotone convergence theorem for integrals) 

= lim / X„dP. 
"-'^JA 

Again applying the monotone convergence theorem for integrals yields 

XdP. 

Since Z e G and 
/ ZdP = / XdP, VA € G, 

JA JA 

we have by definition that Z = E(X\G) which means 

E(X\G)^ lim 'tE{X„\G). 

(7) Monotone convergence implies the Fatou lemma. We have the conditional 
version of Fatou's lemma: If 0 < A'„ € L i , then 

E( l iminf^„|0 < liminf£(^„|C?), 
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( l iminfX„|^) = £ ( ^ l i m 

= lim £ I / \ A'/tl^ I ( monotone convergence ) 
n—• oo 

< liminf£(^„|0. 
«-»>00 

(8) Fatou implies dominated convergence. We have the conditional version of 
the dominated convergence theorem: If X„ e £ i , \X„\ < Z e Li and X„ 
Xoo, then 

£ ( l i m =• lim E(X„\g). 
\«-»>oo / n-»>oo 

(9) Product rule. Let X, Y be random variables satisfying X, YX € £ i. If 
Y then 

E{XY\Q) =• YE{X\g). (10.10) 

Note the right side of (10.10) is ^-measurable. Suppose we know that for all 
A 6 ^ that 

/ YE{X\g)dP=^ f XYdP. (10.11) 
JA JA 

Then 

/ YE(X\g)dP=^ f XYdP^ f E(XY\G)dP, 
JA JA JA 

and the result follows from Lemma 10.1.1. 
Thus we have to only show (10.11). Start by assuming y = 1^, A 6 ^ . Then 

A n A 6 ^ and 

f YE(x\g)dp=^ f E(x\g)dP 

JA JAOA 

IA 
-L 

XdP 

'APIA 
XYdP. 

'A 

while i f ^ „ < Z € Li , then 

£(l imsup^„|0 > limsup£(^„|0. 
«-»>oo «-»>oo 

For the proof of these conditional Fatou statements we note that 

£ 
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y = X! '̂iA. 
1=1 

where A, € Q. 
Now suppose X, Y are non-negative. There exist Yn t Y^ and 

1=1 

and 

I Y„E(X\G)dP = { XY„dP. (10.12) 
JA JA 

By monotone convergence, XYn Z' XY, and 

Y„E{X\G) / YE{X\GY 

Letting w oo in (10.12) and using monotone convergence yields 

\ YE{X\Q)dP = \ XYdP, 
JA JA 

IfX, Y are not necessarily non-negative, write X ='X'^ — X~, Y = Y'^ — Y~. 

(10) Smoothing. If 
GiCGiC B, 

then for A' e L1 

E(E(X\G2)\Qi) = E(X\gi) (10.13) 
E(E(X\G0\g2) = EmGi). (10.14) 

Statement (10.14) follows from item (9) or item (2). 
For the verification of (10.13), let A € Qi. Then E(X\Gi) is ^i-measurable 

and 

f E{EiX\g2)\Qi)dP = f E(X\G2)dP (definition) 
JA JA 

= j XdP (since A e Gi C Gi) 

= j E(X\Gi)dP (by definition.) 

A special case: Gi = {0, Then E{X\{0, ^}) = E(X). So 

E(E(X\G2)) = £ ( £ ( ^ | ^ 2 ) l { 0 , ^}) = E{X\{0, Q]) = £ ( X ) . (10.15) 

So (10.11) holds for y = 1A and hence (10.11) holds for 

k 
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/ 

/ 

To understand why (10.13) and (10.14) are called the smoothing equalities, 
recall Example 10.2.1 where Q = a (A„ , n > 1) and {A„, n > 1} is a countable 
partition. Then 

oo 

,1=1 

so that £ (A'10(0 is constant on each set A„. 
If Qi C Q2 and both are generated by countable partitions {A^^\n > 1} 

and {A^n\n > 1}, then for any A^n \ A^̂ ^ € 0 , so there exists an index set 
J C { 1 , 2 , . . . } and A^̂ ^ = YjeJ ^f^' Th"s, £ ( ^ | ^ i ) is constant on A^̂ ^ but 
E(X\Q2) m ây change values as co moves from one element of {A^^, j € J] to 
another. Thus, as a function, £(A ' |^ i) is smoother than £(A'|0). 

(11) Projections. Suppose ^ is a sub or-field of B. Let L2(G) be the square 
integrable random variables which are ^-measurable. If A' € L2{B), then £(A'|^) 
is the projection of X onto £ 2 ( ^ ) , a subspace of L2(B). The projection of X onto 
L2{G) is the unique element of L2(G) achieving 

inf \\X-Z\\2. 

It is computed by solving the prediction equations (Brockwell and Davis, 1991) 
forZ 6 £ 2 ( 0 : 

( y , ^ - z ) = : 0 , v y 6 £ 2 ( 0 . 

This says that 

^Y(X-Z)dP==0, Vy G £ 2 ( 0 . 

But trying a solution of Z = £(A'|^), we get 

Y{X - Z)dP = £ (Y(X - £(^10)) 

= : £ ( y ^ ) - £ ( y £ ( ^ | 0 ) 
= E(YX) - £ ( £ ( y ^ | ^ ) ) (since Y eQ) 
= E{YX) - E{YX) = 0. 

In time series analysis, £(A'|^) is the best predictor of X in L2{Q). It is not 
often used when Q — o(X\, ...yX„) and X = X„+i because of its lack of 
linearity and hence its computational difficulty. 

(12) Conditioning and independence. 

(a) If A' 6 £ 1, then we claim 

XimpliesE{X\G) = EX. (10.16) 

To check this note 
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U(x) = Emx,Y)). 

Then 

E(<t>(X,Y)\Q) = U(X). (10.17) 

Proof of (10.17). Case 1. Suppose </> = ly , where J e B(W x R * ) . 
Case la. Suppose J = K x L , where K G B(W). and L G / 3 ( R * ) . Then 

EiHX, Y)\Q) = P(XeK,Ye L\g), 

and because [X e K] e this is 

= l[A'€/c]P(>'eL|C?). 

Since Y is independent of Q, this is 

= W ] P [ l ' e L ] = / i ^ , , ( ^ ) . 

Case lb. Let 

C = {J G /3 (R^ X R * ) : (10.17) holds for 4> = lj]. 

Then C D RECTS, the measurable rectangles, by Case la. We now show C is a 
X-system; that is, 

(i) R ^ + * G C, which follows since R > + * G RECTS . 

(ii) J eC implies eC, which follows since 

P{{X, Y) G J'\Q) = 1 - Pax, Y) G J\Q) 

= 1- fij(X) = fijAX). 

(iii) If >\„ G C and A„ are disjoint, we may (but will not) show that Yin ^« ^ ^-

(i) E(X) is measurable Q. 

(ii) For AeQ, 

j E(X)dP = E(X)P(A) 

and 
f XdP = E(Xlj^) = E(X)P(A) 

JA 

by independence. 

(b) Let 0 : X R * i-> R be a bounded Borel function. Suppose also that 
^ : R > , y : R * , ̂  G and y is independent ofQ. Define 
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Thus, C is a X-system, and C D RECTS . Since RECTS is a jr-class Dynkin's 
theorem implies that 

C D C T ( RECTS ) = iB ( R > + * ) . 

Case 2. We observe that (10.17) holds for for </> = Yl^^i h, • 
Case 3. We finish the argument with the usual induction. • 

(13) The conditionalJensen's inequality. Let 0 be a convex function. A' G L i , 
and 4>{X) e L\. Then almost surely 

<t>(^(X\G)) < E(<t>(X)\G). 

Proof of Jensen's inequality. Take the support line at XQ; it must lie under the 
graph of 4> so that 

(t>(xo) + XixoKx - xo) < 4>{x) (10.18) 

where )^(xo) is the slope of the support line through (XQ, 4>(XO)). Replace XQ by 
E(X\G) and A: by ^ so that 

(t>(E(X\G)) + HE(X\G)){X - E(X\G)) < 4>{X). (10.19) 

If there are no integrability problems (if!!!), we can take E{-\G) on both sides of 
(10.19). This yields for LHS, the left side of (10.19), 

E{U{S\G) = <t>{E{X\G)) + E{X{E{X\G)){X - E{X\G))\G) 
= 4>{E{X\G)) 4- X{E{X\G))E{X - E{X\G))\G), 

and since E[{X - E{X\G))\G) = 0, we have 

= 4>{E{X\G)). 

For RHS, the right side of (10.19) we have 

E(mS\G) = E{<I>{X)\G) 

and thus 

<t>{E{X\G)) = E{U\S\G) < E{m\s\G) = E{4>{X)\G), 

which is the conditional Jensen inequality. 
Note that X{x) can be taken to be the right hand derivative 

,. 4>(x + h) - 4>(x) 
hm ; 
hio h 

and so by convexity is non-decreasing in x. If E(X\G)((o) were bounded as co 
varies, then 4>(E(X\G)) would be bounded and k(E(X\G)) would also be bounded 
and all terms in (10.19) would be integrable and the result would follow. 
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Now let 

X' = X\\E{xm<,n-\ 

and observe 

E{X'\G) = E{X\\EiXm<n-\\Q^ 
= h\EiX\G)\<n]EiX\G) 

is bounded, so the discussion of Jensen's inequality for the case of bounded con­
ditional expectation applies, and 

<t>(E(X'\G)) < E(<t>(X')\G). 

Thus, as n ^ oo 

E(4>(X')\G) = E (4>(Xl[\EiX\G)\<n]\Q)) 

= E ((t>(X)l[\E(X\G)\<n]-^<t>(.^)h\E(X\G)\>n]\Q) 

= ^\E(X\G)\<n]E(.4>{X)\Q) +< />(0) l [ |£ (A ' |C?) |> , i ] 

E(4>{X)\G) 

Also, as w oo, 

4>{E(X'\G)) = <t>(l[\E(X\G)\<n]E(X\G)) 

^ 4>(E{X\G)) 

since (p is continuous. • 

( 1 4 ) Conditional expectation is Lp norm reducing and hence continuous. For 
X G Lp, define = (E\X\Py^P and suppose p>l. Then 

\\E(X\B)\\p < \\X\\p. ( 1 0 . 2 0 ) 

and conditional expectation is Lp continuous: UX„ Xoo, then 

E{X„\B) h E{Xoo\B). ( 1 0 . 2 1 ) 

Proof of ( 1 0 . 2 0 ) and ( 1 0 . 2 1 ) . The inequality ( 1 0 . 2 0 ) holds iff 

{E\E{X\B)\P)^'P < (E(\X\P)y^^, 

that is, 

E{\E(X\B)\P) < E{\X\P). 

From Jensen's inequality 

<t>{E(X\B)) < E(<t>(X)\B) 
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(iii) For 0 <m < w. 
E(X„\B„r)''dX^. 

If in (iii) equality is replaced by >; that is, things are getting better on the average: 

E(X„\B„r)''> X„r, 

then {X„] is called a submartingale (submg) while if things are getting worse on 
the average 

E(X„\B^)''< X^y 

{X„ ] is called a supermartingale (supermg). 
Here are some elementary remarks: 

(i) [Xn] is martingale if it is both a sub and supermartingale. {X„] is a super­
martingale iff [—Xn] is a submartingale. 

(ii) By Lemma 10.1.1, postulate (iii) holds iff 

f X„=^ f X^y VA G B„,. 
JA JA 

Similarly for the inequality versions of (iii). 

if (f) is convex. Since (t>{x) = \x\P is convex for p > 1, we get 

E\Em\B)\P =^ E<t>{E{Xm 
<E(E(4>{Xm) = E{4>(X)) 
= E{\X\P). 

To prove (10.21), observe that 

\\E{X„\B) - E ( ^ o o l ^ ) l l p = \\Eax„ - XoomWp 
< \\X„ - XooWp 0. 

where we have applied (10.20). • 

10.4 Martingales 

Suppose we are given integrable random variables {X„yn > 0} and cr-fields 
{B„,n > 0) which are sub or-fields of B. Then {(X„, B„),n > 0} is a martin­
gale (mg) if 

(i) Information accumulates as time progresses in the sense that 

BoCBiCB2C"-cB. 

(ii) X„ is adapted in the sense that for each n, X„ G B„', that is, X„ is B„-
measurable. 
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(iii) Postulate (iii) could be replaced by 

E{X„^i\B„)=Xn, V n > 0 . (iii') 

by the smoothing equality. For example, assuming (iii') 

E{X„^2\B„) = E(E(X„+2\B„+i)\B„) = E(X„+i\B„) = X„. 

(iv) If {X„} is a martingale, then E(X„) is constant. In the case of a submartin-
gale, the mean increases and for a supermartingale, the mean decreases. 

(v) If {(X„, B„),n >0] is a (sub, super) martingale, then 

[X„,G(XO X„),n>0} 

is also a (sub, super) martingale. 

The reason for this is that since X„ e B„, 

<^(Xo X„)CB„ 

and by smoothing 

E(X„+I\G(XO,...,X„)) = E (E{X„+i\B„)\Xo X„) 

— E(A'n\XQ, . . . , Xn) = Xn' 
Why do we need B„? Why not just condition on G(XO, . . . , A'M)? Some­
times it is convenient to carry along auxiliary information. 

(vi) Martingale differences. Call {(rfy, Bj), ; > 0} a (sub, super) martingale 
difference sequence or a (sub, super) fair sequence if 

(i) F o r ; > 0 , BjCBj+i. 

(ii) Fo r ; > 0, dj e L^dj e Bj. 
(iii) For ; > 0 

E{dj+i\Bj) = 0, (fair) 
> 0, (subfair) 
< 0, (superfair). 

Here are the basic facts about martingale differences: 

(a) If {{dj, Bj), j > 0} is (sub, super) fair, then 

n 

{(X„ :=J2'^j,B„),n>0] 

is a (sub, super) martingale. 
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(b) Suppose [{X„, Bn),n > 0} is a (sub, super) martingale. Define 

do^Xo- E{XQ), dj = Xj - Xj-i, j > 1. 

Then [{dj, Bj), j > 0) is a (sub, super) fair sequence. 

We now check facts (a) and (b). For (a), we have for instance in the case 
that {(dj, Bj), j > 0} is assumed fair that 

E \B„^ = E(d„+, \B„) + ^ 1^"^ = 0 + E ^ 7 ' 

which verifies the martingale property. 

For (b), observe that if {X„ ] is a martingale, then 

E{(Xj-Xj.i)\Bj.i) = E(Xj\Bj-.O-Xj.i=Xj-i-Xj.i=0. 

(vii) Orthogonality of martingale differences. If {(Xn = ]C"=o^; ' B„),n >0] 
is a martingale and E(dj) < oo, j > 0, then {dj] are orthogonal: 

Ed,dj = 0 , / 9̂  

This is an easy verification: If ; > i, then 

E(didj) = E{E(didjm) 
= E(d,E(dj\B,))=0. 

A consequence is that 

E(Xl) = E(J2d])-h2 J2 Eididj) = E(J2dj), 
j=l 0 < i < ; < « / = 1 

which is non-decreasing. From this, it seems likely (and turns out to be true) 
that {X^} is a sub-martingale. 

Historical note: Volume 6 of the Oxford English Dictionary gives the follow­
ing entries for the term martingale and comments it is a word of obscure entymol-
ogy-

• A strap or arrangement of straps fastened at one end to the noseband, bit or 
reins and at the other to the girth to prevent a horse from rearing or throwing 
back his head. 

• A rope for guying down the jib-boom to the dolphin-striker. 

• A system in gambling which consists in doubling the stake when losing in 
the hope of eventually recouping oneself. 
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Then 

is a martingale. 
Verification is easy: 

X„ := E(X\B„). 

{{X„,B„hn>0] 

E(X„+i\B„) = E(E(X\B„+i)\B„) 
= E(X\B„) (smoothing) 

— Xn-

(2) Martingales's and sums of independent random variables. Suppose that 
{Z„,n > 0} is an independent sequence of integrable random variables satisfying 
for n > 0, E(Z„) = 0. Set = 0, X„ = Yl"=i > 1. and B„ := 
cr (Zo , . . . . Zn). Then {(Xn, Bn), w > 0} is a martingale since {(Z„, B„), n > 0] 
is a fair sequence. 

(3) New martingale's from old, transforms, discrete stochastic integration. Let 
{(dj,Bj), j > 0} be martingale differences. Let be predictable. This means 
that Uj is measurable with respect to the prior cr-field; that is UQ G BQ and 

UjeBj-i, j > l . 

To avoid integrability problems, suppose Uj e Loo which means that Uj is 
bounded. Then {{Ujdj, Bj),n > 1} is still a fair sequence since 

E(Ujdj\Bj.i) = UjE(dj\Bj-i) (since Uj G BJ-I) 
= Uj'0 = 0. (10.22) 

We conclude that {(}2"j=o ^jdj. JB„), n > 0} is a martingale. 
In gambling models, dj might be ± 1 and Uj is how much you gamble so that 

Uj is a strategy based on previous gambles. In investment models, dj might be 
the change in price of a risky asset and Uj is the number of shares of the asset 
held by the investor. In stochastic integration, the d'^s are increments of Brownian 
motion. 

The notion of the martingale transform is formalized in the following simple 
result. 

10.5 Examples of Martingales 

Those most skilled in applying the economy and power of martingale theory in 
stochastic process modeling are those wizards able to find martingales in surpris­
ing circumstances. It is thus crucial for someone trying to master this subject to 
study as many examples as possible of where martingales arise. In this section, 
we list some of the common examples. 

(1) Martingales and smoothing. Suppose X G Li and {B„yn > 0} is an in­
creasing family of sub cr-fields of B. Define for n > 0 
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N 

,1=1 
0 = E(J2^„d„) = E(Uj + ldj + l) = £ ( U / ; + l) 

so that 
0 = / dj+idP= f E{dj+i\Bj)dP 

JAJ JAJ 
Hence, from the Integral Comparison Lemma 10.1.1 we conclude that 
E{dj+i\Bj) = 0 almost surely. So {(d„,B„),n G N } is a martingale difference 
and the result follows. • 

(4) Generating functions, Laplace transforms, chf's etc. Let {Z„, w > 1} be iid 
random variables. The construction we are about to describe works for a variety 
of transforms; for concreteness we suppose that Z„ has range {0 ,1 ,2 , . . . } and 
we use the generating function as our typical transform. Define 

BQ = {e,Q,], B„ = G{Zi,...,Z„), n > \ 

and let the generating function of the Z's be 

</>(5) = £s^», 0 < 5 < 1 . 

Define A/Q = 1, fix s G (0,1), set So = 0, S„ = YA=\ > 1 and 

0"(s) 

Then { (A/„ , JB„), n > 0} is a martingale. This is a straightforward verification: 

= S^'^E[S^-^'\B„^ 
= s^^E ^ 5 ^ " + * ^ (independence) 

= S'^"</>(5). 

Lemma 10.5.1 Suppose {(M„,B„),n e N) is an adapted integrable sequence 
so that M„ e B„. Define do = MQ, and d„ = M„ — A/„_i , n > I. Then 
{(M„, B„),n G N } 15 c martingale iff for every bounded predictable sequence 
(£/„, n G N ) we have 

N 

E{J2^M = 0, VAr>0 . (10.23) 
,1=0 

Proof. If [{M„,B„), w G N } is a martingale, then (10.23) follows from (10.22). 
Conversely, suppose (10.23) holds. For ; > 0, let A G BJ and define U„ =0,n ^ 
; 4-1 , and Uj+i = 1>\̂ . Then {£/„, n G N } is bounded and predictable, and hence 
from (10.23) we get 
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So therefore 

( 5 ) ' ^ 7 " r(s) ' + 1 ( 5 ) 

which is equivalent to the assertion. 

(5) Method of centering by conditional means. Let {^„,n > 1} be an arbitrary 
sequence of L \ random variables. Define 

^ ; = ^ ( ^ i . . . . , ^ ; ) , ; > l ; Bo = [id,Q]. 

Then 

(^(^j-E%\Bj.i)),Bj^j>l 

is a fair sequence since 

E (fe - E{^j\Bj.O)\Bj-i) = E{^j\Bj-i) - E%\Bj-0 = 0. 

So 
n 

is a martingale. 

(6) Connections with Markov chains. Suppose {y„, n > 0} is a Markov Chain 
whose state space is the integers with transition probability matrix P = (pij). Let 
/ be an eigenvector corresponding to eigenvalue X; that is, in matrix notation 

In component form, this is 

Pf = kf. 

In terms of expectations, this is 

E(f(y„+0\Yn=i) = kf(i) 

or 

E{f(Y„+i)\Y„) = kf(Y„) 

and by the Markov property this is 

E(f(Y„+o\Y„) = £:(/(y„+i) |yo, .••,Y„) = kf(Y„). 

So we conclude that 

( ^ • ^ , O r ( y o , . . . , l ' « ) ) . / 2 > 0 
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-^,1+1 = 
Z(")(l)4----4-Z(">(Z„), ifZ„ > 0 , 
0. if Z„ = 0. 

which represents the number in the (n -H 1)- generation. Then {Z„} is a Markov 
chain and 

Soj, i f / = 0 . 
Pij:= P[Z„+i = j\Z„=i] = 

P*/, i f / > l , 

where for / > 1, p*' is the ;th component of the /-fold convolution of the se­
quence [p„]. Note for / > 1 

0 0 0 0 

j=0 ; = 1 

while for / = 0, 
oo 

J^PijJ = Foo'0-{-0 = O = mi. 

j=0 With / ( ; ) = ; we have Pf = mf. This means that the process 

{(Z„/m", or (Zo. . . . , Z„)), n>0] (10.24) 

is a martingale. 

(7) Likelihood ratios. Suppose {Yn,n > 0} are iid random variables and sup­
pose the true density of Y\ is fo. (The word "density" can be understood with 
respect to some fixed reference measure p.) Let / i be some other probability 
density. For simplicity suppose /o(>') > 0, for all y. Then for n > 0 

y nr=o/i(y.) 
" ^ = 0 / 0 ( 1 - . ) 

is a martingale since 

" • ' • ' ( K w " ' " ' ' • ) • 

is a martingale. 
A special case is the simple branching process. Suppose [pk,k > 0} is the 

offspring distribution so that pk represents the probability of k offspring per in­
dividual. Let m = Ylk ^Pk ^he mean number of offspring per individual. Let 
{Z^"\i), n > 0, / > 1} be an iid sequence whose common mass function is the 
offspring distribution [pk] and define recursively Z Q = 1 and 
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= X„f 

since f\ is a density. 

10.6 Connections between Martingales and 
Submartingales 

This section describes some connections between martingales and submartingales 
by means of what is called the Doob decomposition and also some simple results 
arising from Jensen's inequality. 

10.6.1 Doob's Decomposition 
The Doob decomposition expresses a submartingale as the sum of a martingale 
and an increasing process. This latter phrase has a precise meaning. 

Definition. Given a process [Un,n > 0} and cr-fields [Bn,n > 0}. We call 
{^,1. n>Q) predictable if UQ G BQ, and for n > 0, we have 

Un+\ e Bn. 

Call a process {An,n > 0} an increasing process if [An] is predictable and almost 
surely 

0 = Ao < Ai < >\2 < • • • . 

Theorem 10.6.1 (Doob Decomposition) Any submartingale 

[{Xn,Bn),n>0] 

can be written in a unique way as the sum of a martingale 

[{Mn.Bn),n>0] 

and an increasing process [An,n > 0}; that is 

Xn=Mn+An, n > 0. 

By independence this becomes 

fxdfi = X„-l = X„ 
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Proof, (a) Existence of such a decomposition: Define 

n 
M„: = ̂ 4 

y=o 

Then {A/„} is a martingale since {d*-} is a fair sequence. Set An = Xn — M„. Then 
AQ = XQ — Afo = XQ — A'o = 0, and 

A„+l —A„=: X„+i — Mn+\ —X„ + Mn 

= ^ n + l — Xn — (M„+i — M„) 

— Xn+i — Xn — d^^i 

= Xn+l — Xn — X„+i + E{Xn+l\Bn) 

= E(Xn+l\B„)-Xn>0 

by the submartingale property. Since 

n n 

An+1 = J2iAj+i - Aj) = J2{E(Xj+i\Bj) - Xj) G Bn, 

this shows {An} is predictable and hence increasing, 
(b) Uniqueness of the decomposition: Suppose 

Xn — "I" An, 

and that there is also another decomposition 

where {M'„] is a martingale and {Aj,} is an increasing process. Then 

A'„=X„-M'„, An=Xn-Mn, 

and 
K+i -A'„= Xn+i - Xn- (M'„+i - M'„). 

Because {A'„} is predictable and {M'„] is a martingale, 

- A ; = E{A'„^i - A'„\Bn) = E{X„+i\Bn) - X n - 0 

and 
An+l -An= E(An+l - An\Bn) = E(Xn+l\Bn) - X„. 

Thus, remembering AQ = AQ = 0, 
>\„ = Ao 4- (Ai - Ao) + • • • 4- (An - An-i) 

= A'Q + (A\ - + . . . + ( A ; - = A ; . 
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therefore also 
Mn = Xn - An = X„ - A'„ = M'„. • 

We now discuss some simple relations between martingales and submartingales 
which arise as applications of Jensen's inequality. 

Proposition 10.6.2 (Relations from Jensen) (a) Let 

{(X„,Bnhn>0} 

be a martingale and suppose (p is a convex function satisfying 

EmXn)\) < oo. 

Then 
mXn),B„),n>0] 

is a submartingale. 
(b) Let {(X„, B„),n > 0] be a submartingale and suppose 4> is convex and 

non-decreasing and E(\<p(X„)\) < oo. Then 

mXn),Bn),n>0} 

is submartingale. 

Proof. Un < m and (p is non-decreasing and the process is a submartingale, then 

(p(X„) <(p(E(Xnt\Bn)) (submartingale property) 
<E{(P(Xn,)\Bn) (Jensen). 

The case where the process is a martingale is easier. • 

Example 10.6.1 Let {(X„, Bn),n > 0} be martingale. Suppose (p is one of the 
following functions: 

(p(x) = \x\,x^,x'^yX~,x V a. 

Then 

[\Xn\]AXl}AX:i{X;)AXnVa] 

are all submartingales, provided they satisfy E(\(p{Xn)\) < oo. 

Example 10.6.2 (Doob decomposition of X^) Let {(Xn, Bn),n > 0} be a mar­
tingale and suppose EiX^) < oo. Then [{X^, Bn),n > 0} is a submartingale. 
What is its Doob decomposition? 

Recall 

dl = Xl d'^=XJ-E(xj\Bj.X Mn=J2^^, 
j=0 
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from the previous construction in Theorem 10.6.1 and 

Aj =XJ-Mj, An+i -An = E{Xl^,\Bn) - Xl 

Write Xn = Yl"j=odj (note the distinction between dj and d^) and because [Xn] 
is a martingale, {dj ] is fair, so that 

xj = (Xj-i + djf = Xj_^ + 2Xj-idj + dj 

and 

E(XJ\Bj.i) = + 2Xj.iE(dj\Bj.i) + E(dj\Bj.i). 

Remembering E(dj\Bj-i) = 0 yields 

An+i -An=Xl + E{dl^,\Bn) - X^ = E(d^^^\Bn) 

and 

Therefore, the Doob Decomposition of the submartingale {X^] is 

= -Y.E{d]\Bj.,) + Y,E{d]\Bj.,) 

= Mn+An. 

Note E(f/2|jg^_j) is the conditional variance of the martingale increment. Also, 
if {dj ] is an independent sequence, then 

E{d]\Bj.,) = E{d]) = \ax{d']), 

and 
Var(^„) = Var(A„). 

10.7 Stopping Times 

Let N = {0,1, 2 , . . . } , N = {0,1, 2 , . . . , oo} and suppose Bn C Bn+\,n G N is 
an increasing family of cr-fields. 

Definition. A mapping u : ^ j-*- N is a stopping time if 

[v = n]eBn, VHGN. 

To fix ideas, imagine a sequence of gambles. Then v is the rule for when to stop 
and Bn is the information accumulated up to time n. You decide whether or not to 
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[v = 00] = [u < oof = (U[i; = n]\ = f | [ v = n]' e Boo 

Requiring 

[v = n]eBn, neN 

implies 

[v = n] G B„, n eN. 

Example: Hitting times. Let [(Xn, Bn), n eN}be any adapted process, meaning 
Bn C Bn+i and Xn G Bn for all« G N. For A G BiR), define 

i; = inf{«GN:^„ e A), 

with the convention that inf 0 = 00. Then i; is a stopping time since for w G N 

[v = n] = [Xo i A, ...,Xn-i i A,Xn e A] G Bn. 

If V is a stopping time, define B^, the a-field of information up to time i; as 

B^=:[B eBoo-.WneN, [v = n]nB e Bn). 

So Bv consists of all events that have the property that adding the information 
of when v occurred, places the intersection in the appropriate a-field. One can 
check that B^ is a or-field. By definition B^, C BQO-

stop after the nth gamble based on information available up to and including the 
wth gamble. 

Note V can be +00. If y is a waiting time for an event and the event never 
happens, then it is natural to characterize the waiting time as infinite and hence 
V = 00. 

Define 

Boo=^\/B„=G(Bn,neN), 
nefi 

SO that Boo is the smallest or-field containing all Bn,n G N. Then 
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Bn[v = oo] = Bn[v < oof = B n 

Since B e B^ C Boo and [v n] = [v = nf e Bn C Boo, we have 
B n [u = oo] G BOO-

3. We have v G BOO, and v G JB^. 

4. i; is a stopping time iff [u < n] G n e N iff [V > n] e Bn, n eN. 

We verify this as follows: Observe that 

["<«]= U [̂  = ̂ i-
0 < ; < n 

SO 
[v =n] = [v <n]-[v <n - 1], 

and 

[v > n] = [v < nf. 

5. lfBeBoo,thenBeBy\ff 

Bn[v <n]eBn, Vn G N . 
(Warning: If i; is a stopping time, it is false in general that if B e B^ then 
Bn[v>n]e Bn.) 

6. If {vit} are stopping times, then v^vic and AkV/c are stopping times. 

This follows since 

[VkVk <n] = f][vk <n]G Bn, Vn G N 
k 

since [v/t < '̂ J € iB„ for every k. Likewise 

[AkVk > n] = p\[vk > n]G B„. 

7. If {vit) is a monotone family of stopping times, lim^-^oo Vk is a stopping 
time, since the limit is VkVk or AkVk. 

8. If I ' l , I = 1,2 are stopping times, so is v i 4-^2-

B A S I C FACTS: 

1. If I' = A:, I' is a stopping time and 5^ = B^. 

2. If V is a stopping time a n d e Bv, then B n[v = oo] G Boo, and hence 
B n[v = n] e B„ forn e N . To see this, note 
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v'. 
We now list some facts concerning the comparison of two stopping times v and 

1. Each of the events [v < v'], [v = v'], [v < v'] belong to and Bv'. 

2. If 5 G B^ylhen 

Bn[v<v']e B^', Bri[v <v']e B^'. 

3. If V < v' on fi, then B^ C B^'. 

To verify these facts, we first prove [v < v'] e B^. We have that 

[v < v'] n[v = n] = [n < v'] n[v = n]e Bn, 

since [n < v'] e Bn and [v = n] e Bn. 
Next, we verify that [v = v'] e B^.^e have that 

[v = v'] n[v = n] = [n = v'] n[v = n]eBn 

and therefore [v < v'] = [v < u']U[u = v'] e B^ The rest follows by symmetry 
or complementation. 

Now we prove 2. For any n 

Bn[v <v']n [v = n ] = (Bn[v< n]) n [v' = n]e Bn, 

since B n[v < n] e Bn and [v' = n] e Bn. 
Proof of 3. This follows from the second assertion since [v < v'] = fi. • 

10.8 Positive Super Martingales 

Suppose {(Xnt Bn),n > 0} is a positive supermartingale so that Xn >0,Xne Bn 
and E(Xn+i \Bn) < Xn.ln this section we consider the following questions. 

1. When does lim„_».oo Xn exist? In what sense does convergence take place if 
some form of convergence holds? Since supermartingales tend to decrease, 
at least on the average, one expects that under reasonable conditions, super­
martingales bounded below by 0 should converge. 

2. Is fairness preserved under random stopping? If {Xn} is a martingale, we 
know that we have constant mean; that is E{Xn) = E{XQ). IS E{XV) = 
E{XQ) for some reasonable class of stopping times v? 

Example. If v is a stopping time v„ = u a w is a stopping time (which is bounded), 
since both v and n are stopping times. 
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Xnico) = 
Xl,^\co), ifn < v{a)) 
xi?\co), ifn > v(co). 

Then [(Xn, Bn),n > 0} is a new positive supermartingale, called the pasted su­
permartingale. 

Remark. The idea is to construct something which tends to decrease. The seg­
ments before and after v tend to decrease. Moving from the first process to the 
second at time v causes a decrease as well. 

Proof. Write 

Xn = Xl^^l[n<v] + X^^l[n>v]-

From this we conclude Xn e Bn. Also, since each [(Xll\ B„),n > 0} is a super­
martingale, 

Xn>E {xl^'l,\Bn) l[n<v] + E {x^^l,\Bn) \[n>.] 

= E {(Xl^l,l[n<.]+Xl^l^l[n>,])\Bn) . (10.25) 

When it holds, preservation of the mean under random stopping is quite useful. 
However, we can quickly see that preservation of the mean under random stopping 
does not always hold. Let [XQ = 0,Xn = Yll=i > !}• be the Bernoulli 
random walk so that [Yi,i > 1} are iid and 

p[y. = ± i ] = i, i > i . 

Let 
i; = i n f { n > l : ^ „ = l} 

be the first time the random walks hits 1. Standard Markov chain analysis (for 
example, see Resnick, 1994, Chapter 1) asserts that P[v < oo] = 1. But Xv = 1 
so that E(Xv) = 1 ^ E(Xo) = 0 and therefore E(X^) ^ E(Xo). Thus, for 
random stopping to preserve the process mean, we need restrictions either on 
[Xn] or on V or both. 

10.8.1 Operations on Supermartingales 

We consider two transformations of supermartingales which yield supermartin­
gales. 

Proposition 10.8.1 (Pasting of supermartingales) For i = 1,2, let 

{(Xl;\l3„),n>0] 

be positive supermartingales. Let vbe a stopping time such that on [v < oo], we 
haveX^J\co) > X^J^\co). Define 
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Proposition 10.8.2 If[{Xn, Bn)yn>0]isa supermartingale (martingale), then 
{(A'l;An. Bn)yn >0] is also a supermartingale (martingale). 

Proof. First of all, A'̂ AW € Bn since 

XvAn — Xvl[n>v] " l " - ^ n l [ v > n ] 
n-l 

= ^^JHV=J] + A'„l[i;>„] e B„, 

since Xn G Bn and l [ i ;>n] € Bn-i. Also, if {(A'„, Bn), n G N } is a supermartin­
gale, 

,1-1 
£( ;^ i ;A„ | iB„_l ) = ^ ^ y l [ i ; = 

j] + Hv>n]E(Xn\Bn-l) 

,1-1 

< E^>^I^=>1 Hv>n]Xn-l 
j=0 

= A'yl[i;<rt] -J- Xn~ll[v>n] 

= •^VA(,1 -1) -

If {A'„} is a martingale, equality prevails throughout, verifying the martingale 
property. • 

However, XJ,^^ > Xl^^ on the set [v = n] so 

y d ) . y (2 ) . 

vil) 1 . v ( l ) 1 1 v ( 2 ) 1 

Hv>n+l] +^„+i l [ i ; = n + l l + A ^ ^ j 1[„>»;] 
^ v d ) 1 . v (2 ) 1 , v (2 ) 1 

> ^ „ + l l[v>n + l ] + -hA-^^j 
_ v ( l ) 1 1 v ( 2 ) 1 
- J^„+i l [ i ; > n + l l + A „ ^ i l [ i ; < „ + l ] 
= Xn+\ • 

From (10.25) Xn > £(A'„+i|iB„) which is the supermartingale property. • 

Our second operation is to freeze the supermartingale after n steps. We show 
that if [Xn] is a supermartingale (martingale), [X^^n] is still a supermartingale 
(martingale). Note that 

(•^VArt* ^ 0) = (A'o* X\, . . . , J^v, J^v, A'l;, . . . ) . 
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and so on. It is useful and usual to adopt the convention that inf 0 = oo. Define 

fia,b = maxjp : V2p < oo} 

(with the understanding that {( v/c < oo for all k and we call ^a,b = oo) the 
number of upcrossings of [a, b] by {JC„}. 

Lemma_10.8.1 (Upcrossings and Convergence) The sequence [xn] is conver­
gent in M iff fia.b < for all rational a < b in M . 

Proof. If lim inf„_».oo Xn < lim sup„_oo Xn, then there exist rational numbers a < 
b such that 

liminf;c„ < a < b < limsup;c„. 
n — 0 0 „_^oo 

So ;c„ < a for infinitely many n, and Xn > b for infinitely many n, and therefore 
fia.b = oo. 

Conversely, suppose for some rational a < 5, we have ^a.b = oo. Then the 
sequence [xn] is below a infinitely often and above b infinitely often so that 

l iminfATn < a, lim sup AT̂  > b 

and thus [x„ ] does not converge. • 

10.8.3 Boundedness Properties 
This section considers how to prove the following intuitive fact: A positive super-
martingale tends to decrease but must stay non-negative, so the process should be 
bounded. This fact will lead in the next subsection to convergence. 

Proposition 10.8J Let {{XnyBn),n > 0] be a positive supermartingale. We 
have that 

sup A'n < oo a.s. on [XQ < oo]. (10.26) 

P{\J Xn > a\BQ) < a-^Xo A 1 (10.27) 
n e N 

for all constants a > Oor for all BQ-measurable positive random variables a. 

10.8.2 Upcrossings 
Let [xn,ti > 0} be a sequence of numbers in M = [—oo, oo]. Let —oo < a < 
b < oo. Define the crossing times of [a^b] by the sequence {x„] as 

vi = inf{n >0:xn<a] 
V2 = in{{n > vi : Xn > b] 
U3 = inf{n > V2 : Xn < a] 
V4 = infjn > : Xn > b] 
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Proof. Consider two supermartingales {(Xl!\ B„), n > 0}, / = 1,2, defined by 
Xl^^ = X„, and X^^ = a. Define a stopping time 

Va = inf{/2 : X„ > a]. 

Since 

4 » > o„ < 00], 

we may paste the two supermartingales together to get via the Pastings Proposi­
tion 10.8.1 that 

_ X„, ifn < Va, 

a, II n > Va 

is a positive supermartingale. Since {(Y„, B„), w > 0} is a supermartingale, 

Yo>E{Y„\Bo), n>0. (10.28) 

But we also have 

Y„ > «1[.,<„] (10.29) 

and 

YQ = Xol[0<Va] +al[0=va] 

= Xol[Xo<a] +Ol[Xo>a] ^XQAO. 

From (10.28) 

XoAa>E{Y„\Bo) 
> E(al[^,<„\Bo) (from (10.29)) 
= aP[va <n\Bo]. 

Divide by a to get, as n —• 00, 

P[va < n\Bo] P[va < oo\Bo] = P[\/ Xn > a\Bo] < a-^Xo A 1. 
, ieN 

This is (10.27). To get (10.26), multiply (10.27) by 1[A'O<OO] and integrate: 

El[Xo<co]P(\/X„>a\Bo) = P[\/X„>a,Xo<oo] 
n n 

< F l [ A ' o < o o ] ( « ~ ^ ^ O A l ) . 

Since 
l [ A ' o < o o ] ( « " ^ ^ O A l ) < 1 

and 

l[A'o<ooi [a-^Xo A 1 j 0 

as « -> 00, we apply dominated convergence to get 
p [ \ / ^ „ = o o , A r o < o o ] = 0 . 

This is (10.26). • 
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that is, 

PaM^) = ^ upcrossings of [a, b] by {X„(co)]; 

viico) = mf{n >0:X„(co) < a] 
V2{co) = 'mf{n > vi{co) : X„(co) > b] 
v^ico) = in{{n > V2(co) : X„{co) < a] 

and so on, and 

Then 

^fl.fcM = sup{p : V2p((o) < 00}. 

[co: lim A'nCoj) exists } = P i [co : 6a bi^o) < oo). 
a<b 

a,b rational 

So lim„_^cx3 X„ exists a.s. iff ^a,b < oo a.s. for all rational a < b.To analyze 
when Pa,b < 00, we need an inequality due to Dubins. 

Proposition 10.8.4 (Dubins' inequality) Let [(X„, B„),n > 0} be a positive su­
permartingale. Suppose 0 < a < b. Then 

(1) P{^a.b > k\Bo) < (^f {a-^Xo A 1), k>l 

(2) Pa,b < OO almost surely. 

Proof. We again apply the Pasting Proposition 10.8.1 using the v^'s. Start by 
considering the supermartingales 

" " a 

and paste at vi. Note on [vi < oo], 

4 ; ^ - 1 > 4 f . 

Thus 

y d ) _ 

is a supermartingale. 

1, if n < ui, 
X„/a, i{n>vi 

10.8.4 Convergence of Positive Super Martingales 

Positive supermartingales tend to decrease but are bounded below and hence can 
be expected to converge. This subsection makes this precise. 

Given [Xn] define the upcrossing number ^a,b by 
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Now compare and paste X^^^ = YJ;^^ and xlj^^ = b/a at the stopping time V2. 
On [v2 < oo] 

A^(3) = y ( l ) ^ ^ > ^ = 
a a 

so 

y (2 ) ^ if/2 < 

if n > V2 

1, if « < vi 
Xn/a, \{vi<n<V2 
b/a, \fn>V2 

is a supermartingale. Now compare YJi^^ and f On [ v 3 < oo], 

y'(2) ^ ^ > 

and so 
y ( 3 ) _ 
' n ~ 

if rt < V3 

is a supermartingale. Continuing on in this manner we see that for any k, the 
following is a supermartingale: 

Y„ = 1 , 
X„/a, 
b/a, 
b X, 
a a 

n < Vi 

V2 < n < V2 
^3 < n < V4 

Note that 

Also 

YQ — l l [ 0 < i ; , ] + - ^ l [ i ; , = 0 ] = 1 A 

Yn > l [ , i > V 2 * ] -

From the definition of supermartingales 

Yo>E{Y„\Bo); 

( 1 0 . 3 0 ) 

( 1 0 . 3 1 ) 

( 1 0 . 3 2 ) 
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it 

1 A ^ > Q ^ P[v2jc < n\Bo]. 

This translates to 

P[v2k < n\Bo] < ( l A 

Let n 00 to get 

P[fia,b > ^I^O] = P[V2Jc < OC\Bo] < (^)* (L ^ ) • 
Let A: —• oo and we see 

We conclude ^a.b < oo almost surely and in fact E{^a.b) < oo since 

E(fia,b) = P[fia,b >k]<J2 ( r ) * < 

Theorem 10.8.5 (Convergence Theorem) / / {{Xn, Bn),n eN) is a positive su­
permartingale, then 

lim Xn =: Xoo exists almost surely 

and 

E{Xoo\Bn)<Xn, neN 

so {(X„, B„),n eN) is a positive supermartingale. 

Remark. The last statement says we can add a last variable which preserves the 
supermartingale property. This is the closure property to be discussed in the next 
subsection and is an essential concept for the stopping theorems. 

Proof. Since ^a,b < oo a.s. for all rational a < b, lim„_^oo Xn exists almost surely 
by Lemma 10.8.1. To prove Xoo can be added to {X„, neN] while preserving 
the supermartingale property, observe fox n > p that 

\ m > « / 
E {Xn \Bp) (monotonicity) 

< Xp (supermartingale property). 

As n 00, Am>nXm t ^ o o , SO by monotonc convergence for conditional ex­
pectations, letting n 00, we get E{Xoo\Bp) < Xp. • 

that is, from (10.30), (10.31) and (10.32) 
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fl.5. 

Even though it is true that X„ Xoo and E{Xm\Bn) = X„, Vm > w, it is not 
necessarily the case that E(Xoo\Bn) = X„. Extra conditions are needed. 

Consider, for instance, the example of the simple branching process in Section 
10.5. (See also the fuller discussion in Subsection 10.9.2 on page 380 to come.) 
If {Z„, /2 > 0} is the process with ZQ = 1 and Z„ representing the number of 
particles in the nih generation and m = iE^(Zi) is the mean offspring number per 
individual, then {Z„/m"] is a non-negative martingale so the almost sure limit 
exists: W„ := Z„/m" W. However, if m < 1, then extinction is sure so 

= 0 and we do not have E(W\B„) = Z„/m". 
This leads us to the topic of martingale closure. 

Definition 10.8.1 (Closed Martingale) A martingale {{X„, B„),n eN] is closed 
(on the right) if there exists an integrable random variable Xoo € Boo such that 
for every n eN, 

Xn = E{Xoo\Bn). (10.33) 

In this case [{Xn, Bn),n 6 N} is a martingale. 

In what follows, we write L J for the random variables ^ € Lp which are non-
negative. 

The next result gives a class of examples where closure can be assured. 

Proposition 10.8.6 Ler p > 1, ^ 6 L J and define 
Xn := E(X\B„), neN (10.34) 

and 

Xoo := E{X\Boo). (10.35) 

Then Xn A'oo almost surely and in L p and 

{(Xn, Bn), neN, (Xoo, Boo), (X, B)} (10.36) 

is a closed martingale. 

Remark 10.8.1 (i) For the martingale {(Xn, Bn),n e N] given in (10.34) and 
(10.35), it is also the case that 

Xn = E(Xoo\Bn), 

10.8.5 Closure 

If {{X„, 13„),n > 0} is positive martingale, then we know it is almost surely 
convergent. But when is it also the case that 

(a) X„ ^ Xoo and 

(b) E(Xoo\B„) = X„ so that [(X„, B„),n eN] is a positive martingale? 
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(E{X\B„),B„yneN 

withX eL-^. 

Proof of Corollary 10.8.1 If X e L apply Proposition 10.8.6 to get that 
[E(X\B„)] is Lp convergent. Conversely, suppose {X„] is a positive martingale 
and Lp convergent. For n < r, the martingale property asserts 

E(Xr\B„) = X„. 

Now Xr ^ Xoo as r ^ oo and E{-\Bn) is continuous in the Lp-metric (see 
(10.21)). Thus as r 00 

X„ = E{Xr\B„)^ E(Xoo\B„) 

by continuity. Therefore Xn = E{Xoo\Bn) as asserted. • 

Proof of Proposition 10.8.6. We know {{EX\B„),B„),n 6 N } is a positive 
martingale and hence convergent by Theorem 10.8.5. Call the limit X^. Since 
E(X\B„) e B„ cBoo and E{X\B„) we have € Boo- We consider 
two cases. 

C A S E 1: Suppose temporarily that P[X < X] = 1 for some X < oo. We need 
to show that 

;^oo :^E(X\Boo)--X^^. 

Since A' < X, we have E{X\Boo) < X and for a l M 6 JB, as n oo 

jT E{X\B„)dP ^ jT X'^dP, 

by the dominated convergence theorem. Fix m, and let A e Bm- For n > m, we 
have A e Bm C B„ and 

j E{X\B„)dP = j XdP 

since by smoothing and (10.35) 

E{Xoo\Bn) = E {E{X\Boo)\Bn) = E{X\B„) 

almost surely. 
(ii) We can extend Proposition 10.8.6 to cases where the closing random vari­

able is not necessarily non-negative by writing X — X^ — X~. 

The proof of Proposition 10.8.6 is deferred until we state and discuss Corollary 
10.8.1. The proof of Corollary 10.8.1 assumes the validity of Proposition 10.8.6. 

Corollary 10.8.1 For p > \, the class ofLp convergent positive martingales is 
the class of the form 
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Thus 

for all A 6 L}„,Bm. 
Define 

j^E{X\Bn)dP^ j^Xl^dP. 

jf Xl,dP = jT XdP 

mi(A) = jf Xl^dP, m2{A) = ^ XdP. 

Then we have two positive measures m\ and mi satisfying 

m i ( A ) = m 2 ( A ) , WA e\jB„,. 
m 

But Um Bm is a TT-class, so Dynkin's theorem 2.2.2 implies that 

mi(A) = /W2(A) VA 6or(U5,;,) = eoo. 

We conclude 

j Xl^dP = j XdP = J iE:(X|/3oo)^/' = j XoodP 

and the Integral Comparison Lemma 10.1.1 implies X^ = £(A'|;Boo)-
Lp convergence is immediate since E{X\Bn) < X, for all n, so that dominated 

convergence applies. 
C A S E 2: Now we remove the assumption that X < X. Only assume that 0 < 

X e Lp, p > 1. Write 

Since E(-\B„) is Lp-norm reducing (see (10.20)) we have 

\\E{X\B„)-E{X\Boo)\\p 

< \\E{{X A k)\B„) - E({X A X)\Boo)\\p + \\E{{X - Xt\Bn)\\p 

•\-\\E{X-X)^\Boo)\\p 

< \\E(X A X\B„) - E(X A X\Boo)\\p + 2UX - X)+||p 

= / + / / . 

by the definition of conditional expectation. Since 

E{X\B„) X'^ 

almost surely, and in L i we get 
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Thus 

E{X\B„) ^ E{X\Boo) 

and 

E{X\Bn) "-^ Xl, 

and therefore X^^ = E{X\Boo). • 

10.8.6 Stopping Supermartingales 
What happens to the supermartingale property if deterministic indices are re­
placed by stopping times? 

Theorem 10.8.7 (Random Stopping) Suppose {{Xn, B„),n e N] is a positive 
supermartingale and also suppose X„ Xoo. Let ui, V2 be two stopping times. 
Then 

X^^ > E{X^\B^^)a.s. on [vi < V2]. (10.37) 

Some SPECIAL CASES: 

(i) If vi = 0, then 1̂ 2 > 0 and 

XQ>E{X^^\BO) 

and 
£ ( ^ 0 ) > E{X^). 

Since 0 < A ' A X < A . , / - • O b y Case 1. For / / , note as A. oo 

{X - X)+ 0 

and 

{X -k)^ <X e Lp. 

The dominated convergence theorem implies that ^{X — X)^^p ^ 0 as X ^ oo. 
We may conclude that 

limsup \\E{X\Bn) - E{X\Boo)\\p < 2\\{X -

The left side is independent of X, so let X ->> oo to get 

limsup mX\Bn) - E{X\Boo)\\p = 0. 
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(ii) If v\ < V2 pointwise everywhere, then 

The proof of Theorem 10.8.7 requires the following result. 

Lemma 10.8.2 Ifv is a stopping time and ^ € 11 , then 

E(^\B,) = 5̂ £(tie«)l[.=n]. (10.38) 

Proof of Lemma 10.8.2: The right side of (10.38) is -measurable and for any 
AeB,, 

f J2^^^^^"^h-=n]dP = J2f E{H\B„)dP 

(since A D [u = /z] 6 Bn) 

= jjdP = j^E{^\B,)dP. 

Finish with an application of Integral Comparison Lemma 10.1.1 or an appeal to 
the definition of conditional expectation. • 

Proof of Theorem 10.8.7. Since Lemma 10.8.2 gives 

E{X^\B,,) = J2^^^-2\^"^h 
Vl =«]» 

for (10.37) it suffices to prove for /i 6 N that 

X„ > E(X^\B„) on [n < V2]. (10.39) 

Set Y„ = Xv2/\n-Then, first of all, {{¥„, B„), /i > 0} is a positive supermartingale 
from Proposition 10.8.2 and secondly, from Theorem 10.8.5, it is almost surely 
convergent: 

Yn ~* Yoo — Xtf2. 

To verify the form of the limit, note that if V2(co) < 00, then for n large, we have 
n A V2(co) = V2{co). On the other hand, if V2{(JO) = 00, then 

Ynico) = Xnico) Xoo(oj) = X^zioj)-

Observe also that for n 6 N , we get from Theorem 10.8.5 

Yn > E(Yoo\Bn); 
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we get 

and 

P[X, = 0] = p , P[X^ = AT] = 1 _ 

;o = A^(l - p) 

n 1 

that is, 

E{X,,\B„). (10.40) 

On [V2 > n] (10.40) says X„ > E(Xv2\^„) as required. • 

For martingales, we will see that it is useful to know when equality holds in 
Theorem 10.8.7. Unfortunately, this does not always hold and conditions must 
be present to guarantee preservation of the martingale property under random 
stopping. 

10.9 Examples 

We collect some examples in this section. 

10.9.1 Gambler's Ruin 
Suppose {Z„} are iid Bernoulli random variables satisfying 

P[Z, = ±1] = i 

and let 

A'o = jo, X„ Zi 4- ;o, n>\ 
1=1 

be the simple random walk starting from JQ. Assume 0 < jo < N and we ask: 
starting from ;o, will the random walk hit Oor N first? 

Define 

V = inf{/2 : ^ „ = 0 or A^}, 

[ ruin ] = [X^ = 0], 
p = P[X^ = 0] = P[ ruin ]. 

If random stopping preserves the martingale property (to be verified later), then 

70 = EiXo) = E{X^) = 0 • P[X^ = 0] + NP[X^ = A ]̂ 

and since 
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P [ Z „ + i = ; | Z „ = / ] = 
p*/, if / > 1, 
Soj, i f / = 0 . 

where [p*', j > 0} is the /-fold convolution of the sequence [pj, j > 0}. We can 
also represent {Z„} as 

Z„+i = Z^")(l) + Z^"\Z„), (10.41) 

where {Z^J\m), j >0,m > 0} are iid with distribution {pk.fc > 0}. Define the 
generating functions (0 < s < 1), 

oc 

/ ( s ) = J ] p / t 5 * = £ ( s ^ ' ) , 

f„(s) = E{s^"), 

fo(s) = 5 , / l = / 

so that from standard branching process theory 

fn+l(s) = fn{f(s)) = f(f„(s)). 
Finally, set 

m = £ ( Z i ) = / ' ( l ) . 

We claim that the following elementary facts are true (cf. Resnick, 1994, Sec­
tion 1.4): 

(1) The extinction probability q := P[Z„ ^ 0] = P[ extinction ] = 
1* { U n l i [ ^ « = ^]) satisfies f(s) = s and is the minimal solution in [0,1]. 
If m > 1, then q < 1 while if m < 1, ̂  = 1. 

(2) Suppose q < 1. Then either Z„ 0 or Z„ ^ oo. We define the event 

[ explosion ] : = [Z„ oo] 

and we have 

1 = P[Zn ^0] + P[{Z„ ^ oo] 

so that 
q = P[ extinction ], I — q = P[ explosion ]. 

10.9.2 Branching Processes 

Let {Z„,n > 0} be a simple branching process with offspring distribution 
{pk> A: > 0} so that {Z„] is a Markov chain with transition probabilities 
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We now verify fact (2) using martingale arguments. For /i > 0, set B „ = 
a ( Z o , . . . , Z„). We begin by observing that {{q^''yB„), n G N} is a positive mar­
tingale. We readily see this using (10.41) and (10.17): 

E ( . ^ - ' | B „ ) = £(sSS.^"'"|B„) 

Set s = and since /(q) = q, we get 

E(q^"^^\B„)=q^". 

Since {(q^" ,B„),n G N} is a positive martingale, it converges by Theorem 10.8.5. 
So l im„_voo^^" exists and therefore lim„_voo Z „ = : Z o o also exists. 

Let u = inf{/i : Z„ = 0}. Since lim„_voo Z„ = : Z o o , we also have Z y A « Z y . 

From Proposition 10.8.2 [(q^*""',B„),n G N} is a positive martingale, which 
satisfies 

1 > q^"^" q^"; 

and because a martingale has a constant mean, iE^(^^^^") = E{q^'"'^) = E(q^^) = 
q. Applying dominated convergence 

q = E{q^^^")-^ E{q^n, 

that is, 

q = E{q^n = ̂ (/=̂l[i;=ool) + ̂ (̂ '̂l[i'<ool)-
On [v < oo], Z y = 0 and recall q — P[v < oo] = P[extinction] so 

^ = £(^^^1^=00)+^, 

and therefore 

î (̂ ~̂l[i;=ool)=0. 
This implies that on [v = 00], q^°^ = 0, and thus Z o o = 00. So on [v = 00] = 
[ non-extinction ], Z o o = 00 as claimed in fact (2). 

We next recall that {[Wn : = B n ) , n G N} is a non-negative martingale. An 
almost sure limit exists, namely, 

Wn = — W. 

On the event [ extinction ], Z „ 0, so W{co) = 0 for ct> G [ extinction ]. Also 
E ( W ) < 1, since by Fatou's lemma 

E { W ) = £(liminf — ) < lim inf ̂ ^ ^ ^ = 1. 
fi-^oo m" n-*oo m" 
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10.9.3 Some Differentiation Theory 

Recall the Lebesgue decomposition of two measures and the Radon-Nikodym 
theorem of Section 10.1. We are going to consider these results when the a-fields 
are allowed to vary. 

Suppose Qisa finite measure on B. Let the restriction of (2 to a sub a-field G be 
denoted Q\g. Suppose we are given a family of o-fields Bn,n eN, BQO = v „ B „ 
and Bn C B„+i. Write the Lebesgue decomposition of (2Ib„ with respect to P | b „ 

as 

QlBr, = fndPlBr, + (2Ib„(- n Ar„), n eN (10.42) 

where P{Nn) = 0 for n G N . 

Proposition 10.9.1 The family {{fn,B„),n > 0} is a positive supermartingale 
and fn / o o where / o o is given by (10.42) with n = oo. 

The proof requires the following characterization of the density appearing in 
the Lebesgue decomposition. 

Lemma 10.9.1 Suppose Q is a finite measure on (fi, G) whose Lebesgue decom­
position with respect to the probability measure P is 

Q(A) = j XdP-{-Q{AnN), AeG, 

where P(N) = 0. Then X is determined up to P-sets of measure 0 as the largest 
G-measurable function such that XdP < Q onG-

Proof of Lemma 10.9.1. We assume the Lebesgue decomposition is known. If Y 
is a non-negative ^-measurable and integrable function such that YdP < Q on 
G, then for any A e G, 

f YdP = f YdP < QiAN'^) 
JA JAN^ 

XdP -H QiAN^'N) 

= f XdP = f XdP. JAN*' JA 

Consider the special case that q = I. Then Z„ ^ 0 almost surely and P[W = 
0] = 1. So {W„ := ^ } is a positive martingale such that Wn 0 = W.^e 
have iE:(W „̂) = 1, but = 0. So this martingale is NOT closable. There is 
no hope that 

W„ = E{W\Bn) 

since W = 0. For later reference, note that in this case {Z„/m", n > 0] is NOT 
uniformly integrable since if it were, E(Z„/m") = 1 would imply E{W) = 1, 
which is false. 
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L 
that is, 

E{fn+l\B„)dP\B„<Q\B„-

Since /„ is the maximal iB„-measurable function with this property, we have 

E{fn+i\B„) < fn, 

which is the supermartingale property. It therefore follows that lim„_voo fn exists 
almost surely. Call the limit / and we show f = f^. Since 

Q \ B ^ > foodPlB^, 

we have for all A e B„, 

E{foo\B„)dP = ^ focdP < Q{A). 

Thus, since /„ is the maximal iB„-measurable function satisfying 

fndP\B„<Q\B„^ 

we have 
E{foo\B„) < fn. 

Let n ^ oo and use Proposition 10.8.6 to get 

/ oo = E{foo\Boo) = lim E{foo\Bn) < lim /„ = / . 
n-^oo fi-^oo 

We conclude / o o < /• Also, by Fatou's lemma, for all A eU„B„, 

f fdP= f l iminf /„ r fP<l iminf / f„dP<Q{A). (10.43) 
JA JA "-^^ JA 

Hence by the Integral Comparison Lemma 10.LI, we have X >Y almost surely. 
• 

Proof of Proposition 10.9.1. We have from (10.42) 

fn+ldP\B„^,+Q\B„^,('nN„+i) = ( 2 I B „ + , . 

so that 

Hence for all A e B„,v/e get, by the definition of conditional expectation, that 

^ E{f„+i\B„)dP = ^ f„+idP < Q{A). 

So E{f„+i\B„) is a function in L \{B„) such that for all A e B„ 

E{fn+\\Bn)dP <Q{A)\ 
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Proposition 10.9.2 Suppose (2IB„ < < P\B„ for all n G N ; that is, there exists 
fn e Li(Q,B„,P) such that 

Q\B„ = fndP\B„. 

Then (a) the family {(fn,B„),n e N] is positive martingale and (b) we have 
fn foo almost surely and in LI iff Q\BOO < < ^IBOC-

Proof, (a) Since Q \ B „ < < for all n G N , for any A eBn 

Q\BM) = jjndP = Q\B„^M) 

= ^ /„+irfP = jT E{f„^i\B„)dP, 

and therefore we have /„ = £ ( / , i + i | B „ ) by Lemma 10.1.1. 
(b) Given /„ foo almost surely and in L i , we have by Corollary 10.8.1 that 

fn = E(foo\B„). 

For all A e B„ and using the definition of conditional expectation and the martin­
gale property, we get 

^ foodP = ^ E{foc\B„)dP = f„dP 

= QIBAA) = Q{A). 

So for A G U„B„ 

^ foodP = Q{A). L 
Extend this by Dynkin's theorem to A G Boo to get 

Q{A) = ^ / o c ^ P , 

that is, 

Q\BO. « focdPlB^. 

Conversely, suppose Q\BOC ^l^oc- Then from the previous proposition 

fn ~^ foO' 

This statement may be extended to A e B^o by Dynkin's theorem (see, for ex­
ample Corollary 2.2.1 on page 38). Since / e B^Q and f^o is the maximal i^oo-
measurable function satisfying (10.43), we get f < foo. Therefore f = foo. • 
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Densities of (2IB„ converge and Scheffe's lemma 8.2.1 on page 253 implies L\ 
convergence: 

/ /„ - f\dP ^ 0. 

Note that Scheffe's lemma applies since each /„ is a density with the same total 
mass 

f fndP = Q(co). • 
Example 10.9.1 We give a special case of the previous Proposition 10.9.2. Sup­
pose = [ 0 , 1 ) , and P is Lebesgue measure. Let 

k k 
[ j ^ . — ) . * = 0 .1 2 " - l 

so that B„ t Boo = B([0,1)). 
Let C be a finite, positive measure on B ( [ 0 , 1 ) ) . Then trivially 

Gle„ « P \ B , . 

since if i4 6 B„ and P(A) = 0, then ;4 = 0 and Q(A) = 0. What is 

We claim 

The reason is that for all ; 

We also know 

that is, 

f f . 
Jn ^ /oo» 

where is the interval containing ;c and foo satisfies 

Q = foodP + Q{-nNoo). 

Since Boo = ^ ( [ 0 , 1 ) ) , we conclude that ^ < < P iff /„ / almost surely and 
i n l i where / satisfies f/P/f/(2 = / • ^ 
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10.10 Martingale and Submartingale Convergence 

We have already seen some relations between martingales and submartingales, 
for instance Doob's decomposition. This section begins by discussing another 
relation between martingales and submartingales called the Krickeberg decompo­
sition. This decomposition is used to extend convergence properties of positive 
supermartingales to more general martingale structures. 

10.10.1 Krickeberg Decomposition 
Krickeberg's decomposition takes a submartingale and expresses it as the differ­
ence between a positive martingale and a positive supermartingale. 

Theorem 10.10.1 (Krickeberg Decomposition) If{(X„,B„),n > 0} is a sub­
martingale such that 

supE{X:^) < oo, 

then there exists a positive martingale {{M„, B„),n > 0} and a positive super­
martingale {(Yn,B„),n > 0} and 

Xn = Mn ~ Yn' 

Proof. If [Xn] is a submartingale, then also [X^] is a submartingale. (See Exam­
ple 10.6.1.) Additionally, {E{X'^\Bn), p > n] is monotone non-decreasing in p. 
To check this, note that by smoothing, 

EiX^+i\Bn) = E{E{X^^,\Bp)\Bn) > EiXpBn) 

where the last inequality follows from the submartingale property. Monotonicity 
in p implies 

lim ^E{Xt\Bn)=:Mn 

exists. 
We claim that {{Mn, Bn),n > 0} is a positive martingale. To see this, observe 

that 

(a) Mn eBn, and Mn > 0. 

(b) The expectation of Mn is finite and constant in n since 

E{Mn) = E( lim ^E{X^\Bn)) 

= lim 'I E{E{X'^\Bn)) (monotone convergence) 
p-*oo " 

= lim t ^ ^ n 

= sup EXp < oo, 
P>0 

since expectations of submartingales increase. Thus E{Mn) < oo. 
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(c) The martingale property holds since 

E{M„^^\B„) = £ ( lirn^ t £:(̂ ;ie„+i)|/3„) 
= lim ^ E(E{X-^\B„+0\Bn) 

= lim \ E{XX\Bn) = Mn. 
p-*oo 

(monotone convergence) 

(smoothing) 

We now show that 

{{Y„ = M„-X„,B„),n>0] 

is a positive supermartingale. Obviously, ¥„ e B „ . Why is ¥„ > 0? Since A/„ = 
limp_voo t E(X'^\B„), if we take p = n,we get 

M„ > E{X^\B„) = X^ > X+ - X- = X„. 

To verify the supermartingale property note that 

E{Yn+i\B„) = E{M„^i\B„) - E{X„+i\B„) 

<Mn-Xn = Yn 

since E{Mn^i\Bn) = M„ and E{Xn^i\Bn) > Xn- • 

10.10.2 Doob *s (Sub)martingale Convergence Theorem 
Krickeberg's decomposition leads to the Doob submartingale convergence theo­
rem. 

Theorem 10.10.2 (Submartingale Convergence) If{(X„, B„), n>0] isa(sub)-

martingale satisfying 
supiE:(^+) < oo, 
n€N 

then there exists Xoo G L i such that 

a.s. Xn XQQ. 

Remark. If {Xn} is a martingale 

sup£(A'jJ') < oo iff supiE^dA^nl) < oc 

in which case the martingale is called Li-bounded. To see this equivalence, ob­
serve that if {{X„, B„),n eN) isa martingale then 

E{\Xn\) = E{X^) + EiX-) = lEiX-^) - E(Xn) 

= 2EX^ - const. 
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10.11 Regularity and Closure 

We begin this section with two reminders and a recalled fact. 
Reminder 1. (See Subsection 10.9.2.) Let {Z„} be a simple branching process 

with P{ extinction ) = 1 = : ^ . Then with ZQ = \,E{Z\) = m 

Wn := Z„/m" ^ Oa.s. 

So the martingale [W„] satisfies 

E{W„) = \-/^ E{Q) = Q 

so does NOT converge in L i . Also, there does NOT exist a random variable 
Woo such that W„ = E{Woo\B„) 2in^[Wn] is NOT uniformly integrable (ui). 

Reminder 2. Recall the definition of uniform integrability and its character­
izations from Subsection 6.5.1 of Chapter 6. A family of random variables 
{A'/, r G /} is ui if A'r G L1 for all f G / and 

lim sup / \Xt\dP = 0. 
t€J J\x,\>b 

Review Subsection 6.5.1 for full discussion and characterizations and also re­
view Theorem 6.6.1 on page 191 for the following FACT: If [Xn] converges a.s. 
and [Xn] is ui, then [Xn] converges in L i . 

Here is an example relevant to our development. 

Proposition 10.11.1 LetX e L\.LetQ vary over all sub o-fields of B. The family 
[E{X\Q) : Q C B] isa ui family of random variables. 

Proof. From the Krickberg decomposition, there exist a positive martingale {M„} 
and a positive supermartingale {¥„} such that 

From Theorem 10.8.5, the following are true: 

E(Moo\B„) < M „ , E{Yoc\B„) < Yn, 

so 

E(Moc) < E(M„), EiYoo) < E(Y„) 

and Moo and yoo are integrable. Hence Moo and yoo are finite almost surely, 
A'oo = A/oo — ^ 0 0 exists, and Xn Xoo- ^ 

file:///Xt/dP
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Proof. For any G C B 

f \E(X\G)\dP < f 
J[\E(X\G)\>b] J[l 

-i 
[£(|^||^)>fcl r 
[£(1^1 G)>b] 

f 
[£(1^1 ^)>fcin[|^|<A:] 

E{\X\\G)dP 

\X\dP (definition) 

+ 

X\dP 
v\\G)>b]n[\x\<K] 

f \X\dP 
J[E{\X\ G)>b]n[\X\>K] 

<KP[E{\X\\G)>b]+ f \X\dP, 
J[\X\>K] 

and applying Markov's inequality yields a bound 

<~E(E(\X\\G))+ f \X\dP 
^ J[\x\>K] 

= !iE(\X\)+f \X\dP; 
^ J[\X\>K] 

that is, 

limsupsup / \E(X\G)\dP 
b^oo G J[\E{X\G)\>b] 

< limsup (^E{\X\) + [ \X\dp) 
b-foo \ b J\X\>K / 

= / 
J\X\>K 

X\dP 0 

as /w oo since X e Li. • 

We now characterize ui martingales. Compare this result to Proposition 10.8.6 
on page 374. 

Proposition 10.11.2 (Uniformly Integrable Martingales) Suppose that 
[{X„, B„),n >0} isa martingale. The following are equivalent: 

(a) {Xn} isLi -convergent. 

(b) {X„ ] is Li -bounded and the almost sure limit is a closing random variable; 
that is, 

supE(\Xn\) < oo. 

There exists a random variable X^Q such that Xn XQO (guaranteed by 
the Martingale Convergence Theorem 10.10.2) which satisfies 

Xn=E(Xoo\Bnh VneN. 

file:///X/dP
file:///X/dP
file:///X/dP
file:///X/dP
file:///X/dP
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Xn=E{Xj\Bn)^ E{Xoc\Bn). 

Thus, Xoo is a closing random variable. 
(b)->(c). We must find a closing random variable satisfying (c). The random 

variable X = Xoo serves the purpose and Xoo G L i since from (b) 

Ei\Xoo\) = iE:(liminf lA'J) < liminf iE:(|^„|) < supiE:(|^„|) < oo. 
«-»>oo «-»>oo 

(c)->(d). The family {E(X\Bn), n G N) is ui by Proposition 10.11.1. 
(d)->(a). If [Xn] is ui, sup„ E(\Xn\) < oo by the characterization of uniform 

integrability , so {Xn} is Li-bounded and therefore Xn Xoo a-s- by the mar­
tingale convergence theorem 10.10.2). But uniform integrability and almost sure 
convergence imply L i convergence. • 

10.12 Regularity and Stopping 

We now discuss when a stopped martingale retains the martingale characteristics. 
We begin with a simple but important case. 

Theorem 10.12.1 Let {(Xn, Bn),n >0] be a regular martingale. 

(a) If V is a stopping time, then Xv G Li. 

(b) If vi and vi are stopping times and vi < vi, then 

{(X^„B,,), (X^,B^)] 

is a two term martingale and 

Xv^ = E(Xv2\Bv\)''t 

therefore 

E(X,,) = E(X^) = E(Xo). 

(c) The martingale is closed on the right; that is, there exists X e Li such that 

X„=E{X\B„), WneN. 

(d) The sequence [Xn] is ui. 

If any one of(a)-(d) is satisfied, the martingale is called regular or closable. 

Proof. (a)->(b). If [Xn] is 11-convergent, \\mn^oQE{\Xn\) exists, so {iE:(|A'„|)} 
is bounded and thus sup„ E{\Xn I) < oo. Hence the martingale is jL i-bounded and 
by the martingale convergence theorem 10.10.2, Xn Xoo- Since conditional 
expectations preserve Li convergence (cf (10.21)) we have as a consequence of 

Xn -> Xoo that as y ^ oo 
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0 0 0 0 

or2 = Var(Zi) = J2^^P'^ - (T^^Pk)^ < ^ • 
A=0 k=Q 

For regular martingales, random stopping preserves fairness and for a stopping 
time V, we have E{Xv) = E{Xo) since we may take v = V2 and vi = 0. 

Proof. The martingale is assumed regular so that we can suppose 

X„=E(Xoo\B„), 

where X„ XQO a.s. and in L i . Hence when v — oo, we may interpret Xv = 
^ 0 0 -

For any stopping time v 

E(XM)=X^ (10.44) 

since by Lemma 10.8.2 

E{Xoo\B,) = J2 ^ ( ^ o o l ^ « ) l l . = « ] 
n € N 

— ^ ] Xnl[v=n] — Xv. 

Since Xoo G ^ i . 

E{\Xv\) < £ : ( | £ ( : ^ o o l ^ . ) l ) < E(E{\Xoo\)\Bv) 

=E{\Xoo\) < 00. 

Thus Xv e l l . 
If vi < V2, then Bv^ C Bv2 and 

E(Xv,\Bv,) = E(E(Xoo\Bv2)\BvO (by (10.44)) 
= E{Xoo\Bvi) (smoothing) 
= Xv,. (by (10.44)). ^ 

Remark. A criterion for regularity is Lp-boundedness: If {(X„, B„),n >0] is a 
martingale and 

supiE:(|Ar„|'') < oo, p > 1, 
n 

then {X„} is ui and hence regular. See (6.13) of Chapter 6 on page 184. The result 
is false for p = 1. Take the branching process {{W„ = Z„/m", B„),n eN]. Then 
sup„ iE (̂|H^„|) = 1, but as noted in Reminder 1 of Section 10.11, {W„] is NOT ui. 

Example 10.12.1 (An L2-bounded martingale) An example of an L2-bounded 
martingale can easily be constructed from the simple branching process martin­
gale W„ = Z„/m" with m > 1. Let 
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Var(Z„)=or-

— m 
so 

Var(W^„)= ^ 
m 2 " 

a^m"{m" - 1) 
— m m?- —m 

and 

EWl = Var(H^„) + {EW„)^ = 1 + ""^^^ """^ 

— m 
Form > 1 

EWl^\ + — . 

-m 
Thus, sup„ E{W^) < oo, so that [W„} is L2 bounded and 

1 = E(W„)^ E(W), 

EiW^) -> E{W^) = 1 + 

— m 
and 

— m' 0 

10.13 Stopping Theorems 

We now examine more flexible conditions for a stopped martingale to retain mar­
tingale characteristics. In order for this to be the case, either one must impose 
conditions on the sequence (such as the ui condition discussed in the last section) 
or on the stopping time or both. We begin with a reminder of Proposition 10.8.2 on 
page 368 which says that if {(X„, B„),n eN] isa martingale and v is a stopping 
time, then [(XvAn, Bn),n e N] is still a martingale. 

With this reminder in mind, we call a stopping time v regular for the martingale 
[(X„, B„),n e N] if {(XvAn, Bn),n > 0] is a regular martingale. The next result 
presents necessary and sufficient conditions for a stopping time to be regular. 

The martingale {W„] \sL2 bounded and 

W„ W, almost surely and in L i, 

and E(W) = 1, Var(W^) = 

Proof. Standard facts arising from solving difference equations (cf. Resnick (1994)) 
yield 

2m"{m" - 1) 
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Proposition 10.13.1 (Regularity) Let [{Xn, J3„),n e N] be a martingale and 
suppose V is a stopping time. Then v is regular for [X„ ] iff the following three 
conditions hold. 

(i) Xoo •= Hm„_^oo^« exists a.s. on [v = oo] which means limn_,.oo A'vAn 
exists a.s. on Q. 

(ii) Xv e L\. Note from (i) we know Xv is defined a.s. on Q. 

(iii) X,^„=E(X,\B„), neN. 

Proof. Suppose v is regular. Then [{¥„ = XVA„, B„),n > 0} is a regular martin­
gale. Thus from Proposition 10.11.2 page 389 

(i) Y„ Yoo a s . and in L i and on the set [v = oo], Y„ = Xv^n = X„, and so 
lim„_^oo X„ exists a.s. on [v = oo]. 

(ii) y o o e L i . B u t y o o = ^ i . . 

(iii) We have E(Yoo\B„) = Y„; that is, E(X^\Bn) = X^^„. 

Conversely, suppose (i), (ii) and (iii) from the statement of the proposition hold. 
From (i), we get Xv is defined a.s. on Q. From (ii), we learn Xv e Li and from 
(iii), we get that Xv is a closing random variable for the martingale [XvAn]- So 
[XvAn] is regular from Proposition 10.11.2. • 

Here are two circumstances which guarantee that v is regular. 

(i) lfv<M a.s., then v is regular since 

[XvAm n eN] = [XQ, X\, . . . , Xv, Xv, • • •} 

is ui. To check uniform integrability, note that 

\XvAn \ < SUp\XvAnt \ = SUp \Xnt \ e Li. 

Recall from Subsection 6.5.1 that domination by an integrable random vari­
able is sufficient for uniform integrability. 

(ii) If [X„ ] is regular, then any stopping time v is regular. (See Corollary 10.13.1 
below.) 

The relevance of Proposition 10.13.1 is shown in the next result which yields 
the same information as Theorem 10.12.1 but under somewhat weaker, more flex­
ible conditions. 

Theorem 10.13.2 Ifv is regular and vi < V2 < v for stopping times vi and V2, 
then fori = 1,2, Xv, exists, Xv, e L \ and 

[{Xv,,Bv,),{Xv:„Bv:^)] 

is a two term martingale; that is, 

E{Xv,\B,^) = 
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/ \X,,^„\dP=f \X,,^n\dP 
J[\X^l^„\>b] J[\X^i^„\>b.vi<n] 

+ f \X,,^n\dP 
J[\Xv.^„\>b,vi>n] 

Now for B we have 

B<f \X„\dP< f \X„\dP 
J[\X„\>b,vi>n] J[\X„\>b.V2>n] 

<-f 
J[\X.2^„\>b] 

\X^An\dP ^ ^ 0 , 

since V2 regular implies {A^VJAH} is ui. 
For the term A we have 

A=f \X,,\dP<f \X,,\dP^^°^0, 
J[\X^l\>b.vi<n] J[\X^^\>b] 

since Xvi G L 1 . • 

Here is another characterization of a regular stopping time v. 

Note the following conclusion from Theorem 10.13.2. Suppose v is regular, 
1̂ 1 = 0 and V2 = v. Then 

EiX^lBo) = ^ 0 and E{X,) = E{Xo). 

Proof of Theorem 10.13.2. Let Y„ = X^/^n. So {(Y„,B„),n G N } is a regular 
martingale. For regular martingales. Theorem 10.12.1 implies whenever V] < V2 
that 

Y,,=E{Y^\B,,). 

But if Vl < V2 < V, then y^, = X^^AV = Xv^ and Yv2 = XVAV2 — Xv2- ^ 

Corollary 10.13.1 (a) Suppose vi and V2 are stopping times and vi < V2. Ifv2 is 
regular for the martingale [{X„, B„),n >0], so is vi. 

(b) If{(X„, B„),n >0] isa regular martingale, every stopping time v is regu­
lar. 

Proof, (b) Set V2 = oo. Then 

{Xv2An] — [XooAn] — [Xn] 

is regular so V2 is regular for [Xn]. If we assume (a) is true, we conclude v is also 
regular. 

(a) In the Theorem 10.13.2, put 1̂ 2 = v to get X^i 6 L i . It suffices to show 
[XviAn] is ui. We have 
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and 

(b) [Xnl[^>n],nGN]isui. (10.46) 

Proof. Sufficiency: We show that (a) and (b) imply that [X^^n] is ui and therefore 
that V is regular. To prove uniform integrability, note that 

/ \X,^n\dP= f \X,\dP-h f \Xn\dP 

J[\X^^„\>b] J[v<n.\X^\>b] y(i ;>,i . |^„|>fc] 

Jlv 
\X,\dP 

[v<oo]n[\x^\>b] 

+ f | ^ J1 [ .>„ ]^P 
Îl-̂ n|ll.>„l>fc] 

For A we have that 

A = f \XM[v<oo]dP''^0, 
J[\XMiv<oc]>b] 

since Xvl[v<oo] e Liby (a). For B we have 5 0 as 5 oo since {A ' „ l [ i ;>„]} 
is assumed ui by assumption (b). 

Converse: Suppose v is regular. We show that (a) and (b) are necessary. 
Necessity of (a): 

f \X^\dP= lim t f \X^\dP 
Jlv<oo] J[v<n] 

= lim t /* \X^An\dP 
J[v<n] 

< s u p i E : ( | ^ i , A „ | ) < oo 

since [X^^n] is ui. 
Necessity of (b): If v is regular, then 

and [XvAn] is ui implies that [Xnl[v>n]} is ui since a smaller sequence is ui if a 
dominating one is ui. (See Subsection 6.5.1.) • 

Theorem 10.13J In order for the stopping time v to be regular for the martin­
gale [{Xn, Bn),n >G], it is necessary and sufficient that 

{a) f \X^\dP <oo, (10.45) 
J[v<oo] 

file:///Xn/dP
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oo 

and Xv is thus defined almost everywhere. We claim Xv G L i , and therefore 
Xvl[v<oo] G I i . To verify the claim, observe that Xv^n Xv, and so by Fatou's 
lemma 

E{\Xv\) = E{ lim \XvAn\) < liminfiE:(|^,A«l). (10.47) 

Also, 

E{X„\BvAn)=XvAn, (10.48) 

since by Lemma 10.8.2 

E(X„\BvAn) = J2^^^"^^J^^[ 

j<n j>n 

and since [v A n = 7] = 0 when j > n , on applying the martingale property to 
the first sum, we get 

— ^^^X jl[vAn=j] — XvAn, 

as claimed in (10.48). Thus 

E{\XvAn\)<E\E{Xn\BvAn)\ 

< E (E(\X„\\BvAn)) = E(\X„\). (10.49) 

From (10.47) and (10.49) 

£ ( | ^ , | ) < l i m i n f i E : ( | ; ^ , A « l ) < Hm E(\X„\) 
«-»oo 

= supE(\X„\) < 00. 

• 
Additional remark. If the martingale [X„} is non-negative, then it is automat­
ically Li-bounded since sup„ E{\Xn\) = sup„£(A'„) = E{Xo). Thus (10.45) 
holds. 

We now apply Theorem 10.13.3 to study the first escape times from a strip. 

Corollary 10.13.2 Let {(X„, B„),n >0] be an L\-boundedmartingale. 

Remark 10.13.1 A sufficient condition for (10.45) is that {X„} be an L i -bounded 
martingale. To see this, recall that L \ -bounded martingales converge almost surely 
so that 
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sup 
A 

j(XvAn\- j \ X v \ 0. 

Thus (i)+(ii) (iii)+(iv). 
Given (iii) and (iv): Recall from Theorem 10.13.3 that v is regular for {X„] iff 

(a) For any level a > 0, the escape time VQ := inf{n : \Xn\ > a] is regular. In 
particular, this holds if{X„] is a positive martingale. 

(b) For any b < 0 < a, the time Va,b = inf{n : Xn > a or Xn < b] is regular. 

Proof, (a) We apply Theorem 10.13.3. Since [Xn] is Li-bounded (10.45) is im­
mediate from the previous remark. For (10.46) we need that [Xn\v>n] >s ui but 
since |A'„1|;>„| < a, uniform integrability is automatic, 

(b) We have 

Vfl.fc < viflivfc = inf{n : > | « | V 

and ̂ iflivifci is regular from part (a) so u^f,, being dominated by a regular stopping 
time, is regular from Corollary 10.13.1. • 

We end this section with an additional regularity criterion. 

Proposition 10.13.4 Suppose [{Xn, lS„),n >0] isa martingale. Then 

(/) V is regular for [X„ ] and 

(ii) X„ Oon[v = oo] 

is equivalent to 

(iii) 1 \XJdP <oo and 
J[v<oo] 

(iv) f \Xn\dP ^ 0. 
J[i;>,i] 

Proof. Assume (i) and (ii). Then {(Xv^n, B„),n G N } is a regular martingale, 
and hence X^An Xv e L\ almost surely and in L \ and from (ii), Â y = 0 on 
[v = oo]. Then 

oo > /* \Xv\dP = ( \Xv\dP 

since Xv =Oon[v = oc]. This is (iii). Also 

f \Xn\dP=f \XvAn\dP-^ f \Xv\dP = 0 
J[v>n] J[v>n] J[v=oo] 

since XvAn Xv entails 

file:///XJdP
file:///Xn/dP
file:///Xv/dP
file:///Xv/dP
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(b) {^„lv>«}ui. 

If we show (iv) implies (b), then we get v is regular. Note (iv) implies 

••= \X„\l[v>n] ^ 0. 

We show this implies is ui. Observe 

sup / ^ndP < V f ^ndPy y E{Hn)-

Choose no so large that v„>„(,iE^(t„) < € (since E(^n) 0, we can do this) and 
choose b so large that 

n<no''l^n>b] 
tdP <€, 

I r k _ t 1 

for a total bound of 2€. 
So we get (i). Since v is regular, Xv is defined on Q and Xv e Li (recall 

Theorem 10.13.2) and Xv^n X^ a.s. and in L i . But, as before 

0 = lim £ ( t „ ) = lim / \X„\dP 

= lim / \X,^n\dP= f \X,\dP. 
"-^^J[v>n] J[v=oo] 

So A'i;li;=oo = 0 almost surely; that is, X„ Oon[v = oo]. Hence (ii) holds. • 

10.14 Wald's Identity and Random Walks 

This section discusses a martingale approach to some facts about the random 
walk. Consider a sequence of iid random variables {Y„,n > 1} which are not 
almost surely constant and define the random walk [X„, n > 0} by 

;^o = o, X„ = J2^i,n>h 

with associated or-fields 

Bo = (0, fi}, B„=a(Yi Y„) = or(^o X„). 

Define the cumulant generating function by 

4>{u) = logiE:(exp{Myi}), u eR. 

We recall the following facts about cumulant generating functions. 
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0'(w) = £ ^ y i e x p { w y i - 0 ( M ) } ^ , 

so 

0'(O) = £ ( y , ) . 

One may also check that 

0"(O) = Var(yi). 

4. On [0 < oo], 0 is strictly convex and 0' is strictly increasing. 

1. 0 is convex. 

Let a e [0,1]. Recall Holder's inequality from Subsection 6.5.2: If p > 0, 
q > 0, p " ^ -\-q~^ = 1, then 

Ei^V) < {E\^\P)^^P{E\rjf)'^'^. 

Set p = l/of, and ̂  = 1/(1 — or) and we have 

(p(aui + (1 - a ) M 2 ) = \ogE^e""'^'e^^-"^"^^'^ 

< log^iE:(e"'*'»)^ (^E(e"^^')^ 

= a0(Ml) + ( l - Q f ) 0 ( M 2 ) . 

2. The set [u : <p(u) < oo] =: [0 < oo] is an interval containing 0. (This 
interval might be [0,0] = {0}, as would be the case if Yi were Cauchy 
distributed). 

If Ml < U2 and 0(M,) < oo, / = 1, 2, then for 0 < or < 1, 

(piaui 4- (1 - a)U2) < ci(t>{ii\) + (1 - < )̂0(W2) < oo. 

So if Ui € [0 < oo], 1 = 1,2, then 

[wi. W2] C [0 < oo]. 

Note 0(0) = logiE:(e^*'>) = log 1 = 0. 

3. If the interior of [0 < oo] is non-empty, 0 is analytic there, hence infinitely 
differentiable there, and 



400 10. Martingales 

M„{u) = exp{M^„ -n(p{u)} = 
(E{e"y^))"' 

Then {(A/„(M), Bn), n e N] is a positive martingale with E(M„{u)) = 1. Also, 
M„{u) 0 a.s. as n ^ oo and hence {M„{u)} is a non-regular martingale. 

Proof. The fact that {M„(u)] is a martingale was discussed earlier. See item 4 of 
Section 10.5. 

Now we check that A/,I(M) 0 almost surely as n oo. We have that 
M G [</> < oo] and 0 G [</> < oo] implies | G [</> < oo], and by strict con­
vexity 

<t>(u/2) = (/>(io + iw) < i(/>(0) + i(/>(w) = i(/>(w). (10.50) 

Also {A/n(|)} is a positive martingale and Li-bounded, so there exists a random 
variable Z such that 

M„(^) = cxp{^X„ - n<P(^)} ^ Z < oo 

and 

M 2 ( ^ ) = exp{w^„ - 2n<P('^)] ^ < oo. 

Therefore 

Mn(u) = exp{M^„ - n<l>{u)} 

= exp{w^„ - 2n(/>(|) + n[2(/>(^) - <P{u)]] 

= ( ^ 2 + ^(i))exp{n[2(0(^) - i0(w))]} 

^ 0 

since (/)(|) - i ( / ) (M) < 0 from ( 1 0 . 5 0 ) . • 

M O R E MARTINGALES. From Proposition 1 0 . 1 4 . 1 we can get many other mar­
tingales. Since (p is analytic on [(p < oo], it is also true that 

u H*' exp{ux — n(p{u)} 

is analytic. We may expand in a power series to get 

expiux - n<P{u)} = T T / * ^ ' ^ ' ^ ) - ( ^ 0 . 5 1 ) 

k=o 

10.14.1 The Basic Martingales 

Here is a basic connection between martingales and the random walk. 

Proposition 10.14.1 For any M G [</> < oo], define 
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that is, 

so that 

E{Mn{u)\Bm) = Mm{u)\ 

E {txp{uXn - n4>{u)]\Bm) = e"^--'"'^'^"^ 

( 0 0 it \ ° ° 

t=o / *=o 

If we expand the left side of (10.51) as a power series in w, the coefficient of M* is 
fk{n, x)/k\. As an example of this procedure, we note the first few terms: 

h{ti,x) = exp{MJt -n4>{u)}\u=o = 1 

d 
du 

= exp[ux - n<t>{u)](x - n<p'(u))\u=Q 
= i - ( j c - w £ y , ) 

and 

flin, ^) = exp{MJt - n(p(u)}\u=o 

= ^{e^'-^'^^'^Hx - n<t>\umu=o 

= e " ' - " ^ ^ " > ( - / ! ( / ) " (M)) + 

e"-"<f>^"\x - n4>\u))\=.o 

= {x-nE{Yi)f-nVaT(YO-

Each of these coefficients can be used to generate a martingale. 

Proposition 10.14.2 For each k > 1,{(/*(«, X„), B„), n > 0] is a martingale. 
In particular 

k=:l, {{fl (/2, X„) = ^„ - nE(YO = X„- EiXnh B„), n eN] 

k = 2, {{(X„ - E{X„))^ - Var{X„), B^), n eN] 

are martingales. 
(IfVariXi) = cr^ andE(Yi) = 0, then {X^ - no^] is a martingale.) 

For the most important cases where A: = 1 or A: = 2, one can verify directly 
the martingale property (see Section 10.5). Thus we do not give a formal proof 
of the general result but only give the following heuristic derivation. From the 
martingale property of {Mniu)] we have for m < n 
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10.14.2 Regular Stopping Times 

We will call the martingale {(A/„(M), Bn), n G N} , where 

Mn{u) = exp{M^„ -u<t>(u)} = e"^"/(Ee"^')" 

the exponential martingale. Recall from Proposition 10.14.1 that if M ^ 0, and 
M G [</) < oo], then M„(u) 0, almost surely. Here is Wald's Identity for the 
exponential martingale. 

Proposition 10.14J (Wald Identity) Let M G [</> < oc] and suppose 4>'{u) > 0. 
Then for a > 0. 

= inf{n :X„>a] 

is regular for the martingale {(M„(u), B„),n G N } . Consequently, by Corollary 
10.13.1, any stopping time v < is regular and hence Wald's identity holds 

l = E{Mo{u)) = E{M^) 

= j expiuX^ - v<p{u)]dP 

= I expiuXv - v<p(u)}dP. 
J[v<oo] 

Proof. Recall from Proposition 10.13.4, that for a stopping time v and a martin­
gale 

(/) V is regular for ] <^ 
("') t« -> 0 on = oo] ('•«) / | . > „ i l ? " l ' ' P - * 0 -

Recall from Remark 10.13.1 that (iii) automatically holds when the martingale is 
L1-bounded which is implied by the martingale being positive. 

So we need check that 

f M„{u)dP=S e"^--"^^"UP0. (10.52) 

For the proof of (10.52) we need the following random walk fact. Let {|,, / > 1} 
be M,E{l^i) > 0 . T h e n 

n 
lim sup 1/ = -Hoc, (10.53) 

Now differentiate inside E( \Bm) k times and set M = 0. This needs justification 
which can be obtained from the Dominated Convergence Theorem. The differen­
tiation yields 

E(fk(n,X„)\B„,) = Mm 
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n Fidyi). (10.54) 
1=1 1 = 

Now in order to verify (10.52), observe 

J[^t>n] 
= / , exp{w5]y, -n( />(w)}f]F(J>; . ) 

= P**[J2 Yf <aj = h...,n] (from (10.54)) 
1=1 

= P**[vl' >n]^0. • 

and so if 

n 
1=1 

we have v | < oo a.s. and P [ v | > -> 0. For the proof of (10.53), note that 
if £ ( t i ) > 0, then almost surely, by the strong law of large numbers Yll=i ~ 
nE{^i) oo. U E{^,) = 0, the result is still true but one must use standard 
random walk theory as discussed in, for example, Chung (1974), Feller (1971), 
Resnick (1994). 

We now verify (10.52). We use a technique called exponential tilting. Suppose 
the step random variables Yi have distribution F. On a space (fi*, B**, P**), define 
{y,*, / > 1} to be iid with distribution F** defined by 

F**{dy) = €"y-'^^"'^F{dy). 

Note F** is a probability distribution since 

F\R) = f e"y-'^^"^F(dy) = f €"^'-'^^"^dP 
JR JQ 

= Ee"^We'^^"^ = I-

F** is sometimes called the Esscher transform of F. Also 

E\Yl) = / yF\dy) = ! (rf̂ ) = ^ = 
JR J m{u) 

where m(u) = £(e"^0» and by assumption 

£*(yf) = <t>\u) > 0. 

Note the joint distribution of yj* Y^ is 

P*[yf edyu-.-, Y; e dy„] = fle^y^-'^^"^F{dy^) 
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^ + =aon [v^ < oo]. 

Note 

(Piu) = log (^e"P[Yi = 1] + f^^e-"^P[Yi = -j]^ 

so [0, oo) C [<t> < oo] and </>(oo) = oo. By convexity, there exists u* G [0, oo) 
such that 

inf 4>(u) = <p(u*). 
«€(0.OO) 

On the interval [M*, oo), </> increases continuously from the minimum </>(M*) to 
oo. Thus for u > M*, we have (p'{u) > 0. 

For u > M*, Wald's identity is 

1 = / exp{w^ + - v^(t>{u)]dP J[vt <oo] 

= / exp{M« - v+<Piu)]dP, 

J[vt<oo] 
SO that 

f e-^^"^<dP = e-"\ (10.55) 
^[l'fl+<00l 

Corollary 10.14.1 Let -b < 0 < a, u e [<f> < oo] and 

^a,b = inff'̂  X„ > a or X„ < —b). 

Then Va,b is regular for {A/„ (M)} and thus satisfies Wald identity. 

Proof. Note Va,b is not defined directly in terms of {M„{u)} and therefore Corol­
lary 10.13.2 is not directly applicable. If (p'iu) > 0, Proposition 10.14.3 applies, 
then vj" is regular for {M„{u)}, and hence Va,b < is regular by Corollary 
10.13.1. If (p'iu) < 0, check the previous Proposition 10.14.3 to convince your­
self that 

:= inf[n : X„ <b] 

is regular and hence Va,b 5 regular. • 

Example 10.14.1 (Skip free random walks) Suppose the step random variable 
Yl has range {1,0, —1, —2,. . .} and that P[yi = 1] > 0. Then the random walk 
{X„} with steps [Yj] is skip free positive since it cannot jump over states in the 
upward direction. 

Let a > 0 be an integer. Because {X„ ] is skip free positive. 
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/ e-<t>("KdP = e-"\ M > 0. 
J 

Setting k = 4>{u) gives 

g-<f,'~{k)a 

In this case, Wald's identity gives a formula for the Laplace transform of v^. 
C A S E (II) Suppose E(Yi) = <f>'(0) < 0. Since (/)(0) = 0, convexity requires 

(/)(«*) < 0 and there exists a unique UQ > u* > 0 such that </>(MO) = 0. Thus if 
we substitute UQ in (10.55) we get 

- / e - ^ ( " o ) i ' „ + = f e^dP = P[v^ < oo] < 1. 
y[i;+<ool J\vt<oo\ '[i;+<ool J[vt<oo] 

In this case, Wald's identity gives a formula for P[v^ < oo]. • 

We now examine the following martingales: 

{X„ - nE{Yi), n > 0}, {(^„ - nE{yx)f - nVar(yi), n > 0}. 

Neither is regular but we can find regular stopping times. 

Proposition 10.14.4 Let v be a stopping time which satisifes Eiv) < oo. Then 

(a) V is regular for {X„ — nE(Yi)] assuming E(\Yi |) < oo. 

(b) V is regular for {(X„ - nE(Yi))^ - nVar(Yi)} assuming EiY^) < oo. 

From (a) we get 
E(Xv) = E(v)E(Yi). 

From (b) we get 
E(Xv - vE(Yi))^ = E{v)Var(Yi). 

Proof, (a) Since {X„ — nEYi] has mean 0, without loss of generality we can 
suppose E{Yi) = 0. If E{v) < oo, then P[v < oo] = 1 and so X^An X^. We 
show, in fact, this convergence is also L i and thus [XvAn) is a regular martingale 
and y is a regular stopping time. 

Note that 

lA'yAn Xv\ — 
0, if V < n 

This holds for u e[<f> < oo] and in particular it holds for M G [M*, oo). 
Consider the following cases. 
C A S E (I) Suppose ^'(0) = £ (y i ) > 0. Then u* = 0 and since E(Yi) > 0 

implies < oo almost surely, we have 
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so that 

oo oo 

; = « + ! ; = n + l 

Note < ^1 and 

0 0 oo 

; = 1 y= l 

and because [v > j] e Bj-i v/e get by independence that this equals 

00 

= YlEi\Yi\)P[v > ;•] = £( |y i | )£( i ; ) < oo. 

Now 

; = n + l 

as n ->> 00, since the series is zero when n + 1 > v. Furthermore 

t n + l < t l e l l , 

and so by the dominated convergence theorem 

which means ^ 

(b) Now suppose E(Yi) = 0, E{Yf) < oo. We first check X^^n ^ X^. 
Note that l[v>m] e i B ^ - i is predictable so that {Ymlv>m] is a fair (martingale 
difference) sequence and hence orthogonal. Also, 

0 0 0 0 

m=l m=l 
0 0 

= E(YI) J2 > 'W] = E(YI)E(V) < oo. 
m=l 

As in (a), we get using orthogonality, that as /i —• oo 

0 0 0 0 

E{X,^„ - ^ , ) 2 = £ ( YjU>jf = 5] ^(>';1.^>;)^ ^ 0 
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smce 

Xl^„ - (i; A n)Var(yi) ^ Xl - vVar(yi), 

E\Xl^, - { V A /2)Var(yi) - {Xl - vWar{Yi))\ 

< E(\Xl^„ - Xl\) 4- E(\v A n - v\)WaT(Yi) 

= o(l) + Va r (y i )£ ( | i ; - , i | l [ 
v>n\l 

< o ( l ) 4 - V a r ( y i ) £ ( i ; l i , > „ j ) ^ 0 . 

Thus {Xl^„ -(v A nyWarVi ] is regular by Proposition 10.11.2. • 

10,14.3 Examples of Integrable Stopping Times 
Proposition 10.14.4 has a hypothesis that the stopping time be integrable. In this 
subsection, we give sufficient conditions for first passage times and first escape 
times from strips to be integrable. 

Proposition 10.14.5 Consider the random walk with steps {Yj}. 
(i)rfE(Yi) > 0, then for a > 0 

vj" = [nf{n : X„ > a} eL\. 

(ii) IfE(Yi) < 0, then for b > 0 

v^ = inf{n : X„ < -b) eL\. 

(iii) IfE(Yi) 0, and yi G L i, then 

Va,b = inff'̂  • X„ >aorX„ < —b} e Ly. 

Proof. Observe that (i) implies (ii) since given (i), we can replace y, by —Y, to 
get (ii). Also (i) and (ii) imply (iii) since 

Va,b < VJ" A < V^. 

It suffices to show (i) and we now suppose E(Yi) > 0. Then 

{X,^^„-{v+ An)E(Yi),n>0} 

is a zero mean martingale so 

0 = E(Xo) - OE(Yi) = E{X^^^„ - (v+ A n)E(Yi)), 

since we already checked that £(l'mlv>m)̂  < oo. So X^An X^. 

It follows that Xl^„ ^ Xl. Furthermore 
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which translates to 

^ ( ^ . / A « ) = E{Yi)E(v+ A n). (10.56) 

Since 
An 

we get by the monotone convergence theorem 

E(v+ A n ) Eiv+). 

From (10.56), we need a bound on EX^+^^. 
We consider two cases: 
C A S E 1. Suppose that Yi is bounded above; that is, suppose there exists c and 

Yl < c with probability 1. On [uj" < oo] we have A'y+.j < a and Y^,+ < c so 
that 

and 

X„+„„ < a if n < uJ", 
Vg An — a 

In any case 

Thus (10.56) and E(Yi) > 0 imply 

a+c 
E(Yi) 

>E(v+ A n ) /' E(v+), 

sov^ G L 1 . 
C A S E 2. If ŷ i is not bounded above by c, we proceed as follows. Note as 

c t oo, yi A c t i'l and l^i A c| < IKil G L i . By Dominated Convergence 
E{Yi AC) ^ E{Yi) > 0. Thus, there exists c > 0 such that E(Yi A c) > 0. Then 
for n > 0 

^^n^-= Yl^YiAC)<J2y'=-^n 
1=1 »=1 

and 

1;+̂ *̂ ^ = inf{n : ^J*') >a}>v^ = inf{/i : X„ > a]. 

From Case 1, û *̂̂ ^ G L i , so uj" G L i. • 
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a = E{X^^) = E(Yi)E{v^) = 0, 

a contradiction. • 

10.14.4 The Simple Random Walk 

Suppose [Yn,ti > 1} are iid random variables with range {±1} and 

p [ y , = ± i ] = i. 

Then E(y\) = 0. As usual, define 

n 

1 = 1 

and think of Xn as your fortune after the nth gamble. For a positive integer« > 0, 
define 

v'^ = inf{n : Xn = a}. 

Then P[v+ < oo] = 1. This follows either from the standard random walk result 
(Resnick, 1994) 

lim sup Xn = 4-00, 
n-*-oo 

or from the following argument. We have < oo a.s. iff uj*" < oo a.s. since 
if the random walk can reach state 1 in finite time, then it can start afresh and 
advance to state 2 with the same probability that governed its transition from 0 to 
1. Suppose 

p := P[v+ = oo]. 

Then 

l-p = PLvJ" < oo] 
= P[v+ < oo, ^ 1 = - 1 ] 4- P[v:l- <oo,Xi = 1] 

since (1 — p)(l — p) is the probability the random walk starts from —1, ultimately 
hits 0, and then starting from 0 ultimately hits 1. Therefore 

1 2 1 
1 - P = 2 ^ ^ " ^ ^ "^2 

so 
2-2p = 2-2p + p^, 

and p 2 _ 0 which implies p = 0. Notice that even though P[v^ < oo] = 1, 
= oo since otherwise, by Wald's equation 
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G A M B L E R ' S R U I N . Starting from 0, the gambling game ends when the ran­
dom walk hits either a or —b. From Theorem 10.13.3, Va,b is regular since 

f \XvaMP < V \i>\)P[^o,b < CX)] < OO, 
J[va.b<00] 

and 

I^«IK,>«II < i« iV i^ i 
so that {X„l[v„i,>„]] is ui. 

Now regularity of the stopping time allows optimal stopping 

0 = £ ( ^ 0 ) = E{Xv^_,) = -bP[v; < v+] + aP[v+ < v^] 

= -bP[v; < v+l -^0(1- P[v; < v^]). 

We solve for the probability to get 

P[^b < = P[ - ^ before hit a] = (10.57) 

We now compute the expected duration of the game E{va,b)' Continue to as­
sume P[Yi = ±1] = J. Recall [X^-n, w > 0} is a martingale and E{X^-n) = 
0. Also {{Xl^ — {va,b A /2), Bn), n e N] is a zero mean martingale so that 

0 = E{Xl^^„-{va,bAn)y, 

that is, 

E{Xl^^„) = E(va,b^n). (10.58) 

As w -> oo, 
Va.b A /2 t » f̂l,fc 

so the monotone convergence theorem implies that 

E{Va.b A w ) t E{Va,b)-

Also 

and 

implies by the dominated convergence theorem that 

file:///XvaMP
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a-\-b a-\-b 

ab{a + fe) 
= ;— = ab. 

Q->cb • 

G A M B L E R ' S RUIN IN THE A S Y M M E T R I C C A S E . Suppose now that 

P[Yi = 1] = p , P[Yi = - 1 ] = 1 - p = : ̂  

for p 7̂  5 and 0 < p < 1. Then for M G R, 

and from Corollary 10.14.1, Va,b is regular for the martingale 

{e"p -\-e "q)" 

and Wald's identity becomes 

f f e"^"^ b 
1 = / Mv,Au)dP= / dP. 

To get rid of the denominator, substitute M = log^ /p so that 

e"p + e~"q = ^ . p + ^ . ^ = ^ + p = l. 
P ^ 

Then with e" =q/pv/e have 

1 = E(exp{uXv,,}) = e"'P[v+ < v;] + e-"'P[v; < v+l 

Solving we get 

P[v^ < V*] = P[ exit the strip at - b] 

1 - ( f ) " 

From (10.58) and (10.57) 

(so Va,b € L\ and is therefore regular by Proposition 10.14.4) 

T a t a 
= t ) + ^ ' ( — 7 ) a -\-b a -\-b 

2 b b^a 
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10.15 Reversed Martingales 

Suppose that {I3„,n > 0] is a decreasing family of or-fields; that is, 13„ D lS„+i. 
Call {(Xn, lS„),n > 0] a reversed martingale if X„ € B„ and 

E(X„\B„+i) = X„+u n>0. 

This says the index set has been reversed. For n <0, set 

B„ — B—f,, Xfj = X—f,. 

Then B'„ C B'^ ifn < m < 0 and {(X'„, B'„),n < 0} is a martingale with index set 
{..., —2, —1,0} with time flowing as usual from left to right. Note this martingale 
is closed on the right by XQ and for w < 0 

E(X'Q\B'„)=X'„. 

So the martingale {(X'„, B'„),n < 0] is ui and as we will see, this implies the 
original sequence is convergent a.s. and in L i . 

Example. Let > 1} be iid, Li random variables. For n > 1 define S„ = 
Yl"=i^i and B„ = cr(Sn, Sn+i,...). Hence B„ is a decreasing family. For 
I < k < n, B„ = a(S„, ^,,+1, ^,,+2, • • • )• Furthermore, by symmetry 

E(^k\B„) = E(^i\B„), l<k<n. 

Adding over A: = 1, 2 , . . . , w, we get 

n 

S„ = E(S„\B„) = J2E(^k\B„) = nE(^i\B„), 
k=i 

and thus 
-=E(Si\B„) 
n 

which is a reversed martingale sequence and thus uniformly integrable. From The­
orem 10.15.1 below, this sequence is almost surely convergent. The Kolmogorov 
0-1 law gives lim„_».oo ^ >s a constant, say c. But this means 

c=-E(S„) = E(^i). 
n 

Thus, the Reversed Martingale Convergence Theorem 10.15.1 provides a very 
short proof of the strong law of large numbers. 

Here are the basic convergence properties of reversed martingales. 

Theorem 10.15.1 (Reversed Martingale Convergence Theorem) Suppose that 
[Bn, w > 0} is a decreasing family of G-fields and suppose 

{(X„,B„),n>0] 
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is a positive reversed martingale. Set 

n>0 

(i) There exists Xoo ^ Boo X„ ^ Xoo-

(ii) E{X„\Boo) = Xoo almost surely. 

(iii) [Xn] is ui and Xn ^ Xoo-

Proof. Recall X'^ = X-„, B'„ = B-„, n <0 defines a martingale on the index set 
{... , - 2 , - 1 , 0 } . Define 

8^"l = # downcrossings of [a, b] by XQ, ... ,X„ 

= # upcrossings of [a, b] by X„, X„-i XQ 

= # upcrossings of [a, b] by X'_„, - ^ - n + i » • • • »-^o 

Now apply Dubins' inequality 10.8.4 to the positive martingale X'_„,... ^XQIO 

get for /2 > 1, 

> t I B l J = PlS^;l > A|B„] 

< ( ^ ) * ( ^ A 1) b a 

= ( ^ ) * ( ^ A 1). 

Taking E('\Boo) on both sides yields 

p[sib > ^ l^oc ) < ^ DIM-
As /2 t oo, 

^a"b t = # downcrossings of [a, b] by [XQ, A ' l , . . . } , 

and 

P(5a6 > k\Boo) < ( ^ ) * s u p £ ( ( ^ A D l ^ o o ) < ( ^ ) * . 
O n fl b 

Thus 5a,b < oo almost surely for all fl < b and therefore lim„_».oo Xn exists 
almost surely. Set Xoo = Hmsup„_^oo A'„ so that XQO exists everywhere, and 
Xn A'oo a.s. Since Xn e Bn, and {iB„} is decreasing, we have for n > p that 
Xn G so A'oo e iBp for all p . Thus 

Xoo ^ r\Bp = Boo-
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So by the Integral Comparison Lemma 10.1.1 

A 

j XoodP (from (10.60)). 

• 

Now for all n > 0, ^ „ = E{Xo\l3„) so [Xn] is ui by Proposition 10.11.1. Uniform 
integrability and almost sure convergence imply L \ convergence. (See Theorem 
6.6.1 on page 191. This gives (iii). 

Also we have 

E(X„\l3oo) = E(E{X„\B„+i)\Boo) = E{X„+i\Boo). (10.59) 

Now let /2 oo and use the fact that Xn ^ XQO implies that the conditional 
expectations are L i-convergent. We get from (10.59) 

Xoc = E{Xoo\Boo)= lim E{X„\Boo) = E{X„\Boo) 
n-*oo 

for any n > 0. This concludes the proof. • 

These results are easily extended when we drop the assumption of positivity 
which was only assumed in order to be able to apply Dubins' inequality 10.8.4. 

Corollary 10.15.1 Suppose {B„] is a decreasing family and X eL\. Then 

E{X\B„) E{X\Boo) 

almost surely and inLi. (The result also holds if{B„} is an increasing family. See 
Proposition 10.11.2.) 

Proof. Observe that if we define [Xn] by Xn := E{X\Bn)y then this sequence is 
a reversed martingale from smoothing. From the previous theorem, we know 

Xn Xoo € Boo 

a.s. and in Li. We must identify A'oc. From Li-convergence we have that for all 
AeB, 

j E(X\B„)dP-^ j XoodP. (10.60) 

Thus for all AeBoo 

j E{X\Bn)dP = j XdP (definition) 

E{X\Boo)dP (definition) 
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Example 10.15.1 (Dubins and Freedman) Let [Xn] be some sequence of ran­
dom elements of a metric space ( S , S) defined on the probability space B, P) 
and define 

B„ =o(X„,X„+i,...). 

Define the tail or-field 

n 

Proposition 10.15.2 T is a.s. trivial (that is, AeT implies P(A) = Oorl) iff 

WAeB: sup \P(AB) - P(A)P(B)\ -> 0. 
BeB„ 

Proof. If 7" is a.s. trivial, then 

P(A\B„) ^ P(A\Boc) = P(A\T) = P(Am ^}) = P(A) (10.61) 

a.s. and in L i . Therefore, 

sup \P(AB) - P(A)P(B)\ = sup \E(P(AB\Bn)) - P(A)E(\B)\ 
BeB„ B€B„ 

= sup \E (1B{P(A\B„) - P(Am\ 
BeB„ 

< sup E \P(A\B„) - P(A)\ 0 
B€B„ 

from (10.61). 

If A G T , then A e B„ and therefore 

P ( A n A) = P(A)P(A) 

which yields P(A) = (P(A)f. • 
Call a sequence {X„] of random elements of (§, «S) mixing if there exists a 

probability measure F onS such that for all A eS 

P[X„ G A] ^ F(A) 

and 

P(lX„e-]nA)~> F(-)P(A). 

So {X„} possesses a form of asymptotic independence. 

Corollary 10.15.2 If the tail cr-field T of {X„] is a.s. trivial, and 

P[X„ G •] F(.) , 

then {X„ ] is mixing. 
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10.16 Fundamental Theorems of 
Mathematical Finance 

This section briefly shows the influence and prominence of martingale theory in 
mathematical finance. It is based on the seminal papers by Harrison and Pliska 
( 1 9 8 1 ) , Harrison and Krebs ( 1 9 7 9 ) and an account in the book by Lamberton and 
Lapeyre ( 1 9 9 6 ) . 

10.16.1 A Simple Market Model 

The probability setup is the following. We have a probability space ( f i , iB, P) 
where fi is finite and B is the set of all subsets. We assume 

P{{(jo]) > 0 , V o ; G fi. ( 1 0 . 6 2 ) 

We think of ct> as a state of nature and ( 1 0 . 6 2 ) corresponds to the idea that all 
investors agree on the possible states of nature but may not agree on probability 
forcasts. 

There is a finite time horizon 0 , 1 , . . . , A'̂  and A'̂  is the terminal date for eco­
nomic activity under consideration. There is a family of cr-fields BQ C B\ C 
• • • C BN = B. Securities are traded at times 0 , 1 , . . . , and we think of B„ as 
the information available to the investor at time n. We assume 5o = {fi, 0}. 

Investors trade d -\- 1 assets (d > 1) and the price of the /th asset at time n is 
for /• = 0 , 1 , . . . , TV. Assets labelled 1 , . . . , f/ are risky and their prices change 

randomly. The asset labelled 0 is a riskless asset with price at time n given by S^^, 
and we assume as a normalization 5Q^̂  = 1 . The riskless asset may be thought 
of as a money market or savings account or as a bond growing deterministically. 
For instance, one model for [S^\ 0 < n < N] if there is a constant interest rate 
r, is SH^^ = ( 1 + r ) " . We assume each stochastic process {S}!\0 < n < N} 
is non-negative and adapted so that 0 < G 5 „ for / = 0 , . . . , d. Assume 

> 0 , /2 = 0 A .̂ We write 

{S„ = (5i°>,5y> SPh 0<n<N] 

for the R'''^^-valued price process. 
Since the money market account is risk free, we often wish to judge the quality 

of our investments in terms of how they compare to the riskfree asset. We can 
apply the discount factor = 1 /S^^ to our price process and get the discounted 
price process _ 

{S„=S„ /5 f> , 0<n<N] 

which may be thought of as the original price process denominated in units of the 
current price of the riskless asset. Note that S^^^ = 1. 

The change in the prices from period to period is given by the R'''*'^-valued 
process 

do = So, d„ = S„ - S„_i, n^\,...,N 
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(0„, S„) = (0„+i, Sn), 0<n<N-l. (10.63) 

This means that at time n, just after prices S„ are announced, the value of the 
portfolio is (0„, Sn). Then using the new information of the current prices, the 
portfolio is rebalanced using <f)„+i yielding new value (0„+i, Sn). The equality 
in (10.63) means that the portfolio adjustment is done without infusing new capital 
into the portfolio and without consuming wealth from the portfolio. 

Here are some simple characterizations of when a strategy is self-financing. 

Lemma 10.16.1 / / 0 is a trading strategy, then the following are equivalent: 

(i) 0 /s self-financing. 

and the change in the discounted prices is 

do = So, dn = Sn — S„_i, n = 1,..., N. 

Note that df^ = 0 for n = 1 , . . . , A .̂ 
A TRADING STRATEGY is an R''"*" -̂valued stochastic process 

{<^„ = (</>iO),</>ii> 4>lf\ 0<n<N} 

which is predictable, so that for each i = 0 , . . . , f/, we have (pl!^ G B„-i for 
n >1. 

Note that since Q is finite, each random variable l ^ i ' 0 < n < A'̂ , 0 <i < d 
is bounded. Think of the vector (p„ as the number of shares of each asset held 
in the investors portfolio between times n — I and n based on information that 
was available up to time n — 1. At time n, when new prices Sn are announced, 
a repositioning of the investor's portfolio is enacted leading to a position where 
<t>n+i shares of each asset are held. When the prices Sn are announced and just 
prior to the rebalancing of the portfolio, the value of the portfolio is 

d 

vM) = s„) = 0;s„ = X;<̂ i'̂ •̂ i''̂ • 
l•=o 

The discounted value process is 

V„(<f>) = ^„V„(<f>) = {<f>„,S„). 

To summarize: we start with value Vb(0) = (<f)Q, So). Now So is known so 
we can rebalance the portfolio with ^ j . The current value ( ^ j , So) persists un­
til prices Si are announced. When this announcement is made, the value of the 
portfolio is Vi(<t>) = (0 i , Si). Then since Si is known, we rebalance the port­
folio using 02 the value is (02. Si) until S2 is announced when the value is 
(02' S2) and so on. 

A trading strategy 0 is called self-financing if we have 
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(ii) Forl<n<N 

V„(4>) = Vo(4>) + J2(4>j, d y ) . (10.64) 

(iii) Forl<n<N 

Vn{4>) = Vo(4>) + J2(<f>j,dj)- (10.65) 

Proof. Observe that the self-financing condition (10.63) is equivalent to 

(0y+„ d ; + i) = (0y + i, S;+i) - (0y, S;) = V;+i(0) - Vj(<t>), (10.66) 

which says that for a self-financing strategy, changes in the value function are due 
to price moves. Summing (10.66) over ; = 0 , . . . , w gives (10.64). Conversely, 
differencing (10.64) yields (10.66) and hence_(10.63). Next^ in (10.63) multiply 
through by the discount factor ^„ to get (</>„, S„) = (0„+i, S„) or 

(0«+i^d„+i) = (0„+i,S„+i) - (<t>„,S„)^V„+i(<t>)-V„(<t>). (10.67) 

Proceed as in (ii). • 

Note that since d^^^ = 0, for ; = 1 , . . . , we can rewrite (10.65) as 

Vn (0) = Vo(<l>) + "^f^i^ (10-^^) 
j=\ «=i 

showing that the discounted wealth at n from a self-financing strategy is only 
dependent on Vb(</>) and j ^ j ' \ / = 1 , . . . , f/; ; = 1 , . . . , w}. The next result 

shows that if a predictable process [((p^^, <t>f^ 4>^P), 1 < / < A l̂ and an 
initial value VQ G BQ is given, one may always find a unique predictable process 
{</>f\0 < j < N] such that 0 = {((l>f\(p]^^ <t>f),0 < j < N] is self-
financing. 

Lemma 10.16.2 Given {(<pf\ 4>f\ . . . , 4>f), I < j < N], a predictable pro­
cess, and a non-negative random variable VQ G BQ, there exists a unique pre­
dictable process 0 < ; < Â } such that 

<f> = {(4>f\4>f\...,4>^/\0<j<N] 

is self-financing with initial value VQ. 
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i = l 

Now equate ( 1 0 . 6 9 ) and ( 1 0 . 6 8 ) and solving for 4>^\ we get 

; = i 1 = 1 1=1 

= v o + 1 : 1 : *r3<">+±<i,p ((5i'> - e.) - ) 
;=11=1 1=1 

>=11=1 1=1 

since G /3„_i for i = 1 , . . . , d. 

This shows how ^i^^ is determined if the strategy is self-financing, but it also 
shows how to pick given VQ and {{4>n \ I <i <d), w = 1 , . . . , Â } to make 
the strategy self-financing. • 

10.16.2 Admissible Strategies and Arbitrage 

There is nothing in our definitions that requires 0 > 0. If < 0 for some 
I = 0 , 1 , . . . , f/, then we are short \4>n^\ shares of the asset. We imagine borrowing 
\<t>n \ shares to produce capital to invest in the other hot assets. We want to restrict 
the risk inherent in short sales. 

We call </) an admissible strategy if </> is self-financing and 

V;(0)>O, / 2 = 0 , . . . , A r . 

This is a kind of margin requirement which increases the likelihood of being able 
to pay back what was borrowed should it be necessary to do so at any time. Not 
only do we require that the initial value Vb(0) be non-negative, but we require 
that the investor never be in a position of debt. 

In fair markets in economic equilibrium, we usually assume there are no arbi­
trage opportunities. An arbitrage strategy 0 is an admissible strategy satisfying 

Vb(0) = OandVO^(0)(a^o)>O, 

Proof. Suppose (4>Q, . . . , is a self-financing strategy and that VQ is the initial 
wealth. On the one hand, we have ( 1 0 . 6 8 ) with VQ replacing Vb(</>) and on the 
other hand, we have from the definition that 

V„(<f>) =(0„,S„) 
d 



420 10. Martingales 

10.16.3 Arbitrage and Martingales 
There is a fundamental connection between absence of arbitrage opportunities 
and martingales. 

Recall the given probability measure is P. For another probability measure P*, 
we write P* = P if P « : P* and P* « : P so that P and P* have the same null 
sets. 

Theorem 10.16.1 The market is viable iff there exists a probability measure P* = 
P such that with respect to P*, {(S„,B„),0 < n < N] isa P*-martingale. 

Remark. Since Sn is R''"*"^-valued, what does it mean for this quantity to be a 
martingale? One simple explanation is to interpret the statement component-wise 
so that the theorem statement asserts that for each / = 0 , . . . , A ,̂ {(5^'\ B„),0 < 
n < N]isa P*-martingale. _ 

A measure P* which makes {(S^, B„), 0 < n < N] a P*-martingale is called 
an equivalent martingale measure or a risk neutral measure. 

Proof. Suppose first that P* = P and {(S„, JB„), 0 < n < Â } is a P*-martingale. 
Then {(d„, Bn),0 < n < A'̂ } is a P*-martingale difference and thus 

E*(dj+i\Bj) = 0, = 0 , . . . , A ^ - 1 . 

From (10.65) we see that {V„(</>), 0 < n < N] is a P*-martingale transform, and 
hence a martingale. Thus 

E*(y„{iP)) = £*(Vo(</>)), 0<n<N. (10.71) 

Suppose now that an arbitrage strategy <f) exists. Then by definition Vo(<f)) = 0 
and from (10.71), we get E*(VN(<f>)) = 0. Since 0 is admissible, VV(0) > 0 
and this coupled with a zero £*-expectation means Vf^(<f)) = 0 P*-almost surely, 
and thus (since P* = P ) also P-almost surely. Since P({co}) > 0 for all ct> 6 fi, 
we have no exception sets and hence (0) = 0. This contradicts the definition 
of an arbitrage strategy, and we thus conclude that they do not exist. 

We now consider the converse and for this we need the following lemma. 

for some COQ e ^. Equivalently, we require 

Vo(<t>) = 0 and E(VV(0)) > 0. (10.70) 

Such arbitrage strategies, if they exist, represent riskless stategies which produce 
positive expected profit. No initial funds are required, the investor can never come 
out behind at time A'̂ , and yet the investor can under certain circumstances make a 
positive profit. Markets that contain arbitrage opportunities are not consistent with 
economic equilibrium. Markets without arbitrage opportunities are called viable. 

The next subsection characterizes markets without arbitrage opportunities. 
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(10.74) 

We observe from its definition that rj) is predictable, and in a series of steps we 
will show 

(i) ^ is self-financing, 

(ii) 7p is admissible, 

(iii) E(Vf^(7P)) > 0, 

and hence V is an arbitrage strategy and thus the market is not viable. 
We now take up (i), (ii) and (iii) in turn. 
S T E P ( I ) . TO show tp is self-financing, we need to show 

(t/'it.Sit) = (t/'it+i.Sit) (10.75) 

for A: = 0 , . . . , - 1 . First of all, for A: + 1 < no both sides of (10.75) are 0. Now 
consider the case k > no. We have 

Vum = (Vt. S*) = (l[v„„<*,<0)(.^* - - ^ ^ e o ) . SA 

=1 |V.„(*)<0) S*) - ^ ^ 5 f >j ( 1 0 . 7 6 ) 

Lemma 10.163 Suppose there exists a self-financing strategy <t> which, while 
not necessarily admissible, nonetheless satisfies Vo{<f)) = 0, Vfj{<f)) > 0 and 
E(yN(<l>)) > 0- Then there exists an arbitrage strategy and the market is not 
viable. 

Proof of Lemma 10.16J. If Vn(<f)) > 0, n = 0,..., N, then <f) is admissible and 
hence an arbitrage strategy. 

Otherwise, there exists 

no = sup{k : P[Vk(<f>) < 0 ] > 0 } , 

and since (<f>) > 0 we have 1 < no < A'̂  — 1 and thus 

( a ) F [ K „ , ( 0 ) < O ] > O , (10.72) 
(b) V„(<f)) > 0, no<n<N. (10.73) 

We now construct a new strategy t/' = (t/'o* • • •»V'/v)- To do this define 

eo = ( 1 , 0 , . . . , 0 ) 6 R ' ' + ^ 

The definition of t/' is 

'O, \fk<no. 
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= l[v„o(</.)<0] ((0it+i. Sit) - of ^ (eo> Sit) j 

= (V'it+i'Sit), 

as required. 
The last case to consider is A: = WQ. In this case (t/Jit. Sit) = 0 and we need to 

check that (^it+i, Sit) = 0. This follows: 

(V'it+i,Sit)=(t/'„o+i'S„o) 

=1 

and again using the fact that <̂  is self-financing this is 

= l[v„o(0)<O] ((0«o' S«o) - Kio(0)) = 0, 

since (0,,̂ , S„„) = V^pC )̂. Thus t/j is self-financing. 
S T E P (I I ) . Next we show V Js admissible. First of all, for A: < no we have 

Vit(V') = 0 so we focus on A: > HQ. For such k we have from (10.76) that 
Vit(t/') > 0 since on \VnM^ < 0] the term V„Q(<I))S^^^/S^^^ < 0. This verifies 
the admissibility of tp. 

S T E P (I I I ) . Now we finish the verification that rp is an arbitrage strategy. This 
follows directly from (10.76) with A'̂  substituted for k since Vf^irp) > 0 on 
[yno(<l>) < 0]. So an arbitrage strategy exists and the market is not viable. • 

We now return to the proof of the converse of Theorem 10.16.1. Suppose we 
have a viable market so no arbitrage strategies exist. We need to find an equivalent 
martingale measure. Begin by defining two sets of random variables 

r :={X : ^ H> R : ̂  > 0, E(X) > 0} 
V :={Vf^(<p) : Vo(<p) = 0, <pis self-financing and predictable}. 

Lemma 10.16.3 implies that f n V = 0. (Otherwise, there would be a strategy <p 
such that VV(0) > 0, E(Vfj(<p)) > 0 and Vo(<p = 0 and Lemma 10.16.3 would 
imply the existence of an arbitrage strategy in violation of our assumption that the 
market is viable.) 

and because 0 is self-financing we get 
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violates (i'). 
Define P* by 

We now think of F and V as subsets of the Euclidean space Mp, the set of 
all functions with domain fi and range R. (For example, if fi has m elements 
ct>i,...,ct>;„, we can identify with W".) The set V is a vector space. To see 
this, suppose <f)(l) and 0(2) are two self-financing predictable strategies such 
that V)v(0(/)) € V for / = 1,2. For real numbers a , b we have 

aVNm\))+bVN{<l>{2)) = VN{a(j){\)-\-b(i>{2)) 

and 
0 = a Vb(0(l)) + 6Vb(0(2)) = Vb(fl0(l) + 60(2)) 

and flVV(0(l)) 4- 6VV(0(2)) is the value function corresponding to the self-
financing predictable strategy ^0(1) + 60(2); this value function is 0 at time 0. 
ThusflVA^(0(l)) H-6VV(0(2)) 6 V. 

Next define 
K:=^{Xer: ^ ^ ( a ; ) = l} 

so that K QT. Observe that K is closed in the Euclidean space and IS compact 
andconvex.(If A', y 6 /C, then we have X^^aA'(ft;)-H(l-a)y(ft;) = a + l - a = 1 
for 0 < a < 1.) Furthermore, since V fl F = 0, we have V D /C = 0. 

Now we apply the separating hyperplane theorem. There exists a linear function 
A : R such that 

(i) A(^) > 0, for X eK,, 

(ii) A(^) = 0, for X eV. 

We represent the linear functional A as the vector 

A = (A(aj), <w 6 fi) 

and rewrite (i) and (ii) as 

0') Ecen Mco)X{w) > 0, for ^ G 

("') 5Za>en ̂ N(<P)(<J^) = 0. for VV(0) e V, so that 0 is self-financing and 
predictable. 

From (i') we claim A(ct>) > 0 for all ct> G fi. The reason for the claim, is that if 
A(cyo) = 0 for some COQ, then X = l{ajQ} satisfies YltoeCi X(o)) = 1 so A' G /C but 

J2 Mco)X(co) = Xim) = 0 
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Then P*(co) > 0 for all co so that P* = P. It remains to check that P* is that 
which we desire: an equivalent martingale measure. 

For any V)v (</>) e V, (ii') gives 

SO that, since Vo(<f>) = 0 , we get from ( 1 0 . 6 5 ) 

N _ 

E*{J2(<f>j,dj))=0, ( 1 0 . 7 7 ) 

for any <f) which is predictable and self-financing. 
Now pick 1 <i <d and suppose ((l>n\ 0 < n < N)\s any predictable process. 

Using Lemma 1 0 . 1 6 . 2 with VQ = 0 we know there exists a predictable process 
((l>!t^\0<n <N) such that 

0*:={(</>r.O,...,O,</>i'>,O,...,O),O<n <7V} 
is predictable and self-financing. So applying ( 1 0 . 7 7 ) , we have 

0=£'(t(4dy)) = £-(£x:<<'>̂'>) 
y=i j=i 1=1 

= E*(£4>'pd';'). ( 1 0 . 7 8 ) 

Since ( 1 0 . 7 8 ) holds for an arbitrary predictable process 0 < ; < A'^}, we 

conclude from Lemma 1 0 . 5 . 1 that { ( 5 ^ ' \ I3„), 0 < n < AT} is a P*-martingale. • 

Corollary 10.16.1 Suppose the market is viable and P* is an equivalent martin­
gale measure making {(Sn, B„), 0 < n < N] a P*-martingale. Then 

{(V„(4>),B„),0<n<N} 

is a P*-martingale for any self-financing strategy <f). 

Proof. If (j) is self-financing, then by ( 1 0 . 6 5 ) 

so that {(V„((f>),B„),0 < n < A'̂ } is a P*-martingale transform and hence a 
martingale. • 
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10.16.4 Complete Markets 
A contingent claim or European option of maturity TV is a non-negative Bf^ = 
iB-measurable random variable X. We think of the contingent claim X paying 
X(co) > 0 at time TV if the state of nature is co. An investor may choose to buy or 
sell contingent claims. The seller has to pay the buyer of the option X(co) dollars 
at time TV. In this section and the next we WMH see how an investor who sells a 
contingent claim can perfectly protect himself or hedge his move by selling the 
option at the correct price. 

Some examples of contingent claims include the following. 

• European call with strike price K. A call on (for example) the first asset 
with strike price /C is a contingent claim or random variable of the form 
X = (S]^^ - /C)+. If the market moves so that 5jJ^ > then the holder 
of the claim receives the difference. In reality, the call gives the holder the 
right (but not the obligation) to buy the asset at price K which can then be 
sold for profit (S]^^ -K)+. 

• European put with strike price K. A put on (for example) the first asset 
with strike price /C is a contingent claim or random variable of the form 
X = (K - S]^^)-^. The buyer of the option makes a profit if 5̂ ^^ < K. 
The holder of the option has the right to sell the asset at price K even if the 
market price is lower. 

There are many other types of options, some with exotic names: Asian options, 
Russian options, American options and passport options are some examples. 

A contingent claim X is attainable if there exists an admissible strategy 0 such 
that 

X^Vf^(<l>). 

The market is complete if every contingent claim is attainable. Completeness will 
be shown to yield a simple theory of contingent claim pricing and hedging. 

Remark 10.16.1 Suppose the market is viable. Then if A' is a contingent claim 
such that for a self-financing strategy <f) we have X = V/v(0), then 0 is admissible 
and hence X is attainable. 

In a viable market, if a contingent claim is attainable with a self-financing strat­
egy, this strategy is automatically admissible. To see this, suppose P* is an equiva­
lent martingale measure making {(S^, JK„), 0 < n < TV} a vector martingale. Then 
if 0 is self-financing. Lemma 10 .16 .1 implies that {(Vn((t>), B„), 0 < n < N) \s 
a P*-martingale. By the martingale property 

VM) = E*(VNmB„), 0<n<N. 

However, 0 < A' = VV(0) and hence Vi^((p) > 0 so that V„(</>) > 0 for 
0 < n < N, and hence <f) is admissible. • 
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^ ( 0 ) ^ ( 0 ) = Vf,(<l>) = Vo(<t>) + J2^4>j,dj). 

Suppose P*, P2 are two equivalent martingale measures. Then by Corollary 10.16.1 
{(Vn(<t>), Bn), 0<n<N}\sa /^*-martingale (1 = 1, 2). So 

since 5o = {0, We conclude that 

Ei(x/s^;^^) = E2*(^AR) 

for any non-negative X e Bf^. L&i X = l/^-Sj^^ for arbitrary A e Bj^ = B and we 
get 

E*iilA) = Pi(A) = P2*(>\) = E^HA), 

and thus P* = PJ" and the equivalent martingale measures are equal. 
Conversely, suppose the market is viable but not complete. Then there exists 

a contingent claim 0 < X such that, for no admissible strategy (p, is it true that 
X = Vf^(<P). 

Now we employ some elementary L2-theory. Define 

N d 

H := {(/o + I] ̂ " • ^ 0 ̂  ^ 0 , <t>^n\ . . . , 4>^n^ are predictable.} 

n = l j = l 

By Lemma 10.16.2 there exists (pf^,1 <n < N] such that 

<l>:=[{4>^^\...,4>)f\0<n<N] 
is self-financing. Then with such {^J^^}, since d^^^ = 0, 1 < n < N,v/e have 

f^o+E E =f/o+E(^„. d„). 
« = 1 1=1 n=\ 

Thus, ^/SjJ'^ H since if it were, there would be a self-financing (and hence by 
Remark 10.16.1 also admissible) strategy such that 

4j = I/O + £ ( < / . „ . 3„) = V ^ W = 

Theorem 10.16.2 Suppose the market is viable so an equivalent martingale mea­
sure P* exists. The market is also complete iff there is a unique equivalent mar­
tingale measure. 

Proof. Suppose the market is viable and complete. Given a contingent claim X, 
there is a strategy <f) which realizes X in the sense that X = VV(0). Thus we get 
by applying Lemma 10.16.1 that 

X -
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Since the market is viable, there exists an equivalent martingale measure P*. 
All random variables are bounded since ^ is finite. Now consider LiiP*) with 
inner product (A', Y) = E*{XY). Then ?i is a subspace of LiiP*) since it is 
clearly a vector space and it is closed in L2(P*). SoH^ L2{P*) since X/S^^^ ^ 
H means that there exists ^ ^0 with ^ € H^, the orthogonal complement of H, 
Define 

ii^ir = sup i ^ M i 

and 

and observe 

2m 2m 

since we claim that E*{^) — 0. To check this last claim, note that \ e H and 
(1, ^) = 0 (since ^ e H-^) means E*(^l) = E*(^) = 0. Also observe that 

so that 

1 + 

211̂  i r 

2m 

1 
^ 2 ' 

> 0. 

We conclude that P** is a probability measure and that P** = P* = P. Further­
more, for any predictable process {(<l>n^\ ..., <p!f^), 0 < n < N}yV/e may add the 
predictable component {0i°\o < n < N] making the full family self-financing 
with Vo = 0. So 

n 

n = l 

and Vf^(<f)) e H. Since ^ e H^, we have 
0 = (V^(0),^) = = X! yN{4>){comco)P\{a>]). 

(jjeQ 

Therefore, using the martingale property and orthogonality, 

= 0 + 0. 

\ 211̂  i r / 
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10.16.5 Option Pricing 
Suppose A' is a contingent claim which is attainable by using admissible strategy 
0 so that X = VV(0). We call V()(0) the initial price of the contingent claim. 

If an investor sells a contingent claim X at time 0 and gains Vb(0) dollars, 
the investor can invest the Vo(0) dollars using strategy <f) so that at time A ,̂ the 
investor has (<f>) = X dollars. So even if the investor has to pay to the buyer X 
dollars at time A'̂ , the investor is perfectly hedged. 

Can we determine Vo(0) without knowing 0? Suppose P* is an equivalent 
martingale measure. Then we know {(V„(<})), B„), 0 < n < N) isa P*-martingale 
so 

E*(VNm = E*(Vom = Voi<f>) = Vb(0), 

and 

E*(X/S^;^^) = Vo(<t>). 

So the price to be paid is E*(X/S^I^^). This does not require knowledge of 0, but 
merely knowledge of the contingent claim, the risk free asset and the equivalent 
martingale measure. 

Furthermore, by the martingale property, 

E^iV^mBn) = V„(<f>), 0<n<N; 

that is, 

VM) = Sl^^E*(Vf,(<l>)/S^;^^\B„) = Sl^^E*(X/S^;^^\B„). 

This has the interpretation that if an investor sells the contingent claim at time n 
(with information B„ at his disposal), the appropriate sale price is V„ (</>) dollars 
because then there is a strategy <f) which will make the V„ (<f)) dollars grow to X 
dollars by time A'̂  and the investor is perfectly hedged. The price V„ (<f)) can be 
determined as S^^E*(X/S^I^^\B„), so pricing at time n does not need knowledge 
of <f) but only knowledge of the P*, X and the risk free asset. 

Is there more than one initial price that generates wealth X at time A'̂ ? Put 
another way, is there more than one strategy 0 whose initial values Vo(<f)) are 
different but each generates the contingent claim X? Essentially, the answer is 
negative, provided the market is viable and complete. See Exercise 56. 

Since the predictable process is arbitrary, we apply Lemma 10.5.1 to conclude that 
{(S„,B„),0 < n < N) is a P**-martingale. There is more than one equivalent 
martingale measure, a conclusion made possible by supposing the market was not 
complete. • 
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dv^ 
dp 

a.e. p , V. 

(d)U pic,k = 1 ,2 , . . . and p are finite measures on (fi, B) such that 

oo 
J2f^k(A) = p(A) 
1=1 

for all AeB, and if the pk are AC with respect to a or-finite measure X, 
then p and 

dk ^ dk' dk dk' 
1=1 

a.e. X. 

Hints: (a) The equation holds for / an indicator function, hence when / is 
simple and therefore for all integrable / . (b) Apply (a) with / = dv/dp. 

2. Let (fi, B, P) be a probability space and let ^ be a positive random variable 
with £(^) = 1. Define P*(A) = ^dP. Show 

(a) E*{X) = E{X^) for any random variable ^ > 0. 

(b) Prove for any A' > 0 that 

E {X\Yi,... ,Yn) =^ — 
E{^\Y\,...,Yn) 

for any random variables Y\,...,Yn. 

10.17 Exercises 

1. (a) If X and ix are finite measures on (fi, B) and if <$C A., then 

for any /x-integrable function / . 

(b) If X, fx and v are finite measures on (fi, B) such that v <^ p and p <^ k, 
then 

dv _ dv dp 
dk ^ dJlTk' 

a.e. X. 
(c) Up and v are finite measures which are equivalent in the sense that each 
is AC with respect to the other, then 
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3. If ^ G L i , y G L o o , ^ C iB, then 

E{YE(X\Q)) = E(XE(Y\Q)). 

4. Suppose y G L i and X i , X 2 are random vectors such that o r ( y , X i ) is 
independent of or(X2) . Show almost surely 

£ : ( y | X i , X 2 ) = £ ( y | X i ) . 

(Hint: What is an expression for A G o r ( X i , X 2 ) in terms of X i , X 2 ? 

5. If {A^(0. t > 0} is a homogeneous Poisson process with rate X, what is 
£(A^(s)|A^(r))forO<s < t. 

6. If U is U{0,1) on ( ^ , B, P) define Y^U{l-U). For a positive random 
variable X, what is £(;!r |y) . 

7. Suppose X\, X2 are iid unit exponential random variables. What is 

(a) £ ( ^ i | ^ i + ^ 2 ) ? 
(b) P[Xi < 3\Xi + X2V 

(c) £ ( ^ 1 1 ^ 1 AO? 

(d) £ ( ^ i | ^ i VO? 

8. Suppose X, Y are random variables with finite second moments such that 
for some decreasing function / we have £ ( A ' | y ) = f(Y). Show that 
Cov(^, Y) < 0. 

9. Weak L1 convergence. We say X„ converges weakly in L 1 to A' iff for 
any bounded random variable y , we have E{XnY) E(XY). Show this 
implies E(X„ \Q) converges weakly in L 1 to E(X\Q) for any or-field Q C B. 

10. Let X be an integrable random variable defined on the space ( ^ , B, P) and 
suppose ^ C is a sub-or-field. Prove that on every non-null atom A of 
the conditional expectation £ ( A ' | ^ ) is constant and 

E{X\Q){co) = j XdP/P{h), coeA. 

Recall that A is a non-null atom of G if P ( A ) > 0 and A contains no 
subsets belonging to Q other than 0 and ^ . 

11. Let (/): K K. Let A', y be independent random variables. For each A: G M 
define 

Q{x,A) := P[(}>{X,Y)GA]. 
Show 

P[(P(X, Y)eA\X] = Q(X,A) 
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almost surely. 

Now assume <p is either bounded or non-negative. If h{x := £ (0 (x , Y)), 
then 

E{(}>{X, Y)\X) = h(X), 

almost surely. 

12. (a) For 0 < A' G L1 and Q C B, show almost surely 

E(X\Q) = P[X> t\Q]dt. 
Jo 

(b) Show 
P[\X\>t\Q]<r''E{\X\''\Q). 

13. UB1CB2CB and E{X^) < 00, then 

E ((X - E(X\B2)f) <E({X- E{X\Bi)f) . 

14. Let {Yn,n > 0} be iid, = 0, E(Y^) = < 00. Set ^ 0 = 0 and 
show from first principles that 

n 

1=1 

is a martingale. 

15. Suppose [{Xn,Bn),n > 0} is a martingale which is predictable. Show 
Xn = Xo almost surely. 

16. Suppose {{Xn,Bn),n > 0} and {(Y„,B„),n > 0} are submartingales. 
Show {{Xn V Y„,Bn),n > 0} is a submartingale and that 
{{X„+Yn,Bn),n>0} is as well. 

17. Polya urn. (a) An urn contains b black and r red balls. A ball is drawn at 
random. It is replaced and moreover c balls of the color drawn are added. 
Let XQ = b/{b + r) and let Xn be the proportion of black balls attained 
at stage n\ that is, just after the nth draw and replacement. Show {X„) is a 
martingale. 

(b) For this Polya urn model, show Xn converges to a limit almost surely 
and in Lp for p>\. 

18. Suppose B, P) = ([0,1), iB([0,1)), X) wher̂ e X is Lebesgue measure. 
Let Bn = o{{k2-", (k + 1)2-"), 0 < k < 2"). Suppose / is a Lebesgue 
integrable function on [0,1). 

(a) Verify that the conditional expectation £ ( / | i B „ ) is a step function con­
verging in L1 to / . Use this to show the Mean Approximation Lemma (see 
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N-j 

Show {X„} and 

are martingales. 

Exercise 37 of Chapter 5): If e > 0, there is a continuous function g defined 
on [0,1) such that 

f \f(x)-g{x)\dx <€. 
J[OA) 

(b) Now suppose that / is Lipschitz continuous meaning for some K > 0 

\f(t)- f{s)\<K\t-sl 0 < s < r < 1. 

Define 

, , , ( / ( (* + 1)2-") - / « r 2 - " ) ) . 

= ^ „ 1 [ [ . 2 - " . ( * + , ) 2 - ) ] ( ' > ' " ^ 1> 

and show that {(fn,Bn),n > 0} is a martingale, that there is a limit /oo 
such that fn /oo almost surely and in L i , and 

fib) - f{a) = foo{s)ds, 0<a<b<l. 

19. Supppose {(Xn, Bn), /2 > 0} is a martingale such that for all /i > 0 we have 
Xn+i/Xn G L i . Prove E(Xn+i/Xn) = 1 and show for any n > \ that 
Xn+i/Xn and Xn/X„-\ are uncorrelated. 

20. (a) Suppose [Xn ,n>0] are non-negative random variables with the prop­
erty that Xn=0 implies Xm=0 for all m>n. Define D = U ~ = 0] 
and assume 

P[D\Xo, ...,Xn]> S(x) > 0 almost surely on [X„ < x]. 

Prove 
P{D U[\im Xn =oo]} = 1. 

n-»>oo 

(b) For a simple branching process [Zn,n > 0} with offspring distribution 
[pic] satisfying pi < 1, show 

P[ lim Z„ = Ooroo] = 1. 
n-»>oo 

21. Consider a Markov chain {Xn, n > 0} on the state space { 0 , . . . , A'̂ } and 
having transition probabilities 
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22. Consider a Markov chain {X„, n > 0} on the state space {0 ,1 , . . . } with 
transition probabilities 

Pi] = - 7 J - , ; > 0, / > 0 
]' 

and poo = 1- Show [Xn) is a martingale and that 

[̂vSlô « > A : | ^ O = / ] < / / A : . 

23. Consider a game of repeatedly tossing a fair coin where the result t* at 
round k has P[tit = 1] = P[tit = — 1] = 1/2. Suppose a player stakes 
one unit in the first round and doubles the stake each time he loses and 
returns to the unit stake each time he wins. Assume the player has unlimited 
funds. Let Xn be the players net gain after the nth round. Show [Xn] is a 
martingale. 

24. Suppose [{Xn, Bn),n > 0} is a positive supermartingale and u is a stopping 
time satisfying A'l; > Xv-i on [0 < v < oo]. Show 

Mn := 
^ ( i ; - l ) A n , i f l ' > l , 

0, ifi; = 0 

is a new positve supermartingale. In particular, this applies to the stopping 
time Va = inf{/2 > 0 : Xn > a] and the induced sequence {A/„} satisfies 
0<Mn<a. 

25. The Haar functions on [0,1] are defined by 

Hi{t)=h //2(0 = 

/ / 2 " + l ( 0 = 

1, i f 0 < r < l / 2 , 
- 1 , i f l / 2 < r < l , 

2"/2 , i f o < r <2-^"+i ) , 
- 2 " / 2 , if2-("+i> <t <2-", 
0, otherwise, 

0 - 1 ) 
2" 

A 1 = 1 2" 

Plot the first 5 functions. 

Let / be measurable with domain [0,1] and satisfying /J \f{s)\ds. Define 

Ak := C f{t)Hk{t)dt. 
Jo 

Let Z be a uniform random variable on [0,1]. Show 

f(,Z)= lim 'Tf l tHKZ) 
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almost surely and 

/ \f(s)-y2akHk(s)\ds = 0. 

Hints: Define B„ = a{H,(Z),i < n), and show that E(f(Z)\B„) = 

E*=i akHkiZ). Check that EHi{Z)Hk{Z) = 0 for / 7̂  k. 

26. Let [Yn] be random variables with £(|yrtl) < oo- Suppose for n > 0 

E{Yn+\\Y{), . . . , y„) = fl„ + bnYn, 

where bn ^ 0. Let 

and set 

^ « 0 ' ) = / r a 2 " ( . . . ( / r (>')•••) 
(functional composition). Show for any k that 

{(^„ = kLn{Yn\G{Yo,..., y«),n > 0} 
is a martingale. 
Special cases include 

(a) The Polya urn. 
(b) The simple branching process. 
(c) Supppse YQ is uniformly distributed on [0,1]; given y„, we suppose 

Yn+\ is uniform on 1]. Then A'n = 2"(1 — y„) is a martingale. 
27. If i; is a stopping time with respect to [Bn,n > 0}, show that a random 

variable ^ is -measurable iff ^ l [ i ; =n ] G Bn for w G N . 

28. Suppose that {Yn,n > 1} are independent, positive random variables with 
E{Yn) = l.?uiXn=X\Uyi' 
(a) Show {Xn} is an integrable martingale which converges a.s. to an inte­
grable X. 
(b) Suppose specifically that y„ assumes the values 1/2 and 3/2 with prob­
ability 1/2 each. Show that P[X = 0] = 1. This gives an example where 

00 
I r I 

E (
00 \ 00 

for independent, positive random variables. Show, however, that 
00 

E{Yi) (
00 \ 00 

always holds. 
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Show using martingale theory that <l>(Xn) converges with probability 1 if (/> 
is bounded and excessive. Deduce from this that if the chain is irreducible 
and persistent, then 0 must be constant. 

31. Use martingale theory to prove the Kolmogorov convergence criterion: Sup­
pose [Yn} is independent, EYn = 0 , EY^ < oo. Then, if EY^ < oo, we 
have 5Zit Yk converges almost surely. Extend this result to the case where 
[Yn] is a martingale difference sequence. 

32. Let [Zo = 1, Zi , Z 2 , . . . } be a branching process with immigration. This 
process evolves in such a way that 

Zn + l = Zĵ > + + Zî "> + In + 1 

where the [Zn\i > 1} are iid discrete integer valued random variables, 
each with the offspring distribution [pj] and also independent of Z „ . Also 
[Ij, j > 1} are iid with an immigration distribution (concentrating on the 
non-negative integers) and In+i is independent of Z„ for each ti. Suppose 
EZ\ = m > 1 and that EIi = X > 0. 

(a) What is£(Z„+i |Z„)? 
(b) Use a martingale argument to prove that Zn/m" converges a.s. to a finite 
random variable. 

33. Let [Xn,n > 1} be independent, E\Xn\P < 00 for all n with p > 1. Prove 
n 

f(n) = E\J2(^'-E{X,))\P 
1=1 

is non-decreasing in n. 

34. Let {y^} be independent with 

P[Yj=2^J] = ^, P[Yj = -2^J] = ^. 

Define XQ = 0, ̂ „ = Yl"=i Y,,n> land v = mf[n : Xn > 0}. Then v is 
not regular for [Xn ] even though 

EO" <oo, o<e <2, 

which implies Ev" < 00 for n > 1. (Check that EXv = 00.) 

29. If [Xn} is a martingale and it is bounded either above or below, then it is 
Li-bounded. 

30. Let Xn,n > 0 be a Markov chain with countable state space which we can 
take to be the integers and transition matrix P = {p,j). A function <p on the 
state space is called excessive or superharmonic if 
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n n 

(Hint: Consider the sequence {(/„, /i G N } defined by 

where 

X'„ = Xn/a + . . . (1 -I- y; = y„ / ( l + fin-l), 

and also the stopping times 

va = mm[n : ^ " ' / d + . . . (1 -I- ̂ m-i) > a]. 
m<n 

Then observe that {a + Uv„An, n G N } is a finite positive supermartingale.) 

3 8 . Suppose /2 > 0 } is a sequence adapted to [Bnyti > 0 } ; that is, ^„ e Bn. 
Suppose the crystal ball condition £(sup„>o |^«|) < oo holds and that v is 
an almost surely finite stopping time. Define 

V* := inf{/2 > 0 : ^ „ > £ ( ^ J / 3 „ ) } . 

Show V* is an almost surely finite stopping time such that v* < v and that 
for any n >0 

^n <E(^v*\Bnh o n [ i ; * > / 2 ] . 

3 5 . Let be non-negative random variables satisfying 

where 8„ > 0 are constants and 5„ < oo. Show ^ ^ a-s. and ^ is 
finite a.s. 

3 6 . Let V be a stopping time relative to the increasing sequence {B„, n G N } of 
sub-or-fields of B in the probability space (fi, B, P). For all n G N , denote 
by </>(n), the smallest integer p such that [v = n] e Bp. Show that is 
a stopping time dominated by v. 

3 7 . Let {^rt, /2 G N } , /2 G N } , and {Y„, n G N } be 3 adapted sequences of 
finite positive random variables defined on the same probability space such 
that 

E{X„+i\B„) < {l-\-MX„+Y„, n G N . 

This relation expresses the fact that [Xn ] is almost a supermartingale. Show 
that the limit lim„_^oo Xn exists and is finite a.s. on the event 
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lim P(Bn) = 0 and Pflimsup B„] = 1. 
«->oo „ _ o o 

Then the formulas 

^ 0 = 0, Xn+l=Xn{l + Yn+l) + lB„Yn+U n > 0, 

define an integrable martingale such that 

lim P[Xn = 0] = 1, P[{Xn} converges] = 0. 
n—^oo 

(Note that P[Xn+i ^ 0] < (1 /2)P[^„ ¥=0] + P(B„) and that on the set 
[{Xn} converges], the limit lim„_,.oo lfl„ exists.) 

42. Suppose {(Xn,Bn),n > 0} is an Li-bounded martingale. If there exists 
an integrable random variable Y such that Xn < E(Y\Bn) then Xn < 
E(Xoo\Bn) for all n >0 where A'oo = nm„_, .oo Xn almost surely. 

43. (a) Suppose {tn,/2 > 0} are iid and g : R K-> R + satisfies E{g{^)) = 1. 
Show X„ := Yl'i=oS(^i) a positive martingale converging to 0 provided 
P[8(^o) = 1) 7̂  L 

(b) Define {Xn} inductively as follows: A'o = 1 and Xn is uniformly dis­
tributed on (0, A'n-i) for /2 > 1. Show {2"A'n, n > 0} is a martingale which 
is almost surely convergent to 0. 

39. Suppose {(Xn, B„),n > 0} is a positive supermartingale and u is a stopping 
time. Define 

X'„ := E(X,An\Bn), n>0. 

Show {(X'„, Bn),n > 0} is again a positive supermartingale. (Use the past­
ing lemma or proceed from first principles.) 

40. Let [Xn = E"=i Yi,n > 0} be a sequence of partial sums of a sequence of 
mean 0 independent integrable random variables. Show that if the martin­
gale converges almost surely and if its limit is integrable, then the martin­
gale is regular. Thus for this particular type of martingale, L i-boundedness, 
sup„ £(|A'n|) < oo, implies regularity. 

(Hint: First show that £ ( ^ o o - Xn\Bn) is constant if Bn = oiYu . . . ,Yn) 

and A'oo = linin-.-oo Xn almost surely.) 

41. An integrable martingale {Xn,n > 0) cannot converge in Li without also 
converging almost surely. On the other hand, an integrable martingale may 
converge in probability while being almost surely divergent. 

Lti {Yn,n > 1} be a sequence of independent random variables each taking 
the values ± 1 with probability 1/2. Let Bn = o{Yi,... ,Yn),n > 0 and let 
Bn e B„bea sequence of events adapted to {Bn,n > 0} such that 
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L \Y>c,X<c\ 

(b) If the sequence [Xn-, —00 < n < 00} is a martingale in both forward 
time and reverse time, then for any m n, v/t have Xn = Xm almost 
surely. 

46. Suppose [Bn,n > 0} is a sequence of events with Bn G Bn. What is the 
Doob decomposition of Xn = Yll=rO ^ ^ 

47. U-statistics. Let , /2 > 1} be iid and suppose 0 : K"* R is a symmetric 
function of m variables satisfying 

(̂10(̂ 1 ^ m ) | ) <00 . 

Define [Um,n,n > m} by 

l < I j < . . . < / ^ < « V / 

and set Bn := (j{Um ,n, J ^ 'w' 
Some special cases of interest are 

m = 1, <t>{x)=x, 

m = 2 , (t>{xuX2) = {xi -X29/2. 

(a) Show [Um,n-, n > m} is a reversed martingale. 

(b) Prove 

^lim^L^„.„ = £(0(^1, . . . , ^ m ) ) , 

almost surely and in L i . 
48. Let [{Xn,Bn),n > 0} be a submartingale such that v„>oA'„ < 00. If 

£"(supy dj) < 00, thenfA'n} Js almost surely convergent. 

44. Consider a random walk on the integer lattice of the positive quadrant in 
two dimensions. If at any step the process is at (m, n), it moves at the next 
step to (m + 1, w) or (m, n + 1 ) with probability 1/2 each. Start the process at 
(0,0). Let r be any curve connecting neighboring lattice points extending 
from the >'-axis to the x-axis in the first quadrant. Show E(Yi) — £(¥2), 
where l^i, Y2 denote the number of steps to the right and up respectively 
before hitting the boundary F. (Note (Ki, 1̂ 2) Js the hitting point on the 
boundary.) 

45. (a) Suppose that iE:(|^|) < 00 and E(\Y\) < 00 and that 
E{Y\X) = X and E(X\Y) = Y. Show X = Y almost surely. 

Hint: Consider 
(Y - X)dP. 
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for / = 0 , . . . , A/; ; = 0 , . . . , A/, 

(b) Moran model: Define 

i(M-i) . 
Pi = —-j^—, / = 0 , . . . ,Af 

and set 

Pij =Pi^ j = i - 1. i + lJ ^0 or A/, 
POj =^o;» PMj = ^A/y, 

pij =0 , otherwise. 

51. (a) Suppose {{Xn, B„), n > 0} is a positive supermartingale and i; is a 
stopping time. Show 

E{Xo) > £ ( ^ . l [ . < o o ] ) . 

(b) Suppose Xn represents an insurance company's assets at the start of 
year n and suppose we have the recursion Xn+i = Xn + b — Yn, where 
b is a positive constant representing influx of premiums per year and Yn, 

49. Ballot problem. In voting, r votes are cast for the incumbent, s votes for 
the rival. Votes are cast successively in random order with s > r. The 
probability that the winner was ahead at every stage of the voting is (s — 
r)/(s + r ) . 

More generally, suppose [Xj, 1 < ; < n} are non-negative integer valued, 
integrable and iid random variables. Set 5 ; = A',. Then 

P[Sj<j\ 1 < ; < /2 |5„ ) = ( l - ^ ) + . 
n 

Hint: Look at 5^ < n and consider [Sj/j]. 

50. Two genetics models. Let {X„,ti > 0} be a Markov chain on the state 
space { 0 , 1 , . . . , M] with transition matrix {p/y, 0 < /, ; < M]. For the 
following two models, compute 

jpi := P[ absorbtion at MI^o = /] 

and show rj/i is the same for either model, 

(a) Wright model: 

M-j 
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[Ruin] =[J[X„< 0]. 
n = l 

Show 
P[Ruin] < 

(Hint: Check that {exp{-2(5 - p)o~^X„,n > 0} is a supermartingale. 
Save come computation by noting what is the moment generating function 
of a normal density.) 

52. Suppose B„ f ^oo and {Y„,n G N } is a sequence of random variables such 
that Y„ ^ 0 0 -

(a) If | y „ | < Z G Li , then show almost surely that 

£ : ( y „ | / 3 „ ) - . £ : ( y o o l ^ o o ) . 

(b) If y„ ^ yoo , then i nL i 

E(Yn\Bn)^ E(Yoo\Boo)-

(c) Backwards analogue: Suppose now that B„ | B-oo and | y „ | < Z e Li 
and Y„ y _ o o almost surely. Show 

E(Y„\B„)^ E(Y-oo\B-oo) 

almost surely. 

53. A potential is a non-negative supermartingale {{X„, B„),n > 0} such that 
E(X„) —• 0. Suppose the Doob decomposition (see Theorem 10.6.1) is 
X„ = M„ — An. Show 

X„ = E(Aoo\B„)-An. 

54. Suppose / is a bounded continuous function on R and A' is a random vari­
able with distribution F. Assume for all JC G R 

f(x)= f f{x + y)F(dy) = E{f(x + X)). 
m 

Show using martingale theory that f(x-\-s) = /(AC) for each 5 in the 
support of F . In particular, if F has a density bounded away from 0, then 
/ is constant. (Hint: Let {X„} be iid with common distribuion F and define 
an appropriate martingale.) 

the claims in year w, has N(fjL, o^) distribution where /x < b. Assume that 
[Y„,n > 1} are iid and that XQ = I. Define the event 

00 



10.17 Exercises 441 

5 5 . Suppose {XJ, ; > 1} are iid with common distribution F and let F„ be the 
empirical distribution based on A ' l , . . . , A^̂ . Show 

Y„ := sup|F„(jt) - F(x)\ 

is a reversed submartingale. 

Hint: Consider first {F„(x) — F(x), n > 1} , then take absolute values, and 
then take the supremum over a countable set.) 

5 6 . Refer to Subsection 1 0 . 1 6 . 5 . A price system is a mapping fl from the set of 
all contingent claims X to [ 0 , oo) such that 

n(^) = Oiff^ = 0 , V ^ G A ' , 

n(aX-hbX')=an{X) + bU(X'), 

for all fl > 0 , b > 0 , X, X' e X. The price system fl is consistent with 
the market model if 

n(Vy^(0)) = n(Vb(0)), 
for all admissible strategies 0. 

(i) If P * is an equivalent martingale measure, show 

Vi{X)'.= E*{Xlsf), ^XeX, 

defines a price system that is consistent. 

(ii) If n is a consistent price system, show that P * defined by 

P * ( A ) = 0(5̂ 5̂ ^̂ ), VA G B, 
is an equivalent martingale measure. 

(iii) If the market is complete, there is a unique initial price for a contingent 
claim. 
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