New algorithm for
Half-plane Intersection
and Its Practical Value

— Thesis for Chinese Team Selecting

Contest 2006

SV TRIAZ R8T S8 S FL S - B
—— R B 2006 F LR FE R 3L
By Zeyuan Zhu

Dedicate to my beloved mother, Xiaoli Xu.

New algorithm for Half-plane
Intersection and its Practical
Value

Zeyuan Zhu®
Grade 12, Nanjing Foreign Language School, Jiangsu, China

RPE, o =, BT ANETESA A, VT I5,
2005-12-29

Keywords: Half-plane, Intersection, Feasible Region,
Algorithm, Polygon, Practical

Abstract

Aim: Present a new O(nlogn) algorithm for half-plane intersection (abbr. HPI), which is
one of the most heatedly discussed problems in computer science; emphasize its
advantages in practical application, and to some extent, reduce the complexity to O(n).
However, the new algorithm will be extraordinarily easy to be implemented.

F B PSR U A EAR AR)) @2 —, AN 2E
O(nlogn) 102 %, sl e AE S bRz -l O, JF BAESEMRE R R 5
TRER O(n)Zetth. HmEIZNIE, TR A SEE AR TS,

81 introduces what half-plane intersection is. 82 prepares a linear algorithm for convex
polygon intersection (abbr. CPI). Equipped with such knowledge, a common solution
for HPI is briefly discussed in 83. Then, my new algorithm emerges in 84 detailedly. Not
only as a conclusion of the whole paper, 85 also discuss its further usage practically and
compares it with the older algorithm described in §3.

81 4 2P IHIAL. 82 ™ 2 1T AZ T4 AR, 83 T2/ 4110 D&C k. 84 45713k
(RIS S&I AR 2D, 85 KA &5 S friz .

Timestamps: Came up with it in April 2005; implemented partly in June 2005%;
problem set in July 2005 publicized as a post in USENET, November 6, 2005®.

¥ E-mail: zhuzeyuan[at]hotmail[dot]com

® The sub-problem of HPI appeared in USA Invitational Computing Olympiad contest.

@ Set an HPI problem in Peking University Online Judge, with brief introduction about the algorithm.
“ URL.: http://groups.google.com/group/sci.math/msg/68e9d9fc634f0d92

http://groups.google.com/group/sci.math/msg/68e9d9fc634f0d92

1. Introduction

A line in plane is usually represented as ax+by=c. Similarly, its inequality form ax+by<c
represents a half-plane (also named h-plane for short) as one side of this line. Notice that
ax+by<c and -ax-by<-c show opposite h-planes unlike ax+by=c and -ax-by=-c. Half-
Plane Intersection (abbr. HPI) considers the following problem:
PRSI, HEHE H ax+by=c &7, AP LL ax+by<(=)c A iE Lo

Given n half-planes, aix+biy<c; (1<i<n), you are to determine the set of all points
that satisfying all the n inequations. % EnMEtHax+biy<cifI ¥ Fi, HEIFHE W
JEEATH TR R

As Figure i describes, the feasible region, which is the intersection, forms a shape of
convex hull but possibly unbounded. However, we shall add four h-planes forming a
rectangle, which is large enough to make sure the area after intersections finite. In the
following sections, we suppose the feasible region is bounded with a finite area.

GBI L Z A, AIReTest. BLREEIN 4 AN 1 ORk i AR A B

(b)

Figurei Two examples of HPI. (b) gives an example of unbounded
intersection area.

Each h-plane builds up at most one side of the convex polygon, hence, the convex
region will be bounded by at most n edges. Pay attention the intersection sometimes
yields a line, a ray, a line-segment, a point or an empty region. &4~ [fi & £ & I AH
AR — 5510, PRIHARAS XA ANER S n 253

HEAMLE M, FrRet—NEHZ,. Wk, LB A, AW EES
£.

4,

2. Convex Polygon Intersection (abbr. CPI)

Intersecting two convex polygons A and B into a single one, can be properly solved via
Line Segment Intersection in O(nlogn) time, when there are O(n) edges. We will sketch
out an easier and more efficient way, named plane sweep method.

KA Z I AR B INAZ (AT ZIATE) o BATE: AP E,

The main idea is to calculate intersections of edges as cutting points, and break
boundaries of A and B, into outer edges and inner edges. The segments of inner edges
establish ties to each other, and form the shape of a polygon, which is the expected
polygon after intersection. In Figure ii, inner edges are indicated by thick segments, which
form a bold outline of the intersection. = AR LPR i A A8 SR 20 SR H
Aoy N A NIL B AERE, BTk Z A IE

Suppose there is a vertical sweep line, performing left-to-right sweep. The x-
coordinates to be swept are called x-events. At anytime, there are at most four
intersections from sweep line to either given polygon®:

B —A T H A, W AE AR A TR Zed 14 21 1) x AR FR AL i
X F AR Z], SN Z LB EZ 4 458 R
to the upper hull of A (name that intersection Au for short)
to the lower hull of A (name that intersection Al for short)
to the upper hull of B (name that intersection Bu for short)
to the lower hull of B (name that intersection Bl for short)

+ %+ &

-
-

Polygon B & -+
Figureii How the sweep line works. “O”
potentially shows next x-event.

Look at Figure ii, the lower one between intersections Au and Bu, and the upper one
between intersections Al and BI, form an interval of the current inner region — the red

Sweep line

® Assume there is no edge in polygons parallel to the sweep line. If such situation happens, we could rotate the plane in
proper angle, or else, we need good sense to judge a great many special cases.

segment in bold. Au. Bu E5E R, FALL Bl HEE LI, 41T 4H0r 22
X 5

Obviously, the sweep line may not go through all the x-event with rational coordinates.
Call the edges where Au, Al, Bu and Bl are: el, e2, e3 and e4 respectively. The next x-
event should be chosen among four endpoints of el, e2, e3 and e4, and four potential
intersections: e1lNe3, elNe4, e2Ne3 and e2Ne4.

AR, BAIARERR T A A HEL! FX Au, Al, Bu, Bl Ji7EMA M4 el,e2,e3,e4,
B x SRR S B, BRI AT sk

The above operation could be implemented with O(n) running time, since there are O(n)
x-events, and the maintenance of Au, Al, Bu and Bl takes only O(1).

3. Common solution:
Divide-and-Conquer Algorithm (abbr. D&Q)

The basic approach is simple, depends on divide-and-conquer idea.

4 DivIDE: Partition the n h-planes into two sets of size | 4| and [4].
CoNQUER: Compute the feasible region (intersection) recursively of both two
sub-sets.

ComBINE: Compute the intersection of two convex polygons, by linear CPI
algorithm described in §2.

gy R n AT B A ni2 AR
NERPA LSRR S pr = B S TR
A KA PSR AN AE (M 2L TE) R 28 2 B CPI KA.
The total time complexity of the solution can be calculated via recursive equation: /5
I IR) 82 2% B R DA 346 UF1 2 B 2.
T(n)=2T(5)+0O(n)
T(n)=0(nlogn)

+ & & $ &

4. My New Solution:
Sort-and-Incremental Algorithm (abbr. S&l)

Definition of h-plane’s polar angle:
4 for the h-plane like x-y>constant, we define its polar angle to ¥ax.
4 for the h-plane like x+y<constant, we define its polar angle to ¥x.
4 for the h-plane like x+y>constant, we define its polar angle to -Yux.

4 for the h-plane like x-y<constant, we define its polar angle to -¥ax.

PR X et xy WA, 5 XS A

A A

Y

>
/-/an

Figure iii Definition of half-plane’s polar angle.

Definition of h-plane’s constant:
4 for the h-plane like ax+by<c, we say its constant is c.

My new Sort-and-Incremental Algorithm seems lengthy since | am going to introduce it
in details:

Step 1: Separate the h-planes into two sets. One has polar angles of (-Y2r, Y2n], the
other has those of (-rt, -%n]y (%m, n].”

Step 10 KPS RPIHY, — MM, bl B EREE 4
nJuU(em,]

’ ’
Figure iv For half-planes with the same polar angle, we
must keep the one that is covered by others.

Step 2: Consider the h-plane set of polar angles in (-Y2r, Y2rt] (the other set should also
go through step 3 and 4 similarly). Sort them by the polar angle. For the h-planes with the
same polar angle, we can keep only one down (delete all others) according to the constant
of these h-planes — see Figure iv above.

 In fact, we only need to separate them into two parts, one contains (a, a+z], the other contains (a+z, a+2z]. but my
separation will make the explanation clearer

Step 2: % & (-, Y P (U — N EA AU Step3/d), KA T A HE
o MARAARE P, AR SR b 2 —,

(@) 1™ and 2" h-planes added; (b) 3 h-plane added; three h- (c) 4" h-plane added; stack
two h-planes in stack originally planes in stack popped once; three h-planes in
stack

(d) 5™ h-plane added; four h- (e) 6" h-plane added; top two (f) 7" h-plane added; four h-
planes in stack h-planes popped; three h- planes in stack
planes in stack

Figure v An example for Step 3. Old intersections to the left of the new ones are to
be deleted. Dotted portion indicates the part to be deleted.

Step 3: Starting from two h-planes with the least polar angle, compute their
intersection. Push them two into a stack.

MHEFE JE 8 A fs /NS T 4R, SR EATHIAS ROF B AT AR .

Each time, add one more h-plane by increasing order of polar angles, and calculate the
intersection of it and the top h-plane in stack. If this intersection is to the right of the
intersection of top two h-planes in stack, we pop the stack once. Later, we check the
intersection of two new top h-planes in stack... Do this repeatedly until it is to the left of
the top intersection. At last, we push the current h-plane into the stack.

FEUCH IR A DN BRI B0 — A, S0 e SRR TP i A . AR
T IAS RAEAR TR A P A2 AL, AR (pop) o i) AT B Ak,
B HFE IR AT NielBRATEM AL i E, WIS A A IRA T E AR S hik, H 3
MHTAS A AEAR AL SR A2 100

Step 4: The intersections of adjacent half-plane pairs in stack form half a convex
polygon. For the two sets, we have two halves the convex polygon - (-%2m, Y2rt] gives an

upper hull and (-xt, -Y2rt]y (Y2,] gives a lower hull. Merging them in linear time can be
done via CPI in section 2, but we can make use of iteration.

Step 4:AHAB P I IAS A RBCE NN ZITE . BATAHAAD RS, (D, hn]gh
EA, (o, hn]Uhn,]G H TR
Based on the knowledge of deque (double-ended queue), we repeatedly remove an end-
point that is known to be infeasible. Look at Figure vi.

At the beginning, four pointers p1, p2, p3 and p4 indicate leftmost/rightmost edges of
both upper and lower hulls. p1 and p3 move rightwards, while p2 and p4 walks leftwards.
At anytime, if the leftmost intersection is against the feasible region provided by p1l or p3,
we are sure the leftmost one is to be removed. Naturally, p1 or p3 walks rightwards to its
adjacent edge. The judgment holds analogously for rightmost intersection with p2 and p4.

WItG R, PUANERER pl, p2, p3 and p4 Fi&1n B/ R N 5e i Aot A i . pl, p3 In)Ay
A, p2, pd g . AEEIZ], W EATARIAL AN AL plip3 Fr e I)RR
i, FRATAME XA s A MR . pl B8 p3 A& M e AT RSN . SEAHh FRAT 1 4b 2
A IIAR . B AEAE H B HAT O I ——IAAK

upper hull

A

p2

=
1

1

1

1

1

(d) (€) ()

Figure vi An example for Step 4. In figure (c), only one intersection besides p4 can be
removed, since the other (pink one marked with *) is in proper side of p2’'s h-plane.
That is why every time we try to remove only a single rightmost or leftmost
intersection.

Do the above removing repeatedly until there is no more update. Meanwhile, the
number of intersections for a single hull can decrease to zero, but still with non-empty
feasible region:

/ Figure vii Number of intersections for a single hull
\ can decrease to zero.
no intersection
for lower hull

Everything except sorting (Step 2) in S&I algorithm remain linear — O(n) running time.
Usually we use quick-sort. The total complexity is O(nlogn), with fairly small constant
factor hidden. It can be reduced to O(n), see the next section.

B 7 Step2 HIHEFLLSE, S&I FILIRE— AR S L . A FATH P HE
SEIN Step2, ek RIS TR AL 2% 4 O(nlogn), Bl I b 1 5 250 R -FAR /)

5. Practical Value and Linear approach

Great ideas need landing gear as well as wings. S&I algorithm seems to work in the same
time complexity as D&C algorithm, but some overwhelming advantages of implementing
S&I holds:

Great ideas need landing gear as well as wings. S&I 5.7 F- Al D&C 573 i)) 53 % i
AHIE], AH2E A% A3 1 (overwhelming) L3

4 It is much easier to code S&I program than D&C one. The program in C++
programming language takes less than 3KB.
Wi S&I FLAL A S90S, MXT D&C KK HAL, CHIEFE T SE
I S&I FHIFALT; 3KB A H.

4 The coefficient hidden under S&I algorithm’s complexity is extraordinarily
smaller than D&C, since we no longer need O(nlogn) number of intersection
calculations. In general speaking, S&I program runs approximately five times
faster than D&C one.
S&I HEE R ET &R, /T D&C, KAIATAFTRE O(nlogn)ikAL
ISR S ERYE, S&I R L D&C TR Fifi
Remark: intersection calculations play the most important role in both
algorithms due to its operational speed (so slow, equivalent to hundreds of
addition operations). CPI, the preparative algorithm which will be called several
times from D&C, requires O(n) number of calculations, wherefore it rises the
total running time up. Besides, S&I calculates O(n) times in any case.

4 If the given h-planes are all in (-%mr, Yn] (or any span of ©t), S&I program can be
shorten remarkably (to approximately twenty lines in C++), but D&C program
may not. An informatics problem appeared in USA Invitational Computing
Olympiad contest with such purpose. WIH 45 & - P AE(Rn, hn] (5T
BN n X ED , S&I BVEn A B, CH+iRp AfREL —
+47. USAICO LLBE 13t tH I 13X b — il

Asymptotical Optimization to linear: The bottleneck of this algorithm is sorting. Pay
attention the sorting is NOT a comparison sort (sorting based on comparison)! The key
words for elements to be sorted are polar angles, which can be certainly determined by
gradient — a decimal fraction. Since then, we can replace the O(nlogn) quick-sort to O(n)
radix-sort. The asymptotical complexity of algorithm can decrease to O(n). Anyway
O(n) approach usually runs slower than nlogn ones for its additional memory usage!

AREEMAUE R, X B AR UG, D n] DORE PRade Hl P 48 e itk
P, B P gt I) 52 2 B 3 ek

The sentiment of my creation: An invention does not attribute to someone who comes
up with ideas. Most people have ideas. The difference between the average person and
the inventor is that the inventor for some reason believes only himself, and has the urge
to see his ideas through to fruition. Henri Matisse, a French painter and sculptor, ever
said ‘there is nothing more difficult for a truly creative painter than to paint a rose,
because before he can do so, he has first to forget all the roses that were ever painted.’
Equipped with both idealistic and practical spirit of innovation, I am on the way. How
about you?

Bibliography

1. Kurt Mehlhorn. Data Structures and Algorithms Vol 3. Springer-Verlag, New York,
1984.

2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.
Introduction to algorithms 2nd Edition. MIT Press, New York, 2001

3. Gill Barequet. Computational Geometry Lecture 4, Spring 2004/2005.

4. Kavitha Telikepalli. Algorithms and Data Structures, Lecture 3, Winter 2003/2004.

10

	Keywords: Half-plane, Intersection, Feasible Region, Algorithm, Polygon, Practical
	Abstract
	1. Introduction
	2. Convex Polygon Intersection (abbr. CPI)
	3. Common solution: Divide-and-Conquer Algorithm (abbr. D&Q)
	4. My New Solution: Sort-and-Incremental Algorithm (abbr. S&I)
	5. Practical Value and Linear approach

