
General Suffix Automaton Construction Algorithm and

Space Bounds

Mehryar Mohria,b, Pedro Morenob, Eugene Weinsteina,b

aCourant Institute of Mathematical Sciences

251 Mercer Street, New York, NY 10012.
bGoogle Research

76 Ninth Avenue, New York, NY 10011.

Abstract

Suffix automata and factor automata are efficient data structures for represent-
ing the full index of a set of strings. They are minimal deterministic automata
representing the set of all suffixes or substrings of a set of strings. This paper
presents a novel analysis of the size of the suffix automaton or factor automaton
of a set of strings. It shows that the suffix automaton or factor automaton of a
set of strings U has at most 2Q− 2 states, where Q is the number of nodes of a
prefix-tree representing the strings in U . This bound significantly improves over
2‖U‖−1, the bound given by Blumer et al. (1987), where ‖U‖ is the sum of the
lengths of all strings in U . More generally, we give novel and general bounds
for the size of the suffix or factor automaton of an automaton as a function of
the size of the original automaton and the maximal length of a suffix shared
by the strings it accepts. We also describe in detail a linear-time algorithm for
constructing the suffix automaton S or factor automaton F of U in time O(|S|).
Our algorithm applies in fact to any input suffix-unique automaton and strictly
generalizes the standard on-line construction of a suffix automaton for a single
input string. Our algorithm can also be used straightforwardly to generate the
suffix oracle or factor oracle of a set of strings, which has been shown to have
various useful properties in string-matching. Our analysis suggests that the use
of factor automata of automata can be practical for large-scale applications, a
fact that is further supported by the results of our experiments applying factor
automata to a music identification task with more than 15,000 songs.

Key words: string-matching, pattern-matching, indexing, inverted text, finite
automata, suffix trees, suffix automata, factor automata, music identification.

Email addresses: mohri@cs.nyu.edu (Mehryar Mohri), pedro@google.com (Pedro
Moreno), eugenew@cs.nyu.edu (Eugene Weinstein)

Preprint submitted to Elsevier April 26, 2009

1. Introduction

Searching for patterns in massive quantities of natural language texts, bio-
logical sequences, and other widely accessible digitized sequences is a problem
of central importance in computer science. The problem has a variety of appli-
cations and has been extensively studied in the past [1, 2].

This paper considers the problem of constructing a full index, or inverted
file, for a set of strings represented by a finite automaton. When the number of
strings is large, such as thousands or even millions, the collection of strings can
be compactly stored as an automaton, which also enables efficient implementa-
tions of search and other algorithms [3, 4]. In fact, in many contexts such as
speech recognition or information extraction tasks, the entire set of strings is
often directly given as an automaton.

An efficient and compact data structure for representing a full index of a set
of strings is a suffix automaton, a minimal deterministic automaton representing
the set of all suffixes of a set of strings. Since a substring is a prefix of a suffix,
a suffix automaton can be used to determine if a string x is a substring in time
linear in its length O(|x|), which is optimal. Additionally, as with suffix trees,
suffix automata have other interesting properties in string-matching problems
which make their use and construction attractive [1, 2]. Another similar data
structure for representing a full index of a set of strings is a factor automaton, a
minimal deterministic automaton representing the set of all factors or substrings
of a set of strings. Factor automata offer the same optimal linear-time search
property as suffix automata, and are never larger.

The construction and the size of a factor automaton have been specifically
analyzed in the case of a single string [5, 6]. These authors demonstrated the
remarkable result that the size of the factor automaton of a string x is linear,
and that, more precisely, for strings x of length more than three, it has at
most 2|x| − 2 states and 3|x| − 4 transitions. They also gave on-line linear-
time algorithms for constructing a factor automaton from x. Similar results
were given for suffix automata, the minimal deterministic automata accepting
exactly the set of suffixes of a string.

The construction and the size of the factor automata of a finite set of strings
U = {x1, . . . , xm} has also been previously studied [7]. These authors showed
that an automaton accepting all factors of U can be constructed that has at
most 2‖U‖−1 states and 3‖U‖−3 transitions, where ‖U‖ is the sum of the
lengths of all strings in U , that is ‖U‖ =

∑m

i=1 |xi|.
This paper proves a significantly better bound on the size of the suffix au-

tomaton or factor automaton of a set of strings. It shows that the suffix au-
tomaton or factor automaton of a set of strings U has at most 2Q − 2 states,
where Q is the number of nodes of a prefix-tree representation of the strings in
U . The number of nodes Q can be dramatically smaller than ‖U‖, the sum of
the lengths of all strings. Thus, our space bound clearly improves on previous
work [7]. More generally, we give novel bounds for the size of the suffix au-
tomaton or factor automaton of an acyclic finite automaton as a function of the
size of the original automaton and the maximal length of a suffix shared by the

2

strings accepted by the original automaton. This result can be compared to that
of Inenaga et al. for compact directed acyclic word graphs whose complexity,
O(|Σ|Q), depends on the size of the alphabet [8].

Using our space bound analysis, we also give a simple algorithm for con-
structing the suffix automaton S or factor automaton F of U in time O(|S|)
from a prefix tree representing U . Our algorithm applies in fact to any input
suffix-unique automaton and strictly generalizes the standard on-line construc-
tion of a suffix automaton for a single input string.

The original motivation for this work was the design of a large-scale mu-
sic identification system [4, 9], where we represented our song database by a
compact finite automaton, as we shall briefly describe later in this paper. To
facilitate an efficient search of song snippets, we constructed the minimal de-
terministic factor automaton of the song automaton. Empirically, the size of
the factor automaton was not prohibitive. But, to ensure the scalability of our
approach to a larger set of songs, e.g., several million songs, we wished to derive
a bound on the size of the factor automata of automata. One characteristic of
the strings considered in this application as in many others is that the original
strings do not share long suffixes. This motivated our analysis of the size of
the factor automata with respect to the length of the common suffixes in the
original automaton.

The remainder of the paper is organized as follows. Section 2 introduces
the string and automata definitions and terminology used throughout the pa-
per. In Section 3, we describe a novel analysis of factor automata and present
new bounds on the size of the suffix automaton and factor automaton of an
automaton. Section 4 gives a detailed description of a linear-time algorithm for
the construction of the suffix automaton and factor automaton of a finite set of
strings, or of any suffix-unique automaton, including a pseudocode of the algo-
rithm. Our algorithm can also be used straightforwardly to generate the suffix

oracle or factor oracle of a set of strings, which has been shown to have various
useful properties [10]. Section 5 briefly describes the use of factor automata in
music identification and reports several empirical results related to their size.

2. Factors of a Finite Automaton

This section reviews some key properties of factors of a fixed finite automa-
ton, generalizing similar observations made by Blumer et al. for a single string
[7].

We denote by Σ a finite alphabet. The length of a string x ∈ Σ∗ over that
alphabet is denoted by |x|. A factor, or substring, of a string x ∈ Σ∗ is a
sequence of symbols appearing consecutively in x. Thus, y is a factor of x iff
there exist u, v ∈ Σ∗ such that x = uyv. A suffix of a string x ∈ Σ∗ is a factor
that appears at the end of x. Put otherwise, y is a suffix of x iff there exists
u ∈ Σ∗ such that x = uy. Analogously, y is a prefix of x iff there exists u ∈ Σ∗

such that x = yu. More generally, a factor, suffix, or prefix of a set of strings
U or an automaton A, is a factor, suffix, or prefix of a string in U or a string

3

0 1
a

2
c

3a

4

b 5

b

a

Figure 1: Finite automaton A accepting the strings ac, acab, acba.

accepted by A, respectively. The symbol ǫ represents the empty string. For any
string x ∈ Σ∗, ǫ is always a prefix, suffix, and factor of x.

In some applications such as music identification the strings considered may
be long, e.g., sequences of music sounds, but with relatively short common
suffixes. This motivates the following definition.

Definition 1. Let k be a non-negative integer. We will say that a finite au-

tomaton A is k-suffix-unique if no two strings accepted by A share a suffix of

length k. A is said to be suffix-unique when it is k-suffix-unique with k = 1.

Figure 1 gives an example of a simple automaton A accepting three strings
ending in distinct symbols. Note that A is suffix-unique.

The main results of this paper hold for suffix-unique automata, but we also
present some results for the general case of arbitrary acyclic automata. We
denote by F (A) the minimal deterministic automaton accepting the set of factors
of a finite automaton A, that is the set of factors of the strings accepted by A.
Similarly, we denote by S(A) the minimal deterministic automaton accepting
the set of suffixes of an automaton A.

Definition 2. Let A be a finite automaton. For any string x ∈ Σ∗, we define

end -set(x) as the set of states of A reached by the paths in A that begin with

x. We say that two strings x and y in Σ∗ are equivalent and denote this by

x ≡ y, when end -set(x) = end -set(y). This defines a right-invariant equivalence

relation on Σ∗. We denote by [x] the equivalence class of x ∈ Σ∗.

Lemma 1. Assume that A is suffix-unique. Then, a non-suffix factor x of the

automaton A is the longest member of [x] iff it is either a prefix of A, or both

ax and bx are factors of A for distinct a, b ∈ Σ.

Proof. Let x be a non-suffix factor of A. Clearly, if x is not a prefix, then there
must be distinct a and b such that ax and bx are factors of A, otherwise [x]
would admit a longer member. Conversely, assume that ax and bx are both
factors of A with a 6= b. Let y be the longest member of [x]. Let q be a state
in end -set(x) = end -set(y). Since x is not a suffix, q is not a final state, and
there exists a non-empty string z labeling a path from q to a final state. Since
A is suffix-unique, both xz and yz are suffixes of the same string. Since y is the
longest member of [x], x must be a suffix of y. Since ax and bx are both factors
of A with a 6= b, we must have y = x. Finally, if x is a prefix, then clearly it is
the longest member of [x]. 2

4

0

1
a

2

b

3
c

c

4

b

a

5
a

6
b

b

a

Figure 2: Suffix automaton S(A) of the automaton A of Figure 1.

Proposition 1. Assume that A is suffix-unique. Let SA = (QS , IS , FS , ES)
be the deterministic automaton whose states are the equivalence classes QS =
{[x] 6= ∅ : x ∈ Σ∗}, its initial state IS = {[ǫ]}, its final states FS = {[x] :
end -set(x)∩FA 6= ∅} where FA is the set of final states of A, and its transition

set ES = {([x], a, [xa]) : [x], [xa] ∈ QS}. Then, SA is the minimal deterministic

suffix automaton of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suf-
fixes of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A

is suffix-unique, this implies that either x is a suffix of y or vice versa, and thus
that [x] = [y]. Thus, SA is minimal. 2

In what follows, we will be interested in the case where the automaton A is
acyclic. We denote by |A|Q the number of states of A, by |A|E the number of
transitions of A, and by |A| the size of A defined as the sum of the number of
states and transitions of A.

3. Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A)
and F (A) in the case of interest for our applications where A is an acyclic
automaton, typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [5, 6]. In the general case, S(A)
can be constructed from A as follows: add an ǫ-transition from the initial state
of A to each state of A, then apply an ǫ-removal algorithm, followed by deter-
minization and minimization. F (A) can be obtained similarly by further making
all states final before applying ǫ-removal, determinization, and minimization. It
can also be obtained from S(A) by making all states of S(A) final and apply-
ing minimization. For example, if A is the simple automaton of Figure 1, then
Figure 2 is its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and
F (A) can be proved to be linear in |x|. More precisely, the following bounds

5

hold for |S(A)| and |F (A)| [6, 5]:

|S(A)|Q ≤ 2|x| − 1 |S(A)|E ≤ 3|x| − 4
|F (A)|Q ≤ 2|x| − 2 |F (A)|E ≤ 3|x| − 4.

(1)

These bounds are tight for strings of length more than three. [7] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponen-
tially smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or
F (A) in terms of the size of A, rather than the sum of the lengths of all strings
accepted by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a path labeled with a non-empty string in suff(q) reaches a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) 6= ∅, then

`

suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)
´

or
`

suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)
´

. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p

to a final state.
By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is

suffix-unique and v is non-empty, there exists a unique string accepted by A

and ending with v. There exists also a unique string accepted by A and ending
with uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state
to p must admit u as suffix. Reasoning in the same way for v′ let us conclude
that the label of any path from an initial state to p must also admit u′ as suffix.
Thus, u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or
vice-versa. Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of
the statement of the lemma. 2

Note that Lemma 2 holds even when A is a non-deterministic automaton.

6

x

vu

u’

Figure 3: Illustration of the situation described in Lemma 2. uv and u′v are suffixes of the
same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a suffix of u′ or
vice-versa.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final

state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. 2

The following proposition extends the results of [7] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton

accepting strings of length more than three. Then, the number of states of the

suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remainder of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) ⊑ N(q′) iff

{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final.

(5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class
[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q−4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class, with
x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

7

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a 6= b. Thus, q admits at least two children corresponding to
[ax] and [bx] and is thus a branching node. Thus non-branching nodes can only
be either nodes q where x is a prefix, or those where x is a suffix, that is when
q is a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ǫ occurs at least in two distinct left contexts a and b with a 6= b.
Thus, the prefix ǫ, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ǫ, thus the root node [ǫ] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai
represent the number of leaves

of Tai
. Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root

and let Taj
denote each of the corresponding sub-tree. A tree with nai

leaves
has less than nai

branching nodes. Thus, the number of branching nodes of Tai

is at most nai
− 1. The total number of leaves of T is at most the number of

disjoint subsets of Q excluding the initial state and f .
Note however that when the root node [ǫ] admits only [ai]s, i = 1, . . . , Nstr,

as children, that is when k = 0, then there is at least one ai, say a1, that
is also a prefix of A since any other symbol would have been the root node’s
child. The node a1 will then have also a child since it corresponds to a suffix or
final state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at

most as many as
∑Nstr+k

i=1 nai
≤ |A|Q− 2− 1k=0 leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai
−1)+1 ≤

|A|Q − 2− 1k=0 − (Nstr + k) + 1 ≤ |A|Q − 2−Nstr. The total number of nodes
of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. 2

In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [6] or [5] since |A|Q = |x|+1. The bound of Proposition 2
is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The num-
ber of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton

accepting strings of length more than three. Then, the number of states of the

factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

8

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. 2

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths
of all strings in U [7]. The following gives a significantly better bound on the
size of the factor automaton of a set of strings U as a function of the number
of nodes of a prefix-tree representing U , which is typically substantially smaller
than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than

three and let A be a prefix-tree representing U . Then, the number of states of

the factor automaton F (U) and that of the suffix automaton S(U) of the strings

of U are bounded as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of B

are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q − 3. Removing from S(B′) the transitions labeled with
the extra symbols $i and connecting the resulting automaton yields the mini-
mal suffix automaton S(U). In S(B′), there must be a final state reachable by
the transitions labeled with $i and only such transitions, which becomes non-
accessible after removal of the extra symbols. Thus, S(U) has at least one state
less than S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. 2

When A is k-suffix-unique with a relatively small k as in our applications
of interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

Proposition 3. Let A be a k-suffix-unique deterministic automaton accepting

strings of length more than three and let n be the number of strings accepted

by A. Then, the following bound holds for the number of states of the suffix

automaton of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (9)

where Ak is the part of the automaton of A obtained by removing the states and

transitions of all suffixes of length k.

9

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings of
length more than three and let the alphabet Σ be augmented with n temporary
symbols $1, . . . , $n. By marking each string accepted by A with a distinct symbol
$i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case, all
these (distinct) suffixes were sharing the same (k − 1)-length suffix. Unfolding
can thus increase the number of states of A by as many as kn − n states in
the worst case. Marking the end of each suffix with a distinct $-sign further
increases the size by n. The resulting automaton A′ is deterministic and |A′|Q ≤
|Ak|Q + kn. By Proposition 2, the size of the suffix automaton of A′ is bounded
as follows: |S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a $-sign can only
appear at the end of successful paths in S(A′), we can remove these transitions
and make their origin state final, and minimize the resulting automaton to derive
a deterministic automaton A′′ accepting the set of suffixes of A. The statement
of the proposition follows the fact that |A′′| ≤ |S(A′)|. 2

Since the size of F (A) is always less than or equal to that of S(A), we obtain
directly the following result.

Corollary 3. Let A be a k-suffix-unique automaton accepting strings of length

more than three. Then, the following bound holds for the factor automaton of

A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (10)

The bound given by the corollary is not tight for relatively small values of k in
the sense that in practice, the size of the factor automaton does not depend on
kn, the sum of the lengths of suffixes of length k, but rather on the number of
states of A used for their representation, which for a minimal automaton can
be substantially less. However, for large k, e.g., when all strings are of the same
length and k is as long as the length of the strings accepted by A, our bound
coincides with that of [7].

4. Suffix Automaton Construction Algorithm

This section describes a linear-time algorithm for the construction of the
suffix automaton S(A) of an input suffix-unique automaton A, or similarly the
factor automaton F (A) of A. Since a factor automaton can be obtained from
S(A) by making all states of S(A) final and applying a linear-time acyclic min-
imization algorithm [11], it suffices to describe a linear-time algorithm for the
construction of S(A). It is possible however to give a similar direct linear-time
algorithm for the construction of FA.

Figures 4-6 give the pseudocode for the algorithm for constructing the suffix
automaton S(A) = (QS , I, FS , δS) of an automaton A = (QA, I, FA, δA), where
A is suffix-unique and where δS : QS × Σ 7→ QS denotes the partial transition
function of S(A) and likewise δA : QA ×Σ 7→ QA that of A. As in the previous
section, f denotes the final state of A with no outgoing transitions. Additionally,

10

Create-Suffix-Automaton(A, f)

1 S ← QS ← {I} � initial state
2 s[I]← undefined; l[I]← 0
3 while S 6= ∅ do

4 p← Head(S)
5 for each a such that δA(p, a) 6= undefined do

6 if δA(p, a) 6= f then

7 QS ← QS ∪ {p}
8 l[q]← l[p] + 1
9 Suffix-Next(p, a, q)

10 Enqueue(S, q)
11 QS ← QS ∪ {f}
12 for each state p ∈ QA and a ∈ Σ such that δA(p, a) = f do

13 Suffix-Next(p, a, f)
14 Suffix-Final(f)
15 for each p ∈ FA do

16 Suffix-Final(q)
17 return S(A) = (QS , I, FS , δS)

Figure 4: Algorithm for the construction of the suffix automaton of a suffix-unique automaton
A.

we use the term suffix pointer to refer to the destination state of the suffix link
transition.

The algorithm is a generalization to an input suffix-unique automaton of the
standard construction for an input string. Our presentation is similar to that
of [6]. The algorithm maintains two values s[q] and l[q] for each state q of Sq.
s[q] denotes the suffix pointer or failure state of q. l[q] denotes the length of
the longest path from the initial state to q in S(A). l is used to determine the
so-called solid edges or transitions in the construction of the suffix automaton.
A transition (p, a, q) is solid if l[p] + 1 = l[q], that is it is on a longest path from
the initial state to q, otherwise, it is a short-cut transition.

S is a queue storing the set of states to be examined. The particular queue
discipline of S does not affect the correctness of the algorithm, but we can
assume it to be a FIFO order, which corresponds to a breadth-first search and
admits of course a linear-time implementation. In each iteration of the loop of
lines 3-10 in Figure 4, a new state p is extracted from S. The processing of the
transitions (p, a, f) with destination state f is delayed to a later stage (lines 12-
14). This is because of the particular properties of f which, as discussed in the
previous section, can be viewed as the child of different nodes of the tree T , and
thus can admit different suffix links. Other transitions (p, a, q) are processed
one at a time by creating, if necessary, the destination state q and adding it to
QS, defining l[q] and calling Suffix-Next(p, a, q).

The subroutine Suffix-Next processes each transition (p, a, q) in a way

11

Suffix-Next(p, a, q)

1 l[q]← max(l[p] + 1, l[q])
2 while p 6= I and δS(p, a) = undefined do

3 δS(p, a)← q

4 p← s[p]
5 if δS(p, a) = undefined then

6 δS(I, a)← q

7 s[q]← I

8 elseif l[p] + 1 = l[δS(p, a)] and δS(p, a) 6= q then

9 s[q]← δS(p, a)
10 else r ← q

11 if δS(p, a) 6= q then

12 r ← copy of δS(p, a) � new state with same transitions
13 QS ← QS ∪ {r}
14 s[q]← r

15 s[r]← s[δS(p, a)]
16 s[δS(p, a)]← r

17 l[r]← l[p] + 1
18 while p 6= undefined and l[δS(p, a)] ≥ l[r] do

19 δS(p, a)← r

20 p← s[p]

Figure 5: Subroutine of Create-Suffix-Automaton processing a transition of A from state
p to state q labeled with a.

Suffix-Final(p)

1 if p ∈ FS then

2 p← s[p]
3 while p 6= undefined and p 6∈ FS do

4 FS ← FS ∪ {p}
5 p← s[p]

Figure 6: Subroutine of Create-Suffix-Automaton making all states on the suffix chain of
p final.

12

that is very similar to the standard string suffix automaton construction. The
loop of lines 2-4 inspects the iterated suffix pointers of p that do not admit an
outgoing transition labeled with a. It further creates such transitions reaching
q from all the iterated suffix pointers until the initial state or a state p′ already
admitting such a transition is reached. In the former case, the suffix pointer of
q is set to be the initial state I and the transition (I, a, q) is created.

In the latter case, if the existing transition (p′, a, q′) is solid and q′ = q, then
the suffix pointer of q is simply set to be q′ (line 9). Otherwise, if q′ 6= q, a
copy of the state q′, r, with the same outgoing transitions is created (line 12)
and the suffix pointer of q is set to be r. The suffix pointer of r is set to be
s[q′] (line 15), that of q′ is set to r (16), and l[r] defined as l[p] + 1 (17). The
transitions labeled with a leaving the iterated suffix pointers of p are inspected
and redirected to r so long as they are non-solid transitions (lines 18-20).

The subroutine Suffix-Final sets the finality and the final weight of states
in S(A). For any state p that is final in A, p and all the states found by following
the chain of suffix pointers starting at p are made final in S(A) in the loop of
lines 3-5.

We have implemented and tested the suffix-construction algorithm just de-
scribed. Figure 7 illustrates the application of the algorithm to a particular
suffix-unique automaton. All intermediate stages of the construction of S(A)
are indicated, including the information about the suffix pointers s[q] for each
state q.

In the construction of the so-called suffix oracle [10] no new state is created
with respect to the input. The suffix oracle of A can thus be constructed in a
similar way simply by replacing line 12 in Figure 5 by: r ← δS(p, a) and remov-
ing lines 15-17. This algorithm thus straightforwardly extends the construction
of the suffix oracle to the case of suffix-unique input automata.

For the complexity result that follows, we will assume an efficient represen-
tation of the transition function such that an outgoing transition with a specific
label can be found in constant time O(1) at any state. Other authors are some-
times assuming instead an adjacency list representation and a binary search to
find a transition at a given state, which costs O(min{log |Σ|, emax}) where emax

is the maximum outdegree [6, 2]. If one adopts that assumption, the complexity
results we report as well as those of Blumer et al. [5, 7] should be multiplied
with the factor min{log |Σ|, emax}.

We refer to a redirection of a transition that has already previously been
redirected as a multiple redirection.

Proposition 4. Let A be a minimal deterministic suffix-unique automaton.

Then, the runtime complexity of algorithm Create-Suffix-Automaton(A, f)
is O(|S(A)|).

Proof. We give a brief sketch of the proof. Suffix-Next is called at most once
per transition, so the total number of calls of Suffix-Next is O(|A|). Fix a
transition (p, a, q) of A with q 6= f . The cost of the execution of the steps
1-20 by Suffix-next is proportional to the total number of iterated suffix link

13

0

1b 2

c

3
b

4
c

b

a

0/*,0 1/0,1
b

(a) (b)

0/*,0 1/0,1
b

3/1,2
b

0/*,0

1/0,1
b

4/0,2
c

c

3/1,2b

(c) (d)

0/*,0

1/0,1
b

5/0,1

c

3/1,2
b

4/5,2

c

0/*,0

1/0,1
b

5/0,1

c

3/1,2
b

4/5,2

c

2/3,3
b

(e) (f)

0/*,0

1/0,1
b

5/0,1
c

2/0,3

a

3/1,2
b

4/5,2
c

a

b

a

0/*,0

1/0,1

b

5/0,1c
2/0,3

a

3/1,2
b

4/5,2
c

a

b

a

(g) (h)

Figure 7: Construction of the suffix automaton using Create-Suffix-Automaton. (a) Orig-
inal automaton A. (b)-(h) Intermediate stages of the construction of S(A). For each state
(n/s, l), n is the state number, s is the suffix pointer of n, and l is l[n].

traversals in the loop of lines 2-4 and lines 18-20. Each iteration of lines 2-4
results in a new transition being created in S(A), so the total number of loop
iterations over all calls of Suffix-Next is O(|S(A)|).

The analysis of the total number of redirection iterations of the while loop of
lines 18-20 relies on an extension of the analysis for the single-string case [12, 7].
The linear bound on the total number of redirections in the single-string case
is applicable to our automaton case for a linear chain of states in A. Given
the required combination of substrings in A to cause a redirection, it can be
shown that the total number of multiple redirections is O(|A|). Thus, the total
complexity is O(|S(A)|). 2

14

0

1mp_72:ε

3mp_736:ε

6
mp_736:ε

2mp_240 :ε

4mp_736 :ε

7
mp_28 :ε

10

mp_2: Beatles--Let_It_Be

5mp_240:ε mp_20:Madonna--Ray_Of_Light

8mp_349:ε 9mp_448:ε mp_889:Van_Halen--Right_Now

Figure 8: Finite-state transducer T0 mapping each song to its identifier.

5. Factor Automata for Music Identification

We have verified the above insights into factor automata in the context of a
music identification system [4, 9]. Music identification is the task of matching
an audio stream to a particular song. In our system, we learn an inventory of
music phone units similar to phonemes in speech and a unique sequence of music
phones characterizing each song. We view the music phone set as our alphabet
and the music phone sequences as a set of strings, transforming the task into a
factor recognition problem. Our approach is to construct a compact transducer
mapping music phone sequences to corresponding song identifiers.

5.1. Factor Transducer Construction

Let Σ denote the set of music phones and let the set of music phone sequences
describing m songs be U = {x1, . . . , xm}, xi ∈ Σ∗ for i ∈ {1, . . . , m}. In our
experiments, m = 15,455, |Σ| = 1,024 and the average length of a transcription
xi is more than 1,700. Thus, in the worst case, there can be as many as 15,455×
1,7002 ≈ 45 × 109 factors. The size of a naive prefix-tree-based representation
would thus be prohibitive. Hence, we represent the set of factors with a much
more compact factor automaton. We construct a deterministic and minimal
automaton representing the sequences in U and subsequently a deterministic
and minimal finite-state transducer mapping each song to its identifier using
transducer determinization and minimization algorithms [13, 14].

Let T0 be the unoptimized transducer mapping phone sequences to song
identifiers. Figure 8 shows T0 when U is reduced to three short songs. Let A

be the acceptor obtained by omitting the output labels of T0. The compact
factor automaton F (A) (Figure 9(a)) is constructed as described in Section 3:
by creating ǫ-transitions from the initial state of A to all other states, making all
states final, and applying ǫ-removal, determinization, and minimization. Note
that F (A) does not output the song identifier associated with each factor.

For the purposes of the following description, we briefly review some prop-
erties of weighted automata. A weighted automaton is defined over a semiring
(K,⊕,⊗, 0̄, 1̄), which specifies the weight set used and the algebraic operations
for combining weights along a path and between paths. The tropical semiring
(R∪ {−∞, +∞}, min, +, +∞, 0) is one used extensively in fields such as speech
and text processing. In the tropical semiring, the total weight assigned by the
automaton to a string s is the minimum-weight path in the automaton with the
label s, where the total path along a given path is found by adding the weights
of the transitions composing the path.

15

0 1

mp_2

mp_20

2mp_72

3mp_240

4
mp_736

5mp_240
mp_2

mp_20

6
mp_240

7

mp_736

mp_2

mp_20
mp_240

0
1/0

mp_2/0

mp_20/1

2/0mp_72/0

3/0
mp_240/0

4/0

mp_736/1

5/0mp_240/0
mp_2/0

mp_20/1

6/0

mp_240/0

7/0

mp_736/0

mp_2/0

mp_20/0

mp_240/0

(a) (b)

Figure 9: (a) Deterministic and minimal unweighted factor acceptor F (A) for two songs. (b)
Deterministic and minimal weighted factor acceptor Fw(A) for two songs.

To construct a factor automaton that preserves the song identifiers, we cre-
ate a compact weighted acceptor over the tropical semiring accepting the factors
of U that associates the total weight sx to each factor x. A crucial advantage of
this representation is the use of weighted determinization and minimization [13]
during which the song identifier is treated as a weight possibly distributed along
a path. These operations preserve the property that the total weight along the
path labeled with x is sx. Let Fw(A) be constructed analogously to F (A), but
with each added ǫ-transition weighted with the corresponding song identifier.
The weighted acceptor Fw(A), after determinization and minimization over the
tropical semiring, is transformed into a song recognition transducer T by treat-
ing each output weight integer as an output symbol. Given a music phone
sequence as input, the associated song identifier is obtained by summing the
outputs yielded by T .

5.2. Automata Size

Figure 9(b) shows the weighted automaton Fw(A) corresponding to the un-
weighted automaton F (A) of Figure 9(a). Note that Fw(A) is no larger than
F (A). Remarkably, even in the case of 15,455 songs, the total number of tran-
sitions of Fw(A) was 53.0M, only about 0.004% more than F (A). We also have
|F (A)|E ≈ 2.1|A|E . As is illustrated in Figure 10(a), this multiplicative re-
lationship is maintained as the song set size is varied between 1 and 15 ,455.
Furthermore, for the case of 15,455 songs, U is 45-suffix-unique. Figure 10(b)
demonstrates that the number of suffix “collisions” drops rapidly as the suffix
size is increased. We also have |Fw(A)|Q ≈ 28.8M ≈ 1.2|A|Q, meaning the
bound of Corollary 3 is verified in this empirical context.

6. Conclusion

We presented a novel analysis of the size of the suffix automaton and factor
automaton of a set of strings represented by an automaton in terms of the size
of the original automaton. Our analysis shows that suffix automata and factor
automata can be practical for constructing an index of a large number of strings.

16

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e

Songs

States factor
Arcs factor

States/Arcs Non-factor

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

N
on

-u
ni

qu
e

so
ng

s

k (suffix length)

(a) (b)

Figure 10: (a) Comparison of automaton sizes for different numbers of songs. “#States/Arcs
Non-factor” is the size of the automaton A accepting the entire song transcriptions. “# States
factor” and “# Arcs factor” is the number of states and transitions in the weighted factor
acceptor Fw(A), respectively. (b) Number of strings in U for which the suffix of length k is
also a suffix of another string in U .

Additionally, our application to a large-scale music identification task further
demonstrates this fact. Factor automata of automata are likely to form a useful
and compact index for very large-scale tasks. We further gave a linear-time
algorithm for constructing the suffix automaton or factor automaton of a set
of strings in time linear in the size of a prefix tree representing them. Our
algorithm applies to any input suffix-unique automaton and strictly generalizes
the standard on-line construction of a suffix automaton for a single input string.
Our algorithm and analysis raise the natural question of an efficient construction
of the suffix automaton of an arbitrary input automaton.

Acknowledgments

We thank Cyril Allauzen for several discussions about the material presented. The

research of Mehryar Mohri and Eugene Weinstein was partially supported by the New

York State Office of Science Technology and Academic Research (NYSTAR). This

project was also sponsored in part by the Department of the Army Award Num-

ber W81XWH-04-1-0307. The U.S. Army Medical Research Acquisition Activity, 820

Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering ac-

quisition office. The content of this material does not necessarily reflect the position

or the policy of the Government and no official endorsement should be inferred.

References

[1] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge Uni-
versity Press, Cambridge, UK., 1997.

[2] M. Crochemore, W. Rytter, Jewels of Stringology, World Scientific, 2002.

17

[3] C. Allauzen, M. Mohri, M. Saraclar, General Indexation of Weighted Au-
tomata – Application to Spoken Utterance Retrieval, in: Proceedings of
the Workshop on Interdisciplinary Approaches to Speech Indexing and Re-
trieval (HLT/NAACL), Boston, Massachusetts, 2004, pp. 33–40.

[4] E. Weinstein, P. Moreno, Music Identification with Weighted Finite-State
Transducers, in: Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, 2007, pp. 689–
692.

[5] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, J. I.
Seiferas, The smallest automaton recognizing the subwords of a text, The-
oretical Computer Science 40 (1985) 31–55.

[6] M. Crochemore, Transducers and repetitions, Theoretical Computer Sci-
ence 45 (1986) 63–86.

[7] A. Blumer, J. Blumer, D. Haussler, R. M. McConnell, A. Ehrenfeucht,
Complete inverted files for efficient text retrieval and analysis, Journal of
the ACM 34 (1987) 578–589.

[8] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri,
G. Pavesi, On-line construction of compact directed acyclic word graphs,
Discrete Applied Mathematics 146 (2) (2005) 156–179.

[9] M. Mohri, P. Moreno, E. Weinstein, Robust music identification, detection,
and analysis, in: Proceedings of the International Conference on Music
Information Retrieval (ISMIR), Vienna, Austria, 2007, pp. 135–139.

[10] C. Allauzen, M. Crochemore, M. Raffinot, Efficient experimental string
matching by weak factor recognition, in: Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching (CPM), Springer-Verlag,
London, UK, 2001, pp. 51–72.

[11] D. Revuz, Minimisation of acyclic deterministic automata in linear time,
Theoretical Computer Science 92 (1992) 181–189.

[12] J. A. Blumer, Algorithms for the directed acyclic word graph and related
structures, Ph.D. thesis, Denver University (1985).

[13] M. Mohri, Finite-state transducers in language and speech processing,
Computational Linguistics 23 (2) (1997) 269–311.

[14] M. Mohri, Statistical Natural Language Processing, in: M. Lothaire (Ed.),
Applied Combinatorics on Words, Cambridge University Press, 2005.

18

