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ABSTRACT

Over the years a lot of easily computable strategies for the game mastermind have been pro-
posed. One of the obvious strategies, guess that code that has the most possible answers, has
been lacking. It is discussed in this paper.

1. INTRODUCTION

Mastermind is a two-player zero-sum game of imperfect information. First player I chooses a combination
of four pawns drawn from six colors. Player II does not know the choice player I made. Then player II
can ask up to eight questions in the form of a combination. If she asks the secret combination, she wins
the game, otherwise player I wins the game. Each time player II asks a question, she gets an answer that
expresses the accuracy of the question. The answer consistsof two number: the number of pawns that are
of the right color and in the right place, and the number of pawns that are of the right color, but are not in
the right place. For example:

AABB the secret combination
BBAB the question

In this case the answer is: one pawn is in the right place and two pawns have the right color but are not in
the right place (I will abbreviate this as (1,2)).

Player II has many winning strategies that guarantee that the secret combination is found within eight
questions. There is even a strategy that guarantees that thesolution is found within five questions (see
below). One can also ask seven questions simultaneously, and deduce the secret from the answers. So there
seems little more to say about the game.

However most of the strategies for mastermind proposed in the literature apply to a slight variation on the
game. At the start of the game eight dollars are available. Player I gets as many dollars as the number
of questions player II asks and player I gets the rest. Now thequestion is which strategy minimizes the
expected number of questions required, thus maximizing player II’s expected payoff. To be able to calculate
the expected number of questions, one needs to make an assumption about player I’s strategy. In most papers
it is assumed that player I chooses a secret combination at random (by a uniform distribution). I also make
that assumption in this paper.

Many papers have been written about mastermind since the game was first sold in the 1970’s. One paper
seems to be the definitive paper on mastermind strategies by Koyoma and Lai (Koyoma and Lai, 1993).
They found the optimal strategy by depth first search on a supercomputer. With this strategy the expected
number of questions required by player II is4.340. In most of the earlier papers strategies are put forward
which can be calculated easily. It still seems worthwhile tostudy these strategies. Although these are not
optimal, their computational complexity makes them easilygeneralizable to other setting and variations of
the game (more colors or more positions). In this paper I onlylook at the standard version of the game.

From the easily computable strategies that have been proposed over the years there is one very simple one
that is lacking: ask the question that has most possible answers. Nevertheless, from the easily computable
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strategies it has the least expected number of questions:4.373. This surprisingly simple strategy is discussed
in this paper.

In Section 2 some of the well-known mastermind strategies that are easily computed are presented. In
Section 3 the new strategy is motivated and presented. In Section 4 the empirical results are presented when
these strategies are played. In Section 5 these results are discussed and possible explanations why some
strategies are not doing well are also discussed. In Section6 some conclusions are drawn and questions for
further research are indicated.

2. SOME WELL-KNOWN MASTERMIND STRATEGIES

In this section I want to introduce some of the strategies that have been proposed over the years in order to
compare them with the stategy that asks the question with themost possible answers.

2.1 A Simple Strategy

The first strategy by Shapiro (Shapiro, 1983) (it is also published in (Sterling and Shapiro, 1994)). His
algorithm does is the following: the combinations are somehow ordered (usually alphabetically) and the
first combination is asked. The answer is received. The next question is the first one in the ordering that is
consistent with the answers given so far. And so on until the combination is cracked. A crucial drawback
to this strategy, however, is that it looks at the informativity of questions very marginally. One can only be
certain that one does not know the answer already, but that isall.

2.2 Looking One Step Ahead

In mastermind a question partitions the set of possible combinations. This can be seen in the following
example. Consider a simplified mastermind game with two pawns and four colors. The set of possible
combinations can be represented as follows:

DA DB DC DD

CA CB CC CD

BA BB BC BD

AA AB AC AD

The questionsAA andDA can be represented by the corresponding answers as:

1, 0 0, 0 0, 0 0, 0

1, 0 0, 0 0, 0 0, 0

1, 0 0, 0 0, 0 0, 0

2, 0 1, 0 1, 0 1, 0

2, 0 1, 0 1, 0 1, 0

1, 0 0, 0 0, 0 0, 1

1, 0 0, 0 0, 0 0, 1

1, 0 0, 1 0, 1 0, 2

It is obvious that the second question is more informative than the first, but how can we motivate this
intuition? The idea of all the strategies presented below isthat the choice for a question is based solely on
the partition of the remaining possibilities that a question generates. So in the simplified game above two
different kinds of questions can be asked at the start of the game. This is summerized in the following table.

A
A

A
B

(0, 0) 9 4
(0, 1) 0 4
(0, 2) 0 1
(1, 0) 6 6
(2, 0) 1 1
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A
A

A
A

A
A

A
B

A
A

B
B

A
A

B
C

A
B

C
D

(0,0) 625 256 256 81 16
(0,1) 0 308 256 276 152
(0,2) 0 61 96 222 312
(0,3) 0 0 16 44 136
(0,4) 0 0 1 2 9
(1,0) 500 317 256 182 108
(1,1) 0 156 208 230 252
(1,2) 0 27 36 84 132
(1,3) 0 0 0 4 8
(2,0) 150 123 114 105 96
(2,1) 0 24 32 40 48
(2,2) 0 3 4 5 6
(3,0) 20 20 20 20 20
(4,0) 1 1 1 1 1

Table 1: First possible questions. For each question and each answer, the number of combinations that
would yield that answer to the question is given. The positive numbers can also be seen as the sizes of the
elements of the partition generated by the question.

A number in a cell represents the number of combinations in which the answer in the row is given to the
question in the column. For example, in the table above, there are 9 combinations where the answer is
(0, 0) when the question isAA. Let us look at the partitions for the standard mastermind game; four pawns
and six colors provided in Table 1. The numbers in this table are interpreted in the same way as in the
table above. For example, there are 625 combinations where the answer is(0, 0) when the first question is
AAAA. It seems obvious that questionAAAA is not a good question, but what more can be said?

2.3 A Worst Case Strategy

One can look at Table 1 from a worst case perspective. If player II wants to minimize the number of
questions required to guess the secret combination, the number of combinations player II considers possible,
gives an indication of the number of questions it will take. The worst thing that can happen to player II, is
that the answer to a question leaves her with the largest element of the partition.

A
A

A
A

A
A

A
B

A
A

B
B

A
A

B
C

A
B

C
D

the size of the largest partition element625 317 256 276 312

Assuming player II wants to play it safe, she should ask the questionAABB, because this minimizes the
largest partition element. This strategy is presented in (Knuth, 1976-1977).

2.4 An Expected Size Strategy

One could also say that when player II decides which questionshe should ask, her choice should not be
based on the worst case, but on the ‘expected case’, because she wants to maximize her expected payoff.
Therefore, one should look at the expected size of the partition element one ends up with. The expected
size of a partition element is the probability of getting theanswer corresponding to that partition element
multiplied with the size of the partition element. This expectation is defined as follows for the first question.
Let A be the set of possible answers to questions. Letg be a question, then the expected size of the partition
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element one ends up with is:
∑

ai∈A

Pg(ai).#({x | x ∈ Cp ∧ a(x, g) = ai})

wherePg(ai) is the probability that the answer tog is ai. If one assumes a uniform distribution over all
possible combinations, then:

Pg(ai) =
#({x | x ∈ Cp ∧ a(x, g) = ai})

#(Cp)

For examplePAAAA(0, 0) = 625
1296 , because64 = 1296. So the expected size is

∑

ai∈A

#({x | x ∈ Cp ∧ a(x, g) = ai})
2

#(Cp)

For the first question the expected sizes are shown in the table below

A
A

A
A

A
A

A
B

A
A

B
B

A
A

B
C

A
B

C
D

the expected size of a partition element511.9 235.9 204.5 185.3 188.2

From this point of view, player II should askAABC as the first question. This approach is taken in (Irving,
1978-1979)2.

2.5 An Information Theoretical Strategy

There is a measure that gives an ordering on partitions whichis called entropy (see (Cover and Thomas,
1991)). The concept entropy plays an important role in information theory for measuring the amount of
information of messages. One can also use it for a mastermindstrategy. This strategy can be motivated
by the following example. Suppose we have a guessing game. Player I picks a card randomly from a
deck of cards. Player II has to determine which card Player I picked using as few yes/no questions as
possible. If there are eight cards for example, one needs three questions to determine which card it is (since
log2(8) = 3). The logarithm gives an approximation of the expected number of yes/no questions needed.
(It is not exactly the expected number of questions, becauseone should look at the logarithm as the limit of
the expected number of questions, if one can play a number of these games simultaneously.) Suppose we
have a partitionV = {V1, . . . , Vm} of a setA. Let pi be #(Vi)

#(A) . (This is the probability that an element of
Vi is in A. If the probability distribution is not uniform another definition is needed.) Then the expected
number of yes/no questions could be represented as

n
∑

i=1

pi log(#(Vi))

Trying to minimize this measure is the same as trying to maximize the entropy which is defined as

−

n
∑

i=1

pi log(pi)

2Irving’s paper contains a number of strange (irreproducible) results. First of all he claims that a closer investigation of Knuth’s
strategy reveals that the total number of questions required for all 1296 combination is 5804, whereas it is 5801 according to my
calculations. This can be explained by a minor programming error (the same that I made), but I cannot explain any of his other results.
He says his strategy selects the first two questions on the basis of the expected number of remaining possibilities and therest by
exhaustive search. When I look at the second questions to be asked according to his strategy I disagree with him on five questions.
In four of those it is simply the case that he does not take the first one out of the list that is available to him. In one case it is simply
wrong. His first question isAABC. If the reply to this question is (3,0), according to Irving the next question should beFBAC.
(One immediately wonders why notDBAC.) According to my calculations, the expected size of the setof remaining possibilities
after this question is 4.7. However, if one asksABCC the expected size is 3.6, which is quite different. One difference between these
two questions is that Irving’s question partitions the remaining possibilities in 8 parts, whereasABCC partitions the set of remaining
possibilities in 7 parts. So it might be the case he took the average number of remaining possibilities, instead of the expected size, but
I still cannot reproduce his results.
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Figure 1: Entropy of a partition with two elements.

since log(pi) = log
(

#(Vi)
#(A)

)

= log(#(Vi)) − #(A). In Figure 1 a graph displaying the entropy for

partitions with two elements is drawn. The variable for thex-axis is the probabilityp of one of the elements
of the partition, the entropy is given on they-axis. So the graph shows the function−p log p + −(1 −
p) log(1 − p). As can be seen in this figure, for a partition with two elements entropy would select the
partition where both parts have equal probability.

Mastermind is very much like the guessing game introduced above, and one can simply calculate the en-
tropies of the first questions.

A
A

A
A

A
A

A
B

A
A

B
B

A
A

B
C

A
B

C
D

entropy 1.498 2.693 2.885 3.044 3.057

From this perspective player II should start by askingABCD. This strategy is one of the strategies studied
in (Neuwirth, 1982).

3. A NEW STRATEGY

One can also take another approach to guessing games. Suppose again that player II has to guess which card
player I drew randomly from an ordinary deck of cards. PlayerII wins 1$ if the guess is correct. There are
52 possibilities. Before player II guesses she can ask one yes/no question, which is truthfully answered by
player I. Which question is best? Intuitively one would think that the question “Is it the Queen of hearts?”
is a bad question and that the question “It it a red card?” is a good question. Surprisingly all yes/no question
are equally good. This can be seen as follows. Suppose the twopiles have sizesx andy. The card is in
groupx with probability x

52 . The probability of guessing the right card if it is in this group is 1
x

. The card is
in groupy with probability y

52 . The probability of guessing the right card if it is in this group is 1
y
. Hence,

the expected gain is:
x

52
·
1

x
· 1$ +

y

52
·
1

y
· 1$ =

2

52
$

So it does not matter what the sizes ofx andy are (as long as they are positive).

This can be generalized. Suppose there is a setA and we have to guess what element ofA we are dealing
with. We also have to assume that the probability distribution onA is uniform. Before we guess we can ask
a question that can be seen as a partitionV = {Vi, . . . , Vn}. The probability of guessing correctly, once we
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learn in which part ofV the element is:

n
∑

i=1

#(Vi)

#(A)
·

1

#(Vi)
=

n

#(A)

So in these cases the sizes of the elements of the partition donot matter. The only thing that matters is the
size of the partition, i.e. the number of elements of the partition.

This can also be generalized to games with more rounds. Assume that the probability of guessing the
element of any setA correctly in a game withr rounds is the number of parts that one can partitionA in
with r questions, divided by the cardinality ofA, where the player’s question can depend on the answer
to the previous questions. Let us look at a game withr + 1 rounds. A player can askr + 1 questions,
and then has to guess which element ofA the other player chose. Let the first question be a partition
V = {V1 . . . Vn}. Letni indicate the number of partsVi can be partitioned in with the rest of the questions.
Using the induction hypothesis we infer that when the game isplayed inr rounds forVi the probability
of guessing the element ofVi equalsni divided by the cardinality ofVi. Then the probability of guessing
correctly inr + 1 rounds for the setA is:

m
∑

i=1

#(Vi)

#(A)
·

ni

#(Vi)
=

m
∑

i=1

ni

#(A)

So the probability of guessing the element of setA correctly in a game withr+1 rounds equals the number
of parts that one can partitionA in with r + 1 questions divided by the cardinality ofA. By induction one
can conclude that this holds for anyr and any setA.

This game is also very much like mastermind. So in mastermind, if one wants to maximize the number of
combinations for which one would win in a certain round, thenone should maximize the number of parts
the set of all combinations is partitioned in, in the previous round. It is still not feasible to calculate this for
an interesting number of rounds, such as five, but it can be used as a motivation for a strategy. Let us look
at the first question again, then we see:

A
A

A
A

A
A

A
B

A
A

B
B

A
A

B
C

A
B

C
D

partition elements 5 11 13 14 14

So this strategy should start with eitherAABC orABCD. When one writes a computer-program, however,
one has to make a choice. In most of the literature an alphabetical ordering is used and I also used this.
So, first the questions that maximize the number of parts are selected. Secondly, from these the consistent
questions are selected, if possible. Then alphabetical order is used to select a question. Therefore the first
question player II asks when she uses this strategy isAABC. This is of course a bit arbitrary, and it seems
a pity that something as important as the first question relies on it.

4. EMPIRICAL RESULTS

The first table shows for each strategy for how many combinations the game is won in a particular round of
the game. Or put in other words: each strategy produces a gametree, the table shows for each depth of the
tree how many leafs (nodes without successors) there are.

Round number 1 2 3 4 5 6 7 8 9

Simple 1 4 25 108 305 602 196 49 6
Worst case 1 6 62 533 694 0 0 0 0
Expected size 1 10 54 645 583 3 0 0 0
Entropy 1 4 71 612 596 12 0 0 0
Most parts 1 12 72 635 569 7 0 0 0
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The second table shows the same results, but shows for how many combinations the game has been won
before or at the end of a particular round, i.e. the numbers inthe table above are added.

Round number 1 2 3 4 5 6 7 8 9

Simple 1 5 30 138 443 1045 1241 1290 1296
Worst case 1 7 69 602 1296 1296 1296 1296 1296
Expected size 1 11 65 710 1293 1296 1296 1296 1296
Entropy 1 5 76 688 1284 1296 1296 1296 1296
Most parts 1 13 85 720 1289 1296 1296 1296 1296

The third table shows how many questions are needed in total in the strategy (the sum of the lengths of all
the paths from the root of the tree to a leaf) and the expected number of questions needed (the expected
length of a path to a leaf). The numbers in the second column are rounded.

total number of questions expected number of questions

Simple 7471 5.765
Worst case 5801 4.476
Expected size 5696 4.395
Entropy 5722 4.415
Most parts 5668 4.373

The last four compare quite favourably to the Koyoma and Lai’s result of4.340 (Koyoma and Lai, 1993).

5. EVALUATION

In this section I will try to say something more about the empirical results. It seems quite surprising that
the simple strategy performs so badly regarding the maximumnumber of rounds required and the expected
number of rounds required. It does not even guarantee that one wins in eight rounds. It seems that the first
question that is asked is not a good choice. This can easily beimproved by choosing another combination
thanAAAA to be the first combination that is asked and let the rest be ordered alphabetically.AABB for
example gives the following results:

Round number 1 2 3 4 5 6 7 8 9

Simple strategy starting withAABB 1 12 71 253 588 286 78 7 0

which is considerably better. But it still performs badly incomparison to the other strategies. One of the
reasons can be explained by the following example. Suppose the are six combinations remaining:ABAA,
ABAB, ABAC, ABDE, AEAE, ACAE. Now look at the following table, where for each of these
remaining possibilities the answers is shown for asking thequestion in the column.

A
B

A
A

A
B

A
B

A
B

A
F

A
B

D
E

A
E

A
E

A
F

D
E

A
B

F
A

ABAA (4, 0) (3, 0) (3, 0) (2, 0) (2, 0) (2, 0) (3, 0)
ABAB (3, 0) (4, 0) (3, 0) (2, 0) (2, 0) (2, 0) (2, 1)
ABAF (3, 0) (3, 0) (4, 0) (2, 0) (2, 0) (2, 1) (2, 2)
ABDE (2, 0) (2, 0) (2, 0) (4, 0) (2, 0) (2, 0) (2, 0)
AEAE (2, 0) (2, 0) (2, 0) (2, 0) (4, 0) (3, 0) (1, 1)
AFAE (2, 0) (2, 0) (2, 1) (2, 0) (3, 0) (4, 0) (1, 2)

A consistent question (i.e. a question that is possibly the secret combination) would not be able to distinguish
all six combinations, but the questionABFA, which is not one of the six remaining combinations, can, as
can be seen in the table. In this way the maximum number of questions required and the expected number of
questions required can be reduced. In all other strategies except the simple strategy inconsistent questions
occur.

One of the other interesting results is that, although strategies often have no theoretic way to distinguish
two questions, but only alphabetic ways of distinguishing,the empirical results give a different answer.
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Due to a programming error the first tests that I ran had strategies that picked the alphabetically last optimal
combination if a unique optimal combination was not in the set of remaining possibilities. These give a
slightly different picture.

Round number 1 2 3 4 5 6 7 8 9

Worst case 1 8 65 522 696 4 0 0 0
Expected size 1 10 54 646 582 3 0 0 0
Entropy 1 4 70 613 596 12 0 0 0
Most parts 1 12 72 636 568 7 0 0 0

The simple strategy has been left out of this table, because these considerations do not affect his strategy.
These differences are very small. They are greatest in case of Knuth’s strategy of minimizing on the max-
imum size of the partition elements. In my opinion this simply means that only looking at the partition is
not very robust.

Why the results are so very different in the Knuth’s case is because of the following. After the first question
has been answered, the number of ways the set of remaining possibilities can be partitioned in is quite large.
As we know there are only five types of question that can be asked in the initial state. But after the first
question has been answered there are much more. The following table shows the number of questions that
can be asked if the first answer is(1, 0).

question answer number of different questions
AAAA (1, 0) 12
AAAB (1, 0) 53
AABB (1, 0) 34
AABC (1, 0) 125
ABCD (1, 0) 52

So in Knuth’s strategy, there are already 34 different kindsof partitions that can be made. His strategy
only looks at one aspect of these partitions and apparently this is not fine-grained enough to yield a robust
strategy. If there are already 34 questions that can be askedafter the first question, this will be worse after
more questions.

The “expected size” strategy is straightforward, and indeed it requires 6 round, but on average it is better
than the “worst case” strategy.

One of the surprising results is that the entropy strategy does so bad, although its motivation seems to
be theoretically sound. A possible explanation is that whenone calculates the entropy, the base of the
logarithm is important when one compares partitions that have a different number of elements. When one
compares partitions with the same size, entropy is a good measure, otherwise it is not so good. Perhaps
another new strategy could be based on taking entropy where the base of the logarithm depends on the size
of the partition.

The “most parts” strategy results in the best strategy when one looks at the expected number of questions,
the only problem is that the theory behind it tells you that the number of rounds really matters, whereas
this is ignored in selecting a question. When one looks at thesecond table in Section 4, one sees that if
the number of rounds were only 2,3, or 4, the most parts strategy is better than the other strategies. But
in calculating the next question the strategy only looks onestep ahead. I found the following looking two
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steps ahead.

A
A

A
A

A
A

A
B

A
A

B
B

A
A

B
C

A
B

C
D

(0,0) 14 14 14 13 8
(0,1) 0 14 14 14 13
(0,2) 0 9 12 14 14
(0,3) 0 0 7 10 11
(0,4) 0 0 1 2 4
(1,0) 13 14 14 14 13
(1,1) 0 13 14 14 14
(1,2) 0 7 10 11 11
(1,3) 0 0 0 4 4
(2,0) 11 12 12 12 12
(2,1) 0 9 10 11 9
(2,2) 0 3 4 4 4
(3,0) 5 8 8 8 7
(4,0) 1 1 1 1 1

total 44 104 121 132 125

The numbers in the table represent the number of different answers one could get by asking a question,
after the initial question given and the initial answer. So the total number at the bottom is the total number
of parts of the partition that results from asking two questions. So if the game consists of three rounds, it is
best to start withAABC. However looking two steps ahead is computationally more costly.

6. CONCLUSION AND QUESTIONS FOR FURTHER RESEARCH

In this paper I introduced a new strategy for mastermind, which is easy to calculate and does best from
all easily computed strategies on the standard mastermind game. In the range of possible strategies based
on partitions generated by questions it is an extreme. One only looks at the “breadth” of a partition. On
the other side of the spectrum one finds Knuth’s worst case strategy, which only looks at the “depth” of a
partition. The expected size, and entropy strategies seem to find a mean between these two extremes. There
are probably many more means that can be found.

One of the anonymous reviewers pointed out that the selection of the first question is crucial. The first
question should beAABC, just as in Koyoma and Lai’s strategy. It seems that the standard version of
mastermind is quite limited if one looks at these strategies, so it would be a good idea to look at other
versions of the game, to be able to say how well these strategies do in general. That, however, was beyond
the scope of this paper. Luckily there are still many questions remaining about mastermind.
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