THIRD EDITION

COMPUTER SYSTEMS

A PROGRAMMER'S PERSPECTIVE

BRYANT ¢ O'HALLARON

Computer Systems
A Programmer’s Perspective

THIRD EDITION

‘Randal E. Bryant

Carnegie Mellon University

David R. O’Hallaron

Carnegie Mellon University

Pearson '

Boston Columbus Hoboken Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

[———

Vice President and Editorial Director: Marcia J. Horton
Executive Editor: Matt Goldstein

Editorial Assistant: Kelsey Loanes

VP of Marketing: Christy Lesko

Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant

Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Joanne Manning
Procurement Manager: Mary Fischer

Senior Specialist, Program Planning and Support:
Maura Zaldivar-Garcia

Cover Designer: Joyce Wells

Manager, Rights Management: Rachel Youdelman

Associate Project Managér, Rights Management:
William 1. Opaluch

Full-Service Project Management: Paul Anagnostopoulos,
Windfall Software

Composition: Windfall Software

Printer/Binder: Courier Westford

Cover Printer: Courier Westford

Typeface: 10/12 Times 10, ITC Stone Sans

The graph on the front cover {s & “memory mountain” that shows the measured read throughput of an Intel Core i7 processor

as a function of spatial and temporal locality.

Copyright © 2016, 2611, and 2003 by Pearson Education,

of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any

Inc. or its affiliates. All Rights Reserved. Printed in the United States

prohibited reproduction, storage in a retrieval system, or transmission in any form or by any meaqs, electronic, mechanical,
photocopying, recording, ot otherwise. For information regarding permissions, request forms and the appropriate contacts

within the Pearson Education Global Rights & Permissions department, picase visit www.pearsoned.conﬁpermissionsf .

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in

initial caps or all caps.

4

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development,
research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty
of any kind, expressed or implied, with regard to these programs of the documentation contained in this book. The author

and publisher shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing,

performance, or use of these programs.

Pearson Education Ltd., London

Pearson Education Singapore, Pte. Ltd

Pearson Education Canada, Ine.

Pearson Education—Japan

Pearson Education Australia PTY, Limited
Pearson Education North Asia, Ltd., Hong Kong
Pearson Educaciit de Mexico, S.A. de CV.
Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Library of Congress Cataloging-in-Publication Data
Bryaat, Randal E.

Computer systems : @ programmer’s pers ective / Randai
P ol P persp

Carnegie Mellon. University—Third edition.
pages cm
Includes bibliographical references and index.
ISBN 978-0-13-409266-9—ISBN 0-13-409266-X

E. Bryant, Carnegie Meilon University, David R. O’Hallaron,

1. Computer systems. 2. Computers. 1. Telecommunication. 4. User interfaces (Computer systems) L O'Hallaron,

David R. (David Richard) 1L Title.
QA76.5.B795 2016
005.3—dc23

1098765432

PEARSON

o ——— .

www.pearsonhighered.com

2015000930

ISBN 10; 0-13-409266-X
ISBN 13: 978-0-13-409266-9

‘!

Yoo A 1L
To the student)s and instructors of the 15-213
course at Carnegie Mellon University, for inspiring
us to develdp and refiné the material for this book.

MasteringEngineering®

For Computer Systems: A Programmer’s Perspective, Third Edition

Mastering is Pearson’s proven online Tutorial Homework program, newly available with the third
edition of Computer Systems: A Programmer’s Perspective. The Mastering platform allows you to
integrate dynamic homework—with many problems taken directly from the Bryant/O’Hallaron
textbook—with automatic grading. Mastering allows you to easily track the performance of your
entire class on an assignment-by-assignment basis, or view the detailed work of an individual
student. ! T

¥,
For more information or a demonstration of the course, visit www.MasteringEngineering.com
ar contact your local Pearson representative,

T-

Contents | ‘

Preface xix

About the Authors xxxv

1 :

A Tour of Computer Systems 1 ° ™
1.1 Information Is'Bits + Context ™3 .
12 Programs Are Translated by Other Programs into Different Forms 4
L3 It Pays to Understand How Compilation Systems Work 6
14 Processors Read andrInterﬁret Instructions Stored in Memory 7
1.4.1 Hardware Organization of a System 8
142 Running the hello Program 10
1.5 Caches Matter 11
1.6 Storage Devices Form a Hierarchy, 14
L7 The Operating Systern Manages the Hardware 14
1.7.1 Processes 15
172 Threads 17
1.7.3 Virtual Memory 18
1.74 Files 19
1.8 Systems Communicate with Other Systems Using Networks 19,
19 Important Themes 22 - ;
1.91 Amdahl’s Law 22- 3, '
1.9.2 Concurrency and Parallelism 24)
1.9.3 The Importance of Abstractions in Computer Systems 26
110 Summary 27
Bibliographic Notes 28
Solutions to Practice Problems 28

Part | Program Structure and Execution

2

Repr::senting and Ménipulating Information 31

2.1 Information Storage 34
2.1.1 Hexadecimal Notation 36
2.1.2 Data Sizes 30

vii

viii Contents

213 Addressing and Byte Ordering 42
214 Representing Strings 49
2.1.5 Representing Code 49
21.6 Introduction to Boolean Algebra 50
| 217 Bit-Level Operationsin C 54
2.1.8 Logical Operations in C 56
H 21.9 Shift Operationsin C 57
22 Integer Representations 59
221 Integral Data Types 60
222 Unsigned Encodings 62
223 Two’s-Complement Encodings, 64
224 Conversions between Signed and Unsigned 70
225 Signed versus Unsigned inC 74
2.2.6 Expanding'the Bit Representation of a Number 76
227 Truncating Numbers 81
278 Advice on Signed versus Unsigned 83
2.3 Integer Arithmetic 84
23.1 Unsigned Addition 84
232 Two's-Complement Addition 90
233 Two's-Complement Negation 95
23.4 Unsigned Multiplication 96
235 Two’s-Complement Multiplication 97
23.6 Multiplying by Constants 101
237 Dividing by Powersof2 103
238 Final Thoughts on Integer Arithmetic 107
2.4 Floating Point 108
241 TFractional Binary Numbers 109 v
242 TEEE Floating-Point Representation 112
243 Example Numbers 115
244 Rounding 120
2.45 TFloating-Point Operations 122
246 Floating Pointin C 124
2.5 Summary 126
Bibliographic Notes 127
Homework Problems 128
Solutions to Practice Problems 143

3

Machine-Level Representation’of Programs 163
31 A Historical Perspective 166

32

33
34

3.5

3.6

3.7

3.8

Program Encodings 169

321 Machine-Level Code 170

322 Code Examples 172

3.23 Notes on Formatting 175 t

177- A

Accessing Informatlon 179)

341 Operand Spec1ﬁers 180 ' .
342 ' Data Movement Instp;ctmns 182
343 Data Moyerpent E)_Eample 186)
344 Pushing and Popping Stack Data 189

Arithmetic and Logical Operations 191

3.51 Load Effective Address 191

3.52 Unary and Bmary Operations, 194
353 Shift Operations 194 W b
3.54 Discussion, 196 3
3.5.5 Special Arithmetic Operatiops 197

Control 2007
3.6.1 Condition Codes 201

3.6.2 Accessing the Condition Codes
3.6.3 Jump Instructions 205

3.64 Jump Instruction Encodings 207

3.6.5 Implementing Conditional Branches with
Conditional-Control 209
Implementing.Conditional Branches with
Conditional Moves 214 o
Loops 220

36.8 Switch Statements

Procedures 238

371 The Run-Time Stack 239

3.7.2 Control Transfer 241

3.7.3 Data Transfer 245

3.74 Local Storage on the Stack 248
375 Local Storage in Reglsters 251
3.7.6 Recursive Procedures 253

‘Array Allocation-and Access 255 |

381 Basic Pr1nc1p1es 255 . i
3.82 Pointer Arithmetic 257 -
3.83 Nested Arrays 258

3.84 Fixed-Size Arrays 260,

3.8.5 Variable-Size Arrays 262

€

Data Formats

i
.

202 -

3.6.6

3.6.7
232

£

sl

vy

p

¥ig

Contents ix

5 wasane e —

x Contents

39 Heterogeneous Data Structures 265
3.9.1 Structures 265
3.9.2 Unions 269
3.93 Data Alignment 273 i
310 Combining Control and Data in Machine-Level Programs 276
310.1 Understanding Pointers 277
4102 Life in the Real World: Using the oB Debugger 279
3103 Out-of-Bounds Memory References and Buffer Overflow 279
3.10.4 Thwarting Buffer Overflow Attacks 284
3.10.5 Supporting Variable-Size Stack Frames' 290
311 Floating-Point Code 293
3.11.1 Floating-Point Movement and Conversion Operations 296
3112 Floating-Point Code in Procedures 301
3.11.3 Floating-Point Arithmetic Operations 302
3.11.4 Defining and Using Floating-Point Constants 304
: 3.11.5 Using Bitwise Operations in Floating-Point Code 305
! 3.11.6 Floating-Point Comparison Operations 306
3.11.7 Observations about Floating-Point Code 309
i 3.12 Summary 309
Bibliographic Notes 310
Homework Problems 311
Solutions to Practice Problems 325

4

Processor Architecture 351

41 The Y86-64 Instruction Set Architecture 355
411 Programmer-Visible State 355
412 Y86-64 Instructions 356
413 Instruction Encoding 358
414 YB86-64 Exceptions 363
415 Y86-64 Programs 364
41.6 Some Y86-64 Instruction Details 370
42 Logic Design and the Hardware Control Language HCL 372
421 Logic Gates 373
4272 Combinational Circuits and HCL Boolean Expressions 374
423 Word-Level Combinational Circuits and HCL
Integer Expressions 376
424 Set Membership 380
425 Memory and Clocking 381
43 Sequential Y86-64 Implementations 384 .
431 Organizing Processing into Stages 384

-Contents

432 SEQ Hardware Structure 396¢} .+ & % 6. w
433 SEQTiming 400 & > 23 pu (e
434 SEQ Stage Implementations 404 3 '

44 General Principles of Pipelining 412 1 1.

441 Computational Pipelines 412 yic ¥

442 A Detailed Look at Pipeline Operation, 414

443 Limitatigns of Pipelining 416

4.4.4 o Pipelihing:a-System with Feedback: 419 e i
4.5 Pipelined Y8664 Impleinentations: "4214r e

4.56.1 SEQ+: Rearranging the Computation Stagess-421

4.5.2 TInsertingPipeline Registers 422 1.5

453 Rearranging and Relabeling Signals 426

4.54 Next PC Prediction 427 3
4.5.5 Pipeline Hazards 429
4.5.6 Exception Handling 444 tf

4,577 PIPE Stage Implementations 447

4.5.8 Pipeline Control Logic 455

4.5.9 .. Performance Analysis -464.

4.5.10 Unfinished Business 468 v '
46 Summary 470

461 Y86-64 Simulators 472 :

Bibliographic Notes 473

Homework Problems 473

Solutions to Practice Problems 480
r

S L i)
v

Optimizing Program’ f’erfOfManég; 495

51 Capabilities and Limitations of Optimizing Compilers 498
5.2 Expressing Program Performance. 502
53 Program Example 504
54 Eliminating Loop‘h}efﬁciencies 508 i
55 Reducing Procedure Calls 512« + e 3
56 Eliminating Unneeded Memory References, 514 -
5.7 Understanding Modern Processors 517,

5.7.1 Overall Operation 518

572 Functional Unit Performance 523

573 An Abstract Model of Processor Operation 525
58 Loop Unrolling 53y, s
59 Enhanging Parallelism 536

5.9.1 Multiple.Accumulators 536

592 Reasscciation Transformation 541

T

x}

‘ %ii Contents

i 510 Summary of Results for Optimizing Combining Code 547

| 511 Some Limiting Factors 548

'I 5.11.1 Register Spilling 548

: 5.11.2 Branch Prediction and.Misprédiction Penalties ~549

; 512 Understanding Memory Performance 553 w» on
5.12.1 lLoad Pérformance 5541 1 BWIk
5.12.2 Store Performance 555 <

513 Life in the Real World: Performance Improvement Techniques « 561

514 Identifying and Eliminating Performance Bottlenecks 562
5.14.1 Program Profiling 562
5142 Using a Profiler to Guide Optimization 565 -

515 Summary 568 :
Bibliographic Notes 569 4 ;
Homework Problems 570 i
Solutions to Practice Problems 573

6
The Memory Hierarchy 579 1

6.1 Storage Technologies 581
6.1.1 Random Access Memory 581
6.1.2 Disk Storage 389
6.1.3 Solid State Disks 600
6.1.4 Storage Technology Trends 602
6.2 Locality 604
6.2.1 Locality of References to Program Data 606
622 Locality of Instruction Fetches, 607
623 Summary of Locality 608 o
63 The Memory Hierarchy 609
6.3.1 Caching in the Memory Hierarchy 610
6.3.2 Summary of Memory Hierarchy Concepts 614
6.4 Cache Memories 614 -
6.4.1 Generic Cache Memory Organizatiof 615
6.42 Direct-Mapped Caches 617 *
6.43 Set Associative Caches 624 :
6.4.4 Fully Associative Caches 626
6.4.5 Issues with Writes 630
64.6 Anatomy of a Real Cache Hierarchy 631
6.47 Performance Impact of Cache Parameters 631 1
6.5 Writing Cache-Friendly Code 633
6.6 Putting It Together: The Impact of Caches on Program Performance 639

[PETNPY W

Contents xiii

6.6.1 'The Memory Mountain 639
6.6.2 Rearranging Loops to Increase Spatial Locality 643
6.6.3 Exploiting Locality in Your Programhs ‘647
6.7 Summary 648
Bibliographic Notes 648
Homework Problems 649
Solutions to Practice Problems 660

Part Il Running Programs on a}System

7
Linking 669

71 Compiler Drivers 671
7.2 Static Linking 672
73 Object Files 673
74 Relocatable Object Files 674
7.5 Symbols and SymbolTables 675
7.6 Symbol Resolution 679
7.6.1 How Linkers Resolve Duplicate Symbol Names 680
7.6.2 Linking with Static Libraries 684
7.6.3 How Linkers Use Static Libraries to Resolve References 688
7.7 Relocation 689
7.7.1 Relocation Entries 690
772 Relocating Symbol References 691
7.8 0 Executable Object Files 695
79 loading Executable Object Files 697
710 Dynamic Linking with Shared Libraries 698
711 Loading and Linking Shared Libraries from Applications 701
712 Position-Independent Code (PIC) 704
713 Library Interpositioning 707
7.13.1 Compile-Time Interpositioning 708
7.13.2 Link-Time Interpositioning 708
7.13.3 Run-Time Interpositioning 710
7.14 Tools for Manipulating Object Files 713
715 Summary 713
Bibliographic Notes 714
Homework Problems 714
Solutions to Practice Problems 717

P—

xiv

Contents

8

Exceptional Control Flows 721

8.1

8.2

8.5

8.6
8.7
8.8

9

Exceptions 723
8.1.1 Exception Handling 724

8.1.2

8.1.3 Exceptions in Linux/x86-64 Systems 729
Processes 732

821
822
823
824
825
System

Process Control 738

84.1
842
8.43
8.4.4
845
846
Signals
8.5.1
852
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7

Nonlacal Jumps 781

Tools f

Summary 787 ¥

Bibliographic Notes 787 '
Homework Problems 788

Solutions to Practice Problems 795

Classes of Exceptions 726

Logical Control Flow 732

Concurrent Flows 733 T .
Private Address Space 734

User and Xernel Modes 734

Context Switches 736 '
Call Error Handling 737 o

Obtaining Process IDs 739 I
Creating and Terminating Processes 739 i
Reaping Child Processes 743
Putting Processes to Sleep 749 b
Loading and Running Programs 750 ¢
Using fork and execve to Run Programs 753

756 '
Signal Terminology 758
Sending Signals 759
Receiving Signals 762
Blocking and Unblocking Signals 764
Writing Signal Handlers 766 i
Synchronizing Flows to Avoid Nasty. Concurrency Bugs 776
Explicitly Waiting fof Signals 778

" %
]

B et

r
it o

or Manipulating Processes. 786

i T e e e e W i B L e T

Virtual Memory 801 . £

Physical and Virtual Addressing 803
9.2 Address Spaces 804

9.1

9.3

9.4
9.5
926

9.7

9.8

2.9

9.10

Contents

VM as a Tool for Caching 805 '

931 DRAM Cache Organization 806

93.2 Page Tables 806 .t

9.3.3 Page Hits, 808

9.3.4 PageFaults 808,

9.3.5 Allocating Pages 810

9.3.6 Locality to the Rescue Again 810 : €

VM as g Tool for Mémory Management 811
VM as a Tool for ﬁ[eniiéfy Protection .812

Address Translation 813

9.6.1 Integrating Caches and YM 817

9.6.2 Speeding Up Address Translation witha TLB 817

9.6.3 Multi-Level Page Tables 819

9.6.4 Putting It Together: End-to-End Address T}apslation 821

Case Study: The Intel Core i7/Linux Memory System 825

9.7.1 Core i7 Address Translation 826

9.72 Linux Virtual Memory System 828

Memory Mapping 833

9.8.1 Shired Objects Revisited 833

982 The fork Function Revisited 836

9.8.3 The execve Function Revisited 836

9.84 User-Level Memory Mapping with the mmap Function 837

Dynamic Memory Allocation 839

0.9.1 Themalloc and free Functions &40
992 Why Dynamic Memory Allocation? 843
9.9.3 Allocator Requirements and Goals 844
9.9.4 Fragmentation 846

9.9.5 Implementation Issues 846 f "
9.9.6 Implicit Free Lists 847 g i
9.9.7 Placing Allocated Blocks 849 i i

9.9.8 Splitting-Free Blocks 849 TL.

9.9.9 Getting Additional Heap Memoty -850 s "

9.9.10 Coalescing Free Blocks 850 !
0.9.11 Coalescing with Boundary Tags 851

9.9.12 Putting It Together: Implementing a Simple Allocator 854
9.9.13 Explicit Free Lists 862

9.9.14 Sggregated Free Lists 863 '
Garbage Collection 865"

9.10.1 Garbage Collector Basics 866 : '
9.10.2 Mark&Sweep Garbage Collectors 867

9.10.3 Conservative Mark&Sweep for C Programs 869 "‘

XV

xvi Contents

9%.11

9,12

Common Memory-Related Bugs ir"C Progfams 870, *
9.11.1 Dereferencing Bad Pointers 870
9.11.2 Reading Uninitialized Memory 871
9.11.3 Allowing Stack Buffer Overflows 871
9.11.4 Assuming That Pointers and the Objects They Point to

Are the Same Size 872
9.11.5 Making Off-by-One Errors 872
0.11.6 Referencing a Pointer Instead of the Object It Points To 873
9.11.7 Misunderstanding Pointer Arithmetic 873
9.11.8 Referencing Nonexistent Variables 874
9.11.9 Referencing Data in Free Heap Blocks 874
9.11.10 Introducing Memory Leaks 875
Summary 875)
Bibliographic Notes 876
Homework Problems 876
Solutions to Practice Problems 880

A

! Part lll Interaction and Communication

10

between Programs

10.1
10.2
10.3
10.4
10.5

10.6
10.7
10.8
10.9
10.10
10.11
10.12

System-Level I/O 889

Unix /O 890

Files 891

Opening and Closing Files 893

Reading and Writing Files 895

Robust Reading and Writing with the Rio Package 897
10.5.1 Rio Unbuffered Input and Output Functions 897
10.5.2 Rig Buffered Input Functions 898

Reading File Metadata 903

Reading Directory Contents 905

Sharing Files 906 |
I/O Redirection 909

Standard /'O 911

Putting It Together: Which I/O Functions Should I Use? 911
Summary 913

Bibliographic Notes 914

Homework Problems 914

Solutions to Practice Problems 915

C omdiath edm b

11

Network Programming 917

11
11.2
11.3

114

11.5

11.6
11.7

12

The Client-Server Programming Model 918
Networks 919

The Global IP Interpet 924

11.3.1 IP Addresses 925

11.3.2 Internet Domain Ndmes 927
11.3.3 Internet Connections 929

The Sockets Interface 932

11.4.1 Socket Address Structures 933
11.4.2 The socket Function 934

11.4.3 The connect Function 934

11.44 The bind Functip)x} ; 935

11.4.5 The listen Function 935

114.6 The adcept Function 936°

1147 Host and Service Conversion 937
11.4.8 Helper Functions for the Sockets Interface 942
11.4.9 Example Echo Client and Server 944

Web Servers 948

11.5.1 Web Basics 948

11.5.2 Web Content 949

11.5.3 HTTP Transactions 950

1154 Serving Dynamic Content 953

Putting It Together: The TiNny Web Server 956
Summary 964

Bibliographic Notes 965

Homework Problems 965

Solutions to Practice Problems 966

Concurrént Programming 971

12.1

12.2

123

Concurrent Programming with Processes 973

12.11 A Concurrent Server Based on Processes 974

12.1.2 Pros and Cons of Processes 975

Concurrent Programming with I/O Multiplexing 977

12.2.1 A Concurrent Event-Driven Server Based on 1/Q
Multiplexing 980

12.2.2 Pros and Cons of /O Multiplexing 985

Concurrent Programming with Threads 985

12.3.1 Thread Execution Model 986

Contents

xvil

xvili

Contents

124

12,6
12.7

12.8

A

12.3.2 Posix Threads 987

12.3.3 Creating Threads 988

12.3.4 Terminating Threads 988

12.3.5 Reaping Terminated Threads 989

12.3.6 Detaching Threads 989

12.3.7 Initializing Threads 950

12.3.8 A Concurrent Server Based on Threads 991

Shared Variables in Threaded Programs 992

12.4.1 Threads Memory Model 993

12.4.2 Mapping Variables to Memory 994

12.43 Shared Variables 995

Synchronizing Threads with Semaphores 995

12.5.1 Progress Graphs 999

12.5.2 Semaphores 1001

12.5.3 Using Semaphores for Mutual Exclusion 1002

12.54 Using Semaphores to Schedule Shared Resources. 1004

12.5.5 Putting It Together: A Concurrent Server Based on
Prethreading 1008

Using Threads for Parallelism 1013

Other Concurrency Issues 1020

12.7.1 Thread Safety 1020

12.7.2 Reentrancy 1023

12.7.3 Using Existing Library Functions in Threaded Programs 1024

12.7.4 Races 1025

12.7.5 Deadlocks 1027

Summary 1030

Bibliographic Notes 1030

Homework Problems 1031

Solutions to Practice Problems 1036

gL

Error Handling 1041

Al
A2

Error Handling in Unix Systems 1042
Error-Handling Wrappers 1043

References 1047

Index 1053

TR o o NI I

l

Preface "

This book (known as CS:APP) is for computer scientists, computer engineers, and
others who want to be able to write better programs by learning what is going on
“under the hgdd’™” of-a computer systein

Our aim'is to explain the enduring concepts underlying all computer systen‘ls
and to show you the cohcrete ways that these ideas affect the’ correctness, perfor—
mance, 2nd utility of your application programs.Many systems bobks are!tvritten
from a builder’s perspective, describing how to implement the hardware or the sys-
tems softwaré, intluding the operating systém, compilér, and network-intetface.
This'book is written from'a programiiners pefspective, describing how application
programmers can use théir knowledge of a system to write better programs. Of
course, ledrning what a system i§ supposed to do providesa good first step in learn-
ing how to build one,'so this book also serves as a'valuable introductior to those
who go on to implement systems hardwaré and software. Most systerhs books also
tend to focus on just one aspect of the system, for example, the-hardware archi-
tecture; the operatmg system, the compilér, or thé network. This book spans all
of-these aspects! with the unifyirig theme of & progranfmer’s perspective.

If you-study and-learivthe-concepts-in-this-book; yourwillbeton-yourway to— "

becoming the rdre power programmér'who knows how things work'and how to
fix them whén théy break. You will: be able to writd programs that'make+better
use of the‘capabiljfies provided by the! operating systeni‘and systehis software,
that opérate correctly across'a wide' range of operating conditiohs and ruxn-fime
parameters; that run faster, and that avoid the flaws that make pfograms vulner-
able 16 cyberattack You will be prepared to delve deeper into*advariced topics
such as comipilers; computer architecture, ‘operating sy$tems, embedded systems,
networking, and cybersecurity.

Assumptions about the Reader’s Background *

L]

This book focuses on systems that execute x86-64 machine code. x86-64 is the latest
in an evolutionary path followed by Intel and its competitors that started with the
8086 microprocessor in 1978. Due to the naming conventions used by Intel for
its microprocessor line, this class of microprocessors is referred to coIloqulally as
“x86.” As semiconductor technology has evolved to allow more transistors to be
integrated onto a single, chip, these processors have progressed greatly in their

compuyting, power, and theit, memory capacity. ‘As, part of; this progression, they

have gone from pperating on-16-bit words, to,32-bit,words with the introduction
of IA32 processors, and most recently to 64-bit words with x86-64,

We consider how these machines execute C programs on Linux. Linux is.one
of a number" of operating systems -having their heritage in the Unix operating
system developed originally by Bell Laboratories. Other members-of this class

Xix

 ——

Xx Preface

. T BERIETRT g %mz'-;s%
«C"“" At{wcgﬂpn;ghgc progra

Ry s e

ifg. languagea o "

R R A R]
b *

PR %qmn o)3‘{ ®ooy, £
. To_help aders’ \{'hose background n. @programmmgﬂs weak (or nonexmtent) we have’ also included

v .__eée‘spﬁmal potqs to hlgﬁhﬁllt features that are: espemal]yampoﬁant in & We assume you are famil"ar*

S

,t:_ym.,w @ Ry

i & 7 S
i &..@;Mzmmm Faan

of operating systems include Solaris, FreeBSD, and MacQS X. In recent years,
these operating systems have maintained a high level of compatibility through the
efforts of the Posix and Standard Unix Specification standardization efforts. Thus,
the material in this book applies almost directly to these “Unix-like™ operating
systems.

The.text contains numerous programming examples that have been compiled
and run on Linux systems. We assume thaf you have access to such a machine, and
are able to log in and do simple things such as listing files and changing directo-
ries. If your computer runs Microsoft Windows, we recommend that you install
one of the many different virtual machine environments (such as VirtualBox or
VMWare) that allow programs written for one operating system (the guest OS)
to run under another (the host OS).

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C (particularly pointers, explicit dynamic memory
allocation, and formatted 1/0) that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [61]. Regardless of your programming
background, consider K&R an essential part of your personal systems library. If
your prior experience is with an interpreted language, such as Python, Ruby, or
Perl, you will definitely want to devote some time to learning C before you attempt
1o use this book.

Several of the early chapters in the book explore the interactions between C
programs and their machine-language counterparts. The machine-language exam-
ples were all generated by the GNTJ Gee compiler running on x86-64 processors.
We do not assume any prior experience with hardware, machine language, or
assembly-language programming,

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn somethihg new,
you can try it out right away and see the result firsthand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work

—

£

— . . codefintro/hello.c
1 #include <stdio.h>
2
3 int main()
4 A{
5 printf("hello, world\n");
6 return 0;
7}

codefintro/helo.c

f 1
Figure 1 A typical code exagmple.

immediately to test your understanding. Solutions td the practice problems are

at the end of each chaptef. As you read, try to solve each problem on your own

dnd then check the solution to make sure you are on the right track. Each chapter

is followed by a sét of homework problems of varying difficulty. Your instructor

has the solutiohs to the hémework p'l’foblems in an instructér’s manual. For each

homework problem, we show a rating 6f the amount of effort we feel it will require:
' t

Should require just-a few mmutes Little or no programrmng required.

00 Mlght, require up,to 20 mmutes Often involves writing,and testing some
code. (Many of these arg’ denved from prqblems, we have given on exams.)

¢4 4 Requires a significanteffort, perhaps 1-2 hours, Generally involves writ-
ing and testing a significant amount of code.,

4494 A lab assignment, requiring up to 10 hours of effort.

Each code example in the téxt was formatted dlrectly, ‘Wwithout any manual
intervention, from a C program compiled w1th GCC and fested on a Linu¥ system.
Of’coursé your system may have a differeht version of Gec, or a different compiler
altogether so your compiler might generate differént machine code; but the

overall behavior should be the same. All &f thé source code'~15’ available from the
CS:APP Web page (“CS: APP” being ofir shorthand fo thé book’s title) at csapp
.cs.cmu.edu, In the text, the filenarhés of the source programé are dbcumented
in horizontal bars that sutround the formatted code. For example, the program in
Figure'1 can be found in the file hello. c in directory code/intro/. We encourage
youto try running the example programs on your system as you encounter them.

To avoid having a.book that is overwhelming, both irbulk and in content, we
have:created ' number of Web asides containing material that.supplements the
main presentatioh ofthe book.,These asides are referenced:within the book with
anotation'of the form cHAR:TOP, where CHAP is a short encoding of the chapter sub-

4ect, and Top:s.a short code-forthe topicthat is covered.-For example, Web Aside
DATA:BOOL contains supplementary material on-Boolearralgebra for the presenta-
tion on data representations in Chapter 2, while Web Aside ARCH:VLOG contains

Preface

XXi

xxii Preface
material describing processor designs using the Verilog hardware description lan-

guage, supplementing the presentation of processor design in Chapter 4. All of
these Web asides are available from the CS:APP Web page.

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems. Here is an overview.

o

Chapter 1: A Tour of Computer Systems. This chapter introduces the major ideas
and themes in computer systems by tracing the life cycle of a simple “hello,
world” program.

Chapter 2: Representing and Manipulating Information. We cover computer arith-
metic, emphasizing the properties of unsigned and two's-complement num-
1 ber representations that affect programmers. We consider how numbers
¢ are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and
unsigned numbers. We cover the mathematical properties of arithmetic op-
erations. Novice programmers are often surprised to learn that the {(two’s-
complement) sum or product of two positive numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies many of the algebraic
properties of integer arithmetic, and hence a compiler can safely transform
b multiplication by a constant into a sequence of shifts and adds. We use the
bit-level operations of C to demonstrate the principles and applications of
Boolean algebra. We cover the IEEE floating-point format in terms of how
it represents values and the mathematical properties of floating-point oper-
ations.

Having a solid understanding of computer arithmefic is critical to writ-
ing reliable programs. For example, programmers and compilers cannot re-
place the expression (x<y) with (x-y < 0), due to the possibility of overflow.

i They cannot even replace it with the expression (-y < -x), due to the asym-
metric range of negative and positive numbers in the two’s-complement
representation. Arithmetic overflow is a common source of programming
errors and security vulnerabilities, yet few other books cover the properties
of computer arithmetic from a programmer’s perspective.

Chapter 3: Machine-Level Representation of Programs. We teach you how to read
the x86-64 machine code generated by a C compiler. We cover the ba-

. sic instruction patterns generated for different control constructs, such as
conditionals, loops, and switch statements. We cover the implementation

of procedures, including stack allocation, register usage conventions, and

i parameter passing. We cover the way different data structures such as struc-
1 tures, unions, and arrays are allocated and accessed. We cover the instruc-
! tions that implement both integer and floating-point arithmetic. We also
use the machine-level view of programs as a way to understand common
code security vulnerabilities, such as buffer overflow, and steps that the pro-

: - --;“‘

Preface xxiii

-

- Ed i R T x Ty BT ‘qw i B M TR s
 As ide, Wha:c |sg,an aslde }fo nE 1«1 w ;,f;g, 3oty 2 i%i;‘“z S i ¢ w o
P " g gl
. You W111 encOunter és.ludés oithls form“throughoﬁ"t thé‘textwAmdes ‘ﬁre ﬁarei‘mhetmal remarks thit"glve o
yoi sonieaddltlonalﬁnslghtﬁnto the cdrrentxtc)‘pm As1des ser*i?e) number of purgcases Some are ht;le ”
“history, "lessons For example hére did C, Lmu;;ii and theﬁnterhe%ﬁcome frofn? Other aides are meant
b clgrlfjr 1deas ‘that students ‘o‘ften ﬁ]fél?confusmg "%F’or eﬁtample whatﬁs thé d1fference" bétween a cache‘
liifé, set, and Block?:Other asxdes glve Ieal wWorld exan‘f 1es SH(‘i] as““hqw a ﬂeatmg point error ¢ crashed
aFrench §qckét or the geometrlc ‘and’ ogeratmnal p{;l(a i étfers of-a cg)nirﬁei“é;ial dlsf(drlve. F]nally, some
amdes arejustfun stuff For@mmp]e;;vhhtﬁsaa*“homky’#’P o " f‘ P

i

L3 T i
T~ u&.“n B B iosta e aties wilh e v wsngne 3 o F aem.i [T -ié‘ﬁz“* LTI s

grammer, the compiler, and the operating system can take to reduce these
threats. Learning the concepts in this chapter helps you become a better
programmer, because you will understand how programs are represented
on a machine. One certain benefit is that you-will develop a thorough and
concrete understanding of pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational and
sequential logjc elements, and then shows how these elements can be com-
bined in a datapath that executes a simplified subset of the x86-64 instruction
set called “Y86-64.” We begin with the design of a single-cycle datapath.
This design is conceptually very simple, but it would not be very fast. We
then introduce pipelining, where the different steps required to process an
instruction are implemented as separate stages. At any given,time, each
stage can work on a different instruction. Opr fivesstage processor pipeline is
much more realistic. The control logic for the processor designs is described
using a simple hardware description language called HCL. Hardware de-
signs written in HCL can be compiled and linked into simulators provided
with the textbook, and they can be used to generate Verilog descriptions
suitable for synthesis into working hardware.

Chapter 5: Qptimizing Program Performance. This chapter introduces a number
of techniques for improving code performance, with the idea being that pro-
grammers learn to write their C code in such a way that a compiler can then
generate efficient machine code. We start with transformations that reduce
the work to be dope by a program and,hence should be standard practice
when writing any pfogram for any machine. We then progress to trans-
formations that enhance the degree of instruction- level parallelism in the
generated machine code, thereby improving their performance on modern
“superscalar” processors. To motivate these transformations, we introduce
a simple operational model of how modern out-of-order processors work,
and show how to measure the potential performance of a program in terms
of the critical paths through a graphical representation of a program. You
will be surprised how much you can speed up a program by simple transfor-
mations of the C code,

XXiv Preface

Chapter 6: The Memory Hierarchy. The memory system is one of the most visible

parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array
with uniform access times. In practice, 2 memory system is a hierarchy of
storage devices with different capacities, costs, and access times. We cover
the different types of RAM and ROM memories and the geometry and
organization of magnetic-disk and-solid state drives. We describe how these
storage devices are arranged in a hierarchy. We show how this hierarchy is
made possible by locality of reference. We make these ideas concrete by
introducing a unique view of a memory system as a “memory mountain®
with ridges of temporal locality and slopes of spatial locality. Finally, we
show you how to improve the performance of application programs by
improving their temporal and spatial locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, including

the ideas of relocatable and executable object files, symbol resolution, re-
location, static libraries, shared object libraries, position-independent code,
and library interpositioning. Linking is not covered in most systems texts,
but we cover it for two reasons. First, some of the most confusing errors that
programmers can encounter are related to glitches during linking, especially
for large software packages. Second, the object files produced by linkers are
tied to concepts such as loading, virtual memory, and memory mapping.
¥

Chapter 8: Exceptional Control Flow. In this part of the presentation, we step

beyond the single-program model by introducing the general concept of
exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware ex-
ceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the receipt of Linux signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea
of a process, an abstraction of an executing program. You will learn how
processes work and how they can Be created and manipulated from appli-
cation programs. We show how application programmers can make use of
multiple processes via Linux system calls. When you finish this chapter, you
will be able to write a simple Linux shell with job control. It is also your first
introduction to the nondeterministic behavior that arises with concurrent
program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks

to give some understanding of how it works and its characteristics. We want
you to know how it is that the different simultaneous processes can each use
an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manip-
ulating virtual memory. In particular, we cover the operation of storage
allocators such as the standard-library malloc and free operations, Cov-

m LA o W o o o L

b i L s N Rk

ar—

= - m

-

ering this material serves several purposes. It reinforces the concept that
the virtual memory space is just an array of bytes that the program can
subdivide into different storage units. It helps you understand the effects
of programs containing memory referencing errors such as storage leaks
and invalid pointer references. Finally; many abpli’cation programmers write
‘their own’storage allocators optimized toward the rieeds and characteris-
tics of the application. This chapter, more than any other, demdnstrates the
benefit of covering both the hardware and the software aspeé‘ts'é)f computer
systems in a unified way. Traditional computer architecture and operating
systems texts present only part of the virtual memory story.

Chapter 10: System-Level I/0. We cover the basic concepts of Unix I/O such as

files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered
I/O package that deals correct]y with a curigus behavior known as, short
counts, where the library function reads only part of the input data. We
cover the C standard I/O library and its relationship to Linux I/Q, focusing
on limitations of standard I/O that make it unsuifable for'network program-
ming. In-general, the topics covered in this‘chapter ar¢ building blocks for
‘the next tivo chapters on network and concurrent programming,
1

[N

Chapter 11; Network Programming. Networks are interesting I/0 devices to pro-

gram, tying together many of the ideas that we study earlier in'the text, such
as processes, signals, byte ordering, memory mapping, and dynamic storage
allocation. Netwdtk prograins also provide a-compelling context for con-
currenity, which is the topi€ of the next chapfer. Fhis chapter'is a thin slice
through network programming that' gets you to the pdint where you can
writé'a simple Web erver. We cover thie client-server model that underlies
all network applications. We present a programmer’s vViéw of the Internet
and show how to write Internet clients ‘and servers using the stckets inter-
face, Finally, we introduce HTTP and develop a simple iterative Web server.

Chapter 12: Concurrént Programming. ‘Ihis chapter iniroduces concurrent pro-

gramming using Internét'server design as thé runiling motivational'example.
We compare and contrast the three basic mechanisms for writing concur-
rent programs—-processes, I/O multiplexing, and threads—agd show how
to use them to build concurrent Internet servers. We cover basic principles
of synchronization,using P and V semaphore operations, thrgad safety and
reentrancy, race conditions, and deadlocks. Writing concurrent code is es-
sential fgir mogst server, applfcaﬁons. We alsq, cji{:‘;scrib,e the use of thread-level
programming to express parallelism in,an application Jprogram, enabling
faster execution on multi-core processors. Getting all of the cores working
on a single computational problem requires a.careful coordination of the
concurrent threads, both for correctness and to dchieve high performance.

Preface

XXv

El

i
i

o EEEERT

W

Xxvi

Preface

New to This Edition

The first edition of this book was published with a copyright of 2003, while the
second had a copyright of 2011. Considering the rapid evolution of computer
technology, the book content has held up surprisingly well. Intel x86 machines
running C programs upder Linux (and related operating systems) has proved to
be a combination that continues to encompass many systems today. However,
changes in hardware technology, compilers, program library interfaces, and the
experience of many instructors teaching the material have prompted a substantial
revision.

The biggest overall change from the second edition is that we have switched
our presentation from one based on a mix of IA32 and x86-64 to one based
exclusively on x86-64. This shift in focus affected the contents of many of the
chapters. Here is a summary of the significant changes.

Chapter 1: A Tour of Computer Systems We have moved the discussion of Am-
dahl’s Law from Chapter 5 into this chapter.

Chapter 2: Representing and Manipulating Information. A consistent bit of feed-
back from readers and reviewers is that some of the material in this chapter
can be a bit overwhelming, So we have tried to make the material more ac-
cessible by clarifying the points at which we delve into a more mathematical
style of presentation. This enables readers to first skim over mathematical
details to get a high-level overview and then return for a more thorough
reading.

Chapter 3: Machine-Level Representation of Programs, We have converted from
the earlier presentation based on a mix of IA32 and x86-64 to one based
entirely on x86-64. We have also updated for the style of code generated by
more recent versions of Gee. The result is a substantial rewriting, including
changing the order in which some of the concepts are presented. We also
have included, for the first time, a presentation of the machine-level support
for programs operating on floating-point data. We have created a Web aside
describing IA32 machine code for legacy reasons.

Chapter 4: Processor Architecture. We have revised the earlier processor design,
based on a 32-bit architecture, to one that supports 64-bit words and oper-
ations.

Chapter 5: Optimizing Program Performance. We have updated the matérial to
reflect the performance capabilities of recent generations of x86-64 proces-
sors. With the introduction of more functional units and more sophisticated
control logic, the model of program performance we developed based on a
data-flow representation of programs has become a more reliable predictor
of performance than it was before.

Chapter 6: The'Memory Hierarchy. We have updated the material to reflect more
recent technology.

N

M MM e . e aee

-

Chapter 7: Linking. We have rewritten this chapter, for x86-64, expanded the
discussion of using the GOT and PLT to create position-independent code,
and.added a new section on a powerful linking technique known as library
interpositioning.

Chapter 8: Exgepnonal Control Flow., We have added a more rigorous treatment
of signal handlers including async-51gna] -safe functions, specific guidelines
for writing, s1gnaI handlérs, and using s:l.gsuépend to wait for handlers,

Chapter 9: Virtual Memory. This chapter has changed only slightly.

ijpre{ 10: Sykrem Level I/O. We have added 3 new section on files and the file
hlerarchy, but ptherwise, this c}]apter has changed only slightly.

Chapter 11: Network Programming, We have introduced techniques for protocol-
independent and thread-safe network programming using the modern
getaddrinfo and getnameinfo functions, which replace the obsolete and
non-reentrant gethostbyname and gethostbyaddr functions.

Chapter 12: Concurrent Programming. We have increased our coverage of using
thread-level parallelism to make programs run faster on multi-core ma-
chines,

In addition, we have added and revised a number of practice and homework
problems throughout the text.

Origins of the Book

This book stems from an introductory course that we developed at Carnegie Mel-
lon University in the fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [14]. The ICS cbursé has'been taught every semester since then. Over 400
students-take the course each semester. The students range from sophomores to
graduate students in a wide variety of majors. It is a required core course for all
undergraduatgs in the C§ and ECE departments at Carnegie Melion, and it has
become a prerequisite for most upper-level systems courses in CS and ECE.

The idea with ICS was to introduce stuzdents to computers in a different way.
Few of our studerits would have the dpportunity to build a computer system. On
the other hand, most students, mclu‘dmg all computer scientists and computer
engineers, would be required to use and program computers on a daily basis. So we
decided to teach about systems from the pdint of view of the programmer, using
the following filter; we would cover a fopic only if it affected the performance,
correctness, Or, ut111ty of user-level C programs.

For example, toplcs such ag hardwarte adder and bus designs were out. Top-
ics such as machine language were in; but instead of focusing on how to write
assembly language by hand, we would look at how a C compiler transiates C con-
structs into.machine code, including pointers, loops, procedure calls, and switch
statements. Further, we would take a broader and more holistic view of the system
as both hardware and systems software, covering such topics as linking, loading,

Preface

xxvit

xxviti

Preface

processes, signals, performance optimization, virtual memory, I/0, and network
and concurrent programming.

This approach allowed us to teach the ICS course in a way that is practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real-
ized that others outside of CMU might benefit from using our approach. Hence
this book, which we developed from the ICS lecture notes, and which we have
now revised to reflect changes in technology and in how computer systems are
implemented.

Via the multiple editions and multiple translations of this book, ICS and many
variants have become part of the computer science -and computer engineering
curricula at hundreds of colleges and universities worldwide.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach a number of different types of
systems courses. Five categories of these courses are illustrated in Figure 2. The
particular course depends on curriculum requirements, personal taste, and
the backgrounds and abilities of the students. From left to right in the figure,
the courses are characterized by an increasing emphasis on the programmer’s
perspective of a system. Here is a brief description.

ORG. A computer organization course with traditional topics covered in an un-
traditional style, Traditional topics such as logic design, processor architec-
ture, assembly language, and memory systems are covered. However, there
is more emphasis on the impact for the programmer. For example, data rep-
resentations are related back to the data types and operations of C programs,
and the presentation on assembly code is based on machine code generated
by a C compiler rather than handwritten assembly code.

ORG+. The ORG course with additional emphasis on the impact of hardware
on the performance of application programs. Compared to ORG, students
learn more about code optimization and about improving the memory per-
formance of their C programs.

ICS. The baseline ICS course, designed to produce enlightened programmers who
understand the impact of the hardware, operating system, and compilation
system on the performance and correctness of their application programs.
A significant difference from ORG+ is that low-level processor architecture
is not covered. Instead, programmers work with a higher-level model of a
modern out-of-order processor. The ICS course fits nicely into a 10-week
quarter, and can also be stretched to a 15-week semester if covered at a
more leisurely pace.

ICS+. The baseline ICS course with additional coverage of systems programming
topics such as system-level I/O, network programming, and concurrent pro-
gramming. This is the semester-long Carnegie Mellon course, which covers
every chapter in CS:APP except low-level processor architecture.

RO " Cotese
Chapter Topic s ORG QRG+ ICS ICS+ 8P
1 ~Tour of systéms . o ‘ .)
2 Dath representation "o . . . o@
3 Machine language,
4 Processor architecture . .
5 Code optimization . . .
0, © Mlemoyy l'giejlral}:hy o®@ . . . o ®
7 Linking . o o® .
8 Excepticnal control. flow . . .
9 Virtual memory o®
10 System-level I/O . .
11 Network programming . .
12 Concurrent programming , . .

Fl L¥]

Figure 2 Fivé systems courses based on the CS:APP book. ICS+is the 15-213 course
from Carnegie Mellon'. Notes: The @ symbol denotes partlal coverage of a chapter, as

follows: (a) hardware only; (b) no dynamlc storagé sllocation; (©) no dynamic‘linking;

(d) no floating point.

g

SP. A systerns pro%fa'fmhing course. This colirse is'sinfilar to ICS+, but it drops
floating point and perforniance ‘optimization, ‘and it places more empha-
sis on systems programming, including process control, dynamic linking,
system-leve] I/O, network programming, and concurrent programming,. In-
structqrs mjght,want to supplgment from other sources for advanced topics
,such as dagmons,terminal control, and Upix JPC.

Lr '

The main message of “Figure 2 is that the CS:APP boo}(gives a lot of options
to students and instructors. If you want your students to be exposed to lower-
level processor architecture, then that option is available via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer
organization course o an ICS or ICS+ course, but are wary of making such a
drastic change all at once, then you:can move toward ICS incrementally. You
can start with ORG, which teaches the traditional topics in a nontraditional way.
Once you are comfortable with that material, then you can move to ORGH+,
and eventually to'TCS: If students have no expérience itf C (e.g., they have only
pro rgmmed in Java),.you could spend several weeks on C and then cover the
matefial of ORG or ICS.

Finally, we note that the ORG+ aiid SP course$ would make a nice two-term
sequence (either quarters or semesters). Or you might consider offering ICS+ as
one term of ICS and one term of SP.

Preface

Xxix

XXX Preface

i For Instructors: Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students.
Median scores of 5.0/5.0 and means of 4.6/5.0 are typical for the student course
evaluations. Students cite the fun, exciting, and relevant laboratory exercises as
the primary reason. The labs are available from the CS:APP Web page. Here are
examples of the Iabs that are provided with the book.

Data Lab. This lab requires students to implement simple logical and arithmetic
functions, but using a highly restricted subset of C. For example, they must
compute the absolute value of a number using only bit-level operations, This
lab helps students understand the bit-level representations of C data types
and the bit-level behavior of the operations on data.

Binary Bomb Lab. A binary bomb is a program provided to students as an object-
code file. When run, it prompts the user to type in six different strings. If
any of these are incorrect, the bomb “explodes,” printing an error message
and logging the event on a grading server. Students must “defuse” their
own unique bombs by disassembling and reverse engineering the programs
to determine what the six strings shoyld be. The lab teaches students to
understand assembly language and also forces them to learn how to use a

| debugger.

l : Buffer Overflow Lab. Students are required to modify the run-time behavior of
a binary executable by exploiting a buffer overfiow vulnerability. This lab
teaches the students about the stack discipline and about the danger of
writing code that is vulnerable to buffer overflow attacks.

Architecture Lab. Several of the homework problems of Chapter 4 can be com- ;
bined into a lab assignment, where students modify the HCL description of
a processor to add new instructions, change the branch prediction policy, or !
add or remove bypassing paths and register ports. The resulting processors "

H can be simulated and run through automated tests that will detect most of :
| the possible bugs. This lab lets students experience the exciting parts of pro-
_ cessor design without requiring a complete background in logi¢ design and

hardware description languages. :

! Performance Lab. Students must optimize the performance of an application ker-
I nel function such as convolution or matrix transposition. This lab provides "
4 a very clear demonstration of the properties of cache memeories and gives

? students experience with low-level program optimization.

‘3

i

Cache Lab, In this alternative to the performance lab, students write a general- ;
purpose cache simulator, and then optimize a small matrix transpose kernel J

to minimize the number of misses on a simulated cache. We use the Valgrind

tool to generate real address traces for the matrix transpose kernel. v

Shell Lab. Students implement their own Unix shell program with job control,
including the Ctrl+C and Cirl+Z keystrokes and the fg, bg, and jobs com-

3

,\

mands. This is the student’s;first introduction to concurrency, and it gives
them a clear idea of Unix process control, signals, and signal:handling,

Malloc Lab. Students implement their own versions*of malloc, free, and (op-
tionally) realloc. This lab gives students a clear undérstanding of data
layout and organization, and requires them to evaluaté different trade-offs
between space and time, efﬁi:iency.

Proxy Lain-Students 1mplement a concurrent; Web proxy that sits between their
;» browsersand the rest of the World Wide Web. This lab exposes the students
to such topics as Web clients and servers, and ties together many of the con-
ceptsfrom the course, such as byte ordering, file IO, process control, signals,
signal handling, memeory mapping, sockets, and concurrency. Students like
being able to see their programs in action with real Web browsers and Web
Servers. et

The CS:APP instructor’s manual has a detailed discussion of the labs, as well
as directions for downloading the support software.

Acknowledgments for the Third Edition

Itis a pleasure to acknowledge and thank those who have helped us produce this
third edition of.the CS:APP text.

We would like to thank our Carnegie Mellon colleagues who have taught the
ICS course over the years and whio have provided so much insightful feedback
and encouragement: Guy Blelloch, Roger Dannenberg, David Eckhardt, Franz
Franchetti, Greg Ganger, Seth Goldsteirl, Khaled Harras, Greg Kesden, Bruce
Maggs, Todd Mowry, Andreas Nowatzyk, Frank Pfenning, Markus Pueschel, and
Anthony Rowe. David Winters was very helpful in installing and configuring the
reference Linux box. .

Jason Fritts (St. Louis University) and*Cindy: Norris (Appalachian State)
provided us with detailed and thoughtful reviews of the second edition. Yili Gong
(Wuhan University) wrote the Chinese'translation, maintained the errata page for
the Chinese.version, and contribute€d many bug reports. Godmar Back (Virginia
Tech) helped us improve the text significantly by introducing us to the.notions of
async-signal safety and protocoltindependent-hetwork programming,

‘Many.thanks to our eagle-eyed readers who reported bugs in the second edi-
tion: Rami Ammari, Paul Anagnédstopoulos, Lucas Birenfiinger, Godmar Back,
Ji Bifi, Sharbel Bousemaan, RichardiCallahan, Seth Chaiken, Cheng Chén, Libo
Chen; Tao Du, Pascal Garcia, Yili Gong, Ronald Greenberg, Dortikhan Giilsz,
Dong Han;Dominik Helm, Ronald Jones, Mustafa Kazdagli, Gordon Kindlmann,
Sankdr Krishnan, Kanak Kshetri, Junlin Lu, Qianggiang Luo, Sebastian Luy,
Lei Ma, Ashwin Nanjappa, Grégoire Paradis, Jonas Pfenninger, Karl Pichotta,
David Ramsey, Kaustabh Roy, David.Selvaraj, Sankar Shanmugam, Dbminique
Smulkowska, Dag Sgrbg, Michael Spear, Yu Tanaka, Steven Tricanowicz, Scott
Wright, Waiki: Wright, Han Xu, Zhengshan Yan, Firo Yang, Shuang:Yang, John
Ye, Taketo Yoshida, Yan Zhu, and Michael Zink,

Preface

XXxi

xxxii

Preface

Thanks also to our readers who have contributed to the labs, including God-
mar Back (Virginia Tech), Taymon Beal (Worcester Polytechnic Institute), Aran
Clauson (Western Washington University), Cary Gray (Wheaton College), Paul
Haiduk (West Texas A&M University), Len Hamey (Macquarie University), Ed-
die Kohler (Harvard), Hugh Lauer (Worcester Polytechnic Institute), Robert
Marmorstein (Longwooed University), and James Riely (DePaul University).

Once again, Paul Anagnostopoulos of Windfall Software did a masterful job
of typesetting the book and leading the production process. Many thanks to Paul
and his stellar team: Richard Camp (copyediting)}, Jennifer McClain (proofread-
ing), Laurel Muller (art production), and Ted Laux (indexing). Paul even spotted
a bug in our description of the origins of the acronym BSS that had persisted
undetected since the first edition!

Finally, we would like to thank our friends at Prentice Hall. Marcia Horton
and our editor, Matt Goldstein, have been unflagging in their support and encour-
agement, and we are deeply grateful to them.

Acknowledgments from the Second Edition

We are deeply grateful to the many people who have helped us produce this second
edition of the CS:APP text.

First and foremost, we would like to recognize our colleagues who have taught
the ICS course at Carnegie Mellon for their insightful feedback and encourage-
ment: Guy Blelloch, Roger Dannenberg, David Eckhardt, Greg Ganger, Seth
Goldstein, Greg Kesden, Bruce Maggs, Todd Mowry, Andreas Nowatzyk, Frank
Pfenning, and Markus Pueschel.

Thanks also to our sharp-eyed readers who contributed reports to the errata
page for the first edition: Daniel Amelang, Rui Baptista, Quarup Barreirinhas,
Michael Bombyk, J6rg Brauer, Jordan Brough, Yixin Cao, James Caroll, Rui Car-
valho, Hyoung-Kee Choi, Al Davis, Grant Davis, Christian Dufour, Mao Fan,
Tim Freeman, Inge Frick, Max Gebhardt, Jeff Goldblat, Thomas Gross, Anita
Gupta, John Hampton, Hiep Hong, Greg Israelsen, Ronald Jones, Haudy Kazemi,
Brian Kell, Constantine Kousoulis, Sacha Krakowiak, Arun Krishnaswamy, Mar-
tin Kulas, Michael Li, Zeyang Li, Ricky Liu, Mario Lo Conte, Dirk Maas, Devon
Macey, Carl Marcinik, Will Marrero, Simone Marting, Tao Men, Mark Morris-
sey, Venkata Naidu, Bhas Nalabothula, Thonias Niemann, Eric Peskin, David Po,
Anne Rogers, John Ross, Michael Scott, Seiki, Ray Shih, Darren Shultz, Erik
Silkensen, Suryanto, Emil Tarazi, Nawanan Theera- Ampornpunt, Joe Tidinich,
Michael Trigoboff, James Troup, Martin Vopatek, Alan West, Betsy Wolff, Tim
Wong, James Woodruff, Scott Wright, Jackie Xiao, Guanpeng Xu, Qing Xu, Caren
Yang, Yin Yongsheng, Wang Yuanxuan, Steven Zhang, and Day Zhong. Special
thanks to Inge Frick, who identified a subtle deep copy bug in our lock-and-copy
example, and to Ricky Liu for his amazing proofreading skills.

Our Intel Labs colleagues Andrew Chien and Limor Fix were exceptionally
supportive throughout the writing of the text. Steve Schlosser graciously provided
some disk drive characterizations. Casey Helfrich and Michael Ryan installed

S ms mdem—e . =

e

-

and maintained our new Core i7 box..Michael Kozuch, Babu Pillai, and Jason
Campbell provided valuable insight:on memory system performance, multi-core
systems, and the power wall. Phil Gibbons and Shimin Chen shared their consid;
erable expertise on solid state disk.designs,

We have been able to call on.the talents'of many, including Wen-Mei Hwu;
Markus Pueschel, and Jiri Sinisa, to provide both detailed comments and high-
leve] advice. James Hoe helped us create a Verilog version of the Y86 processor
and did all of the'work needed to synthesize working hardware.

Many thanks to our colleagues who..provided reviews,ob the draft manu-
script: James Archibald (Brigham Young Wniversity), Richard Carver (George
Mason University), Mirela Damian (Villanova University), Peter Dinda (North-
western University), John Fiore (Temple University), Jason Fritts (St: Louis Uni-
versity), John Greiner (Rice University), Brian Harvey (University of California,
Berkeley), Don Heller (Penn State University), Wei.Chung Hsu (University of
Minnesota), Michelle Hugue (University of Maryland),- Jeremy Johnson (Drexel
University), Geoff Kuenning {Harvey Mudd College), Ricky Liu, Sam.Mad-
den (MIT), Fred Martin (University of Massachusetts, Lowell), Abraham Matta
(Boston University), Markus Pueschel (Carnegie Mellon University), Norman
Ramsey (Tufts University), Glenn Reinmann (UCLA); Michela Taufer (Univer-
sity of Delaware), and Craig Zilles (UIUC).

Paul Anagnostopoulos of Windfall Software did an outstanding job of type-
setting the book and leading the production team..Many thanks to Paul and his
superb team: Rick Camp (copyeditor), Joe Snowden (compositor), MaryEllen N.
Oliver (proofreader); Laurel Muller (artist), and Ted Laux (indexer).

Finally, we would like to thank our friends at Prentice Hall: Marcia Horton has
always been there for us. Our editor, Matt Goldstein, provided stellar leadership
fronrbeginning to end. We are profoundly grateful for their help, encouragement,
and insights.

Acknowledgments from the First Edition

We are deeply indebted to many friends and colleagues for their thoughtful crit-
icisms and encouragement. A special thanks to our 15-213 students, whose infec-
tious energy and enthusiasm spurred us on. Nick Carter and Vinny Furia gener-
ously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry taught the course
over multiple semesters, gave us encouragement, and helped improve the course
material. Herb Derby provided early spiritual guidance and encouragement. Al-
lan Fisher, Garth Gibson, Thomas Gross, Satya, Peter Steenkiste, and Hui Zhang
encouraged us to develop the course from the start. A suggestion from Garth
early on got the whole ball rolling, and this was picked up and refined with the
help of a group led by Allan Fisher. Mark Stehlik and Peter Lee have been very
supportive about building this material into the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on.the QS course. Greg
Ganger and Jiri Schindler. graciously provided some disk drive characterizations

Preface

xxxiil

XxXxiv

Preface

and answered our questions on modern disks. Tom Stricker showed us the mem-
ory mountain. James Hoe provided useful ideas and feedback on how to present
processor architecture.

A special group of students—Khalil Amiri, Angela Demke Brown, Chris
Colohan, Jason Crawford, Peter Dinda, Julio Lopez, Bruce Lowekamp, Jeff
Pierce, Sanjay Rao, Balaji Sarpeshkar, Blake Scholl, Sanjit Seshia, Greg Stef-
fan, Tiankai Tu, Kip Walker, and Yinglian Xie—were instrumental in helping
us develop the content of the course. In particular, Chris Colohan established a
fun (and funny) tone that persists to this day, and invented the legendary “binary
bomb” that has proven to be a great tool for teaching machine code and debugging
concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadas, John Greiner,
Don Heller, Bruce Jacob, Barry Johnson, Bruce Lowekamp, Greg Morrisett,
Brian Noble, Bobbie Othmer, Bill Pugh, Michael Scott, Mark Smotherman, Greg
Steffan, and Bob Wier took time that they did not:have to read-and advise us
on early drafts of the book. A very special thanks to Al Davis (University of
Utah), Peter Dinda{Northwestern University), John Greiner (Rice University),
Wei Hsu (University of Minnesota), Bruce Lowekamp'(College of Wiltiam &
Mary), Bobbie Othmer (University of Minnesota), Michael Scott (University of
Rochester), and Bob Wier (Rocky Mountain College) for class testing the beta
version. A special thanks to their students as well!

We would also like to thank our colleagues at Prentice Hall. Marcia Horton,
Eric Frank, and Harold Stone have been unflagging in their support and vision.
Harold also helped us present an accurate historical perspective on RISC and
CISC processor architectures. Jerry Ralya provided sharp insights and taught us
a lot about good writing.

Finally, we would like to acknowledge the great technical writers Brian
Kernighan and the late W, Richard Stevens, for showing us that technical books
can be beautiful.

Thank you all.

Randy Bryant
Dave O’Hallaron
Pittsburgh, Pennsylvania

About the Authors ~

Randal E. Bryaiit received his bachelor’s degree from

graduate school at the Massachusetts Institute of
Technology, receiving his PhDD degree in computer
sciencé in 1981. He spent three years as an assistant
professor at the California Institute of Technology,
-dnd’has been on the faculty at Carnegie Mellon since
1984. For five of those years he served as head of the
Computer Science Department, and for ten of them
he served as Dean of the School'of Computer Science.
He is currently a university professor of computer sci-
ence. He also holds a courtesy appointment with the Department of Electrical and
Computer Engineering,

Professor Bryant has taught courses in computer systems at both the under-
graduate and graduate level for around 40 years. Over many years of teaching
computer architecture courses, he began shifting the focus from how computers
are designed to how programmers can write more efficient and reliable programs
if they understand the system better. Together with Professor O’Hallaron, he de-
veloped the course 15-213, Introduction to Computer Systems, at Carnegie Mellon
that is the basis for this book. He has also taught courses in algorithms, program-
ming, computer networking, distributed systems, and VLSI design.

Most of Professor Bryant’s research concerns the design of software tools
to help software and hardware designers verify the correctness of their systems.
These include several types of simuiators, as well as formal verification tools that
prove the correctness of a design using mathematical methods. He has published
over 150 technical papers. His research results are used by major computer manu-
facturers, including Intel, IBM, Fujitsu, and Microsoft. He has won several major
awards for his research. These include two inventor recognition awards and a
technical achievément award from the Semiconductor Research Corporation, the
Kanellakis Theory and Practice Award from the Association for Computer Ma-
chinery (ACM), and the W. R. G. Baker Award, the Emmanuel Piore Award, the
Phil Kaufman Award, and the A. Richard Newton Award from the Institute of
Electrical and Electronics Engineers (IEEE). He is a fellow of both the ACM and
the IEEE and a member of both the US National Academy of Engineering and
the American Academy of Arts and Sciences.

the University of Michigan in 1973 and then attended

XXXV

XXxXvi

About the Authors

David R. O’Hallaron is a professor of computer science
and electrical and computer engineering at Carnegie
Mellon University. He received his PhD from the Uni-
versity of Virginia. He served as the director of Intel
Labs, Pittsburgh, from 2007 to 2010.

He has taught computer systems courses at the un-
dergraduate and graduate levels for 20 years on such
topics as computer architecture, introductory com-
puter systems, parallel processor design, and Internet
services. Together with Professor Bryant, he developed
the course at Carnegie Mellon that led to this book. In
2004, he was awarded the Herbert Simon Award, for Teaching Excellence by the
CMU School of Computer Science, an award for which the winner is chosen based
on a poll of the students.

Professor O’Hallaron works in the area of computer systems, with specific in-
terests in software systems for scientific computing, data-intensive computing, and
virtualization. The best-known example of his work is the Quake project, an en-
deavor involving a group of computer scientists, civil engineers, and seismologists
who have developed the ability to predict the motion of the ground during strong
earthquakes. In 2003, Professor O’Hallaron and the other members of the Quake
team won the Gordon Bell Prize, the top international prize in high-performance
computing. His current work focuses on the notion of autograding, that is, pro-
grams that evaluate the quality of other programs.

A Tour of Computer Systems

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Information Is Bits + Context 3

Programs Are Translated by Other Programs into Different Forms 4
It Pays to Understand How Compilation Systems Work 6
Processors Read and Interpret Instructions Stored in Memory 7
Caches Matter 11

Storage Devices Form a Hierarchy 14

The Operating System Manages the Hardware 14

Systems Communicate with Other Systems Using Networks 19
important Themes 22

Summary 27

Bibliographic Notes 28

Soluticns to Practice Problems 28

b
H 2 Chapter 1 A Tour of Computer Systems ‘

Acomputer system consists of hardware and systems software that work to-
gether to run application programs. Specific implementations of systems
change over time, but the underlying concepts do not. All computer systems have
: similar hardware and software components that perform. similar functions. This
book is written for programmers who want to get better at their craft by under- 1
ﬂ standing how these components work and how they affect the correctness and
performance of their programs.
| You are poised for an exciting journey. If you dedicate yourself to learning the
I concepts in this book, then you will be on your way to becoming a rare “power pro-
grammer,” enlightened by dn undéiStanding of the undetlying computer system
and its,impact on your application programs.
* *You are, g‘bjng?.’é learn-practical skillg such as how to avoid strange numerical
errors caused by the wdy that computers represent numbers. You will learn how
to optimize your C code by using clever tricks that exploit the designs of modern
processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from
buffer overflow vulnerabilities that plague network and Internet software. Youwill
learn how to recognize and avoid the nasty errors during linking that confound
the average programmer. You will learn how to write your own Unix shell, your
| own dynamic storage allocation package, and even your own Web server. You will
learn the promises and pitfalls of concurrency, a topic of increasing importarice as
| l _multiple processor cores are integrated onto single chips.

g

-

s

i, T .

o

M wou

Eadae

In their classic text on the C programming language [61], Kernighan and
Ritchie introduce readers to € using the hello program shown in Figure 1.1.
Although hello is a very simple program, every major part of the system must
work in concert in order for it to run to completion. In a sense, the goal of this
book is to help you understand what happens and why when you run hello on
your system.

We begin our study of systems by tracing the lifetime of the hello program,
from the-time it is created by a programmer, until.it runs on a system, prints its
simple message, and terminates. As we follow the lifetime of the program, we will
briefly introduce the key concepts, terminology, and components that come into
play. Later chapters will expand on these ideas. '

m

codefintrofhello.c

#include <stdio.h>

]
2
3 int main()

1 4 {
5 printf("helle, world\n");
6 return 0;
7

code/introthello.c

Figure 1.1 The hello program. (Source: [60])

Section, 1.1 Information 4s Bits + Context

i n c 1 u d e SP < s t d i
35 105 110 99 108 117 100 101 32 60 116 116 100 105

h > N\ \ao i @n t SP m a i =n ()

104 62 10 10 105 110 116 32 109 97 105 110 40 41
\n SP SP SP SP p r i m t £ " @
10 32 32 32 32 112 114 106 110 116 102 40 34, 104
1 o , S w e r 1 4 N o " Yy

108 111 44 32 119 1i1 114 108 100 92 110 34 41 59

8P SP SP r e t uwu ¥ n SP 0 ; \no '}
32 32 32 114 101 116 117 114 1i0 32 48 659 10 125

Figure 1.2 The ASCII text representation of hello.c.

1.1 Information Is Bits + Context

Our hello program begins life as a source program (or source file). that the
programmer creates with an editor and saves in a text file called helle.c. The
source program is a sequence of bits; each with a value of 0 or 1, organized in 8:bit
chunks called bytes. Each byte represents some text character in the program.

Most computer systems represent text characters using the ASCII standard
that represents each character with a unique byte-size integer value.! For example,
Figure 1.2 shows the ASCII representation of the hello.c program.

The hello.c program is stored in a file as a sequence of bytes. Each byte has
an integer value that corresponds to some character. For example,.the first byte!
has the integer value 35, which corresponds to the character “#’. The second byte
has the integer value 105, which corresponds to the character ‘i°, and so on. Notice
that each text line is termindted by the invisible newline character ‘\n’, which is
represented by the integer value 10. Files such as hello. ¢ that consist exclusively
of ASCII character$ are known as text files. All éther files are krfown as binary
files.

The representation of hello. ¢ illustrates a fundamentalidea: Allinformation
in a system—including disk files, progratns stored in memory, user data stored in
memory, and data transfefred across' a network—is represented a'a bunch of bits.
The only thing that distinguishes different data objects is the context;in which
we view them. For example, in different contexts, the same sequence of bytes
might répresent an integer, floating-point number, character string, or machine
Instruction. '

As programmers, we need to understand machine represéntations of numbers
because they are not the same as integers and real dumbers. They are finite

A

i w

1. Other encoding methods are used to represent text in non-English langnages. See the asidg on page
50 for a discussion on this.

o
111

\n
10

e
101

\n
10

\n
10

46
{
123

‘1
108

SP
32

3

4 Chapter 1 A Tour of Computer Systems

Ed i d i e

Y w s B &
Aside Origins of the C-programming.language , ¥ "

% o

C was developed from 1969.fo 1973 by Dennis Ritchie of Bell Laboratories. The‘Amencan Natiorial
Standards Institute (ANSI) rﬁtlﬁQQme ANSI G standardeQSg aht this standardlg’atloﬁ later became
the respon51b111ty of the International Standards Orgdnization (ISO) The standards define thé C
language and a set of library functions kndwi'as the'C standard library. Ketnighan and Ritchie déécribe
ANSI C in their'classic book, which is known affectionately as “K&R” [61]. i Ritchie’s words [92],,C;
is “quirkg,_aﬂawgg, and aprenormous suécess.” Sp why the success? .)
* C-was closely tiéd with the. Unix operating system. C’was-0éveloped:from the peginping as thé

system programmmg«language for Unix: Most of the Unmkemel (the core part of the operating,
systém), and all of its supportmg tools and libraries, weréawritten.i,C. As Unix became popular in]

i *universities in the Jate 1970s and early 1980s, many people were exposed to C and found that they+
liked it. Since Unix was written almost entirely inC, it could be easily ported to new machines; §
which created an éven wider audience forbotf.uC and Unix. P #

¢ Cisasmall, simple language. The design was controfféd by'asiigle pérsén, ‘father thah a committee,
» and the result' was a clear, consistenit demgn with little, béggage Thé K&R bodk describes tlie
complete language and standardibrary, with nufnerous examples and exercises, in on 1y 261 pages.

The simplicity of Omacle it relatively. easy tg learn and t6 port 10 diffetént’ Copiputerd, - &

* Cwas desxgned fora pracrzcal plfrpose. 'C was dé&signed to 1mplement the; Uhix operating systeth.
Later, other peopi’e found that they could writé the prograrﬁs they wantedeuhout« the language«
getting in the way’ , ”f # s

W
g i “3

Cis the language of choice for! §ys€em]evel programmmg, and there is &' huge installed bae of;
application-level programs as well. Howéver, it i§ not} perfect for all prograthmers'and all situations. ;
C pointers are a commoh sotirce of confusion and”programrmng errérs. Galso lacks explicit support
, for yseful abstractiéns suchastlasses; 6bjects, and exceptionsNewer lahguages such a§ G+ and Java

g address these issues for application-levélprograms: ot e .,
- —— o B BT IR it e B s Tt LA M-ﬁﬁwwﬁwm «umiﬁwwi}

l

\e

approximations that can behave in unexpected ways. This fundamental idea is
explored in detail in Chapter 2.

1.2 Programs Are Translated by Other Programs
into Different Forms

The helloe program begins life as a high-level C program because it can be read
and understood by human beings in that form. However, in order torun hello.c
on the system, the individual C statements must be translated by other programs
into a sequence of low-level machine-language instructions. These instructions are
then packagedin a form called an executable object program and stored as a binary
disk file. Object programs are also referred to as executable object files.

On a Unix system, the translation from source file to object file is performed
by a compiler driver:

9

T T —

Section 1.2 Programs Are Translated by Other Programs into Different Forms 5

printf.o
Pre: l
hello. - hello.i i hello. hello. i hell
aello.c¢ processor a Compiler ello.s |Assembler 0.0 Linker o

(ccl) (as) (1d)
Source {cpp) Assembly l Relocatable Executable

Modified
program source program object object
{text) program (text) programs program
(text) (binary) (binary}

Figure 1.3 The compilation system.

linux> gecc —o hello hello.c

Here, the e compiler driver reads the source file hello. ¢ and translates it into
an executable object file hello. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler, and linker) are known collectively as the
compilation system.

» Preprocegsing phase. The preprocessor (cpp) modifies the original C program
according to directives that begin with the ‘#’ character. For example, the
#include <stdio.h> command in line 1 of hello.c tells the preprocessor
to read the contents of the system header file stdio.h and insert it directly
into the program text. The result is another C program, typically with the .1
suffix.

¢ Compilation phase. The compiler (ccl) translates the text file helle. i into
the text file hello.s, which contains an assembly-language program. This
program includes the following definition of function main:

1 main:

2 suby $8, Ursp

3 movl $.LCO, Yedi
4 call puts

5 movl $0, %eax

6 addq $8, Yrsp

7 rat

Each of lines 2-7 in_ this definition describes one low-level machine-

. language instruction in a textual form. Assembly language is useful because

it provides a common output language for different compilers for different

high-level languages. For example, C compilers and Fortran compilers both
generate output files in the same assembly language.

* Assembly phase. Nexts.the assembler (as) translates hello.s into machine-
language instructions, packages them in a form known as a relocatable object
program, and stores the result in the object file hello.o. This file is a binary
file containing 17 bytes to encode the instructions for function main. If we
were to view hello.o with a text editor, it would appear to be gibberish.

i

-

6 Chapter 1 A Tour of Computer Systems

[el e R iy - o

£

R

g

!
!

! popularity to the GNU tools, which provide the environment for the Linux kernel.

P e e ot] Sacin

- B e e]

Aside The GNU project

Gecce is one of many useful topls developed by the GNU (short-for GNU"s Not Unix) project. The
GNU project is a tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of
developing & complete Uhix-like system whose source code is unencumbered by restrictions on how |
it can be modified or distributed. The GNU project has developed an environment with all the major :
components ‘of a Unix operating system, except for the kernel, which was developed separately by
the Linux project. The GNU environment includes the Emacs editor, gce compiler, Gps debugger, |
assembler, linker, utilities for manipulating binaries, and other components. The gcc compiler has
grown to support many different languages, with the ability to generate code for many different ;
machines. Supported languages include C, C++, Fortran, Java, Pascal, Objective-C, and Ada.

The GNU project is a remarkable achievement, and yet it is éften overlooked. The modemn open-
source movement (commonly associated with Linux) owes its intellectual origins to the GNU project’s
notion of free software (“free” as in “free speech,” not “free beer”). Further, Linux owes much of its

3

» Linking phase. Notice that ourhello program calls the printf function, which
is part of the standard C library provided by every C compiler. The printf
function resides in a separate precompiled object file called printf .o, which
must somehow be merged with our hello. o program. The linker (1d) handles
this merging. The result is the hello file, which is an executable object file (or
simply executable) that is ready to be [oaded into memory and executed by
the system.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as hello.c, we can rely on.the compilation system to
produce correct and efficient machine code. However, there are some important
reasons why programmers need to understand how compilation systems work:

s Optimizing program performance. Modern compilers are sophisticated tools
that usually produce good code. As programmers, we do not need to know
the inner workings of the compiler in order to write efficient code. However,
in order to make good coding decisions in our C programs, we do need a
basic understanding of machine-level code and how the compiler translates
different C statements into machine code. For example, is a switch statement
always more efficient than a sequence of if-else stateiments? How much
overhead is incurred by a function call? Is a while loop more efficient than
a for loop? Are pointer references more efficient than array indexes? Why
does our loop run so much faster if we sum into a local variable instead of an
argument that is passed by reference? How-can a function run faster when we
simply rearrange the parentheses in an arithmetic expression?

t/

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 7

In Chapter 3, we introduce x86-64, the machine language of recent gen-
erations of Linux, Macintosh, and Windows computers. We describe how
compilers translate different C constructs into this language. In Chaptér 5,
you will Jlearn how to tune the perforrqance of yqur C programs by makmg
simple transformat}oqs tathe Ccode that help the.compiler do its job better.
In Chapter 6, you will learn about the hierarchical nature of the memory Sys-
tem, ho'w C compilers store data arrays in memory, and how your C programs
can exploit- this knowledge to run more ef.ﬁmen’dy

¢ Understartding link-time errors. In our experience;some of the most perplex-
ing programming errors are related to the operation of the linker, especially
when you are trying to build large software systems. For ¢xample, what does
it mean'wher the linker reports that it cannot resolve a reference? What is the
difference between a static variable and a.global variable? What happens if
you define two globalwariables in different C files with the same name? What
is the difference between a static library and a dynainic library? Why does it
matter what order we list libraries on the command line? And scariest of all,
why do some-linker-related errors not appear until run time? You will learn
the answers to these kihds of questions in Chapter 7,

» Avoiding security holes. For many years, buffer overflow vulnerabilities have
accounted for many of the security holes in network and Internet servers.
, Thege vulnerabilities gxist because top few programmers understand the need
o carefully restrict tl}q quantlty and forms of data they accept from untrusted
solirces, A ﬁx§t step in learning secyre programiping is to understand the con-
sequences of the way datg and contro! information are stored on the program
stack. We cover the stack discipline and buffer overflow vulnerabilities in
Chapter 3 as part of our study of assembly language. We will also learn about
methods that can be used by the programmer, compiler, and operating system
to reduce the threat of attack.
(e s
O -
1.4 Processors.Read and lnterpret Instructions
Stored.in Memory
3
At this point, our hello. ¢ source program has been translated by the compilation
system into an executable object file called hello that is stored on disk. To run

the executable file on a Unix system, we type its hame to an application program
known as a shell:

linux> ./kellor
hello, world &
linuk>
{3
The shell.is a command-line interpreter that prints a prompt, waits for you
to type a command-line;.and then performs the command. If the first word of the
command line does not correspond to a built-in shell command, then the shell

*——t

8 Chapterl

Figure 1.4

Hardware organization Register file
of a typical system. CPU: :
central processing unit, ALY

A Tour of Computer Systems

CPU ¥

ALU: arithmetic/logic unit, P
ic/logic unit - | System bus Memorybus

PC: program counter, USB:
Universal Serial Bus.

: X
) s VO Main
Bus interface ” bridge m memory

A
% , u X e 5 /
/O bus .
i i ~ Expansion slots for

: other devices such
uUsB Disk
controller

as network adapters
controller ’
Mouse Keyboard Display

Graphics
adapter

hello executahle
stored on disk

assumes that it is the name of an executable file that it should load’ and run. So
in this case, the'shell loads and runs the hello program and then waits for it to
terminate. The hello program ptints its message to the scteen and thén terminates.

L343

‘The shell then prints a prompt atd waltg for the next input command line.

1.4.1 Hardware Organization of a System)

To understand what happens to our hello program when we run it, we need
to understand the hardware organmauon of a typical system, which is shown
in Figure 1.4. This partlcular picture s inodeled after the family of recent Intel
systems, but all systems have a similar look and feel. Don’t*worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduyits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-size chunks of bytes known as words. The
number of bytes in a word (the word size) is a. fundamental system parameter that
varies across systems. Most machines todgy have word-sizes of either 4 bytés (32
bits) or 8 bytes (64 bits). In this book, we do not assume any fixed definition of
word size.Instead, we will specify what we mean by a “word” in any context that

requires this to be defined.

o Kmi caa . .
e T el cr ol T e a L A m o why

B e ek o

L

—_—

I/O Devices

Input/output (I/0O) devices are the system’s connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program resides on the disk.

,“Jaach I/O device 1s connected to the I/O bus by either a controller or an adapter.
The cfiétinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system’s main printed circuit board (often calied
the mothe.]rboar&:). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I/O bus and an 1/O device.

Chapter 6 has more to say about how IO devices such as disks work. In
Chapter 10, you will learn how to use the Unix I/O interface to access devices from
your application programs. We focus on the especially interesting class of devices
known as networks, but the techniques generalize to other kinds of devices as well,

Main Memory

The main memory is a temporary storage device that holds both a program and
the data it manipulates while the processor is executing the program. Physically,
main memory consists of a collection of dynamic random access memory (DRAM)
chips. Logically, memory is organized as a linear array of bytes, each with its own
unique address (array index) starting at zero. In general, each of the machine
instructions that constitute a program can consist of a variable number of bytes.
The sizes of data items that correspond to C program variables vary according
to type. For example, on an x86-64 machine runming Linux, data of type short
require 2 bytes, types int and float 4 bytes, and types long and double 8 bytes.

Chapter 6 has more to say about how memory technologies such as DRAM
chips work, and how they are combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that inter-
prets (or executes) instructions stored in main memory. At its core is a word-size
storage device (or register) called the program counter (PC). At any point in time,
the PC points at (contains the address of) some machine-language instruction in
main memory.

From the time that power is applied to the system until the time that the
power is shut off, a processorrepeatedly executes the instruction pointed at by the
program counter and updates the program counter to point to the next instruction.
A processor appears to operate according to a very simple instruction execution
model, defined by its instruction set architecture. In this model instructions execute

2, PCis also a commonly wsed acronym for “personal computer.” However, the distinction between
the two should be clear from the context.

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 9

10 Chapter 1 A Tour of Computer Systems

! in strict sequence, and executing a single instruction involves performing a series
] of steps. The processor reads the instruction from memory pointed at by the
‘ program counter (PC) mterpréts the bits in the instruction, pérforms some 51mp1e
: operatxon dictatéd by the instruction, and then updates the PCtopoint to the next
instruction, which 1 may or may not be contiguous in memory to the instruction that
was just executed.

There are only a few of these simple operations, and they revolve around
main memory, the register file, and the anthmetzc/logac unit (ALU) The reglster
file is a small storage device that consists of a collection of word-size reglsters each
with its own unique name. The ALU computes new data and address values. Here
are some examples of the 51mple operations that the CPU mijght carry out at the
request of an instruction:

¢ Load: Copy a byte or a word from main memory into a register, overwriting
the previous contents of tie register.

» Store: Copy a bﬁe or a word from a register to a’location in main memory,
overwriting the previous contents of that location.

e Operate: Copy the contents of two registers to the ALU, perform an arithmetic
operation on the two words, and store the result in a register, overwriting the
previous contents of that register.

o Jumip: Extract a word from théfinstruction itself and copy that word into'the
program counter (PC), overwriting the pre¥ious value of the PC.

We say that a processor appears to be a simple,implementation of,ifs in;
struction set architecture; but in fact modern processors use far more complex
mechanisms to speed up program, execution. Thus, we can distinguish the pro-
cessor’s instruction,set architecture, describing the effect of each machine-code ‘
instruction, from its microarchitecture, describing how the processor is actually
implemented. When we study machine code-in Chapter 3, we will consider the
abstraction provided by the machine’s instruction set architecture. Chapter 4 has
more to say about how processors are actually implemented. Chapter 5 describes
a model of how modern processors work that enables predicting and optimizing ‘

theperformancé of machine-languagé progrars.
J

1.4.2 Rurihing the he115'Program
f.

Given this simple view of a system’s hardware organization and operation, we can
begin.to understand what happens when we run our example program. We must
omit a lot of details heresthat will be filled in later, but for now we will be content
with the big picturk. ' N

Initially, the shell program is executingits instructions, waiting for ustotype a
command. As we type the characters . /hellc at the keyhoard, the shell program
reads each one into a register and then stores it in memory, as shown in Figure 1.5.

‘When we hit the enter key on the keyboard, the shell knows that we have
finished typing the command. The shell then loads the executabie hello file by
executing a sequence of instructions that copies the code and data in the hello

- e R N m

Section 1.5 Caches Matter 11

Figure 1.5 CPU

Reading the hello Register file
command from the :
keyboard.

System bus Memory bus

<] “hello”

Expansion slots for
other devices such
as network adapters

Graphics
adapter

controller

Mouse Keyboard Display

User

types
“hello”

object file from disk to main memory. The data includes the string of characters
hello, world\n that will eventually be printed out.

Using a technique known as direct memory access (DMA, discussed in Chap-
ter 6), the data travel directly from disk to main memory, without passing through
the processor. This step is shown in Figure 1.6.

Once the code and data in the hello object file-are loaded.into memory,
the processor begins executing the machine-language instructions in the hello
program’s main routine. These instructions copy the bytes in the hello, world\n
string from memory to the register file, and from there to the display device, where
they are displayed on the screen. This step is shown in Figure 1.7.

1.5 Caches Matter

An important lesson from this iéimple Iezf(ample is that a system spends a lot of
time movihg informatjon from dne-place to another. The machine instructions in
the hello program are originally stored on disk. When the program is loaded,
they are copied to main memory. As the processor runs the program, instruc-
tions are copied from main memory into the processor. Similarly, the data string
hello,world\n, originally on disk, is copied to main memory and then copied
from main memory to the display devicé. From a programimer’s perspective, tnuch
of this copying is overhead that slows down the “real work” of the program. Thus,
a major goal for system designers is to make these COpy operations run as fast as
possible.

Because of physical laws, larger storage devices‘are slower than smaller stor-
age devices. And faster devices are more expensive to build than their slower

T

- ————— -y - v————

W et e e

12 Chapter 1 A Tour of Computer Systems

CPU
Register file o
PC | | ALU
I e

i

Bus interiace

d |System bus

Memory bus

71 “hello, worldin”
.] hello code

’ :
‘E;L 3 Expansion slots for
- other devicas such
usB Graphics as network adapters
controfler adapter
Mouse Keyboard Display

hello executable
stored on disk

=i el
&HB&;’%I _terfaice-ﬁ
BT vk, TR

ALU

.|Systembys Memory bus, "

L1 * et o
A0 L0 i Maipisé] “hello, worid” 1
' bridge; gfgiggg% hello codg, '

{r o
1/0 bus)
Expansmngl‘ots for, . ~
. S other devidés sdch
usB “Gr2 ,&g,jﬂc&' Digk as, network adaplers, .
controller | iiddaptery|’ ¢ controller
‘I T t = i] T * 1
f & Iy et
Mouse Keyboard Display E pello executable

“hello, world\n”

w stored on disk !

Figure 1.7 Writing the output string from memory to the display.

1

o e

Section 1.5 Caches Matter 13

Figure 1.8 CPU chip
Cache memories.

Register file

. Qwﬂ;he: @ ALU

memories <:
L £

S
ﬁ 3 /Syslem bus Memory bus
% | .
. Ijo] /’ - Main
Bus interface @[‘9 i ﬂ aain

counterparts. For example, the disk drive on a typical system might be 1,000 times
larger than the main memory, but it might take the processor 10,000,000 times
longer to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred Bytes of information,
as opposed to billions of bytes in the main memory. However, the processor can
read data from the register file almost 100 times faster than from memory. Even
more troublesome, as semiconductor technology progresses over the years, this
processor-memory gap continues to increase. It-is easier and cheaper to make
processors run faster than it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller,
faster storage devices called cache memories (or simply caches) that serve as
temporary staging areas for information that the processor is likely to need in
the near future. Figure 1.8 shows the cache memories in a typical system. An LI
cache on the processor chip holds tens of thousands of bytes and can be accessed
nearly as fast as the register file. A larger L2 cache with hundreds of thousands
to millions of bytes is connected to the processor by a special bus. It might take 5
times longer for the processor to access the L2 cache than the L1 cache, but this is
still 5 to 10 times faster than accessing the main memory. The L1 and L2 caches are
implemented with a hardware technology known as static random access memory
(SRAM). Newer and more powerful systems even have three levels of cache: L1,
L2, and L3. The idea behind caching is that a system can get the effect of both
a very large memory and a very fast one by exploiting locality, the tendency for
programs to access data and code in localized regions. By setting up caches to hold
data that are likely to be accessed often, we can perform most memory operations
using the fast caches.

One of the most important lessons in this book is that application program-
mers who are aware of cache memories can exploit them to improve the perfor-
mance of their programs by an order of magnitude. You will learn more about
these important devices and how to exploit them in Chapter 6.

14 Chapter 1 ATour of Computer Systems

Smaller,
faster,
and
costlier
(per byte)
storage
devicqs

Larger,

slg:;r. L4: Main memory
cheaper (DRAM)

CPU registers hold words
\ retrieved from cache memory,
L1i: / L1 cache

L2 cache
(SRAM) L2 cache holds cache lines

] retrieved from L3 cache.
L3: /- L3 cache

(SRAM) } L3 cache holds cache lines

L1 cache holds cache lines
retrieved from L2 cache.

retrieved from memory.

(per byte)
storage Lb:
devices

Main memory holds disk blocks.
retrieved from local disks.

Local secondary storage
(local disks)

Y Lfy

retrieved from disks on

Local disks hold fites
remote network server.

Remote secondary storage 1
(distributed file systemns, Web servers}) 5.

~ FIR £h)

Figure 1.9 An example of a memory hierarchy. N

1.6 Storage Devices Form a Hierarchy

This notion of inserting a srhhller, faster’ storage device (e g.,"cache memory)
between the processor aqd a larger, Slower device (¢.g., mail'membory)‘{urns otit
to'be a general idea. In’facf, the storage devices'in every computer system are
organized as a memory hiefarchy similar to Flgure 1.9. As we move from the top
of the merarchy to the bottom, the devices become slower, larger, and less costly
per byte. The register file occupies the top level in the hierarchy, which is kﬁown
as level 0 or LO. We show three levels of caching L1 to L3, occupying memory
hierarchy levels 1 to 3Main memory occupies level 4, and $o oh.

The main idea of 2 memory hierarchy is ‘that storage at one level serveS'as a
cache for storage at the next lower level. Thus, the reg1ster file is a cache for the
L1 cache. Caches L1 and 1.2 are cathes for 1.2 'and L3, re$pectively. "The 1.3 cache
is a cache for the main memory, which is a cache for the disk, On some networked
systems with distributed file} systems the local'disk serves as*a'cacﬁe for data stored
On the digks of other systems. *

Just a§ programniers can exploit khowledge of the different tachés to imiprove
petformance, programmers éar exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much fmore to say about this. |

v

[ooy -
1.7 The Operatihg System Manageés the'Hardware

Back to our hello example; When the shell ldaded and ran the hello program,
and when the hello program printed its message, neither program accessed the

Section 1.7 The Qperating Systern Manages the Hardware 15

Figure 1.10 Application programs
Layered view of a — « Software
computer system. Operating system

\ Processor Main memory 1/O devices }Hardware

Figure 1.11 Processes ‘
A
Abstractions provided by 1
an operating system. Virtual memory !
{ i B
]
i Files !
i S
Processor Main memory I I/O devices —I

keyboard, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
alayer of software interposed between the application program and the hardware,
as shown in Figure 1.10. All attempts by an application program to manipulate the''
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications and,(2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The opgrating system achieves both goals via the
fundamental abstractions shown in Figure 1.11: processes, virtual memory, and
Jiles. As this figure suggests, files are abstractions for I/O devices, virtual memory
is an abstraction for both the main memory and disk I/O devices, and processes
are abstractions for the processor, main memory, and I/O devices. We will discuss
each in turn. N

1.7.1 Processes
T

When a program such as hello runs,on a modern system, the operating system
provides the illusionithat the program is the only.one runming on the system. The
program appears to have exclusive use of both the processor, main memory, and
I/Q.devices. The-processor appears to execute, the instructions in the program, one
after the other, without interruption. And the code and data of the program appear
to be the only objects in the system’s memory. These illusions are provided by the
notion of a process, one of the most important and successful ideas in computer
science, v

A.process is the operating system’s abstraction for a running program. Multi-
ple processes can run concurrently on the same system, and each process appears
to have exclusive use of the hardware. By concurrently, we mean-that the instruc-
tions of one process are interleavedswith the instructions of another process. In
most systems, there are more processes to run than there are CPUs to run them.

16 Chapter 1 A Tour of Computer Systems

W A - aed . P ’ * 1 ’
by Aside Unix,MPosi‘xi- and the Standard Unix Specﬁ?catlon . _— N 3
¥

The 19605 was an era of huge, complex operatlng systems, such s TBM’s OS/360 and Honeywell's ~
Multics systems. While OS/360 was one”of th.most successful software pro;ects in history, Multics
! - dragged on for,years and never achieved wide-scale use. Be]l Labqratories was an original partner in
the Multics project but dropped out in 1969 because, of concern over theconiplexity of the project
and the lack of progress..In reaction to their unpleasant Multics experience, a group of Bell Labs #
researchers——Keén Thompson, Dennis Ritchie, Ijoug Mcllroy, and Joe Ossanrla_’began work in 1969
on a simpler operating.system for a Digital Equipment Corporation PDP 7 computer, dyritted entirely *
in machine language. Many of the ideas in the new system, such as the hierarchical file system and the
notion of a shell as a user-level-process, were borrowed from Multics-but implemented in a smaller,
simpler package. Ini 1970, Brian Kernighan dubbed the- new'system "1 “Usdix” as a pun on the corthplexity
of “Muitics.” The kernel was rewntten in C n 1973 and Unix was annouﬂced to the outside world in
1974 [93].

Because Bell Labs made the-source code available to §chools with generous terms, Unix developed
a large followlng at uniVersities. The, most influential Wprft was done‘at the Un1vers1ty of. California
at Berkeley in the lafe L9705 and early i9803 w1tl1 Berke}ey researc'fhers addlng; virtual: memory and
thé Internet protocols in.a senes cof neleasesw called Umx 4, XBSD (Be*rkeley Software”Dmnbunon)
Concurrently, Bell Labs was ré“leasmg ‘tHelr own versions, whlcli became known as System V Umx
Versions from othér vendors, such as the’ Suml\/flcrosysfems Solaris system", were derwed from* these
original BSD and System V.versiosis. BIOE

Trouble arose in-the mid" 19805 as Unix \lendors‘tned to dxfferennaté"themSelves by addmg new
and often incompatible ?eatunes To comB‘at {hig ti"ena ”IEEE'i(Insﬁtute for Electrlcal afid Electrdn—
ics Engineers) 5ponsore‘dxan effort t§ standard:ze Umx latef dubbed"¥Posix” by Richard Stallman
The resuit was a farmly of standards knowgn aS the " Posix stan"dé"rds, that cover *suchissuestas tHéC
language mterfacé for Unix system calls shell, Erograms ‘and ut111t1es threads, and network“ﬁrogramr)
ming, More recently, a separate standardlzatmn effort, kifown as the “Stand@ré Uhix § Spec1ﬂcat1on -
has joined forces with Posnc to’create a single, ‘unified standard forUnix systems, As a ‘result’of these
standardization eﬂgorts the difference$ between Ufiix Versiofis Have largely disappedred.

- e ¥ wh E # % < L oew &

[3

pe

Traditional systems could only execute one program at a time, while newer multi-
core processors can execute several programs simultaneously. In either case, a
single CPU can appear to execute multiple processes concurrently by having the
processor switch among them. The operating system performs this interleaving
with a mechanism known as context switching. To simplify the rest of this discus-
sion, we consider only a uniprocessor system containing a single CPU. We will
return to the discussion of multiprocessor systems in Section 1:9.2.

The operating system keeps track of all the state information that the process
needs in order to run. This state, which is known as the cortext, includes informa-
tion such as the current values of the PC, the register file, and the contents of main
memory. At any peint in time, a uniprocessor system can only execute the code
for a single process. When the operating system decides to transfer control from
the current process to some new process, it performs a context switch by saving
the context of the current process, restoring the context of the new process, and

e e]

Section 1.7 The Operating System Manages the Hardware 17

Figure 1.12 Time Process A i Process B
Process context ’
switching, ‘} H User code
Tead--~ i Context
Kernel code .
! switch
o ' y User code
Disk interrupt --» T Context
I Return i Kemel code ¢ gwitch
from read + ' User code
I

then passing control to the new process. The new process picks up exactly where
it left off. Figure 1.12 shows the basic idea for our example hello scenario.

There are two concurrent processes in our example scenario: the shell process
and the hello process. Initially, the shell process is running alone, waiting for input
on the command line. When we,ask it to run the hello program, the shell carries
out our request by invoking a special function known as a system call that passes
control to the operating system. The operating system saves the shell’s context,
creates a new hello process and its conteXt, and then passes control to the new
hello process. After hello terminates, the operating system restores the context
of the shell process and passes control back to it, where it waits for the next
command-line input.

As Figure 1.12 indicates, the transition from one process to another is man-
aged by the operating system kernel. The kernel is the portion of the operating
system code that is always resident in memory. When an application program
requires some action by the operating system, such as to read or write a file, it
execytes a special system call instruction, transferring control to the kernel. The
kerne] then Her'forms ﬁw requested operation and returns back to the application
program. Note that the kernel is not,a separate process. Instead, it is a collection
of cg')de and data structures that the system uses to manage all the processes.

I?nglementing the, process abstraction requires close cooperation between
both the,lon-level hardware and the operating system software. We will explore
how this works, and how 3pplications can create and control their own processes,
in Chapter 8.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern
systems a process can actually consistéf multiple cxéfution units, called threads,
each running in the context of th¥ process and sharing the same code and global
data. Threads are an incréasingly important programming model because of the
requirement for concurrencyin network servers, because-it is easier to share data
between multiple threads than between multiple procesdses, and because threads
are typically more efficient than processes. Multi-threading is also one way to make
programs-run faster-when multiple processors are available, as we will discuss in

18 Chapter 1 A Tour of ComputerSystems

Mg R Amaturm——

Figure 1.13 Me_n'!glfyt
i Kernel virtual memor ! invisible to .
Process virtual address Keme a ory inviibe .

space. (The regions are not
drawn to scale.)

Usér stack
{created at run time)

st ama

-,

Mermory-mapped region for

intf f ion
shared libraries -print{ functio

S L i D

Run -time heap
(created by mallge)

»* Read/write data .
- . Loaded from the

' . Y hello executable file
‘|- Read-only code and data

Program __| s
start i

Section 1.9.2. You will learn the basic concepts of concurrency, including how to .
write threaded programs, in Chapter 12. E

1.7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the 111us1on that it
has exclusive use of the main memory. Each process has the same uniforr yiew of 1
memory, Which is known as its virtual address space. The virtual address space for K
Linux processes is shown in Figure 1.13. (Other Unix systems use a similar layout) B
In Liniix, the topmost region of the address space is Teserved fot code and datd
in the operating system that is commeon to all processes. The lower fegion of the 3
address space holds the cdde and data defined by’the user’s procéss. Note thit _
addresses in the figure incréase from the battom to'the*top. s 1
The virtual address space seen by each process consists of a number of well:
defined areas, each with a specific purpose: You will learn more about these areas ;
later in the book, but it will be helpful to look briefly at each, starting with the

lowest addresses and working our way up: g

¢ Program code and data. Code begins atthe samefﬁxed address for all processes 3
followed by data locations that correspond to glpbal C variables. The code and B
data-ayeas are initiglized directly, from the contents of an executable ob]ect h
file—in,our case, the hello executable. You will learn more-about this part of N
| the address spage when we study linking and loading in Chapter 7.

o Heap. The code and data areas are followed immediatelyby the:run-time heap.
Unlik& the code and data areas, whichare fixed in size once the process begins 4

s

running, the heap expands and contracts dynamically at run time as a result
of calls to Cstandard library routines such as malloc and free. We wiil study
heaps in detail when we learn about managing virtual memory in Chapter 9.

o Shared libraries Near the middle of the address space is an area that holds the
code and data for shared libraries such as the Cstandard library and the math
library. The notion of a shared library is a powerful but somewhat difficult
concept. You will learn how they work when we study dynamic linking in
Chapter 7.

¢ Stack. At the top of the user’s virtual address space is the wuser stack that
the compiler uses to implement function calls. Like the heap, the user stack
expands and contracts dynamically during the execution of the program, In
particular, each time we call a function, the stack grows. Each time we return
from a function, it contracts. You will learn how the compiler uses the stack
in Chapter 3.

e Kernel virtual memory. The top region of the address space is reserved for the
kernel. Application programs are not allowed to read or write the contents of
this area or to directly call functions defined in the kernel code. Instead, they
must invoke the kernel to perform these operations.

For virtual memory to work, a sophisticated interaction is required between
the hardware and the operating system software, including a hardware translation
of every address generated by the processor. The basic idea is to store the contents
of a process’s virtual memory on disk and then use the main memory as a cache
for the disk. Chapter 9 explains how this works and why it is so important to the
operation of modern systems,

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every I/O device,
including disks, keyboards, displays, and even networks, is modeled as a file. All
input and output in the system is performed by reading and writing files, using a
small set of system calls known as Unix /0.

This simpic and elegant notion of a file is nonetheless very powerful because
it provides applications with a uniform view of all the varied I/O devices that
might be contained in the system. For example, application programmers who
manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same prograni will run on different systems that use
different disk technologies. You will learn about Unix I/C in Chapter 10.

1.8 Systems Communicate with Other Systems
Using-Networks

Up to this point in our tour of systems, we have treated a system as an isolated
collection of hardware and software. In practice, modern systems are often linked
to other systems by networks. From the point of view of an individual system, the

Section 1.8 Systems Communicate with Other Systems Using Networks

19

o

- L = CELp i :.,

20 Chapter 1 A Tour of Computer Systems

R R L R T e g S N
éside The Llnux,,pmjegt o g h e S TR %

e & K [

5
w
o

i
w47 _
i In Atigust 199%; a Fifinisigradusite stitdenit namEd L1qus°f1“m:walgls gnqdestfy anfiunceda ne‘%’Umx like

=@operatmg system kémel'?i G

e

L E LN

o g(B 7 T*Q k4 5 5 e
i o LI { ,‘x-«, ,m Hy ow P 5 -
From: torvaldsﬁglaa%iﬁ Helmnﬁ"’ I;% f'3nds "‘Benedlct Tgrv% s o TR B
~%’m ’“.-3 :’ & P &u.*”i AT T T " T
Newsgro*ups comp os mJ.n:l.x o : i M P
2 y A PR .
Subject: "What' would you *l:l.ke %,o see moS‘th mmlx'? Nk "’“ﬁ'i . -
e k4 kl 4 *
.Sugmary: small pgll for .oy neW, oper*’étlng systém L, . .)
Date: 2§ Aug 91 20: 57 8. GMT * % * = ™% Fog &f:% . B ﬁ«“i EL e
5 %ﬁi‘"‘% “”3 wark "’”7,‘@ Ly, o 5 % s e . BEr
: Hello everybodxﬂou Lhers. us:.na mln:.x& A .ok, * o o d

k|
I'm do:l.ng a, (fre"e) Qperaglng gystem (Just a hobby,iwgb;;'t* be big Mapdﬁ : S,
i profesﬁlonal like 'gnu) :f,p];t »386(486) AT ’(:Iones;.ﬁ ThlSw ‘hals,) been brew:tng”? B g e s,
s:.nce April, and is sta.rtlng’ to" get readz zﬂI d“Like®an fee back éon ”}k .
‘*thlngs people llke/dl%like in.minix, as my 03, r,&esembles it egmew’hat o o
(same physmal 1a°yaub of dﬁhe flievg%ste“ggx ‘?du‘e to pract:.cal reasons)%«z :
"among other ‘1:]:1:Lngs)i 1, i y :

ol e i &

S %i%fff% %, bw e wm BT ™ #
"Tive cubrently, Ported bash("l 08) and gcc(‘:l,’ 40y, atid#/rhings) &4 Kghorkiyty ¢
This 1mp11es that ;"-.11 get sbmethlng practlcal w1th1n 4 fev months, angd E
I!d 1iké To kitbir wha%rﬁg &fés*most ’p‘eop’le would%ant Aﬁy@-suggeétlons * T

are welcome, but,i "yfon'.f#promlse %pll“’*g_mp;ément tﬁem“”«q)‘ &
ol Fugmt, 0 gﬂu. o

Einus - (torvalds@kruuna "hElSJ.lel “fl)‘,,}‘*w s'yg wi‘ %;# F g T » Y

A el s

i

As Torvalds 1nd1éa§es his® starfmg pomt;ﬁ)r ‘créatingbiipux Was Miiix, a,ri operatmg system rdevel- |

oped by Andrew S: *Iax;!,enbaum for educanonal purposes []jﬁ] *
The rest, as they say, i hf‘story finux hds evolvea, ,lntoxa technical and cultural phenomenon By
_ combihing fopdes with the QNU prOJect, Jhe Llnux‘pwj ecLhas deve]oped a corfiplele, Posxx—comphant
vérsion of the Umx operatmg systemn, Jncludmg the kemeHanél allfof the supportmg infrastructure:
Lintx is available pn*a, wide, arrhy of coinputers, 'fro %a%dheld devwes’ ts: mamfra &, computers A
group at,IBM has even po‘l;tcd Lmlgx'tff 4 %ffsfﬁat’eﬁ" . e b ko e f’

',“_. L g . kS
K] W didim Do 4 mﬁ. Wwﬁw 4‘5 i i %ﬂ b2

network can be viewed as just another I/O device, as shown in Figure 1.14. When
the system copies a sequence of bytes from main memory to the network adapter,
the data flow across the, network to another machine, instead of, say, to a local
disk drive. Similarly, the system can read data sent from other machines and copy
these data to its main memory.

With the advent of global networks such as the Internet, copying information
from one machine to another has become one of the most important uses of
computer systems. For example, applications such as email, instant messaging, the
World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Section 1.8 Systems Communicate,with Other Systems Using Networks 21

Figure 1.14 CPU chip
A network is another 1/0 Register file
device. —

ALY

E Z System bus Memory bus
Bus interface - 4

Main
memory

o Expansion slots
1

: i)

iy

L K o | »
uss Graphics ., [, Disk #Netwark 7
controller adapter controller ¥
Ty 4a
, I Mouse Keyboard, = Monitor
¥ n
h M
. -
J-User types 2. Client sends “hello”
hello” at the string to telnet server 3. Server sends “hello”
keyboard ©Logal See-—memm e P ——— Remote ™\ String to the shell, which

telnet ; telnet funs the hellp program
client AA----=-—-commmmeo server and passes the output
4. Telnet server sends to the telnet Server
‘hello, world\n" string
to client

5. Client prints
‘hello, world\n”
string on display

Figure 1.15 Using telnet to run hello remotely over a network.

Returning to our hello example, we could use the familiar teinet application
to run hello on a remote machine-Suppose we use a telnet client Tunning on our
local machine to connect to g telnet server on a remote machine. After we log in
to the remote machine and run a shell, the remote shell is waiting to receive an
input command. From this point, running the hello program remotely involves
the five basic steps shown in Figure 1.15. L)

After we type in, the hello string to the telnet client and hit the enter key,
the client sends the string to the telnet server. After the telnet server receives the
string from the network, it passes it along to the remote shell program. Next, the
remote shell runs the hello program and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to
the telnet client, which prints the output string on our local terminal.

'This type of exchange between clients and servers is. typical of all network
applications. In Chapter 11 you will learn how to*build network applications and
apply this knowledge to build a simple Web server.

— T At ——— mm— m omw ——— o om mm - "
™ ey
m—— r—— Ao e R [P R S — [EP eI PN S— P

22 Chapter 1 A Tour of Compufer'Systems

1.9 Important Themes

me————

This concludes our initial whirlwind tour of systems. An important idea to take
away from this discussion is that a system is more than just hardware. It is a
collection of intertwined hardware and systems software that must cooperate in
order to achieve the ultimate goal of running application programs. The rest of
this book will fill in some details about the hardware and the software, and it will
show how, by knowing these details, you can write programs that are faster, more

. reliable, and more secure.
‘ To close out this chapter, we highlight several important concepts that cut :

| across all aspects of computer systems. We will discuss the importance of these
concepts at multiple places within the book.

1.9.1 Amdahl's Law i

Gene Amdahl, one of the early pioneers in computing, made a simple but insight-
ful observation about the effectiveness of improving the performance of one part
of a system. This observation has come to be known as Amdahl’s law. The main
idea is that when we speed up one part of a system, the effect on the overall sys-
tem performance depends on both how significant this part was and how much
it sped up. Consider a system in which executing some application requires time

Toi4. Suppose some part of the system requires a fraction « of this time, and that
we improve its performance by a factor of k. That is, the component originally re-

| quired time aT,4, and it now requires time (aTy4)/ k. The overall execution time
would-thus be

o e

Thew = (1~ a)Tya + (@Tua)/ &
= Toul(1 — &) + /k]
From this, we can compute the speedup S = Tyq/ Tew a5

§— 1
A-a) +a/k

As an example, considef the case where a patt of the system that initially
’ consumed 60% of the time (e = 0.6) is sped up by a factor of 3 (k = 3). Then
I we get a §peedup of 1/[0.4 + 0.6/3] = 1.67x. Even though we madé a'substantial
’ improvement to a major part of the system, our net speedup was significantly less
than the speedup for the one part. This is the major insight of Amdah!’s law—
io significantly speed up the entire system, we must ilprove the speed of‘a very
large fraction of the' overall system.

I

B

i
o |

. Suppose you work as a truck driver, and you have been hired to carry a load of
! potatoes from Boise, Idaho, to Minneapolis, Minnesota, a total distance of 2,500 :
kilometers. You estimate you can average 100 km/hr driving within the speed

limits, requiring a total of 25 hours for the trip.

Nww;ﬂ; ‘

Section 1.9 Important Themes

g R Y Ty I s TSR TR ™ aap S e o
,‘Asudg mﬁxpressmg refatlvep ormanﬁﬁ‘ _fmw i g pnl mws,gﬁm,
i"n'@

The f)estﬁway Yo' express 4 perfor.mahce 1mpr9vement 1}5 as a ratio: of the form Jog/ Tnew;?where Toid is.
tﬁe timg reqmred for the. origmal\,ve;rsmn and;‘l”,’mwus’ifre'ﬁme requ1red by them(?dlﬁed Version.. This
wﬂ] IBe @ number %reater thgn o ,gf dny real unPrg'vemenf oct:urred We use the suffix'; ;5 1 mdlcate
su5h ratlo ‘%vhe’{'é 14 e“'factof‘wfm it expresseiwegﬁﬂly%s g mﬂes” : *‘**“ A s

’ﬁ "‘"’I‘he mo;‘e tradltlonéﬁ’ﬁwaﬁqf éxpreSsmé.relatwe changt:?f*asa a percentage “works vs’lell when'the’
change is sm_zi']i" filtin 1fs‘§‘deﬁnmon*vls amb;éﬁ"‘éﬂ%*Should it be“lﬂg Ty } "Tn;:;,)/ Tnew, or"possibly
Ho0* (f’;ﬁ‘ = Do)/ Toid, ot sdm'é'tﬁlﬁﬁ Els}e” Tn addmdn“ it 13*15"ssz1ﬁst’i"uégt1ve for»large changes Saying
“that’ pérformande‘?mproved bmzo%" is 1 6re d1fﬁc"‘fﬂt’*:;o.coxﬁprehend than sunply saymg that the

P pe: fofm&ncelxﬁprowed Bygide S R _,
E&ﬁfswiﬁv ﬁ!’*@ﬁ}%ﬁ%}&4§& S Bpunde? M}"«f Lot %?wi* ® ¥ %ﬁr&" ¥ Mhﬁmﬁ?ﬁww&ﬁ -a.SViw. o ""df

A. You hear on the news that Montana has just abolished ifs speed limit, which
- constitutes 1,500 km of the trip. Your truck can travel at 150 km/hr. What
will'be your speedup for the triph

B. "You can buy a new turbocharger for your truck at www.fasttrucks.com. They
stock a variety of models, but thé faster you want to go, the mbre it will cost.

How fast must 'you travel thrbugh Montana to gét an overall speedup for
¥ your trip 8f 1.67x?

The marketing depart’tnent at your company has promised your customers that
the nekt software release will show a 2x performance improvement. You have
bee¢n adsigned the task of delivering on that promise. You have determined that
only 80% of the system can be improved. How much (i.e., what value of k) would
you need to improve this part to meet the overall performance target?

»

, One interesting special case of Amdahl’s law is to consider the effect of setting
k to oo. That is, we are able to take some part of the system and speed it up to the
point.at which it takes a negligible amount of time. We then get

1
S = (1.2)

So, for example, if we can speed up50% of the system to the point where it requires
close to no time, our net speedup will still only be 1/0.4 =2.5x.

Amdahl’s law describes a general principle for improving any process. In
addition to its application to speeding up computer systems, it can guide a company
trying to reduce the cost of manufacturing razor blades, or a student trying to
improve his or her grade point average. Perhaps it is most meaningful in the world

- S T—

’ 'F 24 Chapter 1 A Tour of Computer Systems
i

i of computers, where we routinely improve performance by factors of 2 or more
! Such high factors can only be achieved by optimizing large parts of a system?

i 2 '
t 1.9.2 Concurrency and Parallelism

—rn -
N

Throughout the history of digital computers, two demands have been constant
forces in driving improvements: we want them to dg mere, and we want them to
run faster. Both of these factors improve when the processor does more things at
! once, We use the term concurrency to refer to the generai concept of a system with
& multiple, simultaneous activities, and the term parallelism to refer to the use of
1 concurrency to make a system run faster. Parallelism can be exploited at multiple
I levels of abstraction in 2 computer system. We highlight three levels here, working
from the highest to the lowest level in the system hierarchy.

L Thread-Level Concurrency

' Building on'the process abstraction, we ark able to devise systams where multiple

{ programs execute at the same time, leading to concurrency. With threads, we
can even have multiple control flows executing within a single process. Support

q for concurrent execution has been found in computer systems since the advent

of time-sharing in the early 1960s. Traditionally, this concurrent execution was
only simulated, by having a single computer rapidly switch among its executing
| processes, much as a juggler keeps multiple balls flying through the air. This form
1 of concurrency allows multiple users to interact with a system at the same time,
' such as when many people want to get pages from a single Web server. It also
- allows a single user to engage in multiple tasks concurrently, such as having a
¥ Web browser in one window, a word processor in anothgr, -and streaming music
| playing at the same time. Until recently, most actual computing was done by a
! single processor, even if that processor had to switch among multiple tasks. This

! configuration is known as a uniprocessor system. ,
o When we construct a system consisting of multiple processors all under the
¢ control of a single operating system kermel, we have a multiprocessor system.
Such systems have been available for large-scale computing since the 1980s, but
they have more recently become commonplace with the advent of multi-core
processors and hyperthreading. Figure 1.16 shows a taxonomy of these different

i processor types.:

Multi-core processors have several CPUs (referred to as “cores”) integrated
onfo a single integrated-circuit chip. Figure 1.17 illustrates the organization of a

Figure 1.16 All processors
] Categorizing different B ' : Mumpmce;mm
processor configurations. :
o Multiprocessors are :
! becoming prevalent Uniprocessors
with the advent of multi- .
core processors and .

hyperthreading.

Section 1.9 Important Themes

Figure 1.17 Processor package
Multi-core processor

organization. Four
processor cores are
integrated onto a single
chip.

1
typical multi-core processor, where the chip has:four CPU cores, each with its
own L1 and L2 cachés, and with each L1 cache split into two parts—one to hold
recently fetched instructions and one to hold data. The cores share higher levels of
cache as well'as the interface to miain memory. Industry experts predict that they
will be able to have dozens, and ultimately hundreds, of cores on a single chip,

Hyperthreading, sometimes called simultaneous multi-threading, is a tech-
nique that allows a single CPUj t¢ execute multiple flows of control. It involves
having multiple copies of some of the CPU hardware, such as program counters
and register-files, whlle:ﬁavui’g only single copies of other parts of the hardware,
such as the‘unitsthat perform floating-point arithimetic. Whereas a cenventional
processor requires hround 20,000 clock cycles to shift between different-threads,
a hyperthreaded processor decides which of its threads to execute on a cycle-by-
cycle basis. It enables the CPU to take'better advantage of its processing resources.
For example, if one thread must wait for some data to be loaded into a cache, the
CPU can proceed with the execution of a differbnt thread. As an example, the In-
tel Core i7 processot can have each core executing two threads, and so a four-core
system can actually execute eight threads in parallel.

The use of-multiprocessitig can improve system performance in two ways.
First, it reduces the need to simulate’concurrency when performing multiple tasks.
As mentioned, even a personal computer being used by a single person is expected
to perform many agctivities concurrently. Second, it can run a single application
program faster, but only if that program is expressed in terms of multiple threads
that can effectively execute in parallel. Thus, although the principles of concur-
rency have been formulated and studied for over 50, years, the advent of multi-core
and hyperthreaded systems has greatly increased the desire to find ways to write
application programs that can exploit the thread-level parallelism available with

25

— . St st s = it— il i, | S o it A e oty bminmen B b e M i mameiewn 5 n ==
! T T = - e . : - ——

v

26 Chapter1 A Tour of Computer Systems
the hardware. Chapter 12 will look much more deeply into concurrency and.its

l! use to provide a sharing of processmg resources and to enable ‘more parallelism
in program execution. g -

Instruction-Level Parallelism

At a much lower level of abstraction, modern processors can execute multiple
instructions at one time, a property known as instruction-level parallelism. For
¢
example, early microprocessors, such as the 1978-vintage Intel 8086, required
multiple (typically 3-10) clock cycles to execute a single instruction. More recent
¥ processors can sustain execution rates of 2-4 instructions per clock cycle. Any
given instruction requires much longer from start to finish, perhaps 20 cycles or
more, but the processor uses a number of clever tricks to process as many as 100
instructions at a time. In Chapter 4, we will explore the use of pipelining, where the
| actions,required to execute an instriction are partitioned into different steps and
the processor hardware is organized as a series of stages, each performing one
E of these steps. The stages can operate in parallel, working on different parts of
different instructions. We will see that a fairly simple hardware design can sustain
an execution rate close to 1 instruction per clock cycle.

Processors that can sustain execution rates faster than 1 instruction per cycle
are known as superscalar processors. Most modern processors support superscalar
operation. In Chapter 5, we will describe a high-level model of such processors.
i We will see that apphcatwn Programmers can use this model.to understand the

performance of their programs They can then write programs such that the gen-
erated code achigves higher degrees of instruction-level parallelism and therefore
A runs faster. 1

i Singlé-Instruction, Multiple-Data (SIMD) Parallelism

At the lowegt level, many modern processors havespecial hardware that allows
a single instruction to.cause multiple,operations to be performed in parallel, a
mode known as single-instruction, multiple-data (SIMD) parallelism. For example,
recent generations of Intel and AMD, processors have instructions that can add 8
pairs of single-precision floating-point-numbers (C data type £1oat) in parallel.
These SIMD instructions are provided mostly, to speed up applications that
process image, sound, andvidgo data. Although some,compilers attempt-to auto-
matically extract SIMD paraltelism.from C programs,a more reliable method is to
write programs using special veéror, data types supported in compilers such as Gee,
We describe this style of programming in Web Aside opT:sIMD, as a supplement to
the more general presentation,on program optimization found in Chapter 5. 4

L

1.9.3 The Importance of Abstractions iri Computer $y§téms

’ The use of abstractions is one of the most important concepts in computer sciencé.
For example, one aspect of ‘good programming practice is to formulate a simple
application program interface' (API) for a set of functions that allow programmers
to use the code without having to delve into its inner workings. Different program-

Section 1.10 Summary 27

Figure 1.18 Virtual machine

Some abstractions
provided by a computer
system. A major theme
in computer systems

is to provide abstract
representations at
different levels to hide
the complexity of the, Operating system Processor
actual implementations.,,

Processes
b

Instruction set
architecture Virtual memory
A A

Files

_————— e
———r)

— -

T
1
;
]

Main memory I /O devices |

ming languages provide different forms and levels of support for abstraction, such
as Java class declarations and C function prototypes.

We have already been introduced to several of the abstractions seen’in com-
puter systems, as indicated in Figure 1.18. On the processor side, the instruction set
architecture provides an abstraction of the actual processor hardware. With this
abstraction, a machine-code program.behaves as if it were executed on a proces-
sor that performs just ope instruction at a time. The underlying hardware is far
more ¢laborate, executing multiple instryctions in parallel, but always in a way
that is consistent with the simple, sequential model. By keeping the same execu-
tion model, different processor implementations can execute the same machine
code while offering a range of cost and performance.

On the operating system side, we have introduced thre¥ abstractions: files as
an abstraction of I/O devices, virtual memory as an abstraction of program mem-
ory, and processes as an abstraction of a running program. To these abstractions
we add a new one: the virtual machine, providing an abstraction of the entire
computer, including the operating system, the processor, and the programs. The
idea of a virtual machine was introduced by IBM in the 1960s, but it has become
more prominent recently as a way to manage computers that must be able to run
programs designed for multiple operating systems (such as Microsoft Windows,
Mac OS X, and Linux) or different versions of the same operating system.

We will return to these abstractions in subsequent sections of the book.

1.10 Summary

A computer system consists of hardware and systems software that cooperate
to run application programs, Information inside the computer is represented as
groups of bits that are interpreted in different ways, depending on the context.
Programs are translated by other programs into different forms, beginning as
ASCII text and then translated by compilers and linkers into binary executable
files.

Processors read and interpret binary instructions that are stored in main mem-
ory. Since computers spend most of their time copying data between memory, [/O
devices, and the CPU registers, the storage devices in a system are arranged in a hi-
erarchy, with the CPU registers at the top, followed by multiple levels of hardware
cache memories, DRAM main memory, and disk storage. Storage devices that are
higher in the hierarchy are faster and mote costly per bit than those lower in the

— ™ ety e ——— [y B s A S—— —— e m o= om

1 28 Chapter 1 A Tour of Computer Systems

hierarchy. Storage devices that are higher in the hierarchy serve as caches for dé-

vices that are lower in the hierarchy. Programmers can optimize the performance
i of their C programs by understanding and exploiting the memory hierarchy. «
' The operating system kernel serves as an intermediary between theapplica-

tion and the hardware. It provides three fundamental abstractions: (1) Files are
": abstractions for /O devices. (2) Virtual memory is an abstraction for both main
' memory and disks. (3) Processes are abstractions for the processor, main memoty,
! and IO devices; - -
: Finally, networks provide ways for computer systems to communicate with
ﬂ one another. From the viewpoint of a particular system, the nétwork is just another
i /O device.

Kl

Bibliographic Notes

Ritchit has Wwritten”intefesting firsthand accounts of the early days of C and
Unix [91, 92]. Ritchie and Thompson presentéd the!ﬁrstp’publish'éa accourit of
Unix [93]. SilberscHatz, Galvin, and Gégre' [102] provide a comprehensive history
of the differeht flavors bf Unix. The GNU (www.gnt.obg) and Lintix (www.linux
.org) Web pages ‘have loads of current and historical infofmation. The Posix
standards are available online at (w?rwfunix.org).

Solutions to Practice Problems

Solution to Problem 1.1 (page 22)
This'problem illustrates that Amdahl’s law applies to more 'than just computer

systems. “!
P 1

A. In terms of Equation 1.1, we have & = 0.6 and k = 1.5. Mgre directly, travel-
t ing the $,500 kilometers thrgugh Montana will require 10 hours, and the rest
! of the trip also requires 10 hours. This will give a speedup, of 25/(10+10) =
§
1

1.25x%. E)

B. In térms of Equation 1.1, we have o =0.6, and we réquire § = 1.67, from
{ which we can solve for k. More directly, to speed up the trip by 1.67x, we
I must decrease the overall time to 15 hours. The parts outside of Montana
will still require 10 hours, so we must drive through Montana in 5 hours.
This requires traveling at 300 km/hr, which is pretty fast for a truck!

Solution to Problem 1.2 (pade 23¥

' Amdahl’s law is best understood By working through some examples. This one

I requires you to look at Equation1.1 from an unusual perspective, ’
This problem'is a simple application of the’equation. You are given § = 2 and

o = 0.8, and you must then solve for k:

-'J
! o 1r

2 =
(= 0.8) + 0.8/k
: i ” 04 +1.6/k=1.0
k=267 ;

e s

s e .

LU LAY

- [Program Structure

nd Execution

- ur exploration of computer systems starts by studying the com-
puter itself, comprising a processor-and a memory subsystem. At
.4 the core, we require ways 1o represent basic data types, such as
%:appioyimations to integer and real arithmetic. From there, we can con-
sider how machine-level instructions manipulate data and how a com-
. apilet translates’C programs into these instructions, Next, we study several
.4, -Toéthods of implementing a processor to gain a better understanding of
T ‘f_hi:}w hardware resources are used to execute instructions. Once we under-
stand compilers and machine-level code, we can examine how to maxi-
‘rguze program performance by writing C programs that, when compiled,
.achieye. the maximum possible performance. We conclude with the de-
Sigri of the memory subsystem, one of the most complex components of
aodern computer system.
This part of .the book will give you a deep understanding of how

T7--applitatiomprograms are represented and executed. You will gain skills
» that help you) rite programs that are secure, reliable, and make the best
Aise“of the computing resources.

pritettirmgmr e viiene] - ety - —_ —— - e it vttt =]

21

Representing and Manipulating

Information

2.1 information Storage 34

2.2 Integer Representations 59 .
23 Integer Arithmetic 84

2.4 Floating Point 108

2.5 Summary- 126

Bibliographic Notes 127
Homework Problems 128

Soiutions to Practice Problems 143

31

[T g r———— R LR T P Ve Rttt

32 Chapter 2 Representing and Manipulating Information

Modem computers store and process information represented as two-valued
signals. These lowly binary digits, or bits, form the basis of the digital revo-
] lution. The familiar decimal, or base-10, representation has been in use for over
i 1,000 years, having been developed in India, improved by Arab mathematicians in
i the 12th century, and brought to the West in the 13th century by the Italian mathe-
matician Leonardo Pisano (ca. 1170 to ca. 1250), better known as Fibonacct. Using
decimal notation is natural for 10-fingered humans, but binary values work better
when building machines that store and process information. Two-valued signals
can readily be represented, stored, and transmitted—for example, as the presence
or absence of'a hole i & punclied card, 454 high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
' for storingd and performing computations on two-valued signalsjs very simple and
reliable, enabling manufacturers to integrate millions,-or even billions, of such
circuits on a single silicon chip. oy 1

In isolation, a single bit is not very-uséful. When we group'bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate real numbers.

We consider the three most important representations of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two’s-complemerit encodings.are the mdst common way to
represent signed integers, that is, numbers that may be either positive or negative.
4 Floating-point encodings are a base-2 version of scientific notation for represent-
ing real numbers. Computers implement arithmetic operations, such as addition
and multiplication, with these different 31|'epresentations, similar to the correspond-
ing operations on integers and real numbers.

Computer repreSentationscuse’a limitedinumber of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep-
resented. This can lead to some surprising results. For example, on most of today’s
computers (those using a 32-bit representation for data type int), computing the
expression

e

X

200 * 300 * 400 * 500

yields —884,901,888. This runs counter to the properties of integer arithmetic—
computing the product of a set of positive numbers has yielded a negative result.
On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
ﬁ and commutative, so that computing any of the following C expressions yields
i —884,901,888:

(500 * 400) % (300 * 200)
ll ((500 * 400) * 300) = 200
((200 * 500) * 300) * 400
400 % (200 * (300 * 500))

\
L —— e m

Chapter 2 Representing and Manipulating Information 33

The computer might not generate the expected result, but at least it is con-
sistent!

Floating-point arithmetic has altogether different mathematical properties.

The product of a set of positive numbers will always be positive, although over-
flow will yield the special value +cc. Floating-point arithmetic is not associative
due to the finite precision of the representation. For example, the C expression
(3.14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3.14+(1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
versus floating-point arithmetic stem from the difference in how they handle the
finiteness of their representations—integer representations can encode a compar-
atively small range of values, but do so precisely, while floating-point representa-
tions can encode a wide range of values, but only approximately.
- Bystudying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This understanding is critical to writing programs that work correctly
over the full range of numeric values and that are portable across differerit combi-
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon-
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people’s systems. This puts a higher level of obligation on programmers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with-these representations as you progress
into machine-level programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason about.number representations.

We derive several ways to perform arithmetic operations by directly ma-
nipulating the bit-level representations of numbers. Understanding these tech-
niques will be important for understanding the machine-level code-generated by
compilers in their attempt to optimize the performance of arithmetic expression
evaluation.

Qur treatment of this material is based on a core set of mathematical prin-
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations, We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a'clear understanding of how computer arithmetic relates to the more
familiar integer and real arithmetic.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java.anguage definition, on the other hand, ¢reated a new set of
standards for numeric representations and operations. Whereas the C standards
are designed to allbw a wide range of implementations, the Java standard is quite
specific on the formats and encodings of data. We highlight the representations
and operations supported by Java at several places in the chapter.

o e i e uﬁm

34 Chapter 2 Representing and Manipulating Information

P o g Bie % SRS BT L2 R Ca %ﬁ?k*«‘m‘m“"” i ”M*%’ H
Aside, How to read this chaptem ‘ e H " %*‘»kﬁ “5. Far T g, ‘F

In this chapter, we exarmne*the fundamental pgdperues of Rho‘w nuarlflbers*zn;ld“ofheg~ igrm§ of d‘ata gre
represented on a Qbmpuﬁ%r‘”and the*progpe’i“tles ofthe ¢ ope Atiotis tha;c coﬁfmté‘rs‘perform ohi these'datd.
“'This requires us tog cfe‘iv*e»mto t.he lélf’gh”ége"bf mﬁihémahcs*‘wrltmg ‘for{mllas'fnd%quatmns aqd%hewmg e
derivations of unportant proﬁertle PR M R T T
To help you na“v“fgate this ex bsmon;%vféhave structured the pres“enﬁﬁon to’ ﬁrst state & property»B
as a pririciple in mathemanéal nétation, WVe then 111ustrate tﬁ}ué ptinciple With exziniples ind an mforrnal-t 1
discussion. We recorﬁmend*tfiatvyou* o back ‘and- fortﬁ betwéén the st’ate‘ment‘of the prmmpie and Thie
examples and dischssior tintil yofi’ *have a solid mtumonjgr “what'i§ bemg said’ and what &s'xmpqr“tant"
% about the propérty*¥or mére cohiplex prbpertles% We alsg pré@xdc ‘2 deridation? structuredimuch"hke?
a,mathematical proof. You’ shoulfl try to uﬁderstand these der1vat1drf§ e"\}en?ﬁally, buf y&&" couIdvsklp
over them on first réadmg T e w0 0 oaiel et R
We also encouTage you?o workfon the racfice problehs ds you proceed ”thr’oﬂg"fl the pi’esénta‘hon i
The practice problems @ngh gefyou in active leaﬁ“"nmg, helpmg you put»fthougﬁts mto actioh. Witlt tbeseﬁ‘{
_as background, you wﬂfﬁnd ¥ muick&sidr 't ‘g0 bac?k and-follow the Hetivations, Be assiiréd, as Well i
that the mathematical sKill§ requ1red t6 undérstanid this mater1a1 arg within reach of Somedne: wnth a
good grasp of high Echool”algebra‘ . Hpw R R

o W&J miamﬁ%ﬁv Wh e aa.w?%m % ﬂwﬁz LA Wik R St Mm- onsiuiita R
1

&

2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blacks of
8 bits, or bytes, as the smallest addressable unit of memory. A- machine-level
program views memory as a very large array of bytes, referred to as virtial
memory. Every byte of memory is identified by a unique number, known as its
address, and-the set of all possible*addresses is known as the virtual address space.
As indicated by its name, this virtual address space is just a‘conceptial image
presented to the machine-level program. The actual implementation (presented
in Chapter 9) uses a combination of dynamic random -access memory (DRAM),
flash memory, disk storage, special hardware, and operating system software to
provide the program with what appears to be a monolithic byte array.

In subsequent chapters,.we will cover how the compiler and run-time system
partitions this memory space into more'manageablewunits:to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to allgcate and manage the storage for different
parts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C—whether it.points toran integer,

a structure, or some other program gbject—is the virtual address of the first byteé

of some block of storage. The C compileT also associates type information with

each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointer dependingion the type of

L that value. Although the' Crcompiler maintains:this type information, the actual .
| machine-level program it generates has no information about data types. It simply
f treats each program object as ablock of bytes and the program itself as a sequence
| j of bytes. ;
T

Section 2.1 Information Storage 35

PN A R R o, S o m Upgrnn ek W kb -

Aside The evoiution of the C programming languager

a5

As-was described in an aside on page 4,'the C programming langhage wa'sf first developed by Dennis
Ritchié df Bell Laboratories for,use with the Unix operating system {also developed at'Bell Labs). At
the time, most system programs, such as operating systems, had to be written largely in assembly code
in order tazhave access to the low-Tevel representations.of different data*types: -\For“example it was
not feasible to write a membry allocatoy, such as is provided by,the malloc library function, in other
high-1ével languages of thatera. i

: The original Bell Labs version of C was documented in the first edition of the book by.Brian
, Kernighan and Dennpis thchxe [60] Over time, o hés evolved through the efforts of several standard-
i ization groups. The ﬁrst major revision of the ongmal Bell Labs ¢ led to the AN SI Cstandard in 1989,

by a group workmg under the auspmes of. the Amencan Nauonal Staudards Insntute ANSICwasa
ma] or departure from Bell Lgbs C, especxally‘m the way functions'are declared ANSI C s described.

i the.second, edition of Kernighan and Ritchid's book [61} which'is stlli considered one of the best,

i referepces on C

i The, Internatlonal ,Stagdards Orgamzatlon took over :e5pon515111ty for standard:zmg the C lan-
% Suage, adoptmg a versigh tha; was, sugstannall»y the samg, as ~ANSI C in 1990 and- hence is referred to

as “ISO (390 i

f;[’h;s same orgamzatlon sponsored an updatmg of thq,language in 1999 yielding =180 C99.” Among
other T}imgslthxs vegsion 1n1;roduced somg new data gypes and p;qv1ded supEort for text strings requiring
c]; araeters not fom;d in the Enghsh lapguage A moregeent s s;axld"and was approved in 2011, and hence
;I8 named ¥1SO C11, ; agam addmg more data types and'features. Most of these recent additions have
. -been backward compci?zble mpamﬁg that prograing wyilten accordlng t? the earher standard (at least
as far back-as ISQ C90) will havo the same béhdvior when complled accordmg;o the newer standards.
Tfle,_GNlj Compﬂer CoLlectlo (Gec) can compile progrgxms Aocézdmg to the conveptions of seyeral
d1fferentaveysxons of the ol lgnguagé ba§ex‘;£ on d1ff@rent gommand—hnc opgpns, as shown in Figure 2.1.
For example “to COII]E11§ program prog +C acco;dldg t,o‘TSO C11 we c,guld gx,ve the.command line

.l:l.m%xmgca -’stq:clijprog g e

N

E * &

ﬁfhe bﬁtmns -ansi and -%d—caé have ldeﬁtical effectr——the tods id compiled ﬁ&:ordmg to the ANSI
or ISO (f50 st@ndal:d (C90 is sometlmes referred to as “(389 7 sirice’its standardlzatlon effort began ifi
1989 b} 'I'h@ optmn skd—qﬁ@ causes the compre.r o Toll&y™ the 180 C9Y cofiventidn.

" JAs of the wmtmg of this book; &hen no oPnon is SPEClﬁf:d the f)rogram vaﬁ be complled according
tQ a versuoﬁ B C based on 1SO° C90 it mcludmg soine features* of C99 “some of C11, some of
C++ and others specific to gec..The GNU project, is déveloping a-version that combines 1SO C11,
plus.other features, that cad bq:‘speclﬁed with the command-ling optiop_~stdzgnuii. (Currently, this
vxmplementatxoq s mcomplete’") This will'becorne the-default versiof.

*a

o £
C version e command-line option
GNU 89 none, -std=gnuBy

ANS], ISO C90 -ansi, -std=c89

ISO C99 -~atd=c99

18O C11 -std=cll

Figure 2.1 Specifying different versions of C to Gce,

36 Chapter 2 -Representing and Manipulating Information ,

1 st TR i SR g TR o S R, T B e)) s Ll i L e

! Newto C?' The role of pointers in €. o w 3
| Pointérs dre' a centrdl feature’ of T, 'Ihey“,,p‘rowde the mechanism for reférencirig elements of data j
i structures, including’arrays Just like'a variable; a pointer ‘has two aspects: its value and'its-fype. The . I
value indicates the location ofsome objecty whlledts,typeandlcates whal Kind-of object (e, g Jinteger or |)
floating” b01nt number) is stored at thét location. . a™ 4 !

Truly'understanding pointers reqmres examining their représefitation andamplementatlon at the .
machine level. This will be amajor focusin Chapter 3, culmmatmg inanin-depth presentatlon in Section
3 101" : “

s " A G n Dndde FROR By EWOT i b DONRIVRITES. nAMOTIR A BRI ekt S nesli iy

21.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 00000000,
to11111111,. When viewed as a decimal integer, its value ranges from 01 t0 255.4.
Neither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation it is tedious to convert to and from
bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadeciinal (or simply “hex™) uses digits ‘0’ through ‘9" along with characters
‘A’ through ‘F’ to represent 16 possible values. Figure 2.2 shows the decimal and
biliary values associated with the 16 hexadecimal digits. Written in hexadecimal, '
the value of a single byte can rangé from 0044 to FFy. "
In C, fiumeric constants starting with Ox or 0X are interpreted as being in
hexadecimal. The characters ‘A’ through ‘F’ may be written in either upper- or
lowercase. For example, we could write the number FA1D37B;¢ as 0xFA1D37B, as
0xfald37b, or even fnixing upper- and lowercase (e.g., 0xFalD37b). We will use
the C notation for representing hexadecimal values in this book. A
A common task in working with machine-level programs is to manually con- !
‘, vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that show‘nyin'Fi ure 2.2. One simple trick for doing the conver-
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.

==

s

i Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 Ol01 0110 0111
. Hex digit 8 9 A B C D E F
E Decimal value 8 9 10 1 12 13 14 15
[

Binary value 1000 1001 1010 1011 1100 1101 i110 _1:111

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.

Section 2,1 Information-Storage 37

The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three.

For example, suppose you are given the number 0x173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follows:

Hexadectmal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100

=~

This gives the binary representation 0001011100111010010011060.

Conversely, given a binary number 111100101011G110110011, you convert it
to hexadecimal by first splitting it into groups of 4 bits each. Note; hoWever, that if
the total number ot bits is not 4 multiple of 4, you'should make the leffmost group
be the one with fewer than 4 bits, effectively padding the iumber with leading
zeros. Then you tfanslate each group of b1ts into tHe corresponding hiexadecimal

digit:
Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 ¢ A D B 3

Perfonn the followmg number conversions:

A. 0x39A7F8 to binary

B. binary 11001001011'11011 to hexadecimal

C. 0xD5EAC to binary .

D. binary 1001101110011110110101 to hexadecimal

When a value ,Ir‘is a power of 2, that'is, x = 2" for some honnegative integer
#, we can readily writé x in hexadecimal form by remembeéring that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal Uigit O
represents 4 binary zeros. So, for n written in the form i + 4j, where 0 < i <3,
we can write x with a leading hex digit of 1 {i = 0), 2 (i = 1,4 (= 2) or 8
(i =3), followed by j hexadecimal 0s. As an example, for x =2,048 = 21, we
bhave n =11=3 + 4 - 2, giving hexadecimal representation 0x800.

F111 m the bIank entnes in the fo]lowmgtable giving the decimal and hexadecimal
representations of different powers of 2:

T

.

38 Chapter 2. Representing and Manipulating Information

n 2" (decimal) 2" (hexadecimal) o
9 512 0x200
19 R
16,384
0x10000
17 _ ':
S 32
0x80 i

— —
¥

Converting between decimal and hexadecimal rgpresentations requires using
multiplication or division to handie the general case. To convert a decimal num-
ber x to hexadecimal, we can repeatedly divide x by 16, giving a quotient g and a
remainder r, such that x = ¢ <16 . We then use the hexadecimal digit represent-
ing r as the least significant digit-and generate the remaining digits by repeating
the process on g. As an example, consider the conversion of decimal 314,156: '

1314,156 = 19,634 - 16'+ 12 () i
19,634 =1,227-16 +2 (2) * ,
1,227=76-16 + 11 (8)
76=4-16 4 12 ©)
4=0.16+4 @

From this we can read off the hexadecimal representation as 0x4CB2C.

Conversely, to convert a hexadecimal number to decimal, we can multiply
cach of the hexadecimal digits by the appropriate power of 16. For example given
the number 0x7AF, we compute its decimal equivalent as-7 - 162+ 10-16+15=
7-256+10-16 +15 = 1,792~ 160 + 15 =1,967. '

A smgle byte can, be representecl by 2 hexadecnnal dlglts Fill in the missing
entries in the followlng table, giving the decimal, binary, and hexadecimal values

L T T T, D N L VT

of different byte patterns: _ . J
Decimal Binary I‘-IexaécLim’al
0 00000000 000
167 R |
62
188
00110111 — e 4
1000 1000 —

11110011 —— .

Section 2.1 Information Storage 39

m? Pt P Ty PR s Gy s*""if““"’ 33 '&'4' ¥ g ”"’#}5""5’:;# s’""%"l{‘iﬁw RSN Wit S
. - o

IRk .
.ggAsJig 2 MwCorlyertmg pehNéEn‘deglmafand hexadeqmgi W W . N

o
‘‘‘‘‘

- Tot converting larger valdesbeétween decimal and hexademmal itis besf to i0¢ gomputer or calculitor:

searéh enguiqs with quﬁr:es ,suclr as W’ el
‘5».- " ‘5' - & © " P
S R Q%hvert*ﬁiabcd 1o 'Eietlfna“l td) b *fm 34 Mg e
o . . LTI S v Fj&;h%?;ﬁ?‘, # é‘, o i B o 5_
5 - B o & fﬁ,a‘ e ® s
123*‘11@1 he}f I A A k. %
W own o wi " o, "
Wm\w T T U Mf' i 'ﬁ%) “ v £ %, : i EAN w
Decimal Binary = Hexadecimal
[[, SV 0xB2
i OxAC
0xE7

W"lthout convertmg the numbers to deCImal or bmary, try to solve the fo]lowmg
arlthmetlc roblems giving | the answers in hexadecimal. Hint: Just modify the
methods you use for perfqrmmg decimal addition and subtraction to use base 16.

A. 0x503¢c+ 0x8 =

B. 0x503c — 0x40 =

C. 0x503c+ 6{4!= — et
D. 0x50ea — 0x503¢c =

2.1.2 Data Sizes

Every computer has a word size, indicating the nominal Size of pointer data, Since
a virtual address is encoded by such a word, the most important system parareter
determined by the word size is the maximumm size of the virtual address space. That
is, for a machine with a w-bit word size, the virtual addresses can range from 0 to
2% — 1, giving the program access to at most 2" bytes..

In recent.years, there has been a widespread shift from machines with 32-
bit word sizes to those with word sizes of 64 bits. This occurred first for high-end
machines designed for large-scale scientific and database applications, followed
by desktop and laptop machines, and most recently for the processors found in
smartphones. A 32-bit word size limits the virtual address space to 4 gigabytes
(writtén 4 GB), that is, just over 4 x*10° bytes. Scaling up to a 64:bit word size
leads to a*virtual address space of 16 exabytes, 6rarourid 1.84 x 1017 bytes.

do the wérkm Thereare nUmeroys | tools,that can da this. One s:mple way is to use any of the standard ¢

R S Y

et it PP i et e e b b i | g [— =

:E‘T““"-:-—n—‘_ = = e

40 Chapter 2 Representing and Manipulating Information

Most 64-bit machines can also run programs compiled for use on 32-bit ma-
; chines, a form of backward compatibility. So, for example; Whena programprog.c
is compiled with the directive

L. T P VO T T

o ke

g

linux> gcc —m32 prog.c

S S

v then this program will run correctly on either a 32-bit or a 64-bit machine. On the ;
other hand, a program compiled with the directive]

linux> gecec -m6é4 prog.c

il

will only run on a 64-bit machine. We will therefore refer to programs as being
either “32-bit programs” or “64-bit programs,” since the distinction lies in how a]
| program is compiled, rather than the type of machine on which it runs. .
| Computers and compilers support multiple data formats using different ways 4
4
L.

f to encode data, such as integers and floating point, as well as different lengths.
For example, many machines have instructions for manipulating single bytes, as
‘ well as integers represented as 2-, 4-, and 8-byte quantities. They also support

: floating-point numbers represented as 4- and 8-byte quantities.
The C language supports multiple data formats for both integer and floating-
point data. Figure 2.3 shows the number of bytes typically allocated for different C
i data types {We discuss the relation between what is guaranteed by the Cstandard
! versus what is typical in Section'2.2.) The exaét numbers of bites for some daia
types depends on how the program is cémpiled. ‘We show sizes for typical 32-bit
and 64-bit programs. Intéger data can be either sighed, able to represent negative;
| zero, and positive values, or unsigned, only allowing nonnegative values. Data
type char represents a single byte. Although the name char derives from the fact
that it is used to store a single character in a tekt string, it can also be used to store
integer values. Data types short, int, and long are intended-to provide a range of

C declaration Bytes

! Signed Unsigned 32-bit 64-bit

! [eigned] char unsigned char A 1

i short Jnsigned short 2 2
int unsigned 4 4
long unsigned long 4 8

i int32_% uint32_t 4 4

i int64_t uint64_t 8 8
char’* 4 8.
float 4 4 T

: double 8 8

L]
4

' Figure 2.3 Typical sizes (in bytes) of basic C-data types. The number of bytes allocated
varies with-how the program is compiled. This chart shows the values typical of 32-bit,
and 64-bit programs.

Section 2.1 Information Storage

* " P . e e £ P W PO A i
New to C? Declaring pointers . . .
For any data type T, the declaration S . &
- . kg # « i .,
Y .. Dtk

indicates that p is a pointer variable, pointing to an object of type T. For example,
A 0 ## t & “ - #
chat *p}, : o :
&) £ s‘.’l-

is the declaration of 4 pointer,to'an object of type char.

L Y it

sizes. Even when compiled for 64-bit systems, data type int is usually just 4 bytes,
Data type long commonly has 4 bytes in 32-bit programs and 8 bytes in 64-bit
prograrms. ,

To avoid the vagaries of relying on “typical” sizes and different compiler set-
tings, ISO C99 introduced a class of data types where the data sizes are fixed
regardless of compiler and machine settings. Among these are data types int32_t
and int64_t, having exactly 4 and 8 bytes, respectively. Using fixed-size integer
types is the best way for programmers to have close control over data represen-
tations.

Most of the data types encode signed values, unless prefixed by the keyword
unsigned or using the specific unsigned declaration for fixed-size data types. The
exception to this is data type char. Although most compilers and machines treat
these as signed data, the Cstandard does not guarantee this. Instead, as indicated
by the square brackets, the programmer should use the declaration signed char
to guarantee a 1:byte signed value. In many contexts, however, the program’s
behavior is insensitive to whether data type char is signed or unsigned.

The Clanguage allows a variety of ways, to order the keywords and to include
or omit optional keywords. As examples; all-of the following declarations have
identical meaning:

unsigned long
unsigned long int
long unsigned
long unsigned int

We will consistently use the forms found in Figure 2.3,

Figure 2.3 also shows that a pointer (e.g., a variable declared as being of
type char #) uses the full word size of the program. Most machines also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double, These formats use 4 and 8 bytes,
respectively.

Programmers should strive to make their programs portable actoss different
madchines and compilers. One aspect of portability is to make the.program insensi-
tive to the exact sizes of the different data types. The Cstandards set lower bounds

-3

EE

—

42 Chapter 2 Representing and Manipulating Information }

on the numeric ranges of the different data types, as will be covered later, but there j
are no upper bounds (except with the fixed-size types). With 32-bit machines and ’l
32-bit programs being the dominant combination from around 1980 until around 3
2010, many programs have been written assuming the allocations listed for 32- %
bit programs in Figure 2.3. With the transition to 64-bit machines, many hidden h
word size dependencies have arisen as bugs in migrating these programs to new .
machines. For example, many programmers historically assumed that an object ,
declared as type int could be used to store a pointer. This works fine for most
32-bit programs, but it leads to problems for 64-bit programs. |

2.1.3 Addressing“and Byte Ordering

For program objetts that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory. "
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given by the smallest address of the bytes
used. For example,suppose a variable x of type int has address 0x100; that is, the
value of the addréss expression &x is 0x100. Then (assuming data type int has a
32-bit representation) the'4 bytes of x would be stored in memory Iocations 0x100,
0x101, 0%102, and 0x103. !

For ordering the bytes representing an object, there are two common conven- %
tions. Consider a w-bit integer having a bit representation [x,,_1, Xy—2, - - - » X1,%0);
where x,,_y is the most significant bit and x, is the least. Assuming w is a multiple
of 8, these bits can be grouped as bytes, with the most significant byte having bits
(X415 Xu—2s - - - » Xyp_g), the least sighificant byte having bits [x7, xe, . . . , X}, and
the other bytes having bits from the middle. Some machines choose to store the ob-
ject in memory ordered from least significant byte to most, while other machines
store them from most tb least. The former convention—where the least significant
byte comes first—is'referred to as little’endian. The latter convention—where the
most significant byte comes first—is referred'to as big endian.

Suppose the variable x of type int and at address 0x100 has a hexadecimal
value of 0x01234567. The ordering of the bytes within the address range 0x100
through 0x103 depends on the type of machine:

Big endian

0x100 0x101 0ox102 0x103

Little endian

Note that in the word 0x01234567 the high-order byte has hexadecimal value
0x01,.while thelow-order byte has value 0x67.

Most Intel-compatible machines operate exclusively in little-endian mode. On
the other hand, most machinesfrom IBM and Oracle (arising from their acquisi-

Section 2.1 Information Storage 43 .

W m e LI N L Y " -

Aside Origin of “endian”

*

" Here is iow Jonathan Swift, writing in 1726, described the history of the controversy between big and

4 little endiahs: . \z
v f -

. .. Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in 2 most obstinate war
*« for six*and-thirty inoons.past. It began upon the following occasion. It is allowed on all hands, that
the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking.it according to the
reancient practice, happened to-cut one of his fingers. Whereupon the empéror his father priblished
an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs.
The people so highly resented this law, that our histories tell us, there Have been six rebellions raised
f «+ onthat account; wherein one emperor lost his life, and another his crown. These civil commotions
§ were constantly fomented by the monarchs of Blefuscu; and when they were, quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several
times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
Jarge volumes have been.piiblished upon this controversy: but the books of thé Big-endians have
been long férbidden, and the whole party rendered incapable by law of holding employments.
{(Jonathan Swift. Gulliver’s Travels, Benjamin Motte1726:) =

-

- .

In his day, Swift was satirizing the continued conflicts between Englapd (Lilliput) and France (Blefuscu).
Danny Cohen, an early pionger in networking protocéls, first applied, these terms to refer to byte
ordering [24)], and the terminology has been widely adopted.

e W ©

T EE A, S WS

tion of Sun Microsystems in 2010) operate in big-endian mode. Note that we said
“most.” The conventions do not split precisely along corporate boundaries. For
example, both IBM and Oracle manufacture machines that use Intel-compatible
processors and hence are little endian. Many recent microprocessor chips are
bi-endian, meaning that they can be configured to operate as either little- or
big-endian machines. In practice, however, byte ordering becomes fixed once a
particular operating system is chosen. For example, ARM microprocessors, used
in many cell phones, have hardware that can operate in either little- or big-endian
mede, but the two most common operating systems for these chips—Android
(from Google) and IOS (from Apple)—operate only in little-endian mode.
People get surprisingly emotional about which byte ordering is the proper cne.
In fact, the terms “little endian” and “big endian” come from the book Gulliver’s
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened—Dby the little end or by the big. Just like the egg
issue, there is no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about sociopolitical
issues. As long as one of the conventions is selected and adhered to consistently, .
the choice is arbitrary. i
For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identi-
cal results. At times, however, byte ordering becomes an issue. The first is when

b =g

A

0T iy e

e e e e

— o — ey oy e ety i e ey g
e ——————— . O P — - w py
——

44 Chapter 2 Representing and Manipulating Information

binary data are communicated over a network between different machines. A
common problem is for. data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being
in reverse order for the receiving program. To avoid such problems, code written
for networking applications must follow established conventions for byte order-
ing to make sure the sending machine converts its internal fepresentation to the
network standard, while the receiving machine converts the network standard'to
its internal representation. We will see examples of these conversions in Chap-
ter 11. u

A second case wheré byte ordering becomes importantis when looking at
the byte sequences representing integer data. This.occurs often when inspecting
machine-level programs. As an example, the following line occurs in a file that
gives a text representation of the machine-level code for an Intel x86-64 processor:

400443: 01 05 43 0b 20 CO add Yeax, 0x200b43 (4rip)

This line was generated by a disassembler, a tool that.determines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3..For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 43 0b
20 00 is the byte-level representation of an instruction that adds a word of data
to the value stored at an address computed by adding 0x200b43 to the turrent
value of the program counter, the address of the next instruction to be executed.
If we take the final 4 bytes of the sequence 43 0Ob 20 00 and write them in reverse
order, we have 00 20 0b 43. Dropping the leading 0, we have the value 0x200b43,
the numeric value written. on the right. Having. bytes appear- in reverse order
is a common occurrence when reading machine-level program representations
generated for little-endian machines such as this one. The natural way to.write a
byte sequence is to have the lowest-numbered byte on the left and the highest on
the right, but this is contrary to the normal way of writing numbers with the most
significant digit on the left and the least on the right. i

A third case where byte ordering becomes -visible is when' programs are
written that circumvent the normal type system. In the C language, this:can.be
done using a cast or a union to allow an object to be referenced according to
a different-data type frdm which it was created. Such-toding tricks are strongly
discouraged for most application programming, but they can be quite Useful and
ever necessary forsystem-level programming,

Figure 2.4 shows C code-that uses casting to access and print the byte rep-
resentations of different program objects. We use typedef.to define data type
byte_pointer asa pointer to an object of type unsigned char. Such a byte pointer
references a sequence of bytes where each byte is considered to be a nonnega-
tive integer. The first routine show.bytes is given the address of a sequence of
bytes, indicated by a byte pointer, and a byte count. The byte count is spectfied as
having data type size_t, the preferred data type for expressing the sizes of data
structures. It prints the individual bytes in hexadecimal. The C formatting direc-
tive %.2x indicates that an integer should be printed in hexadecimal with at least

2 digits.

T T

Section 2.1 Information Storage

1 #include <stdio.h>

2

3 typedef unsigned char *byte_pointer;

4

5 void show_bytes(byte_pointer start, size_t lemn) {
6 int i;

7 for (1 = 0; i < len; i++)

8 printf(" %.2x", start[i]);

9 printf("\n");

10}

11

12 void show_int(int .x)}, {

13 show_bytes{({byte_pointer) &x, sizeof(int));
4}

15

16 void show_float(float x) { ,

17 show_bytes((byte_pointer) &x, sizeof(float));
13}

19 -

20 void show_pointer(void #x) {

21 show_bytes((byte_pointel) &x, sizeof(void *));
22}

Figure 2.4 Code to print the byte representation of program objects. This code
uses casting to circumvent the type system. Similar functions are easily defined for other
data types.

Procedures show_int, show_float, and show_pointer denionstrate how to
use procedure show_bytes to print the byte representations of Cprogram objedts
of type int, float, and void *jrespectively. Observesthat they simply pass shéw_
bytes a pointer &x to their argument x, casting the ointer to be of type unsigned
char *. This cast indicates to the €ompiler that tﬁ‘uﬁﬁrbgram shofild consider the
pointer to be to a’sequence of bytes ratheT than to an object of‘the original data
type. This pointer will then be to the lowest byte address occupied by the object.

These procedures use the C sizeof operator tq defermine the number of bytes
used by the object. In general, the expression sizeof (T) returns the number of
bytes required to store an object of type I, Using sizeof rather than a fixed value
is one step toward writing code that is_p_grfable acrgss different machine types.

We rap the cqde shown, in Figure 2.5 op,seyeral different machines, giving the
results shown in.Figure 2.6. The following maghines were used:

Linux 32 , Intel IA‘J(Z’processor {lurmih"gf Lilnux.

Windows Intel IA32 processor tunning Windows. v

Sun Sun Microsystems SPARC processor running Solaris, (These machines
are now produced by Oracle.)

Linux 64 Intel xB6-64 processor running Linux.

45

|

s e -
f
E 46 Chapter 2 Representing and Manipulating Information
code/data/show-bytes.c
{ void test_show_bytes(int val) {
I int ival = val;

1

2

3 float fval = (float) ival;
4 int *pval = &ival;

5 show_int (ival);

6 show_float{fval);

7 show_pointer(pval);

8

-

code/data/show-bytes.c

Figure 2.5 Byte representation examples. This code prints the'byte representations

of sample data objects.
1

Machine Value Type Bytés (hex)
Linux 32 12,345 int 39 30 00 00
Windows 12,345 int 39 30 0000
Sun 12,345 ant 00 00 30 39
Linux 64 12,345 int 39 30 00 00
Linux 32 12,345.0 float 00 e4 40 46
Windows 423450, float 00 e4-40 46 n
Sun 12,345.00 float 46 40 e4 00
Linux 64 12.,345.0 float 00 ed 40 46
Linux 32 &ival int * 4 f9 £f bf
Windows kival int * ,bdcc 2200
Sun &ival int.x ef £f fa Oc
Ligux 64 Zival int#., ‘b8 11 eb ff £f 71 00 00

Figure 2.6 Byte representatiois of different data values. Results for int and float
are identical, except for byte ordering. Pointer values are machine dqpendent.

1

Our argument 12;345 has hexadecimal representation 0x00003039. For the int
data, we get identical results for all machines, except for the byte ordering. In
particular, w&'can see that the least significant byte value of 0x39 is-printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of the float data
are identical, except for the byte értlering. On the other hand, thé pointer values
are completely different. The different machine/operating system configurations
use different conventions for storage allocation. One feature to note is that the
Linux 32, Windows, and Sun mAchines use 4-byte addresses, while the Linux 64
machine uses 8-byte addresses. /

Section 2.1 Information Storage 47

e WP R W s M prewery [Y o wom [-

New to C? Naming data types ‘with typedef

The typedef declaration in C provides a way of giving a name to a data type. This can be a great help
in improving code readability, since deeply nested type declarations can be difficult to decipher,,

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
rather than a variable name. Thus, the declaration of byte_pointer in Figure 2.4 has the samg form as
the declaration of a variable.of type unsigned char; *.

For example, the declaration

M A R O ISR

ST R

typedef int *int_pointer;
¢ int_pointer ip;

¢ definestype int_pointer to be a pointer to an int, and declares a variable ip of this type. Alternatively,
{ we could declare this variable directly as

§ int *ip; s -]

| I Blein Aol wmm e B shcaemmn Ummroat woe L L) L3

= A s L2 S L . o pn P Rl

New to C? Formiatted printing with printf ;

The prmtf "function (along with its cousns £ printf and sprintt) provides a way to print information
with considerable control:over the formattmg details. The first argument is a format string, while any
remaining arguments are values to bé pnnted Within the format string, each character sequence
starting with ‘%’ indicates how to format the next argument. Typical examples include %d to print a
decxmal integer, %f to print a floating-point number, and ¥%c to print a character having the character

' code given by the atgument.
Specifying the formatting of fixed-size data types, such as int_32t, is a*bit more involved, a$ i}
described i the aside on page 67.

W e et e R celre W T e R a w el

AL ST S e n e

LT

B

Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: 0x00003039
for the integer and 0x4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patierns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

¢ ¢ ¢ 0 3 0 3 9

¢0000000000000000011000000111001
s ok ok o ok ok ok ko

4 6 4 0 E 4 o0 0
01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-
point formats.

B R o e ie——y e — e m—— = m o —— - e m om m o =T [ey—
P —— ———— ., © == = = .

| 48 Chapter 2 Representing and Manipulating Information

New to C" Pointers.and arrays N wt L e e W 7
In function"shétr.bytes (Figure.2:4), we see-thé close’corinégtion 'betweeg point”érs ahdparr"aysf' as‘wfll
be discussed in detail in Section3.8. Weisée that«this functionrhas an argument ‘start oftype‘byte_
. pointex (whiéh' haé been ‘defined to be.4 130mfento~unsj§ne‘d? char), “hut’we sde the array reference °
sta“r‘tgﬂ “on ling 8. Ity C,'we'tan' depeference d pomterbwlth array-notation, and we¢ard reference’ array
elements with pointer notation. In this examp;ef the reference start [i] mdwates that'we want to read }

theb te that ised osmons be ond the 1ocat10n omted to by sStart, J«* - ”as,TA; % & K
: y P Y P)l a:; P i
- " 9 S . it ihamince " P .
e R WG W Y e «..w e gy b L g,mrnmw?m w0 ?:rp,,ﬂ wmﬁm kel i el - I e
Néw to €' 'Poini er creatton and’ de’referenémg - % . : T

£

I lines 13, 17, and 21 of Flgure 2.4 we see-uses-of two operations. thatﬂglve C (and therefore C++) its+1

, distinctive character. The.C “address of” operator ‘&’ creates a Pomter *@n all three [ine$, the expression
&x creates a pointer {o,the location holdmg the object mdlcated by varlable x. The type’ *61 this.pointes’
depends on the type of x,7and hence these three pomters are“’*of“type int *, float *, and void:#¥, |
respectlvely (Data type Void *isa spemal kind of pointer with no assaciated type information.) *E
The cast operator converts from, one data, typé to: ‘afiothe. This,-thé da“st (Byté_pointelr) &x I
indicates that whatever type the. %omtér &x hag beforg, the, program a; ill nov, reference a pointer to,
data Qf type nnsigned Cha.'l:i The casts shown here dq, nof chan ge :the actua] pointer; they 51mp]y du'ect

24 the compiler, to Jefer to the data ‘being-pointed to according'to the new, gat&type

o AT o e C——

i
e B iy ey PSR WS, SrR RS o FOERS O A R o e et R SRERED A b o G i j
@ aa; sy A % TR mx i L] L N M AR wh gVAERER) Sy et gy ¥ g e 2 5 2
» Aslde Generating an ASCILtable W, @ wuf o F
1
{ You can display a table showing the ASCIFcharacter code by executmg the command fan ascn
* o i, P E R A TR el o o ik :--.16zgs 5 une o e e
k

=

Con51der the followmg three calls to show bytes

int val & OxB7654321;

byte_pointer valp = (byte_pointei) &val;
E show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */

o

Indicate the values that will be printed by each call on a little-endian machine
and on a big-endian machine:

A. Little endian:
B. Little endian: ________ Big endian:

Big endian: -

C. Littleendian: _______ Big endian: __

e o

i Section.2.1 Information Storage

[}
Using show_int and show_iloat, we determine that the integer 3510593 has hexa-
decimal representation 0x00359141, while the floating-point number 3510593.0

has hexadecimal representation 0x4A564504.

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another. to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?

2.1.4 Representing Strings

A string in € is encoded by an array of characters terminated by the null (having
value 0} character. Each character is represented by some standard encoding, with
the most common being the ASCII character code. Thus, if we run our routine
show_bytes with arguments "12345" and 6 (to include the terminating character),
we get the result 31 32 33 34 35 00, Observe that the ASCII code for decimal digit

x happens to be 0x3x, and that the terminating byte has the hex representation
0z00. This same result would be obtained on any system using ASCII as its* !
character code, independent of the byte ordering and word size conventions. As

a consequence, text data are more platform independent than binary data.

yooee o , B RO e v et pir:
:i'n. : Koy ha

What would be printed as a result of the following call to show_bytes?
const char *s = "abcdef",
show_bytes ((byte_pointer) s, strlen{s));

>
3

Note that letters ‘a”'through ‘2’ have ASCII codes 0x61 through 0x74.

i

2.1.5 Representing Code
Consider the following C function:

1 int sum(int x, int y) {
2 returli x + y;

3}

When compiled on our sample machines, we generate machine code having
the following byte representations:

£

Linuox 32 55 89 e5 8b 45 Oc 03 45 08 c9 ¢3

Windows 56 89 e5 8b 45 Oc 03 45 08 5d c3

Sun 81 c3 €0 (8 90 02 90 09

Linux 64 55 48 89 5 89 7d fc 89 75 £8 03 45 fc c9 c3

49

[e M ——

e

-

50 Chapter 2 Representing and Manipulating Information

L3 Ld W
i i

Asidé The Unitode standard fortext encocfm L
m w %’Eﬁf“ d i “ $ ”mi&&‘ -

k4
.*The ASCII character.set is’ suitable:for encoding’ En§l1sh Jggguage adogxumﬁnts,\lgutslt does not have, é
, much’in thé.way &f spécial chiaracters, such ‘as-the °French fehealtdg , wholly Amsuited: for encodmg f
. documents in languages such as Greek Russmn,-and Chlnese Over fhe years,“{i vanety of methods
' have been developed to encodé tekt Tor, dlffétqgiﬂanguages Th | Uniﬁgdeﬁonsoru?ﬁn has davxsed the
most comprehensive’and wittely: ‘acce];cdystandard forwencodmg text. ﬂ'he CurrentaUmcode staridard 3
(ver51on 7.0) has a repertoire-of over 100,000 chiratters sup“portmga wideragé-of langihges, ‘inclnding, £
, theancient languages of Egypt and Babylon,, Tojhelr cﬁ;edlt tha Unicode geglyncal Cpgyn%tg? rejected
" a proposal to includea, standard writing for, Kilngon a”‘ﬁctlohal cmhzatmn from thetelevision seris
% Star Trek: “

The base encoding, known as-the “Umvergal"CHaracter Set”“‘of Ungg;bde yées d 32-bit re;presenta- 2
tion of cha:facters "This wduld seem to require every strmg*‘of text to consist of 4' bytes gper character :
However, alternative codmgs Aare posélble Mhel‘e common characfrs.require.justl gk 2. bytes, while
less common ones reqmre.,more In*pémlculaﬁ the; U’I‘E‘”S“i‘epfé%erltatlon entodes each charactet ag a
sequence of bytes, such that thestandard ASCII c];aracters {use the samé single-hyté encodings as they ;
have i i ASCI], 1mplymg thatall ASCI] byte scquences havethe samé méaning in'UTF’8 as:;they'do ift-

” W o AR S
F L iy S %

?m:.e s

£

Asci g - . v en o LV g
i The Java programmlng language’ uses Umcode il its repres.entauous of.strings. Program librarfes |
are alsé avaxlable for C to support Umcode . wew A npt . ;
) . e st 4 B B PR T AW S5 S it 54]

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encodings. Even identical proces-
sors running different operating systems have differences in their coding conven-
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simpl{'a sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.6 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, store, and manipu-
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate
an algebra that captures the basic principles of logical reasoning,

The simplest Boolean algebra is defined over the two-element set {0, 1},
Figure 2.7 defines several operations in tHis algebra. Our symbols for representing
these operations are chosen to match those ‘used by the C bit-level operations,

Section 2.1 Information Storage 51

- & 01 | 01 - 01
0 1 0 00 0 01 0 01
1 0 1 01 1 11 1 10

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
TRUE and FALSE, while operations ~, &, |, and ~ encode logical operations NOT, AND, OR,
and EXCLUSIVE-OR, respectively.

as will be discussed later. The Boolean operation ~ corresponds to the lo'gical
operation NoT, denoted by the symbol —. That is, we say that —P is true when
P is not true, and vice versa. Correspondingly, ~p equals 1 when p equals 0, and’
vice versa. Boolean operation & corresponds to the logical operation AND, denoted
by the symbol A. We say that P A @ holds when both P is true and Q is true.
Correspondingly, p & g equals 1 only when p =1 and ¢ = 1. Boolean operation
| corresponds to the logical operation or, denoted by the symbol v, We say that
P v Q holds when either P is true or Q is true. Correspondingly, p | g equals
1 when either p =1 or g = 1. Boolean operation ~ corresponds to the logical
operation EXCLUSIVE-OR, denoted by the symbol @. We say that P @ @ holds when
either P is true or @ is true, but not both. Correspondingly, p ~ ¢ equals 1 when
either p=1landq=0,0r p=0andg =1

Claude Shannon (1916-2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master’s thesis, he showed that Boolean algebra could be applied to the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over bit
vectors according to their applications to the matching elements of the arguments.
Let a and & denote the bit vectors [a,,_y, ay_3, . .., ag) and [by_1, B3, . . ., bp),
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals a; & b;, for 0 <i < w. The operations |, =, and ~ are extended to
bit vectors in a similar fashion.

As examples, consider the case where w = 4, and with arguments a = [0110]
and b =[1100). Then the four operationsa & b,a | b, & ~ b, and ~b yield

0110 0110 0110
& 1100 I 1100 = 1100 ~ 1100
0100 1110 1010 0011

)) : i il o
Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.

52 Chapter 2 Representing and Manipulating Information

|

; inverse —x, such that x +- r—Ex =0. A similar property hcﬂds f‘on Boolean rmgs wheére ~is the * gddmon

seRa

ity - “ i

Web Aside DATA:BOOL: More'an Boolean algebra and Boolean rings

The Boolean operations |, & and ~ operating on, bit véctots of length w form asBoolein algebra,
for any integer w > (. The simplest rs;the case where w =1 and there are l}xst two elements,‘ byt for
the miore general case there are 2¥ bit vectors of length w. Bodléah alge?sra has” many of the same %
propérfies as-arithmetic over mtegers “For, éxample, just as multiplication distfibutes over, addition,
writtena - (b+c¢)=(a") + (a ¥¢), Boolean’bperauon& distributes over |, written a &b ! c)‘ a& b)Y
(a & c}. In addition, however. Boolean operation | distributes over & andsowecan writea | (b&o) =
(a | b) & (a | ¢), whereas we canpot say that a.+ (b - ¢) ='(a +b),- (a + ¢) holds for all mtegers }
When we coﬂs;der Operationg -, &, and * operatmg on’bit vectors of lengthww we get a different’ :
mathematical form, knowy as a Boolean rmg Boolean nngs have many pi'of)ertles in Ebmon wrthsi
integer arithmetic, For example ane, pfoperty of integer 2 arithmefici is that ev,ery value X “hds an add;rrve ;

»

operation, “but in this case eac“h elementgls its gwn addmve, Ipverse. That is, @ ~ a = 0 for any valile a,
where we use Q.here to represenf a bit Vector of all,,zeros We ¢ah’seé this holds fo}*smgle bits, since
0~0=1"1=0, and it'exténds to bit ¥éctors as Well This property holds'even 'when sve rearrange terms
and combine them in & d1fferent order and'so (@a~b)~a=bh. Thiis property leads to somefmterestmg
results and clever trrcks as we will éxpldm in Problem 2, 10

I

e = P e v} ::m- B e e Mt it A mﬁmmi
Operation Result

a [01101001]
b [01010101)
~a
~b _

akh

alb

a~b

One useful application of bit vectors is to represent finite sets. We can encode
anysubset A € {0, 1, ..., w — 1} with a bit vector [ay_1, - . . , 41, ag), where a; = 1if
and only iff € A. For example recalling that we write a,,_; on the left and g, on'the
right, bit vector a = [01101001) encodes the set A = {0, 3, 5, 6}, while bit vector b =
[01010101] encodes the set B = {0, 2, 4, 6}. With this way of encoding sets, Boolean
operations | and & correspond to sct union and intersection, respectively, and ~
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector {(01000001], while A N B = {0, 6).

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program.:We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 il
bit position ¢ indicates that signal / is enabled and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.

. Section 2.1 Information Storage

g ot Ah « 57008 ; ﬁ.».} .
L gk L PO D TETT) 18, pige-144 5 o

Computers geperate color picfures on a video screen or liquigd crystal display
by mixing three different colors of light; red, green, and blue. Imagine a simple

scheme, with threg differeqt lights, each of which can be tyrned on or off, project-
ing onto a glass screen:

Light sources Glass screen

Red

QObserver

Green

ad

We canthen create cight different colors based on the absence (0) onpresence
(1) of light sources R, G, and B:

B Color

Black
Blue
Green

0
1
0
1 Cyan
0
1
0
1

Red
Magenta
Yellow
White

Fl

i = N R e N R
e i B e B e S e B

3
Each of these colors can be represented ab a bit vector of length 3, andiwe can

apply Boolean.operations:to.them.

A. The co[mpiement of a color is formed by turning off the lights that are gn;and
turning on the lights that are off. What would be the complement of each of
the eight colors listed above?

Describe the effect of applying Boolean operations on the following colors:

Blue | Green =
Yellow & Cyan
Red ~ Magenta

|

53

— — - - — — .-- - N " . - = - Pl -l .
P i b4 —_—— e o [T it~y

54 Chapter 2 -Representing and Manipulating Information .

o —

2.1.7 Bit-Level Operations in C)

One useful feature of C is that it supports bitwisc Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C:
| for ok, & for AND, ~ for Nort, and ~ for EXCLUSIVE-OR. These can be applied to
any “integral” data type, including all of those listed in Figure 2.3. Here are some :
examples of expression evaluation for data type char: ;

C expression Binary expression Binary result ~ Hexadecimal result :
; ~0x41 ~[0100 0001] [10111110] 0xBE .
Hf ~0x00 ~[0000 0000] [11111111] OxFF]
E 0x69 & 0x55 [0110 1001] & [0101 0101] [0100 0001] Ox41 ,
E* 0x69 | 0x55 [0110 1001] | [01010101] [01111101] 0x7D

As our examples show, the best way to determine the effect of a bit-level ex- :
pression is to expand the hexadecimal arguments to their binary representations, :
perform the operations in binary, and then convert back to hexadecimal. 3

: As an application of the propeity tHat i~ a = 0 for any bit vector a, consider the
following program.)

1 void inmplace_swap(int *x, int *y) {
2 *y = #x ~ *y; /% Step 1 */ .
3 *x = ¥x = *y; /% Step 2 ¥/
4
5

*y = #x ~ *y; /% Step 3 */
}

As the name implies, we claim that the effect of this procedure is to swap
f the values stored at the locations denoted by pointer variables x and y. Note
that unlike the usual technique for swapping two values, we do not need a third
loeation to temporarily store one value while we are moving the other. There is
v no performance advantage to this way of swapping; it is merely an intellectual
' amusement.
i Starting with values a and b in the locations pointed to by x and y, respectively,
i fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of ~ to show that the desired effect is
athieved. Recall that every element is i;:s own additive inverse (thatis,a ~ a =0).

H Step *X *y s
‘ L Initially a " b
g Step 1
1 1 Step 2

Step 3

Section 2.1 Information Storage 55

Armed thh the functxon :anlace swap from Problem 2. 10 you decnde to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

void .reverse_array(int a[], -int ¢ap) {
int first, last;
for (first = 0, last.= cnt-1;
first <= last;
St first++,last-—)
inplace_swap(&al[first], &allastl};

.
AW N =

-8

7 }

‘When you apply your function to an array containing elements 1, 2, 3, and 4,
you find the array now has, as ex ected, elements 4, 3 °2, and 1. When you try it
on an array with elements 1,2,3,4, and 5 'however, you are surpnsed o see that
the array now has eleménts 5 4,0.2, and 1. In fact, you discover th the code
always works correctly on arrays of even length but it sets the middle element to
0 whenever the array has odd length.

A. For an array of odd length cnt = 2k + 1, what are the values of variables
first and last in the final iteration of function reverse_array?

B. Why does this call to function inplace_swap set the array element to (?

C. What simple modificatidn to the codé for reverse_array would'eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within 2 word. As
an example, the mask 0xFF (having ones for the least-51gmﬁcant 8 bits) indicates
the low-order byte of a word. The bit-level operation: x & OxFF yields a value
consisting of the least significant byte of x, but with all other bytes set t6*). For
example, with x = 0x89ABCDEF, the expression would yield 0x000000EF. The
expression ~0 will yield a mask of all ones, regardless of the size of the data
representation. The same mask can be written OxFFFFFFFF when data type int is
32 bits, but it would not be as portable.

erte C expressions, in terms of varlable x, for the following values. Your code
should work for any word' §ize w > 8. Forreference, we show the result of evalu-
ating the expressions for x = 0x87654321, with w = 32,

A. The least significant byte of x, with all other bits set to 0. [0x00000021]

B. Allbut the least significant byteof x complemented, with the least significant
byte left unchanged. [0x7894BC21]

—— e = — s S m = e s L e A e e) ¢

56 Chapter 2 Representing and Manipulating information

C. The least significant byte set to-all ones, and all other bytes of x left un-
changed. [0x876643FF)

The Digital Equipment VAX computer was a very popular machine from the late

1970s until the late 1980s. Rather than instructions for Boolean operations aND
! and or, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 at each bit position where m is 1. With bic, the modification involves setting
z to 0 at each bit position where mis 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bis and bic 1mp1ement1ng the bit set and bit clear operations, and
that we want to use these to implement functions computmg bitwise operatlons |
and - w1thout usmg any other C operations. Fill in the missing code below. Hmt
Wnte (of ’ expressions for the operations bis and bik. .
/* Declarations of functions implementing operations bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */
int bool_or(int x, int ¥} {

int result = ______ _;

return result;

} "
L . «t '
/* Compute x"y using opnly cplls to functions bis and bic */ 5
int bool_xor{int x; int y)- {
’ int-result = ____ ;
} return result;
.

2.1.8 Logical Operations in C

! C also provides-a set of logical operators | |, &, and !, which cogrespond to the
OR, AND, and NoT operations of logic. These can easily'be confused with the bit-
' level operations, but their behavior is quite different. The logical operations treat

| any nonzero argument as representing TRUE and argument 0 as representing FALSE.
' : They return eithiet 1 or 0, irfidicating a result of either TRUE of FALSE, respectively.
| f .

i| Here are some examples of expression evaluation:

I

Section 2.1 information Storage

Expression Result
10x41 ox00
10x00 0x01
110x41 0x01

0x69 && O0x55 0x01
0x69 {| 0x55 0x01

Observe that a bitwise operation will have behavior matching that of its logical
counterpart only in the special case in.which the arguments are restricted to 0
or 1.

A second important distinction between the logical operators ‘&&’ and ‘| |’
versus their bit-level counterparts %’ and *|’ is that the logical operators do not
evaluate their second argument if the result of the expression can be determined
by evaluating the first argument. Thus, for example, the expression a && 5/a will

never cause a division by zero, and the expression p &% *p++ will never cause the
dereferencing of a null pointer.

Suppose that x and y have byte values 0x66 and 0x39, respectlvely Fﬂl in the
following table indicating the byte values of thé differént C expressions:

Expression Value Expression Value "
x&y e —_— x&ky -

x1y —_— xily

~x |~y e Ix Ity e

xkly x && ~y

Usmg only b1t—1evel and loglcal operatlons write a C expressxon that is equ:valent

to x == y. In other words, it will return 1 when x and y are equal and O otherwise.

2.1.9 .ShifuQperations in®
roat

e also provides a set,of shzﬁ op,era‘qong for shifting bit patterns to the left and’ to
the nght For an Operand x having bit representation [x,,_1, X, _2. - . ., X}, the c
expression x << k yields a value with bit representation (x,,_;_y. xw_k 2v o v s X
0,...,0] Thatis, x is shifted & bits to the left, dropping off the & most significant
blts and filling the right end with & zeros. The shift amount should be a value
between 0 and w — 1. Shift operations associate from left to right, so ¥'%< j <<k
is equivalent to (x << j) << k.

There is a corresponding right shift operation, written in C as x >> k, but it has
a slightly subtle behavior. Generally, machines support two forms of right shift:

58 Chapter 2 Representing and Manipulating Information

Logical. A logical right shift fills the left end with k& zeros, giving a result
[O, Ceey 0, Xup—1r Kwp—2s + = - xk].

Arithmetic. An arithmetic right shift fills the left end with & repetitions of the
most significant bit, giving a result [x,_1, .. ., Xy_1s Xy 15 Xyy_2s - -« X}
This convention might seem peculiar, but as we will see, it is useful fox
operating on signed integer data.

As-cxamples, the following.table shows-the effect of applying the.different
shift operations to two different values:of.dn 8-bit argument x:

Operation Value] Value 2

Argument x [01100011] [10010101]
x << 4 [00110000] [01016000]
x >> &' (logical) [0o0p0110] [00001001]

x >> 4 (arithmetic) [00000110] [72111001)

The italicized digits indicate the vaiues that fill the right (left shift) or left {right
shift) ends. Observe that all but one entry involves filling with zeros. The exception
is the case of shifting [10010101] right arithmetically, Since its most signiﬁcant bit
is 1, this will be used as the fill value.

The C standards do not precisely define which type of right shift should be
used with signed numbers—either arithmetic-or logical shifts may be used. This
unfortunately means that any code assuming one form or the other will potentially
encounter portability problems. In practice, however, almost all compiler/machine
combinations use arithmetic right shifts for signed data, and many programmers
assume this to be the case. For unsigned data, on the other hand, right shifts must
be logical.

In contrast to C, Java has a precise definition of how right shifts should be
performed. The expression x >> k shifts x arithmetically by k posmons, while
x >>> k shifts it logically.

Fillin the table below showmg the effects of the dxfferent shift operat1ons on smgle—
byte quantities. The best way to think about shift operations is to avorkewith binary
representations. Convert the initial values to binary, perform the shifts, and then
cénvert back to hexadecimal. Ea‘ch of the dniswers should bé 8 blnary digits or 2
hexadecimal digits.

. Logii::al ‘Arithmetic
x x<< 3 x>>»2 x>>2

Hex Binary Binary #H:?x Binary Hex Binary Hex

0xC3 -
0x75
0x87 R — e
0x66

Section 2.2 Integer Representations 59

P T gan goe o A e s o -

! Aside shifting by k,for large valuesof x = # T, e

For a datg type consisting of w bits, whdt shbuld be the effect ?')i"’ﬁff_‘ﬁfii’hg by some value £ > w? For
- example, what should be the effect of corputirig the following expressions, assurhing data'type int has
L3 ﬁ L]

w=232 N
b » . ﬁ, * i3
L ints %‘va} = OxFEPCBf;\g?ﬂ << 32 4: PR
int aval = OxFEDCBA98 »>> 36; .

4

ko8

OxFEDCBA9Su 3> 407

ynsigned uval
M i 4 ok o BENe o N 3, s aw 4 e . .
The'C staﬁcfé;ds carefully'avoid sfating What shiould B¢ done ir such a case:On many machines, the

3 shiftinstructions considér only the lower log, w Bits of the shift émount when shifting a wbit value, dnd,
be computed as if they wete by,amounts'0, 4, and 8, respectively, giving results
* Y WEE el L E ik

s

" 1vdl OxFEDCBASB “ o W)) .
.aval OXFFEDCBAYS . § 4 3
uvalt OxOQOFEDGBA, # s b . # X

¢ thé word size.; « y e

: e #
s e o s w8 Bean LB o & e oy an s % s oG e = .
Java; on the other hahd, spécifically requires that shift amounts should bé computed in the modular
{ fashioni we have shown. | “A* » fuwomea N et
s Pow 2 E PN 1 % . L Ba S -
PONSEOGIE WS, gt = s LA o LY [T FEY =

Aside Operator preceaenc‘é issues,with shift operations”

“

i ever, in C the former expressionds equivalent to,1 << (2+3% <€ g, since addition (and Subtraction) have
higher precedence fhan shifts. The left-to-right associativity rulé then causes this'to be parerithesized

as(1 << (2+3)) << 4, giving value 512, rather ’ﬂ'&gn the _inﬁtqndéfdfﬂ.q
§ thes€ar¢ difficult:to’Spot by insplction-WHdr irr doubt} piiin pdrefitheses!

Aty B . "
e OF m % PR L EY - b B ®

#

o B

2.2 Integer Representations

Inthis section, we describe two different ways bits can be used to encode integers-—
one that can only represent nonnegative numbers, and one that can represent
negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen-
tations, We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

Figure 2.8 lists the mathematical terminology we introduce to precisely de-
fine and characterize how computers encode and operate on integer data. This

so the shift"4mount is computéd as k'fod 1+ For &xample, with i-= 32, the above three shifts would _

This behaviotjs not, guarante&d {of C'programs; however,and $4'shift amounts should be keptless than

v s L T A S T = LN
It might be fenipfing to write'the expression 1<<2.4 3<<_4f intending it to méan (1<<2) + (3<<4). How- -

Getting the precedgnce wrong in C expretsions,js a cémmon.source of program errors, and often

£

e e e e i e el

60 Chapter 2 .Representing and Manipulating Information

Symbol Type Meaning . Page
B2T, Function Binary to two’s complement 64
B2l Function Binary to unsigned 62
2B, Function Unsigned to binary 64
uzr,, Function Unsigned to two’s complement 71
128, Function Two’s complement to binary 65
72U, Function Two’s complement to unsigned 71
TMin, Constant Minimum two’s-complement value 65
TMax,, Constant Maximym two’s-complement value 65
UMax,, Constant Maximum unsigned value 63
+ Operation Two's-complement addition 90
+ Operation Unsigned addition 35
* Operation Two’s-complement multiplication 97
* Operation Unsigned multiplication 96
- Operation Two’s-complement negation 95
W Operation Unsigned negation 89 ol

Figure 2.8 Terminology for integer data and arithmetic operations. The subscript
w denotes the number of bits in the data representation. The “Page” column indicates
the page on which the term is defined.

terminology will be introduced over the course of the presentation. The figure is
included here as a reference.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent finite ranges of
integers. These are shown in Figures 2.9 and 2.10, along with the ranges of values
they can have for “typical” 32- and 64-bit programs. Each type can specify a
size with keyword char, short, long, as well as an indication of whether the
represented numbers are all nonnegative (declared as unsigned), or possibly
negative (the default.) As we saw in Figure 2.3, the number of bytes allocated for
the different sizes varies according to whether the ptogratfi is compiled for 32 or
64 bits. Baged on the byte allocations, the different sizes allow different ranges of
values to be represented. The only machine-dependent range indicated is for size
designator 1long. Most 64-bit programs use an 8-byte representation, giving a much
Wider range of values thal thé 4-byté représentation used with 32-bit programs.
H A e o st T T RS .

. On? important fgrz‘lgur'g' tonote 1n1Flg}1res 2.9 and 2.10is that the ranges are not
symmetric—the Tange of negative numbers extends one further than the range of
pcgitive numbers. We \:vill see why this happens when we consider ‘how negative
numbers are represented.

L r

Section 2.2 Integer Representations

C data type Minimum Maximum
[signed] char -128 127
unsigned char 0 255
short —32,768 32,767
unsigned short 0 65,535
int —2,147,483,648 2,147,483,647
unsigned 0 4,294.967,295
long —2,147 483,648 2,147.483,647
unsigned long 0 4,294,967,295
int32_t —2,147 483,648 2,147 483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,634,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C integral data types for 32-bit programs.

C data type Minimum Maximum
[signed] char -128 127
unsigned char 0 255
short —32,768 32,767
unsigned short 0 65,535
int —2,147,483,648 2,147,483,647
unsigned 0 4,?.94,9@7,%935"t)
long —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long 0 18,446,744,073,709,551,615
int32_t —2,147,483,648 2,147.483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,854,775,808 9,223,372,036,854,775807
uint64_t 0 18,446,744,073,709,551,615

Figure 2:10 Typical ranges for C integral data types for 64-bit programs.

»

-’

The C standards define minimum ranges of values that each data type must
be able to representi As shown in Figure 2.11, their ranges are thé same or smaller
than the typical implementations shown in Figures 2.9 and 2.10. In particular,
with the exception of the fixed-size data types, we see that they require only a

61

et et iy e

62 Chapter 2 Representing and Manipulating information

ped

(=3

o wn e W, | EEE ez fa L F T S %
New to €? Signed and tinsighéd mumbers.in.C, GHrandjava s o

Both Cand C++suppertsighed (thé default) and unsi gned niimbers. Jaya supporis only s;gn%fl humber:

W a - 3 5
B hﬁ%’"%”v"&‘?‘f‘ 3

iy w g L

$

o

C data type

Minimum

Maximum

[signed]char
unsigned char
short
ungigned short
int

unsigned

long
unsigned long

int32_t
uint32_t

int64_t
uint64_t

-127
0

—32,767
0

—32,767
0

—2,147,483,647

0

¢
—2,147,483,648
0

-9,223,372,036,854,775,808

0

127
255

32,767
65,535

32,767
65,535

2,147,483 647
4,294,967,295

2,147,483,647
4,294 967,295

9,223,372,036,854,775,807
18,446,744,073,709,551,615

Figure 2.11 Guaranteed ranges fo

that the data types have at least these ranges of values.

"

symmetric range of positi
could be implemented wi
to the days of.16-bit machine
with 4-byte numbers, and it typicall
types guarantee that the ranges of val
numbers of Figure 2.9, including the asymmetry b

2.2.2 Unsigned Encodings

Let us consider an integer data type of w bits. We
denote the entire vector, or as [Xy1, X2, - #-> xo]
within the vector. Treating ¥ as a number written in bin
unsigned interpretation of %. In this encoding,
latter case indicating that value 2/ should be inc

ve and negative

e

r C integral data types. The C standards require

numbers. We also see that data type int
th 2-byte numbers, although this is mostly a throwback
s. We also seexthat size long can be implemented
y is for 32-bit programs. The fixed-size data
lues will be exactly those given by the typical
etween negative and positive.

write a bit vector as either X, to

each bit x;

to denote the individual bits
ary notation, we obtain the
has value 0 or 1, with the
luded as part of the numeric Value.

We can express-this interpretation asa function B2U, (for “binary to unsigned,”

z

Section 2.2 Integer Representations 63

Figure 2.12

Unsigned number
examples for w =4.
When bit { in the binary
representation has value 1,
it contributes 2! to the
value.

10711 12 13 14 15 16

PRINCIPLE: Definition of unsigned encoding

For vector ¥ = [xy,_1, xy_g, . . ., Xg:

w1
‘ B2U,(H =) x2 (2.1)
i=0
|

In thi.s equation, the notation = mcang4hat the left-hand side is defined to be
equal to the right-hand side. The function B2U, maps strings of.zeros and,ones
oflength w to nonnegative integers. As examples, Figure 2.12 shows the mapping,
given by B2U, from bit vectors to integers for the following cases:

B2UL0001) = 0-2240.2240.241-29 = 0404041 = 1
B2U0101) = 0.2341.2240.2041.20 = 04+444+0+1 = 5
B2U4(1011) = 1-2240.22+4+1.2141.20 = 840+42+1 = 11
B2U,[1111) = 1-2341.2241.2141.2° = 8444241 = 15
(22)

In the figure, we represent each bit position i by a rightward-pginting blue bar of
length 2/, The numeric valtue associated with a bit vector then equals the sum of
the lengths of the bars for which the corresponding bit values are 1.

Let us consider the range of values thit can be represented using w bits, The
Teast value is given by bit vector [00 - - - 0] having integer value 0, and the greatest
valueis giverl by bit vector [11 - - 1] having infeger value UMax,, =Y 212 =
2% — 1. Using the 4-bit case as an example, we have UMax, = B2U,([1111]) =
2% — 1 =15. Thus, the function B2U w ¢an be defined as a mapping B2U ,: {0, 1}* —»
{,..., UMax,)}. " .)

The umsignéd?binary representation has the imp6rtant property thatevery
nimber between 0and 2% — 1has a unique encoding asa w-bit value. For example;

I e mem i b em— eid— A e

- .9

64 Chapter 2 Representing and Manipulating Information

there is only one representation of decimal value 11 as an unsigned 4-bit number—
namely, [1011]. We highlight this as a mathematical principle, which we first state
and then explain.

PRINCIPLE: Uniqueness of unsigned encoding

Function B2U , is a bijection. |

The mathematical term bijection refers to a function f that goes two ways:
it maps a value x to a value y where y = f(x), but it can also operate in reverse,
since for every y, there is a unique value x such'that f(x) = y. This is given by
the inverse function f -1 where, for our example, x = f ~1(). The function B2U,
maps each bit vector of length w to a unique number between 0 and 2* — 1, and
it has an inverse, which we call U2B,, (for “unsigned to binary”), that maps each
number in the range 0 to 2¥ — 1 to a unique pattern of w bits.

2.2.3 Two's-Complement Encodings

For many applications, we wish to represent negative values as well. The most com-
mon computer representation of signed numbers is known as two’s-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2T',, (for “binary
to two’s complement™ length w):

PRINCIPLE:. Definition of two’s-complement encoding

For vector X =[x,y—1, Xw_2» - - - » Xg}
w—2 .
B2T () = —x,, 2" 4 3 x2 (2.3)
i=0

The most significant bit x,,_y is also called thie sign bif' Its “weight” is ~2%~,
the negation of its weight in an unsigned representation. When the sign bit is set
to 1, the represented vatue is negative, and when set to 0, the value is nonnegative.
As examples, Figure 2.13 shows the mapping, given by B2T, from bit vectors to
integers for the fpllowing cases:

B2T,([0001) = -0-2340-2240.2'+1-2° = 0+0+0+1 = 1
B2T,(0101) = -0-28%1.2240.2041.20 = O-Si;fijl-0+1 = 5
B2T,(1011) = -1-2340.22+1.2'4+1.2° = —8+0+2+1 = -5
BT (1111) = -1-224+1,22+1.2141.20 = —8+4+2+1 = -1

24)

1 ®

In the figure, we indicate that the sign bit has negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated with a bit-vector s
then given by the combination of the, possible leftward-pointing gray,bar and the
rightward-pointing blue bars.

T A -

Section 2.2 Integer Representations 65

Figure 2.13
Two’s-complement
number examples for
w=4. Bit 3 serves as a
sign bit; when set to 1, it
contributes —23 = —8 to 8- 6 7 8
the value. This weighting }

is shown as a leftward- [0001]
pointing gray bar.

[0101]
11011] §

{1111] B

We see that the bit patterns are identical for Figures 2.12 and 2.13 (as well as
for Equations 2.2 and 2.4), but the values differ when the most significant bit is 1,
since in one case it has weight +8, and in the other case it has weight —8. |

Let us consider the range of values that can be represented as a w-bit two’s-
complement number. The least representable value is given by bit vector [10 - - - 0]
(set the bit with negative weight but clear all others), having integer value
TMin,, = —2"~1. The greatest value is given by bit vector [01- - - 1] (clear the bit
with negative weight but set all others), having integer value TMax,, = Z}":'Gz 2 =
2v-1_ 1. Using the 4-bit case as an example, we have TMing = B2T,([1000]) =
-2%=—8and TMax, = B2T4([0111) =22 + 21 + 0 =442+ 1=7.

We can see that B2T, is a mapping of bit patterns of length w to numbers be-
tween TMin,, and TMax,,, written as B2T ,: {0, 1}* — {TMin,, ..., TMax,}. As
we saw with the unsigned representation, every number within the representable
range has a unique encoding as a w-bit two’s-complement number. This leads to
a principle for two’s-complement numbers similar to that for unsigned numbers:

PRINCIPLE: Uniqueness of two's-complement encoding
Function B2T, is a bijection. |

We define function 72B,, (for “two’s complement to binary”) to be the inverse
of B2T,. That is, for a number x, such that TMin,, < x < TMax,,, T2B,,(x) is the
(unique) w-bit pattern that encodes x.

‘ DAGEITAB) i st oo ShomrascasaitBied
Assuming w =4, we can assign a numeric value to each possible hexadecimal
digit, assuming either an unsigned or a two’s-complement interpretation. Fill in
the following table according to these interpretations by writing out the nonzero
powers of 2 in the summations shown in Equations 2.1 and 2.3:

66 Chapter 22 Representing and Manipulating Information

—

X
Hexadecimal Binary B2U 4(%) B2T (%)
0xE [1110] 284224021=34 234224212
0x0 [,
Oxb — P e

0x8 e

0xD SURT, S i an

QxF . U

Figure 2.14 shows the bit patterns and numeric values for several important
numbers for different word sizes. The first three give the ranges of representable
integers in terms of the values of UMax,, TMin,,, and TMax,,. We will refer
to these three special values often in the ensuing discussion. We will drop the
subscript wand relfer tothe values UMax, TMin, and TMax when w can be 1nfprred
from context Or, 18 not central to the cﬁscussmn

A few pomts are worth h1gh11ghtmg about these numbers. First, as observed
in Figures 2.9 and 2.10, the two *s-complemgnt range is, asymmetric: |TMin| =
|TMaxl + 1; that is, thefe is no positive counterpart to TMin. As we shall see, this
leads to some peculiar propertles of two's-complement arithmetic and.can be the
spurce of subtle program bugs. This as metry arises becatse half the b1tpatterns
(those with thcg’ sign bit set to 1) represent negative numbers, while half (those
with the sign bit set to 0) represent nonhegative numbers. Since 0 is nonnegatwe
this means that it can 'represent one less posnwe number thai negative. Second,
the maximum unsigned value is just over twice the'maximum two’s- complement
value: UMax = 2TMax-+ 1. All of the'Bit patterns'that denote fiegativé numbérs in
two ’s-complement notation beoom'e positive values in an unsigned representatlon

g

! Word size w

Value 8 16 32 64
UMax, ~ OxFF OxFFFF OxFFFFFFFF OXFFFFFFFFFFFFFFFF
255 65,535 4294967295 18,446,744073,709,551,615
Tme 0x80 0x8000 0x80000000 - 0);8900000000000000
-128 —32,768 —2,147,483,648, -9 ,223,372,036,854,775,808
TMax,, OxTF Ox7FFF OxTFFFFFFF ' Ox7FFFFFFFFFFFFFFF
127 32,767 2,147 483,647 9,223 372,036,854,775,807
-1 OxFF O0xFFFF OxFFFFFFFF OxFFFFFFFFFFFFFFFF
0 03{00 0x0000 0}:0000_0000 0x0000000000000000

Figure-2.14 [mportant numbers. BotH numeérit values and:-hexadecimal répresenta-
tions are shown.

Section 2.2 Integer Representations 67

i@ o = g Aren

Aside More on fixed-size integer types # .

For some programs, it is essential that data types be encoded using representations with specific sizes.
For example, when wrmng progranis to enable a machine to communicate over the Internet. accordmg
to a standard protocol, it is important to have.data types cofipatible with those spécified By the protocol.
We have seen that some C data types, especially long, have different ranges on different machines,
and in fact the G standards only specify the minimum ranges for any data type, not the exact ranges.
Although we can choose data types that will be compatible swith standard representations on most
machines, there is no guarantee ol portability.

We have already encountered the .32- and 64-bit versions of fixed-size mteger types (Figure 2.3);
théy are part of larger»class of data types The ISG ‘99 standard introduces this class of mteger tybes
in the file stdint.h. This file defines a sef of data types with declarations of" the fotin idtN _t, and

uintN_t, specifying N-bit signed and unsigned integers, for different values of N. "The exact values of
* N are 1mplementat10n dependent,-but most compilers allow values of 8, 16, 32, and 64. Thus, we tan
unambiguously declare an urfsigned 16-bit variable by giving it type uint16_t, and a signed variable
of 32~b1ts as int32_t. @

Along with these data types are a set of rpacros defining the minimum and max1mum value;s for
each value of N. These have hanies of-the form"INTN SMIN, INTNV MAX, and UINTN _ max *

Formatted printing with fixed- width types requlres use of macros that expand into formatstrmgs
fina system—de,pendent manner. So, for example, the values of variables x and y of type 1nt32 t and
; int64_t can be prmted bythe followmg call to printf

printf("¥ &= %0 PRI4A32° &, y = %" PRIu64~"\n", ¥, yk

When compﬂed as"a 64-bit prograrh, macrb PRIA32 expands to the stfmg nd", while PRJ;u64~expands
to the palr of strmgs "1t "u" When the C préprocéssor encountérs a sequeiice of string cénstants
separated only by 5paces {or other Whltequpe charactérs), it concatenates them together. Thus, the
i above call to printf becomes

L

an

TR RSN

2

‘printf ("k =%d, 3}}"’—“ %iu\n® - x, y)‘, S . f oy i
% Usmg the 5 Iacros, ensurcs f]laﬁ a correg:t fqrmat*jstrmg thl be generated regardless of how the code is

, compiled.

.

¥ & ud i % o 1)

Figure 2.14 also shows the representations of constants —1 and 0. Note that —1
has the same bit representation as UMax—a string of all ones. Numeric value) is
represented as a string of all zeros in both representations.

The C standards do not require signed integers to be represented in two’s-
complement form, but nearly all machines do so. Programmers who are concerned
with maximizing portability across all possible machines should not assume any
particular range of representable values, beyond the ranges indicated in Figure
2.11, nor should they assume any particular representation of signed numbers.
On the other hand, many programs are written assuming a two’s-compiement
representation of signed numbers, and the “typical” ranges shown in Figures 2.9
and 2.10, and these programs are portable across a broad range of machines
and compilers. The file <limits.h> in the C library defines a set of constants

d 68 Chapter 2 Representing and Manipulating Information

— et T

'l o - g L)
Aside Alternativeé representations of signed numbers .. : o : .
[There are two other standard. representatlons for ngned'r;umbers 3) w A

& 5

c)

' < Ones’ conrxpj;emem‘vc This is thé Same as two s complenient, excepy | that the‘mostr 51gmﬁcant bit has

!

[« oweight—(2% 1~ 1'rather thgh —2%71 e L4

dhe # ' ap—2 é

‘ . Y B0, Ah,m@Y” 1’“‘"”1)“2 22 ’ ,-
‘ B =0 ﬁ N

[NV

Sign magmtud% The most mgmﬁcann bit is a-gign bit that, determmes whether.the rémammg bits

wﬂ

%

i

; should be glve,;i negatwe or posmve Welght' » _
is) - .
' LI ; . T SN %
y ot B2S, () = (-1t (pRE2) w :
Lid -] @®ow ¥ *,) S N kY .
o

] Bothﬁof these representat1ons have the curious property that there are two diffetent encodm‘gs of the
\E mimber 0. For both Iepresentatlons [OO -Ofis mterpreted as™40, The-value ~0" can be represented
: in glgﬂ-magmtude form’as [107. - -0] and in oney’ complement as [11 -1). Althotigh machiries based ;
on ones’ complemeht repr sentations were built in the past, almost all modern machines use two's |

complement We will see that sign- magmtude encodu’lg is ued with floating pomt gumbers ; y
J Note the different pogjtion of apostrophes; two’s complement versiis ones complement "THe tefm
|l “two’s complement” arlses from the fact that forwnonnegatlve x we COmputq a*w-bit repregentation
of —x d32"% —x (a smgle twcfj The term “ones’ complement” cgmes frorq ‘the property-that we can
compute —x in this notaticn as [111-* - 1}~ x (multiple opes).

e 4 4

§
i nE G R S s i W i e s P T

i e
1

i delimiting the ranges of the different integer data types for the particular machine 1
on which the compiler is running. For example, it defines constants INT_MAX, INT_

MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a

two’s-complement machine in which data type int has w bits, these constants

‘[correspond to the values of TMax ,, TMin,, and UMax,,.]
The Java standard is quite specific about integer data type ranges and repre- §

sentations. It requires a two’s-complement representation with the exact ranges

f shown for the 64-bit case (Figure 2.10). In Java, the single-byte data type is called

I byte instead of char. These detailed requirements are intended to enable Java
programs to behave identically regardless of the machines or operating systems
running them.

To get a better understanding of the two’s- complement representation, con-
: sider the following code example:

short x = 12345;
short mx = -Xx;

show_bytes((byte_pointer) &x, sizeof (short));
show_bytes((byte_pointer) &mx, sizeof (short));

b B w N~

Section 2.2 Integer Representations 69

12,345 12,345 53,191

Weight Bit Value Bit Value Bit Value
1 1 1 1 1 1 1

2 0 0 1 2 1 2

4 0 0 1 4 1 4

8 i 8 s] 0 0 0

16 1 16 0 0 0 0

32 1 32 0 0 0 0

64 0 0 1 64 1 64

128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512
1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 *2,048 1 2,048
4,096 1 409 0 0 0 0
8,192 1 8192 0 0 0 0
16,384 0 0 1 16,384 1. 16384
432,768 0 0 1 —32,768 1 32768
Totdl 12,345 —12345 53,191

Figure 2.15 Two's-complement representations of 12,345 and —12,345, and
unsigned representation of 53,191. Note that the latter two have identical bit
representations.

When run on a big-endian machine, this code prints 30 39 and cf c7, indi-
cating that x has hexadecimal representation 0x3039, while mx has hexadeci-
mal representation OxCFC7. Ekxpanding these into binary, we get bit patterns
(0011000000111001] for x and [1100111111000111] for mx. As Figure 2.15 shows,
Equation 2.3 yields values 12,345 and —12,345 for these two bit patterns.

*:S«’l

[Practice Problem 2,18 (solution page149), ... i siboe s
In Chapter 3, we will look at listings generated by a disassembler, a program that
converts an executable program file back to a more readable ASCII form. 'Ihese
files contain many hexadecimal numbers, typically representing values in two’s-
complement form. Being able to recognize these numbers and understand their
significance (for example, whether they are negative or positive) is an important
skill.

For the lines labeled A-I (on the right) in the following listing, convert the
hexadecimal values (in 32-bit two’s-complement form) shown to the right of the
instruction names (sub, mov, and add) into their decimal equivalents:

70 Chapter 2 Representing ‘and Manipulating Information

i 4004d0: 48 81 ec ¢0 02 00 00 sub $0x2e0, %rsp 4.
Pl 4004d7: 48 8b 44 24 a8 mov —0x58(%rsp),%rax B.
' 4004dc: 48 03 47 28 add 0x28(%rdi),%rax c.
4004e0: 48 89 44 24 dQ mov Yrax,-0x30 (%rsp) D.
4004e5: 48 8b 44 24 78 mov 0x78 (Yrsp) ,hrax E.
! 4004ea: 48 89 87 88 00 00 00 nov Yrax,0x88(%rdi) F.
4004f1: 48 8b 84 24 £8 01 00 mov Ox1f8(Y%rsp),%rax a.
4004£8: 00
4004f9: 48 03 44 24 08 add 0x8 (%rsp) ,hrax
j 4004fe: 48 89 84 24 c0 00 00 mov %rax,OxcO(%rsp} H.
‘ 400505: 00
400506: 48 8b 44 d4 b8 mov -0x48(%rsp,%rdx,8) ,%rax I.

2.2.4 Conversions between Signed and Unsigned

C allows casting between different numeric data types. For example, suppose
i! : variable x is declared as int and u as unsigned. The expression (unsigned) x

converts the value of x to an unsigned value, and {int) u converts the value of u
\ to a signed integer. What should be the effect of casting signed value to unsigned, ‘
or vice versa? From a mathematical perspective, one can imagine several different ;
conventions. Clearly, we want to preserve any value that can be represented in ;
both forms. On the other hand, converting a negative value to unsigned might yield ,
zero, Converting an unsignied value that is too large to be represented in two’s- o
complement form might yield TMax. For most implementations of C, however,
the answer to this question is based on a bit-level perspective, rather than on a
E nuineric one. |
For example, consider the following code:

[1 short int |, v, = -12345;
2 unsigned short uv = (unsigned short) v;
{ 3 printf("v = %d, uv = ful\np"; v, uy);
H '

When run on a two’s-coinplement machine, Et generates the followiing output:
¥
v = —12345, uv = 53151

R What we see here is that the effect of casting is to keep the bit values identical
but change how these bits are interpreted. We saw in Figure 2.15 that the 16-bit
‘ two’s-complement répresentation' of —12,345 is identical fo the 16-bit unsighed
‘ représentétioh ‘of 53,191. Casting froi short to unpsigned short changed the
numeric value, but ot the bit representation. !

Similarly, cnsider the following code:

4

1 unsigned u = 4294967295u; /* UMax */ !
2 Ant tu =.{int) u;
. -

Section2.2 Integer Representations

3 printf("u = Zu, tu = %d\n", u, tu);
When run on a two’s-complement machine, it generates the following output:
= 4294967295, tu = ~1

We can sce from Figure 2.14 that, for a 32-bit word size, the bit patterns represent-
ing 4,294,967,295 (UMaxs,) in unsigned form and —1 in two’s-complement form
are identical. In casting from unsigned to int, the underlying bit representation
stays the same.

This is a general rule for how most C implementations handle conversions
between‘signed and unsigned numbers with the same word size—the numeric
values.might change, but the bit patterns do not. Let.us capture this idea in
a more mathematical form. We defined functions U2B,, and 72B,, that map
numbers to their bit representations in either unsigned or two’s-complement form.
That is, given an intéger x in the range 0 < x <*UMax,, the function U2B;,(x)
gives the unique w-bit unsigned representation of x. Similarly, when x is.in the
range TMin, <x'< TMaxw, the function 72B,,(x) gives the unique w-bit two’s-
complement representatmn ofix.

Now define the function 72U, as T2U ,(x) = B2 U w(T2B,,(x)). This function
takes a number between TMin,, and TMax,, and yields a number between 0 and
UMax,,, where the two numbers have iclentical bit representations, except that
the argument has a two’s-complement representation while the redult is unsigned.
Similarly, for x between 0 and UMax,, the funetion U27,,, defined as U27 ,(x) =
B2T,,(U2B,,(x)¥ yields the number having the same two’s-complement represen-
tation as the unsigned representation of x.

Pursuing our 'earlier examples, we see from:Figure 2.15 that 72U ¢(—12,345)
= 53,191, and that U27;4(53,191) = —12,345. That is, the 16-bit pattern written in
hexadecimal as 0xCFC7 is both thg 4wo’s-complement representation of —12,345
and the unsigned representation of 53,191. Note also that 12,345+ 53,191 =
65,536 =29, Thjs property generalizes to a relationship between the two nu-
meric values (two's complement and unsigned) represented by a given bit pat-
tern. Similarly, from Figure 2.14, we see that T2Us(—1) = 4,294,967,295, and
U27T3,(4,294,967,295) = —~1. That is, UMax has the same Bit representation in un-
signed form as does —1 in two’s-complement form. We can also see the relationship
between these two numbers: 1+ UMax,, = 2%. d

We see, then, that function 720U describes the tonversion of a two's-
complement number to its unsigned counterpart, while U2T converts in the op-
posite difection. Thiese describe the effect of casting between these data types in
most Cimplementations.

t

Usmg the tabie you ﬁlled in when solvmg Problem 2.17,fill in tHe followmg table
describing the function T72U,:

71

- = e Te——r———— - e) -uu--l'

72 Chapter 2 Representing and Manipulating Information

. x T2U 4(x)
. -8

-3
-2

-1

0 —

] 5

The relationship we have seen, via several examples, between the two’s-
complement and unsigned values for a given bit pattern can-be expressed as a
property of the function T2U:

PRINCIPLE: Conversion from two’s complement to unsigned
For x such that TMin}, < x < TMak,,;: t

x-+2% 2<0
x>0 Bt

(2.5)

U, (x) = [
[|

X,

For example, we saw that T2U(—12,345) = —12,345 + 216 — 53,191, and also
that T2U ,(—1) = —1+4 2% = UMax,, ‘ ‘

This property can be derived by comparing Equations 2.1 and 2.3. |

1] |

_ DERIVATION: Conversion from two’s complement to unsigned 5
) Comparing Equations2.1 and 2.3, we can see thatfor bit pattern ¥, if we compute
the difference B2U (¥} — B2T,(¥),the weighted suims for bifs from 0 fow — 2 will
caricel each’dther, leaving a value B2U (%) = B2F,(X) = x,,_q (20l — 2wy
x,_12%. This givés a relationship B2U (%) = B2T (%) + x,p_12%. Wé-therefore
have

B2Uw(Tsz(x)) :T?Uw(x)=x—l—xu;_12w (26) :

In a two’s-complement representation of x, bit x,,_; determines whether or not x
is negative, giving the.wo cases of Equation 2.5. |

f n

As examples, Figure 2.16 compares how functions B2U and B2T-assign values

: to bit patterns for w = 4. For the two’s-complement case, the most significant bit 3
serves as the sign bit, which we diagram as a leftward-pointing gray bar. For the a
unsigned case, this bit has positive weight, which we show asa rightward-pointing
black bar. In going from two’s complement to unsigned, the most significant bit
changes its weiglit from —8 to +8..As a consequence, the values that are nega-
i tive in a two’s-complement 'representation‘increase by 2* = 16 with arr unsigned
. representation. Thus, —5 becomes +11, and —1 becomes +15.

Section 2.2 Integer Representations

Figure 2.16 ¢] —2%a -8
Comparing unsigned
and two’s-complement
representations for w =4,
The weight of the most
significant bit is —8 for
two’s complernent and +8 8-7-6-5-4-3-2-1 0123 45 &

+~

73

8 910111213 14 15 18
———]

for unsigned, yielding a net —— —+— —+—
difference of 16. {to11]

[1111]

Figure 2.17

Conversion from two's
complement to unsigned.
Function T2U converts amt
negative numbers to large
positive numbers,

2W

2% Unsigned

Two's
complement 0

I _2w-1

Figure 2.17 illustrates the general behavior of function T2U. As it shows, when
mapping a signed number to its unsigned counterpart, negative numbers are con-
verted to large positive gumbers, while nonnegative.numbers remain unchanged.

Explain how Equation 2.5 applies to the entries in the table you generated when
solving Problem 2.19. 4

17

Gotng in the other direction, we can state the relationship between an un-
signed number « and its signed counterpart U2T,(s):
PRINCIPLE: Unsigned to two’s;complement conversion
For u such that 0 < u < UMax,,;:

u, u < TMax,,,

u—2% u>TMax, @7)

- 02T, (u) = {

74 Chapter2 Representing and Manipulating Information

Figure 2.18
Conversion from
unsigned to two's
complement. Function Unsigned 2"
U2T converts numbers

greater than 2%~1—
negative values.

2W

+2W—1

lto
Two's

complement

_2W‘—1

This principle can be justified as follows:

DERIVATION: Unsigned to two’s-complement conversion

Letii = U2B,,(u). This bit vector will also be the two’s-complement representation
of U2T,(u). Equations 2.1 and 2.3 can be combined to give

27,) =—u, 2% +u !(2.8)

In the unsigned representation of i, bit u,,_; determines whether or not uis greater
i,

than TMax,, = 2¥~! - 1, giving the two cases of Equation 2.7. u

The behavior of function 'U2T is illustrated in Figure 2.18. For small
(< TMax,) numbers, the conversion from usisigned to signed preserves the nu-
meric value. Large (> TMax,) numbers are converted to negative values.

To summarize, we considered the effects of converting in both directions
between unsigned and two’s-complement representations. For values x in the
range 0 < x < TMax,, we have T2U ,(x) = x. and. U2T ;(x) ==x~That is, num-
bers in this range have identical unsigned and two’s-complemént representations.
For values outside of this range, the conversions either add or subtract 2%. For
example, we have T2U ,(-1) = —1 + 2" = UMax,—the negative number clos-
est to zero maps to the largest unsigned number At the other extreme, One
can see that T2U ,(TMin,) ='—2¥~1 4:2% = 2v~1 = TMak,, + 127 ithe most neg-
ative number maps to an unsigned number just outside the range of pditive
two’s-complement numbers. Using the éxample of Figure 2.15, we can sce that
T2U 5(—12,345) = 65,536 + —12,345 = 53,191.

2.2.5 Signed versus Unsigned in C

As indicated in Figures 2.9 and 2.10, C’supports both signed and unsigned arith-
metic for all of its integer data types. Although the C standard does not spec-
ify a particular representation of signed numbers, almost all machines use two’s
complement. Generally, most numbers are signed by default. For example, when
declaring a constant such as*12345 or 0x1A2B, the value is considered signed.
Adding character ‘U’ or ‘v’ as a suffix creates an unsigned constant; for example,
123450 or 0x1A2Bu.

Section 2.2 Integer Representations 75

C allows conversion between unsigned and signed. Although the C standard
does not specify precisely how this conversion should be made, most systems
follow the rule that the underlying bit representation does not change, This rule has
the effect of applying the function /2 T, when converting from unsigned to signed,
and 72U, when converting from signed to unsigned, where w is the number of
bits for the data type.

Conversions can happen due to explicit casting, such as in the following code:

int tx, ty;
unsigned ux, uy;

(int) ux;
(unsigned) ty;

tx
uy

1]

ok W N =

Alternatively, they can happen "implicitly'when dn expression of one type is as-
signed to a variable of another, as in the following code:

int tx, ty;
unsigned ux, uy;

tx = ux; /* Cast to signed''*/
uy = ty; /* Cast to unsigned */

L T S 5C N N J—

‘When printing numeric values with printf, the directives %d, %u, and %x
are used to print a number as a signed: decimal, an unsigned decimal, and in
hexadecimal format, respectively. Note that printf does not make use of any
type information, and so it is possible to print a value of type int with directive
%u and a value of type unsigned with directive d. For example, consider the
following code:

1 it x = -1,

2 unsigned u =.2147483648; /* 2 to the 3ist */
3

4 printf("x = %u = %d\n", x, x);

5 printf("u = %u = %d\n", u, w);

When compiled as a 32-bit program, it prints the following:

fn
]

4294967285
2147483648

-1
-2147483648

X
u

Inboth cases, printf prints the word first as if it represcnted an unsigned number
and second as if it represented a signed number. We can see the conversion
routines in action: 72Uz (x1) = UMaxf, =232 — 1 and U2T5,(23)y= 231 — 232 _
—‘231 = TMiﬂ32. ,

Some possibly nonintuitive behavior ariges due to C’s handling of expres-
stons contéining‘comfjinqtions of signed and unsigned quantities. When an op-
eration is performed where one operand is signed and the other is unsigned, C
implicitly casts the signed argument to unsigned and performs’ the operations

i 76 Chapter 2 Representing and Manipulating Information

Expression Typé Evaluation

’ 0o = 0U Unsigned 1
-1 < 0 Signed £

: -1 < 0U Unsigned 0%
2147483647 > -2147483647-1 Signed 1

21474836470 = -2147483647-1. .Unsigned 0*

2147483647 > (dint) 21474836480 Signed 1%
-1 > -2 Signed 1
{(unsigned) -1 > -2 Unsigned 1

Figure 2.19 Effects of C promotion rules. Nonintuitive cases are marked by “*'. When
either operand of a comparison is unsigned, the other operand is impilicitly cast to |
unsigned. See Web Aside DATA:TMIN for why we write TMins; as -2, 147,483, 647-1. J

assuming the numbers are nonnegative. As we will see, this convention makes
little difference for standard arithmetic operations, but it leads to nonintuitive
results for relational operators such as < and >, Figure 2.19 shows some sample
relational expressions and their resulting evaluations, when data type int has a
32-bit two’s-complement representation. Consider the comparison -1 < 0U. Since
the second operand is unsigned, the first one is implicitly cast to unsigned, and
herice the expression is equivalent to the comparison 4294967295U < 0U (recall
. that T2U ,(—1) =:=UMazx), which of course is false. The other cases can be under-
stood by simila® analyses. v

Assuming the expressions are evaluated when executing a 32-bit program on a ma-
chine that uses two’s-complement arithmetic, fill in the following table describing
the effect of casting and relational operations, in-the style of Figure 2.19:

Expression Type Evaluation
i -2147483647-1 == 21474836480

-2147483647-1 < 2147483647]
s -2147483647-1U < 2147483647

-2147483647-1 < -2147483647
-2147483647-1U < -2147483647

iz
»

2.2.6 Expanding the Bit Representationof aNumber

while retalmng ‘the same numeric value Of course, this maynot be possible when
the déstination data type is too small to represent the' desired vahie! Converting
from a §maller toa lal;ger ‘data type, however, shc;uld always be possible. “
g ")

& One common operation is to convert between integers havmg different word sizes
i

Section 2.2 Integer Representations 77

; Web Aside DATA:TM N Writing nggm% C oty v, 4
' In Figue2.19 angd-in:Problem 2124 swe.careftlly wrote thie value'of TMjrsyds -2, 147 , 483 .647~1. Why-*
not simply write it as either -2/, 147,483, 648 or, 0x800000002 Looking at-the C header-file-l imits®h,

we see that they use-o'similat. ghethodas we havé to.write wz‘%ﬁng.,ahdﬁ"szfn: P

LR &

sl w-’l??"’{ N A o
o

Lé & g P i . ! G oo Fa ow i
/* Minihym: and magg:imumb*yafu’é"s 2 fglgned 1At can Hold. = ”‘*/:%-* & ¢
#define .INT_.MAX '2147483647, ., b 7, sy £ .
. o i T N y . .
#define’ INTZMIN o (SINT:MAXe%,1) #+, poTE L e © }) .
i . ¢ . £ g, = B , Ev, .-a'nﬁ 3 ”. Coe 1l § 3 B ot o *® 5 #f‘; ¢ 3) ~RI %
:Uqﬁprtugatelyfd“Cur'igil“l“% LgféE@@E}onﬁbfgtw‘“een"thééés?mm?etﬂrx of, gheHi@ofsﬁggmelqment-&re“pfésenta-.« :
" tion'and the conversion rtilegs’ of Cforces usto write 7Mins, in this unusyal way. Although uriderstanding
L T N o Y W g%, at g TR Y SN i A T S
this issde requirks us.to delve.imto, onesofithe murkier«corners of the C:language standards, it will help~
o S P E i o f o T T *) ki
“bis appreciatg. sog}e Qfmithefﬂsqbg%:g%gfniglﬂtg;ge&gﬁa tmesﬁp%dﬁgp%mggntagog% - C

1-’-#1&# £ “jhﬁ“ . 3 ;
i P B oo b B, SRt e wnE e Wamnd swedo i el T om T 5 W K b

AER ® A G

Y M £
¥,

g igdn s
Snins

To convert an unsigned number to a larger data type, we can simply add
leading zeros to the representation; this operation is known as zero extension,
expressed by the following principle: =

PRINCIPLE: Expansion of an unsigned number by zero extension

Define bit vectors & = [u,,_1, uy,_3, . .., up] of width w and # =10, .. ., 0, Uy 1,
7 » ug] of width w', where w’ > w. Then B2U (&) = B2U . (it). [

w—Ds s - -

This principle can be seen to follow directly from the definition of the unsigned
encoding, given by Equation 2.1.

For converting a two’s-complement number to a larger data type, the rule
is to perform a sign extension, adding copies of the most significant bit to the
representation, expressed by the following principle. We show the sign bit x,,_; in
blue to highlight its role in sign extension.

PRINCIPLE: Expansion of a two’s-complement number by sign extension

Define bit vectors ¥ = [x,, 1, x,,_3. . . ., xp] of width w and ¥’ = Xt e v Xppots
Xy—1> Xw-2, - - - » Xp] of width w’, where w’ > w. Then B2T (%) = B2T ,(¥'). N

As an example, consider the following code:

i short sx = -12345; /* —12345 »/

2 unsigned short usx = sx; /+* 53191 */

3 int x = sx; /¥ ~12345 =*/

4 unsigned ux = usx; /* 53191 x/

5

6 printf("sx = %d:\t", sx);

7 show_bytes{(byte_pointer) &sx, sizeof (short));

8 printf ("usx = ¥u:\t", usx);

9 show_bytes((byte_pointer) &usx, sizeof (unsigned short));
10 printf("x = Jd:\t", x);

-

78 Chapter 2 Representing and Manipulating Information

Figure 2.20
Examples of sign

extension from w=3

to w = 4. For w =4, the 2= 4 |

1 shou bytes((byte_pmnter) &x, SlZQOf(ln‘t)g
12 printf("ux = %u:\t", ux);
13 show_bytes((byte_pointer) &ux, sizeof (unsigned});

When run as a 32-bit program on a big-endian machine that uses a two’s-
complement representation, this code prints the output

sx = -12345: cf c7
usx = 53191: cf c7
b'e = ~12345: ff £f <f c7

ux = b319i: 00 00 cf 7T

We see that, although the two’s-complement representation of —12,345 and the
unsigned representation of 53,191 are identical for a 16-bit word size, they dif-
fer for a 32-bit word size. In particular, 12,345 has hexadecimal representation
0xFFFFCFCT, while 53,191 has hexadecimal representation 0x0000CFCT. The for-
mer has been 51gn extended—16 copies of the most significant bit 1, having hexa:
decithal representation 0xFFFF, have been added as leading bits. The latter has
been extended with 16 leading zeros, having hexadecimal representation 0x0000.

As an iflustration, Figure 2.20 shows the'result of expanding from word size
w =3 tow = 4 by sign extension. Bit vector [101]represents the value —44+1=-3.
Applying sign extension gives it vector [1101] representing the value —8 + 4 +
1= —3. We can see that, for w = 4, the combined value of the two most significant
bits, —8 + 4 = —4, matches the value of the sign bit for w = 3. Similarly, bit vectors
[111} and [1111] both represent the value —1.

With this as intuition, we can now show that sign extension preserves the value
of a two’s-complement number,

combined weight of the 2' = 2 [

upper 2 bitsis -8 + 4=—4, 002 1 @

matching that of the sign - Lot
bit for w =3 i o oo B B o A

(101}

[1101] §

[111}

[1111]

,Section 2.2 ..Integer Representations 79

DERIVATION; :Expansion of a two’s:complement mumber by sign extension
Let w"=w 4 k. What we want to préve-is that »”
{1

BTt ([Xuw-1s - -+ Xu—1s Xyyo1s Xy -+ -+ XD = B2T , ([xyy_1, Xyy—as - - - » %))
— e

k times

The proof follows by induction on k. That is, if we can prove that sign extending
by 1 bit preserves the numeric value, then this property will hold when sign
extending by an arbitrary number of bits. Thus, the task reduces to proving that

B2Tw+1([xw_1, Xoyy—1o Kgg2s v 0 -5 xo]) = BZTw([Iw_]_, Xp—21 v == xo])

Expanding the left-hand expression with Equation 2.3 gives the following:
3

w—1
B2T1})+1([xw_l, Xpg—1> Xyg—2s « = v s 1'0]) = —xw_l?."” -+ Z x,-2'
i=0
w2
= —xw_12w + .X'w_izw_l “+ Z x,-2'
v +i=0

w-2
=—x, 1 (2“’ - 2"’_1) + Z x2
i=0

w—2
= —xw_l.'Z"’_l + Z x,-2’
i=(0
=B2T ([xy -1, Xp2, . - - xo])
The key property we exploit is that 2% — 2%~1 = 29-1 Thus, the combined effect
of adding'a bit of Weight +2" and of conVerting the'bit having weight —2°~to be
one with wéight2*~1 js tb pféserve the briginal numéric value. |

how that each of the fSllwing bit vectors i&-a two’s-complement representation
of —5 by applying Equation 2.3:
A. [1011]
B. [11011]
C. [111011]

Observe that the second and third bit vectors can be derived from the first by sign
extension.

e e T e e e e T T,

| 80 Chapter 2 Representing and Manipulating Information

One point woirth making is that the relative order of conversion' from one
data size to another and between unsigned and signed can affect the behavior of
a program. Consider the following code:

i
short sx = -12345; /% -12345 %/
unsigned uy = sx; /* Mystery! */

printf("uy = %u:\t", uy);
show_bytes ({byte_pointer) &uy, sizeof (unsigned));

Lo W =

L4
When run on a big-endian machine, this code causes the following output to be
printed:

uy = 4294954951: f£f ff cf c7

This shows that, when converting from short to unsigned, the program first
changes the size and then the type. That is, (unsigned) sx is equivalent to |
(unsigned) (int) sx, evaluating to 4,294,954,951, not (unsigned) (unsigned i
short) sx, which evaluates to 53,191, Indeed, this convention is required by the
C standards.

= Con51de1' the followmg C functlons

int funi(unsigned word) {
return (int) ((word << 24} >> 24);
}

int fun2?(unsigned word) {
return {(int) word << 24) 35> 24;
i }

Assume these are gxecuted as a 32-bitprogram on a machmg that uses two’s-
complement ar1thmet1c Assume also that right shifts of signed valyes are pef;
formed arithmetically, while right shifts of unsigned values are performed logically.

A. Fll in the following table showing the effect of these functions for several
example arguments. You wilLfind it more convenient to work with a hexa-
» decimal representation. Just repember that hex digjts 8 through F have, their
most significant bits equal to 1.

W funi (w) fun?2 (w)

0x00000076
0x87854321
0x000000C9
0xEDCBA98Y

. Describe in words the useful computation each of these functions performs.

Section 2.2 Integer Representations 81

2.2.7 Truncating Numbers

Suppose that, rather than extending a value with extra bits, wé redud¢ the number
of bits répresenting a number. This occurs, for example, in the following code:

1 int x = 53191;
2 short sx = (short) %; /+'-12345 %/
3 int y 2'5%; ! P yet 12345 #/

1y IH 2

Casting x to be short wilk truncate a 32-bit idt o a 16-bit short. As we saw
before, this 16-bit pattern isthe two’s-complement representdtion of —12,345,
When casting this back to int, sign extension will set the high-érder 16 bits to
ones, yielding the 32-bit two’s-complement representation of —12,345,

When truncating a w-bit number ¥ = [*p_ts Xz - . . ¥o] to ak-bit ‘number,
we drop’ the highrorder w — & bits, giving a bit vector ¥’ = [x,_;, x;_0, .. ., xg]
Truncating a number can alter its value—a form of overflow. For an unsigned
number, we can readily characterize the numeric value that will result.

PRINCIPLE: Truncation of an unsigned number

Let X be the bit vector [x,,_1, x,_s, . . +» %o, ana Iét X' be the result of truncating
jtto k bits: X' =[x, 1, x;,_,..., x0) Let x = B2U (%) and x' = B2U,(%"). Then
x'=x mod 2%, []

The intuition behind this principle is simply that all of the bits that were
truncated have weights of the, form' 2/, where i > k, and therefore each of these
weights reduces to zero under the modulus operation. This is formalized by the
following derivation:

DERIVATION: Truncation of an unsigned number
Applying the modulus operation to Equation 2.1 yields

i

w-—1
B2U ([0 Xyp_gs e » xp]) mod 2% = [Z x,-z‘} mod 2*
i=0

k-1)
= ’:Z x,—2‘:| mod 2*

i=0

k-1 .
= Zx,-Z'
i=0
= BZUk([xk_l, Xp Dy oo vy xo])

In this derivation, we make use of the property that 2/ mod 2* = () for any i > k.

n

A similar property holds for truncating a two’s-complerhent number, except
that it then converts the most significant bit into a sign bit:

82 Chapter 2 Representing and Manipulating Information

PRINCIPLE: Truncation of a two’s-complement number

Let X be the bit vector, [xy_1s Xw_2, - - - » %p), and let (:t' be the result of fruncating
it to k bits: ¥' = [xg_1, xk_z, ..., %] Let x,= B2T (%), and x' = B2T(i"). Then
x' = U2T,(x mod 2%). |

In this formulation, x mod 2% will be a number between 0 and 2F — 1. Applying
function U2T,, to it will have the effect of conyerting the most significant bit x;_; |
from having weight 2~ to having weight —2*~1, We can see this with the example :
of converting value x = 53,191-from int fo short. Singe 216 = 65,536 > x, we have
x mod 216 = x..But when we convert this nimber, to a 16-bit two’s-complement
number, we get x/-='533;191 — 65,536 = —12,345.

DERIVATION: Truncation of a"two’s-comp_lement number
Using a similar argument to the one we used for truncation of an unsigned number

shows that
b Il .
B2T, ([Xy—1» Xu—2, - - - » X)) mod 2F = B2U({x_y, Xx_2, - - - » XoD)

That is, x mod 2* can be represented by an unsigned number having bit-level rep-
resentation [%;_1, Xg..2, - - - » x4]. Converting this to a two’s~complemént numbet

gives x' = U2T(x mod 2%). | |

Summarizing, the effect of truncation for unsigned numbers is

'y

BZUk([Ik T XfPs o .Xo]) = BZUw([xw 1 X2 £+ s xo]) mod 2" (29)
l
while the effect for two’s-complement numbers is

B2Ty([Xp—1s ¥e2s - - - » %)) = U2T3(B2U ([%uy_1x Xpp2: - - - - %o}, mod 2F) (2.10)

Prattice’Problem 2. 24:(5p T Gt]
Suppose we truncate a 4-bit value (represented by hex dlglts O through F) toa 3—
bit value (represented as hex digits 0 through 7.) Fillin the table below showing
the effect of this truncation for some cases, in terms of the unsigned and two’s-
complement interpretations of those bit patterns.
"1
i

Hex Unsigned Two’s complement
Original Truncated Original Truncated Original Truncated
0 0 0 e 0 R |
2 2 2 N 2 R |
9 1 9 [~7
B 3 11 eem e =5
F 7 15 L -1 _

Explain how Equations 2.9 and 2. 10 apply to these cases,

g a4y Pt

Ly

Section 2.2 Integer Representations 83

2.2.8 Advice on Signed versus Unsigned '

As we have seen, the implicit casting of signed to unsigned leads to some non-
intuitive behavior. Nonintuitive features often lead to program bugs, and ones
involving the nuances of implicit casting can be especially difficult to see. Since the
casting takes place without any clear indication in the code, programmers often
overlook its effects.

The following two practice problems illustrate some of the subt)e errors that
can arise due to implicit casting and the unsigned data type.

T Ty A R T K CR hEAN
iPractice Problem:2.25° (solutiortpaqe*1s1) . ., & % & PN

Consider the following code that attempts to sum the elements of an array a, where
the number of elements is given by parameter length:

/* WARNING: This is buggy code */

float sum_elements(float a[], unsigned length) {
int i;
float-result = 0;

1
2
3
4
5
6 for (i = 0; i ¢= length-1; i++)
7 result += a[il;

3 return result;

9

}

When run with argument length equal to 0, this code should return 0.0.
Instead, it encounters a memory error. Explain why this happens. Show how this
code can be corrected.

string is longer than another. You decide to make use of the string library function
strlen having the following declaration:

/* Prototype for library function strlem */
sizae_t strlen(const char #s);

Here is your first attempt at the function:

/* Determine whether string s is longer than string t */
/* WARNING: This function is buggy */
int strlonger(char *s, char #*t) {

return strlen(s) - strlen(t) > 0;

}
{

When you tést this on some sample data, things do'not seem to work quite
right. You investigate further and determine that, when compiled as a 32-bit

84 Chapter 2 Representing and Manipulating Information

program, data type size_t is defined (via typedef) i header file stdio.h to'be
unsigned.

A. For what cases will this function produce an incorrect rgsult?

B. Explain how this incdrrect result comés about.

C. Shéw how to fix the code so that it will work reliably.

BT i e

We have seen multiple ways in which the subtle features of unsigned arith-
metic, and especially the implicit conversion of signed to unsigned, can lead to
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned
numbers.’ In fact, few languages other than C support unsigned integers. Appar-
ently, these other' language designers viewed, them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they
be unplemented with two’s-complement arithmetic. The normal right shift oper-
ator >> is guaranteed to perform ‘an arithmetic shift. The special operator>>> is
defined to perform a logical right shift.

Unsigned values are very useful when we want to think 8f words as just col-
lections of bits with no numeric 1nterpretat10n This occurs, for example, when
packing a word with flags describing various Boolean conditions. Addresses are
naturally unsigned, so systems programmers find unsigned-types to be helpful.
Unsigned values are also useful when implementing mathematical packages for
modular arithmetic and for multiprecision arithmetic, in which numbers are rep-
resented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive num-
bers can yield a negative result, and that the comparison x < y can yield a different
result than the comparison x-y < 0.,These properties are artifacts of the finite na-
ture of;computer arithmetic. Understanding the nuances of computer arithmetic
can help programmers write more reliable code.

2.3.1 Unsigned Addition Y

Consider two nonnegative integers x and y, such that 0 <x, y <2". Each of
these values can be represented by a w-bit unsigned number. If wé computetheir
sum, however, we have a possible range 0 < x +y < 2¥*1 -2, Representing this
sum could require w + 1 bits. For example, Figure 2.21 shows a;plot of the func-
tion x + y when x and y have 4-bit representations. The arguments (shown on
the horizontal axes) range from 0 to 15, Jbut the sum ranges, from'0 to 30, The
shape of the function is a sloping plane (the function is linear in both dlmen-
sions). If we were to maintain the sum as a (w + 1)-bit number and add it to
anothérevalue, we may require w + 2 bits, and so on. This continued “word size

¢

Section 2.3 Integer Arithmetic 85

32
28
24
20

16

~{ 0

2

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 hits.

inflation” means we cannot place any bound on the word size required to fully rep-
resent the results of arithmetic operations. Some programming languages, such
as Lisp, actually support arbitrary size arithmetic to allow integers of any size
(within the memory limits of the computer, of course.) More commonly, pro-
gramming languages support fixed-size arithmetic, and hence operations such
as “addition” and “multiplication” differ from their counterpart operations over
integers,

Let us define the operation +, for arguments x and y, where 0 < x, y < 2¥,
as the result of truncating the integer sum x + ¥ to be w bits long and then
viewing the result as an unsigned number. This can be characterized as a form
of modular arithmetic, computing the sum modulo 2¥ by simply discarding any
bits with weight greater than 2%~ in the bit-level representation of x 4- y. For
example, consider a 4-bit number representation with x =9 and y = 12, having
bit representations [1001] and [1100], respectively. Their sum is 21, having a 5-bit
representation [10101]. But if we discard the high-order bit, we get [0101], that is,
decimal value 5. This matches the value 21 mod 16 = 5.

g

86 Chapter 2 Representing and Manipulating Information

Aside Security vuinerability in getpeername .

S

Tn 2002, programmers involved-in the FreeBSD open-source operating-systems project realized that
their implementation of the getpeernadie library function had a security vilnerability. A simplified
version of their code went something like this:

T/ .
2 * Tllustration of code vulnerability similar to that found in)
3 * FreeBSD'sﬂimplbmentat{on ot‘getpeernaméf)

4 */

6 /+ Declaration of library function memcpy */

7. void *memcpy(void *dest, void, *src, gize_t n);

8 E

9 /% Kernel memory-region holding usér-actessible ‘data */

10, #define KSIZE 1024 .

1 char “kbuf [KSIZE];

12

13 /* Copy at most maxlen bytes from kernel region *to ugser buffer */

14 int copy_from:kernel(void *user_dest, int. maxlen) {

15 /* Byte count len is minimum of buffer sizZe ‘and ‘mdxlen */

16 int len = KSIZE < maxleh 7 KSIZE : maxlen;

17 memepy (user_dest, kbuf, len); °* -

18 return len; K

19 3}

o N PO *

In this code, we show the prototype for librmy?ungtion memepy on line 7, which is designed to copy
a specified number of bytes n from one region of memory to another.,

The function copy_from_kernel, starting at line 14, is designed to copy some of the data main-
tained by the operating systein kernel to &' designated regibn of memory accéssible’to the user. Most “”5
of the dath structures maintained by the’kernelshotild not be'readable by aruser, since they may cop-i 4
tain sensitive information about'other users and about otherjobs running on thie system, but the region
shown as kbuf was intended to be ofid’that the user cbuld fead. Thé parameter maxlen is intended to be
the length of the buffer allocated by the user and indicated by argbment uses dest: The computation
at line 16 then makes sure that no more bytes are copied than‘aré availablein eitherthe $curcg'or thé
destination buffer. a >

Suppose, however, that some malicious programmer writes code that calls copy_from_kernel'with
a negative value of maxlen. Then the miinimum corhputation‘on line, 16 will compute’ this value for len,
which will then be passed a& the parameter n fo memcpy. Note, howeVer, that pafameter n is declared’as
having data type size_£. This data type ig'declared] (via typedef }inthe liﬁgamﬁle stdio :h. Typically, 1f
is defined to be unsigned for 32-bit programs and unsigned long fos 64-bit-programs, Since argyment
n is-unsigned, memcpy will treaf'it as a very large pésitive number and dttempt to"copy that many bytes
frém the Kernel region to theshser’s buffer. Copying that mdny bytes (at least 231) will not actually
work, because the program will encounter invalid addresses in the procéss, butithé grogram could read
regions of the kernel memoty for which itis ot authorized.

ot atm [P

L

R R T

. R [et n ww sl RN

e

P T e -

P

E
£
|
¥
!
i

Section 2.3 Integer Arithmetic 87

AL i, e LA e G G AR SN
Aside Security Vulherability jrf

T R f.ygwr‘ﬂ-rg P 3
getpeername (continued)-

"

o T # =

We can see that this probleni arises due to the mismatch betwaén data types: in one place the
length parameter'i§ Signed; 4n *anqtﬁier place itisunsigned. Such,mismatches cdn bea source of bugs
and, as this exampleshiows, can even Jead to secirity vulnérabilities. Fortunately, there were no reported
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a seéurity advisory
“FreeBSD—SA;QZ:SS.sfgnea—enoﬁ’gdvising system administrators on how to apply a patch that would
removeuthge vulnerability. The bug‘cast ‘bé fixed by declaring parameter hax]len to copy_from_kernel
tobe of type size_ t, to'be consibtent with parameter n of memcpy. We should also declare local variable
len‘and the returnwvalue to be of typé size_t. S i

FES: B
" : ;
el R S BT et oM e G Sma o W ew e sl o o S [ON —

"

We can characterize operation + as follows:

PRINCIPLE: Unsigned addition
For x and y such that 0 < x, y < 2%:

X+, x+y<2¥ Normal

oY= 2.11
CH {x-l')’—?-“’, 2% < x +y < 2% Overflow (211)

The two cases of Equation 2.11 are illustrated in Figure 2.22, showing the
sum x + y on the left mapping to the unsigned w-bit sum x +,, ¥ on the right. The
normal case preserves the value of x + y, while the overflow case has the effect of
decrementing this sum by 2¥.

DERIVATION: Unsigned addition

In general, we cansee that if x + y < 2%, the leading bit in the (w + 1)-bit represen-
tation of the sum will equal 0, and hence discarding it will not change the numeric
value. On the other hand, if 2 < x + y < 2%l the leading bit in the (w + 1)-bit
representation of the sum will equal 1, and hence discarding it is equivalent to
subtracting 2¥ from the sum. |

An arithmetic operation is said to overflow when the full integer result cannot
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow

X+

Ll Overflow

x+y

Normal

Figure 2.22 Relation between integer addition and unsigned addition. When x + y
is greater than 2% — 1, the sum overflows.

P

:

RSNV

AR
AR

AASKS
s N

RAK
g
N

DY

&
i

16
144

N
\

A

12 5

14

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16,

occurs when the two operands sum to 2 or more. Figure 2.23 shows a plot of the
unsigned addition function for word size w =4. The sum is computed modulo
24— 16. When x -+ y < 16, there is no overflow, and x +} y is simply x + y. This is
shown as the region forming a sloping plane labeled “Normal.” When x + y > 16,
the addition overflows, having the effect of decrementing the sum by '16. This is
shown as the region forming a sloping plane labeled “Overflow.”

When executing C programs, overflows are not signaled as errors. At times,
however, we might wish to determine whether or not overflow has occurred.

PRINCIPLE: Detecting overflow of unsigned addition

For x and y in the range 0 < x, y < UMax,,, lets =x +|, y. Then the computation
of s overflowed if and only if s < x (or equivalently, s < y). |

As an illustration, in our earlier example, we saw that 9 +} 12 = 5. We can see
that overflow occurred, since 5 < 9.

-Section 2.3 Integer Arithmetic 89

DERIVATION: Detecting overflow of unsigned addition

Observe that x + ¥ = x, and hence if s did not overflow, we will surely have s > x.
On the other hand, if s did overflow, we have s = x + y — 2. Given that y < 2%,
we have y — 2% < 0, and hence s = x + (y — 2%) < £. |

ﬁig:ir” '“?if'J i””f”‘”:““ﬁ‘;'"” o

LIALHERILEQDIE M2y Li(solutionpaget] 52Ys AL R
Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */
int uadd_ok(unsigned x, unsigned y);

This function should return 1 if arguments x and ¥ can be added without
causing overflow.,

7

i1

Modular addjtiorrforms a mathematical stfucture known.as anabelian group,
named after the Norwegian'mathematician Niels Henrik Abel (1802-1829). That
is, it is commutative (that’s where' the “abelian” part coies in) and associative;
it has an identity. element 0, and every element has an ‘additive inverse. Let us
consider the set of w-bit unsigned numbers with addition operation +% . For every
value x, there must be some Value X $uch that = X +5, x = 0. This additive
inverse operation can be characterized as follows:

PRINCIPLE: Unsigned negation

For any number x such that 0 < x < 2%, its w-bit unsigned negation -*, x is given
by the following:

_wx=

(2.12)
|

" {x, x=0

2 —x, x>0

This result can geadily be derived by case analysis:

DERIVATION: Unsigned negation

1 - - 2 s
When x =0, the additive inverse is clearly. 0, For x > 0, copsider, the value 2% — x,
Observe that this number Is in the range 0 < 2% — x < 2% We can also see that

(x 42 — x)mod 2¥ = 2% mod 2% = 0. Hence it is the inverse of x under +. 1

ity s L A o e Y
»P“ei“'-"f“ 0 sl kel g

T

We can represent a bit pattern of length w = 4.with a single hex digit. For an
unsigned interpretation of these digits, use Equation 2.12 to fill in the following
table giving the values and tHe bit representations (in hex) of the unsigned additive
inverses of the digits shown.

e e e " L YT T T - ——— -

X j X
Hex Decimal Decimal Hex

MO oo, o

2.3.2 Two's-Complement Addition

With two’s-complemenf addition, we must decide what to do when the result is
either too large (positive) or too small (negative) to represent. Given integer
values x and y in the range —2¥~1 < x, y < 2%~} - 1, their sum is in the range
—-2¥ < x 4+ y = 2% — 2, potentially requiring w + 1 bits to represent exactly. As
before, we avoid ever-expanding data sizes by truncating the representation to w
bits. The result is not as familiar mathematically as modular addition, however.
1 Let us define x + y to be the result of truncating the integer sum x-+ y to be w
bits long and then viewing the result as a iwo’s-complement jfiumber.

PRINCIPLE: Two’s-complement addition

For integer values x and y in the range —2¥~1 < x, y <2%1 _1:

x+y—2¥ 2w layy ¥ Positive overfiow L *
x+ y={x+y, —2wl<x 4y <2¥l Normal (2.13) ’
i - x+y+2¥ x+y<-=2¢"1 Negative overflow ' i

[|

This principle is illustrated in Figure 2.24, where the sum x + y isshown on the

; left, having a value in the range -2 < x + y < 2% — 2, and the result of truncating
the sum to a w-bit two’s-complement number is shown on the right. (The labels
' “Case 1” to “Case 4” in this figure are for the case analysis of the formal derivation

of the principle.) When the sum x + y exceeds TMax,, (case 4) we say that positive
overflow has occurred. In this case, the effect of truncation is to subtract 2% from
the sum. When the suth x + is 1éss thar TMin,, (case 1), we say that neganve
over;ﬂow has occurred. In thib case, thé effect of truncation is to add 2% §5 the sur.

The w-bit two’s-complement sum of two number§ has the exact same bit-level
representation as the unsigned sum. In fact, most computers use the same machine
instruction to perform either unsigned or signed addition.

. DERIVATION: Two’s-Complenient addition

' Singe, twa’ s~comp1ement addition has the exact same bit-level representation as
unsigned addition, we can characterize the operatwn +, as one of converting 1ts

| arguments to unsigned, performing unsigned addition, and then converting back
to two’s complement:

Section 2.3 Integer Arithmetic 91

Figure 2,24

Relation between integer
ang two's-complement
addition. When x + y is
fess than —2%~1, there is a
negative overflow. When
it is greater than or equal
to 2“1, there is a positive
overflow,

x4, ¥ = U2T ,(T2U ,(x) +% T2U,,()), (2.14)

By Equation 2.6, we can write 72U, (x) as %y-12% +x and T2U,(y) as
Yw-12" 4+ y. Using the property that +,, Is simply addition modulo 2¥, along with
the properties of modular addition, we then have

x +L, Y+ U2ngmUw(x) +:_, T2U ,(y)) ’
= U2T ,[(x,p-12" + x + y,_12¥ + y) mod 2¥]
= U27,[(x +) mod 27

The terms x,,_12* and y,,_;2* drop out since they equal 0 modulo 2%,

To better understand this quantity, let us define z'as the integersumz =x + y,
z as z/ = zmod 2%, and z” as z" = U2T ,(z'). The value 2" is equal to x +,y. We
canl divide the analysis into four cases as illustrated in Figure 2.24;

1L —2¥ <z < —2%"1 Then we will have z/ = z +2*. Thisgives 0 < 7/ « —2w—1 ¢
2¥ =2%~1 Examiding Equation.2.7; we see that # is in the range such that
z"=27'. This is the case of negative overflow. We have added two negative
numbers x and y (that’s the only-way'we can have z < —2%¥~1) and obtained
a nonnegative result z”’ = x + y -+ 2%,

2. 2%l <z <{. Then we will again have 2/ = z 4 2% giving —2¥-14 2w
20l <y 2w, Examining Equation 2.7, we see that 2’ is in such a range that
2" =2z'— 2" and therefore 2/ = 2/ — 2W— + 2% — 2" = z_That is, our two’s-
complement sum z” equals the integer sum x + ¥

3. 0 <z <2¥"L. Then we will have 2’ = z, giving 0 < 2/ < 2%, and hence z” =
z' = z. Again, the two’s-complement sum z" equals the integer sum x + y.

4. 271 2z < 2% We will again havé 2 = z, giving 2%~ < 7' < 2%, But in this
range we have z” =z’ — 2%, giving z/ = x + y — 2, This is the case of positive
overflow. We have added two positive numbers x and y (that’s the only way
we can have z > 2¥~1) and obtained a negative result 2’ = x + y - 2, |

92 Chapter 2 Representing and Manipulating Information
x ¥y x+y X+ y Case
8 s —13 301
[1000] [1011] [10011] [0011]
-8 -8 -—1_6’ . 0 1
[1000] [1000] [16000] [0000]
' -8 5 3 evs3 2
[1000] [0101] [11101) [1101]3
_l 2 5 7 7 3
‘ [0010] [0101] [00111] [0111]
| : 5 5 10 —6 4
. [0101] fo101] (010101 [1010)
[
! figure 2.25 Two's-complement addition examples. The bit-level representation of |

the 4-bit two's-complemnent sum can be obtained by performing binary addition of the i
operands ang truncating the result to 4 bits.

i o
b As iltustrations of two’s-complement addition, Figure 2. 25 shows some exam-
* ples when w = 4. Each example is labeled by the case to which it corresponds in
E the derivation of Equation 2.13. Note that 2% = 16, and hence negative overflow
‘ yields a result 16 more than the integer sum, and positive overflow yields a result 16
f ' less. We include bit-level representations of the operands and the result. Observe
] that the result can be gbtained by perfprming hinary addition of the operandg and
g truncating the result to 4 bits.
Figure 2.26 illustrates two s—complement addition for word size w = 4. The
!} operands range between —8 and 7. When x + y < —8; two’s-complement addition
% has a negative overflow, causing the sum to be 1ncremented by 16. When -8 <
‘ x + y < 8, the addition yields x + y. When x + y > 8,.the, addition has a positive
overflow, causing the sum to be decremented by.16. Each of these three ranges
forms a sloping plane.in the figure. i
’ﬂ Equation 2.13 also lets us identify the cases where overflow has occurred:

PRINCIPLE: Detecting overflow in two’s-complement addition

i For x and y in the range TMin,, < x, y < TMax,,,let s = x + y. Then the compu-
! tation of s has had positive overflow if and only if%.> 0 and y > 0 but s < 0. The
E computation has had negative overflow if and only ifx <0and y <Obuts=0. ®

Figure 2.25 shows several illustrations of this principle for w = 4. The first
en FFY shows a case of negative overflow, where two negative numbers sum to a
positive one. The final entry shows a case of positive overflow, where two positive
numbers sum to a negative one. .

Section 2.3 Integer Arithmetic 93

Negative i
overilow

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a
negative overflow whenx 4 y < --8 and a positive overflow when x + y > 8.

DERIVATION: Detecting overflow of two’s-complement addition

Let us first do the analysis for positive overflow. If both x > 0 and y>0buts <0,
then clearly positive overflow has occurred. Conversely, positive overflow requires
(1) that x > 0 and y > 0 (otherwise, x + ¥ < TMax,) and (2) that s <0 (from
Equation 2.13). A similar set of arguments holds for negative overflow. n

A e P r AR gt s e e s e pmennp v e e
Practicc Problem. 2uwdai: lytion.nade82) i T I ERT T
Fill in the following table in the style of Figure 2.25. Give the integer values of
the 5-bit arguments, the values of both their integer and two’s-complement sums,

the bit-level representation of the two’s-complement sum, and the case from the
derivation of Equation 2:13.

x y x+y x4y Case

[10100] [10001]

e = et —r gy Ap——

94 Chapter 2 Representing and Manipulating Information

x ¥ x+y x4y Case

[11000] [11000]

[10111). (01000]

[00010] [00101]

[01100] [00100]

erte a functlon w1th the followmg prototype:

/* Determine whether arguments can be added without overflow */ ~
int tadd_ok(int x, int y); |

kS
This function should return 1 if arguments x and y can be added without
causing overflow.

Your coworker gets unpatlent w1th your analys1s of the overflow conditions for
two’s-complement addition and presents you with the following implementatiort
of tadd_ok:

/* Determine whether arguments can be, added without overflow */

/* WARNING: This code is buggy. */

int tadd_ok(int x, int y) {
int sum = x¥y; .
retirn (sum-—x == y) &k (sum-y == x);

{ e

You look at the code and langh. Explain why.

You are a551gned the task of wrltmg code for a function tsub_ok, with arguments
x and y, that will return 1 if computing x-y does not cause overflow. Having just
written the code for Problem 2.30, you write the following:

/* Determine whether arguments can be subtracted without overflow */
/* WARNING: This code is buggy. */ . '
int tsub_ok({int x, int y) {

Section 2.3 Integer Arithmetic

return tadd_ok(x, -y);

For what values of x and y will this function give incorrect results? Writing a
correct version of this function is left as an exercise (Problem 2.74).

U

2.3.3 Two's-Complement Negation

We can see that every number x in the range TMin,, < x < TMax,, has an additive
inverse under +),, which we denote - x as follows:

PRINCIPLE: Two’s-complement negation

For x in the range TMin, <x < TMax,, its two’s-complement negation -, x is
given by the formula

t
w

v { TMin,,, x=TMin,

—X, x > TMin, (2.15)

B
That is, for w-bit two’s-complement addition, TMin,, is its own additive in-
verse, while any other value x has'—x as its additive inverbe.
DERIVATION:. Two’s-complement negation

Observe that TMin,, + FMin, = —2%~* 4 —2%~1 = 2%, This would cause nega-
tive overflow, and hence TMin,, +, TMin,, = —2% + 2% = 0. For values of x such

thatx >"TMin,, the value —x can also be represented as a w-bit two’s-complement
number, and their sum will be —x + x = 0. |

et 'w'mﬁi»c

We can represent a bit pattern of length w=4 w1th a single hex digit. For a two’s-

complement interpretation of these digits, fill in the following table to determine
the additive inverses of the digits shown:

L
X 41.'

Hex Decimal Decimal Hex

Mo oo

What do yoh observe ‘about the'bit patterns generated by two’s-complement
and unsigned (Problem 2.28) negation?

a5

S——

’ “ g
Web Aside DATA:TNEG ﬁlthtevel representatlon of two's- complement negation .

96 Chapter 2 Representing and Manipulating Information

“ Fo % o a

¥
There are-several clever ways to determine the two’s- cof‘nplement negation.of a value represented
at the bit level. Thé foilowilg two’ tqcﬁmqueé*afp Béth liseful such"aé v?hen one encounters the value
oxffffffa when debugging a prograni, and tﬁqy lend 1n51ght into'the naiure of the tWo s—complert‘iérff}
representatlon 5
Oné technique for performing two s-comple;nent négation at the bit 1evel isto complenient the bits ¢
“and then increment, theresult. InC, we,,can state that for any mtegerxv,alue . %cof‘hputmg‘%he expressichs 4

i and ~x 41 will gwe identical results% . » . i
Here-are some eXampled With 2 4-bit word smé . fgoRR RS2 #
e bR N B ong n oty
3 i -3 Te ner(-%)
= ‘ 5 - T " R A PEERT LA | WA
J0101] 5 f1p010) -6 [tor] -5 - .y

- e PN P . " g % s
[o111] 7 “[1000) -8 foo] -7 o s %
[1100] -4 « 10011] 3 [o100] . 4 - f. '
[0000] 0 Ta11] -1 {0000}-« 0 " .
[1000] -8 iy © 7 - {1000] G "o)

For our earlier example, we know lhat the complemenit of 0xf is 0x0 and the complement of Oxa
is 0x5, and'so Oxf11f £ £1a 1s_}he two’i-cofpleihent Teprésentation of5 Bhe an " L

A second way to perféim two ‘s-complement, negation of a numbervx 8 Qased o1y spllttmg the bit 4
vector into two pagts. Let k be the position of the rightmost 1, so the blt-]evel representatmn*of x has the
form [Xy_1, Xy—2» - - - » Xgaio 1, 0, . 0] (Thisis p0551b1e asJong*as x'*# 0.) Thendgatiofis‘thér written i
in binary form as [~xy_1, Ty F50 %‘1,,,1,40 +, 0} That is, wé complemapt“each bit to_ the lef,;, o&

bit position . , 4P 3 3 E
We illustrate this ldea w,1th_sorneﬁ,!gt(1 glgnumbgrg, gghere We hxghhyghrtpe ngiltmost pattem 1 0 %
in-italics: 5 A B, s 3, ¢
X . e —x" £ 3 “ ;
1o0] -4 [0foo] 4 wE e '
[000) —8 iMI000Rs TBoct . wa P T
[0101] 5 101} L5 ¥ Y S T dett 7]
o 7 (to07). =7 ceFoAma e e B g

e A e o e in Bl e R

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 < x, y <2 — 1 can be represented as w- -bit un-
signed numbers, but their product x - y can range between 0 and (2% — 2=
22w _ gwtl 4 1. This could require as many as 2w bits to represent. Instead, un-
signed multiplication in C is defined to yield the w-bit value given by the low-order
w bits of the 2w-bit jnteger product. Let us denote this yalue as y *, y.

Truncatmg an unsigned number to w bits is equwa]eni 1o computmg its value
modulo 2%, giving the following:

Section 2.3 Ihteger Arithmetic 97

PRINCIPLE; Unsigned multiplication
Forxand y suchthat 0 < », y < UMax,,:

x*, y=(x-y)mod2¥ (2.16)

2.3.5 Two's-Complement Multiplication

+
Integers x and y in the range 2%~ <x, y <21 — 1 can be represented as w-bit
two’s-complement numbers, but their product.x - ¥ can range betwekn -2w-1.
¥l — 1y = —22w-2 L gw-ligng —pw-1c _pw-1_220-2 Thic conld require as
many as 2w bits to represent in two’s-complement:form’ Instead, signed multi-
plication in C generally is performed by truncating the 2w-bit product to w bits.
We denote this yalue as 5 *., ¥, Truncating a two’s-complement number to w bits

is equivalent to first computing its value modulo 2% and then converting from
unsigned to two’s complement, giving the following:

PRINCIPLE: Two’s-complement mitltiplication
For x and y sueh that T™Miny, <x, y < TMax,,:

x# y=U2T,((x - y) mod 2%) (217)
|

We claim that the bit-levél tépresentatiort of the product operation is identical
for both unsigned and two’s-complement multiplication, as stated by the following
principle:

PRINCIPLE: Bit-level equivalence of unsigned and two’s-complement multipli-
cation

Let ¥ and ¥ be bit vectors-of length w. Define integers x and y as the values repre-
sented by these bits in two’s-complement form: x = B2 Ty(X) and y = B2T (7).
Define nonnegative integers x* and y’ as the values represented by these bits in
unsigned form: x’ = B2U (¥} and y’ = B2U ,(5). Then

2B, (x *:.u y)'= U2Bw(x’ *:;, y’)
‘ [|

As illustrations, Figure 2.27 shows the results of multiplying different 3-bit
numbers. For'each pair of bit-level operands, we perform both unsigned and
two’s-complement multiplication, yielding 6-bit products, and then truncate these
to 3 bits. The unsigned truncated product always equals x - y mod 8. The bit-
level representations of both truncated products are identical for both unsigned
and two’s-complement multiplication, even though the full 6-bit representations
differ.

e = = == e —— I A

98 Chapter2 Representing and Manipulating Information

Mode x ¥y Ay Truncated x - ¥
Unsigned 5 [or] 3 [o1 15 [oouanl] 7 [111]
_ Two’s complement =3 [101] 3 [o11] -9 [110111] -1 f111] |
: Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two's complement —4 [100] -1 [111] 4 [000100] —4 [100]
Unsigned 3 [oi1] 3 [o11] 9 -[001001): 1 [001]
Two’s complement 3 fo11] 3 [o011] 9 [001001] 1 [001] f

Figure 2.27 Three-bit unsigned and two’s-complement multiplication examples:
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

DERIVATION: Bit-level equivalence of unsigned and twb’s-complement multipli-
cation ! !

From Equation 2.6, we have x' = x + x,_12% and ¥’ =y + y,,_12*. Computing the
product of these values modulo 2% gives the following:

. i
e e e e b . el

' - y) mod 2% = [(x + xp_12") * (7 + Y—12*)]mod 2 (2.18)
=[x-y+ Gy + }’w——lx)zw + xw—lyw—lzzw] mod 2% i
= (x - y)mod 2¥

The terms with weight 2% and 22* drop out due to the modulus operator. By Equa-
tiog 2.17, we hayve x *,, y = UZT,{,((x . y) mod 2%). We can apply the operation
12U, to both sides to get

T2U (x *, y) = T2U ,(U2T,((x - y) mod 2¥)) = (x - y) mod 2*

Combining this result with Equations 2.16 and 2.18 shows that T2U ,(x *, y) =
(x'+ y) mod 2¥ = x’ #* y'. We can then apply U2B,, to both sides to get

+

2B, (T2U (x ., y)) = T2B,,(x #,) = U2B,,(x' ¥, ¥)

[]
[
; O T P T e R T AT
' ‘Proplem 2:34. (solution paoe 1S3k iy T e @ E i

Fill in the following table showing the results of multiplying different 3-bit num-
' bers, in the style of Figure 2.27:

Mode x ¥ Xy Truncated x - y
] Unsigned e [00] e 107 [
; Two's complement . [100] [101] s :
5 y %
}. , Unsigned 010 — .. Q] : f

Two's complement ... [010] . [111)

Section 2,3 Integer Arithmetic

99

Mode X ¥ X-y Truncated x - y
Unsigned — 110 — . [110] :
Two’s complement . [110) _____ [110] .

You are given the assignment to develop code for a function tmult_ck that will
determine whether two arguments can be multiplied without causing overfiow.
Here is your solution:

/* Determine whether arguments can be multiplied without overflow */
int tmult_ok{int x, int y) {

int p = x*y;

/* Either x is zerc, or dividing p by x gives y */

return !x || p/x == y;

You test this code for a number of values of x and y, and it seems to work
properly. Your coworker challenges you, saying, “If I can’t use subtraction to
test whether addition has overflowed (see Problem 2.31), then how can you use
division to test whether multiplication has overflowed?”

Devise a mathematical justification of your approach, along the following
lines. First, argue that the case x = 0 is handled correctly. Otherwise, consider
w-bit numbers x (x #0), y, p, and 4, where p is the resuit of performing two’s-
complement multiplication on x and y, and ¢ is the result of dividing p by x.

1. Show that x - y, the integer product of x and y, can be written in the form
x-y=p+12¥ where ¢t # 0 if and only if the computation of p overflows.

2, Show that p can be written in the form p = x - g + r, where [r| < |x|.
3. Show thatg =y ifandonlyifr =t =0.

Problem:Zi8 66oliticn: pages; -"ﬁi S ¥ S M

For the case where data type int has 32 bits, devise a version of tmult_ok (Prob-
lem 2.35) that uses the 64-bit precision of data type int64_t, without using
division.

Cl

You are given the task of patching the vulnerability in the XDR code shown in
the aside on page 100 for the case where both data types int and size_t are 32
bits. You decide to eliminate the possibility of the multiplication overflowing by
computing the number of bytes to allocate using data type uint64_t. You replace

100 Chapter 2 Representing and Manipulating Information

Aside Security vulnerability in the XDR library .

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, a
widely used facility for sharing data structures between programs, had a security vulnerability arising
from the fact that multiplication can overflow without any notice being given to the program.

Code similar to that containing the vulnerability is shown below:

1 /* Illustration of code,vulnerability similar to that found in

2 = Sun's XDR library.)

3 o/ '

4 void* copy_elements{void *ele_src{], int ele_cnt, size_t ele_size) {
5 VES

3 * Allocate buffer for ele_cnt objects, each of ele_size byteés
7 * and copy from locations designated by ele_src

8 */

9 void *result = malloc(ele_cnt * ele_size);

10 if (result == NULL)

11 /* malloc failed */

12 return NULL;

13 void #pext = result;

14 int i; *

15 for (i = 0; 1 < ele_cnt; i++) {

16 /* Copy object i t¢ destimation */

17 memcpy (next, ele_src[i], ele_size); .
18 /* Move pdinter to next memory region %/

19 next += ele_size;

20 } '

Fa return result; .

22}

The function copy_elements is designed to copy ele_cat data structures, each consisting of ele_
size bytes into a buffer allotated by the function on line 9. The number of bytes required is computed
as ele_cot * ele_siza. .

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577
(2%° + 1) and ele_size being 4,096 (2!2) with the program compiled for 32 bits. Then the multiplication
on line 9 will overflow, causing only 4,096 bytes to be allocated, rather thian the 4,294,971,392 bytes
required to hold that much data. The loop starting at line 15 will attempt to copy all of those bytes,
overrunning the end of the allocated buffer, and therefore corrupting other data structures. This could
cause the program to crash or otherwise misbehave.

The Sun code was used by almost every operating system and.in such widely used programs as
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security
vulnerabilities and breaches, issued advisory “CA-2002-25,” and many companies rushed to patch their
code. Fortunately, there were no reported security.breaches caused by this vulnerability.

A similar vulnerability existed in many implementations of the libraty function calloc. These
have since been patched. Unfortunately, many-programmers call allocation functions, such as malloc;
using arithmetic expressions as arguments, without checking these expressions for overflow. Writing a
reliable version of calloc is left as an exercise (Problem 2.76).

iy

Wk i el T

§

3

E

3

Section 2.3 Integer Arithmetic

the original call to malloc (line 9) as follows:

nint64_t asize =
ele_cnt * (uint64_t) ele_size;
void *result = malloc(asize); .

Recall that'the argument to malloc has typeisize_t.

A. Does your code provide any improvement over the original?

B: How would you change the code to eliminaté the vulnerability?’

i F 3 £

[

2.3.6 Multiplying by Constants

Historigally, the integer ‘multiply instruction ol many machines was fairly slow,
requiting 10 or more clock cycles, whereas other integer operations—such, as
Addition, subtraction, bit-level operations, and shifting—required only 1 -clock
cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer
multiply requires 3 clock cycles. As a consequence, ong important optimization
used by compilers is to attempt to replace multiplications by constant factors with
combinations of shift-and addition operations. We will first consider the case of
multiplying by a power of 2, and then we will generalize this to arbitrary constants.

PRINCIPLE: Multiplication by a powér of 2

Let x be the unsigned integer represented by bit' pattern [y_;, Xy - - -y Xl
Then for any k = 0, the' w ++4-bit unsigned- representation of x2* is given by
[(¥w-1) X2, .., %0, 0, .. ., 0], where k zeros have beert added torthe rightt N

I P
So, for example, 11 can be reprgsented for w = 4,3s,[1011]. Shifting this left
by k =2 yields the 6-bit vector [101.100], which encodes the unsigned number
11.4=44.

DERIVATION: Multiplication by a power of 2
This property can be derived using Equation 2.1:

w—1
BZU,,,H(wa_l,'xw_z, v Xp. 0, ..., 0D = Z x; 20k
=0

w-—1
= {Z x,-2£:| L2k
=0

= x2k
|

When shifting left by & for a fixed word size, the high-order & bits are discarded,
yielding

[xw—k—].’ xIka—Z! LRI | xo; Os ey 0]

101

e T T J

. | j 102 Chapter 2 Representing and Manipulating Information

I but this is also the case when performing muitiplication on fixed-size words. We
can therefore see that shifting a value left is equivalent to performing unsigned
multiplication by a power of 2:

] PRINCIPLE: Unsigned multiplication by a power of 2

[For C variables x and k with unsigned values x and k, such that 0 <k < w, the C
expression x << k yields the value x * 2%, n

Since the bit-level operation of fixed-size two’s-complement arithmetic is
equivalent to that for unsigned arithmetic, we can make a similar statement about
the relationship between left shifts and multiplication by a power of 2 for two’s-
complement arithmetic:

PRINCIPLE: Two's-complement multiplication by a power of 2

For C variables x and k with two’s-complement value x and unsigned value &, such
that 0 <k < w, the C expression x << k yields the value x *!, 2%, |

' Note that multiplying by a power of 2 can cause overflow with either unsigned
or two’s-complement arithmetic. Our result shows that even then we will get the
same effect by shifting. Returning to our earlier example, we shifted the 4-bit
pattern [1011] (numeric value 11) left by two positions to get [101100] (numeric
| value 44). Truncating this to 4 bits gives [1100] (numeric value 12 = 44 mod 16).

Given that integer mulitiplication is more costly than shifting and adding, many
C compilers try to remove many cases where an integer is being multiplied by a
constant with combinations of shifting, adding, and subtracting. For example, sup-
pose a program contains the expression x*14. Recognizing that 14 =23 422 + 21,
the compiler can rewrite the multiplication as (x<<3) + (x<<2) + (x<<1),replac-
ing ofte multiplication Wwith three shifts and two additions. The two computations
will yield the same result, regardless of whether x is unsigned or two’s comple-
ment, and even if the multiplication would cause an overfiow. Even better, the
compiler can also use the property 14 = 24 — 2! to rewrite the multiplication as
(x<<4) - (x<<1), requiring only two shifts and a subtraction.

N e

‘ the form (a<<k) + b, where k is either 0, 1, 2, or 3, and b is either 0 or some
;. program value. The compiler often uses this instruction to perform multiplications
by constant factors. For example, we can compute 3#a as (a<<1) + a.
Considering cases where b is either 0 or equal to a, and all possible values of k,
what multiples of a can be computed with a single LEA instruction? -

! Generalizing from our example, consider the task of generating code for
i the expression x * K, for some constant K. The compiler can express the binary
representation of X as an alternating sequence of zeros and ones: ‘

Section 2.3 Integer Arithmetic 103

[0...00Q...0...00--(1...1]

For example, 14 can be written as [(0. . . 0)(111)(0)]. Consider a run of ones from
bit position n down to bit position' m (n = m). (For the case of 14, we have n =3
and m = 1.) We can compute the effect of these bits on the product using either of
two different forms:

Form A: (x<<n} + (x<<(n — 1)) + .- + {x<sm)
Form B: (x<Z(n +1)) - (x<<m)

By adding together the results for each run, we are able to compute x * X with-
out any multiplications. Of course, the trade-off between using combinations of
shifting} adding, and subfractiny versiss a single multiplication instruction depends
on the relative speeds of these instructions, and these can be highly machine de-
pendent. Most compilers only perform this optimization when a small number of
shifts, adds, and subtractions suffice:

iq

How couId we mod1fy the expressmn for form B fer the case where bit position n
is the most significant bit?

For each of the fo]lowmg values of K ﬁnd ways to express x * K usmg only the
specified number of operations, where we ‘consider both additions and subtrac-
tions to have comparable cost. You may need to use some tricks beyond the simple
form A-and B ruies we have considered so far.

K Shifts Add/Subs Expression

»

6 2 1
il 1 i — ro
-6 2 1 —————
53 2 2 t

Practice Problemi ZATH 013

For a run of ones gtartmg at b1t iiosmon 3 down to blt posmon m (n > m) we saw
that we card generatd 1o forms of c6de, A and B. How should'the compiler decide
whith form'tor use? :

k1 E

2.3.7 Dividing by Powers of 2

Integer division on most machines is even slower than integer multiplication—
requiring 30 or more clock cycles. Dividing by a power 0f 2 can also be performed

104 Chapter 2 Representing and Manipulating Information

k >> k (binary) Decimal 12,340,/2%

0 0011000000110100. 12,340 12,340.0

1 0001100000011010 6,170 6,170.0

4 0000001100000041 ! 771.25

8 0000000000110000 48 48203125

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustrate
how performing a logical right shift by k has the same effect as-dividing by 2¥ and then
rounding toward zero.

using shift operations, but.we use a right shift rather than-a left shift. The two
different right shifts—logical and arithmetic+—serve this purpose for unsigned and
two’s-complement numbers, respectively: "

Integer division always rounds toward zero. To .define this precisely, let.us
introduce some notation. For any real number g, define |a] to be the unique
integer @’ such that &’ <a <a’ + 1. As examples 13. 14j 3, 1-3. 14] —4, and
13] =3. Similarly, define [a] to be the unique integer @’ such thata' —1<a <a’.
As examples, [3714] = 4, [—3:14] = =3, dnd [37'= 3. For x =0 and y > 0, integer
division should yield [x/y], while forx <Oand y > 0, it should yield [x/y]. That
is, it should round down a positive result but round up a negative one.

The case for using shifts with unsigned arithmetic is straightforward, in part
because right shifting is guaranteed to be performed logically for unsigned values.

foae o}
PRINCIPLE: Unsigned divisionnby a power of 2

For C vdriables x and*k with unsigiéd values x and k, such that 0'< k< w, the C
expression x >> k yields the value |x/2¢]. |

As examples, Figure 2.28 shows the effects of performing logical right shifts
on a 16-bit representation of 12,340 to perform division by 1, 2, 16, and 256. The
zeros shifted in from the left are shown in italics. We also show the result we would
obtain if we did these divisions with real arithmetic. These examples show that the
result of shifting consistently rounds toward zero, as is the convention for integer:
division.

DERIVATION: Unsigned division by a power f 2,

Let x be the unsigned integer represented by-bit pattern [x,,_1, X2, . .- » X0}, and
let k be in the rangg 0 <k < w. ;Let x’ be ,the unsigned number with w — k-bit
representatlon [*w—1s Xw—2s - - - » Xi], and Iet x” be the unsxgned mgnber with k;blt
representation [x_1, . . ., Xg]. We can therefore see that x = 2%x’ + x”, and that
0 < x” < 2%, It therefore follows that |x/2¥| = x.

Performing a logical right shift of bit vector [x,,_1,, Xy 2.
the bit vector

xp] by & yields

c&,’

[0, ceey 0, Xop—1s X—=2s + + + xk]

Section 2.3 Integer Arithmetic T05

k >> k (binary) Decimal —12,340/2%

0 1100111111001100 —12340 —12,340.0

1 1110011111100110 —6,170 —6,170.0

4 1111110011111100 ~772 =771.25

8 11111111110011141 —49 —48.203123

—_—

Figure 2.29, Applying arithmetie right shift. The examples illustrate that arithmetic
right shift is similar to division by-a powew of 25 except that it rounds down rather than
toward zero.

This bit vector has numeric value x’, which we have seen is the value that would
result by computing the expression x >> k. |

The case for dividing by a power of 2 with two’s-complement arithmetic is
slightly more complex. First, th,el shifting should be perforpipd using an arithmetic
right shift, to ensure that negative valués remain negafive. Let us investigate what
value such a right shift would produce.

PRINCIPLE; 'Two’s—complement division by a power of 2, rounding down
=

Let C variables x and k have two’s-complement; value x and unsigned value
k, respectively, such_that 0,<.k‘< w. The C expression x >> k, when the shift is
performed arithmetically, yields the xalue {x/2*]. |

For x> 0, variable x has 0 as the mogt significant bit, and so the effect of an
arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift
by & is the same as division by 2¥ for a nonnegative number. A% an example of a
negative number, Figure 2.29 shows the effect of 'a{pplfging afithmetic right shift to
élflh6,—bit representation of —12;340 for different shift amounts. For the case when
no rounding is required (k = 1), thé resylt will be x /2*. When rounding is required,
shifting causes the result to be rounded downward. For example, the shifting right
by four has the effect of rounding —7%71.25 down to —772. We will need to adjust
our strategy to handle division for negative values of x.

DERIVATION: Two’s-complement division by a power of 2, rounding down

Let x be the two’s-complement ir}ieger represented by bit pattern [x,,_;, x,,_o,
-» %o, and let k£ be in'the range 0 <k < w. Let x’ be the two’s-complement

r%umbe,r represented by the w — k bits [x,,_;, Xy-2, ..., %], and let x” be the
uhsigned number represented by the low-order k Bits [xg_1, . . ., xg]. By a similar
analysis as the unsigned case, we have x = 26’ + x* and 0 <x" < 2% giving x' =
(x/2%|. Furthermore, observe that shifting bit vector [x,,_1, X,_3, . .., xg] right
arithmetically by k yields the bit vector

(K1 -+ o s Xopts Xy 1, Xyys - - -, %]
which is the sign extension from w — £ bits to w bits of (%41, Xw_2s - . ., x;). Thus,

this shifted bit vector is the two’s-complement representation of |x/2F]. |

106 Chapter2 Representing and Manipulating Information

k Bias —12,340 + bias (binary) >> k (binary) Decimal —12,340/2%
0 0 1100111111001100 1100111111001100 —12,340 —12,340.0

1 1 1100111111001101 1110011111100110 —6,170 —6,170.0

4 15 1100111111011011 1111110011111101 —771 —77L.25

8 255 1101000011001011 1111111111010000 —48 —48.203125

Figure 2.30 Dividing two’s-complement numbers by powers of 2. By adding a bias
before the right shift, the result is'roanded toward zero.

We can correct for the improper rounding that occurs when a negative number
is shifted right by “biasing™ the value before shifting.

PRINCIPLE: Two’s-complement division by a power of 2, rounding up

Let C variables x and k have two’s- complemgnt value x"and uns1gned value %,
respectively,such that0 < k < w. Thé Cexpress;on % (4 <<k - 1) >3k, when
the shiff is performed ar1thmet1ca11y, yields the value. [x/2%. |

Figure 2.30 demonstrates how adding the appropriate bias before performing
the arithmetic right shift causes thé result to be correctly rounded. In the third
column, we show the resuit of adding.the bias value to —12340, with the lower &
bits (those that will be shifted off to the right) shown in italics. We can see that
the bits to the left of these may or may not be incremented. For the casé where no
rounding is reguired (k=1), addmg the bias only affects bits that are shifted off.
For the cases where rounding is fequired, adding the bias causes the upper bits to
be mcremented so that the result will be rounded toward zero.

The blasmg techfnque exploﬂs the property that Mx/y]=(x +y—1)/y] for
integers x and y such that y > 0. As examples when x = —30 and y =4, we have
x+y—1=-27and [-30/4] = —7 = |-27/4]. When x = —32 and y = 4, we Have
x+y-1=-29and [-32/4]=—-8=|— 29/4]

1

DERIVATION: Two's-complement division by a power of 2, rounding up

To see that [x/y] = [(x + y — 1)/y], suppose that x = gy +r, where 0 <r < y,
giving (x +y —/fy =g+ (r +y—D/y,andso [(x +y— D/yl =g+ r £y -
1)/y]. The latter term will equal 0 when r =0 and 1 when r > 0. That is, by adding
a bias of y — 1to x and then founding the division dowhward, we will get ¢ when
v divides x and g + 1 otherwise.

Returning to the case where y = 2%, the C expression x + (1<K 1 yield§
the value x +,2% — 1. Shifting this right arithmetically by k therefore yields [x /2"1

1

These analyses show that for a two’s-complement machiné ‘using arithmetic
right shifts, the C expression

{x<0 7 x+(1<<k)-1 : %) >> k

will compute the value x/2% .

Section 2.3 Integer Arithmetic

Wtion page 156) % s & Lol e

Wnte a functlon d1v16 that returns the value x/16 for integer argument x. Your
function should not use division, modulus, multiplication, any conditionals (if or
7:), any comparison operators (e.g., <, >, or ==), or any loops. You may assume
that data type int is 32 bits long and uses a two’s-complement representation, and
that right shifts are performed arithmetically.

We now see that division by a power of 2 can be implemented using loglcal or
arithmetic rlght shifts. This is precisely the reason the two types of right shifis are
available on most machines. Unfortunately, this approach does not generalize to
division by arbitrary constants. Unlike multlphcatwn we cannot express division
by arbitrary constants X in terms of division by powers of 2.

In the followmg code we have ormtted the deﬁmtlons of constants M and N

#define M /* Mystery number 1 */

#define N /* Mystery number 2 =/

int arith(int x, int y) {
int result = 0;
result = x*M + y/N; /* M and N are mystery numbers. */
return result;

We compiled this code for particular values of M and N. The compiler opti-
mized the multiplication and division using the methods we haye discussed. The
following is a translation of the generated machine code back into C:

/% Tranglation of assembly code for arith */ ~
int optarith(int x, int y) {

int t =

X <<= §;

X —= t;

if (y <0 y+=17;

y »»>= 3; /* Arithmetic shift #*/

return x+y;

[
What are the values of M and N?

2.3.8 Final Thoughts on Integer Arithmetic

As we have seen, the “integer” arithmetic performed by computers is really
a form of modular arithmetic. The finite word size used to represent numbers

107

T I i T

A m—— e o— il emale tmm ik

408 Chapter 2 Representing and Manipulating Information

limits the range of possible values, and the resulting operations can overflow.
We have glso seen that the two’s-complement repregentation provides a clever
way to represent, laoth negatwe and positjve values, while ysing the same bit- level
1mplementat10n§ as.are q’sed 1o perform unsugned arlthmctlc-—operatlons such as
addition, subtrapt:on multgpl1c,at10n and even dmsmn pave either identical or
very similar bit-level beﬁawors, whether the operands are in unsign&d or two’s-
complement form.
We have seen that some of the conventions in the C language can yield some
su rising results, and these can be sources of bugs that are hard to recognize or
derstand We'ltave especially seen that the unsigned data type, while conteptu-
ally stralghtforward can lead to behaviot¥ that eyen expenq,nced programmers do
not expect. We have also seen tHat this data type tan arise in unexpecfe}.l ways—for
example, when writing integer constants‘and when mvokmghbrary routines.

Assume data type intis32 b1ts long and uses a two s-complement representation
for 51gned values. Right shifts are performed arlthmetlcally for signed values and
logically for unsigned values. The variables are declared and initialized as follows:
foo(); /* Arbitrary value */
bar(); /# Arbitrary value */

int x
int ¥y

unsigned ux = %;
ungigned uy = y;

For each of the following C expressm‘ns either (1) argue that it is true “(evalu-
ates to 1) for all values of x and y;Or (2) give values of k and y for which it is false
(evaluates to0): '

A x>0 |1 (x-1<0)
(x&7) 1=7 1] (x<<29<0)
(x*x}>=0

x<0 1|l x<=0

x>0 (| x>0

X+y == uytux

QEEHYOQw

X*k~y + uy*ux == -X

2.4 Floating Point

T
. . . : : L
A floating-point representation encodes rational numbers of'the form V = x x 27.

It'is useful for performing computations involving very large numbers {|V| > 0),
1

Section 2.4 Floating Point 109

7 : gy kB g G, . g g

; A‘si’de A P & TN ::f R v« an
% The ;nsmute of Electrlca] andv Electronics Engineers (IEEE—p;ono%mced “eye- tnple—ee”) is"a prcﬁ‘w’ 3
§ fessional | soc1et¥ that eficompasses all'of electronic and"computfr“technofogy ?It‘?pubhshes 30urrials

{ sponsors conferenges, and sets qucomImttees)to de“ﬁneﬁsfandards on-topics rangmg fromfpower tfans— %
] mission to software engin€ering. Another example of:dn IEEE;standard is the *§02. 11 sta’ndard for .
g wnreless'networklng wooE R g . %‘ MRS L
L # P PSP S %m B e sl T %

numbers very close to 0 (| V| « 1}, and more generally as an approximation to real
arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions
for how floating-point numbers were represented and the details of the operations
performed on them. In addition, they often did not worry too much about the
accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a
carefully.crafted standard for representing floating-point numbers and the oper-
ations performed on them. This effort started in 1976 under Intel’s sponsorship
with the design of the 8087, a chip that provided floating-point support for the 8086
processor. Intel hired William Kahan, a professor at the University of California,
Berkeley, as a consultant to help design a floating-point standard for its future
processors. They allowed Kahan to join forces with a committee generating an
industry-wide standard under the auspices of the Institute of Electrical and Elec-
tronics Engineers (IEEE). The committee ultimately adopted a standard close to
the one Kahan had devised for Intel. Nowadays, virtually all computers support
what has become known as IEEFE floating point. This has greatly improved the
portability of scientific application programs across different machines.

In this section, we will sce how numbers are represented in the IEEE floating-
point format. We will also explore issues of rounding, when a number cannot be
represented exactly in the format and hence must be adjusted upward or down-
ward. We will then explore the mathematical properties of addition, multiplica-
tion, and relational operators. Many programmers consider floating point to be
at best uninteresting and at worst arcane and incomprehensible. We will see that
since the IEEE format is based on a small and consistent set of principles, it is
really quite elegant and understandable.

2,4.1 Fractional Binary Numbers

A first step in understanding floating-point numbers is to consider binary numbers
having fractional values. Let us first examine the more familiar decimal notation.
Decimal notation uses a representation of the form

e dpt---dydy.d1d 5---d_,

= e e S R T oo e e ™y

110 Chapter 2 Representing and Manipulating Information

Figure 2.31 om
Fractional binary , ot
representation. Digits
to the left of the binary

point have weights of the 4
‘ form 2¢, while those to the <o 2
il right have weights of the

' form 1/2'. —!
r b, bpq *+ by by by by, b, by +++ b by
T
1 1/2 —J |

1/4 #
: 1/8

172" .
12"

where each decimal digit d; ranges between 0 and 9. This notation represents a

vilue d défined as' 1 Ny

1
™~

m
d=) ‘10 xd,

i=—n

! The weighting of the digits is defined relative to’ the' decimal point symbol (£:%,
‘ micaning that digits to the left are weighted by nonnegative powers of 10, giving
integral values, while' digits to the right arc weighted by negative powers of 10,
giving fractional values. For example, 12.341y represents the number 1x 10!+
2 % 10° + 3 x 1071 4+ 4 % 1072 = 12 .

By an’alogy, considér a notation of the form

W

b,‘,{ bm—l v bl bo). b_l'b';z e bLn_!_l'b_Ln

A

K
where each-binary digit; or bit, b; ranges between 0 and 1, as is illustrated in
Figure 2.31. This notation represents a number b defined as .

b=y 2 %Xb t (2.19)

{=—n

The symbol *. now becomes a binary point, witly' Bits on the left“t‘)e!ing weighted
by nonnegative powers of 2, and those on the right being weighted by negative
' powers, of 2. For example, 101.11;,represents the number 1 x 24+0x21+1x
- M4 1x2 41x22=4+40+1+41+4=53

F One can readily see from Equation 2.19 that shifting the binary point one
i position to the left-has theseffect of dividing the number by 2. For example, while
101.11, represents the number 5%, 10.111, represents the number 2 +0 + % +

[y

Section 2.4 Floating Point 111

% + % =,2%. Similarly; $hifting' the binary point one position to the right has the
effect of multiplying the number by 2. For example, 1011.1, tepresents the number
84+0+2+143=111

-Note that numbers of the form 0.11 - - -'1, represent numbers just below 1. For
example, 0.111111, represents %. We willuse the shorthand-notation 1.0 — € to
représent such values. i

Assuming we consider only finite-length encedings, decimal notation cannot
represent numbers such as —;- and % exactly. Similarly, fractional binary notation
can only represent numbers.that can be written x x 2%.Other values can only be
approximated. For example, the number % can be represented exactly as the frac-
tional decimal number 0.20. As a frdctional.binary number, however, we cannot
represent it exactly and instead must approximate it with increasing accuracy by
lengthening the binary representation:

Representation Value Decimal

0.0, 2 0.050

0.0L, : 0.25;9

0.010, 27 025,
0.0011, & 0.1875;5
0.00110, > 0.1875;9
0.001101, 2 0.2031254
0.0011010, Z 0.203125,,
0.001100115 s 0.19921875,9

T —
(= lemesid.y:

Fill in the ;ﬁjssing' information’in the foilowing table:

Fractional value ~ Binary representation Decimal representation

3 0.001 0.125
3 .
3 — o
35
16 e s
e 10.1011 —_
” 1.001
— 5.875
. 3.1875

j‘ﬁs ' "‘ ‘ 3f = M Y

The impreéigion’of ﬂoatir’fg’-poin?arithme'tic can have disastrous effects. On Febru-
ary 25, 1991, during the first Gulf War, an American Patriot Missile batfe_ry in
Dharan, Saudi Arabia, failkd to ‘intercept ah incoming’ Iraqi* Scud missile. The

Scud struck an American Army barracks and killed 28 soldiers The US General

112 Chapter 2 Representing and Manipulating Information

i Accounting Office (GAO) conducted a detailed analysis of the failure [76] and de-
termined that the underlying cause.was an imprecision in 4 numeric calculation.
In this exercise, you will reproduce part of the GAO’s analysis.

The Patriot system contans an internal clock, implemented .as a counter
that is incremented every,0.1 seconds. To determine the time in seconds, the
program would multiply the value of th1s counter by a 24-bit quantity that was
a fractmnal binary approximation to 5+ In particular,the binary representation
of ¢ 1o 15 the nonterminating sequence 0.000110011[001 1}- - -5, where the portion in
bracketsis repeated indefinitely. The program apptoximated 0.1, as a value x, by
considering just the first 23 bits.of the sequence to the right«of the binary.point:
x = 0.8001100110011001'1001100.: (See Problem 2.51 for a discussion of how they
could have approximated 0.1 more. precisely.) . |

A. What is the binary representation of 0.1 52
B. What is the approximate decimal value of 0.1 — x? .

C. The clock starts at 0 when the system is first powered up and keeps counting
up from there. In this case, the system had been running for around 100 hoprs.
What was the difference between the actual time and the time computed by
the software?

D. The system predicts where an incoming missile will appear based on its
velocity and the time of the last radar detectibn. Given that a Scud travéls
at around 2,000 meters per second, how far off was its prediction?

Normally, a slight error in the abselute time reported by a clock reading would
not affect a tracking computation. Instead, it should depend on the relative timk
between two successive readings. The problem was that the Patriot software had
been upgraded to use a more accurate function for reading time, but not all of
the function calls had been replaced by the new code As a result, the trackmg
software used the accurate time for one reading ahd' the inaccurate time for the
other [103].)

-

2.4.2 |EEE Floating-Point Representation

Positional notation such as considered in the previous section would not be ef-
ficient for representing very large numbers. For example, the representation of
5 x 21% would consist of the bit pattern 101 followed by 100 zeros. Instead, we
would like to represent Atmdbers in a form x x 27 by giving the values of x and y.

Thg 1EEE floating-point-standard represents a number in a form V = (—1)* x
M x 2"

o The sign s determines whether the number is negative (s = 1) or positive
(s =0), where the interpretation of the sign, blt for numeric value 0 is handled
as a spec1al,case

i s The.significand, M is.a fractional binary number that ranges either between 1
= and 2 — € or between J-and 1 = €.

1

¢ The exponent E weights the value by a (possibly negative) power of 2.

Section 2.4 Floating Point 113

Single precision
313 2322 0
) . frac . _ |

Double precision
63 62 52 51 32

E3R3

EECE I

l frac (31:0) (|

Figure 2.32 Standard floating-point formats. Floating-point numbers are represented
by three fields. For the two most common formats, these are packed in 32-bit (single-
precision) or 64-bit (double-precision) words.

The bit representation of a floating-point number is divided into three fields to
encode these values:

* The single sign bit s directly encodes the sign s.
'_"}',he‘ k-bit exponent field exp = ¢ - - - ¢1¢g encodes the exponent E.
* The n-bit fraction field frac = f,_; - - - f1fo encodes the significand M, but

the value encoded also depends on whether or not the exponent field equals
0.

Figure 2.32 shows, the packing of these three, fields into words for the two
most common formats. In the single-precision floating-point. format. (a float
in C), fields s, exp, and frac are 1, £, =8, and n = 23 bits each, yielding a.32-
bit rgpresentation.In the double-precisign floating:point format (a double in C),
fields's, exp, and frac are 1, k =11,-and r» =52 bits each, yielding a 64-bit
representation.

The value encoded by a given bit representation can be divided into three
different cases (the latter having two variants), depending on the value of exp.
These are illustrated in Figure 2.33 for the single-precision format.

Case 1: Normalized Values

This is the most common cage. It.occurs when the bit pattern of exp is neither
all zeros (numeric value 0) nor all ones (numeric value 255 for single precision,
2047 for double). In this case, the exponent field is interpreted as representing a
signed integer in biased form. That is, the exponent value is E = e — Bias, where
e is the unsigned number having bit representation e;,_; - - - ej¢p and Bias is a bias
value equal to 25=1 — 1 (127 for single precision and 1023 for double). This yields
exponent ranges from —126 to +127 for single precision and —1022 to +1023 for
double precision.

The fraction field frac is interpreted as representing the fractional value f,
where 0 < f < 1, having binary representation 0. f,_ - - fifo, that is, with the

e]

114 Chapter 2 Representing and Manipulating Information

T “ 8o bR
Aside Why set the blas tbls way for denqrmahzed \Ialﬂes‘? e e 8 e g e
Having the exponéty value b 1 — Biag rather than $imply —Bzas m1ght seem counterintuitive, We will 3

see shortly that it prov1des for-smooth transitionfrom ﬂergormahzed loﬁnormahzed valheg

. & PN, P S T S U
w®

1. Normalized

2. Denormahzed -

anure 2.33 Categories of singlé-precision floating- pomt values. The Value of the
exponent determines whether the number is {1 normalizéd, (2) denormalized, or (3) a
special value. i s

binary point to the left of the thost significant bit. The significand is defined to be
M =1+ f. Thisds'Sometimes called an implied leading'l representation, because
we caif view M to be.the number with binary répresentation 1. f,_1f,_2 - ~ fot THis
representation is a trick for getting an additionial bit of precision for [ree, since we
can always adjust the exponent E so that significand M is in the rangel =M <2
(assuming there is no overflow). We therefore do not need to exphcltly fepresent
the leading bit, since it always equals 1.

Case 2: Denoriialized Values :
When the exponent field is all zeros, the represented.number is in dengrmalized
form. In this case, the exponent value is £ = 1 — Bias, and the significand value is
M = f, that'is, the value of the fraction field*withSut an implied leadirig:1.

Denorrhalized numbeis serve two purposés. First, they providé a way ‘'to
represent numeric value 0, since with a rngriialized number we must always have
M =1, and hence we cannot represent 0. In fact, the floating-point representation
of +0.0 has a bit pattern of all zerds: the sign'bit'is 0, tHe exponent field is-all
zeros (indicating a denormalized value), and the fraction field is all zeros, giving
Mi= f =0. Curiously, when the sign bit is 1, but the other fields are all zeros, we
get the value —0.0. With IEEE floating-point format, the values —0.0"and 4-0.0
are considered different in some ways and the same in others.

Section 2.4 Floating Point

A second function of denormalized numbers is to represent numbers that are
very close to 0.0. They provide a property known as gradual underflow in which
possible numeric values are spaced evenly near 0.0.

Case 3: Special Values

A final category of values occurs when the exponent field is all ones. When the
fraction field is all zeros, the resulting values represent infinity, either +o0o when
5 =0or —oc when s = 1. Infinity can represent results that overflow, as when we
multiply two very large numbers, or when we divide by zero. When the fraction
field is nonzero, the resulting value is called a NaN, short for “not a number.” Such
values are returned as the result of an operation where the result cannot be given
as a real number or as infinity, as when computing +/—1 or 0o — 0o. They can also
be useful in some applications for representing uninitialized data.

2.43 Example Numbers

Figure 2.34 shows the set of values that can be represented in a hypothetical 6-bit
format having k = 3 exponent bits and n = 2 fraction bits. The biasis 231 — 1=3.
Part (a) of the figure shows all representable values (other than NaN). The two
infinities are at the extreme ends. The normalized numbers with maximum mag-
nitude are £14. The denormalized numbers are clustered around (0. These can be
seen more clearly in part (b) of the figure, where we show just the numbers be-
tween —1.0 and +1.0. The two zeros are special cases of denormalized numbers.
Observe that the representable numbers are not uniformly distributed—they are
denser nearer the origin.

Figure 2.35 shows some examples for a hypothetical 8-bit floating-point for-
mat having k = 4 exponent bits and n = 3 fraction bits. The bias is 2*~1 —1=7.
The figure is divided into three regions representing the three classes of numbers.
The different columns show how the exponent field encodes the exponent E,
while the fraction field encodes the significand M, and together they form the

n
—co -10 -5 0 +5 +10 +c0

[Denormalized a Normalized a Infinity |

(a) Complete range
-0 +0
N
-1 -08 -08 -04 -02 0 +0.2 +04 +06 +0.8 +1
[+ Denormalized & Normalized = Infinity |

(b) Values between —1.0 and +1.0

Figure 2.34 Representable values for 6-bit floating-point format. There are k =3
exponent bits and n = 2 fraction bits. The bias is 3.

115

o e e W mw m—

116 Chapter 2 Representing and Manipulating Information

Exponent ' Fraction Value

Description Bit representation e E 286 5 M 2F xM Vv Pecimal
Zero 0 0000 000 o -6 & ¥ ¢ . 0 0.0
Smallest positive 0 0000 001 0 -6 & 3 3 55 s 0.001953

0 0000 010 0 -6 & % 2 2 o 0.003906

" 0 0000 011 0 -6 & -31 2 & 25 0.005859

Largest denormalized 0 0000 111 0 =6 H .3 ¥ v 3m 305 0.013672
Smallest normalized 0 0001000 1 -6 & § 8 5?—2 & 0.015625

0 0001 001 1 -6 & 3 3 5 5 0.017578

00110 110 6 -1 1 & 4 u z 0.875

00110 111 6 ~1 L 3 2 1 B 09755
One 0 0111 000 7 -1 3 8 $- 1 100

00111 Q01 ‘7 1 i 3 P 3 1.125

0 0111 010 7 1 3z 2 0 3 125 |

0'#110 110 4 7 128 & B 1B 224 240
Largest normalized 01110 111 14 7 oaw ok 1A 240 2400
Infinity 0 1111000 B . — o —
Figure 2.35 Example nonnegative>values for 8-bit floating-point format. There are k = 4 exponent bits
and n =3 fraction bits. The bias is 7. T

1o ’

represented value V = 2 x M. Closest to 0 are the denormalized numbers, start-
ing with 0 itself. Denormalized numbers jn this format have E =1 -7 = —6, giv-
ing a weight 28 = 313. The fractions f and signjficands M range over the values

0, % e %, giving numbers V in the range 0 to 513 X % = %f
The smallest normalized numbers in this format also have £E =1 -7 = —6,
and the fractions also range over the values 0, %, e %. However, the significands
then range from 1+ 0=1t0 1+ § = ¥, giving numbers V in the range %, = &;
I 15 '
to i7-

Observe the smooth transition befween the largest denormalized number -51"—2
and the smallest normalized number 3%. This smoothnessis due to our definition
of E for denormalized values. By making it 1 — Bias rather than —Bias, we com-
' pensate for the fact that the significand of a denormalized nunibeér does not have
an implied leading 1.

Section 2.4 Floating,Boint 117

As we increase the exponent, we get successively larger normalized values,
passing through 1.0 and then to the largest normalized number. This number has
exponent E =7, giving a weight 2% = 128, The fraction equals £, giving a signifi-
cand M = 185 Thus, the numeric value is V = 240. Going beyond this overflows to
+co.

One interesting property of this representation is that if we interpret the bit
representations of the values in Figure 2.35 as unsigned integers, they occur in
ascending order, as do the values they represent as floating-point numbers, This is
no accident—the IEEE format was designed so that floating-point numbers could
be sorted using an integer sorting routine. A minor difficulty occurs when dealing
with negative numbers, since they have a leading 1 and oceur in descending order,
but this can be overcome without requiring floating-point operations to perform
comparisons (see Problem 2.84).

Consider a 5-bit floating-point representation based on the IEEE floating-point
format,; with one sign bit, two exponent bits (k = 2), and two fraction bits (n = 2).
The exponent bias is 21 _1=1

'The table that follows enumerates the entire nonnegative range for this 5-bit
floating-point representation. Fill in the blank table entries using the following
directions:

e: The value represented by considering the exponent field to be-an unsigned
integer
E: The value of the exponent after biasing
2£: The numeric weight of the exponent
[The value of the fraction
MM : The value of the significand
28 x M: The (unreduced) fractional value of the number
V: The reduced fractional value of the number
Decimal: The decimal representation of the number

Express the values of 2Z, £, M, 2 x M, and V either as integers (when
possible)or as fractions of the form %, where y is 4 power of 2. You need not

fill in entries marked —-.

Bits e E 2 f M 26 x M 1% Decimal

0 00 00
00001
00010
00011
00100

Bits e

118 Chapter 2 Representing and Manipulating Informaticn

001 01 1 0 1 3 2 Z 3
&
E R2E . f M 28-x M v Decimal

00110

L]] s -

00111

61000

01001

01010

01011

01100 —
01101 —
01110 —
01111 —

i

Figure 2.36 shows the representatlons and funeric values of some important
single- ‘and’ dbhible- -precision floating-pbint numbers. As with the 8-bit formiat
shown in Figure 2.35, we can se¢ some general properties for a floating-point
representation with a k-bit exponent and an A-bit fraction: !

¢ The value +0.0 always has a bit representation of all zeros.

; * The smallgst positive denormalized value has a bit representation consisting of
a 1in the least significant bit position and otherwise all zeros. It has a fraction
(and significand) value M = f =277 and an exponent value E = —2¥"1 4.2,
The numeric value is therefore V =224,

* The largest denormalized value hias abit representation consisting of an
exponent field of all zeros and a fraction field of all ones, It has a"fraction
(and significand) value M = f =1— 27" (which we have written 1 — ¢) and
an exponent value E = —2%-1 4+ 2. The numeric value is therefore V = (1 —

-1y x 2-27'42, which is just slightly smaller: than the smallest normalized
value.

+

t

:

Figure 2.36 Examples of nonnegative floating-point numbers.

Single precision Double precision

Description exp frac. Value Decimal Value Decimal
Zero 00.--00 0---00 0 0.0 .0 0.0 *
Smallest denormalized 00--.00 0-..-01 272 x27126 14x107% 275252102 49y 1032
Largest denormalized 00---00 1---11 (1—€)x27126 12x10738 (1—¢) x 27102 2.2 x 10308
Smallest normalized 00-..01 0-.-00 1x 2126 1.2 x 10738 1x2-H2 2.2 % 10308
One 01-..11 0---00 1x20 1.0 1x20 1.0

i Largest normalized 11---10 1.--11 (2-¢)x 27 34x10%® (2-¢)x 21023 18 x 10708

Section 2.4 Floating Point

¢ The smallest positive norfnalized value has a bit representation with a 1 in
the least s:gmﬁcgnt bit of the exponent field and othermse all zeros. It has'a
significand value M =1 and ah exponent value E= —2¢-11 2 The numeric

k—
value is therefore V = 92142

* The value 1.0 has a bit representation with all but the most significznt bit of
the exponent field equal to 1 and all other bits equal to 0. Its significand value
is M =1 and its exponent value is £ =0.

* The largest normalized value has a bit representation with a sign bit of 0, the
least significant bit of the exponent equal to 0, and all other bits equal to 1. It

y hasafractionvalue of f =1— 27", giving asignificand M =2 — 27" (which we
have written 2 — ¢.) It has an exponent value E =2%"1 — 1, giving a numeric
value V = (2 — 27 x 2271 = (1 — 27771 5 227,

One useful exercisé for understanding floating-point representations is to con-
vert sample integer vilues into ficating-point-form. For example, we saw in Figure
2.15that 12,345 has binary representation [11000000111001]. We create a' normal-
ized representation of this by shifting’ 13 positions to the right of a binary point,
giving 12,345 = 1.1000000111001, x 2'3. To encode this in IEEE single-precision
format, wesconstruct the fraction field by dropping'the leadifig 1 and adding 10
zeros to the end, giving binary representation [10000001110010000000000]. To
construct the’exponént field, we add bias 127 to 13, giving 140, which has bi-
nary representation [10001100]). We combine this with a sign bit of 0 to get the
floating-point representation-in binary of [01000110010000001110010000000000].
Recall from Sectidit 2.1.3 that we ‘observed the following correlation in the bit-
level representations of the integer value 12345 (0x3039) and the single-precision
floating-point value 12345 . 0 {0x4640E400):

0 0 0v0 3 0 3 9
0000¢0000000000000011000000111001
etk ok ok o ok ok ok
4 66 4 0 E 4 0 O
01000110010000001110010000000000

We. can now see that the region of correlation corresponds to the low-order
bits of the integer, stopping just before the most significant bit equal to 1 (this bit
forms the implied leading 1), matching the high-order bits in the fraction part of
the floating-point representation.

As mentloned in Problem 2. 6 the mteger 3,510,593 hi’s hexadecimal represen-
tation 0x00359141, while the single-precision floating-point number 3/510,593.0
has hexadecimal representation 0x4A564504. Derive this floating-point represen-
tation and explain the correlation between the bits of the integer and floating-point
representations.

119

A, For a ﬂoatmg—pomt format w:th .an n-bit fraction,.give a formula for the
smallest positive mteger that ‘cannot ‘be represented exactly (because it
would require an (n + 1)-bit fraction to be exact). Assume the exponent
field size % is large enough that the range of representable exponents does
notsprovide a limitation for this problem.

B. What is the numeric value of this integer for single-pretision format (n =
23)?

2.44 Rounding

Floating-point arithmetic can only approximate real arithmetic, since the repre-
sentation has limited range-and precision. Thus, for a value;x,. wg generally want
a systematic tnethod of findingsthe, ¢closest” matching vajue x/ that can be rep-
resented in the desired floating-point format. This is the task of the.rounding
operation. One key problem is to define the direction to round a value that is
halfway petween two possibilities. For example, if I have $1.50 and want to round
it tq the nearest dollar, should the result be $1 or $2?.An alternative, approach is
to maintain a lower and an upper bound on, the actual number. For example, we
could determine representable values x~ and x™ such that the value x is guaran-
teed to liec between them: x~ < x < x*. The JEEE ﬂqatmg point, format defines
four different rounding'modes. The default: method finds a closest match, whilg
the other three can be usgd.for computing upper and lower, bounds.

Figure 2.37 ijlustrates-the four rounding modes applied.to the problem of
rounding a monetary amount to the nearest whole dollar. Round-toreven (also
called round-to-nearest) is the default mode. It attempts to find a closest match.
Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effectof rounding values
that are halfway between two possible results. Round-to-even mode adopts the
convention that it rounds the number either upward or downward such that the
least significant digit of the result is evens Thus, it rounds both $1.50 and $2.50
to $2.

The other three modes produce guaranteed bounds on the actual value. These
can be useful' in some numerical applications..-Round-toward-zero mode rounds

positivé numbers downwird ‘and negative numbers upward, giving a value £ such
f

Mode $1.40 $1.60 $1.50 $250 $-1.50
Round-to-even 8L, % $2 $2 $-2
Round-tpward-zero $1 $1 $1 $2 $-1
Round-down 231 $1 $1 $2 1 $-2
Round-up $2 $2 Y $3 $-1

Figure 2.37 lllustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.

Section 2.4 Floating Point

that |£| < |x|. Round-down mode rounds both positive and negative numbers
downward, giving a value x~ sych that x~ <x. Round—up mode rounds both
posmve and negative numbers upward, giving a value xT such that x < x7.

‘Round-to-even at first seems like it hasa réther arbitrary goal—why is there
any reason to prefer even numbers? Why not consistently round values halfway
between two representable values upward? The problem with such a convention
is that one can easily imagine scenarios in which rounding a set of data values
would then introduce a statistical bias into the computation of an average of the
values. The average of a set of numbers that we rounded by this means would
be shghtly higher than the average of the numbers themselves. Conversely, if we
always rounded numbers halfway between downward, the average of a set of
rounded numbers-would be slightly lower than the average of the numbers them-
selves. Rounding toward even numbers avoids this statistical bias in most real-life
situations. It will round upward about 50% of the time and round downward about
50% of the time.

Round-to-even rounding can be applied even when we are not rounding to
a whole number. We simply consider whether, the least significant digit is even
or odd. For example, suppose we want to round decimal numbers to the nearest
hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless
of rounding mode, since they are not halfway between 1.23 and 1.24. On the other
hand, we would round both 1.2350000 and 1.2450000 to 1.24, since 4 is even.

Similarly, round-to-even rounding can be applied to binary fractional num-
bers. We consider least significant bit value 0-t6'be even and 1 to be odd. In
general, the rounding mode is only significant when we have a bit pattern of the
form XX --- X.YY --- Y100 - - -, where X and Y denote arbitrary bit values with
the rightmost ¥ being the position to which we wish to round. Only bit patterns
of this form denote values that are halfway between two possible results. As ex-
amples, consider the prdblem of rounding values to the nearest quarter (i.e., 2 bits
to the right of the bmary point.) We would round 10.00011, (2) down to 10.00,
(2), and 10.00110; (2-%) up to 10.01, (2), because these values are not halfway
between two possible vatues. We would round 10.11100, (23) up to 11.00; (3) and
10.10100, (2%) down to 10.10, (2%), since these values are halfway between two
possible resuits, and we prefer to have the least significant bit equal to zero.

) e T Ty R o]
m wﬁ&%wmwmm 5 ':'&«;.Mm wmm‘f.,ﬁw:a

Show how the followmg binary fractional values would be rounded to the nearest
half (1 bit to the right of the binary point), according to the round-to-even rule.
In each case, show the numeric values, both before and after rounding.

A. 10.010,
B. 10.011,
C. 10.110,
D. 11.001,

121

We saw in Problem 2 46 that the Patnot rnlssﬂe software approximated 0.1 as x.~=
0. 000110011001100110011002 Suppose instead that they had used IEEE rouna
td-even flole to determine ar approximation x’ to 0.1'with 23 bits to the’ nght of
the binary point®

A. What is the binary representation of x'?
B. What is the approximate decimal value of x" — 0.1?

C. How far off would the computed clock have been After 100 hours of gpera-
tion?

D. How far off would the program’s prediction of the position of the Scud
missile have been?

"“"“Mgé e By

C0n31der the followmg two7- b1t ﬂoatmg point representationsbased on the IEEE
floating-point férmat.Neither has a sign bit—they can onlyrepresent nonnegatwe
numbers. SR

1. Format A
» There are k = 3 exponent bits. The exponent bias is 3. :
» There are n = 4 fraction bits. |

2. Format B
= There are k = 4 exponent bits. The exponent bias is 7. !
» There are n = 3 fraction bits.

Below, you are given some bit patterns in format A, agil your task is to convert
them to the closest value in format B. If necessary, you should apply the round-to-
even rounding rule. 'In addmon give the values of numbers given by thg ormat A
and formdt B bit patterns. Give these as whole numbers (e 2., 17) or as fractions
(e. g- 17/64). ue

Format A Format B

Bits Value Bits Value
011 Q000 1 0111 00C 1
101 1110 e
010 1001 R s [T

110 1111 _
000 0001

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arith-
metic operation such as addition or multiplication. Viewing floating-point values x

Section 2.4 Floating Point 123

and y as real numbers, and some operation @ defined over real numbers, the com-
putation should yield Round(x © y), the result of applying rounding to the exact
result of the real operation. In practice, there are clever tricks floating-point unit
designers use to avoid performing this exact computation, since the computation
need only be sufficiently precise to guarantee a correctly rounded result. When
one of the arguments is a special value, such as —0, oo, or NaN, the standard,spec-
ifies conventions that attempt to be reascnable. For example, 1/—0 is defined to
yield —co, while 1/+0 is defined to yield 4-c0.

One strength of the IEEE standard’s method of specifying the behavior of
floating-point operations is that it is independent of any particular hardware or
software realization. Thus, we can examine its abstract mathematical properties
without considering how it is actually implemented.

We saw earlier that integer-addition, both unsigned and two’s complement,
forms an abelian group. Addition over real numbers also forms an abelian group,
but we must consider what effect rounding has on these propertics. Let us define
x +'y to be Round(x + y). This operation is defined for all values of x and ¥,
although it may yield infinity even when both x and y are real numbers due to
overflow. The operation is commutative, with x +' y = y +f x for all values of x and
y. On the other hand, the operation is not associative. For example, with single-
precision floating point the expression (3.14+1e10)-1e10 evaluates to 0.0—the
value 3.14 is lost due to rounding. On the other hand, the expression 3. 14+(1e10-
1e10) evaluates to 3.14. As with an abelian group, most values have inverses

under floating-point-‘addition, that is, x +' —x = 0. The exceptions are infinities
(since +00 — 00 = NaN)), and NaNs, since NaN +! x = NaN for any x.

The lack of associativity in floating-point addition is the most important group
property that is lacking, It has important implications for scientific programmers
and compiler writers. For example, suppose a compiler is given the following code
fragment:

X a+b+ c;
y=b+c+d;

The compiler might be tempted to save one floating-point addition by generating
the following cade:

t=b + c;
X=a+t;
ye=t+d;

However, this computation might yield a different value for x than would the
original, since it uses a different association of the addition operations. In most
applications, the differenice would be so small as to be inconsequential. Unfor-
tunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original pro-
gram. As a result, they tend to be very conservative, avoiding any optimizations
that could have even the slightest effect on functionality.

124 Chapter 2 Representing and Manipulating Information

On the other hand, floating-point addition satisfies the following monotonicity
property: if @ > b, then x +.a > x +f b for any values of a, b, and x other than NaN,
This property of real (and intéger) addition is not ‘obeyed by unsigned ortwo’s-
complement addition. 2

FloAting-point multiplication also obeys many of the properties orie normally
associates with multiplication; Iiet us define x #f ytobe Roupd(x x y). This oper-
ation is closed under multiplication (although possibly yleldmg infinity or NaN),
it is commutative, and it has 1.0 as a multiplicative idéntity. On the other hand,
it is not associative, due to the-possibility 'of overflow or:the loss of precision
due to rounding. For example, with'single-precision floating.point; the expression
(1e20%1420) *1'e-20 evaluates to 400} while .1e20% (1e20*1e-20) .cvaluates’to
1e20. In addition, floating-point multiplicatipn does not distribute over addition.
For- example, with single-precision floating point, the'expression 120+ (1e20-
1e20) evaluates to 0.0, while 1620%1e20-1e20%1e20 evalyates to NaN.

Onrthe other handifloating-point multiplication satisfies the following mono!
tonicity properties for any values of a, b, and ¢ other than NaN:

“
‘ azb and cZ0Sawczbre !

’e

J b
a>b and c<O0=a*c<bxc

M

In addition, we are also guargnteed that a ' a = 0, as long as g # NaN. As we
saw earlier, none of,thgse monotonicity ,properties hold for unsigned or two’s-
complement multiplication. A)

This lack of associativity and distributivity, is of serious concern to scientific
programmers and to compiler writers. Evensuch @seemmgly simple task as writing
code to determine whether two lines-intersect in three-dimensiopal space can be
a major challenge.

2.4.6 Floating Point in C

All versigns of C providg two different floating-point data types; float, and dou~
ble. On machines that support IEEE floating point, these data types corrf;.spond
to single- and double-precision floating point. In addition, the machines usc the
round-to-even rounding mode. Unfortunately, since the C standards do not re-
quire the machine to use IEEE floating point, there are no standard methods to
change the rounding mode or to get special vatues such as —0, +00, —00, or NaN.
Most systems provide a combination of include (.h) files and procedure libraries
to provide access to thesg features, but the, deta}ls vary from one system to an-
other. For example, the GNU compiler Gcc defings program constants INFINITY
(for +o00) and NAN (for Nal,\.r) when the follomng sequence pcgurs in the program
ﬁle: ar i

T r

#define _GNU_SOURCE 1
#include <math.h>

Section 2.4 Floating Point

Fill in the following macro definitions to generate the double-precision values +oo,
—o0, and —0:

#define POS_INFINITY
#define NEG_INFINITY
#define NEG_ZERO

You cannot use any include files (such as math. h), but you can make use of the
fact that the largest finite number that can be represented with double precision
is around 1.8.x 10°%8,

- .

When casting values between int, float, and double formats, the program

changes the numeric values and the bit representations as follows (assuming data
type int is 32 bits):

I
¢ From int to £]oat, the number cannot overflow, but it may be rounded.

¢ From int or float to double, the exact numeric value can be preserved be-
cause double has both greater range (ize.,the range of representable values),
as well as greater-precision (i.e., the number of significant bits).

* From double tofloat, the value can overflow ta +00 or —oo, since the range
is smaller, Otherwise, it may be rounded, because the' precision is smaller.

* From float or double to int, the value will be rounded toward zero. For
example, 1.999 will be converted to 1, while —1.999 will be converted to
—1. Furthermore, the value may overflow. The C standards*do not specify
a fixed result for this case. Intel—compatlble microprocessors designate the
bit pattern [10 - - - 00] (TMin,, for word size w) as an integer indefinite value.
Any conversion from floating point to 1n{eger that cannot assign areasonable
gmtegcr approxunatlon ylelds this valué. Thus, the expresswn (int) +lel0
yvields -21483648, generating a negative value from a positive one.

Assume variables x, £, and d are of type int, float, and double, respectively.
Their values are arbitraryrexcept that neither £ fior d.equals +o00, —o0, or NaN.
For each of the following C expressions, either argue that it will-always be true
(ie.evaluate to 1) or give a value for the variablés such that it is not true (i.e.,
evaluates to 0).

A, x== (ing) (double) x
x ==:€int) (float) x
== (double) (float) d
= (float) (double) f
== -(-f)

_tn_tjop:-

125

i 126 Chapter 2 Representing and Manipulating Information

2 F 1.0/2==1/2.0
i G. d*d >=0.0

J H. (f+d)-f ==

|

]

|

2.5 Summary

! Computers encode information as bits, generally organized as sequences of bytes.
E Different encodings are used for representing integers, real numbers, and charac-
ter strings. Different models of computers use different conventions for encoding

! numbers and for ordering the bytes within multi-byte data.
The Clanguage is designed to accommodate a wide range of different imple-
mentations in-terms of word sizes and numeric encodings. Machines with.64-bit

[word sizes have become increasingly.common, replacing the 32-bit machines that
} dominated the market for around 30 years. Because 64-bit machines can also run
programs compiled for 32-bit machines, we have focused on the distinction be-

F tween 32- and 64-bit programs, rather than machin€s. The advantage of 64-bit pro-
grams is that they can go beyond.the 4 GB address limitation’of 32-bit programs.
Most machines encode signed numbers using a two’s-complement representa-
tion and encode floating-point numbers using IEEE Standard 754. Understanding
these encodings at the bit level, as well as understanding the mathematical char-
j‘ acteristics of the arithmetic operations, is important for writing programs that
operate correctly over the full range of numeric values,
| When casting between signed and unsighed integers, of the same size, most
! C implementations follow the convention that the underlying bit pattern does
not change. On a two’s-complement machine, this behavior is characterized by
! functions T2U,, and U2T ,,, for a w-bit value. The implicit Casting of C gives results

that many programmers do not anticipate, often leading to program bugs,
; Due to the finite lengths of the encodings, computer arithmetic has properties
quite different from conventional integer and real arithmetic, The finite lengﬂ} can
4 cause numbers to overflow, when they exceed the range of the representation.
Floating-point values can also underflow, when they are so close to 0.0 that they
H are changed to zero.

The finite integer arithmetic implemented by C, as well as most other pro-
gramming languages, has some peculiar properties compared to true integer arith-
metic. For example, the expression x#x can evaluate to a negative number due
to overflow. Nonetheless, both unsigned and two’s-complement arithmetic satisfy
many of the other properties of integer arithmetic, including assocjativity, com-
mutativity, and distributivity. This allows compilers to do many optimizations. For
. example, in replacing the expression 7#x by (x<<3)-x, we make use of the as-
sociative, commutative, and distributive properties, along with the relationship
E between shifting and multiplying by powers of 2.

We have seen several clever ways to exploit combinations of bit-level opera-
tions and arithmetic operations. For example, we saw that with two’s-complement
arithmetic, ~x+1 is equivalent to -x. As another example, suppose we want a bit

Bibliographic Notes 127

"o - - o

Aside Ariane 5: The high cost of floating-point overflow

Converting large floating-point numbers to integers is a common source of programming errors. Such
an error had disastrous consequences for the maiden voyage of the Ariane Srocket, on June 4,1996. Just
37 seconds after liffoff; the rocket veered off its' flight path, broke up, and exploded. Communication
satellites valued-at $500 million were otf board the rocket. @

A later investigation [73, 33] showed that the'computer controlling the inertial navigation system
had sent invalid data to the computer controlling the engine nozzles. Instead of sending flight control
information, it had sent a diagnostic bit pattern indicating that'an d¢&rflow. had oecurred during the
conversion of a 64-bit floating-point number to a 16-bit signed integer. .

The value that overflowed measured the horizontal velocity of the rocket, which could be more
than five times higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4
softwate, they had carefully analyzed the numeric values and determined that the horizontal velocity
would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in
the Ariane 5 without checking the assumptions on which it had been based.

pattern of the form [0, ..., 0,1, ..., 1), consisting of w — k zeros followed by k
ones. Such bit patterns are useful for masking operations. This pattern can be gen-
erated by the C expression (1<<k)-1, exploiting the property that the desired
bit pattern has numeric value 2 — 1. For example, the expression (1<<8)~-1 will
generate the bit pattern OxFF.

Floating-point representations approximate real numbers by encoding num-
bers of the form x x 2. IEEE Standard 754 provides for several different preci-
sions, with the most common being single (32 bits) and double (64 bits). IEEE
floating point also has representations for special values representing plus and
minus infinity, as well as not-a-number.

Floating-point arithmetic must be used very carefully, because it has only
limited range and precision, and because it does not obey commeon mathematical
properties such as associativity.

Bibliographic Notes

Reference books on