YET ANOTHER MASTERMIND STRATEGY 1

YET ANOTHER MASTERMIND STRATEGY

Barteld Kooil

Department of Philosophy, University of Groningen, Thehéetlands

ABSTRACT

Over the years a lot of easily computable strategies for #seegmastermind have been pro-
posed. One of the obvious strategies, guess that code thétdanost possible answers, has
been lacking. It is discussed in this paper.

1. INTRODUCTION

Mastermind is a two-player zero-sum game of imperfect imi@tion. First player | chooses a combination
of four pawns drawn from six colors. Player Il does not knoe thoice player | made. Then player I
can ask up to eight questions in the form of a combinationhéf asks the secret combination, she wins
the game, otherwise player | wins the game. Each time pldyaskis a question, she gets an answer that
expresses the accuracy of the question. The answer coofsiats number: the number of pawns that are
of the right color and in the right place, and the number of pathat are of the right color, but are not in
the right place. For example:

AABB the secret combination

BBAB the question

In this case the answer is: one pawn is in the right place andgawns have the right color but are not in
the right place (I will abbreviate this as (1,2)).

Player Il has many winning strategies that guarantee thatsétret combination is found within eight
questions. There is even a strategy that guarantees thabhhigon is found within five questions (see
below). One can also ask seven questions simultaneousdlgeduce the secret from the answers. So there
seems little more to say about the game.

However most of the strategies for mastermind proposedetitdrature apply to a slight variation on the
game. At the start of the game eight dollars are availablaye®?ll gets as many dollars as the number
of questions player Il asks and player | gets the rest. Nowgthestion is which strategy minimizes the
expected number of questions required, thus maximizingepld's expected payoff. To be able to calculate
the expected number of questions, one needs to make an agsuaiyut player I's strategy. In most papers
it is assumed that player | chooses a secret combinatiomdbna (by a uniform distribution). | also make
that assumption in this paper.

Many papers have been written about mastermind since the ga® first sold in the 1970's. One paper
seems to be the definitive paper on mastermind strategieopgria and Lai (Koyoma and Lai, 1993).
They found the optimal strategy by depth first search on arsopgputer. With this strategy the expected
number of questions required by player 14i$40. In most of the earlier papers strategies are put forward
which can be calculated easily. It still seems worthwhilstiody these strategies. Although these are not
optimal, their computational complexity makes them eagéiperalizable to other setting and variations of
the game (more colors or more positions). In this paper | ok at the standard version of the game.

From the easily computable strategies that have been prdm®r the years there is one very simple one
that is lacking: ask the question that has most possible erssWevertheless, from the easily computable
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strategies it has the least expected number of questiadi®3. This surprisingly simple strategy is discussed
in this paper.

In Section 2 some of the well-known mastermind strategies dine easily computed are presented. In
Section 3 the new strategy is motivated and presented. tin&etthe empirical results are presented when
these strategies are played. In Section 5 these resultdsaessged and possible explanations why some
strategies are not doing well are also discussed. In Segtsmme conclusions are drawn and questions for
further research are indicated.

2. SOME WELL-KNOWN MASTERMIND STRATEGIES

In this section | want to introduce some of the strategieshhae been proposed over the years in order to
compare them with the stategy that asks the question witmtist possible answers.

2.1 A Simple Strategy

The first strategy by Shapiro (Shapiro, 1983) (it is also [shigld in (Sterling and Shapiro, 1994)). His
algorithm does is the following: the combinations are soowebrdered (usually alphabetically) and the
first combination is asked. The answer is received. The ngsstipn is the first one in the ordering that is
consistent with the answers given so far. And so on until trakination is cracked. A crucial drawback
to this strategy, however, is that it looks at the informiftief questions very marginally. One can only be
certain that one does not know the answer already, but tiadt is

2.2 Looking One Step Ahead

In mastermind a question partitions the set of possible d¢oations. This can be seen in the following
example. Consider a simplified mastermind game with two gaamd four colors. The set of possible
combinations can be represented as follows:

DA DB DC DD
CA CB CC CD
BA BB BC BD
AA  AB AC AD

The questionsi A and D A can be represented by the corresponding answers as:

1,0 0,0 0,0 0,0 2,0 1,0 1,0 1,0
1,0 0,0 0,0 0,0 1,0 0,0 0,0 0,1
1,0 0,0 0,0 0,0 1,0 0,0 0,0 0,1
2,0 1,0 1,0 1,0 1,0 0,1 0,1 0,2

It is obvious that the second question is more informatiantthe first, but how can we motivate this
intuition? The idea of all the strategies presented beladvasthe choice for a question is based solely on
the partition of the remaining possibilities that a questi@nerates. So in the simplified game above two
different kinds of questions can be asked at the start ofdineeg This is summerized in the following table.
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(0,0) ][ 625 | 256 | 256 | 81| 16
O, 1) 0] 308|256 276 152
©2) [ 0] 61| 96| 222] 312
©3)|| 0| o0 16| 44 136
©4] o] o] 1] 2] o9
(1,0) | 500 | 317 | 256 | 182 | 108
(1,1) || 0] 156 | 208 | 230 252
12 0| 27| 36| 84| 132
13)] o] o] o] 4| s
(2,0) || 150 | 123 | 114 | 105| 96
e 0| 24| 32| 40| 48
22 o] 3| 4] 5| 6
B0) | 20| 20| 20| 20| 20
@oy| 1] 1| 1| 1| 1

Table 1: First possible questions. For each question and each anth&enumber of combinations that
would yield that answer to the question is given. The paositiumbers can also be seen as the sizes of the
elements of the partition generated by the question.

A number in a cell represents the number of combinations iiclwvthe answer in the row is given to the
question in the column. For example, in the table abovegthee 9 combinations where the answer is
(0,0) when the question id A. Let us look at the partitions for the standard mastermindegdour pawns
and six colors provided in Table 1. The numbers in this tabéeiterpreted in the same way as in the
table above. For example, there are 625 combinations wherartswer ig0, 0) when the first question is
AAAA. It seems obvious that questigtd A A is not a good question, but what more can be said?

2.3 A Worst Case Strategy

One can look at Table 1 from a worst case perspective. If plHy@ants to minimize the number of
questions required to guess the secret combination, the@ushcombinations player Il considers possible,
gives an indication of the number of questions it will takéweTworst thing that can happen to player Il, is
that the answer to a question leaves her with the largesesieof the partition.
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| the size of the largest partition elemet625 | 317 | 256 | 276 | 312

Assuming player Il wants to play it safe, she should ask trestion AAB B, because this minimizes the
largest partition element. This strategy is presented mufK, 1976-1977).

2.4 An Expected Size Strategy

One could also say that when player Il decides which questi@nshould ask, her choice should not be
based on the worst case, but on the ‘expected case’, bedaiseasts to maximize her expected payoff.
Therefore, one should look at the expected size of the artlement one ends up with. The expected
size of a partition element is the probability of getting Hreswer corresponding to that partition element
multiplied with the size of the partition element. This egfaion is defined as follows for the first question.
Let A be the set of possible answers to questionsglbet a question, then the expected size of the partition
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element one ends up with is:
> Pylai) #({x |z € C* Na(w, g) = a;})
a; EA

whereP,(a;) is the probability that the answer tois a;. If one assumes a uniform distribution over all
possible combinations, then:

#{z |z € CP ANa(z,9) = ai})
Pg(a’i) = #(Cp)
For exampléPa444(0,0) = £2%, becaus&? = 1296. So the expected size is

#({z |z € CP Na(z,g9) = ai})®
2 #(CP)

a; €A

For the first question the expected sizes are shown in the bedbbw

S 2 o o
D:i S 2 o Sy
S 2 o) W Q
-~ Sy W Q >

| the expected size of a partition elemgh611.9| 235.9| 204.5[ 185.3] 188.2

From this point of view, player Il should askABC' as the first question. This approach is taken in (Irving,
1978-1979.

2.5 An Information Theoretical Strategy

There is a measure that gives an ordering on partitions whichlled entropy (see (Cover and Thomas,
1991)). The concept entropy plays an important role in imfation theory for measuring the amount of
information of messages. One can also use it for a masterstiatbgy. This strategy can be motivated
by the following example. Suppose we have a guessing ganaelPl picks a card randomly from a
deck of cards. Player Il has to determine which card Playdcken using as few yes/no questions as
possible. If there are eight cards for example, one needs tiuestions to determine which card it is (since
log,(8) = 3). The logarithm gives an approximation of the expected remolb yes/no questions needed.
(Itis not exactly the expected number of questions, becansehould look at the logarithm as the limit of
the expected number of questions, if one can play a numbéesttgames simultaneously.) Suppose we
have a partitio” = {V4,...,V,,} of a setA. Letp; be i((‘:;)). (This is the probability that an element of
V; isin A. If the probability distribution is not uniform another ddfion is needed.) Then the expected
number of yes/no questions could be represented as

> pilog(#(V2)

Trying to minimize this measure is the same as trying to maeérthe entropy which is defined as

= pilog(ps)
=1

2Irving’s paper contains a number of strange (irreprodegibésults. First of all he claims that a closer investigatid Knuth’s
strategy reveals that the total number of questions redjdoeall 1296 combination is 5804, whereas it is 5801 acewydd my
calculations. This can be explained by a minor programmingy ¢the same that | made), but | cannot explain any of hiemtbsults.
He says his strategy selects the first two questions on thie bathe expected number of remaining possibilities andrése by
exhaustive search. When | look at the second questions tsKeel according to his strategy | disagree with him on five tpes.
In four of those it is simply the case that he does not take thedhe out of the list that is available to him. In one case &imply
wrong. His first question itABC. If the reply to this question is (3,0), according to Irvirigetnext question should HEBAC.
(One immediately wonders why né2BAC'.) According to my calculations, the expected size of theofeémaining possibilities
after this question is 4.7. However, if one askBC'C the expected size is 3.6, which is quite different. One déffiee between these
two questions is that Irving’s question partitions the rammgy possibilities in 8 parts, whereasBC'C' partitions the set of remaining
possibilities in 7 parts. So it might be the case he took tleeame number of remaining possibilities, instead of theeetqd size, but
| still cannot reproduce his results.
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Entropy

0 D 1
Figure1: Entropy of a partition with two elements.

sincelog(p;) = log (i((‘:l))) = log(#(Vi)) — #(A). In Figure 1 a graph displaying the entropy for
partitions with two elements is drawn. The variable forthaxis is the probability of one of the elements
of the partition, the entropy is given on tlgeaxis. So the graph shows the functieqplogp + —(1 —
p)log(1l — p). As can be seen in this figure, for a partition with two elersegmitropy would select the

partition where both parts have equal probability.

Mastermind is very much like the guessing game introducedeaband one can simply calculate the en-
tropies of the first questions.

S B h o
=S - I S =
h o SN oy Q
~ Sy Sy Q !
| entropy | 1.498| 2.693| 2.885| 3.044| 3.057

From this perspective player Il should start by askingC D. This strategy is one of the strategies studied
in (Neuwirth, 1982).

3. ANEW STRATEGY

One can also take another approach to guessing games. 8wggais that player Il has to guess which card
player | drew randomly from an ordinary deck of cards. Pldyeins 1$ if the guess is correct. There are
52 possibilities. Before player Il guesses she can ask osfagejuestion, which is truthfully answered by
player I. Which question is best? Intuitively one would ththat the question “Is it the Queen of hearts?”
is a bad question and that the question “Itit a red card?” sadguestion. Surprisingly all yes/no question
are equally good. This can be seen as follows. Suppose thpileghave sizes andy. The card is in
groupx with probability <5. The probability of guessing the right card if it is in thisogp is%. The card is

in groupy with probability &5. The probability of guessing the right card if it is in thisogp is%. Hence,
the expected gain is:

z 1 18 + y 1 2

== Z 215 ==
92 w 52y 52

So it does not matter what the sizesiodindy are (as long as they are positive).

This can be generalized. Suppose there is alsatid we have to guess what elementdofve are dealing

with. We also have to assume that the probability distrdoutin A is uniform. Before we guess we can ask

a question that can be seen as a partitios {V;,...,V,}. The probability of guessing correctly, once we
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learn in which part ol the element is:

zn: #Vi) 1 n

LA FV) T FA
So in these cases the sizes of the elements of the partitiontdoatter. The only thing that matters is the
size of the partition, i.e. the number of elements of theitpamnt

This can also be generalized to games with more rounds. Asdhat the probability of guessing the
element of any se#l correctly in a game withr rounds is the number of parts that one can partitiom

with r questions, divided by the cardinality aff, where the player’'s question can depend on the answer
to the previous questions. Let us look at a game with 1 rounds. A player can ask+ 1 questions,
and then has to guess which elementdothe other player chose. Let the first question be a partition
V ={Vi...V,}. Letn; indicate the number of pari§ can be partitioned in with the rest of the questions.
Using the induction hypothesis we infer that when the ganpaged inr rounds forV; the probability

of guessing the element & equalsn; divided by the cardinality of;. Then the probability of guessing
correctly inr + 1 rounds for the sefl is:

NHVD) o
Z#m#m*;#m

=1

=

So the probability of guessing the element of 4etorrectly in a game with + 1 rounds equals the number
of parts that one can partitiof in with » + 1 questions divided by the cardinality df. By induction one
can conclude that this holds for anynd any setd.

This game is also very much like mastermind. So in masternifitmhe wants to maximize the number of
combinations for which one would win in a certain round, tlere should maximize the number of parts
the set of all combinations is partitioned in, in the prewoound. It is still not feasible to calculate this for
an interesting number of rounds, such as five, but it can be as@ motivation for a strategy. Let us look
at the first question again, then we see:

qavvy
qaqvy
Odvy
aosdyv

u|| VYV VYV

| partition elementg 11]13[ 14 14

So this strategy should start with eithéA BC or ABC' D. When one writes a computer-program, however,
one has to make a choice. In most of the literature an alpitalberdering is used and | also used this.
So, first the questions that maximize the number of partsedeeted. Secondly, from these the consistent
questions are selected, if possible. Then alphabeticardsdised to select a question. Therefore the first
question player Il asks when she uses this strateghyi®C'. This is of course a bit arbitrary, and it seems
a pity that something as important as the first questiongelreit.

4. EMPIRICAL RESULTS

The first table shows for each strategy for how many comhinatihe game is won in a particular round of
the game. Or put in other words: each strategy produces a fyagehe table shows for each depth of the
tree how many leafs (nodes without successors) there are.

Roundnumben| 1| 2| 3 4 5 6 71 819
Simple 1| 4|25|108|305|602|196| 49| 6
Worst case 1| 6| 62| 533|694 0 0] 0O
Expectedsize || 1 | 10 | 54 | 645 | 583 3 0 0|0
Entropy 1| 4|71|612|59 | 12 0 0|0
Most parts 1| 12| 72| 635 | 569 7 0 0|0
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The second table shows the same results, but shows for hoy coambinations the game has been won
before or at the end of a particular round, i.e. the numbettsdriable above are added.

Round numben| 1| 2| 3 4 5 6 7 8 9
Simple 1| 530|138 | 443| 1045| 1241| 1290| 1296
Worst case 1| 7|69 ]| 602| 1296| 1296 | 1296 | 1296 | 1296
Expectedsize || 1 | 11 | 65| 710 | 1293 | 1296 | 1296 | 1296 | 1296
Entropy 1| 5| 76| 688 | 1284 | 1296 | 1296 | 1296 | 1296
Most parts 1| 13| 85| 720 | 1289 | 1296 | 1296 | 1296 | 1296

The third table shows how many questions are needed in totakistrategy (the sum of the lengths of all
the paths from the root of the tree to a leaf) and the expeatetber of questions needed (the expected
length of a path to a leaf). The numbers in the second colusmnoamded.

total number of questions expected number of questions
Simple 7471 5.765
Worst case 5801 4.476
Expected sizg| 5696 4.395
Entropy 5722 4.415
Most parts 5668 4.373

The last four compare quite favourably to the Koyoma andsli&sult of4.340 (Koyoma and Lai, 1993).

5. EVALUATION

In this section | will try to say something more about the emggl results. It seems quite surprising that
the simple strategy performs so badly regarding the maximuwmber of rounds required and the expected
number of rounds required. It does not even guarantee tleatvors in eight rounds. It seems that the first
question that is asked is not a good choice. This can easiippeved by choosing another combination
than AAAA to be the first combination that is asked and let the rest bereddalphabeticallyA A B B for
example gives the following results:

Round number 11 2| 3 4 5 6| 7189
Simple strategy startingwitHABB || 1 | 12| 71 | 253 | 588 | 286| 78 | 7 | O

which is considerably better. But it still performs badlydomparison to the other strategies. One of the
reasons can be explained by the following example. Suppesare six combinations remainingBAA,
ABAB, ABAC, ABDE, AEAE, ACAE. Now look at the following table, where for each of these
remaining possibilities the answers is shown for askinggtiestion in the column.

S o S o S S S
o) oy Sy oy toy My Sy
o S N ) N - &)
S Sy | t & = o
ABAA || (4,0) | (3,0) | (3,0) | (2,0) | (2,0) | (2,0) || (3,0)
ABAB || (3,0) | (4,0) | (3,0) | (2,0) | (2,0) | (2,0) || (2,1)
ABAF | (3,0) | (3,0) | (4,0) [ (2,0) | (2,0) | (2,1) || (2,2)
ABDE || (2,0) | (2,0) | (2,0) | (4,0) | (2,0) | (2,0) || (2,0)
AEAE || (2,0) | (2,0) | (2,0) [ (2,0) | (4,0) | (3,0) || (1,1)
AFAE || (2,0) | (2,0) | (2,1) | (2,0) | (3,0) | (4,0) || (1,2)

A consistent question (i.e. a question that is possiblydicest combination) would not be able to distinguish
all six combinations, but the questiohB F' A, which is not one of the six remaining combinations, can, as
can be seenin the table. In this way the maximum number otigmssequired and the expected number of

guestions required can be reduced. In all other strategmpéthe simple strategy inconsistent questions
occur.

One of the other interesting results is that, althougheggias often have no theoretic way to distinguish
two questions, but only alphabetic ways of distinguishitig empirical results give a different answer.
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Due to a programming error the first tests that | ran had sfiegehat picked the alphabetically last optimal
combination if a unique optimal combination was not in theaferemaining possibilities. These give a
slightly different picture.

Round number| 1 2 3 4 5 6/7(18|9
Worst case 1| 8|65[522|696| 4,0|0/|0
Expectedsize|| 1| 10| 54| 646|582 3|0 |0 |0
Entropy 1| 4(70,613|59%|12(0|0|0
Most parts 112|721 636|568| 7({0|0]|0

The simple strategy has been left out of this table, becdiesetconsiderations do not affect his strategy.
These differences are very small. They are greatest in ddseuth’s strategy of minimizing on the max-
imum size of the partition elements. In my opinion this siynpieans that only looking at the partition is
not very robust.

Why the results are so very different in the Knuth’s case &ahse of the following. After the first question
has been answered, the number of ways the set of remainisippities can be partitioned in is quite large.
As we know there are only five types of question that can bedagkéhe initial state. But after the first
question has been answered there are much more. The fojjdabie shows the number of questions that
can be asked if the first answer(is 0).

guestion| answer| number of different questions
AAAA | (1,0) | 12

AAAB | (1,0) | 53

AABB | (1,0) | 34

AABC | (1,0) | 125

ABCD | (1,0) |52

So in Knuth's strategy, there are already 34 different kiofipartitions that can be made. His strategy
only looks at one aspect of these partitions and apparédrilyg not fine-grained enough to yield a robust
strategy. If there are already 34 questions that can be adtexdhe first question, this will be worse after
more questions.

The “expected size” strategy is straightforward, and inldéeequires 6 round, but on average it is better
than the “worst case” strategy.

One of the surprising results is that the entropy strateggsdm bad, although its motivation seems to
be theoretically sound. A possible explanation is that wbee calculates the entropy, the base of the
logarithm is important when one compares partitions thaeltaadifferent number of elements. When one
compares partitions with the same size, entropy is a gooduneaotherwise it is not so good. Perhaps
another new strategy could be based on taking entropy wheiegetse of the logarithm depends on the size
of the patrtition.

The “most parts” strategy results in the best strategy whnenlaoks at the expected number of questions,
the only problem is that the theory behind it tells you that tumber of rounds really matters, whereas
this is ignored in selecting a question. When one looks as#o®nd table in Section 4, one sees that if
the number of rounds were only 2,3, or 4, the most parts glydtebetter than the other strategies. But
in calculating the next question the strategy only looks ste@ ahead. | found the following looking two
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steps ahead.

=lElElE s

S| B || Q

Ll n | w | Q|0
©0) ][ 14| 14| 14| 13| 8
O] o[ 14| 14| 14| 13
©2) 0| o 12| 14| 14
©03)] o] o| 7] 10| 11
©a o] o 1| 2| 4
(1,0)[[13] 14| 14| 14| 13
@A 0| 13[ 14| 14| 14
@2 o[ 7| 10] 11| 11
@3)| o] ol o| 4| 4
@O [[11| 12| 12| 12| 12
@I o] o 10| 11| 9
@2 o] 3| 4| 4| 4
GO 5] 8] 8| 8| 7
@o 1| 1] 1| 1| 1
total || 44 | 104 | 121 132 125

The numbers in the table represent the number of differeswars one could get by asking a question,
after the initial question given and the initial answer. Be total number at the bottom is the total number
of parts of the partition that results from asking two quasti So if the game consists of three rounds, it is
best to start withrd ABC. However looking two steps ahead is computationally mostlgo

6. CONCLUSION AND QUESTIONSFOR FURTHER RESEARCH

In this paper | introduced a new strategy for mastermindctvlié easy to calculate and does best from
all easily computed strategies on the standard masternaimegIn the range of possible strategies based
on partitions generated by questions it is an extreme. Ohelooks at the “breadth” of a partition. On
the other side of the spectrum one finds Knuth's worst casgesty, which only looks at the “depth” of a
partition. The expected size, and entropy strategies seéintta mean between these two extremes. There
are probably many more means that can be found.

One of the anonymous reviewers pointed out that the sefecfidghe first question is crucial. The first
question should belABC, just as in Koyoma and Lai’s strategy. It seems that the stahdersion of
mastermind is quite limited if one looks at these strategesit would be a good idea to look at other
versions of the game, to be able to say how well these stestelgi in general. That, however, was beyond
the scope of this paper. Luckily there are still many questiemaining about mastermind.
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