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Preface "

This book (known as CS:APP) is for computer scientists, computer engineers, and
others who want to be able to write better programs by learning what is going on
“under the hgdd’™” of-a computer systein

Our aim'is to explain the enduring concepts underlying all computer systen‘ls
and to show you the cohcrete ways that these ideas affect the’ correctness, perfor—
mance, 2nd utility of your application programs.Many systems bobks are!tvritten
from a builder’s perspective, describing how to implement the hardware or the sys-
tems softwaré, intluding the operating systém, compilér, and network-intetface.
This'book is written from'a programiiners pefspective, describing how application
programmers can use théir knowledge of a system to write better programs. Of
course, ledrning what a system i§ supposed to do providesa good first step in learn-
ing how to build one,'so this book also serves as a'valuable introductior to those
who go on to implement systems hardwaré and software. Most systerhs books also
tend to focus on just one aspect of the system, for example, the-hardware archi-
tecture; the operatmg system, the compilér, or thé network. This book spans all
of-these aspects! with the unifyirig theme of & progranfmer’s perspective.

If you-study and-learivthe-concepts-in-this-book; yourwillbeton-yourway to— "

becoming the rdre power programmér'who knows how things work'and how to
fix them whén théy break. You will: be able to writd programs that'make+better
use of the‘capabiljfies provided by the! operating systeni‘and systehis software,
that opérate correctly across'a wide' range of operating conditiohs and ruxn-fime
parameters; that run faster, and that avoid the flaws that make pfograms vulner-
able 16 cyberattack You will be prepared to delve deeper into*advariced topics
such as comipilers; computer architecture, ‘operating sy$tems, embedded systems,
networking, and cybersecurity.

Assumptions about the Reader’s Background *

L]

This book focuses on systems that execute x86-64 machine code. x86-64 is the latest
in an evolutionary path followed by Intel and its competitors that started with the
8086 microprocessor in 1978. Due to the naming conventions used by Intel for
its microprocessor line, this class of microprocessors is referred to coIloqulally as
“x86.” As semiconductor technology has evolved to allow more transistors to be
integrated onto a single, chip, these processors have progressed greatly in their

compuyting, power, and theit, memory capacity. ‘As, part of; this progression, they

have gone from pperating on-16-bit words, to,32-bit,words with the introduction
of IA32 processors, and most recently to 64-bit words with x86-64,

We consider how these machines execute C programs on Linux. Linux is.one
of a number" of operating systems -having their heritage in the Unix operating
system developed originally by Bell Laboratories. Other members-of this class

Xix
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of operating systems include Solaris, FreeBSD, and MacQS X. In recent years,
these operating systems have maintained a high level of compatibility through the
efforts of the Posix and Standard Unix Specification standardization efforts. Thus,
the material in this book applies almost directly to these “Unix-like™ operating
systems.

The.text contains numerous programming examples that have been compiled
and run on Linux systems. We assume thaf you have access to such a machine, and
are able to log in and do simple things such as listing files and changing directo-
ries. If your computer runs Microsoft Windows, we recommend that you install
one of the many different virtual machine environments (such as VirtualBox or
VMWare) that allow programs written for one operating system (the guest OS)
to run under another (the host OS).

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C (particularly pointers, explicit dynamic memory
allocation, and formatted 1/0) that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [61]. Regardless of your programming
background, consider K&R an essential part of your personal systems library. If
your prior experience is with an interpreted language, such as Python, Ruby, or
Perl, you will definitely want to devote some time to learning C before you attempt
1o use this book.

Several of the early chapters in the book explore the interactions between C
programs and their machine-language counterparts. The machine-language exam-
ples were all generated by the GNTJ Gee compiler running on x86-64 processors.
We do not assume any prior experience with hardware, machine language, or
assembly-language programming,

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn somethihg new,
you can try it out right away and see the result firsthand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
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— . . codefintro/hello.c
1  #include <stdio.h>
2
3 int main()
4 A{
5 printf("hello, world\n");
6 return 0;
7}

codefintro/helo.c

f 1
Figure 1 A typical code exagmple.

immediately to test your understanding. Solutions td the practice problems are

at the end of each chaptef. As you read, try to solve each problem on your own

dnd then check the solution to make sure you are on the right track. Each chapter

is followed by a sét of homework problems of varying difficulty. Your instructor

has the solutiohs to the hémework p'l’foblems in an instructér’s manual. For each

homework problem, we show a rating 6f the amount of effort we feel it will require:
' t

# Should require just-a few mmutes Little or no programrmng required.

00 Mlght, require up,to 20 mmutes Often involves writing,and testing some
code. (Many of these arg’ denved from prqblems, we have given on exams.)

¢4 4 Requires a significanteffort, perhaps 1-2 hours, Generally involves writ-
ing and testing a significant amount of code.,

4494 A lab assignment, requiring up to 10 hours of effort.

Each code example in the téxt was formatted dlrectly, ‘Wwithout any manual
intervention, from a C program compiled w1th GCC and fested on a Linu¥ system.
Of’coursé your system may have a differeht version of Gec, or a different compiler
altogether so your compiler might generate differént machine code; but the

overall behavior should be the same. All &f thé source code'~15’ available from the
CS:APP Web page (“CS: APP” being ofir shorthand fo thé book’s title) at csapp
.cs.cmu.edu, In the text, the filenarhés of the source programé are dbcumented
in horizontal bars that sutround the formatted code. For example, the program in
Figure'1 can be found in the file hello. c in directory code/intro/. We encourage
youto try running the example programs on your system as you encounter them.

To avoid having a.book that is overwhelming, both irbulk and in content, we
have:created ' number of Web asides containing material that.supplements the
main presentatioh ofthe book.,These asides are referenced:within the book with
anotation'of the form cHAR:TOP, where CHAP is a short encoding of the chapter sub-

4ect, and Top:s.a short code-forthe topicthat is covered.-For example, Web Aside
DATA:BOOL contains supplementary material on-Boolearralgebra for the presenta-
tion on data representations in Chapter 2, while Web Aside ARCH:VLOG contains
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material describing processor designs using the Verilog hardware description lan-

guage, supplementing the presentation of processor design in Chapter 4. All of
these Web asides are available from the CS:APP Web page.

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems. Here is an overview.

o

Chapter 1: A Tour of Computer Systems. This chapter introduces the major ideas
and themes in computer systems by tracing the life cycle of a simple “hello,
world” program.

Chapter 2: Representing and Manipulating Information. We cover computer arith-
metic, emphasizing the properties of unsigned and two's-complement num-
1 ber representations that affect programmers. We consider how numbers
¢ are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and
unsigned numbers. We cover the mathematical properties of arithmetic op-
erations. Novice programmers are often surprised to learn that the {(two’s-
complement) sum or product of two positive numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies many of the algebraic
properties of integer arithmetic, and hence a compiler can safely transform
b multiplication by a constant into a sequence of shifts and adds. We use the
bit-level operations of C to demonstrate the principles and applications of
Boolean algebra. We cover the IEEE floating-point format in terms of how
it represents values and the mathematical properties of floating-point oper-
ations.

Having a solid understanding of computer arithmefic is critical to writ-
ing reliable programs. For example, programmers and compilers cannot re-
place the expression (x<y) with (x-y < 0), due to the possibility of overflow.

i They cannot even replace it with the expression (-y < -x), due to the asym-
metric range of negative and positive numbers in the two’s-complement
representation. Arithmetic overflow is a common source of programming
errors and security vulnerabilities, yet few other books cover the properties
of computer arithmetic from a programmer’s perspective.

Chapter 3: Machine-Level Representation of Programs. We teach you how to read
the x86-64 machine code generated by a C compiler. We cover the ba-

. sic instruction patterns generated for different control constructs, such as
conditionals, loops, and switch statements. We cover the implementation

of procedures, including stack allocation, register usage conventions, and

i parameter passing. We cover the way different data structures such as struc-
1 tures, unions, and arrays are allocated and accessed. We cover the instruc-
! tions that implement both integer and floating-point arithmetic. We also
use the machine-level view of programs as a way to understand common
code security vulnerabilities, such as buffer overflow, and steps that the pro-
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grammer, the compiler, and the operating system can take to reduce these
threats. Learning the concepts in this chapter helps you become a better
programmer, because you will understand how programs are represented
on a machine. One certain benefit is that you-will develop a thorough and
concrete understanding of pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational and
sequential logjc elements, and then shows how these elements can be com-
bined in a datapath that executes a simplified subset of the x86-64 instruction
set called “Y86-64.” We begin with the design of a single-cycle datapath.
This design is conceptually very simple, but it would not be very fast. We
then introduce pipelining, where the different steps required to process an
instruction are implemented as separate stages. At any given,time, each
stage can work on a different instruction. Opr fivesstage processor pipeline is
much more realistic. The control logic for the processor designs is described
using a simple hardware description language called HCL. Hardware de-
signs written in HCL can be compiled and linked into simulators provided
with the textbook, and they can be used to generate Verilog descriptions
suitable for synthesis into working hardware.

Chapter 5: Qptimizing Program Performance. This chapter introduces a number
of techniques for improving code performance, with the idea being that pro-
grammers learn to write their C code in such a way that a compiler can then
generate efficient machine code. We start with transformations that reduce
the work to be dope by a program and,hence should be standard practice
when writing any pfogram for any machine. We then progress to trans-
formations that enhance the degree of instruction- level parallelism in the
generated machine code, thereby improving their performance on modern
“superscalar” processors. To motivate these transformations, we introduce
a simple operational model of how modern out-of-order processors work,
and show how to measure the potential performance of a program in terms
of the critical paths through a graphical representation of a program. You
will be surprised how much you can speed up a program by simple transfor-
mations of the C code,
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Chapter 6: The Memory Hierarchy. The memory system is one of the most visible

parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array
with uniform access times. In practice, 2 memory system is a hierarchy of
storage devices with different capacities, costs, and access times. We cover
the different types of RAM and ROM memories and the geometry and
organization of magnetic-disk and-solid state drives. We describe how these
storage devices are arranged in a hierarchy. We show how this hierarchy is
made possible by locality of reference. We make these ideas concrete by
introducing a unique view of a memory system as a “memory mountain®
with ridges of temporal locality and slopes of spatial locality. Finally, we
show you how to improve the performance of application programs by
improving their temporal and spatial locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, including

the ideas of relocatable and executable object files, symbol resolution, re-
location, static libraries, shared object libraries, position-independent code,
and library interpositioning. Linking is not covered in most systems texts,
but we cover it for two reasons. First, some of the most confusing errors that
programmers can encounter are related to glitches during linking, especially
for large software packages. Second, the object files produced by linkers are
tied to concepts such as loading, virtual memory, and memory mapping.
¥

Chapter 8: Exceptional Control Flow. In this part of the presentation, we step

beyond the single-program model by introducing the general concept of
exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware ex-
ceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the receipt of Linux signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea
of a process, an abstraction of an executing program. You will learn how
processes work and how they can Be created and manipulated from appli-
cation programs. We show how application programmers can make use of
multiple processes via Linux system calls. When you finish this chapter, you
will be able to write a simple Linux shell with job control. It is also your first
introduction to the nondeterministic behavior that arises with concurrent
program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks

to give some understanding of how it works and its characteristics. We want
you to know how it is that the different simultaneous processes can each use
an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manip-
ulating virtual memory. In particular, we cover the operation of storage
allocators such as the standard-library malloc and free operations, Cov-
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ering this material serves several purposes. It reinforces the concept that
the virtual memory space is just an array of bytes that the program can
subdivide into different storage units. It helps you understand the effects
of programs containing memory referencing errors such as storage leaks
and invalid pointer references. Finally; many abpli’cation programmers write
‘their own’storage allocators optimized toward the rieeds and characteris-
tics of the application. This chapter, more than any other, demdnstrates the
benefit of covering both the hardware and the software aspeé‘ts'é)f computer
systems in a unified way. Traditional computer architecture and operating
systems texts present only part of the virtual memory story.

Chapter 10: System-Level I/0. We cover the basic concepts of Unix I/O such as

files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered
I/O package that deals correct]y with a curigus behavior known as, short
counts, where the library function reads only part of the input data. We
cover the C standard I/O library and its relationship to Linux I/Q, focusing
on limitations of standard I/O that make it unsuifable for'network program-
ming. In-general, the topics covered in this‘chapter ar¢ building blocks for
‘the next tivo chapters on network and concurrent programming,
1

[N

Chapter 11; Network Programming. Networks are interesting I/0 devices to pro-

gram, tying together many of the ideas that we study earlier in'the text, such
as processes, signals, byte ordering, memory mapping, and dynamic storage
allocation. Netwdtk prograins also provide a-compelling context for con-
currenity, which is the topi€ of the next chapfer. Fhis chapter'is a thin slice
through network programming that' gets you to the pdint where you can
writé'a simple Web erver. We cover thie client-server model that underlies
all network applications. We present a programmer’s vViéw of the Internet
and show how to write Internet clients ‘and servers using the stckets inter-
face, Finally, we introduce HTTP and develop a simple iterative Web server.

Chapter 12: Concurrént Programming. ‘Ihis chapter iniroduces concurrent pro-

gramming using Internét'server design as thé runiling motivational'example.
We compare and contrast the three basic mechanisms for writing concur-
rent programs—-processes, I/O multiplexing, and threads—agd show how
to use them to build concurrent Internet servers. We cover basic principles
of synchronization,using P and V semaphore operations, thrgad safety and
reentrancy, race conditions, and deadlocks. Writing concurrent code is es-
sential fgir mogst server, applfcaﬁons. We alsq, cji{:‘;scrib,e the use of thread-level
programming to express parallelism in,an application Jprogram, enabling
faster execution on multi-core processors. Getting all of the cores working
on a single computational problem requires a.careful coordination of the
concurrent threads, both for correctness and to dchieve high performance.
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New to This Edition

The first edition of this book was published with a copyright of 2003, while the
second had a copyright of 2011. Considering the rapid evolution of computer
technology, the book content has held up surprisingly well. Intel x86 machines
running C programs upder Linux (and related operating systems) has proved to
be a combination that continues to encompass many systems today. However,
changes in hardware technology, compilers, program library interfaces, and the
experience of many instructors teaching the material have prompted a substantial
revision.

The biggest overall change from the second edition is that we have switched
our presentation from one based on a mix of IA32 and x86-64 to one based
exclusively on x86-64. This shift in focus affected the contents of many of the
chapters. Here is a summary of the significant changes.

Chapter 1: A Tour of Computer Systems We have moved the discussion of Am-
dahl’s Law from Chapter 5 into this chapter.

Chapter 2: Representing and Manipulating Information. A consistent bit of feed-
back from readers and reviewers is that some of the material in this chapter
can be a bit overwhelming, So we have tried to make the material more ac-
cessible by clarifying the points at which we delve into a more mathematical
style of presentation. This enables readers to first skim over mathematical
details to get a high-level overview and then return for a more thorough
reading.

Chapter 3: Machine-Level Representation of Programs, We have converted from
the earlier presentation based on a mix of IA32 and x86-64 to one based
entirely on x86-64. We have also updated for the style of code generated by
more recent versions of Gee. The result is a substantial rewriting, including
changing the order in which some of the concepts are presented. We also
have included, for the first time, a presentation of the machine-level support
for programs operating on floating-point data. We have created a Web aside
describing IA32 machine code for legacy reasons.

Chapter 4: Processor Architecture. We have revised the earlier processor design,
based on a 32-bit architecture, to one that supports 64-bit words and oper-
ations.

Chapter 5: Optimizing Program Performance. We have updated the matérial to
reflect the performance capabilities of recent generations of x86-64 proces-
sors. With the introduction of more functional units and more sophisticated
control logic, the model of program performance we developed based on a
data-flow representation of programs has become a more reliable predictor
of performance than it was before.

Chapter 6: The'Memory Hierarchy. We have updated the material to reflect more
recent technology.

N
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Chapter 7: Linking. We have rewritten this chapter, for x86-64, expanded the
discussion of using the GOT and PLT to create position-independent code,
and.added a new section on a powerful linking technique known as library
interpositioning.

Chapter 8: Exgepnonal Control Flow., We have added a more rigorous treatment
of signal handlers including async-51gna] -safe functions, specific guidelines
for writing, s1gnaI handlérs, and using s:l.gsuépend to wait for handlers,

Chapter 9: Virtual Memory. This chapter has changed only slightly.

ijpre{ 10: Sykrem Level I/O. We have added 3 new section on files and the file
hlerarchy, but ptherwise, this c}]apter has changed only slightly.

Chapter 11: Network Programming, We have introduced techniques for protocol-
independent and thread-safe network programming using the modern
getaddrinfo and getnameinfo functions, which replace the obsolete and
non-reentrant gethostbyname and gethostbyaddr functions.

Chapter 12: Concurrent Programming. We have increased our coverage of using
thread-level parallelism to make programs run faster on multi-core ma-
chines,

In addition, we have added and revised a number of practice and homework
problems throughout the text.

Origins of the Book

This book stems from an introductory course that we developed at Carnegie Mel-
lon University in the fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [14]. The ICS cbursé has'been taught every semester since then. Over 400
students-take the course each semester. The students range from sophomores to
graduate students in a wide variety of majors. It is a required core course for all
undergraduatgs in the C§ and ECE departments at Carnegie Melion, and it has
become a prerequisite for most upper-level systems courses in CS and ECE.

The idea with ICS was to introduce stuzdents to computers in a different way.
Few of our studerits would have the dpportunity to build a computer system. On
the other hand, most students, mclu‘dmg all computer scientists and computer
engineers, would be required to use and program computers on a daily basis. So we
decided to teach about systems from the pdint of view of the programmer, using
the following filter; we would cover a fopic only if it affected the performance,
correctness, Or, ut111ty of user-level C programs.

For example, toplcs such ag hardwarte adder and bus designs were out. Top-
ics such as machine language were in; but instead of focusing on how to write
assembly language by hand, we would look at how a C compiler transiates C con-
structs into.machine code, including pointers, loops, procedure calls, and switch
statements. Further, we would take a broader and more holistic view of the system
as both hardware and systems software, covering such topics as linking, loading,
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processes, signals, performance optimization, virtual memory, I/0, and network
and concurrent programming.

This approach allowed us to teach the ICS course in a way that is practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real-
ized that others outside of CMU might benefit from using our approach. Hence
this book, which we developed from the ICS lecture notes, and which we have
now revised to reflect changes in technology and in how computer systems are
implemented.

Via the multiple editions and multiple translations of this book, ICS and many
variants have become part of the computer science -and computer engineering
curricula at hundreds of colleges and universities worldwide.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach a number of different types of
systems courses. Five categories of these courses are illustrated in Figure 2. The
particular course depends on curriculum requirements, personal taste, and
the backgrounds and abilities of the students. From left to right in the figure,
the courses are characterized by an increasing emphasis on the programmer’s
perspective of a system. Here is a brief description.

ORG. A computer organization course with traditional topics covered in an un-
traditional style, Traditional topics such as logic design, processor architec-
ture, assembly language, and memory systems are covered. However, there
is more emphasis on the impact for the programmer. For example, data rep-
resentations are related back to the data types and operations of C programs,
and the presentation on assembly code is based on machine code generated
by a C compiler rather than handwritten assembly code.

ORG+. The ORG course with additional emphasis on the impact of hardware
on the performance of application programs. Compared to ORG, students
learn more about code optimization and about improving the memory per-
formance of their C programs.

ICS. The baseline ICS course, designed to produce enlightened programmers who
understand the impact of the hardware, operating system, and compilation
system on the performance and correctness of their application programs.
A significant difference from ORG+ is that low-level processor architecture
is not covered. Instead, programmers work with a higher-level model of a
modern out-of-order processor. The ICS course fits nicely into a 10-week
quarter, and can also be stretched to a 15-week semester if covered at a
more leisurely pace.

ICS+. The baseline ICS course with additional coverage of systems programming
topics such as system-level I/O, network programming, and concurrent pro-
gramming. This is the semester-long Carnegie Mellon course, which covers
every chapter in CS:APP except low-level processor architecture.




RO " Cotese
Chapter  Topic s ORG QRG+ ICS ICS+ 8P
1 ~Tour of systéms . o ‘ . )
2 Dath representation "o . . . o@
3 Machine language, . . . . .
4 Processor architecture . .
5 Code optimization . . .
0, © Mlemoyy l'giejlral}:hy o®@ . . . o ®
7 Linking . o o® .
8 Excepticnal control. flow . . .
9 Virtual memory o® . . . .
10 System-level I/O . .
11 Network programming . .
12 Concurrent programming , . .

Fl L¥]

Figure 2 Fivé systems courses based on the CS:APP book. ICS+is the 15-213 course
from Carnegie Mellon'. Notes: The @ symbol denotes partlal coverage of a chapter, as

follows: (a) hardware only; (b) no dynamlc storagé sllocation; (©) no dynamic‘linking;

(d) no floating point.

g

SP. A systerns pro%fa'fmhing course. This colirse is'sinfilar to ICS+, but it drops
floating point and perforniance ‘optimization, ‘and it places more empha-
sis on systems programming, including process control, dynamic linking,
system-leve] I/O, network programming, and concurrent programming,. In-
structqrs mjght,want to supplgment from other sources for advanced topics
,such as dagmons,terminal control, and Upix JPC.

Lr '

The main message of “Figure 2 is that the CS:APP boo}( gives a lot of options
to students and instructors. If you want your students to be exposed to lower-
level processor architecture, then that option is available via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer
organization course o an ICS or ICS+ course, but are wary of making such a
drastic change all at once, then you:can move toward ICS incrementally. You
can start with ORG, which teaches the traditional topics in a nontraditional way.
Once you are comfortable with that material, then you can move to ORGH+,
and eventually to'TCS: If students have no expérience itf C (e.g., they have only
pro rgmmed in Java),.you could spend several weeks on C and then cover the
matefial of ORG or ICS.

Finally, we note that the ORG+ aiid SP course$ would make a nice two-term
sequence (either quarters or semesters). Or you might consider offering ICS+ as
one term of ICS and one term of SP.
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i For Instructors: Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students.
Median scores of 5.0/5.0 and means of 4.6/5.0 are typical for the student course
evaluations. Students cite the fun, exciting, and relevant laboratory exercises as
the primary reason. The labs are available from the CS:APP Web page. Here are
examples of the Iabs that are provided with the book.

Data Lab. This lab requires students to implement simple logical and arithmetic
functions, but using a highly restricted subset of C. For example, they must
compute the absolute value of a number using only bit-level operations, This
lab helps students understand the bit-level representations of C data types
and the bit-level behavior of the operations on data.

Binary Bomb Lab. A binary bomb is a program provided to students as an object-
code file. When run, it prompts the user to type in six different strings. If
any of these are incorrect, the bomb “explodes,” printing an error message
and logging the event on a grading server. Students must “defuse” their
own unique bombs by disassembling and reverse engineering the programs
to determine what the six strings shoyld be. The lab teaches students to
understand assembly language and also forces them to learn how to use a

| debugger.

l : Buffer Overflow Lab. Students are required to modify the run-time behavior of
a binary executable by exploiting a buffer overfiow vulnerability. This lab
teaches the students about the stack discipline and about the danger of
writing code that is vulnerable to buffer overflow attacks.

Architecture Lab. Several of the homework problems of Chapter 4 can be com- ;
bined into a lab assignment, where students modify the HCL description of
a processor to add new instructions, change the branch prediction policy, or !
add or remove bypassing paths and register ports. The resulting processors "

H can be simulated and run through automated tests that will detect most of :
| the possible bugs. This lab lets students experience the exciting parts of pro-
_ cessor design without requiring a complete background in logi¢ design and

hardware description languages. :

! Performance Lab. Students must optimize the performance of an application ker-
I nel function such as convolution or matrix transposition. This lab provides "
4 a very clear demonstration of the properties of cache memeories and gives

? students experience with low-level program optimization.

‘3

i

Cache Lab, In this alternative to the performance lab, students write a general- ;
purpose cache simulator, and then optimize a small matrix transpose kernel J

to minimize the number of misses on a simulated cache. We use the Valgrind

tool to generate real address traces for the matrix transpose kernel. v

Shell Lab. Students implement their own Unix shell program with job control,
including the Ctrl+C and Cirl+Z keystrokes and the fg, bg, and jobs com-

3
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mands. This is the student’s;first introduction to concurrency, and it gives
them a clear idea of Unix process control, signals, and signal:handling,

Malloc Lab. Students implement their own versions*of malloc, free, and (op-
tionally) realloc. This lab gives students a clear undérstanding of data
layout and organization, and requires them to evaluaté different trade-offs
between space and time, efﬁi:iency.

Proxy Lain-Students 1mplement a concurrent; Web proxy that sits between their
;» browsersand the rest of the World Wide Web. This lab exposes the students
to such topics as Web clients and servers, and ties together many of the con-
ceptsfrom the course, such as byte ordering, file IO, process control, signals,
signal handling, memeory mapping, sockets, and concurrency. Students like
being able to see their programs in action with real Web browsers and Web
Servers. et

The CS:APP instructor’s manual has a detailed discussion of the labs, as well
as directions for downloading the support software.

Acknowledgments for the Third Edition

Itis a pleasure to acknowledge and thank those who have helped us produce this
third edition of.the CS:APP text.

We would like to thank our Carnegie Mellon colleagues who have taught the
ICS course over the years and whio have provided so much insightful feedback
and encouragement: Guy Blelloch, Roger Dannenberg, David Eckhardt, Franz
Franchetti, Greg Ganger, Seth Goldsteirl, Khaled Harras, Greg Kesden, Bruce
Maggs, Todd Mowry, Andreas Nowatzyk, Frank Pfenning, Markus Pueschel, and
Anthony Rowe. David Winters was very helpful in installing and configuring the
reference Linux box. .

Jason Fritts (St. Louis University) and*Cindy: Norris (Appalachian State)
provided us with detailed and thoughtful reviews of the second edition. Yili Gong
(Wuhan University) wrote the Chinese'translation, maintained the errata page for
the Chinese.version, and contribute€d many bug reports. Godmar Back (Virginia
Tech) helped us improve the text significantly by introducing us to the.notions of
async-signal safety and protocoltindependent-hetwork programming,

‘Many.thanks to our eagle-eyed readers who reported bugs in the second edi-
tion: Rami Ammari, Paul Anagnédstopoulos, Lucas Birenfiinger, Godmar Back,
Ji Bifi, Sharbel Bousemaan, RichardiCallahan, Seth Chaiken, Cheng Chén, Libo
Chen; Tao Du, Pascal Garcia, Yili Gong, Ronald Greenberg, Dortikhan Giilsz,
Dong Han;Dominik Helm, Ronald Jones, Mustafa Kazdagli, Gordon Kindlmann,
Sankdr Krishnan, Kanak Kshetri, Junlin Lu, Qianggiang Luo, Sebastian Luy,
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H 2  Chapter 1 A Tour of Computer Systems ‘

Acomputer system consists of hardware and systems software that work to-
gether to run application programs. Specific implementations of systems
change over time, but the underlying concepts do not. All computer systems have
: similar hardware and software components that perform. similar functions. This
book is written for programmers who want to get better at their craft by under- 1
ﬂ standing how these components work and how they affect the correctness and
performance of their programs.
| You are poised for an exciting journey. If you dedicate yourself to learning the
I concepts in this book, then you will be on your way to becoming a rare “power pro-
grammer,” enlightened by dn undéiStanding of the undetlying computer system
and its,impact on your application programs.
* *You are, g‘bjng?.’é learn-practical skillg such as how to avoid strange numerical
errors caused by the wdy that computers represent numbers. You will learn how
to optimize your C code by using clever tricks that exploit the designs of modern
processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from
buffer overflow vulnerabilities that plague network and Internet software. Youwill
learn how to recognize and avoid the nasty errors during linking that confound
the average programmer. You will learn how to write your own Unix shell, your
| own dynamic storage allocation package, and even your own Web server. You will
learn the promises and pitfalls of concurrency, a topic of increasing importarice as
| l _multiple processor cores are integrated onto single chips.
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In their classic text on the C programming language [61], Kernighan and
Ritchie introduce readers to € using the hello program shown in Figure 1.1.
Although hello is a very simple program, every major part of the system must
work in concert in order for it to run to completion. In a sense, the goal of this
book is to help you understand what happens and why when you run hello on
your system.

We begin our study of systems by tracing the lifetime of the hello program,
from the-time it is created by a programmer, until.it runs on a system, prints its
simple message, and terminates. As we follow the lifetime of the program, we will
briefly introduce the key concepts, terminology, and components that come into
play. Later chapters will expand on these ideas. '

m

codefintrofhello.c

#include <stdio.h>

]
2
3 int main()

1 4 {
5 printf("helle, world\n");
6 return 0;
7

code/introthello.c

Figure 1.1 The hello program. (Source: [60])




Section, 1.1 Information 4s Bits + Context

# i n c 1 u d e SP < s t d i
35 105 110 99 108 117 100 101 32 60 116 116 100 105
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104 62 10 10 105 110 116 32 109 97 105 110 40 41
\n SP SP SP SP p r i m t £ " @
10 32 32 32 32 112 114 106 110 116 102 40 34, 104
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108 111 44 32 119 1i1 114 108 100 92 110 34 41 59

8P SP SP r e t uwu ¥ n SP 0 ; \no '}
32 32 32 114 101 116 117 114 1i0 32 48 659 10 125

Figure 1.2 The ASCII text representation of hello.c.

1.1 Information Is Bits + Context

Our hello program begins life as a source program (or source file). that the
programmer creates with an editor and saves in a text file called helle.c. The
source program is a sequence of bits; each with a value of 0 or 1, organized in 8:bit
chunks called bytes. Each byte represents some text character in the program.

Most computer systems represent text characters using the ASCII standard
that represents each character with a unique byte-size integer value.! For example,
Figure 1.2 shows the ASCII representation of the hello.c program.

The hello.c program is stored in a file as a sequence of bytes. Each byte has
an integer value that corresponds to some character. For example,.the first byte!
has the integer value 35, which corresponds to the character “#’. The second byte
has the integer value 105, which corresponds to the character ‘i°, and so on. Notice
that each text line is termindted by the invisible newline character ‘\n’, which is
represented by the integer value 10. Files such as hello. ¢ that consist exclusively
of ASCII character$ are known as text files. All éther files are krfown as binary
files.

The representation of hello. ¢ illustrates a fundamentalidea: Allinformation
in a system—including disk files, progratns stored in memory, user data stored in
memory, and data transfefred across' a network—is represented a'a bunch of bits.
The only thing that distinguishes different data objects is the context;in which
we view them. For example, in different contexts, the same sequence of bytes
might répresent an integer, floating-point number, character string, or machine
Instruction. '

As programmers, we need to understand machine represéntations of numbers
because they are not the same as integers and real dumbers. They are finite

A

i w

1. Other encoding methods are used to represent text in non-English langnages. See the asidg on page
50 for a discussion on this.
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Aside Origins of the C-programming.language , ¥ "

% o

C was developed from 1969.fo 1973 by Dennis Ritchie of Bell Laboratories. The‘Amencan Natiorial
Standards Institute (ANSI) rﬁtlﬁQQme ANSI G standardeQSg aht this standardlg’atloﬁ later became
the respon51b111ty of the International Standards Orgdnization (ISO) The standards define thé C
language and a set of library functions kndwi'as the'C standard library. Ketnighan and Ritchie déécribe
ANSI C in their'classic book, which is known affectionately as “K&R” [61]. i Ritchie’s words [92],,C;
is “quirkg,_aﬂawgg, and aprenormous suécess.” Sp why the success? . )
* C-was closely tiéd with the. Unix operating system. C’was-0éveloped:from the peginping as thé

system programmmg«language for Unix: Most of the Unmkemel (the core part of the operating,
systém), and all of its supportmg tools and libraries, weréawritten.i,C. As Unix became popular in ]

i *universities in the Jate 1970s and early 1980s, many people were exposed to C and found that they+
liked it. Since Unix was written almost entirely inC, it could be easily ported to new machines; §
which created an éven wider audience forbotf.uC and Unix. P #

¢ Cisasmall, simple language. The design was controfféd by'asiigle pérsén, ‘father thah a committee,
» and the result' was a clear, consistenit demgn with little, béggage Thé K&R bodk describes tlie
complete language and standardibrary, with nufnerous examples and exercises, in on 1y 261 pages.

The simplicity of Omacle it relatively. easy tg learn and t6 port 10 diffetént’ Copiputerd, - &

* Cwas desxgned fora pracrzcal plfrpose. 'C was dé&signed to 1mplement the; Uhix operating systeth.
Later, other peopi’e found that they could writé the prograrﬁs they wantedeuhout« the language«
getting in the way’ , ”f # s

W
g i “3

Cis the language of choice for! §ys€em]evel programmmg, and there is &' huge installed bae of;
application-level programs as well. Howéver, it i§ not} perfect for all prograthmers'and all situations. ;
C pointers are a commoh sotirce of confusion and”programrmng errérs. Galso lacks explicit support
, for yseful abstractiéns suchastlasses; 6bjects, and exceptionsNewer lahguages such a§ G+ and Java

g address these issues for application-levélprograms: ot e .,
- —— o B BT IR it e B s Tt LA M-ﬁﬁwwﬁwm «umiﬁwwi}
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approximations that can behave in unexpected ways. This fundamental idea is
explored in detail in Chapter 2.

1.2 Programs Are Translated by Other Programs
into Different Forms

The helloe program begins life as a high-level C program because it can be read
and understood by human beings in that form. However, in order torun hello.c
on the system, the individual C statements must be translated by other programs
into a sequence of low-level machine-language instructions. These instructions are
then packagedin a form called an executable object program and stored as a binary
disk file. Object programs are also referred to as executable object files.

On a Unix system, the translation from source file to object file is performed
by a compiler driver:

9
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Section 1.2 Programs Are Translated by Other Programs into Different Forms 5

printf.o
Pre: l
hello. - hello.i i hello. hello. i hell
aello.c¢ processor a Compiler ello.s |Assembler 0.0 Linker o

(ccl) (as) (1d)
Source {cpp) Assembly l Relocatable Executable

Modified
program source program object object
{text) program (text) programs program
(text) (binary) (binary}

Figure 1.3 The compilation system.

linux> gecc —o hello hello.c

Here, the e compiler driver reads the source file hello. ¢ and translates it into
an executable object file hello. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler, and linker) are known collectively as the
compilation system.

» Preprocegsing phase. The preprocessor (cpp) modifies the original C program
according to directives that begin with the ‘#’ character. For example, the
#include <stdio.h> command in line 1 of hello.c tells the preprocessor
to read the contents of the system header file stdio.h and insert it directly
into the program text. The result is another C program, typically with the .1
suffix.

¢ Compilation phase. The compiler (ccl) translates the text file helle. i into
the text file hello.s, which contains an assembly-language program. This
program includes the following definition of function main:

1 main:

2 suby $8, Ursp

3 movl $.LCO, Yedi
4 call puts

5 movl $0, %eax

6 addq $8, Yrsp

7 rat

Each of lines 2-7 in_ this definition describes one low-level machine-

. language instruction in a textual form. Assembly language is useful because

it provides a common output language for different compilers for different

high-level languages. For example, C compilers and Fortran compilers both
generate output files in the same assembly language.

* Assembly phase. Nexts.the assembler (as) translates hello.s into machine-
language instructions, packages them in a form known as a relocatable object
program, and stores the result in the object file hello.o. This file is a binary
file containing 17 bytes to encode the instructions for function main. If we
were to view hello.o with a text editor, it would appear to be gibberish.
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! popularity to the GNU tools, which provide the environment for the Linux kernel.
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Aside The GNU project

Gecce is one of many useful topls developed by the GNU (short-for GNU"s Not Unix) project. The
GNU project is a tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of
developing & complete Uhix-like system whose source code is unencumbered by restrictions on how |
it can be modified or distributed. The GNU project has developed an environment with all the major :
components ‘of a Unix operating system, except for the kernel, which was developed separately by
the Linux project. The GNU environment includes the Emacs editor, gce compiler, Gps debugger, |
assembler, linker, utilities for manipulating binaries, and other components. The gcc compiler has
grown to support many different languages, with the ability to generate code for many different ;
machines. Supported languages include C, C++, Fortran, Java, Pascal, Objective-C, and Ada.

The GNU project is a remarkable achievement, and yet it is éften overlooked. The modemn open-
source movement (commonly associated with Linux) owes its intellectual origins to the GNU project’s
notion of free software (“free” as in “free speech,” not “free beer”). Further, Linux owes much of its

3

» Linking phase. Notice that ourhello program calls the printf function, which
is part of the standard C library provided by every C compiler. The printf
function resides in a separate precompiled object file called printf .o, which
must somehow be merged with our hello. o program. The linker (1d) handles
this merging. The result is the hello file, which is an executable object file (or
simply executable) that is ready to be [oaded into memory and executed by
the system.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as hello.c, we can rely on.the compilation system to
produce correct and efficient machine code. However, there are some important
reasons why programmers need to understand how compilation systems work:

s Optimizing program performance. Modern compilers are sophisticated tools
that usually produce good code. As programmers, we do not need to know
the inner workings of the compiler in order to write efficient code. However,
in order to make good coding decisions in our C programs, we do need a
basic understanding of machine-level code and how the compiler translates
different C statements into machine code. For example, is a switch statement
always more efficient than a sequence of if-else stateiments? How much
overhead is incurred by a function call? Is a while loop more efficient than
a for loop? Are pointer references more efficient than array indexes? Why
does our loop run so much faster if we sum into a local variable instead of an
argument that is passed by reference? How-can a function run faster when we
simply rearrange the parentheses in an arithmetic expression?

t/
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In Chapter 3, we introduce x86-64, the machine language of recent gen-
erations of Linux, Macintosh, and Windows computers. We describe how
compilers translate different C constructs into this language. In Chaptér 5,
you will Jlearn how to tune the perforrqance of yqur C programs by makmg
simple transformat}oqs tathe Ccode that help the.compiler do its job better.
In Chapter 6, you will learn about the hierarchical nature of the memory Sys-
tem, ho'w C compilers store data arrays in memory, and how your C programs
can exploit- this knowledge to run more ef.ﬁmen’dy

¢ Understartding link-time errors. In our experience;some of the most perplex-
ing programming errors are related to the operation of the linker, especially
when you are trying to build large software systems. For ¢xample, what does
it mean'wher the linker reports that it cannot resolve a reference? What is the
difference between a static variable and a.global variable? What happens if
you define two globalwariables in different C files with the same name? What
is the difference between a static library and a dynainic library? Why does it
matter what order we list libraries on the command line? And scariest of all,
why do some-linker-related errors not appear until run time? You will learn
the answers to these kihds of questions in Chapter 7,

» Avoiding security holes. For many years, buffer overflow vulnerabilities have
accounted for many of the security holes in network and Internet servers.
, Thege vulnerabilities gxist because top few programmers understand the need
o carefully restrict tl}q quantlty and forms of data they accept from untrusted
solirces, A ﬁx§t step in learning secyre programiping is to understand the con-
sequences of the way datg and contro! information are stored on the program
stack. We cover the stack discipline and buffer overflow vulnerabilities in
Chapter 3 as part of our study of assembly language. We will also learn about
methods that can be used by the programmer, compiler, and operating system
to reduce the threat of attack.
(e s
O -
1.4 Processors.Read and lnterpret Instructions
Stored.in Memory
3
At this point, our hello. ¢ source program has been translated by the compilation
system into an executable object file called hello that is stored on disk. To run

the executable file on a Unix system, we type its hame to an application program
known as a shell:

linux> ./kellor
hello, world &
linuk>
{3
The shell.is a command-line interpreter that prints a prompt, waits for you
to type a command-line;.and then performs the command. If the first word of the
command line does not correspond to a built-in shell command, then the shell

*——t
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Figure 1.4
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assumes that it is the name of an executable file that it should load’ and run. So
in this case, the'shell loads and runs the hello program and then waits for it to
terminate. The hello program ptints its message to the scteen and thén terminates.

L343

‘The shell then prints a prompt atd waltg for the next input command line.

1.4.1 Hardware Organization of a System )

To understand what happens to our hello program when we run it, we need
to understand the hardware organmauon of a typical system, which is shown
in Figure 1.4. This partlcular picture s inodeled after the family of recent Intel
systems, but all systems have a similar look and feel. Don’t*worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduyits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-size chunks of bytes known as words. The
number of bytes in a word (the word size) is a. fundamental system parameter that
varies across systems. Most machines todgy have word-sizes of either 4 bytés (32
bits) or 8 bytes (64 bits). In this book, we do not assume any fixed definition of
word size.Instead, we will specify what we mean by a “word” in any context that

requires this to be defined.
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I/O Devices

Input/output (I/0O) devices are the system’s connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program resides on the disk.

,“Jaach I/O device 1s connected to the I/O bus by either a controller or an adapter.
The cfiétinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system’s main printed circuit board (often calied
the mothe.]rboar&:). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I/O bus and an 1/O device.

Chapter 6 has more to say about how IO devices such as disks work. In
Chapter 10, you will learn how to use the Unix I/O interface to access devices from
your application programs. We focus on the especially interesting class of devices
known as networks, but the techniques generalize to other kinds of devices as well,

Main Memory

The main memory is a temporary storage device that holds both a program and
the data it manipulates while the processor is executing the program. Physically,
main memory consists of a collection of dynamic random access memory (DRAM)
chips. Logically, memory is organized as a linear array of bytes, each with its own
unique address (array index) starting at zero. In general, each of the machine
instructions that constitute a program can consist of a variable number of bytes.
The sizes of data items that correspond to C program variables vary according
to type. For example, on an x86-64 machine runming Linux, data of type short
require 2 bytes, types int and float 4 bytes, and types long and double 8 bytes.

Chapter 6 has more to say about how memory technologies such as DRAM
chips work, and how they are combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that inter-
prets (or executes) instructions stored in main memory. At its core is a word-size
storage device (or register) called the program counter (PC). At any point in time,
the PC points at (contains the address of) some machine-language instruction in
main memory.

From the time that power is applied to the system until the time that the
power is shut off, a processorrepeatedly executes the instruction pointed at by the
program counter and updates the program counter to point to the next instruction.
A processor appears to operate according to a very simple instruction execution
model, defined by its instruction set architecture. In this model instructions execute

2, PCis also a commonly wsed acronym for “personal computer.” However, the distinction between
the two should be clear from the context.

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 9
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! in strict sequence, and executing a single instruction involves performing a series
] of steps. The processor reads the instruction from memory pointed at by the
‘ program counter (PC) mterpréts the bits in the instruction, pérforms some 51mp1e
: operatxon dictatéd by the instruction, and then updates the PCtopoint to the next
instruction, which 1 may or may not be contiguous in memory to the instruction that
was just executed.

There are only a few of these simple operations, and they revolve around
main memory, the register file, and the anthmetzc/logac unit (ALU) The reglster
file is a small storage device that consists of a collection of word-size reglsters each
with its own unique name. The ALU computes new data and address values. Here
are some examples of the 51mple operations that the CPU mijght carry out at the
request of an instruction:

¢ Load: Copy a byte or a word from main memory into a register, overwriting
the previous contents of tie register.

» Store: Copy a bﬁe or a word from a register to a’location in main memory,
overwriting the previous contents of that location.

e Operate: Copy the contents of two registers to the ALU, perform an arithmetic
operation on the two words, and store the result in a register, overwriting the
previous contents of that register.

o Jumip: Extract a word from théfinstruction itself and copy that word into'the
program counter (PC), overwriting the pre¥ious value of the PC.

We say that a processor appears to be a simple,implementation of,ifs in;
struction set architecture; but in fact modern processors use far more complex
mechanisms to speed up program, execution. Thus, we can distinguish the pro-
cessor’s instruction,set architecture, describing the effect of each machine-code ‘
instruction, from its microarchitecture, describing how the processor is actually
implemented. When we study machine code-in Chapter 3, we will consider the
abstraction provided by the machine’s instruction set architecture. Chapter 4 has
more to say about how processors are actually implemented. Chapter 5 describes
a model of how modern processors work that enables predicting and optimizing ‘

theperformancé of machine-languagé progrars.
J

1.4.2 Rurihing the he115'Program
f.

Given this simple view of a system’s hardware organization and operation, we can
begin.to understand what happens when we run our example program. We must
omit a lot of details heresthat will be filled in later, but for now we will be content
with the big picturk. ' N

Initially, the shell program is executingits instructions, waiting for ustotype a
command. As we type the characters . /hellc at the keyhoard, the shell program
reads each one into a register and then stores it in memory, as shown in Figure 1.5.

‘When we hit the enter key on the keyboard, the shell knows that we have
finished typing the command. The shell then loads the executabie hello file by
executing a sequence of instructions that copies the code and data in the hello

- e R N m
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Figure 1.5 CPU
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object file from disk to main memory. The data includes the string of characters
hello, world\n that will eventually be printed out.

Using a technique known as direct memory access (DMA, discussed in Chap-
ter 6), the data travel directly from disk to main memory, without passing through
the processor. This step is shown in Figure 1.6.

Once the code and data in the hello object file-are loaded.into memory,
the processor begins executing the machine-language instructions in the hello
program’s main routine. These instructions copy the bytes in the hello, world\n
string from memory to the register file, and from there to the display device, where
they are displayed on the screen. This step is shown in Figure 1.7.

1.5 Caches Matter

An important lesson from this iéimple Iezf(ample is that a system spends a lot of
time movihg informatjon from dne-place to another. The machine instructions in
the hello program are originally stored on disk. When the program is loaded,
they are copied to main memory. As the processor runs the program, instruc-
tions are copied from main memory into the processor. Similarly, the data string
hello,world\n, originally on disk, is copied to main memory and then copied
from main memory to the display devicé. From a programimer’s perspective, tnuch
of this copying is overhead that slows down the “real work” of the program. Thus,
a major goal for system designers is to make these COpy operations run as fast as
possible.

Because of physical laws, larger storage devices‘are slower than smaller stor-
age devices. And faster devices are more expensive to build than their slower
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Figure 1.8 CPU chip
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counterparts. For example, the disk drive on a typical system might be 1,000 times
larger than the main memory, but it might take the processor 10,000,000 times
longer to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred Bytes of information,
as opposed to billions of bytes in the main memory. However, the processor can
read data from the register file almost 100 times faster than from memory. Even
more troublesome, as semiconductor technology progresses over the years, this
processor-memory gap continues to increase. It-is easier and cheaper to make
processors run faster than it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller,
faster storage devices called cache memories (or simply caches) that serve as
temporary staging areas for information that the processor is likely to need in
the near future. Figure 1.8 shows the cache memories in a typical system. An LI
cache on the processor chip holds tens of thousands of bytes and can be accessed
nearly as fast as the register file. A larger L2 cache with hundreds of thousands
to millions of bytes is connected to the processor by a special bus. It might take 5
times longer for the processor to access the L2 cache than the L1 cache, but this is
still 5 to 10 times faster than accessing the main memory. The L1 and L2 caches are
implemented with a hardware technology known as static random access memory
(SRAM). Newer and more powerful systems even have three levels of cache: L1,
L2, and L3. The idea behind caching is that a system can get the effect of both
a very large memory and a very fast one by exploiting locality, the tendency for
programs to access data and code in localized regions. By setting up caches to hold
data that are likely to be accessed often, we can perform most memory operations
using the fast caches.

One of the most important lessons in this book is that application program-
mers who are aware of cache memories can exploit them to improve the perfor-
mance of their programs by an order of magnitude. You will learn more about
these important devices and how to exploit them in Chapter 6.
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Figure 1.9 An example of a memory hierarchy. N

1.6 Storage Devices Form a Hierarchy

This notion of inserting a srhhller, faster’ storage device (e g.,"cache memory)
between the processor aqd a larger, Slower device (¢.g., mail'membory)‘{urns otit
to'be a general idea. In’facf, the storage devices'in every computer system are
organized as a memory hiefarchy similar to Flgure 1.9. As we move from the top
of the merarchy to the bottom, the devices become slower, larger, and less costly
per byte. The register file occupies the top level in the hierarchy, which is kﬁown
as level 0 or LO. We show three levels of caching L1 to L3, occupying memory
hierarchy levels 1 to 3Main memory occupies level 4, and $o oh.

The main idea of 2 memory hierarchy is ‘that storage at one level serveS'as a
cache for storage at the next lower level. Thus, the reg1ster file is a cache for the
L1 cache. Caches L1 and 1.2 are cathes for 1.2 'and L3, re$pectively. "The 1.3 cache
is a cache for the main memory, which is a cache for the disk, On some networked
systems with distributed file} systems the local'disk serves as*a'cacﬁe for data stored
On the digks of other systems. *

Just a§ programniers can exploit khowledge of the different tachés to imiprove
petformance, programmers éar exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much fmore to say about this. |

v

[ ooy -
1.7 The Operatihg System Manageés the'Hardware

Back to our hello example; When the shell ldaded and ran the hello program,
and when the hello program printed its message, neither program accessed the
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keyboard, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
alayer of software interposed between the application program and the hardware,
as shown in Figure 1.10. All attempts by an application program to manipulate the''
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications and,(2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The opgrating system achieves both goals via the
fundamental abstractions shown in Figure 1.11: processes, virtual memory, and
Jiles. As this figure suggests, files are abstractions for I/O devices, virtual memory
is an abstraction for both the main memory and disk I/O devices, and processes
are abstractions for the processor, main memory, and I/O devices. We will discuss
each in turn. N

1.7.1 Processes
T

When a program such as hello runs,on a modern system, the operating system
provides the illusionithat the program is the only.one runming on the system. The
program appears to have exclusive use of both the processor, main memory, and
I/Q.devices. The-processor appears to execute, the instructions in the program, one
after the other, without interruption. And the code and data of the program appear
to be the only objects in the system’s memory. These illusions are provided by the
notion of a process, one of the most important and successful ideas in computer
science, v

A.process is the operating system’s abstraction for a running program. Multi-
ple processes can run concurrently on the same system, and each process appears
to have exclusive use of the hardware. By concurrently, we mean-that the instruc-
tions of one process are interleavedswith the instructions of another process. In
most systems, there are more processes to run than there are CPUs to run them.
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by Aside Unix,MPosi‘xi- and the Standard Unix Specﬁ?catlon . _— N 3
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The 19605 was an era of huge, complex operatlng systems, such s TBM’s OS/360 and Honeywell's ~
Multics systems. While OS/360 was one”of th.most successful software pro;ects in history, Multics
! - dragged on for,years and never achieved wide-scale use. Be]l Labqratories was an original partner in
the Multics project but dropped out in 1969 because, of concern over theconiplexity of the project
and the lack of progress..In reaction to their unpleasant Multics experience, a group of Bell Labs #
researchers——Keén Thompson, Dennis Ritchie, Ijoug Mcllroy, and Joe Ossanrla_’began work in 1969
on a simpler operating.system for a Digital Equipment Corporation PDP 7 computer, dyritted entirely *
in machine language. Many of the ideas in the new system, such as the hierarchical file system and the
notion of a shell as a user-level-process, were borrowed from Multics-but implemented in a smaller,
simpler package. Ini 1970, Brian Kernighan dubbed the- new'system "1 “Usdix” as a pun on the corthplexity
of “Muitics.” The kernel was rewntten in C n 1973 and Unix was annouﬂced to the outside world in
1974 [93].

Because Bell Labs made the-source code available to §chools with generous terms, Unix developed
a large followlng at uniVersities. The, most influential Wprft was done‘at the Un1vers1ty of. California
at Berkeley in the lafe L9705 and early i9803 w1tl1 Berke}ey researc'fhers addlng; virtual: memory and
thé Internet protocols in.a senes cof neleasesw called Umx 4, XBSD (Be*rkeley Software”Dmnbunon)
Concurrently, Bell Labs was ré“leasmg ‘tHelr own versions, whlcli became known as System V Umx
Versions from othér vendors, such as the’ Suml\/flcrosysfems Solaris system", were derwed from* these
original BSD and System V.versiosis. BIOE

Trouble arose in-the mid" 19805 as Unix \lendors‘tned to dxfferennaté"themSelves by addmg new
and often incompatible ?eatunes To comB‘at {hig ti"ena ”IEEE'i(Insﬁtute for Electrlcal afid Electrdn—
ics Engineers) 5ponsore‘dxan effort t§ standard:ze Umx latef dubbed"¥Posix” by Richard Stallman
The resuit was a farmly of standards knowgn aS the " Posix stan"dé"rds, that cover *suchissuestas tHéC
language mterfacé for Unix system calls shell, Erograms ‘and ut111t1es threads, and network“ﬁrogramr )
ming, More recently, a separate standardlzatmn effort, kifown as the “Stand@ré Uhix § Spec1ﬂcat1on -
has joined forces with Posnc to’create a single, ‘unified standard forUnix systems, As a ‘result’of these
standardization eﬂgorts the difference$ between Ufiix Versiofis Have largely disappedred.
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Traditional systems could only execute one program at a time, while newer multi-
core processors can execute several programs simultaneously. In either case, a
single CPU can appear to execute multiple processes concurrently by having the
processor switch among them. The operating system performs this interleaving
with a mechanism known as context switching. To simplify the rest of this discus-
sion, we consider only a uniprocessor system containing a single CPU. We will
return to the discussion of multiprocessor systems in Section 1:9.2.

The operating system keeps track of all the state information that the process
needs in order to run. This state, which is known as the cortext, includes informa-
tion such as the current values of the PC, the register file, and the contents of main
memory. At any peint in time, a uniprocessor system can only execute the code
for a single process. When the operating system decides to transfer control from
the current process to some new process, it performs a context switch by saving
the context of the current process, restoring the context of the new process, and

e e ]
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then passing control to the new process. The new process picks up exactly where
it left off. Figure 1.12 shows the basic idea for our example hello scenario.

There are two concurrent processes in our example scenario: the shell process
and the hello process. Initially, the shell process is running alone, waiting for input
on the command line. When we,ask it to run the hello program, the shell carries
out our request by invoking a special function known as a system call that passes
control to the operating system. The operating system saves the shell’s context,
creates a new hello process and its conteXt, and then passes control to the new
hello process. After hello terminates, the operating system restores the context
of the shell process and passes control back to it, where it waits for the next
command-line input.

As Figure 1.12 indicates, the transition from one process to another is man-
aged by the operating system kernel. The kernel is the portion of the operating
system code that is always resident in memory. When an application program
requires some action by the operating system, such as to read or write a file, it
execytes a special system call instruction, transferring control to the kernel. The
kerne] then Her'forms ﬁw requested operation and returns back to the application
program. Note that the kernel is not,a separate process. Instead, it is a collection
of cg')de and data structures that the system uses to manage all the processes.

I?nglementing the, process abstraction requires close cooperation between
both the,lon-level hardware and the operating system software. We will explore
how this works, and how 3pplications can create and control their own processes,
in Chapter 8.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern
systems a process can actually consistéf multiple cxéfution units, called threads,
each running in the context of th¥ process and sharing the same code and global
data. Threads are an incréasingly important programming model because of the
requirement for concurrencyin network servers, because-it is easier to share data
between multiple threads than between multiple procesdses, and because threads
are typically more efficient than processes. Multi-threading is also one way to make
programs-run faster-when multiple processors are available, as we will discuss in
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Section 1.9.2. You will learn the basic concepts of concurrency, including how to .
write threaded programs, in Chapter 12. E

1.7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the 111us1on that it
has exclusive use of the main memory. Each process has the same uniforr yiew of 1
memory, Which is known as its virtual address space. The virtual address space for K
Linux processes is shown in Figure 1.13. (Other Unix systems use a similar layout ) B
In Liniix, the topmost region of the address space is Teserved fot code and datd
in the operating system that is commeon to all processes. The lower fegion of the 3
address space holds the cdde and data defined by’the user’s procéss. Note thit _
addresses in the figure incréase from the battom to'the*top. s 1
The virtual address space seen by each process consists of a number of well:
defined areas, each with a specific purpose: You will learn more about these areas ;
later in the book, but it will be helpful to look briefly at each, starting with the

lowest addresses and working our way up: g

¢ Program code and data. Code begins atthe samefﬁxed address for all processes 3
followed by data locations that correspond to glpbal C variables. The code and B
data-ayeas are initiglized directly, from the contents of an executable ob]ect h
file—in,our case, the hello executable. You will learn more-about this part of N
| the address spage when we study linking and loading in Chapter 7.

o Heap. The code and data areas are followed immediatelyby the:run-time heap.
Unlik& the code and data areas, whichare fixed in size once the process begins 4

s




running, the heap expands and contracts dynamically at run time as a result
of calls to Cstandard library routines such as malloc and free. We wiil study
heaps in detail when we learn about managing virtual memory in Chapter 9.

o Shared libraries Near the middle of the address space is an area that holds the
code and data for shared libraries such as the Cstandard library and the math
library. The notion of a shared library is a powerful but somewhat difficult
concept. You will learn how they work when we study dynamic linking in
Chapter 7.

¢ Stack. At the top of the user’s virtual address space is the wuser stack that
the compiler uses to implement function calls. Like the heap, the user stack
expands and contracts dynamically during the execution of the program, In
particular, each time we call a function, the stack grows. Each time we return
from a function, it contracts. You will learn how the compiler uses the stack
in Chapter 3.

e Kernel virtual memory. The top region of the address space is reserved for the
kernel. Application programs are not allowed to read or write the contents of
this area or to directly call functions defined in the kernel code. Instead, they
must invoke the kernel to perform these operations.

For virtual memory to work, a sophisticated interaction is required between
the hardware and the operating system software, including a hardware translation
of every address generated by the processor. The basic idea is to store the contents
of a process’s virtual memory on disk and then use the main memory as a cache
for the disk. Chapter 9 explains how this works and why it is so important to the
operation of modern systems,

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every I/O device,
including disks, keyboards, displays, and even networks, is modeled as a file. All
input and output in the system is performed by reading and writing files, using a
small set of system calls known as Unix /0.

This simpic and elegant notion of a file is nonetheless very powerful because
it provides applications with a uniform view of all the varied I/O devices that
might be contained in the system. For example, application programmers who
manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same prograni will run on different systems that use
different disk technologies. You will learn about Unix I/C in Chapter 10.

1.8 Systems Communicate with Other Systems
Using-Networks

Up to this point in our tour of systems, we have treated a system as an isolated
collection of hardware and software. In practice, modern systems are often linked
to other systems by networks. From the point of view of an individual system, the

Section 1.8 Systems Communicate with Other Systems Using Networks
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network can be viewed as just another I/O device, as shown in Figure 1.14. When
the system copies a sequence of bytes from main memory to the network adapter,
the data flow across the, network to another machine, instead of, say, to a local
disk drive. Similarly, the system can read data sent from other machines and copy
these data to its main memory.

With the advent of global networks such as the Internet, copying information
from one machine to another has become one of the most important uses of
computer systems. For example, applications such as email, instant messaging, the
World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.
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Figure 1.15 Using telnet to run hello remotely over a network.

Returning to our hello example, we could use the familiar teinet application
to run hello on a remote machine-Suppose we use a telnet client Tunning on our
local machine to connect to g telnet server on a remote machine. After we log in
to the remote machine and run a shell, the remote shell is waiting to receive an
input command. From this point, running the hello program remotely involves
the five basic steps shown in Figure 1.15. L )

After we type in, the hello string to the telnet client and hit the enter key,
the client sends the string to the telnet server. After the telnet server receives the
string from the network, it passes it along to the remote shell program. Next, the
remote shell runs the hello program and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to
the telnet client, which prints the output string on our local terminal.

'This type of exchange between clients and servers is. typical of all network
applications. In Chapter 11 you will learn how to*build network applications and
apply this knowledge to build a simple Web server.
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1.9 Important Themes

me————

This concludes our initial whirlwind tour of systems. An important idea to take
away from this discussion is that a system is more than just hardware. It is a
collection of intertwined hardware and systems software that must cooperate in
order to achieve the ultimate goal of running application programs. The rest of
this book will fill in some details about the hardware and the software, and it will
show how, by knowing these details, you can write programs that are faster, more

. reliable, and more secure.
‘ To close out this chapter, we highlight several important concepts that cut :

| across all aspects of computer systems. We will discuss the importance of these
concepts at multiple places within the book.

1.9.1 Amdahl's Law i

Gene Amdahl, one of the early pioneers in computing, made a simple but insight-
ful observation about the effectiveness of improving the performance of one part
of a system. This observation has come to be known as Amdahl’s law. The main
idea is that when we speed up one part of a system, the effect on the overall sys-
tem performance depends on both how significant this part was and how much
it sped up. Consider a system in which executing some application requires time

Toi4. Suppose some part of the system requires a fraction « of this time, and that
we improve its performance by a factor of k. That is, the component originally re-

| quired time aT,4, and it now requires time (aTy4)/ k. The overall execution time
would-thus be

o e

Thew = (1~ a)Tya + (@Tua)/ &
= Toul(1 — &) + /k]
From this, we can compute the speedup S = Tyq/ Tew a5

§— 1
A-a) +a/k

As an example, considef the case where a patt of the system that initially
’ consumed 60% of the time (e = 0.6) is sped up by a factor of 3 (k = 3). Then
I we get a §peedup of 1/[0.4 + 0.6/3] = 1.67x. Even though we madé a'substantial
’ improvement to a major part of the system, our net speedup was significantly less
than the speedup for the one part. This is the major insight of Amdah!’s law—
io significantly speed up the entire system, we must ilprove the speed of‘a very
large fraction of the' overall system.

I

B

i
o |

. Suppose you work as a truck driver, and you have been hired to carry a load of
! potatoes from Boise, Idaho, to Minneapolis, Minnesota, a total distance of 2,500 :
kilometers. You estimate you can average 100 km/hr driving within the speed

limits, requiring a total of 25 hours for the trip.

Nww;ﬂ; ‘
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A. You hear on the news that Montana has just abolished ifs speed limit, which
- constitutes 1,500 km of the trip. Your truck can travel at 150 km/hr. What
will'be your speedup for the triph

B. "You can buy a new turbocharger for your truck at www.fasttrucks.com. They
stock a variety of models, but thé faster you want to go, the mbre it will cost.

How fast must 'you travel thrbugh Montana to gét an overall speedup for
¥ your trip 8f 1.67x?

The marketing depart’tnent at your company has promised your customers that
the nekt software release will show a 2x performance improvement. You have
bee¢n adsigned the task of delivering on that promise. You have determined that
only 80% of the system can be improved. How much (i.e., what value of k) would
you need to improve this part to meet the overall performance target?

»

, One interesting special case of Amdahl’s law is to consider the effect of setting
k to oo. That is, we are able to take some part of the system and speed it up to the
point.at which it takes a negligible amount of time. We then get

1
S = (1.2)

So, for example, if we can speed up50% of the system to the point where it requires
close to no time, our net speedup will still only be 1/0.4 =2.5x.

Amdahl’s law describes a general principle for improving any process. In
addition to its application to speeding up computer systems, it can guide a company
trying to reduce the cost of manufacturing razor blades, or a student trying to
improve his or her grade point average. Perhaps it is most meaningful in the world
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i of computers, where we routinely improve performance by factors of 2 or more
! Such high factors can only be achieved by optimizing large parts of a system?

i 2 '
t 1.9.2 Concurrency and Parallelism

—rn -
N

Throughout the history of digital computers, two demands have been constant
forces in driving improvements: we want them to dg mere, and we want them to
run faster. Both of these factors improve when the processor does more things at
! once, We use the term concurrency to refer to the generai concept of a system with
& multiple, simultaneous activities, and the term parallelism to refer to the use of
1 concurrency to make a system run faster. Parallelism can be exploited at multiple
I levels of abstraction in 2 computer system. We highlight three levels here, working
from the highest to the lowest level in the system hierarchy.

L Thread-Level Concurrency

' Building on'the process abstraction, we ark able to devise systams where multiple

{ programs execute at the same time, leading to concurrency. With threads, we
can even have multiple control flows executing within a single process. Support

q for concurrent execution has been found in computer systems since the advent

of time-sharing in the early 1960s. Traditionally, this concurrent execution was
only simulated, by having a single computer rapidly switch among its executing
| processes, much as a juggler keeps multiple balls flying through the air. This form
1 of concurrency allows multiple users to interact with a system at the same time,
' such as when many people want to get pages from a single Web server. It also
- allows a single user to engage in multiple tasks concurrently, such as having a
¥ Web browser in one window, a word processor in anothgr, -and streaming music
| playing at the same time. Until recently, most actual computing was done by a
! single processor, even if that processor had to switch among multiple tasks. This

! configuration is known as a uniprocessor system. ,
o When we construct a system consisting of multiple processors all under the
¢ control of a single operating system kermel, we have a multiprocessor system.
Such systems have been available for large-scale computing since the 1980s, but
they have more recently become commonplace with the advent of multi-core
processors and hyperthreading. Figure 1.16 shows a taxonomy of these different

i processor types.:

Multi-core processors have several CPUs (referred to as “cores”) integrated
onfo a single integrated-circuit chip. Figure 1.17 illustrates the organization of a

Figure 1.16 All processors
] Categorizing different B ' : Mumpmce;mm
processor configurations. :
o Multiprocessors are :
! becoming prevalent Uniprocessors
with the advent of multi- .
core processors and .

hyperthreading.
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Figure 1.17 Processor package
Multi-core processor

organization. Four
processor cores are
integrated onto a single
chip.

1
typical multi-core processor, where the chip has:four CPU cores, each with its
own L1 and L2 cachés, and with each L1 cache split into two parts—one to hold
recently fetched instructions and one to hold data. The cores share higher levels of
cache as well'as the interface to miain memory. Industry experts predict that they
will be able to have dozens, and ultimately hundreds, of cores on a single chip,

Hyperthreading, sometimes called simultaneous multi-threading, is a tech-
nique that allows a single CPUj t¢ execute multiple flows of control. It involves
having multiple copies of some of the CPU hardware, such as program counters
and register-files, whlle:ﬁavui’g only single copies of other parts of the hardware,
such as the‘unitsthat perform floating-point arithimetic. Whereas a cenventional
processor requires hround 20,000 clock cycles to shift between different-threads,
a hyperthreaded processor decides which of its threads to execute on a cycle-by-
cycle basis. It enables the CPU to take'better advantage of its processing resources.
For example, if one thread must wait for some data to be loaded into a cache, the
CPU can proceed with the execution of a differbnt thread. As an example, the In-
tel Core i7 processot can have each core executing two threads, and so a four-core
system can actually execute eight threads in parallel.

The use of-multiprocessitig can improve system performance in two ways.
First, it reduces the need to simulate’concurrency when performing multiple tasks.
As mentioned, even a personal computer being used by a single person is expected
to perform many agctivities concurrently. Second, it can run a single application
program faster, but only if that program is expressed in terms of multiple threads
that can effectively execute in parallel. Thus, although the principles of concur-
rency have been formulated and studied for over 50, years, the advent of multi-core
and hyperthreaded systems has greatly increased the desire to find ways to write
application programs that can exploit the thread-level parallelism available with

25
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the hardware. Chapter 12 will look much more deeply into concurrency and.its

l! use to provide a sharing of processmg resources and to enable ‘more parallelism
in program execution. g -

Instruction-Level Parallelism

At a much lower level of abstraction, modern processors can execute multiple
instructions at one time, a property known as instruction-level parallelism. For
¢
example, early microprocessors, such as the 1978-vintage Intel 8086, required
multiple (typically 3-10) clock cycles to execute a single instruction. More recent
¥ processors can sustain execution rates of 2-4 instructions per clock cycle. Any
given instruction requires much longer from start to finish, perhaps 20 cycles or
more, but the processor uses a number of clever tricks to process as many as 100
instructions at a time. In Chapter 4, we will explore the use of pipelining, where the
| actions,required to execute an instriction are partitioned into different steps and
the processor hardware is organized as a series of stages, each performing one
E of these steps. The stages can operate in parallel, working on different parts of
different instructions. We will see that a fairly simple hardware design can sustain
an execution rate close to 1 instruction per clock cycle.

Processors that can sustain execution rates faster than 1 instruction per cycle
are known as superscalar processors. Most modern processors support superscalar
operation. In Chapter 5, we will describe a high-level model of such processors.
i We will see that apphcatwn Programmers can use this model.to understand the

performance of their programs They can then write programs such that the gen-
erated code achigves higher degrees of instruction-level parallelism and therefore
A runs faster. 1

i Singlé-Instruction, Multiple-Data (SIMD) Parallelism

At the lowegt level, many modern processors havespecial hardware that allows
a single instruction to.cause multiple,operations to be performed in parallel, a
mode known as single-instruction, multiple-data (SIMD) parallelism. For example,
recent generations of Intel and AMD, processors have instructions that can add 8
pairs of single-precision floating-point-numbers (C data type £1oat) in parallel.
These SIMD instructions are provided mostly, to speed up applications that
process image, sound, andvidgo data. Although some,compilers attempt-to auto-
matically extract SIMD paraltelism.from C programs,a more reliable method is to
write programs using special veéror, data types supported in compilers such as Gee,
We describe this style of programming in Web Aside opT:sIMD, as a supplement to
the more general presentation,on program optimization found in Chapter 5. 4

L

1.9.3 The Importance of Abstractions iri Computer $y§téms

’ The use of abstractions is one of the most important concepts in computer sciencé.
For example, one aspect of ‘good programming practice is to formulate a simple
application program interface' (API) for a set of functions that allow programmers
to use the code without having to delve into its inner workings. Different program-
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Figure 1.18 Virtual machine
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ming languages provide different forms and levels of support for abstraction, such
as Java class declarations and C function prototypes.

We have already been introduced to several of the abstractions seen’in com-
puter systems, as indicated in Figure 1.18. On the processor side, the instruction set
architecture provides an abstraction of the actual processor hardware. With this
abstraction, a machine-code program.behaves as if it were executed on a proces-
sor that performs just ope instruction at a time. The underlying hardware is far
more ¢laborate, executing multiple instryctions in parallel, but always in a way
that is consistent with the simple, sequential model. By keeping the same execu-
tion model, different processor implementations can execute the same machine
code while offering a range of cost and performance.

On the operating system side, we have introduced thre¥ abstractions: files as
an abstraction of I/O devices, virtual memory as an abstraction of program mem-
ory, and processes as an abstraction of a running program. To these abstractions
we add a new one: the virtual machine, providing an abstraction of the entire
computer, including the operating system, the processor, and the programs. The
idea of a virtual machine was introduced by IBM in the 1960s, but it has become
more prominent recently as a way to manage computers that must be able to run
programs designed for multiple operating systems (such as Microsoft Windows,
Mac OS X, and Linux) or different versions of the same operating system.

We will return to these abstractions in subsequent sections of the book.

1.10 Summary

A computer system consists of hardware and systems software that cooperate
to run application programs, Information inside the computer is represented as
groups of bits that are interpreted in different ways, depending on the context.
Programs are translated by other programs into different forms, beginning as
ASCII text and then translated by compilers and linkers into binary executable
files.

Processors read and interpret binary instructions that are stored in main mem-
ory. Since computers spend most of their time copying data between memory, [/O
devices, and the CPU registers, the storage devices in a system are arranged in a hi-
erarchy, with the CPU registers at the top, followed by multiple levels of hardware
cache memories, DRAM main memory, and disk storage. Storage devices that are
higher in the hierarchy are faster and mote costly per bit than those lower in the
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hierarchy. Storage devices that are higher in the hierarchy serve as caches for dé-

vices that are lower in the hierarchy. Programmers can optimize the performance
i of their C programs by understanding and exploiting the memory hierarchy. «
' The operating system kernel serves as an intermediary between theapplica-

tion and the hardware. It provides three fundamental abstractions: (1) Files are
": abstractions for /O devices. (2) Virtual memory is an abstraction for both main
' memory and disks. (3) Processes are abstractions for the processor, main memoty,
! and IO devices; - -
: Finally, networks provide ways for computer systems to communicate with
ﬂ one another. From the viewpoint of a particular system, the nétwork is just another
i /O device.

Kl
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Solutions to Practice Problems

Solution to Problem 1.1 (page 22)
This'problem illustrates that Amdahl’s law applies to more 'than just computer

systems. “!
P 1

A. In terms of Equation 1.1, we have & = 0.6 and k = 1.5. Mgre directly, travel-
t ing the $,500 kilometers thrgugh Montana will require 10 hours, and the rest
! of the trip also requires 10 hours. This will give a speedup, of 25/(10+10) =
§
1

1.25x%. E)

B. In térms of Equation 1.1, we have o =0.6, and we réquire § = 1.67, from
{ which we can solve for k. More directly, to speed up the trip by 1.67x, we
I must decrease the overall time to 15 hours. The parts outside of Montana
will still require 10 hours, so we must drive through Montana in 5 hours.
This requires traveling at 300 km/hr, which is pretty fast for a truck!

Solution to Problem 1.2 (pade 23¥

' Amdahl’s law is best understood By working through some examples. This one

I requires you to look at Equation1.1 from an unusual perspective, ’
This problem'is a simple application of the’equation. You are given § = 2 and

o = 0.8, and you must then solve for k:

-'J
! o 1r

2 =
(= 0.8) + 0.8/k
: i ” 04 +1.6/k=1.0
k=267 ;

e s
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- [Program Structure

nd Execution

- ur exploration of computer systems starts by studying the com-
puter itself, comprising a processor-and a memory subsystem. At
.4 the core, we require ways 1o represent basic data types, such as
%:appioyimations to integer and real arithmetic. From there, we can con-
sider how machine-level instructions manipulate data and how a com-
. apilet translates’C programs into these instructions, Next, we study several
.4, -Toéthods of implementing a processor to gain a better understanding of
T ‘f_hi:}w hardware resources are used to execute instructions. Once we under-
stand compilers and machine-level code, we can examine how to maxi-
‘rguze program performance by writing C programs that, when compiled,
.achieye. the maximum possible performance. We conclude with the de-
Sigri of the memory subsystem, one of the most complex components of
aodern computer system.
This part of .the book will give you a deep understanding of how

T7--applitatiomprograms are represented and executed. You will gain skills
» that help you ) rite programs that are secure, reliable, and make the best
Aise“of the computing resources.
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Modem computers store and process information represented as two-valued
signals. These lowly binary digits, or bits, form the basis of the digital revo-
] lution. The familiar decimal, or base-10, representation has been in use for over
i 1,000 years, having been developed in India, improved by Arab mathematicians in
i the 12th century, and brought to the West in the 13th century by the Italian mathe-
matician Leonardo Pisano (ca. 1170 to ca. 1250), better known as Fibonacct. Using
decimal notation is natural for 10-fingered humans, but binary values work better
when building machines that store and process information. Two-valued signals
can readily be represented, stored, and transmitted—for example, as the presence
or absence of'a hole i & punclied card, 454 high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
' for storingd and performing computations on two-valued signalsjs very simple and
reliable, enabling manufacturers to integrate millions,-or even billions, of such
circuits on a single silicon chip. oy 1

In isolation, a single bit is not very-uséful. When we group'bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate real numbers.

We consider the three most important representations of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two’s-complemerit encodings.are the mdst common way to
represent signed integers, that is, numbers that may be either positive or negative.
4 Floating-point encodings are a base-2 version of scientific notation for represent-
ing real numbers. Computers implement arithmetic operations, such as addition
and multiplication, with these different 31|'epresentations, similar to the correspond-
ing operations on integers and real numbers.

Computer repreSentationscuse’a limitedinumber of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep-
resented. This can lead to some surprising results. For example, on most of today’s
computers (those using a 32-bit representation for data type int), computing the
expression

e

X

200 * 300 * 400 * 500

yields —884,901,888. This runs counter to the properties of integer arithmetic—
computing the product of a set of positive numbers has yielded a negative result.
On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
ﬁ and commutative, so that computing any of the following C expressions yields
i —884,901,888:

(500 * 400) % (300 * 200)
ll ((500 * 400) * 300) = 200
((200 * 500) * 300) * 400
400 % (200 * (300 * 500))

\
L —— e m
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The computer might not generate the expected result, but at least it is con-
sistent!

Floating-point arithmetic has altogether different mathematical properties.

The product of a set of positive numbers will always be positive, although over-
flow will yield the special value +cc. Floating-point arithmetic is not associative
due to the finite precision of the representation. For example, the C expression
(3.14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3.14+(1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
versus floating-point arithmetic stem from the difference in how they handle the
finiteness of their representations—integer representations can encode a compar-
atively small range of values, but do so precisely, while floating-point representa-
tions can encode a wide range of values, but only approximately.
- Bystudying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This understanding is critical to writing programs that work correctly
over the full range of numeric values and that are portable across differerit combi-
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon-
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people’s systems. This puts a higher level of obligation on programmers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with-these representations as you progress
into machine-level programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason about.number representations.

We derive several ways to perform arithmetic operations by directly ma-
nipulating the bit-level representations of numbers. Understanding these tech-
niques will be important for understanding the machine-level code-generated by
compilers in their attempt to optimize the performance of arithmetic expression
evaluation.

Qur treatment of this material is based on a core set of mathematical prin-
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations, We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a'clear understanding of how computer arithmetic relates to the more
familiar integer and real arithmetic.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java.anguage definition, on the other hand, ¢reated a new set of
standards for numeric representations and operations. Whereas the C standards
are designed to allbw a wide range of implementations, the Java standard is quite
specific on the formats and encodings of data. We highlight the representations
and operations supported by Java at several places in the chapter.
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2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blacks of
8 bits, or bytes, as the smallest addressable unit of memory. A- machine-level
program views memory as a very large array of bytes, referred to as virtial
memory. Every byte of memory is identified by a unique number, known as its
address, and-the set of all possible*addresses is known as the virtual address space.
As indicated by its name, this virtual address space is just a‘conceptial image
presented to the machine-level program. The actual implementation (presented
in Chapter 9) uses a combination of dynamic random -access memory (DRAM),
flash memory, disk storage, special hardware, and operating system software to
provide the program with what appears to be a monolithic byte array.

In subsequent chapters,.we will cover how the compiler and run-time system
partitions this memory space into more'manageablewunits:to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to allgcate and manage the storage for different
parts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C—whether it.points toran integer,

a structure, or some other program gbject—is the virtual address of the first byteé

of some block of storage. The C compileT also associates type information with

each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointer dependingion the type of

L that value. Although the' Crcompiler maintains:this type information, the actual .
| machine-level program it generates has no information about data types. It simply
f treats each program object as ablock of bytes and the program itself as a sequence
| j of bytes. ;
T
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Aside The evoiution of the C programming languager

a5

As-was described in an aside on page 4,'the C programming langhage wa'sf first developed by Dennis
Ritchié df Bell Laboratories for,use with the Unix operating system {also developed at'Bell Labs). At
the time, most system programs, such as operating systems, had to be written largely in assembly code
in order tazhave access to the low-Tevel representations.of different data*types: -\For“example it was
not feasible to write a membry allocatoy, such as is provided by,the malloc library function, in other
high-1ével languages of thatera. i

: The original Bell Labs version of C was documented in the first edition of the book by.Brian
, Kernighan and Dennpis thchxe [60] Over time, o hés evolved through the efforts of several standard-
i ization groups. The ﬁrst major revision of the ongmal Bell Labs ¢ led to the AN SI Cstandard in 1989,

by a group workmg under the auspmes of. the Amencan Nauonal Staudards Insntute ANSICwasa
ma] or departure from Bell Lgbs C, especxally‘m the way functions'are declared ANSI C s described.

i the.second, edition of Kernighan and Ritchid's book [61} which'is stlli considered one of the best,

i referepces on C

i The, Internatlonal ,Stagdards Orgamzatlon took over :e5pon515111ty for standard:zmg the C lan-
% Suage, adoptmg a versigh tha; was, sugstannall»y the samg, as ~ANSI C in 1990 and- hence is referred to

as “ISO (390 i

f;[’h;s same orgamzatlon sponsored an updatmg of thq,language in 1999 yielding =180 C99.” Among
other T}imgslthxs vegsion 1n1;roduced somg new data gypes and p;qv1ded supEort for text strings requiring
c]; araeters not fom;d in the Enghsh lapguage A moregeent s s;axld"and was approved in 2011, and hence
;I8 named ¥1SO C11, ; agam addmg more data types and'features. Most of these recent additions have
. -been backward compci?zble mpamﬁg that prograing wyilten accordlng t? the earher standard (at least
as far back-as ISQ C90) will havo the same béhdvior when complled accordmg;o the newer standards.
Tfle,_GNlj Compﬂer CoLlectlo (Gec) can compile progrgxms Aocézdmg to the conveptions of seyeral
d1fferentaveysxons of the ol lgnguagé ba§ex‘;£ on d1ff@rent gommand—hnc opgpns, as shown in Figure 2.1.
For example “to COII]E11§ program prog +C acco;dldg t,o‘TSO C11 we c,guld gx,ve the.command line

.l:l.m%xmgca -’stq:clijprog g e

N

E * &

ﬁfhe bﬁtmns -ansi and -%d—caé have ldeﬁtical effectr——the tods id compiled ﬁ&:ordmg to the ANSI
or ISO (f50 st@ndal:d (C90 is sometlmes referred to as “(389 7 sirice’its standardlzatlon effort began ifi
1989 b} 'I'h@ optmn skd—qﬁ@ causes the compre.r o Toll&y™ the 180 C9Y cofiventidn.

" JAs of the wmtmg of this book; &hen no oPnon is SPEClﬁf:d the f)rogram vaﬁ be complled according
tQ a versuoﬁ B C based on 1SO° C90 it mcludmg soine features* of C99 “some of C11, some of
C++ and others specific to gec..The GNU project, is déveloping a-version that combines 1SO C11,
plus.other features, that cad bq:‘speclﬁed with the command-ling optiop_~stdzgnuii. (Currently, this
vxmplementatxoq s mcomplete’") This will'becorne the-default versiof.

*a

o £
C version e command-line option
GNU 89 none, -std=gnuBy

ANS], ISO C90 -ansi, -std=c89

ISO C99 -~atd=c99

18O C11 -std=cll

Figure 2.1 Specifying different versions of C to Gce,
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! Newto C?' The role of pointers in €. o w 3
| Pointérs dre' a centrdl feature’ of T, 'Ihey“,,p‘rowde the mechanism for reférencirig elements of data j
i structures, including’arrays Just like'a variable; a pointer ‘has two aspects: its value and'its-fype. The . I
value indicates the location ofsome objecty whlledts,typeandlcates whal Kind-of object (e, g Jinteger or | )
floating” b01nt number) is stored at thét location. . a™ 4 !

Truly'understanding pointers reqmres examining their représefitation andamplementatlon at the .
machine level. This will be amajor focusin Chapter 3, culmmatmg inanin-depth presentatlon in Section
3 101" : “
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21.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 00000000,
to11111111,. When viewed as a decimal integer, its value ranges from 01 t0 255.4.
Neither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation it is tedious to convert to and from
bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadeciinal (or simply “hex™) uses digits ‘0’ through ‘9" along with characters
‘A’ through ‘F’ to represent 16 possible values. Figure 2.2 shows the decimal and
biliary values associated with the 16 hexadecimal digits. Written in hexadecimal, '
the value of a single byte can rangé from 0044 to FFy. "
In C, fiumeric constants starting with Ox or 0X are interpreted as being in
hexadecimal. The characters ‘A’ through ‘F’ may be written in either upper- or
lowercase. For example, we could write the number FA1D37B;¢ as 0xFA1D37B, as
0xfald37b, or even fnixing upper- and lowercase (e.g., 0xFalD37b). We will use
the C notation for representing hexadecimal values in this book. A
A common task in working with machine-level programs is to manually con- !
‘, vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that show‘nyin'Fi ure 2.2. One simple trick for doing the conver-
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.

==

s

i Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 Ol01 0110 0111
. Hex digit 8 9 A B C D E F
E Decimal value 8 9 10 1 12 13 14 15
[

Binary value 1000 1001 1010 1011 1100 1101 i110 _1:111

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.
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The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three.

For example, suppose you are given the number 0x173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follows:

Hexadectmal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100

=~

This gives the binary representation 0001011100111010010011060.

Conversely, given a binary number 111100101011G110110011, you convert it
to hexadecimal by first splitting it into groups of 4 bits each. Note; hoWever, that if
the total number ot bits is not 4 multiple of 4, you'should make the leffmost group
be the one with fewer than 4 bits, effectively padding the iumber with leading
zeros. Then you tfanslate each group of b1ts into tHe corresponding hiexadecimal

digit:
Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 ¢ A D B 3

Perfonn the followmg number conversions:

A. 0x39A7F8 to binary

B. binary 11001001011'11011 to hexadecimal

C. 0xD5EAC to binary .

D. binary 1001101110011110110101 to hexadecimal

When a value ,Ir‘is a power of 2, that'is, x = 2" for some honnegative integer
#, we can readily writé x in hexadecimal form by remembeéring that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal Uigit O
represents 4 binary zeros. So, for n written in the form i + 4j, where 0 < i <3,
we can write x with a leading hex digit of 1 {i = 0), 2 (i = 1,4 (= 2) or 8
(i =3), followed by j hexadecimal 0s. As an example, for x =2,048 = 21, we
bhave n =11=3 + 4 - 2, giving hexadecimal representation 0x800.

F111 m the bIank entnes in the fo]lowmgtable giving the decimal and hexadecimal
representations of different powers of 2:
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n 2" (decimal) 2" (hexadecimal) o
9 512 0x200
19 R
16,384
0x10000
17 _ ':
S 32
0x80 i

— —
¥

Converting between decimal and hexadecimal rgpresentations requires using
multiplication or division to handie the general case. To convert a decimal num-
ber x to hexadecimal, we can repeatedly divide x by 16, giving a quotient g and a
remainder r, such that x = ¢ <16 . We then use the hexadecimal digit represent-
ing r as the least significant digit-and generate the remaining digits by repeating
the process on g. As an example, consider the conversion of decimal 314,156: '

1314,156 = 19,634 - 16'+ 12 () i
19,634 =1,227-16 +2  (2) * ,
1,227=76-16 + 11 (8)
76=4-16 4 12 ©)
4=0.16+4 @

From this we can read off the hexadecimal representation as 0x4CB2C.

Conversely, to convert a hexadecimal number to decimal, we can multiply
cach of the hexadecimal digits by the appropriate power of 16. For example given
the number 0x7AF, we compute its decimal equivalent as-7 - 162+ 10-16+15=
7-256+10-16 +15 = 1,792~ 160 + 15 =1,967. '

A smgle byte can, be representecl by 2 hexadecnnal dlglts Fill in the missing
entries in the followlng table, giving the decimal, binary, and hexadecimal values

L T T T, D N L VT

of different byte patterns: _ . J
Decimal Binary I‘-IexaécLim’al
0 00000000 000
167 R |
62
188
00110111 — e 4
1000 1000 —

11110011 —— .
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- Tot converting larger valdesbeétween decimal and hexademmal itis besf to i0¢ gomputer or calculitor:

*searéh enguiqs with quﬁr:es ,suclr as W’* el
‘5».- " ‘5' - & © " P
S R Q%hvert*ﬁiabcd 1o 'Eietlfna“l td ) b *fm 34 Mg e
o . . LTI S v Fj&;h%?;ﬁ?‘, # é‘, o i B o 5_
5 - B o & fﬁ,a‘ e ® s
123*‘11@1 he}f I A A k. %
W own o wi " o, "
Wm\w T T U Mf' i 'ﬁ% ) “ v £ %, : i EAN w
Decimal Binary = Hexadecimal
[ [, SV 0xB2
i OxAC
0xE7

W"lthout convertmg the numbers to deCImal or bmary, try to solve the fo]lowmg
arlthmetlc roblems giving | the answers in hexadecimal. Hint: Just modify the
methods you use for perfqrmmg decimal addition and subtraction to use base 16.

A. 0x503¢c+ 0x8 =

B. 0x503c — 0x40 =

C. 0x503c+ 6{4!= — et
D. 0x50ea — 0x503¢c =

2.1.2 Data Sizes

Every computer has a word size, indicating the nominal Size of pointer data, Since
a virtual address is encoded by such a word, the most important system parareter
determined by the word size is the maximumm size of the virtual address space. That
is, for a machine with a w-bit word size, the virtual addresses can range from 0 to
2% — 1, giving the program access to at most 2" bytes..

In recent.years, there has been a widespread shift from machines with 32-
bit word sizes to those with word sizes of 64 bits. This occurred first for high-end
machines designed for large-scale scientific and database applications, followed
by desktop and laptop machines, and most recently for the processors found in
smartphones. A 32-bit word size limits the virtual address space to 4 gigabytes
(writtén 4 GB), that is, just over 4 x*10° bytes. Scaling up to a 64:bit word size
leads to a*virtual address space of 16 exabytes, 6rarourid 1.84 x 1017 bytes.

do the wérkm Thereare nUmeroys | tools,that can da this. One s:mple way is to use any of the standard ¢

R S Y
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Most 64-bit machines can also run programs compiled for use on 32-bit ma-
; chines, a form of backward compatibility. So, for example; Whena programprog.c
is compiled with the directive

L. T P VO T T

o ke

g

linux> gcc —m32 prog.c

S S

v then this program will run correctly on either a 32-bit or a 64-bit machine. On the ;
other hand, a program compiled with the directive ]

linux> gecec -m6é4 prog.c

il

will only run on a 64-bit machine. We will therefore refer to programs as being
either “32-bit programs” or “64-bit programs,” since the distinction lies in how a ]
| program is compiled, rather than the type of machine on which it runs. .
| Computers and compilers support multiple data formats using different ways 4
4
L.

f to encode data, such as integers and floating point, as well as different lengths.
For example, many machines have instructions for manipulating single bytes, as
‘ well as integers represented as 2-, 4-, and 8-byte quantities. They also support

: floating-point numbers represented as 4- and 8-byte quantities.
The C language supports multiple data formats for both integer and floating-
point data. Figure 2.3 shows the number of bytes typically allocated for different C
i data types {We discuss the relation between what is guaranteed by the Cstandard
! versus what is typical in Section'2.2. ) The exaét numbers of bites for some daia
types depends on how the program is cémpiled. ‘We show sizes for typical 32-bit
and 64-bit programs. Intéger data can be either sighed, able to represent negative;
| zero, and positive values, or unsigned, only allowing nonnegative values. Data
type char represents a single byte. Although the name char derives from the fact
that it is used to store a single character in a tekt string, it can also be used to store
integer values. Data types short, int, and long are intended-to provide a range of

C declaration Bytes

! Signed Unsigned 32-bit  64-bit

! [eigned] char  unsigned char A 1

i short Jnsigned short 2 2
int unsigned 4 4
long unsigned long 4 8

i int32_% uint32_t 4 4

i int64_t uint64_t 8 8
char’* 4 8.
float 4 4 T

: double 8 8

L]
4

' Figure 2.3 Typical sizes (in bytes) of basic C-data types. The number of bytes allocated
varies with-how the program is compiled. This chart shows the values typical of 32-bit,
and 64-bit programs.
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New to C? Declaring pointers . . .
For any data type T, the declaration S . &
- . kg # « i .,
Y .. Dtk

indicates that p is a pointer variable, pointing to an object of type T. For example,
A 0 ## t & “ - #
chat *p}, : o :
& ) £ s‘.’l-

is the declaration of 4 pointer,to'an object of type char.

L Y it

sizes. Even when compiled for 64-bit systems, data type int is usually just 4 bytes,
Data type long commonly has 4 bytes in 32-bit programs and 8 bytes in 64-bit
prograrms. ,

To avoid the vagaries of relying on “typical” sizes and different compiler set-
tings, ISO C99 introduced a class of data types where the data sizes are fixed
regardless of compiler and machine settings. Among these are data types int32_t
and int64_t, having exactly 4 and 8 bytes, respectively. Using fixed-size integer
types is the best way for programmers to have close control over data represen-
tations.

Most of the data types encode signed values, unless prefixed by the keyword
unsigned or using the specific unsigned declaration for fixed-size data types. The
exception to this is data type char. Although most compilers and machines treat
these as signed data, the Cstandard does not guarantee this. Instead, as indicated
by the square brackets, the programmer should use the declaration signed char
to guarantee a 1:byte signed value. In many contexts, however, the program’s
behavior is insensitive to whether data type char is signed or unsigned.

The Clanguage allows a variety of ways, to order the keywords and to include
or omit optional keywords. As examples; all-of the following declarations have
identical meaning:

unsigned long
unsigned long int
long unsigned
long unsigned int

We will consistently use the forms found in Figure 2.3,

Figure 2.3 also shows that a pointer (e.g., a variable declared as being of
type char #) uses the full word size of the program. Most machines also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double, These formats use 4 and 8 bytes,
respectively.

Programmers should strive to make their programs portable actoss different
madchines and compilers. One aspect of portability is to make the.program insensi-
tive to the exact sizes of the different data types. The Cstandards set lower bounds

-3
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on the numeric ranges of the different data types, as will be covered later, but there j
are no upper bounds (except with the fixed-size types). With 32-bit machines and ’l
32-bit programs being the dominant combination from around 1980 until around 3
2010, many programs have been written assuming the allocations listed for 32- %
bit programs in Figure 2.3. With the transition to 64-bit machines, many hidden h
word size dependencies have arisen as bugs in migrating these programs to new .
machines. For example, many programmers historically assumed that an object ,
declared as type int could be used to store a pointer. This works fine for most
32-bit programs, but it leads to problems for 64-bit programs. |

2.1.3 Addressing“and Byte Ordering

For program objetts that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory. "
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given by the smallest address of the bytes
used. For example,suppose a variable x of type int has address 0x100; that is, the
value of the addréss expression &x is 0x100. Then (assuming data type int has a
32-bit representation) the'4 bytes of x would be stored in memory Iocations 0x100,
0x101, 0%102, and 0x103. !

For ordering the bytes representing an object, there are two common conven- %
tions. Consider a w-bit integer having a bit representation [x,,_1, Xy—2, - - - » X1,%0);
where x,,_y is the most significant bit and x, is the least. Assuming w is a multiple
of 8, these bits can be grouped as bytes, with the most significant byte having bits
(X415 Xu—2s - - - » Xyp_g), the least sighificant byte having bits [x7, xe, . . . , X}, and
the other bytes having bits from the middle. Some machines choose to store the ob-
ject in memory ordered from least significant byte to most, while other machines
store them from most tb least. The former convention—where the least significant
byte comes first—is'referred to as little’endian. The latter convention—where the
most significant byte comes first—is referred'to as big endian.

Suppose the variable x of type int and at address 0x100 has a hexadecimal
value of 0x01234567. The ordering of the bytes within the address range 0x100
through 0x103 depends on the type of machine:

Big endian

0x100 0x101 0ox102 0x103

Little endian

Note that in the word 0x01234567 the high-order byte has hexadecimal value
0x01,.while thelow-order byte has value 0x67.

Most Intel-compatible machines operate exclusively in little-endian mode. On
the other hand, most machinesfrom IBM and Oracle (arising from their acquisi-
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Aside  Origin of “endian”

*

" Here is iow Jonathan Swift, writing in 1726, described the history of the controversy between big and

4 little endiahs: . \z
v f -

. .. Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in 2 most obstinate war
*« for six*and-thirty inoons.past. It began upon the following occasion. It is allowed on all hands, that
the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking.it according to the
reancient practice, happened to-cut one of his fingers. Whereupon the empéror his father priblished
an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs.
The people so highly resented this law, that our histories tell us, there Have been six rebellions raised
f «+ onthat account; wherein one emperor lost his life, and another his crown. These civil commotions
§ were constantly fomented by the monarchs of Blefuscu; and when they were, quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several
times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
Jarge volumes have been.piiblished upon this controversy: but the books of thé Big-endians have
been long férbidden, and the whole party rendered incapable by law of holding employments.
{(Jonathan Swift. Gulliver’s Travels, Benjamin Motte1726:) =

-

- .

In his day, Swift was satirizing the continued conflicts between Englapd (Lilliput) and France (Blefuscu).
Danny Cohen, an early pionger in networking protocéls, first applied, these terms to refer to byte
ordering [24)], and the terminology has been widely adopted.

e W ©
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tion of Sun Microsystems in 2010) operate in big-endian mode. Note that we said
“most.” The conventions do not split precisely along corporate boundaries. For
example, both IBM and Oracle manufacture machines that use Intel-compatible
processors and hence are little endian. Many recent microprocessor chips are
bi-endian, meaning that they can be configured to operate as either little- or
big-endian machines. In practice, however, byte ordering becomes fixed once a
particular operating system is chosen. For example, ARM microprocessors, used
in many cell phones, have hardware that can operate in either little- or big-endian
mede, but the two most common operating systems for these chips—Android
(from Google) and IOS (from Apple)—operate only in little-endian mode.
People get surprisingly emotional about which byte ordering is the proper cne.
In fact, the terms “little endian” and “big endian” come from the book Gulliver’s
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened—Dby the little end or by the big. Just like the egg
issue, there is no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about sociopolitical
issues. As long as one of the conventions is selected and adhered to consistently, .
the choice is arbitrary. i
For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identi-
cal results. At times, however, byte ordering becomes an issue. The first is when
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binary data are communicated over a network between different machines. A
common problem is for. data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being
in reverse order for the receiving program. To avoid such problems, code written
for networking applications must follow established conventions for byte order-
ing to make sure the sending machine converts its internal fepresentation to the
network standard, while the receiving machine converts the network standard'to
its internal representation. We will see examples of these conversions in Chap-
ter 11. u

A second case wheré byte ordering becomes importantis when looking at
the byte sequences representing integer data. This.occurs often when inspecting
machine-level programs. As an example, the following line occurs in a file that
gives a text representation of the machine-level code for an Intel x86-64 processor:

400443: 01 05 43 0b 20 CO add Yeax, 0x200b43 (4rip)

This line was generated by a disassembler, a tool that.determines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3..For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 43 0b
20 00 is the byte-level representation of an instruction that adds a word of data
to the value stored at an address computed by adding 0x200b43 to the turrent
value of the program counter, the address of the next instruction to be executed.
If we take the final 4 bytes of the sequence 43 0Ob 20 00 and write them in reverse
order, we have 00 20 0b 43. Dropping the leading 0, we have the value 0x200b43,
the numeric value written. on the right. Having. bytes appear- in reverse order
is a common occurrence when reading machine-level program representations
generated for little-endian machines such as this one. The natural way to.write a
byte sequence is to have the lowest-numbered byte on the left and the highest on
the right, but this is contrary to the normal way of writing numbers with the most
significant digit on the left and the least on the right. i

A third case where byte ordering becomes -visible is when' programs are
written that circumvent the normal type system. In the C language, this:can.be
done using a cast or a union to allow an object to be referenced according to
a different-data type frdm which it was created. Such-toding tricks are strongly
discouraged for most application programming, but they can be quite Useful and
ever necessary forsystem-level programming,

Figure 2.4 shows C code-that uses casting to access and print the byte rep-
resentations of different program objects. We use typedef.to define data type
byte_pointer asa pointer to an object of type unsigned char. Such a byte pointer
references a sequence of bytes where each byte is considered to be a nonnega-
tive integer. The first routine show.bytes is given the address of a sequence of
bytes, indicated by a byte pointer, and a byte count. The byte count is spectfied as
having data type size_t, the preferred data type for expressing the sizes of data
structures. It prints the individual bytes in hexadecimal. The C formatting direc-
tive %.2x indicates that an integer should be printed in hexadecimal with at least

2 digits.

T T
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1 #include <stdio.h>

2

3  typedef unsigned char *byte_pointer;

4

5 void show_bytes(byte_pointer start, size_t lemn) {
6 int i;

7 for (1 = 0; i < len; i++)

8 printf(" %.2x", start[i]);

9 printf("\n");

10}

11

12 void show_int(int .x)}, {

13 show_bytes{({byte_pointer) &x, sizeof(int));
4}

15

16  void show_float(float x) { ,

17 show_bytes((byte_pointer) &x, sizeof(float));
13}

19 -

20  void show_pointer(void #x) {

21 show_bytes((byte_pointel) &x, sizeof(void *));
22}

Figure 2.4 Code to print the byte representation of program objects. This code
uses casting to circumvent the type system. Similar functions are easily defined for other
data types.

Procedures show_int, show_float, and show_pointer denionstrate how to
use procedure show_bytes to print the byte representations of Cprogram objedts
of type int, float, and void *jrespectively. Observesthat they simply pass shéw_
bytes a pointer &x to their argument x, casting the ointer to be of type unsigned
char *. This cast indicates to the €ompiler that tﬁ‘uﬁﬁrbgram shofild consider the
pointer to be to a’sequence of bytes ratheT than to an object of‘the original data
type. This pointer will then be to the lowest byte address occupied by the object.

These procedures use the C sizeof operator tq defermine the number of bytes
used by the object. In general, the expression sizeof (T) returns the number of
bytes required to store an object of type I, Using sizeof rather than a fixed value
is one step toward writing code that is_p_grfable acrgss different machine types.

We rap the cqde shown, in Figure 2.5 op,seyeral different machines, giving the
results shown in.Figure 2.6. The following maghines were used:

Linux 32 , Intel IA‘J(Z’processor {lurmih"gf Lilnux.

Windows  Intel IA32 processor tunning Windows. v

Sun Sun Microsystems SPARC processor running Solaris, (These machines
are now produced by Oracle.)

Linux 64 Intel xB6-64 processor running Linux.

45
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code/data/show-bytes.c
{ void test_show_bytes(int val) {
I int ival = val;

1

2

3 float fval = (float) ival;
4 int *pval = &ival;

5 show_int (ival);

6 show_float{fval);

7 show_pointer(pval);

8

-

code/data/show-bytes.c

Figure 2.5 Byte representation examples. This code prints the'byte representations

of sample data objects.
1

Machine Value Type Bytés (hex)
Linux 32 12,345 int 39 30 00 00
Windows 12,345 int 39 30 0000
Sun 12,345 ant 00 00 30 39
Linux 64 12,345 int 39 30 00 00
Linux 32 12,345.0 float 00 e4 40 46
Windows 423450, float 00 e4-40 46 n
Sun 12,345.00 float 46 40 e4 00
Linux 64 12.,345.0 float 00 ed 40 46
Linux 32 &ival int * 4 f9 £f bf
Windows kival int *  ,bdcc 2200
Sun &ival int.x ef £f fa Oc
Ligux 64 Zival int#., ‘b8 11 eb ff £f 71 00 00

Figure 2.6 Byte representatiois of different data values. Results for int and float
are identical, except for byte ordering. Pointer values are machine dqpendent.

1

Our argument 12;345 has hexadecimal representation 0x00003039. For the int
data, we get identical results for all machines, except for the byte ordering. In
particular, w&'can see that the least significant byte value of 0x39 is-printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of the float data
are identical, except for the byte értlering. On the other hand, thé pointer values
are completely different. The different machine/operating system configurations
use different conventions for storage allocation. One feature to note is that the
Linux 32, Windows, and Sun mAchines use 4-byte addresses, while the Linux 64
machine uses 8-byte addresses. /
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New to C? Naming data types ‘with typedef

The typedef declaration in C provides a way of giving a name to a data type. This can be a great help
in improving code readability, since deeply nested type declarations can be difficult to decipher,,

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
rather than a variable name. Thus, the declaration of byte_pointer in Figure 2.4 has the samg form as
the declaration of a variable.of type unsigned char; *.

For example, the declaration

M A R O ISR

ST R

typedef int *int_pointer;
¢ int_pointer ip;

¢ definestype int_pointer to be a pointer to an int, and declares a variable ip of this type. Alternatively,
{ we could declare this variable directly as

§ int *ip; s - ]

| I Blein Aol wmm e B shcaemmn Ummroat woe L L) L3
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New to C? Formiatted printing with printf ;

The prmtf "function (along with its cousns £ printf and sprintt) provides a way to print information
with considerable control:over the formattmg details. The first argument is a format string, while any
remaining arguments are values to bé pnnted Within the format string, each character sequence
starting with ‘%’ indicates how to format the next argument. Typical examples include %d to print a
decxmal integer, %f to print a floating-point number, and ¥%c to print a character having the character

' code given by the atgument.
Specifying the formatting of fixed-size data types, such as int_32t, is a*bit more involved, a$ i}
described i the aside on page 67.

W e et e R celre W T e R a w el

AL ST S e n e

LT

B

Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: 0x00003039
for the integer and 0x4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patierns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

¢ ¢ ¢ 0 3 0 3 9

¢0000000000000000011000000111001
s ok ok o ok ok ok ko

4 6 4 0 E 4 o0 0
01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-
point formats.
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New to C" Pointers.and arrays N wt L e e W 7
In function"shétr.bytes (Figure.2:4), we see-thé close’corinégtion 'betweeg point”érs ahdparr"aysf' as‘wfll
be discussed in detail in Section3.8. Weisée that«this functionrhas an argument ‘start oftype‘byte_
. pointex (whiéh' haé been ‘defined to be.4 130mfento~unsj§ne‘d? char), “hut’we sde the array reference °
sta“r‘tgﬂ “on ling 8. Ity C,'we'tan' depeference d pomterbwlth array-notation, and we¢ard reference’ array
elements with pointer notation. In this examp;ef the reference start [i] mdwates that'we want to read }

theb te that ised osmons be ond the 1ocat10n omted to by sStart, J«* - ”as,TA; % & K
: y P Y P )l a:; P i
- " 9 S . it ihamince " P .
e R WG W Y e «..w e gy b L g,mrnmw?m w0 ?:rp,,ﬂ wmﬁm kel i el - I e
Néw to €' 'Poini er creatton and’ de’referenémg - % . : T

£

I lines 13, 17, and 21 of Flgure 2.4 we see-uses-of two operations. thatﬂglve C (and therefore C++) its+1

, distinctive character. The.C “address of” operator ‘&’ creates a Pomter *@n all three [ine$, the expression
&x creates a pointer {o,the location holdmg the object mdlcated by varlable x. The type’ *61 this.pointes’
depends on the type of x,7and hence these three pomters are“’*of“type int *, float *, and void:#¥, |
respectlvely (Data type Void *isa spemal kind of pointer with no assaciated type information.) *E
The cast operator converts from, one data, typé to: ‘afiothe. This,-thé da“st (Byté_pointelr) &x I
indicates that whatever type the. %omtér &x hag beforg, the, program a; ill nov, reference a pointer to,
data Qf type nnsigned Cha.'l:i The casts shown here dq, nof chan ge :the actua] pointer; they 51mp]y du'ect

24 the compiler, to Jefer to the data ‘being-pointed to according'to the new, gat&type

o AT o e C——

i
e B iy ey PSR WS, SrR RS o FOERS O A R o e et R SRERED A b o G i j
@ aa; sy A % TR mx i L ] L N M AR wh gVAERER ) Sy et gy ¥ g e 2 5 2
» Aslde Generating an ASCILtable W, @ wuf o F
1
{ You can display a table showing the ASCIFcharacter code by executmg the command fan ascn
* o i, P E R A TR el o o ik :--.16zgs 5 une o e e
k

=

Con51der the followmg three calls to show bytes

int val & OxB7654321;

byte_pointer valp = (byte_pointei) &val;
E show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */

o

Indicate the values that will be printed by each call on a little-endian machine
and on a big-endian machine:

A. Little endian:
B. Little endian: ________ Big endian:

Big endian: -

C. Littleendian: _______ Big endian: __

e o
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[}
Using show_int and show_iloat, we determine that the integer 3510593 has hexa-
decimal representation 0x00359141, while the floating-point number 3510593.0

has hexadecimal representation 0x4A564504.

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another. to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?

2.1.4 Representing Strings

A string in € is encoded by an array of characters terminated by the null (having
value 0} character. Each character is represented by some standard encoding, with
the most common being the ASCII character code. Thus, if we run our routine
show_bytes with arguments "12345" and 6 (to include the terminating character),
we get the result 31 32 33 34 35 00, Observe that the ASCII code for decimal digit

x happens to be 0x3x, and that the terminating byte has the hex representation
0z00. This same result would be obtained on any system using ASCII as its* !
character code, independent of the byte ordering and word size conventions. As

a consequence, text data are more platform independent than binary data.

yooee o , B RO e v et pir:
:i'n. : Koy ha

What would be printed as a result of the following call to show_bytes?
const char *s = "abcdef",
show_bytes ((byte_pointer) s, strlen{s));

>
3

Note that letters ‘a”'through ‘2’ have ASCII codes 0x61 through 0x74.

i

2.1.5 Representing Code
Consider the following C function:

1 int sum(int x, int y) {
2 returli x + y;

3}

When compiled on our sample machines, we generate machine code having
the following byte representations:

£

Linuox 32 55 89 e5 8b 45 Oc 03 45 08 c9 ¢3

Windows 56 89 e5 8b 45 Oc 03 45 08 5d c3

Sun 81 c3 €0 (8 90 02 90 09

Linux 64 55 48 89 5 89 7d fc 89 75 £8 03 45 fc c9 c3

49
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Asidé The Unitode standard fortext encocfm L
m w %’Eﬁf“ d i “ $ ”mi&&‘ -

k4
.*The ASCII character.set is’ suitable:for encoding’ En§l1sh Jggguage adogxumﬁnts,\lgutslt does not have, é
, much’in thé.way &f spécial chiaracters, such ‘as-the °French fehealtdg , wholly Amsuited: for encodmg f
. documents in languages such as Greek Russmn,-and Chlnese Over fhe years,“{i vanety of methods
' have been developed to encodé tekt Tor, dlffétqgiﬂanguages Th | Uniﬁgdeﬁonsoru?ﬁn has davxsed the
most comprehensive’and wittely: ‘acce ];cdystandard forwencodmg text. ﬂ'he CurrentaUmcode staridard 3
(ver51on 7.0) has a repertoire-of over 100,000 chiratters sup“portmga wideragé-of langihges, ‘inclnding, £
, theancient languages of Egypt and Babylon,, Tojhelr cﬁ;edlt tha Unicode geglyncal Cpgyn%tg? rejected
" a proposal to includea, standard writing for, Kilngon a”‘ﬁctlohal cmhzatmn from thetelevision seris
% Star Trek: “

The base encoding, known as-the “Umvergal"CHaracter Set”“‘of Ungg;bde yées d 32-bit re;presenta- 2
tion of cha:facters "This wduld seem to require every strmg*‘of text to consist of 4' bytes gper character :
However, alternative codmgs Aare posélble Mhel‘e common characfrs.require.justl gk 2. bytes, while
less common ones reqmre.,more In*pémlculaﬁ the; U’I‘E‘”S“i‘epfé%erltatlon entodes each charactet ag a
sequence of bytes, such that thestandard ASCII c];aracters {use the samé single-hyté encodings as they ;
have i i ASCI], 1mplymg thatall ASCI] byte scquences havethe samé méaning in'UTF’8 as:;they'do ift-

” W o AR S
F L iy S %

?m:.e s

£

Asci g - . v en o LV g
i The Java programmlng language’ uses Umcode il its repres.entauous of.strings. Program librarfes |
are alsé avaxlable for C to support Umcode . wew A npt . ;
) . e st 4 B B PR T AW S5 S it 54 ]

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encodings. Even identical proces-
sors running different operating systems have differences in their coding conven-
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simpl{'a sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.6 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, store, and manipu-
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate
an algebra that captures the basic principles of logical reasoning,

The simplest Boolean algebra is defined over the two-element set {0, 1},
Figure 2.7 defines several operations in tHis algebra. Our symbols for representing
these operations are chosen to match those ‘used by the C bit-level operations,
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- & 01 | 01 - 01
0 1 0 00 0 01 0 01
1 0 1 01 1 11 1 10

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
TRUE and FALSE, while operations ~, &, |, and ~ encode logical operations NOT, AND, OR,
and EXCLUSIVE-OR, respectively.

as will be discussed later. The Boolean operation ~ corresponds to the lo'gical
operation NoT, denoted by the symbol —. That is, we say that —P is true when
P is not true, and vice versa. Correspondingly, ~p equals 1 when p equals 0, and’
vice versa. Boolean operation & corresponds to the logical operation AND, denoted
by the symbol A. We say that P A @ holds when both P is true and Q is true.
Correspondingly, p & g equals 1 only when p =1 and ¢ = 1. Boolean operation
| corresponds to the logical operation or, denoted by the symbol v, We say that
P v Q holds when either P is true or Q is true. Correspondingly, p | g equals
1 when either p =1 or g = 1. Boolean operation ~ corresponds to the logical
operation EXCLUSIVE-OR, denoted by the symbol @. We say that P @ @ holds when
either P is true or @ is true, but not both. Correspondingly, p ~ ¢ equals 1 when
either p=1landq=0,0r p=0andg =1

Claude Shannon (1916-2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master’s thesis, he showed that Boolean algebra could be applied to the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over bit
vectors according to their applications to the matching elements of the arguments.
Let a and & denote the bit vectors [a,,_y, ay_3, . .., ag) and [by_1, B3, . . ., bp),
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals a; & b;, for 0 <i < w. The operations |, =, and ~ are extended to
bit vectors in a similar fashion.

As examples, consider the case where w = 4, and with arguments a = [0110]
and b =[1100). Then the four operationsa & b,a | b, & ~ b, and ~b yield

0110 0110 0110
& 1100 I 1100 = 1100 ~ 1100
0100 1110 1010 0011

) ) : i il o
Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.
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|

; inverse —x, such that x +- r—Ex =0. A similar property hcﬂds f‘on Boolean rmgs wheére ~is the * gddmon

seRa

ity - “ i

Web Aside DATA:BOOL: More'an Boolean algebra and Boolean rings

The Boolean operations |, & and ~ operating on, bit véctots of length w form asBoolein algebra,
for any integer w > (. The simplest rs;the case where w =1 and there are l}xst two elements,‘ byt for
the miore general case there are 2¥ bit vectors of length w. Bodléah alge?sra has” many of the same %
propérfies as-arithmetic over mtegers “For, éxample, just as multiplication distfibutes over, addition,
writtena - (b+c¢)=(a" ) + (a ¥¢), Boolean’bperauon& distributes over |, written a &b ! c)‘ a& b)Y
(a & c}. In addition, however. Boolean operation | distributes over & andsowecan writea | (b&o) =
(a | b) & (a | ¢), whereas we canpot say that a.+ (b - ¢) ='(a +b),- (a + ¢) holds for all mtegers }
When we coﬂs;der Operationg -, &, and * operatmg on’bit vectors of lengthww we get a different’ :
mathematical form, knowy as a Boolean rmg Boolean nngs have many pi'of)ertles in Ebmon wrthsi
integer arithmetic, For example ane, pfoperty of integer 2 arithmefici is that ev,ery value X “hds an add;rrve ;

»

operation, “but in this case eac“h elementgls its gwn addmve, Ipverse. That is, @ ~ a = 0 for any valile a,
where we use Q.here to represenf a bit Vector of all,,zeros We ¢ah’seé this holds fo}*smgle bits, since
0~0=1"1=0, and it'exténds to bit ¥éctors as Well This property holds'even 'when sve rearrange terms
and combine them in & d1fferent order and'so (@a~b)~a=bh. Thiis property leads to somefmterestmg
results and clever trrcks as we will éxpldm in Problem 2, 10

I

e = P e v} ::m- B e e Mt it A mﬁmmi
Operation Result

a [01101001]
b [01010101)
~a
~b _

akh

alb

a~b

One useful application of bit vectors is to represent finite sets. We can encode
anysubset A € {0, 1, ..., w — 1} with a bit vector [ay_1, - . . , 41, ag), where a; = 1if
and only iff € A. For example recalling that we write a,,_; on the left and g, on'the
right, bit vector a = [01101001) encodes the set A = {0, 3, 5, 6}, while bit vector b =
[01010101] encodes the set B = {0, 2, 4, 6}. With this way of encoding sets, Boolean
operations | and & correspond to sct union and intersection, respectively, and ~
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector {(01000001], while A N B = {0, 6).

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program.:We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 il
bit position ¢ indicates that signal / is enabled and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.
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Computers geperate color picfures on a video screen or liquigd crystal display
by mixing three different colors of light; red, green, and blue. Imagine a simple

scheme, with threg differeqt lights, each of which can be tyrned on or off, project-
ing onto a glass screen:

Light sources Glass screen

Red

QObserver

Green

ad

We canthen create cight different colors based on the absence (0) onpresence
(1) of light sources R, G, and B:

B Color

Black
Blue
Green

0
1
0
1 Cyan
0
1
0
1

Red
Magenta
Yellow
White

Fl

i = N R e N R
e i B e B e S e B

3
Each of these colors can be represented ab a bit vector of length 3, andiwe can

apply Boolean.operations:to.them.

A. The co[mpiement of a color is formed by turning off the lights that are gn;and
turning on the lights that are off. What would be the complement of each of
the eight colors listed above?

Describe the effect of applying Boolean operations on the following colors:

Blue | Green =
Yellow & Cyan
Red ~ Magenta

|

53
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2.1.7 Bit-Level Operations in C )

One useful feature of C is that it supports bitwisc Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C:
| for ok, & for AND, ~ for Nort, and ~ for EXCLUSIVE-OR. These can be applied to
any “integral” data type, including all of those listed in Figure 2.3. Here are some :
examples of expression evaluation for data type char: ;

C expression  Binary expression Binary result ~ Hexadecimal result :
; ~0x41 ~[0100 0001] [10111110] 0xBE .
Hf ~0x00 ~[0000 0000] [11111111] OxFF ]
E 0x69 & 0x55 [0110 1001] & [0101 0101] [0100 0001] Ox41 ,
E* 0x69 | 0x55 [0110 1001] | [01010101] [01111101] 0x7D

As our examples show, the best way to determine the effect of a bit-level ex- :
pression is to expand the hexadecimal arguments to their binary representations, :
perform the operations in binary, and then convert back to hexadecimal. 3

: As an application of the propeity tHat i~ a = 0 for any bit vector a, consider the
following program. )

1 void inmplace_swap(int *x, int *y) {
2 *y = #x ~ *y; /% Step 1 */ .
3 *x = ¥x = *y; /% Step 2 ¥/
4
5

*y = #x ~ *y; /% Step 3 */
}

As the name implies, we claim that the effect of this procedure is to swap
f the values stored at the locations denoted by pointer variables x and y. Note
that unlike the usual technique for swapping two values, we do not need a third
loeation to temporarily store one value while we are moving the other. There is
v no performance advantage to this way of swapping; it is merely an intellectual
' amusement.
i Starting with values a and b in the locations pointed to by x and y, respectively,
i fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of ~ to show that the desired effect is
athieved. Recall that every element is i;:s own additive inverse (thatis,a ~ a =0).

H Step *X *y s
‘ L Initially a " b
g Step 1
1 1 Step 2

Step 3
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Armed thh the functxon :anlace swap from Problem 2. 10 you decnde to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

void .reverse_array(int a[], -int ¢ap) {
int first, last;
for (first = 0, last.= cnt-1;
first <= last;
St first++,last-—)
inplace_swap(&al[first], &allastl};

.
AW N =

-8

7 }

‘When you apply your function to an array containing elements 1, 2, 3, and 4,
you find the array now has, as ex ected, elements 4, 3 °2, and 1. When you try it
on an array with elements 1,2,3,4, and 5 'however, you are surpnsed o see that
the array now has eleménts 5 4,0.2, and 1. In fact, you discover th the code
always works correctly on arrays of even length but it sets the middle element to
0 whenever the array has odd length.

A. For an array of odd length cnt = 2k + 1, what are the values of variables
first and last in the final iteration of function reverse_array?

B. Why does this call to function inplace_swap set the array element to (?

C. What simple modificatidn to the codé for reverse_array would'eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within 2 word. As
an example, the mask 0xFF (having ones for the least-51gmﬁcant 8 bits) indicates
the low-order byte of a word. The bit-level operation: x & OxFF yields a value
consisting of the least significant byte of x, but with all other bytes set t6*). For
example, with x = 0x89ABCDEF, the expression would yield 0x000000EF. The
expression ~0 will yield a mask of all ones, regardless of the size of the data
representation. The same mask can be written OxFFFFFFFF when data type int is
32 bits, but it would not be as portable.

erte C expressions, in terms of varlable x, for the following values. Your code
should work for any word' §ize w > 8. Forreference, we show the result of evalu-
ating the expressions for x = 0x87654321, with w = 32,

A. The least significant byte of x, with all other bits set to 0. [0x00000021]

B. Allbut the least significant byteof x complemented, with the least significant
byte left unchanged. [0x7894BC21]
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C. The least significant byte set to-all ones, and all other bytes of x left un-
changed. [0x876643FF)

The Digital Equipment VAX computer was a very popular machine from the late

1970s until the late 1980s. Rather than instructions for Boolean operations aND
! and or, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 at each bit position where m is 1. With bic, the modification involves setting
z to 0 at each bit position where mis 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bis and bic 1mp1ement1ng the bit set and bit clear operations, and
that we want to use these to implement functions computmg bitwise operatlons |
and - w1thout usmg any other C operations. Fill in the missing code below. Hmt
Wnte (of ’ expressions for the operations bis and bik. .
/* Declarations of functions implementing operations bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */
int bool_or(int x, int ¥} {

int result = ______ _;

return result;

} "
L . «t '
/* Compute x"y using opnly cplls to functions bis and bic */ 5
int bool_xor{int x; int y)- {
’ int-result = ____ ;
} return result;
.

2.1.8 Logical Operations in C

! C also provides-a set of logical operators | |, &, and !, which cogrespond to the
OR, AND, and NoT operations of logic. These can easily'be confused with the bit-
' level operations, but their behavior is quite different. The logical operations treat

| any nonzero argument as representing TRUE and argument 0 as representing FALSE.
' : They return eithiet 1 or 0, irfidicating a result of either TRUE of FALSE, respectively.
| f .

i| Here are some examples of expression evaluation:

I
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Expression Result
10x41 ox00
10x00 0x01
110x41 0x01

0x69 && O0x55 0x01
0x69 {| 0x55 0x01

Observe that a bitwise operation will have behavior matching that of its logical
counterpart only in the special case in.which the arguments are restricted to 0
or 1.

A second important distinction between the logical operators ‘&&’ and ‘| |’
versus their bit-level counterparts %’ and *|’ is that the logical operators do not
evaluate their second argument if the result of the expression can be determined
by evaluating the first argument. Thus, for example, the expression a && 5/a will

never cause a division by zero, and the expression p &% *p++ will never cause the
dereferencing of a null pointer.

Suppose that x and y have byte values 0x66 and 0x39, respectlvely Fﬂl in the
following table indicating the byte values of thé differént C expressions:

Expression Value Expression Value "
x&y e —_— x&ky -

x1y —_— xily

~x |~y e Ix Ity e

xkly x && ~y

Usmg only b1t—1evel and loglcal operatlons write a C expressxon that is equ:valent

to x == y. In other words, it will return 1 when x and y are equal and O otherwise.

2.1.9 .ShifuQperations in®
roat

e also provides a set,of shzﬁ op,era‘qong for shifting bit patterns to the left and’ to
the nght For an Operand x having bit representation [x,,_1, X, _2. - . ., X}, the c
expression x << k yields a value with bit representation (x,,_;_y. xw_k 2v o v s X
0,...,0] Thatis, x is shifted & bits to the left, dropping off the & most significant
blts and filling the right end with & zeros. The shift amount should be a value
between 0 and w — 1. Shift operations associate from left to right, so ¥'%< j <<k
is equivalent to (x << j) << k.

There is a corresponding right shift operation, written in C as x >> k, but it has
a slightly subtle behavior. Generally, machines support two forms of right shift:
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Logical. A logical right shift fills the left end with k& zeros, giving a result
[O, Ceey 0, Xup—1r Kwp—2s + = - xk].

Arithmetic. An arithmetic right shift fills the left end with & repetitions of the
most significant bit, giving a result [x,_1, .. ., Xy_1s Xy 15 Xyy_2s - -« X}
This convention might seem peculiar, but as we will see, it is useful fox
operating on signed integer data.

As-cxamples, the following.table shows-the effect of applying the.different
shift operations to two different values:of.dn 8-bit argument x:

Operation Value ] Value 2

Argument x [01100011]  [10010101]
x << 4 [00110000]  [01016000]
x >> &' (logical) [0o0p0110]  [00001001]

x >> 4 (arithmetic)  [00000110]  [72111001)

The italicized digits indicate the vaiues that fill the right (left shift) or left {right
shift) ends. Observe that all but one entry involves filling with zeros. The exception
is the case of shifting [10010101] right arithmetically, Since its most signiﬁcant bit
is 1, this will be used as the fill value.

The C standards do not precisely define which type of right shift should be
used with signed numbers—either arithmetic-or logical shifts may be used. This
unfortunately means that any code assuming one form or the other will potentially
encounter portability problems. In practice, however, almost all compiler/machine
combinations use arithmetic right shifts for signed data, and many programmers
assume this to be the case. For unsigned data, on the other hand, right shifts must
be logical.

In contrast to C, Java has a precise definition of how right shifts should be
performed. The expression x >> k shifts x arithmetically by k posmons, while
x >>> k shifts it logically.

Fillin the table below showmg the effects of the dxfferent shift operat1ons on smgle—
byte quantities. The best way to think about shift operations is to avorkewith binary
representations. Convert the initial values to binary, perform the shifts, and then
cénvert back to hexadecimal. Ea‘ch of the dniswers should bé 8 blnary digits or 2
hexadecimal digits.

. Logii::al ‘Arithmetic
x x<< 3 x>>»2 x>>2

Hex Binary Binary #H:?x Binary Hex Binary Hex

0xC3 -
0x75
0x87 R — e
0x66




Section 2.2 Integer Representations 59

P T gan goe o A e s o -

! Aside shifting by k,for large valuesof x = # T, e

For a datg type consisting of w bits, whdt shbuld be the effect ?')i"’ﬁff_‘ﬁfii’hg by some value £ > w? For
- example, what should be the effect of corputirig the following expressions, assurhing data'type int has
L3 ﬁ L]

w=232 N
b » . ﬁ, * i3
L ints %‘va} = OxFEPCBf;\g?ﬂ << 32 4: PR
int aval = OxFEDCBA98 »>> 36; .

4

ko8

OxFEDCBA9Su 3> 407

ynsigned uval
M i 4 ok o BENe o N 3, s aw 4 e . .
The'C staﬁcfé;ds carefully'avoid sfating What shiould B¢ done ir such a case:On many machines, the

3 shiftinstructions considér only the lower log, w Bits of the shift émount when shifting a wbit value, dnd,
be computed as if they wete by,amounts'0, 4, and 8, respectively, giving results
* Y WEE el L E ik

s

" 1vdl  OxFEDCBASB “ o W ) ) .
.aval  OXFFEDCBAYS . § 4 3
uvalt  OxOQOFEDGBA, # s b . # X

¢ thé word size.; « y e

: e #
s e o s w8 Bean LB o & e oy an s % s oG e = .
Java; on the other hahd, spécifically requires that shift amounts should bé computed in the modular
{ fashioni we have shown. | “A* »  fuwomea N et
s Pow 2 E PN 1 % . L Ba S -
PONSEOGIE WS, gt = s LA o LY [T FEY =

Aside Operator preceaenc‘é issues,with shift operations”

“

i ever, in C the former expressionds equivalent to,1 << ( 2+3% <€ g, since addition (and Subtraction) have
higher precedence fhan shifts. The left-to-right associativity rulé then causes this'to be parerithesized

as(1 << (2+3)) << 4, giving value 512, rather ’ﬂ'&gn the _inﬁtqndéfdfﬂ.q
§ thes€ar¢ difficult:to’Spot by insplction-WHdr irr doubt} piiin pdrefitheses!

Aty B . "
e OF m % PR L EY - b B ®

#

o B

2.2 Integer Representations

Inthis section, we describe two different ways bits can be used to encode integers-—
one that can only represent nonnegative numbers, and one that can represent
negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen-
tations, We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

Figure 2.8 lists the mathematical terminology we introduce to precisely de-
fine and characterize how computers encode and operate on integer data. This

so the shift"4mount is computéd as k'fod 1+ For &xample, with i-= 32, the above three shifts would _

This behaviotjs not, guarante&d {of C'programs; however,and $4'shift amounts should be keptless than

v s L T A S T = LN
It might be fenipfing to write'the expression 1<<2.4 3<<_4f intending it to méan (1<<2) + (3<<4). How- -

Getting the precedgnce wrong in C expretsions,js a cémmon.source of program errors, and often

£
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Symbol Type Meaning . Page
B2T, Function Binary to two’s complement 64
B2l Function Binary to unsigned 62
2B, Function Unsigned to binary 64
uzr,, Function Unsigned to two’s complement 71
128, Function Two’s complement to binary 65
72U, Function Two’s complement to unsigned 71
TMin, Constant Minimum two’s-complement value 65
TMax,, Constant Maximym two’s-complement value 65
UMax,, Constant Maximum unsigned value 63
+ Operation  Two's-complement addition 90
+ Operation Unsigned addition 35
* Operation  Two’s-complement multiplication 97
* Operation  Unsigned multiplication 96
- Operation  Two’s-complement negation 95
W Operation  Unsigned negation 89 ol

Figure 2.8 Terminology for integer data and arithmetic operations. The subscript
w denotes the number of bits in the data representation. The “Page” column indicates
the page on which the term is defined.

terminology will be introduced over the course of the presentation. The figure is
included here as a reference.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent finite ranges of
integers. These are shown in Figures 2.9 and 2.10, along with the ranges of values
they can have for “typical” 32- and 64-bit programs. Each type can specify a
size with keyword char, short, long, as well as an indication of whether the
represented numbers are all nonnegative (declared as unsigned), or possibly
negative (the default.) As we saw in Figure 2.3, the number of bytes allocated for
the different sizes varies according to whether the ptogratfi is compiled for 32 or
64 bits. Baged on the byte allocations, the different sizes allow different ranges of
values to be represented. The only machine-dependent range indicated is for size
designator 1long. Most 64-bit programs use an 8-byte representation, giving a much
Wider range of values thal thé 4-byté représentation used with 32-bit programs.
H A e o st T T RS .

. On? important fgrz‘lgur'g' tonote 1n1Flg}1res 2.9 and 2.10is that the ranges are not
symmetric—the Tange of negative numbers extends one further than the range of
pcgitive numbers. We \:vill see why this happens when we consider ‘how negative
numbers are represented.

L r
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C data type Minimum Maximum
[signed] char -128 127
unsigned char 0 255
short —32,768 32,767
unsigned short 0 65,535
int —2,147,483,648 2,147,483,647
unsigned 0 4,294.967,295
long —2,147 483,648 2,147.483,647
unsigned long 0 4,294,967,295
int32_t —2,147 483,648 2,147 483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,634,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C integral data types for 32-bit programs.

C data type Minimum Maximum
[signed] char -128 127
unsigned char 0 255
short —32,768 32,767
unsigned short 0 65,535
int —2,147,483,648 2,147,483,647
unsigned 0 4,?.94,9@7,%935"t )
long —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long 0 18,446,744,073,709,551,615
int32_t —2,147,483,648 2,147.483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,854,775,808 9,223,372,036,854,775807
uint64_t 0 18,446,744,073,709,551,615

Figure 2:10 Typical ranges for C integral data types for 64-bit programs.

»

-’

The C standards define minimum ranges of values that each data type must
be able to representi As shown in Figure 2.11, their ranges are thé same or smaller
than the typical implementations shown in Figures 2.9 and 2.10. In particular,
with the exception of the fixed-size data types, we see that they require only a

61
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C data type

Minimum

Maximum

[signed]char
unsigned char
short
ungigned short
int

unsigned

long
unsigned long

int32_t
uint32_t

int64_t
uint64_t

-127
0

—32,767
0

—32,767
0

—2,147,483,647

0

¢
—2,147,483,648
0

-9,223,372,036,854,775,808

0

127
255

32,767
65,535

32,767
65,535

2,147,483 647
4,294,967,295

2,147,483,647
4,294 967,295

9,223,372,036,854,775,807
18,446,744,073,709,551,615

Figure 2.11 Guaranteed ranges fo

that the data types have at least these ranges of values.

"

symmetric range of positi
could be implemented wi
to the days of.16-bit machine
with 4-byte numbers, and it typicall
types guarantee that the ranges of val
numbers of Figure 2.9, including the asymmetry b

2.2.2 Unsigned Encodings

Let us consider an integer data type of w bits. We
denote the entire vector, or as [Xy1, X2, - #-> xo]
within the vector. Treating ¥ as a number written in bin
unsigned interpretation of %. In this encoding,
latter case indicating that value 2/ should be inc

ve and negative

e

r C integral data types. The C standards require

numbers. We also see that data type int
th 2-byte numbers, although this is mostly a throwback
s. We also seexthat size long can be implemented
y is for 32-bit programs. The fixed-size data
lues will be exactly those given by the typical
etween negative and positive.

write a bit vector as either X, to

each bit x;

to denote the individual bits
ary notation, we obtain the
has value 0 or 1, with the
luded as part of the numeric Value.

We can express-this interpretation asa function B2U, (for “binary to unsigned,”

z
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Figure 2.12

Unsigned number
examples for w =4.
When bit { in the binary
representation has value 1,
it contributes 2! to the
value.

10711 12 13 14 15 16

PRINCIPLE: Definition of unsigned encoding

For vector ¥ = [xy,_1, xy_g, . . ., Xg:

w1
‘ B2U,(H =) x2 (2.1)
i=0
|

In thi.s equation, the notation = mcang4hat the left-hand side is defined to be
equal to the right-hand side. The function B2U, maps strings of.zeros and,ones
oflength w to nonnegative integers. As examples, Figure 2.12 shows the mapping,
given by B2U, from bit vectors to integers for the following cases:

B2UL0001) = 0-2240.2240.241-29 = 0404041 = 1
B2U0101) = 0.2341.2240.2041.20 = 04+444+0+1 = 5
B2U4(1011) = 1-2240.22+4+1.2141.20 = 840+42+1 = 11
B2U,[1111) = 1-2341.2241.2141.2° = 8444241 = 15
(22)

In the figure, we represent each bit position i by a rightward-pginting blue bar of
length 2/, The numeric valtue associated with a bit vector then equals the sum of
the lengths of the bars for which the corresponding bit values are 1.

Let us consider the range of values thit can be represented using w bits, The
Teast value is given by bit vector [00 - - - 0] having integer value 0, and the greatest
valueis giverl by bit vector [11 - - 1] having infeger value UMax,, =Y 212 =
2% — 1. Using the 4-bit case as an example, we have UMax, = B2U,([1111]) =
2% — 1 =15. Thus, the function B2U w ¢an be defined as a mapping B2U ,: {0, 1}* —»
{,..., UMax,)}. " . )

The umsignéd?binary representation has the imp6rtant property thatevery
nimber between 0and 2% — 1has a unique encoding asa w-bit value. For example;
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there is only one representation of decimal value 11 as an unsigned 4-bit number—
namely, [1011]. We highlight this as a mathematical principle, which we first state
and then explain.

PRINCIPLE: Uniqueness of unsigned encoding

Function B2U , is a bijection. |

The mathematical term bijection refers to a function f that goes two ways:
it maps a value x to a value y where y = f(x), but it can also operate in reverse,
since for every y, there is a unique value x such'that f(x) = y. This is given by
the inverse function f -1 where, for our example, x = f ~1(). The function B2U,
maps each bit vector of length w to a unique number between 0 and 2* — 1, and
it has an inverse, which we call U2B,, (for “unsigned to binary”), that maps each
number in the range 0 to 2¥ — 1 to a unique pattern of w bits.

2.2.3 Two's-Complement Encodings

For many applications, we wish to represent negative values as well. The most com-
mon computer representation of signed numbers is known as two’s-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2T',, (for “binary
to two’s complement™ length w):

PRINCIPLE:. Definition of two’s-complement encoding

For vector X =[x,y—1, Xw_2» - - - » Xg}
w—2 .
B2T () = —x,, 2" 4 3 x2 (2.3)
i=0

The most significant bit x,,_y is also called thie sign bif' Its “weight” is ~2%~,
the negation of its weight in an unsigned representation. When the sign bit is set
to 1, the represented vatue is negative, and when set to 0, the value is nonnegative.
As examples, Figure 2.13 shows the mapping, given by B2T, from bit vectors to
integers for the fpllowing cases:

B2T,([0001) = -0-2340-2240.2'+1-2° = 0+0+0+1 = 1
B2T,(0101) = -0-28%1.2240.2041.20 = O-Si;fijl-0+1 = 5
B2T,(1011) = -1-2340.22+1.2'4+1.2° = —8+0+2+1 = -5
BT (1111) = -1-224+1,22+1.2141.20 = —8+4+2+1 = -1

24)

1 ®

In the figure, we indicate that the sign bit has negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated with a bit-vector s
then given by the combination of the, possible leftward-pointing gray,bar and the
rightward-pointing blue bars.

T A -
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Figure 2.13
Two’s-complement
number examples for
w=4. Bit 3 serves as a
sign bit; when set to 1, it
contributes —23 = —8 to 8- 6 7 8
the value. This weighting }

is shown as a leftward- [0001]
pointing gray bar.

[0101]
11011] §

{1111] B

We see that the bit patterns are identical for Figures 2.12 and 2.13 (as well as
for Equations 2.2 and 2.4), but the values differ when the most significant bit is 1,
since in one case it has weight +8, and in the other case it has weight —8. |

Let us consider the range of values that can be represented as a w-bit two’s-
complement number. The least representable value is given by bit vector [10 - - - 0]
(set the bit with negative weight but clear all others), having integer value
TMin,, = —2"~1. The greatest value is given by bit vector [01- - - 1] (clear the bit
with negative weight but set all others), having integer value TMax,, = Z}":'Gz 2 =
2v-1_ 1. Using the 4-bit case as an example, we have TMing = B2T,([1000]) =
-2%=—8and TMax, = B2T4([0111) =22 + 21 + 0 =442+ 1=7.

We can see that B2T, is a mapping of bit patterns of length w to numbers be-
tween TMin,, and TMax,,, written as B2T ,: {0, 1}* — {TMin,, ..., TMax,}. As
we saw with the unsigned representation, every number within the representable
range has a unique encoding as a w-bit two’s-complement number. This leads to
a principle for two’s-complement numbers similar to that for unsigned numbers:

PRINCIPLE: Uniqueness of two's-complement encoding
Function B2T, is a bijection. |

We define function 72B,, (for “two’s complement to binary”) to be the inverse
of B2T,. That is, for a number x, such that TMin,, < x < TMax,,, T2B,,(x) is the
(unique) w-bit pattern that encodes x.

‘ DAGEITAB) i st oo ShomrascasaitBied
Assuming w =4, we can assign a numeric value to each possible hexadecimal
digit, assuming either an unsigned or a two’s-complement interpretation. Fill in
the following table according to these interpretations by writing out the nonzero
powers of 2 in the summations shown in Equations 2.1 and 2.3:




66 Chapter 22 Representing and Manipulating Information

—

X
Hexadecimal Binary B2U 4(%) B2T (%)
0xE [1110] 284224021=34 234224212
0x0 [,
Oxb — P e

0x8 e

0xD SURT, S i an

QxF . U

Figure 2.14 shows the bit patterns and numeric values for several important
numbers for different word sizes. The first three give the ranges of representable
integers in terms of the values of UMax,, TMin,,, and TMax,,. We will refer
to these three special values often in the ensuing discussion. We will drop the
subscript wand relfer tothe values UMax, TMin, and TMax when w can be 1nfprred
from context Or, 18 not central to the cﬁscussmn

A few pomts are worth h1gh11ghtmg about these numbers. First, as observed
in Figures 2.9 and 2.10, the two *s-complemgnt range is, asymmetric: |TMin| =
|TMaxl + 1; that is, thefe is no positive counterpart to TMin. As we shall see, this
leads to some peculiar propertles of two's-complement arithmetic and.can be the
spurce of subtle program bugs. This as metry arises becatse half the b1tpatterns
(those with thcg’ sign bit set to 1) represent negative numbers, while half (those
with the sign bit set to 0) represent nonhegative numbers. Since 0 is nonnegatwe
this means that it can 'represent one less posnwe number thai negative. Second,
the maximum unsigned value is just over twice the'maximum two’s- complement
value: UMax = 2TMax-+ 1. All of the'Bit patterns'that denote fiegativé numbérs in
two ’s-complement notation beoom'e positive values in an unsigned representatlon

g

! Word size w

Value 8 16 32 64
UMax, ~ OxFF  OxFFFF  OxFFFFFFFF OXFFFFFFFFFFFFFFFF
255 65,535 4294967295 18,446,744073,709,551,615
Tme 0x80 0x8000 0x80000000 - 0);8900000000000000
-128 —32,768 —2,147,483,648, -9 ,223,372,036,854,775,808
TMax,, OxTF Ox7FFF OxTFFFFFFF ' Ox7FFFFFFFFFFFFFFF
127 32,767 2,147 483,647 9,223 372,036,854,775,807
-1 OxFF O0xFFFF OxFFFFFFFF OxFFFFFFFFFFFFFFFF
0 03{00 0x0000 0}:0000_0000 0x0000000000000000

Figure-2.14 [mportant numbers. BotH numeérit values and:-hexadecimal répresenta-
tions are shown.
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Aside More on fixed-size integer types # .

For some programs, it is essential that data types be encoded using representations with specific sizes.
For example, when wrmng progranis to enable a machine to communicate over the Internet. accordmg
to a standard protocol, it is important to have.data types cofipatible with those spécified By the protocol.
We have seen that some C data types, especially long, have different ranges on different machines,
and in fact the G standards only specify the minimum ranges for any data type, not the exact ranges.
Although we can choose data types that will be compatible swith standard representations on most
machines, there is no guarantee ol portability.

We have already encountered the .32- and 64-bit versions of fixed-size mteger types (Figure 2.3);
théy are part of larger»class of data types The ISG ‘99 standard introduces this class of mteger tybes
in the file stdint.h. This file defines a sef of data types with declarations of" the fotin idtN _t, and

uintN_t, specifying N-bit signed and unsigned integers, for different values of N. "The exact values of
* N are 1mplementat10n dependent,-but most compilers allow values of 8, 16, 32, and 64. Thus, we tan
unambiguously declare an urfsigned 16-bit variable by giving it type uint16_t, and a signed variable
of 32~b1ts as int32_t. @

Along with these data types are a set of rpacros defining the minimum and max1mum value;s for
each value of N. These have hanies of-the form"INTN SMIN, INTNV MAX, and UINTN _ max *

Formatted printing with fixed- width types requlres use of macros that expand into formatstrmgs
fina system—de,pendent manner. So, for example, the values of variables x and y of type 1nt32 t and
; int64_t can be prmted bythe followmg call to printf

printf("¥ &= %0 PRI4A32° &, y = %" PRIu64~"\n", ¥, yk

When compﬂed as"a 64-bit prograrh, macrb PRIA32 expands to the stfmg nd", while PRJ;u64~expands
to the palr of strmgs "1t "u" When the C préprocéssor encountérs a sequeiice of string cénstants
separated only by 5paces {or other Whltequpe charactérs), it concatenates them together. Thus, the
i above call to printf becomes

L

an

TR RSN

2

‘printf ("k =%d, 3}}"’—“ %iu\n® - x, y)‘, S . f oy i
% Usmg the 5 Iacros, ensurcs f]laﬁ a correg:t fqrmat*jstrmg thl be generated regardless of how the code is

, compiled.

.

¥ & ud i % o 1)

Figure 2.14 also shows the representations of constants —1 and 0. Note that —1
has the same bit representation as UMax—a string of all ones. Numeric value ) is
represented as a string of all zeros in both representations.

The C standards do not require signed integers to be represented in two’s-
complement form, but nearly all machines do so. Programmers who are concerned
with maximizing portability across all possible machines should not assume any
particular range of representable values, beyond the ranges indicated in Figure
2.11, nor should they assume any particular representation of signed numbers.
On the other hand, many programs are written assuming a two’s-compiement
representation of signed numbers, and the “typical” ranges shown in Figures 2.9
and 2.10, and these programs are portable across a broad range of machines
and compilers. The file <limits.h> in the C library defines a set of constants
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] Bothﬁof these representat1ons have the curious property that there are two diffetent encodm‘gs of the
\E mimber 0. For both Iepresentatlons [OO -Ofis mterpreted as™40, The-value ~0" can be represented
: in glgﬂ-magmtude form’as [107. - -0] and in oney’ complement as [11 -1). Althotigh machiries based ;
on ones’ complemeht repr sentations were built in the past, almost all modern machines use two's |

complement We will see that sign- magmtude encodu’lg is ued with floating pomt gumbers ; y
J Note the different pogjtion of apostrophes; two’s complement versiis ones complement "THe tefm
|l “two’s complement” arlses from the fact that forwnonnegatlve x we COmputq a*w-bit repregentation
of —x d32"% —x (a smgle twcfj The term “ones’ complement” cgmes frorq ‘the property-that we can
compute —x in this notaticn as [111-* - 1}~ x (multiple opes).
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i delimiting the ranges of the different integer data types for the particular machine 1
on which the compiler is running. For example, it defines constants INT_MAX, INT_

MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a

two’s-complement machine in which data type int has w bits, these constants

‘[ correspond to the values of TMax ,, TMin,, and UMax,,. ]
The Java standard is quite specific about integer data type ranges and repre- §

sentations. It requires a two’s-complement representation with the exact ranges

f shown for the 64-bit case (Figure 2.10). In Java, the single-byte data type is called

I byte instead of char. These detailed requirements are intended to enable Java
programs to behave identically regardless of the machines or operating systems
running them.

To get a better understanding of the two’s- complement representation, con-
: sider the following code example:

short x = 12345;
short mx = -Xx;

show_bytes((byte_pointer) &x, sizeof (short));
show_bytes((byte_pointer) &mx, sizeof (short));

b B w N~
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12,345 12,345 53,191

Weight Bit Value Bit Value Bit Value
1 1 1 1 1 1 1

2 0 0 1 2 1 2

4 0 0 1 4 1 4

8 i 8 s] 0 0 0

16 1 16 0 0 0 0

32 1 32 0 0 0 0

64 0 0 1 64 1 64

128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512
1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 *2,048 1 2,048
4,096 1 409 0 0 0 0
8,192 1 8192 0 0 0 0
16,384 0 0 1 16,384 1. 16384
432,768 0 0 1 —32,768 1 32768
Totdl 12,345 —12345 53,191

Figure 2.15 Two's-complement representations of 12,345 and —12,345, and
unsigned representation of 53,191. Note that the latter two have identical bit
representations.

When run on a big-endian machine, this code prints 30 39 and cf c7, indi-
cating that x has hexadecimal representation 0x3039, while mx has hexadeci-
mal representation OxCFC7. Ekxpanding these into binary, we get bit patterns
(0011000000111001] for x and [1100111111000111] for mx. As Figure 2.15 shows,
Equation 2.3 yields values 12,345 and —12,345 for these two bit patterns.

*:S«’l

[Practice Problem 2,18 (solution page149), ... i siboe s
In Chapter 3, we will look at listings generated by a disassembler, a program that
converts an executable program file back to a more readable ASCII form. 'Ihese
files contain many hexadecimal numbers, typically representing values in two’s-
complement form. Being able to recognize these numbers and understand their
significance (for example, whether they are negative or positive) is an important
skill.

For the lines labeled A-I (on the right) in the following listing, convert the
hexadecimal values (in 32-bit two’s-complement form) shown to the right of the
instruction names (sub, mov, and add) into their decimal equivalents:
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i 4004d0: 48 81 ec ¢0 02 00 00 sub $0x2e0, %rsp 4.
Pl 4004d7: 48 8b 44 24 a8 mov  —0x58(%rsp),%rax B.
' 4004dc: 48 03 47 28 add  0x28(%rdi),%rax c.
4004e0: 48 89 44 24 dQ mov Yrax,-0x30 (%rsp) D.
4004e5: 48 8b 44 24 78 mov 0x78 (Yrsp) ,hrax E.
! 4004ea: 48 89 87 88 00 00 00 nov Yrax,0x88(%rdi) F.
4004f1: 48 8b 84 24 £8 01 00  mov  Ox1f8(Y%rsp),%rax a.
4004£8: 00
4004f9: 48 03 44 24 08 add 0x8 (%rsp) ,hrax
j 4004fe: 48 89 84 24 c0 00 00 mov %rax,OxcO(%rsp} H.
‘ 400505: 00
400506: 48 8b 44 d4 b8 mov -0x48(%rsp,%rdx,8) ,%rax I.

2.2.4 Conversions between Signed and Unsigned

C allows casting between different numeric data types. For example, suppose
i! : variable x is declared as int and u as unsigned. The expression (unsigned) x

converts the value of x to an unsigned value, and {int) u converts the value of u
\ to a signed integer. What should be the effect of casting signed value to unsigned, ‘
or vice versa? From a mathematical perspective, one can imagine several different ;
conventions. Clearly, we want to preserve any value that can be represented in ;
both forms. On the other hand, converting a negative value to unsigned might yield ,
zero, Converting an unsignied value that is too large to be represented in two’s- o
complement form might yield TMax. For most implementations of C, however,
the answer to this question is based on a bit-level perspective, rather than on a
E nuineric one. |
For example, consider the following code:

[ 1 short int |, v, = -12345;
2 unsigned short uv = (unsigned short) v;
{ 3 printf("v = %d, uv = ful\np"; v, uy);
H '

When run on a two’s-coinplement machine, Et generates the followiing output:
# ¥
v = —12345, uv = 53151

R What we see here is that the effect of casting is to keep the bit values identical
but change how these bits are interpreted. We saw in Figure 2.15 that the 16-bit
‘ two’s-complement répresentation' of —12,345 is identical fo the 16-bit unsighed
‘ représentétioh ‘of 53,191. Casting froi short to unpsigned short changed the
numeric value, but ot the bit representation. !

Similarly, cnsider the following code:

4

1 unsigned u = 4294967295u; /* UMax */ !
2 Ant tu =.{int) u;
. -
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3 printf("u = Zu, tu = %d\n", u, tu);
When run on a two’s-complement machine, it generates the following output:
= 4294967295, tu = ~1

We can sce from Figure 2.14 that, for a 32-bit word size, the bit patterns represent-
ing 4,294,967,295 (UMaxs,) in unsigned form and —1 in two’s-complement form
are identical. In casting from unsigned to int, the underlying bit representation
stays the same.

This is a general rule for how most C implementations handle conversions
between‘signed and unsigned numbers with the same word size—the numeric
values.might change, but the bit patterns do not. Let.us capture this idea in
a more mathematical form. We defined functions U2B,, and 72B,, that map
numbers to their bit representations in either unsigned or two’s-complement form.
That is, given an intéger x in the range 0 < x <*UMax,, the function U2B;,(x)
gives the unique w-bit unsigned representation of x. Similarly, when x is.in the
range TMin, <x'< TMaxw, the function 72B,,(x) gives the unique w-bit two’s-
complement representatmn ofix.

Now define the function 72U, as T2U ,(x) = B2 U w(T2B,,(x)). This function
takes a number between TMin,, and TMax,, and yields a number between 0 and
UMax,,, where the two numbers have iclentical bit representations, except that
the argument has a two’s-complement representation while the redult is unsigned.
Similarly, for x between 0 and UMax,, the funetion U27,,, defined as U27 ,(x) =
B2T,,(U2B,,(x)¥ yields the number having the same two’s-complement represen-
tation as the unsigned representation of x.

Pursuing our 'earlier examples, we see from:Figure 2.15 that 72U ¢(—12,345)
= 53,191, and that U27;4(53,191) = —12,345. That is, the 16-bit pattern written in
hexadecimal as 0xCFC7 is both thg 4wo’s-complement representation of —12,345
and the unsigned representation of 53,191. Note also that 12,345+ 53,191 =
65,536 =29, Thjs property generalizes to a relationship between the two nu-
meric values (two's complement and unsigned) represented by a given bit pat-
tern. Similarly, from Figure 2.14, we see that T2Us(—1) = 4,294,967,295, and
U27T3,(4,294,967,295) = —~1. That is, UMax has the same Bit representation in un-
signed form as does —1 in two’s-complement form. We can also see the relationship
between these two numbers: 1+ UMax,, = 2%. d

We see, then, that function 720U describes the tonversion of a two's-
complement number to its unsigned counterpart, while U2T converts in the op-
posite difection. Thiese describe the effect of casting between these data types in
most Cimplementations.

t

Usmg the tabie you ﬁlled in when solvmg Problem 2.17,fill in tHe followmg table
describing the function T72U,:

71
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. x T2U 4(x)
. -8

-3
-2

-1

0 —

] 5

The relationship we have seen, via several examples, between the two’s-
complement and unsigned values for a given bit pattern can-be expressed as a
property of the function T2U:

PRINCIPLE: Conversion from two’s complement to unsigned
For x such that TMin}, < x < TMak,,;: t

x-+2% 2<0
x>0 Bt

(2.5)

U, (x) = [
[ |

X,

For example, we saw that T2U(—12,345) = —12,345 + 216 — 53,191, and also
that T2U ,(—1) = —1+4 2% = UMax,, ‘ ‘

This property can be derived by comparing Equations 2.1 and 2.3. |

1 ] |

_ DERIVATION: Conversion from two’s complement to unsigned 5
) Comparing Equations2.1 and 2.3, we can see thatfor bit pattern ¥, if we compute
the difference B2U (¥} — B2T,(¥),the weighted suims for bifs from 0 fow — 2 will
caricel each’dther, leaving a value B2U (%) = B2F,(X) = x,,_q (20l — 2wy
x,_12%. This givés a relationship B2U (%) = B2T (%) + x,p_12%. Wé-therefore
have

B2Uw(Tsz(x)) :T?Uw(x)=x—l—xu;_12w (26) :

In a two’s-complement representation of x, bit x,,_; determines whether or not x
is negative, giving the.wo cases of Equation 2.5. |

f n

As examples, Figure 2.16 compares how functions B2U and B2T-assign values

: to bit patterns for w = 4. For the two’s-complement case, the most significant bit 3
serves as the sign bit, which we diagram as a leftward-pointing gray bar. For the a
unsigned case, this bit has positive weight, which we show asa rightward-pointing
black bar. In going from two’s complement to unsigned, the most significant bit
changes its weiglit from —8 to +8..As a consequence, the values that are nega-
i tive in a two’s-complement 'representation‘increase by 2* = 16 with arr unsigned
. representation. Thus, —5 becomes +11, and —1 becomes +15.
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Figure 2.16 ¢ ] —2%a -8
Comparing unsigned
and two’s-complement
representations for w =4,
The weight of the most
significant bit is —8 for
two’s complernent and +8 8-7-6-5-4-3-2-1 0123 45 &
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for unsigned, yielding a net —— —+— —+—
difference of 16. {to11]

[1111]

Figure 2.17

Conversion from two's
complement to unsigned.
Function T2U converts amt
negative numbers to large
positive numbers,

2W

2% Unsigned

Two's
complement 0

I _2w-1

Figure 2.17 illustrates the general behavior of function T2U. As it shows, when
mapping a signed number to its unsigned counterpart, negative numbers are con-
verted to large positive gumbers, while nonnegative.numbers remain unchanged.

Explain how Equation 2.5 applies to the entries in the table you generated when
solving Problem 2.19. 4

17

Gotng in the other direction, we can state the relationship between an un-
signed number « and its signed counterpart U2T,(s):
PRINCIPLE: Unsigned to two’s;complement conversion
For u such that 0 < u < UMax,,;:

u, u < TMax,,,

u—2% u>TMax, @7)

- 02T, (u) = {




74 Chapter2 Representing and Manipulating Information

Figure 2.18
Conversion from
unsigned to two's
complement. Function Unsigned 2"
U2T converts numbers

greater than 2%~1—
negative values.

2W

+2W—1

lto
Two's

complement

_2W‘—1

This principle can be justified as follows:

DERIVATION: Unsigned to two’s-complement conversion

Letii = U2B,,(u). This bit vector will also be the two’s-complement representation
of U2T,(u). Equations 2.1 and 2.3 can be combined to give

27, ) =—u, 2% +u !(2.8)

In the unsigned representation of i, bit u,,_; determines whether or not uis greater
i,

than TMax,, = 2¥~! - 1, giving the two cases of Equation 2.7. u

The behavior of function 'U2T is illustrated in Figure 2.18. For small
(< TMax,) numbers, the conversion from usisigned to signed preserves the nu-
meric value. Large (> TMax, ) numbers are converted to negative values.

To summarize, we considered the effects of converting in both directions
between unsigned and two’s-complement representations. For values x in the
range 0 < x < TMax,, we have T2U ,(x) = x. and. U2T ;(x) ==x~That is, num-
bers in this range have identical unsigned and two’s-complemént representations.
For values outside of this range, the conversions either add or subtract 2%. For
example, we have T2U ,(-1) = —1 + 2" = UMax,—the negative number clos-
est to zero maps to the largest unsigned number At the other extreme, One
can see that T2U ,(TMin,) ='—2¥~1 4:2% = 2v~1 = TMak,, + 127 ithe most neg-
ative number maps to an unsigned number just outside the range of pditive
two’s-complement numbers. Using the éxample of Figure 2.15, we can sce that
T2U 5(—12,345) = 65,536 + —12,345 = 53,191.

2.2.5 Signed versus Unsigned in C

As indicated in Figures 2.9 and 2.10, C’supports both signed and unsigned arith-
metic for all of its integer data types. Although the C standard does not spec-
ify a particular representation of signed numbers, almost all machines use two’s
complement. Generally, most numbers are signed by default. For example, when
declaring a constant such as*12345 or 0x1A2B, the value is considered signed.
Adding character ‘U’ or ‘v’ as a suffix creates an unsigned constant; for example,
123450 or 0x1A2Bu.
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C allows conversion between unsigned and signed. Although the C standard
does not specify precisely how this conversion should be made, most systems
follow the rule that the underlying bit representation does not change, This rule has
the effect of applying the function /2 T, when converting from unsigned to signed,
and 72U, when converting from signed to unsigned, where w is the number of
bits for the data type.

Conversions can happen due to explicit casting, such as in the following code:

int tx, ty;
unsigned ux, uy;

(int) ux;
(unsigned) ty;

tx
uy

1]

ok W N =

Alternatively, they can happen "implicitly'when dn expression of one type is as-
signed to a variable of another, as in the following code:

int tx, ty;
unsigned ux, uy;

tx = ux; /* Cast to signed''*/
uy = ty; /* Cast to unsigned */

L T S 5C N N J—

‘When printing numeric values with printf, the directives %d, %u, and %x
are used to print a number as a signed: decimal, an unsigned decimal, and in
hexadecimal format, respectively. Note that printf does not make use of any
type information, and so it is possible to print a value of type int with directive
%u and a value of type unsigned with directive d. For example, consider the
following code:

1 it x = -1,

2 unsigned u =.2147483648; /* 2 to the 3ist */
3

4 printf("x = %u = %d\n", x, x);

5 printf("u = %u = %d\n", u, w);

When compiled as a 32-bit program, it prints the following:

fn
]

4294967285
2147483648

-1
-2147483648

X
u

Inboth cases, printf prints the word first as if it represcnted an unsigned number
and second as if it represented a signed number. We can see the conversion
routines in action: 72Uz (x1) = UMaxf, =232 — 1 and U2T5,(23)y= 231 — 232 _
—‘231 = TMiﬂ32. ,

Some possibly nonintuitive behavior ariges due to C’s handling of expres-
stons contéining‘comfjinqtions of signed and unsigned quantities. When an op-
eration is performed where one operand is signed and the other is unsigned, C
implicitly casts the signed argument to unsigned and performs’ the operations
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Expression Typé Evaluation

’ 0o = 0U  Unsigned 1
-1 < 0 Signed £

: -1 < 0U  Unsigned 0%
2147483647 > -2147483647-1 Signed 1

21474836470 = -2147483647-1. .Unsigned 0*

2147483647 > (dint) 21474836480 Signed 1%
-1 > -2 Signed 1
{(unsigned) -1 > -2 Unsigned 1

Figure 2.19 Effects of C promotion rules. Nonintuitive cases are marked by “*'. When
either operand of a comparison is unsigned, the other operand is impilicitly cast to |
unsigned. See Web Aside DATA:TMIN for why we write TMins; as -2, 147,483, 647-1. J

assuming the numbers are nonnegative. As we will see, this convention makes
little difference for standard arithmetic operations, but it leads to nonintuitive
results for relational operators such as < and >, Figure 2.19 shows some sample
relational expressions and their resulting evaluations, when data type int has a
32-bit two’s-complement representation. Consider the comparison -1 < 0U. Since
the second operand is unsigned, the first one is implicitly cast to unsigned, and
herice the expression is equivalent to the comparison 4294967295U < 0U (recall
. that T2U ,(—1) =:=UMazx ), which of course is false. The other cases can be under-
stood by simila® analyses. v

Assuming the expressions are evaluated when executing a 32-bit program on a ma-
chine that uses two’s-complement arithmetic, fill in the following table describing
the effect of casting and relational operations, in-the style of Figure 2.19:

Expression Type Evaluation
i -2147483647-1 == 21474836480

-2147483647-1 < 2147483647 ]
s -2147483647-1U < 2147483647

-2147483647-1 < -2147483647
-2147483647-1U < -2147483647

iz
»

2.2.6 Expanding the Bit Representationof aNumber

while retalmng ‘the same numeric value Of course, this maynot be possible when
the déstination data type is too small to represent the' desired vahie! Converting
from a §maller toa lal;ger ‘data type, however, shc;uld always be possible. “
g " )

& One common operation is to convert between integers havmg different word sizes
i
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; Web Aside DATA:TM N Writing nggm% C oty v, 4
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To convert an unsigned number to a larger data type, we can simply add
leading zeros to the representation; this operation is known as zero extension,
expressed by the following principle: =

PRINCIPLE: Expansion of an unsigned number by zero extension

Define bit vectors & = [u,,_1, uy,_3, . .., up] of width w and # =10, .. ., 0, Uy 1,
7 » ug] of width w', where w’ > w. Then B2U (&) = B2U . (it). [

w—Ds s - -

This principle can be seen to follow directly from the definition of the unsigned
encoding, given by Equation 2.1.

For converting a two’s-complement number to a larger data type, the rule
is to perform a sign extension, adding copies of the most significant bit to the
representation, expressed by the following principle. We show the sign bit x,,_; in
blue to highlight its role in sign extension.

PRINCIPLE: Expansion of a two’s-complement number by sign extension

Define bit vectors ¥ = [x,, 1, x,,_3. . . ., xp] of width w and ¥’ = Xt e v Xppots
Xy—1> Xw-2, - - - » Xp] of width w’, where w’ > w. Then B2T (%) = B2T ,(¥'). N

As an example, consider the following code:

i short sx = -12345; /* —12345 »/

2 unsigned short usx = sx; /+* 53191 */

3 int x = sx; /¥ ~12345 =*/

4 unsigned ux = usx; /* 53191 x/

5

6 printf("sx = %d:\t", sx);

7 show_bytes{(byte_pointer) &sx, sizeof (short));

8 printf ("usx = ¥u:\t", usx);

9 show_bytes((byte_pointer) &usx, sizeof (unsigned short));
10 printf("x = Jd:\t", x);




-
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Figure 2.20
Examples of sign

extension from w=3

to w = 4. For w =4, the 2= 4 |

1 shou bytes((byte_pmnter) &x, SlZQOf(ln‘t)g
12 printf("ux = %u:\t", ux);
13 show_bytes((byte_pointer) &ux, sizeof (unsigned});

When run as a 32-bit program on a big-endian machine that uses a two’s-
complement representation, this code prints the output

sx = -12345: cf c7
usx = 53191: cf c7
b'e = ~12345: ff £f <f c7

ux = b319i: 00 00 cf 7T

We see that, although the two’s-complement representation of —12,345 and the
unsigned representation of 53,191 are identical for a 16-bit word size, they dif-
fer for a 32-bit word size. In particular, 12,345 has hexadecimal representation
0xFFFFCFCT, while 53,191 has hexadecimal representation 0x0000CFCT. The for-
mer has been 51gn extended—16 copies of the most significant bit 1, having hexa:
decithal representation 0xFFFF, have been added as leading bits. The latter has
been extended with 16 leading zeros, having hexadecimal representation 0x0000.

As an iflustration, Figure 2.20 shows the'result of expanding from word size
w =3 tow = 4 by sign extension. Bit vector [101]represents the value —44+1=-3.
Applying sign extension gives it vector [1101] representing the value —8 + 4 +
1= —3. We can see that, for w = 4, the combined value of the two most significant
bits, —8 + 4 = —4, matches the value of the sign bit for w = 3. Similarly, bit vectors
[111} and [1111] both represent the value —1.

With this as intuition, we can now show that sign extension preserves the value
of a two’s-complement number,

combined weight of the 2' = 2 [

upper 2 bitsis -8 + 4=—4, 002 1 @

matching that of the sign - Lot
bit for w =3 i o oo B B o A

(101}

[1101] §

[111}

[1111]
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DERIVATION; :Expansion of a two’s:complement mumber by sign extension
Let w"=w 4 k. What we want to préve-is that »”
{1

BTt ([Xuw-1s - -+ Xu—1s Xyyo1s Xy -+ -+ XD = B2T , ([xyy_1, Xyy—as - - - » %))
— e

k times

The proof follows by induction on k. That is, if we can prove that sign extending
by 1 bit preserves the numeric value, then this property will hold when sign
extending by an arbitrary number of bits. Thus, the task reduces to proving that

B2Tw+1([xw_1, Xoyy—1o Kgg2s v 0 -5 xo]) = BZTw([Iw_]_, Xp—21 v == xo])

Expanding the left-hand expression with Equation 2.3 gives the following:
3

w—1
B2T1})+1([xw_l, Xpg—1> Xyg—2s « = v s 1'0]) = —xw_l?."” -+ Z x,-2'
i=0
w2
= —xw_12w + .X'w_izw_l “+ Z x,-2'
v +i=0

w-2
=—x, 1 (2“’ - 2"’_1) + Z x2
i=0

w—2
= —xw_l.'Z"’_l + Z x,-2’
i=(0
=B2T ([xy -1, Xp2, . - - xo])
The key property we exploit is that 2% — 2%~1 = 29-1 Thus, the combined effect
of adding'a bit of Weight +2" and of conVerting the'bit having weight —2°~to be
one with wéight2*~1 js tb pféserve the briginal numéric value. |

how that each of the fSllwing bit vectors i&-a two’s-complement representation
of —5 by applying Equation 2.3:
A. [1011]
B. [11011]
C. [111011]

Observe that the second and third bit vectors can be derived from the first by sign
extension.
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One point woirth making is that the relative order of conversion' from one
data size to another and between unsigned and signed can affect the behavior of
a program. Consider the following code:

i
short sx = -12345; /% -12345 %/
unsigned uy = sx; /* Mystery! */

printf("uy = %u:\t", uy);
show_bytes ({byte_pointer) &uy, sizeof (unsigned));

Lo W =

L4
When run on a big-endian machine, this code causes the following output to be
printed:

uy = 4294954951: f£f ff cf c7

This shows that, when converting from short to unsigned, the program first
changes the size and then the type. That is, (unsigned) sx is equivalent to |
(unsigned) (int) sx, evaluating to 4,294,954,951, not (unsigned) (unsigned i
short) sx, which evaluates to 53,191, Indeed, this convention is required by the
C standards.

= Con51de1' the followmg C functlons

int funi(unsigned word) {
return (int) ((word << 24} >> 24);
}

int fun2?(unsigned word) {
return {(int) word << 24) 35> 24;
i }

Assume these are gxecuted as a 32-bitprogram on a machmg that uses two’s-
complement ar1thmet1c Assume also that right shifts of signed valyes are pef;
formed arithmetically, while right shifts of unsigned values are performed logically.

A. Fll in the following table showing the effect of these functions for several
example arguments. You wilLfind it more convenient to work with a hexa-
» decimal representation. Just repember that hex digjts 8 through F have, their
most significant bits equal to 1.

W funi (w) fun?2 (w)

0x00000076
0x87854321
0x000000C9
0xEDCBA98Y

. Describe in words the useful computation each of these functions performs.
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2.2.7 Truncating Numbers

Suppose that, rather than extending a value with extra bits, wé redud¢ the number
of bits répresenting a number. This occurs, for example, in the following code:

1 int x = 53191;
2 short sx = (short) %; /+'-12345 %/
3 int y 2'5%; ! P yet 12345 #/

1y IH 2

Casting x to be short wilk truncate a 32-bit idt o a 16-bit short. As we saw
before, this 16-bit pattern isthe two’s-complement representdtion of —12,345,
When casting this back to int, sign extension will set the high-érder 16 bits to
ones, yielding the 32-bit two’s-complement representation of —12,345,

When truncating a w-bit number ¥ = [*p_ts Xz - . . ¥o] to ak-bit ‘number,
we drop’ the highrorder w — & bits, giving a bit vector ¥’ = [x,_;, x;_0, .. ., xg]
Truncating a number can alter its value—a form of overflow. For an unsigned
number, we can readily characterize the numeric value that will result.

PRINCIPLE: Truncation of an unsigned number

Let X be the bit vector [x,,_1, x,_s, . . +» %o, ana Iét X' be the result of truncating
jtto k bits: X' =[x, 1, x;,_,..., x0) Let x = B2U (%) and x' = B2U,(%"). Then
x'=x mod 2%, [ ]

The intuition behind this principle is simply that all of the bits that were
truncated have weights of the, form' 2/, where i > k, and therefore each of these
weights reduces to zero under the modulus operation. This is formalized by the
following derivation:

DERIVATION: Truncation of an unsigned number
Applying the modulus operation to Equation 2.1 yields

i

w-—1
B2U ([0 Xyp_gs e » xp]) mod 2% = [Z x,-z‘} mod 2*
i=0

k-1 )
= ’:Z x,—2‘:| mod 2*

i=0

k-1 .
= Zx,-Z'
i=0
= BZUk([xk_l, Xp Dy oo vy xo])

In this derivation, we make use of the property that 2/ mod 2* = () for any i > k.

n

A similar property holds for truncating a two’s-complerhent number, except
that it then converts the most significant bit into a sign bit:
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PRINCIPLE: Truncation of a two’s-complement number

Let X be the bit vector, [xy_1s Xw_2, - - - » %p), and let (:t' be the result of fruncating
it to k bits: ¥' = [xg_1, xk_z, ..., %] Let x,= B2T (%), and x' = B2T(i"). Then
x' = U2T,(x mod 2%). |

In this formulation, x mod 2% will be a number between 0 and 2F — 1. Applying
function U2T,, to it will have the effect of conyerting the most significant bit x;_; |
from having weight 2~ to having weight —2*~1, We can see this with the example :
of converting value x = 53,191-from int fo short. Singe 216 = 65,536 > x, we have
x mod 216 = x..But when we convert this nimber, to a 16-bit two’s-complement
number, we get x/-='533;191 — 65,536 = —12,345.

DERIVATION: Truncation of a"two’s-comp_lement number
Using a similar argument to the one we used for truncation of an unsigned number

shows that
b Il .
B2T, ([Xy—1» Xu—2, - - - » X)) mod 2F = B2U({x_y, Xx_2, - - - » XoD)

That is, x mod 2* can be represented by an unsigned number having bit-level rep-
resentation [%;_1, Xg..2, - - - » x4]. Converting this to a two’s~complemént numbet

gives x' = U2T(x mod 2%). | |

Summarizing, the effect of truncation for unsigned numbers is

'y

BZUk([Ik T XfPs o .Xo]) = BZUw([xw 1 X2 £+ s xo]) mod 2" (29)
l
while the effect for two’s-complement numbers is

B2Ty([Xp—1s ¥e2s - - - » %)) = U2T3(B2U  ([%uy_1x Xpp2: - - - - %o}, mod 2F) (2.10)

Prattice’Problem 2. 24:(5p T Gt ]
Suppose we truncate a 4-bit value (represented by hex dlglts O through F) toa 3—
bit value (represented as hex digits 0 through 7.) Fillin the table below showing
the effect of this truncation for some cases, in terms of the unsigned and two’s-
complement interpretations of those bit patterns.
"1
i

Hex Unsigned Two’s complement
Original  Truncated  Original  Truncated  Original  Truncated
0 0 0 e 0 R |
2 2 2 N 2 R |
9 1 9 [ ~7
B 3 11 eem e =5
F 7 15 L -1 _

Explain how Equations 2.9 and 2. 10 apply to these cases,

g a4y Pt

Ly
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2.2.8 Advice on Signed versus Unsigned '

As we have seen, the implicit casting of signed to unsigned leads to some non-
intuitive behavior. Nonintuitive features often lead to program bugs, and ones
involving the nuances of implicit casting can be especially difficult to see. Since the
casting takes place without any clear indication in the code, programmers often
overlook its effects.

The following two practice problems illustrate some of the subt)e errors that
can arise due to implicit casting and the unsigned data type.

T Ty A R T K CR hEAN
iPractice Problem:2.25° (solutiortpaqe*1s1) . ., & % & PN

Consider the following code that attempts to sum the elements of an array a, where
the number of elements is given by parameter length:

/* WARNING: This is buggy code */

float sum_elements(float a[], unsigned length) {
int i;
float-result = 0;

1
2
3
4
5
6 for (i = 0; i ¢= length-1; i++)
7 result += a[il;

3 return result;

9

}

When run with argument length equal to 0, this code should return 0.0.
Instead, it encounters a memory error. Explain why this happens. Show how this
code can be corrected.

string is longer than another. You decide to make use of the string library function
strlen having the following declaration:

/* Prototype for library function strlem */
sizae_t strlen(const char #s);

Here is your first attempt at the function:

/* Determine whether string s is longer than string t */
/* WARNING: This function is buggy */
int strlonger(char *s, char #*t) {

return strlen(s) - strlen(t) > 0;

}
{

When you tést this on some sample data, things do'not seem to work quite
right. You investigate further and determine that, when compiled as a 32-bit
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program, data type size_t is defined (via typedef) i header file stdio.h to'be
unsigned.

A. For what cases will this function produce an incorrect rgsult?

B. Explain how this incdrrect result comés about.

C. Shéw how to fix the code so that it will work reliably.

BT i e

We have seen multiple ways in which the subtle features of unsigned arith-
metic, and especially the implicit conversion of signed to unsigned, can lead to
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned
numbers.’ In fact, few languages other than C support unsigned integers. Appar-
ently, these other' language designers viewed, them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they
be unplemented with two’s-complement arithmetic. The normal right shift oper-
ator >> is guaranteed to perform ‘an arithmetic shift. The special operator>>> is
defined to perform a logical right shift.

Unsigned values are very useful when we want to think 8f words as just col-
lections of bits with no numeric 1nterpretat10n This occurs, for example, when
packing a word with flags describing various Boolean conditions. Addresses are
naturally unsigned, so systems programmers find unsigned-types to be helpful.
Unsigned values are also useful when implementing mathematical packages for
modular arithmetic and for multiprecision arithmetic, in which numbers are rep-
resented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive num-
bers can yield a negative result, and that the comparison x < y can yield a different
result than the comparison x-y < 0.,These properties are artifacts of the finite na-
ture of;computer arithmetic. Understanding the nuances of computer arithmetic
can help programmers write more reliable code.

2.3.1 Unsigned Addition Y

Consider two nonnegative integers x and y, such that 0 <x, y <2". Each of
these values can be represented by a w-bit unsigned number. If wé computetheir
sum, however, we have a possible range 0 < x +y < 2¥*1 -2, Representing this
sum could require w + 1 bits. For example, Figure 2.21 shows a;plot of the func-
tion x + y when x and y have 4-bit representations. The arguments (shown on
the horizontal axes) range from 0 to 15, Jbut the sum ranges, from'0 to 30, The
shape of the function is a sloping plane (the function is linear in both dlmen-
sions). If we were to maintain the sum as a (w + 1)-bit number and add it to
anothérevalue, we may require w + 2 bits, and so on. This continued “word size

¢
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32
28
24
20

16

~{ 0

2

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 hits.

inflation” means we cannot place any bound on the word size required to fully rep-
resent the results of arithmetic operations. Some programming languages, such
as Lisp, actually support arbitrary size arithmetic to allow integers of any size
(within the memory limits of the computer, of course.) More commonly, pro-
gramming languages support fixed-size arithmetic, and hence operations such
as “addition” and “multiplication” differ from their counterpart operations over
integers,

Let us define the operation +, for arguments x and y, where 0 < x, y < 2¥,
as the result of truncating the integer sum x + ¥ to be w bits long and then
viewing the result as an unsigned number. This can be characterized as a form
of modular arithmetic, computing the sum modulo 2¥ by simply discarding any
bits with weight greater than 2%~ in the bit-level representation of x 4- y. For
example, consider a 4-bit number representation with x =9 and y = 12, having
bit representations [1001] and [1100], respectively. Their sum is 21, having a 5-bit
representation [10101]. But if we discard the high-order bit, we get [0101], that is,
decimal value 5. This matches the value 21 mod 16 = 5.
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Aside Security vuinerability in getpeername .

S

Tn 2002, programmers involved-in the FreeBSD open-source operating-systems project realized that
their implementation of the getpeernadie library function had a security vilnerability. A simplified
version of their code went something like this:

T/ .
2 * Tllustration of code vulnerability similar to that found in )
3 * FreeBSD'sﬂimplbmentat{on ot‘getpeernaméf)

4 */

6 /+ Declaration of library function memcpy */

7. void *memcpy(void *dest, void, *src, gize_t n);

8 E

9 /% Kernel memory-region holding usér-actessible ‘data */

10, #define KSIZE 1024 .

1 char “kbuf [KSIZE];

12

13 /* Copy at most maxlen bytes from kernel region *to ugser buffer */

14  int copy_from:kernel(void *user_dest, int. maxlen) {

15 /* Byte count len is minimum of buffer sizZe ‘and ‘mdxlen */

16 int len = KSIZE < maxleh 7 KSIZE : maxlen;

17 memepy (user_dest, kbuf, len); °* -

18 return len; K

19 3}

o N PO *

In this code, we show the prototype for librmy?ungtion memepy on line 7, which is designed to copy
a specified number of bytes n from one region of memory to another.,

The function copy_from_kernel, starting at line 14, is designed to copy some of the data main-
tained by the operating systein kernel to &' designated regibn of memory accéssible’to the user. Most “”5
of the dath structures maintained by the’kernelshotild not be'readable by aruser, since they may cop-i 4
tain sensitive information about'other users and about otherjobs running on thie system, but the region
shown as kbuf was intended to be ofid’that the user cbuld fead. Thé parameter maxlen is intended to be
the length of the buffer allocated by the user and indicated by argbment uses dest: The computation
at line 16 then makes sure that no more bytes are copied than‘aré availablein eitherthe $curcg'or thé
destination buffer. a >

Suppose, however, that some malicious programmer writes code that calls copy_from_kernel'with
a negative value of maxlen. Then the miinimum corhputation‘on line, 16 will compute’ this value for len,
which will then be passed a& the parameter n fo memcpy. Note, howeVer, that pafameter n is declared’as
having data type size_£. This data type ig'declared] (via typedef }inthe liﬁgamﬁle stdio :h. Typically, 1f
is defined to be unsigned for 32-bit programs and unsigned long fos 64-bit-programs, Since argyment
n is-unsigned, memcpy will treaf'it as a very large pésitive number and dttempt to"copy that many bytes
frém the Kernel region to theshser’s buffer. Copying that mdny bytes (at least 231) will not actually
work, because the program will encounter invalid addresses in the procéss, butithé grogram could read
regions of the kernel memoty for which itis ot authorized.
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Aside Security Vulherability jrf
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getpeername (continued)-

"

o T # =

We can see that this probleni arises due to the mismatch betwaén data types: in one place the
length parameter'i§ Signed; 4n *anqtﬁier place itisunsigned. Such,mismatches cdn bea source of bugs
and, as this exampleshiows, can even Jead to secirity vulnérabilities. Fortunately, there were no reported
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a seéurity advisory
“FreeBSD—SA;QZ:SS.sfgnea—enoﬁ’gdvising system administrators on how to apply a patch that would
removeuthge vulnerability. The bug‘cast ‘bé fixed by declaring parameter hax]len to copy_from_kernel
tobe of type size_ t, to'be consibtent with parameter n of memcpy. We should also declare local variable
len‘and the returnwvalue to be of typé size_t. S i
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We can characterize operation + as follows:

PRINCIPLE: Unsigned addition
For x and y such that 0 < x, y < 2%:

X+, x+y<2¥ Normal

oY= 2.11
CH {x-l')’—?-“’, 2% < x +y < 2% Overflow (211)

The two cases of Equation 2.11 are illustrated in Figure 2.22, showing the
sum x + y on the left mapping to the unsigned w-bit sum x +,, ¥ on the right. The
normal case preserves the value of x + y, while the overflow case has the effect of
decrementing this sum by 2¥.

DERIVATION: Unsigned addition

In general, we cansee that if x + y < 2%, the leading bit in the (w + 1)-bit represen-
tation of the sum will equal 0, and hence discarding it will not change the numeric
value. On the other hand, if 2 < x + y < 2%l the leading bit in the (w + 1)-bit
representation of the sum will equal 1, and hence discarding it is equivalent to
subtracting 2¥ from the sum. |

An arithmetic operation is said to overflow when the full integer result cannot
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow

X+

Ll Overflow

x+y

Normal

Figure 2.22 Relation between integer addition and unsigned addition. When x + y
is greater than 2% — 1, the sum overflows.
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Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16,

occurs when the two operands sum to 2 or more. Figure 2.23 shows a plot of the
unsigned addition function for word size w =4. The sum is computed modulo
24— 16. When x -+ y < 16, there is no overflow, and x +} y is simply x + y. This is
shown as the region forming a sloping plane labeled “Normal.” When x + y > 16,
the addition overflows, having the effect of decrementing the sum by '16. This is
shown as the region forming a sloping plane labeled “Overflow.”

When executing C programs, overflows are not signaled as errors. At times,
however, we might wish to determine whether or not overflow has occurred.

PRINCIPLE: Detecting overflow of unsigned addition

For x and y in the range 0 < x, y < UMax,,, lets =x +|, y. Then the computation
of s overflowed if and only if s < x (or equivalently, s < y). |

As an illustration, in our earlier example, we saw that 9 +} 12 = 5. We can see
that overflow occurred, since 5 < 9.
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DERIVATION: Detecting overflow of unsigned addition

Observe that x + ¥ = x, and hence if s did not overflow, we will surely have s > x.
On the other hand, if s did overflow, we have s = x + y — 2. Given that y < 2%,
we have y — 2% < 0, and hence s = x + (y — 2%) < £. |

ﬁig:ir” '“?if'J i””f”‘”:““ﬁ‘;'"” o

LIALHERILEQDIE M2y Li(solutionpaget] 52Ys AL R
Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */
int uadd_ok(unsigned x, unsigned y);

This function should return 1 if arguments x and ¥ can be added without
causing overflow.,

7

i1

Modular addjtiorrforms a mathematical stfucture known.as anabelian group,
named after the Norwegian'mathematician Niels Henrik Abel (1802-1829). That
is, it is commutative (that’s where' the “abelian” part coies in) and associative;
it has an identity. element 0, and every element has an ‘additive inverse. Let us
consider the set of w-bit unsigned numbers with addition operation +% . For every
value x, there must be some Value X $uch that = X +5, x = 0. This additive
inverse operation can be characterized as follows:

PRINCIPLE: Unsigned negation

For any number x such that 0 < x < 2%, its w-bit unsigned negation -*, x is given
by the following:

_wx=

(2.12)
|

" {x, x=0

2 —x, x>0

This result can geadily be derived by case analysis:

DERIVATION: Unsigned negation

1 - - 2 s
When x =0, the additive inverse is clearly. 0, For x > 0, copsider, the value 2% — x,
Observe that this number Is in the range 0 < 2% — x < 2% We can also see that

(x 42 — x)mod 2¥ = 2% mod 2% = 0. Hence it is the inverse of x under +. 1

ity s L A o e Y
»P“ei“'-"f“ 0 sl kel g

T

We can represent a bit pattern of length w = 4.with a single hex digit. For an
unsigned interpretation of these digits, use Equation 2.12 to fill in the following
table giving the values and tHe bit representations (in hex) of the unsigned additive
inverses of the digits shown.
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2.3.2 Two's-Complement Addition

With two’s-complemenf addition, we must decide what to do when the result is
either too large (positive) or too small (negative) to represent. Given integer
values x and y in the range —2¥~1 < x, y < 2%~} - 1, their sum is in the range
—-2¥ < x 4+ y = 2% — 2, potentially requiring w + 1 bits to represent exactly. As
before, we avoid ever-expanding data sizes by truncating the representation to w
bits. The result is not as familiar mathematically as modular addition, however.
1 Let us define x + y to be the result of truncating the integer sum x-+ y to be w
bits long and then viewing the result as a iwo’s-complement jfiumber.

PRINCIPLE: Two’s-complement addition

For integer values x and y in the range —2¥~1 < x, y <2%1 _1:

x+y—2¥ 2w layy ¥ Positive overfiow L *
x+ y={x+y, —2wl<x 4y <2¥l Normal (2.13) ’
i - x+y+2¥ x+y<-=2¢"1  Negative overflow ' i

[ |

This principle is illustrated in Figure 2.24, where the sum x + y isshown on the

; left, having a value in the range -2 < x + y < 2% — 2, and the result of truncating
the sum to a w-bit two’s-complement number is shown on the right. (The labels
' “Case 1” to “Case 4” in this figure are for the case analysis of the formal derivation

of the principle.) When the sum x + y exceeds TMax,, (case 4) we say that positive
overflow has occurred. In this case, the effect of truncation is to subtract 2% from
the sum. When the suth x + is 1éss thar TMin,, (case 1), we say that neganve
over;ﬂow has occurred. In thib case, thé effect of truncation is to add 2% §5 the sur.

The w-bit two’s-complement sum of two number§ has the exact same bit-level
representation as the unsigned sum. In fact, most computers use the same machine
instruction to perform either unsigned or signed addition.

. DERIVATION: Two’s-Complenient addition

' Singe, twa’ s~comp1ement addition has the exact same bit-level representation as
unsigned addition, we can characterize the operatwn +, as one of converting 1ts

| arguments to unsigned, performing unsigned addition, and then converting back
to two’s complement:
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Figure 2,24

Relation between integer
ang two's-complement
addition. When x + y is
fess than —2%~1, there is a
negative overflow. When
it is greater than or equal
to 2“1, there is a positive
overflow,

x4, ¥ = U2T ,(T2U ,(x) +% T2U,,()), (2.14)

By Equation 2.6, we can write 72U, (x) as %y-12% +x and T2U,(y) as
Yw-12" 4+ y. Using the property that +,, Is simply addition modulo 2¥, along with
the properties of modular addition, we then have

x +L, Y+ U2ngmUw(x) +:_, T2U ,(y)) ’
= U2T ,[(x,p-12" + x + y,_12¥ + y) mod 2¥]
= U27,[(x + ) mod 27

The terms x,,_12* and y,,_;2* drop out since they equal 0 modulo 2%,

To better understand this quantity, let us define z'as the integersumz =x + y,
z as z/ = zmod 2%, and z” as z" = U2T ,(z'). The value 2" is equal to x +,y. We
canl divide the analysis into four cases as illustrated in Figure 2.24;

1L —2¥ <z < —2%"1 Then we will have z/ = z +2*. Thisgives 0 < 7/ « —2w—1 ¢
2¥ =2%~1 Examiding Equation.2.7; we see that # is in the range such that
z"=27'. This is the case of negative overflow. We have added two negative
numbers x and y (that’s the only-way'we can have z < —2%¥~1) and obtained
a nonnegative result z”’ = x + y -+ 2%,

2. 2%l <z <{. Then we will again have 2/ = z 4 2% giving —2¥-14 2w
20l <y 2w, Examining Equation 2.7, we see that 2’ is in such a range that
2" =2z'— 2" and therefore 2/ = 2/ — 2W— + 2% — 2" = z_That is, our two’s-
complement sum z” equals the integer sum x + ¥

3. 0 <z <2¥"L. Then we will have 2’ = z, giving 0 < 2/ < 2%, and hence z” =
z' = z. Again, the two’s-complement sum z" equals the integer sum x + y.

4. 271 2z < 2% We will again havé 2 = z, giving 2%~ < 7' < 2%, But in this
range we have z” =z’ — 2%, giving z/ = x + y — 2, This is the case of positive
overflow. We have added two positive numbers x and y (that’s the only way
we can have z > 2¥~1) and obtained a negative result 2’ = x + y - 2, |
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x ¥y x+y X+ y Case
8 s —13 301
[1000] [1011] [10011] [0011]
-8 -8 -—1_6’ . 0 1
[1000] [1000] [16000] [0000]
' -8 5 3 evs3 2
[1000] [0101] [11101) [1101]3
_l 2 5 7 7 3
‘ [0010] [0101] [00111] [0111]
| : 5 5 10 —6 4
. [0101] fo101] (010101 [1010)
[
! figure 2.25 Two's-complement addition examples. The bit-level representation of |

the 4-bit two's-complemnent sum can be obtained by performing binary addition of the i
operands ang truncating the result to 4 bits.

i o
b As iltustrations of two’s-complement addition, Figure 2. 25 shows some exam-
* ples when w = 4. Each example is labeled by the case to which it corresponds in
E the derivation of Equation 2.13. Note that 2% = 16, and hence negative overflow
‘ yields a result 16 more than the integer sum, and positive overflow yields a result 16
f ' less. We include bit-level representations of the operands and the result. Observe
] that the result can be gbtained by perfprming hinary addition of the operandg and
g truncating the result to 4 bits.
Figure 2.26 illustrates two s—complement addition for word size w = 4. The
!} operands range between —8 and 7. When x + y < —8; two’s-complement addition
% has a negative overflow, causing the sum to be 1ncremented by 16. When -8 <
‘ x + y < 8, the addition yields x + y. When x + y > 8,.the, addition has a positive
overflow, causing the sum to be decremented by.16. Each of these three ranges
forms a sloping plane.in the figure. i
’ﬂ Equation 2.13 also lets us identify the cases where overflow has occurred:

PRINCIPLE: Detecting overflow in two’s-complement addition

i For x and y in the range TMin,, < x, y < TMax,,,let s = x + y. Then the compu-
! tation of s has had positive overflow if and only if%.> 0 and y > 0 but s < 0. The
E computation has had negative overflow if and only ifx <0and y <Obuts=0. ®

Figure 2.25 shows several illustrations of this principle for w = 4. The first
en FFY shows a case of negative overflow, where two negative numbers sum to a
positive one. The final entry shows a case of positive overflow, where two positive
numbers sum to a negative one. .
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Negative i
overilow

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a
negative overflow whenx 4 y < --8 and a positive overflow when x + y > 8.

DERIVATION: Detecting overflow of two’s-complement addition

Let us first do the analysis for positive overflow. If both x > 0 and y>0buts <0,
then clearly positive overflow has occurred. Conversely, positive overflow requires
(1) that x > 0 and y > 0 (otherwise, x + ¥ < TMax, ) and (2) that s <0 (from
Equation 2.13). A similar set of arguments holds for negative overflow. n

A e P r AR gt s e e s e pmennp v e e
Practicc Problem. 2uwdai: lytion.nade82) i T I ERT T
Fill in the following table in the style of Figure 2.25. Give the integer values of
the 5-bit arguments, the values of both their integer and two’s-complement sums,

the bit-level representation of the two’s-complement sum, and the case from the
derivation of Equation 2:13.

x y x+y x4y Case

[10100] [10001]
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x ¥ x+y x4y Case

[11000] [11000]

[10111).  (01000]

[00010] [00101]

[01100] [00100]

erte a functlon w1th the followmg prototype:

/* Determine whether arguments can be added without overflow */ ~
int tadd_ok(int x, int y); |

kS
This function should return 1 if arguments x and y can be added without
causing overflow.

Your coworker gets unpatlent w1th your analys1s of the overflow conditions for
two’s-complement addition and presents you with the following implementatiort
of tadd_ok:

/* Determine whether arguments can be, added without overflow */

/* WARNING: This code is buggy. */

int tadd_ok(int x, int y) {
int sum = x¥y; .
retirn (sum-—x == y) &k (sum-y == x);

{ e

You look at the code and langh. Explain why.

You are a551gned the task of wrltmg code for a function tsub_ok, with arguments
x and y, that will return 1 if computing x-y does not cause overflow. Having just
written the code for Problem 2.30, you write the following:

/* Determine whether arguments can be subtracted without overflow */
/* WARNING: This code is buggy. */ . '
int tsub_ok({int x, int y) {
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return tadd_ok(x, -y);

For what values of x and y will this function give incorrect results? Writing a
correct version of this function is left as an exercise (Problem 2.74).

U

2.3.3 Two's-Complement Negation

We can see that every number x in the range TMin,, < x < TMax,, has an additive
inverse under +),, which we denote - x as follows:

PRINCIPLE: Two’s-complement negation

For x in the range TMin, <x < TMax,, its two’s-complement negation -, x is
given by the formula

t
w

v { TMin,,, x=TMin,

—X, x > TMin, (2.15)

B
That is, for w-bit two’s-complement addition, TMin,, is its own additive in-
verse, while any other value x has'—x as its additive inverbe.
DERIVATION:. Two’s-complement negation

Observe that TMin,, + FMin, = —2%~* 4 —2%~1 = 2%, This would cause nega-
tive overflow, and hence TMin,, +, TMin,, = —2% + 2% = 0. For values of x such

thatx >"TMin,, the value —x can also be represented as a w-bit two’s-complement
number, and their sum will be —x + x = 0. |

et 'w'mﬁi»c

We can represent a bit pattern of length w=4 w1th a single hex digit. For a two’s-

complement interpretation of these digits, fill in the following table to determine
the additive inverses of the digits shown:

L
X 41.'

Hex Decimal Decimal Hex

Mo oo

What do yoh observe ‘about the'bit patterns generated by two’s-complement
and unsigned (Problem 2.28) negation?

a5
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Web Aside DATA:TNEG ﬁlthtevel representatlon of two's- complement negation .
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“ Fo % o a

¥
There are-several clever ways to determine the two’s- cof‘nplement negation.of a value represented
at the bit level. Thé foilowilg two’ tqcﬁmqueé*afp Béth liseful such"aé v?hen one encounters the value
oxffffffa when debugging a prograni, and tﬁqy lend 1n51ght into'the naiure of the tWo s—complert‘iérff}
representatlon 5
Oné technique for performing two s-comple;nent négation at the bit 1evel isto complenient the bits ¢
“and then increment, theresult. InC, we,,can state that for any mtegerxv,alue . %cof‘hputmg‘%he expressichs 4

i and ~x 41 will gwe identical results% . » . i
Here-are some eXampled With 2 4-bit word smé . fgoRR RS2 #
e bR N B ong n oty
3 i -3 Te ner(-%)
= ‘ 5 - T " R A PEERT LA | WA
J0101] 5 f1p010) -6 [tor] -5 - .y

- e PN P . " g % s
[o111] 7 “[1000) -8 foo ] -7 o s %
[1100] -4 « 10011] 3 [o100] . 4 - f. '
[0000] 0 Ta11] -1 {0000}-« 0 " .
[1000] -8 iy © 7 - {1000] G "o )

For our earlier example, we know lhat the complemenit of 0xf is 0x0 and the complement of Oxa
is 0x5, and'so Oxf11f £ £1a 1s_}he two’i-cofpleihent Teprésentation of5 Bhe an " L

A second way to perféim two ‘s-complement, negation of a numbervx 8 Qased o1y spllttmg the bit 4
vector into two pagts. Let k be the position of the rightmost 1, so the blt-]evel representatmn*of x has the
form [Xy_1, Xy—2» - - - » Xgaio 1, 0, . 0] (Thisis p0551b1e asJong*as x'*# 0.) Thendgatiofis‘thér written i
in binary form as [~xy_1, Ty F50 %‘1,,,1,40 +, 0} That is, wé complemapt“each bit to_ the lef,;, o&

bit position . , 4P 3 3 E
We illustrate this ldea w,1th_sorneﬁ,!gt(1 glgnumbgrg, gghere We hxghhyghrtpe ngiltmost pattem 1 0 %
in-italics: 5 A B, s 3, ¢
X . e —x" £ 3 “ ;
1o0] -4 [0foo] 4 wE e '
[000) —8  iMI000Rs TBoct . wa P T
[0101] 5 101} L5 ¥ Y S T dett 7 ]
o 7 (to07). =7 ceFoAma e e B g

e A e o e in Bl e R

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 < x, y <2 — 1 can be represented as w- -bit un-
signed numbers, but their product x - y can range between 0 and (2% — 2=
22w _ gwtl 4 1. This could require as many as 2w bits to represent. Instead, un-
signed multiplication in C is defined to yield the w-bit value given by the low-order
w bits of the 2w-bit jnteger product. Let us denote this yalue as y *, y.

Truncatmg an unsigned number to w bits is equwa]eni 1o computmg its value
modulo 2%, giving the following:
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PRINCIPLE; Unsigned multiplication
Forxand y suchthat 0 < », y < UMax,,:

x*, y=(x-y)mod2¥ (2.16)

2.3.5 Two's-Complement Multiplication

+
Integers x and y in the range 2%~ <x, y <21 — 1 can be represented as w-bit
two’s-complement numbers, but their product.x - ¥ can range betwekn -2w-1.
¥l — 1y = —22w-2 L gw-ligng —pw-1c _pw-1_220-2 Thic conld require as
many as 2w bits to represent in two’s-complement:form’ Instead, signed multi-
plication in C generally is performed by truncating the 2w-bit product to w bits.
We denote this yalue as 5 *., ¥, Truncating a two’s-complement number to w bits

is equivalent to first computing its value modulo 2% and then converting from
unsigned to two’s complement, giving the following:

PRINCIPLE: Two’s-complement mitltiplication
For x and y sueh that T™Miny, <x, y < TMax,,:

x# y=U2T,((x - y) mod 2%) (217)
|

We claim that the bit-levél tépresentatiort of the product operation is identical
for both unsigned and two’s-complement multiplication, as stated by the following
principle:

PRINCIPLE: Bit-level equivalence of unsigned and two’s-complement multipli-
cation

Let ¥ and ¥ be bit vectors-of length w. Define integers x and y as the values repre-
sented by these bits in two’s-complement form: x = B2 Ty(X) and y = B2T (7).
Define nonnegative integers x* and y’ as the values represented by these bits in
unsigned form: x’ = B2U (¥} and y’ = B2U ,(5). Then

2B, (x *:.u y)'= U2Bw(x’ *:;, y’)
‘ [ |

As illustrations, Figure 2.27 shows the results of multiplying different 3-bit
numbers. For'each pair of bit-level operands, we perform both unsigned and
two’s-complement multiplication, yielding 6-bit products, and then truncate these
to 3 bits. The unsigned truncated product always equals x - y mod 8. The bit-
level representations of both truncated products are identical for both unsigned
and two’s-complement multiplication, even though the full 6-bit representations
differ.
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Mode x ¥y Ay Truncated x - ¥
Unsigned 5 [or] 3 [o1 15 [oouanl] 7 [111]
_ Two’s complement =3 [101] 3 [o11] -9 [110111] -1 f111] |
: Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two's complement  —4 [100] -1 [111] 4 [000100] —4 [100]
Unsigned 3 [oi1] 3 [o11] 9 -[001001): 1 [001]
Two’s complement 3 fo11] 3 [o011] 9 [001001] 1 [001] f

Figure 2.27 Three-bit unsigned and two’s-complement multiplication examples:
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

DERIVATION: Bit-level equivalence of unsigned and twb’s-complement multipli-
cation ! !

From Equation 2.6, we have x' = x + x,_12% and ¥’ =y + y,,_12*. Computing the
product of these values modulo 2% gives the following:

. i
e e e e b . el

' - y) mod 2% = [(x + xp_12") * (7 + Y—12*)]mod 2 (2.18)
=[x-y+ Gy + }’w——lx)zw + xw—lyw—lzzw] mod 2% i
= (x - y)mod 2¥

The terms with weight 2% and 22* drop out due to the modulus operator. By Equa-
tiog 2.17, we hayve x *,, y = UZT,{,((x . y) mod 2%). We can apply the operation
12U, to both sides to get

T2U (x *, y) = T2U ,(U2T,((x - y) mod 2¥)) = (x - y) mod 2*

Combining this result with Equations 2.16 and 2.18 shows that T2U ,(x *, y) =
(x'+ y) mod 2¥ = x’ #* y'. We can then apply U2B,, to both sides to get

+

2B, (T2U (x ., y)) = T2B,,(x #, ) = U2B,,(x' ¥, ¥)

[ ]
[
; O T P T e R T AT
' ‘Proplem 2:34. (solution paoe 1S3k iy T e @ E i

Fill in the following table showing the results of multiplying different 3-bit num-
' bers, in the style of Figure 2.27:

Mode x ¥ Xy Truncated x - y
] Unsigned e [00] e 107 [
; Two's complement . [100] [101] s :
5 y %
}. , Unsigned 010 — .. Q] : f

Two's complement ... [010] . [111)
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Mode X ¥ X-y Truncated x - y
Unsigned — 110 — . [110] :
Two’s complement . [110) _____  [110] .

You are given the assignment to develop code for a function tmult_ck that will
determine whether two arguments can be multiplied without causing overfiow.
Here is your solution:

/* Determine whether arguments can be multiplied without overflow */
int tmult_ok{int x, int y) {

int p = x*y;

/* Either x is zerc, or dividing p by x gives y */

return !x || p/x == y;

You test this code for a number of values of x and y, and it seems to work
properly. Your coworker challenges you, saying, “If I can’t use subtraction to
test whether addition has overflowed (see Problem 2.31), then how can you use
division to test whether multiplication has overflowed?”

Devise a mathematical justification of your approach, along the following
lines. First, argue that the case x = 0 is handled correctly. Otherwise, consider
w-bit numbers x (x #0), y, p, and 4, where p is the resuit of performing two’s-
complement multiplication on x and y, and ¢ is the result of dividing p by x.

1. Show that x - y, the integer product of x and y, can be written in the form
x-y=p+12¥ where ¢t # 0 if and only if the computation of p overflows.

2, Show that p can be written in the form p = x - g + r, where [r| < |x|.
3. Show thatg =y ifandonlyifr =t =0.

Problem:Zi8 66oliticn: pages; -"ﬁi S ¥ S M

For the case where data type int has 32 bits, devise a version of tmult_ok (Prob-
lem 2.35) that uses the 64-bit precision of data type int64_t, without using
division.

Cl

You are given the task of patching the vulnerability in the XDR code shown in
the aside on page 100 for the case where both data types int and size_t are 32
bits. You decide to eliminate the possibility of the multiplication overflowing by
computing the number of bytes to allocate using data type uint64_t. You replace
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Aside Security vulnerability in the XDR library .

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, a
widely used facility for sharing data structures between programs, had a security vulnerability arising
from the fact that multiplication can overflow without any notice being given to the program.

Code similar to that containing the vulnerability is shown below:

1 /* Illustration of code,vulnerability similar to that found in

2 = Sun's XDR library. )

3 o/ '

4 void* copy_elements{void *ele_src{], int ele_cnt, size_t ele_size) {
5 VES

3 * Allocate buffer for ele_cnt objects, each of ele_size byteés
7 * and copy from locations designated by ele_src

8 */

9 void *result = malloc(ele_cnt * ele_size);

10 if (result == NULL)

11 /* malloc failed */

12 return NULL;

13 void #pext = result;

14 int i; *

15 for (i = 0; 1 < ele_cnt; i++) {

16 /* Copy object i t¢ destimation */

17 memcpy (next, ele_src[i], ele_size); .
18 /* Move pdinter to next memory region %/

19 next += ele_size;

20 } '

Fa return result; .

22}

The function copy_elements is designed to copy ele_cat data structures, each consisting of ele_
size bytes into a buffer allotated by the function on line 9. The number of bytes required is computed
as ele_cot * ele_siza. .

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577
(2%° + 1) and ele_size being 4,096 (2!2) with the program compiled for 32 bits. Then the multiplication
on line 9 will overflow, causing only 4,096 bytes to be allocated, rather thian the 4,294,971,392 bytes
required to hold that much data. The loop starting at line 15 will attempt to copy all of those bytes,
overrunning the end of the allocated buffer, and therefore corrupting other data structures. This could
cause the program to crash or otherwise misbehave.

The Sun code was used by almost every operating system and.in such widely used programs as
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security
vulnerabilities and breaches, issued advisory “CA-2002-25,” and many companies rushed to patch their
code. Fortunately, there were no reported security.breaches caused by this vulnerability.

A similar vulnerability existed in many implementations of the libraty function calloc. These
have since been patched. Unfortunately, many-programmers call allocation functions, such as malloc;
using arithmetic expressions as arguments, without checking these expressions for overflow. Writing a
reliable version of calloc is left as an exercise (Problem 2.76).

iy

Wk i el T

§

3

E

3




Section 2.3 Integer Arithmetic

the original call to malloc (line 9) as follows:

nint64_t asize =
ele_cnt * (uint64_t) ele_size;
void *result = malloc(asize); .

Recall that'the argument to malloc has typeisize_t.

A. Does your code provide any improvement over the original?

B: How would you change the code to eliminaté the vulnerability?’

i F 3 £

[

2.3.6 Multiplying by Constants

Historigally, the integer ‘multiply instruction ol many machines was fairly slow,
requiting 10 or more clock cycles, whereas other integer operations—such, as
Addition, subtraction, bit-level operations, and shifting—required only 1 -clock
cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer
multiply requires 3 clock cycles. As a consequence, ong important optimization
used by compilers is to attempt to replace multiplications by constant factors with
combinations of shift-and addition operations. We will first consider the case of
multiplying by a power of 2, and then we will generalize this to arbitrary constants.

PRINCIPLE: Multiplication by a powér of 2

Let x be the unsigned integer represented by bit' pattern [y_;, Xy - - -y Xl
Then for any k = 0, the' w ++4-bit unsigned- representation of x2* is given by
[(¥w-1) X2, .., %0, 0, .. ., 0], where k zeros have beert added torthe rightt N

I P
So, for example, 11 can be reprgsented for w = 4,3s,[1011]. Shifting this left
by k =2 yields the 6-bit vector [101.100], which encodes the unsigned number
11.4=44.

DERIVATION: Multiplication by a power of 2
This property can be derived using Equation 2.1:

w—1
BZU,,,H(wa_l,'xw_z, v Xp. 0, ..., 0D = Z x; 20k
=0

w-—1
= {Z x,-2£:| L2k
=0

= x2k
|

When shifting left by & for a fixed word size, the high-order & bits are discarded,
yielding

[xw—k—].’ xIka—Z! LRI | xo; Os ey 0]

101
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I but this is also the case when performing muitiplication on fixed-size words. We
can therefore see that shifting a value left is equivalent to performing unsigned
multiplication by a power of 2:

] PRINCIPLE: Unsigned multiplication by a power of 2

[ For C variables x and k with unsigned values x and k, such that 0 <k < w, the C
expression x << k yields the value x * 2%, n

Since the bit-level operation of fixed-size two’s-complement arithmetic is
equivalent to that for unsigned arithmetic, we can make a similar statement about
the relationship between left shifts and multiplication by a power of 2 for two’s-
complement arithmetic:

PRINCIPLE: Two's-complement multiplication by a power of 2

For C variables x and k with two’s-complement value x and unsigned value &, such
that 0 <k < w, the C expression x << k yields the value x *!, 2%, |

' Note that multiplying by a power of 2 can cause overflow with either unsigned
or two’s-complement arithmetic. Our result shows that even then we will get the
same effect by shifting. Returning to our earlier example, we shifted the 4-bit
pattern [1011] (numeric value 11) left by two positions to get [101100] (numeric
| value 44). Truncating this to 4 bits gives [1100] (numeric value 12 = 44 mod 16).

Given that integer mulitiplication is more costly than shifting and adding, many
C compilers try to remove many cases where an integer is being multiplied by a
constant with combinations of shifting, adding, and subtracting. For example, sup-
pose a program contains the expression x*14. Recognizing that 14 =23 422 + 21,
the compiler can rewrite the multiplication as (x<<3) + (x<<2) + (x<<1),replac-
ing ofte multiplication Wwith three shifts and two additions. The two computations
will yield the same result, regardless of whether x is unsigned or two’s comple-
ment, and even if the multiplication would cause an overfiow. Even better, the
compiler can also use the property 14 = 24 — 2! to rewrite the multiplication as
(x<<4) - (x<<1), requiring only two shifts and a subtraction.

N e

‘ the form (a<<k) + b, where k is either 0, 1, 2, or 3, and b is either 0 or some
;. program value. The compiler often uses this instruction to perform multiplications
by constant factors. For example, we can compute 3#a as (a<<1) + a.
Considering cases where b is either 0 or equal to a, and all possible values of k,
what multiples of a can be computed with a single LEA instruction? -

! Generalizing from our example, consider the task of generating code for
i the expression x * K, for some constant K. The compiler can express the binary
representation of X as an alternating sequence of zeros and ones: ‘
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[0...00Q...0...00--(1...1]

For example, 14 can be written as [(0. . . 0)(111)(0)]. Consider a run of ones from
bit position n down to bit position' m (n = m). (For the case of 14, we have n =3
and m = 1.) We can compute the effect of these bits on the product using either of
two different forms:

Form A: (x<<n} + (x<<(n — 1)) + .- + {x<sm)
Form B: (x<Z(n +1)) - (x<<m)

By adding together the results for each run, we are able to compute x * X with-
out any multiplications. Of course, the trade-off between using combinations of
shifting} adding, and subfractiny versiss a single multiplication instruction depends
on the relative speeds of these instructions, and these can be highly machine de-
pendent. Most compilers only perform this optimization when a small number of
shifts, adds, and subtractions suffice:

iq

How couId we mod1fy the expressmn for form B fer the case where bit position n
is the most significant bit?

For each of the fo]lowmg values of K ﬁnd ways to express x * K usmg only the
specified number of operations, where we ‘consider both additions and subtrac-
tions to have comparable cost. You may need to use some tricks beyond the simple
form A-and B ruies we have considered so far.

K Shifts  Add/Subs  Expression

»

6 2 1
il 1 i — ro
-6 2 1 —————
53 2 2 t

Practice Problemi ZATH 013

For a run of ones gtartmg at b1t iiosmon 3 down to blt posmon m (n > m) we saw
that we card generatd 1o forms of c6de, A and B. How should'the compiler decide
whith form'tor use? :

k1 E

2.3.7 Dividing by Powers of 2

Integer division on most machines is even slower than integer multiplication—
requiring 30 or more clock cycles. Dividing by a power 0f 2 can also be performed
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k >> k (binary) Decimal 12,340,/2%

0 0011000000110100. 12,340 12,340.0

1 0001100000011010 6,170 6,170.0

4 0000001100000041 ! 771.25

8 0000000000110000 48 48203125

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustrate
how performing a logical right shift by k has the same effect as-dividing by 2¥ and then
rounding toward zero.

using shift operations, but.we use a right shift rather than-a left shift. The two
different right shifts—logical and arithmetic+—serve this purpose for unsigned and
two’s-complement numbers, respectively: "

Integer division always rounds toward zero. To .define this precisely, let.us
introduce some notation. For any real number g, define |a] to be the unique
integer @’ such that &’ <a <a’ + 1. As examples 13. 14j 3, 1-3. 14] —4, and
13] =3. Similarly, define [a] to be the unique integer @’ such thata' —1<a <a’.
As examples, [3714] = 4, [—3:14] = =3, dnd [37'= 3. For x =0 and y > 0, integer
division should yield [x/y], while forx <Oand y > 0, it should yield [x/y]. That
is, it should round down a positive result but round up a negative one.

The case for using shifts with unsigned arithmetic is straightforward, in part
because right shifting is guaranteed to be performed logically for unsigned values.

foae o}
PRINCIPLE: Unsigned divisionnby a power of 2

For C vdriables x and*k with unsigiéd values x and k, such that 0'< k< w, the C
expression x >> k yields the value |x/2¢]. |

As examples, Figure 2.28 shows the effects of performing logical right shifts
on a 16-bit representation of 12,340 to perform division by 1, 2, 16, and 256. The
zeros shifted in from the left are shown in italics. We also show the result we would
obtain if we did these divisions with real arithmetic. These examples show that the
result of shifting consistently rounds toward zero, as is the convention for integer:
division.

DERIVATION: Unsigned division by a power f 2,

Let x be the unsigned integer represented by-bit pattern [x,,_1, X2, . .- » X0}, and
let k be in the rangg 0 <k < w. ;Let x’ be ,the unsigned number with w — k-bit
representatlon [*w—1s Xw—2s - - - » Xi], and Iet x” be the unsxgned mgnber with k;blt
representation [x_1, . . ., Xg]. We can therefore see that x = 2%x’ + x”, and that
0 < x” < 2%, It therefore follows that |x/2¥| = x.

Performing a logical right shift of bit vector [x,,_1,, Xy 2.
the bit vector

xp] by & yields

c&,’

[0, ceey 0, Xop—1s X—=2s + + + xk]
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k >> k (binary) Decimal —12,340/2%

0 1100111111001100  —12340  —12,340.0

1 1110011111100110 —6,170 —6,170.0

4 1111110011111100 ~772 =771.25

8 11111111110011141 —49 —48.203123

—_—

Figure 2.29, Applying arithmetie right shift. The examples illustrate that arithmetic
right shift is similar to division by-a powew of 25 except that it rounds down rather than
toward zero.

This bit vector has numeric value x’, which we have seen is the value that would
result by computing the expression x >> k. |

The case for dividing by a power of 2 with two’s-complement arithmetic is
slightly more complex. First, th,el shifting should be perforpipd using an arithmetic
right shift, to ensure that negative valués remain negafive. Let us investigate what
value such a right shift would produce.

PRINCIPLE; 'Two’s—complement division by a power of 2, rounding down
=

Let C variables x and k have two’s-complement; value x and unsigned value
k, respectively, such_that 0,<.k‘< w. The C expression x >> k, when the shift is
performed arithmetically, yields the xalue {x/2*]. |

For x> 0, variable x has 0 as the mogt significant bit, and so the effect of an
arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift
by & is the same as division by 2¥ for a nonnegative number. A% an example of a
negative number, Figure 2.29 shows the effect of 'a{pplfging afithmetic right shift to
élflh6,—bit representation of —12;340 for different shift amounts. For the case when
no rounding is required (k = 1), thé resylt will be x /2*. When rounding is required,
shifting causes the result to be rounded downward. For example, the shifting right
by four has the effect of rounding —7%71.25 down to —772. We will need to adjust
our strategy to handle division for negative values of x.

DERIVATION: Two’s-complement division by a power of 2, rounding down

Let x be the two’s-complement ir}ieger represented by bit pattern [x,,_;, x,,_o,
-» %o, and let k£ be in'the range 0 <k < w. Let x’ be the two’s-complement

r%umbe,r represented by the w — k bits [x,,_;, Xy-2, ..., %], and let x” be the
uhsigned number represented by the low-order k Bits [xg_1, . . ., xg]. By a similar
analysis as the unsigned case, we have x = 26’ + x* and 0 <x" < 2% giving x' =
(x/2%|. Furthermore, observe that shifting bit vector [x,,_1, X,_3, . .., xg] right
arithmetically by k yields the bit vector

(K1 -+ o s Xopts Xy 1, Xyys - - -, %]
which is the sign extension from w — £ bits to w bits of (%41, Xw_2s - . ., x;). Thus,

this shifted bit vector is the two’s-complement representation of |x/2F]. |
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k  Bias  —12,340 + bias (binary) >> k (binary) Decimal —12,340/2%
0 0 1100111111001100 1100111111001100  —12,340  —12,340.0

1 1 1100111111001101 1110011111100110 —6,170 —6,170.0

4 15 1100111111011011 1111110011111101 —771 —77L.25

8 255 1101000011001011 1111111111010000 —48 —48.203125

Figure 2.30 Dividing two’s-complement numbers by powers of 2. By adding a bias
before the right shift, the result is'roanded toward zero.

We can correct for the improper rounding that occurs when a negative number
is shifted right by “biasing™ the value before shifting.

PRINCIPLE: Two’s-complement division by a power of 2, rounding up

Let C variables x and k have two’s- complemgnt value x"and uns1gned value %,
respectively,such that0 < k < w. Thé Cexpress;on % (4 <<k - 1) >3k, when
the shiff is performed ar1thmet1ca11y, yields the value. [x/2%. |

Figure 2.30 demonstrates how adding the appropriate bias before performing
the arithmetic right shift causes thé result to be correctly rounded. In the third
column, we show the resuit of adding.the bias value to —12340, with the lower &
bits (those that will be shifted off to the right) shown in italics. We can see that
the bits to the left of these may or may not be incremented. For the casé where no
rounding is reguired (k=1), addmg the bias only affects bits that are shifted off.
For the cases where rounding is fequired, adding the bias causes the upper bits to
be mcremented so that the result will be rounded toward zero.

The blasmg techfnque exploﬂs the property that Mx/y]=(x +y—1)/y] for
integers x and y such that y > 0. As examples when x = —30 and y =4, we have
x+y—1=-27and [-30/4] = —7 = |-27/4]. When x = —32 and y = 4, we Have
x+y-1=-29and [-32/4]=—-8=|— 29/4]

1

DERIVATION: Two's-complement division by a power of 2, rounding up

To see that [x/y] = [(x + y — 1)/y], suppose that x = gy +r, where 0 <r < y,
giving (x +y —/fy =g+ (r +y—D/y,andso [(x +y— D/yl =g+ r £y -
1)/y]. The latter term will equal 0 when r =0 and 1 when r > 0. That is, by adding
a bias of y — 1to x and then founding the division dowhward, we will get ¢ when
v divides x and g + 1 otherwise.

Returning to the case where y = 2%, the C expression x + (1<K 1 yield§
the value x +,2% — 1. Shifting this right arithmetically by k therefore yields [x /2"1

1

These analyses show that for a two’s-complement machiné ‘using arithmetic
right shifts, the C expression

{x<0 7 x+(1<<k)-1 : %) >> k

will compute the value x/2% .
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Wnte a functlon d1v16 that returns the value x/16 for integer argument x. Your
function should not use division, modulus, multiplication, any conditionals (if or
7:), any comparison operators (e.g., <, >, or ==), or any loops. You may assume
that data type int is 32 bits long and uses a two’s-complement representation, and
that right shifts are performed arithmetically.

We now see that division by a power of 2 can be implemented using loglcal or
arithmetic rlght shifts. This is precisely the reason the two types of right shifis are
available on most machines. Unfortunately, this approach does not generalize to
division by arbitrary constants. Unlike multlphcatwn we cannot express division
by arbitrary constants X in terms of division by powers of 2.

In the followmg code we have ormtted the deﬁmtlons of constants M and N

#define M /* Mystery number 1 */

#define N /* Mystery number 2 =/

int arith(int x, int y) {
int result = 0;
result = x*M + y/N; /* M and N are mystery numbers. */
return result;

We compiled this code for particular values of M and N. The compiler opti-
mized the multiplication and division using the methods we haye discussed. The
following is a translation of the generated machine code back into C:

/% Tranglation of assembly code for arith */ ~
int optarith(int x, int y) {

int t =

X <<= §;

X —= t;

if (y <0 y+=17;

y »»>= 3; /* Arithmetic shift #*/

return x+y;

[
What are the values of M and N?

2.3.8 Final Thoughts on Integer Arithmetic

As we have seen, the “integer” arithmetic performed by computers is really
a form of modular arithmetic. The finite word size used to represent numbers
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limits the range of possible values, and the resulting operations can overflow.
We have glso seen that the two’s-complement repregentation provides a clever
way to represent, laoth negatwe and positjve values, while ysing the same bit- level
1mplementat10n§ as.are q’sed 1o perform unsugned arlthmctlc-—operatlons such as
addition, subtrapt:on multgpl1c,at10n and even dmsmn pave either identical or
very similar bit-level beﬁawors, whether the operands are in unsign&d or two’s-
complement form.
We have seen that some of the conventions in the C language can yield some
su rising results, and these can be sources of bugs that are hard to recognize or
derstand We'ltave especially seen that the unsigned data type, while conteptu-
ally stralghtforward can lead to behaviot¥ that eyen expenq,nced programmers do
not expect. We have also seen tHat this data type tan arise in unexpecfe}.l ways—for
example, when writing integer constants‘and when mvokmghbrary routines.

Assume data type intis32 b1ts long and uses a two s-complement representation
for 51gned values. Right shifts are performed arlthmetlcally for signed values and
logically for unsigned values. The variables are declared and initialized as follows:
foo(); /* Arbitrary value */
bar(); /# Arbitrary value */

int x
int ¥y

unsigned ux = %;
ungigned uy = y;

For each of the following C expressm‘ns either (1) argue that it is true “(evalu-
ates to 1) for all values of x and y;Or (2) give values of k and y for which it is false
(evaluates to0): '

A x>0 |1 (x-1<0)
(x&7) 1=7 1] (x<<29<0)
(x*x}>=0

x<0 1|l x<=0

x>0 (| x>0

X+y == uytux

QEEHYOQw

X*k~y + uy*ux == -X

2.4 Floating Point

T
. . . : : L
A floating-point representation encodes rational numbers of'the form V = x x 27.

It'is useful for performing computations involving very large numbers {|V| > 0),
1
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numbers very close to 0 (| V| « 1}, and more generally as an approximation to real
arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions
for how floating-point numbers were represented and the details of the operations
performed on them. In addition, they often did not worry too much about the
accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a
carefully.crafted standard for representing floating-point numbers and the oper-
ations performed on them. This effort started in 1976 under Intel’s sponsorship
with the design of the 8087, a chip that provided floating-point support for the 8086
processor. Intel hired William Kahan, a professor at the University of California,
Berkeley, as a consultant to help design a floating-point standard for its future
processors. They allowed Kahan to join forces with a committee generating an
industry-wide standard under the auspices of the Institute of Electrical and Elec-
tronics Engineers (IEEE). The committee ultimately adopted a standard close to
the one Kahan had devised for Intel. Nowadays, virtually all computers support
what has become known as IEEFE floating point. This has greatly improved the
portability of scientific application programs across different machines.

In this section, we will sce how numbers are represented in the IEEE floating-
point format. We will also explore issues of rounding, when a number cannot be
represented exactly in the format and hence must be adjusted upward or down-
ward. We will then explore the mathematical properties of addition, multiplica-
tion, and relational operators. Many programmers consider floating point to be
at best uninteresting and at worst arcane and incomprehensible. We will see that
since the IEEE format is based on a small and consistent set of principles, it is
really quite elegant and understandable.

2,4.1 Fractional Binary Numbers

A first step in understanding floating-point numbers is to consider binary numbers
having fractional values. Let us first examine the more familiar decimal notation.
Decimal notation uses a representation of the form

e dpt---dydy.d1d 5---d_,
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Figure 2.31 om
Fractional binary , ot
representation. Digits
to the left of the binary

point have weights of the 4
‘ form 2¢, while those to the <o 2
il right have weights of the

' form 1/2'. —!
r b, bpq *+ by by by by, b, by +++ b by
T
1 1/2 —J |

1/4 #
: 1/8

172" .
12"

where each decimal digit d; ranges between 0 and 9. This notation represents a

vilue d défined as' 1 Ny

1
™~

m
d= ) ‘10 xd,

i=—n

! The weighting of the digits is defined relative to’ the' decimal point symbol (£:%,
‘ micaning that digits to the left are weighted by nonnegative powers of 10, giving
integral values, while' digits to the right arc weighted by negative powers of 10,
giving fractional values. For example, 12.341y represents the number 1x 10!+
2 % 10° + 3 x 1071 4+ 4 % 1072 = 12 .

By an’alogy, considér a notation of the form

W

b,‘,{ bm—l v bl bo). b_l'b';z e bLn_!_l'b_Ln

A

K
where each-binary digit; or bit, b; ranges between 0 and 1, as is illustrated in
Figure 2.31. This notation represents a number b defined as .

b=y 2 %Xb t (2.19)

{=—n

The symbol *. now becomes a binary point, witly' Bits on the left“t‘)e!ing weighted
by nonnegative powers of 2, and those on the right being weighted by negative
' powers, of 2. For example, 101.11;,represents the number 1 x 24+0x21+1x
- M4 1x2 41x22=4+40+1+41+4=53

F One can readily see from Equation 2.19 that shifting the binary point one
i position to the left-has theseffect of dividing the number by 2. For example, while
101.11, represents the number 5%, 10.111, represents the number 2 +0 + % +

[y
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% + % =,2%. Similarly; $hifting' the binary point one position to the right has the
effect of multiplying the number by 2. For example, 1011.1, tepresents the number
84+0+2+143=111

-Note that numbers of the form 0.11 - - -'1, represent numbers just below 1. For
example, 0.111111, represents %. We willuse the shorthand-notation 1.0 — € to
représent such values. i

Assuming we consider only finite-length encedings, decimal notation cannot
represent numbers such as —;- and % exactly. Similarly, fractional binary notation
can only represent numbers.that can be written x x 2%.Other values can only be
approximated. For example, the number % can be represented exactly as the frac-
tional decimal number 0.20. As a frdctional.binary number, however, we cannot
represent it exactly and instead must approximate it with increasing accuracy by
lengthening the binary representation:

Representation  Value  Decimal

0.0, 2 0.050

0.0L, : 0.25;9

0.010, 27 025,
0.0011, & 0.1875;5
0.00110, > 0.1875;9
0.001101, 2 0.2031254
0.0011010, Z 0.203125,,
0.001100115 s 0.19921875,9

T —
(= lemesid.y:

Fill in the ;ﬁjssing' information’in the foilowing table:

Fractional value ~ Binary representation  Decimal representation

3 0.001 0.125
3 .
3 — o
35
16 e s
e 10.1011 —_
” 1.001
— 5.875
. 3.1875

j‘ﬁs ' "‘ ‘ 3f = M Y

The impreéigion’of ﬂoatir’fg’-poin?arithme'tic can have disastrous effects. On Febru-
ary 25, 1991, during the first Gulf War, an American Patriot Missile batfe_ry in
Dharan, Saudi Arabia, failkd to ‘intercept ah incoming’ Iraqi* Scud missile. The

Scud struck an American Army barracks and killed 28 soldiers The US General
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i Accounting Office (GAO) conducted a detailed analysis of the failure [76] and de-
termined that the underlying cause.was an imprecision in 4 numeric calculation.
In this exercise, you will reproduce part of the GAO’s analysis.

The Patriot system contans an internal clock, implemented .as a counter
that is incremented every,0.1 seconds. To determine the time in seconds, the
program would multiply the value of th1s counter by a 24-bit quantity that was
a fractmnal binary approximation to 5+ In particular,the binary representation
of ¢ 1o 15 the nonterminating sequence 0.000110011[001 1}- - -5, where the portion in
bracketsis repeated indefinitely. The program apptoximated 0.1, as a value x, by
considering just the first 23 bits.of the sequence to the right«of the binary.point:
x = 0.8001100110011001'1001100.: (See Problem 2.51 for a discussion of how they
could have approximated 0.1 more. precisely.) . |

A. What is the binary representation of 0.1 52
B. What is the approximate decimal value of 0.1 — x? .

C. The clock starts at 0 when the system is first powered up and keeps counting
up from there. In this case, the system had been running for around 100 hoprs.
What was the difference between the actual time and the time computed by
the software?

D. The system predicts where an incoming missile will appear based on its
velocity and the time of the last radar detectibn. Given that a Scud travéls
at around 2,000 meters per second, how far off was its prediction?

Normally, a slight error in the abselute time reported by a clock reading would
not affect a tracking computation. Instead, it should depend on the relative timk
between two successive readings. The problem was that the Patriot software had
been upgraded to use a more accurate function for reading time, but not all of
the function calls had been replaced by the new code As a result, the trackmg
software used the accurate time for one reading ahd' the inaccurate time for the
other [103]. )

-

2.4.2 |EEE Floating-Point Representation

Positional notation such as considered in the previous section would not be ef-
ficient for representing very large numbers. For example, the representation of
5 x 21% would consist of the bit pattern 101 followed by 100 zeros. Instead, we
would like to represent Atmdbers in a form x x 27 by giving the values of x and y.

Thg 1EEE floating-point-standard represents a number in a form V = (—1)* x
M x 2"

o The sign s determines whether the number is negative (s = 1) or positive
(s =0), where the interpretation of the sign, blt for numeric value 0 is handled
as a spec1al,case

i s The.significand, M is.a fractional binary number that ranges either between 1
= and 2 — € or between J-and 1 = €.

1

¢ The exponent E weights the value by a (possibly negative) power of 2.
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Single precision
313 2322 0
) . frac . _ |

Double precision
63 62 52 51 32

E3R3

EECE I

l frac (31:0) ( |

Figure 2.32 Standard floating-point formats. Floating-point numbers are represented
by three fields. For the two most common formats, these are packed in 32-bit (single-
precision) or 64-bit (double-precision) words.

The bit representation of a floating-point number is divided into three fields to
encode these values:

* The single sign bit s directly encodes the sign s.
'_"}',he‘ k-bit exponent field exp = ¢ - - - ¢1¢g encodes the exponent E.
* The n-bit fraction field frac = f,_; - - - f1fo encodes the significand M, but

the value encoded also depends on whether or not the exponent field equals
0.

Figure 2.32 shows, the packing of these three, fields into words for the two
most common formats. In the single-precision floating-point. format. (a float
in C), fields s, exp, and frac are 1, £, =8, and n = 23 bits each, yielding a.32-
bit rgpresentation.In the double-precisign floating:point format (a double in C),
fields's, exp, and frac are 1, k =11,-and r» =52 bits each, yielding a 64-bit
representation.

The value encoded by a given bit representation can be divided into three
different cases (the latter having two variants), depending on the value of exp.
These are illustrated in Figure 2.33 for the single-precision format.

Case 1: Normalized Values

This is the most common cage. It.occurs when the bit pattern of exp is neither
all zeros (numeric value 0) nor all ones (numeric value 255 for single precision,
2047 for double). In this case, the exponent field is interpreted as representing a
signed integer in biased form. That is, the exponent value is E = e — Bias, where
e is the unsigned number having bit representation e;,_; - - - ej¢p and Bias is a bias
value equal to 25=1 — 1 (127 for single precision and 1023 for double). This yields
exponent ranges from —126 to +127 for single precision and —1022 to +1023 for
double precision.

The fraction field frac is interpreted as representing the fractional value f,
where 0 < f < 1, having binary representation 0. f,_ - - fifo, that is, with the




e ]

114 Chapter 2 Representing and Manipulating Information

T “ 8o bR
Aside Why set the blas tbls way for denqrmahzed \Ialﬂes‘? e e 8 e g e
Having the exponéty value b 1 — Biag rather than  $imply —Bzas m1ght seem counterintuitive, We will 3

see shortly that it prov1des for-smooth transitionfrom ﬂergormahzed loﬁnormahzed valheg

. & PN, P S T S U
w®

1. Normalized

2. Denormahzed -

anure 2.33 Categories of singlé-precision floating- pomt values. The Value of the
exponent determines whether the number is {1 normalizéd, (2) denormalized, or (3) a
special value. i s

binary point to the left of the thost significant bit. The significand is defined to be
M =1+ f. Thisds'Sometimes called an implied leading'l representation, because
we caif view M to be.the number with binary répresentation 1. f,_1f,_2 - ~ fot THis
representation is a trick for getting an additionial bit of precision for [ree, since we
can always adjust the exponent E so that significand M is in the rangel =M <2
(assuming there is no overflow). We therefore do not need to exphcltly fepresent
the leading bit, since it always equals 1.

Case 2: Denoriialized Values :
When the exponent field is all zeros, the represented.number is in dengrmalized
form. In this case, the exponent value is £ = 1 — Bias, and the significand value is
M = f, that'is, the value of the fraction field*withSut an implied leadirig:1.

Denorrhalized numbeis serve two purposés. First, they providé a way ‘'to
represent numeric value 0, since with a rngriialized number we must always have
M =1, and hence we cannot represent 0. In fact, the floating-point representation
of +0.0 has a bit pattern of all zerds: the sign'bit'is 0, tHe exponent field is-all
zeros (indicating a denormalized value), and the fraction field is all zeros, giving
Mi= f =0. Curiously, when the sign bit is 1, but the other fields are all zeros, we
get the value —0.0. With IEEE floating-point format, the values —0.0"and 4-0.0
are considered different in some ways and the same in others.
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A second function of denormalized numbers is to represent numbers that are
very close to 0.0. They provide a property known as gradual underflow in which
possible numeric values are spaced evenly near 0.0.

Case 3: Special Values

A final category of values occurs when the exponent field is all ones. When the
fraction field is all zeros, the resulting values represent infinity, either +o0o when
5 =0or —oc when s = 1. Infinity can represent results that overflow, as when we
multiply two very large numbers, or when we divide by zero. When the fraction
field is nonzero, the resulting value is called a NaN, short for “not a number.” Such
values are returned as the result of an operation where the result cannot be given
as a real number or as infinity, as when computing +/—1 or 0o — 0o. They can also
be useful in some applications for representing uninitialized data.

2.43 Example Numbers

Figure 2.34 shows the set of values that can be represented in a hypothetical 6-bit
format having k = 3 exponent bits and n = 2 fraction bits. The biasis 231 — 1=3.
Part (a) of the figure shows all representable values (other than NaN). The two
infinities are at the extreme ends. The normalized numbers with maximum mag-
nitude are £14. The denormalized numbers are clustered around (0. These can be
seen more clearly in part (b) of the figure, where we show just the numbers be-
tween —1.0 and +1.0. The two zeros are special cases of denormalized numbers.
Observe that the representable numbers are not uniformly distributed—they are
denser nearer the origin.

Figure 2.35 shows some examples for a hypothetical 8-bit floating-point for-
mat having k = 4 exponent bits and n = 3 fraction bits. The bias is 2*~1 —1=7.
The figure is divided into three regions representing the three classes of numbers.
The different columns show how the exponent field encodes the exponent E,
while the fraction field encodes the significand M, and together they form the

n
—co -10 -5 0 +5 +10 +c0

[ Denormalized a Normalized a Infinity |

(a) Complete range
-0 +0
N
-1 -08 -08 -04 -02 0 +0.2 +04 +06 +0.8 +1
[+ Denormalized & Normalized = Infinity |

(b) Values between —1.0 and +1.0

Figure 2.34 Representable values for 6-bit floating-point format. There are k =3
exponent bits and n = 2 fraction bits. The bias is 3.
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Exponent ' Fraction Value

Description Bit representation e E 286 5 M 2F xM Vv Pecimal
Zero 0 0000 000 o -6 & ¥ ¢ . 0 0.0
Smallest positive 0 0000 001 0 -6 & 3 3 55 s 0.001953

0 0000 010 0 -6 & % 2 2 o 0.003906

" 0 0000 011 0 -6 & -31 2 & 25 0.005859

Largest denormalized 0 0000 111 0 =6 H .3 ¥ v 3m 305 0.013672
Smallest normalized 0 0001000 1 -6 & § 8 5?—2 & 0.015625

0 0001 001 1 -6 & 3 3 5 5 0.017578

00110 110 6 -1 1 & 4 u z 0.875

00110 111 6 ~1 L 3 2 1 B 09755
One 0 0111 000 7 -1 3 8 $- 1 100

00111 Q01 ‘7 1 i 3 P 3 1.125

0 0111 010 7 1 3z 2 0 3 125 |

0'#110 110 4 7 128 & B 1B 224 240
Largest normalized 01110 111 14 7 oaw ok 1A 240 2400
Infinity 0 1111000 B . — o —
Figure 2.35 Example nonnegative>values for 8-bit floating-point format. There are k = 4 exponent bits
and n =3 fraction bits. The bias is 7. T

1o ’

represented value V = 2 x M. Closest to 0 are the denormalized numbers, start-
ing with 0 itself. Denormalized numbers jn this format have E =1 -7 = —6, giv-
ing a weight 28 = 313. The fractions f and signjficands M range over the values

0, % e %, giving numbers V in the range 0 to 513 X % = %f
The smallest normalized numbers in this format also have £E =1 -7 = —6,
and the fractions also range over the values 0, %, e %. However, the significands
then range from 1+ 0=1t0 1+ § = ¥, giving numbers V in the range %, = &;
I 15 '
to i7-

Observe the smooth transition befween the largest denormalized number -51"—2
and the smallest normalized number 3%. This smoothnessis due to our definition
of E for denormalized values. By making it 1 — Bias rather than —Bias, we com-
' pensate for the fact that the significand of a denormalized nunibeér does not have
an implied leading 1.




Section 2.4 Floating,Boint 117

As we increase the exponent, we get successively larger normalized values,
passing through 1.0 and then to the largest normalized number. This number has
exponent E =7, giving a weight 2% = 128, The fraction equals £, giving a signifi-
cand M = 185 Thus, the numeric value is V = 240. Going beyond this overflows to
+co.

One interesting property of this representation is that if we interpret the bit
representations of the values in Figure 2.35 as unsigned integers, they occur in
ascending order, as do the values they represent as floating-point numbers, This is
no accident—the IEEE format was designed so that floating-point numbers could
be sorted using an integer sorting routine. A minor difficulty occurs when dealing
with negative numbers, since they have a leading 1 and oceur in descending order,
but this can be overcome without requiring floating-point operations to perform
comparisons (see Problem 2.84).

Consider a 5-bit floating-point representation based on the IEEE floating-point
format,; with one sign bit, two exponent bits (k = 2), and two fraction bits (n = 2).
The exponent bias is 21 _1=1

'The table that follows enumerates the entire nonnegative range for this 5-bit
floating-point representation. Fill in the blank table entries using the following
directions:

e: The value represented by considering the exponent field to be-an unsigned
integer
E: The value of the exponent after biasing
2£: The numeric weight of the exponent
[ The value of the fraction
MM : The value of the significand
28 x M: The (unreduced) fractional value of the number
V: The reduced fractional value of the number
Decimal: The decimal representation of the number

Express the values of 2Z, £, M, 2 x M, and V either as integers (when
possible)or as fractions of the form %, where y is 4 power of 2. You need not

fill in entries marked —-.

Bits e E 2 f M 26 x M 1% Decimal

0 00 00
00001
00010
00011
00100
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001 01 1 0 1 3 2 Z 3
&
E R2E . f M 28-x M v Decimal

00110

L] ] s -

00111

61000

01001

01010

01011

01100 —
01101 —
01110 —
01111 —

i

Figure 2.36 shows the representatlons and funeric values of some important
single- ‘and’ dbhible- -precision floating-pbint numbers. As with the 8-bit formiat
shown in Figure 2.35, we can se¢ some general properties for a floating-point
representation with a k-bit exponent and an A-bit fraction: !

¢ The value +0.0 always has a bit representation of all zeros.

; * The smallgst positive denormalized value has a bit representation consisting of
a 1in the least significant bit position and otherwise all zeros. It has a fraction
(and significand) value M = f =277 and an exponent value E = —2¥"1 4.2,
The numeric value is therefore V =224,

* The largest denormalized value hias abit representation consisting of an
exponent field of all zeros and a fraction field of all ones, It has a"fraction
(and significand) value M = f =1— 27" (which we have written 1 — ¢) and
an exponent value E = —2%-1 4+ 2. The numeric value is therefore V = (1 —

-1y x 2-27'42, which is just slightly smaller: than the smallest normalized
value.

+

t

:

Figure 2.36 Examples of nonnegative floating-point numbers.

Single precision Double precision

Description exp frac. Value Decimal Value Decimal
Zero 00.--00 0---00 0 0.0 .0 0.0 *
Smallest denormalized 00--.00 0-..-01 272 x27126  14x107% 275252102 49y 1032
Largest denormalized  00---00 1---11 (1—€)x27126 12x10738 (1—¢) x 27102 2.2 x 10308
Smallest normalized 00-..01 0-.-00 1x 2126 1.2 x 10738 1x2-H2 2.2 % 10308
One 01-..11 0---00 1x20 1.0 1x20 1.0

i Largest normalized 11---10 1.--11 (2-¢)x 27  34x10%® (2-¢)x 21023 18 x 10708
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¢ The smallest positive norfnalized value has a bit representation with a 1 in
the least s:gmﬁcgnt bit of the exponent field and othermse all zeros. It has'a
significand value M =1 and ah exponent value E= —2¢-11 2 The numeric

k—
value is therefore V = 92142

* The value 1.0 has a bit representation with all but the most significznt bit of
the exponent field equal to 1 and all other bits equal to 0. Its significand value
is M =1 and its exponent value is £ =0.

* The largest normalized value has a bit representation with a sign bit of 0, the
least significant bit of the exponent equal to 0, and all other bits equal to 1. It

y hasafractionvalue of f =1— 27", giving asignificand M =2 — 27" (which we
have written 2 — ¢.) It has an exponent value E =2%"1 — 1, giving a numeric
value V = (2 — 27 x 2271 = (1 — 27771 5 227,

One useful exercisé for understanding floating-point representations is to con-
vert sample integer vilues into ficating-point-form. For example, we saw in Figure
2.15that 12,345 has binary representation [11000000111001]. We create a' normal-
ized representation of this by shifting’ 13 positions to the right of a binary point,
giving 12,345 = 1.1000000111001, x 2'3. To encode this in IEEE single-precision
format, wesconstruct the fraction field by dropping'the leadifig 1 and adding 10
zeros to the end, giving binary representation [10000001110010000000000]. To
construct the’exponént field, we add bias 127 to 13, giving 140, which has bi-
nary representation [10001100]). We combine this with a sign bit of 0 to get the
floating-point representation-in binary of [01000110010000001110010000000000].
Recall from Sectidit 2.1.3 that we ‘observed the following correlation in the bit-
level representations of the integer value 12345 (0x3039) and the single-precision
floating-point value 12345 . 0 {0x4640E400):

0 0 0v0 3 0 3 9
0000¢0000000000000011000000111001
etk ok ok o ok ok ok
4 66 4 0 E 4 0 O
01000110010000001110010000000000

We. can now see that the region of correlation corresponds to the low-order
bits of the integer, stopping just before the most significant bit equal to 1 (this bit
forms the implied leading 1), matching the high-order bits in the fraction part of
the floating-point representation.

As mentloned in Problem 2. 6 the mteger 3,510,593 hi’s hexadecimal represen-
tation 0x00359141, while the single-precision floating-point number 3/510,593.0
has hexadecimal representation 0x4A564504. Derive this floating-point represen-
tation and explain the correlation between the bits of the integer and floating-point
representations.
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A, For a ﬂoatmg—pomt format w:th .an n-bit fraction,.give a formula for the
smallest positive mteger that ‘cannot ‘be represented exactly (because it
would require an (n + 1)-bit fraction to be exact). Assume the exponent
field size % is large enough that the range of representable exponents does
notsprovide a limitation for this problem.

B. What is the numeric value of this integer for single-pretision format (n =
23)?

2.44 Rounding

Floating-point arithmetic can only approximate real arithmetic, since the repre-
sentation has limited range-and precision. Thus, for a value;x,. wg generally want
a systematic tnethod of findingsthe, ¢closest” matching vajue x/ that can be rep-
resented in the desired floating-point format. This is the task of the.rounding
operation. One key problem is to define the direction to round a value that is
halfway petween two possibilities. For example, if I have $1.50 and want to round
it tq the nearest dollar, should the result be $1 or $2?.An alternative, approach is
to maintain a lower and an upper bound on, the actual number. For example, we
could determine representable values x~ and x™ such that the value x is guaran-
teed to liec between them: x~ < x < x*. The JEEE ﬂqatmg point, format defines
four different rounding'modes. The default: method finds a closest match, whilg
the other three can be usgd.for computing upper and lower, bounds.

Figure 2.37 ijlustrates-the four rounding modes applied.to the problem of
rounding a monetary amount to the nearest whole dollar. Round-toreven (also
called round-to-nearest) is the default mode. It attempts to find a closest match.
Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effectof rounding values
that are halfway between two possible results. Round-to-even mode adopts the
convention that it rounds the number either upward or downward such that the
least significant digit of the result is evens Thus, it rounds both $1.50 and $2.50
to $2.

The other three modes produce guaranteed bounds on the actual value. These
can be useful' in some numerical applications..-Round-toward-zero mode rounds

positivé numbers downwird ‘and negative numbers upward, giving a value £ such
f

Mode $1.40  $1.60 $1.50 $250  $-1.50
Round-to-even 8L, % $2 $2 $-2
Round-tpward-zero $1 $1 $1 $2 $-1
Round-down 231 $1 $1 $2 1 $-2
Round-up $2 $2 Y $3 $-1

Figure 2.37 lllustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.
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that |£| < |x|. Round-down mode rounds both positive and negative numbers
downward, giving a value x~ sych that x~ <x. Round—up mode rounds both
posmve and negative numbers upward, giving a value xT such that x < x7.

‘Round-to-even at first seems like it hasa réther arbitrary goal—why is there
any reason to prefer even numbers? Why not consistently round values halfway
between two representable values upward? The problem with such a convention
is that one can easily imagine scenarios in which rounding a set of data values
would then introduce a statistical bias into the computation of an average of the
values. The average of a set of numbers that we rounded by this means would
be shghtly higher than the average of the numbers themselves. Conversely, if we
always rounded numbers halfway between downward, the average of a set of
rounded numbers-would be slightly lower than the average of the numbers them-
selves. Rounding toward even numbers avoids this statistical bias in most real-life
situations. It will round upward about 50% of the time and round downward about
50% of the time.

Round-to-even rounding can be applied even when we are not rounding to
a whole number. We simply consider whether, the least significant digit is even
or odd. For example, suppose we want to round decimal numbers to the nearest
hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless
of rounding mode, since they are not halfway between 1.23 and 1.24. On the other
hand, we would round both 1.2350000 and 1.2450000 to 1.24, since 4 is even.

Similarly, round-to-even rounding can be applied to binary fractional num-
bers. We consider least significant bit value 0-t6'be even and 1 to be odd. In
general, the rounding mode is only significant when we have a bit pattern of the
form XX --- X.YY --- Y100 - - -, where X and Y denote arbitrary bit values with
the rightmost ¥ being the position to which we wish to round. Only bit patterns
of this form denote values that are halfway between two possible results. As ex-
amples, consider the prdblem of rounding values to the nearest quarter (i.e., 2 bits
to the right of the bmary point.) We would round 10.00011, (2 ) down to 10.00,
(2), and 10.00110; (2-%) up to 10.01, (2 ), because these values are not halfway
between two possible vatues. We would round 10.11100, (23) up to 11.00; (3) and
10.10100, (2%) down to 10.10, (2%), since these values are halfway between two
possible resuits, and we prefer to have the least significant bit equal to zero.

) e T Ty R o]
m wﬁ&%wmwmm 5 ':'&«;.Mm wmm‘f.,ﬁw:a

Show how the followmg binary fractional values would be rounded to the nearest
half (1 bit to the right of the binary point), according to the round-to-even rule.
In each case, show the numeric values, both before and after rounding.

A. 10.010,
B. 10.011,
C. 10.110,
D. 11.001,
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We saw in Problem 2 46 that the Patnot rnlssﬂe software approximated 0.1 as x.~=
0. 000110011001100110011002 Suppose instead that they had used IEEE rouna
td-even flole to determine ar approximation x’ to 0.1'with 23 bits to the’ nght of
the binary point®

A. What is the binary representation of x'?
B. What is the approximate decimal value of x" — 0.1?

C. How far off would the computed clock have been After 100 hours of gpera-
tion?

D. How far off would the program’s prediction of the position of the Scud
missile have been?

"“"“Mgé e By

C0n31der the followmg two7- b1t ﬂoatmg point representationsbased on the IEEE
floating-point férmat.Neither has a sign bit—they can onlyrepresent nonnegatwe
numbers. SR

1. Format A
» There are k = 3 exponent bits. The exponent bias is 3. :
» There are n = 4 fraction bits. |

2. Format B
= There are k = 4 exponent bits. The exponent bias is 7. !
» There are n = 3 fraction bits.

Below, you are given some bit patterns in format A, agil your task is to convert
them to the closest value in format B. If necessary, you should apply the round-to-
even rounding rule. 'In addmon give the values of numbers given by thg ormat A
and formdt B bit patterns. Give these as whole numbers (e 2., 17) or as fractions
(e. g- 17/64). ue

Format A Format B

Bits Value Bits Value
011 Q000 1 0111 00C 1
101 1110 e
010 1001 R s [T

110 1111 _
000 0001

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arith-
metic operation such as addition or multiplication. Viewing floating-point values x
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and y as real numbers, and some operation @ defined over real numbers, the com-
putation should yield Round(x © y), the result of applying rounding to the exact
result of the real operation. In practice, there are clever tricks floating-point unit
designers use to avoid performing this exact computation, since the computation
need only be sufficiently precise to guarantee a correctly rounded result. When
one of the arguments is a special value, such as —0, oo, or NaN, the standard,spec-
ifies conventions that attempt to be reascnable. For example, 1/—0 is defined to
yield —co, while 1/+0 is defined to yield 4-c0.

One strength of the IEEE standard’s method of specifying the behavior of
floating-point operations is that it is independent of any particular hardware or
software realization. Thus, we can examine its abstract mathematical properties
without considering how it is actually implemented.

We saw earlier that integer-addition, both unsigned and two’s complement,
forms an abelian group. Addition over real numbers also forms an abelian group,
but we must consider what effect rounding has on these propertics. Let us define
x +'y to be Round(x + y). This operation is defined for all values of x and ¥,
although it may yield infinity even when both x and y are real numbers due to
overflow. The operation is commutative, with x +' y = y +f x for all values of x and
y. On the other hand, the operation is not associative. For example, with single-
precision floating point the expression (3.14+1e10)-1e10 evaluates to 0.0—the
value 3.14 is lost due to rounding. On the other hand, the expression 3. 14+(1e10-
1e10) evaluates to 3.14. As with an abelian group, most values have inverses

under floating-point-‘addition, that is, x +' —x = 0. The exceptions are infinities
(since +00 — 00 = NaN)), and NaNs, since NaN +! x = NaN for any x.

The lack of associativity in floating-point addition is the most important group
property that is lacking, It has important implications for scientific programmers
and compiler writers. For example, suppose a compiler is given the following code
fragment:

X a+b+ c;
y=b+c+d;

The compiler might be tempted to save one floating-point addition by generating
the following cade:

t=b + c;
X=a+t;
ye=t+d;

However, this computation might yield a different value for x than would the
original, since it uses a different association of the addition operations. In most
applications, the differenice would be so small as to be inconsequential. Unfor-
tunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original pro-
gram. As a result, they tend to be very conservative, avoiding any optimizations
that could have even the slightest effect on functionality.
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On the other hand, floating-point addition satisfies the following monotonicity
property: if @ > b, then x +.a > x +f b for any values of a, b, and x other than NaN,
This property of real (and intéger) addition is not ‘obeyed by unsigned ortwo’s-
complement addition. 2

FloAting-point multiplication also obeys many of the properties orie normally
associates with multiplication; Iiet us define x #f ytobe Roupd(x x y). This oper-
ation is closed under multiplication (although possibly yleldmg infinity or NaN),
it is commutative, and it has 1.0 as a multiplicative idéntity. On the other hand,
it is not associative, due to the-possibility 'of overflow or:the loss of precision
due to rounding. For example, with'single-precision floating.point; the expression
(1e20%1420) *1'e-20 evaluates to 400} while .1e20% (1e20*1e-20) .cvaluates’to
1e20. In addition, floating-point multiplicatipn does not distribute over addition.
For- example, with single-precision floating point, the'expression 120+ (1e20-
1e20) evaluates to 0.0, while 1620%1e20-1e20%1e20 evalyates to NaN.

Onrthe other handifloating-point multiplication satisfies the following mono!
tonicity properties for any values of a, b, and ¢ other than NaN:

“
‘ azb and cZ0Sawczbre !

’e

J b
a>b and c<O0=a*c<bxc

M

In addition, we are also guargnteed that a ' a = 0, as long as g # NaN. As we
saw earlier, none of,thgse monotonicity ,properties hold for unsigned or two’s-
complement multiplication. A )

This lack of associativity and distributivity, is of serious concern to scientific
programmers and to compiler writers. Evensuch @seemmgly simple task as writing
code to determine whether two lines-intersect in three-dimensiopal space can be
a major challenge.

2.4.6 Floating Point in C

All versigns of C providg two different floating-point data types; float, and dou~
ble. On machines that support IEEE floating point, these data types corrf;.spond
to single- and double-precision floating point. In addition, the machines usc the
round-to-even rounding mode. Unfortunately, since the C standards do not re-
quire the machine to use IEEE floating point, there are no standard methods to
change the rounding mode or to get special vatues such as —0, +00, —00, or NaN.
Most systems provide a combination of include (.h) files and procedure libraries
to provide access to thesg features, but the, deta}ls vary from one system to an-
other. For example, the GNU compiler Gcc defings program constants INFINITY
(for +o00) and NAN (for Nal,\.r ) when the follomng sequence pcgurs in the program
ﬁle: ar i

T r

#define _GNU_SOURCE 1
#include <math.h>
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Fill in the following macro definitions to generate the double-precision values +oo,
—o0, and —0:

#define POS_INFINITY
#define NEG_INFINITY
#define NEG_ZERO

You cannot use any include files (such as math. h), but you can make use of the
fact that the largest finite number that can be represented with double precision
is around 1.8.x 10°%8,

- .

When casting values between int, float, and double formats, the program

changes the numeric values and the bit representations as follows (assuming data
type int is 32 bits):

I
¢ From int to £]oat, the number cannot overflow, but it may be rounded.

¢ From int or float to double, the exact numeric value can be preserved be-
cause double has both greater range (ize.,the range of representable values),
as well as greater-precision (i.e., the number of significant bits).

* From double tofloat, the value can overflow ta +00 or —oo, since the range
is smaller, Otherwise, it may be rounded, because the' precision is smaller.

* From float or double to int, the value will be rounded toward zero. For
example, 1.999 will be converted to 1, while —1.999 will be converted to
—1. Furthermore, the value may overflow. The C standards*do not specify
a fixed result for this case. Intel—compatlble microprocessors designate the
bit pattern [10 - - - 00] (TMin,, for word size w) as an integer indefinite value.
Any conversion from floating point to 1n{eger that cannot assign areasonable
gmtegcr approxunatlon ylelds this valué. Thus, the expresswn (int) +lel0
yvields -21483648, generating a negative value from a positive one.

Assume variables x, £, and d are of type int, float, and double, respectively.
Their values are arbitraryrexcept that neither £ fior d.equals +o00, —o0, or NaN.
For each of the following C expressions, either argue that it will-always be true
(ie.evaluate to 1) or give a value for the variablés such that it is not true (i.e.,
evaluates to 0).

A, x== (ing) (double) x
x ==:€int) (float) x
== (double) (float) d
= (float) (double) f
== -(-f)

_tn_tjop:-
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2 F 1.0/2==1/2.0
i G. d*d >=0.0

J H. (f+d)-f ==

|

]

|

2.5 Summary

! Computers encode information as bits, generally organized as sequences of bytes.
E Different encodings are used for representing integers, real numbers, and charac-
ter strings. Different models of computers use different conventions for encoding

! numbers and for ordering the bytes within multi-byte data.
The Clanguage is designed to accommodate a wide range of different imple-
mentations in-terms of word sizes and numeric encodings. Machines with.64-bit

[ word sizes have become increasingly.common, replacing the 32-bit machines that
} dominated the market for around 30 years. Because 64-bit machines can also run
programs compiled for 32-bit machines, we have focused on the distinction be-

F tween 32- and 64-bit programs, rather than machin€s. The advantage of 64-bit pro-
grams is that they can go beyond.the 4 GB address limitation’of 32-bit programs.
Most machines encode signed numbers using a two’s-complement representa-
tion and encode floating-point numbers using IEEE Standard 754. Understanding
these encodings at the bit level, as well as understanding the mathematical char-
j‘ acteristics of the arithmetic operations, is important for writing programs that
operate correctly over the full range of numeric values,
| When casting between signed and unsighed integers, of the same size, most
! C implementations follow the convention that the underlying bit pattern does
not change. On a two’s-complement machine, this behavior is characterized by
! functions T2U,, and U2T ,,, for a w-bit value. The implicit Casting of C gives results

that many programmers do not anticipate, often leading to program bugs,
; Due to the finite lengths of the encodings, computer arithmetic has properties
quite different from conventional integer and real arithmetic, The finite lengﬂ} can
4 cause numbers to overflow, when they exceed the range of the representation.
Floating-point values can also underflow, when they are so close to 0.0 that they
H are changed to zero.

The finite integer arithmetic implemented by C, as well as most other pro-
gramming languages, has some peculiar properties compared to true integer arith-
metic. For example, the expression x#x can evaluate to a negative number due
to overflow. Nonetheless, both unsigned and two’s-complement arithmetic satisfy
many of the other properties of integer arithmetic, including assocjativity, com-
mutativity, and distributivity. This allows compilers to do many optimizations. For
. example, in replacing the expression 7#x by (x<<3)-x, we make use of the as-
sociative, commutative, and distributive properties, along with the relationship
E between shifting and multiplying by powers of 2.

We have seen several clever ways to exploit combinations of bit-level opera-
tions and arithmetic operations. For example, we saw that with two’s-complement
arithmetic, ~x+1 is equivalent to -x. As another example, suppose we want a bit
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Aside Ariane 5: The high cost of floating-point overflow

Converting large floating-point numbers to integers is a common source of programming errors. Such
an error had disastrous consequences for the maiden voyage of the Ariane Srocket, on June 4,1996. Just
37 seconds after liffoff; the rocket veered off its' flight path, broke up, and exploded. Communication
satellites valued-at $500 million were otf board the rocket. @

A later investigation [73, 33] showed that the'computer controlling the inertial navigation system
had sent invalid data to the computer controlling the engine nozzles. Instead of sending flight control
information, it had sent a diagnostic bit pattern indicating that'an d¢&rflow. had oecurred during the
conversion of a 64-bit floating-point number to a 16-bit signed integer. .

The value that overflowed measured the horizontal velocity of the rocket, which could be more
than five times higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4
softwate, they had carefully analyzed the numeric values and determined that the horizontal velocity
would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in
the Ariane 5 without checking the assumptions on which it had been based.

pattern of the form [0, ..., 0,1, ..., 1), consisting of w — k zeros followed by k
ones. Such bit patterns are useful for masking operations. This pattern can be gen-
erated by the C expression (1<<k)-1, exploiting the property that the desired
bit pattern has numeric value 2 — 1. For example, the expression (1<<8)~-1 will
generate the bit pattern OxFF.

Floating-point representations approximate real numbers by encoding num-
bers of the form x x 2. IEEE Standard 754 provides for several different preci-
sions, with the most common being single (32 bits) and double (64 bits). IEEE
floating point also has representations for special values representing plus and
minus infinity, as well as not-a-number.

Floating-point arithmetic must be used very carefully, because it has only
limited range and precision, and because it does not obey commeon mathematical
properties such as associativity.

Bibliographic Notes

Reference books on C [45, 61] discuss properties of the different data types and
operations. Of these two, only Steele and Harbison [45] cover the newer features
found in ISO C99. There do not yet seem to be any books that cover the features
found in ISO C11. The Cstandards do not specify details such as precise word sizes
or numeric encodings. Such details are intentionally omitted to make it possible
to implement C on a wide range of different machines. Several books have been
written giving advice to C programmers [59, 74] that warn about problems with
overflow, implicit casting to unsigned, and some of the other pitfalls we have
covered in this chapter. These books also provide helpful advice on variable
naming, coding styles, and code testing. Seacord’s book on security issues in C
and C++ programs [97] combines information about C programs, how they are
compiled and executed, and how vulnerabilities may arise. Books on Java (we
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recommend the one coauthored by James Gosling, the creator of the language [51)
describe the data formats and arithimetic operations suppotted by Java. '
Most books on logic design [58, 116] have a section op encodings and arith-
metic operations. Such books describe different ways of implementing arithmetic
circuits. Overton’s book on IEEE floating point [82] provides a detailed descrip-
tion of the format as well as the properties from the perspective of a numerical
applications programmer.
4
Homework Problems
255 ¢ ’
Compile and run the sample code that uses show_bytes (file show-bytes.c) on
different machines to which you have access. Determine the byte orderings used

by these machines. ;

2.56 * "
Try running the code for show_bytes for different sample values.

257 ¢

Write procedures show_short, show_long, and show_double that print the byte
representations of C objetts of types short, long, and double, respectively. Try
thes¥ out on'several machines.

2.58 ¢

Write a procedure is_little_endian that will return 1 when compiled and run
on a little-endian machine, and will return 0 when gompiled and run on a big-
endian machine. This program should run on any machine, regardless of its word

S1ZE.

259 ¢
Write a C expression that will yield a word consisting of the least significant byte of

x and the temaining bytes of y. For dperands x = 0x89ABCDEF and y = 0x76543210,
this would give 0x765432EF.

2.60 **

Suppose we number the bytes in a w-bit word from 0 (least sighiﬁcant) tow/8—1
(most significant). Write codg for the following C functjon, which will return an
unsigned value in which byte i of argument x has been replaced by byte b:

unsigned replace_byte’ (unsigned x, int i, unfigned char b);
P y gn gig .

Here are some examples showing how the functidn should work: )

) e
replace_byte(0x12345678, 2, 0xAB) ——> 0x12AB5678,
replace_byte(0x12345678, 0, OxAB) --> 0x123456AB
Bit-Level Integer Codirg Rules

In several of the followigg problems, we will artificially restrict what programming
constructs you can use to help you gain a better understanding of the bit-level,

i
i
L
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logic, and arithmetic operations.of C. In afiswering' thése problems;' your code
must follow these rules;
" ¢ Assumptions N
* Integers are represented in two’s-complement form'
* Right shifts of signed data are performed arithmetically.
= Drata type int is w bits long. For some of the problems, you w}ll‘be gived a
specific value for w; but othérwise your code should work as long as w'is a
multiple of 8. You can use the expression sizéof (int)<<3 ‘to’compiite w.
* Forbidden
* Conditionals (if or ?:), loops, switch statements, function calls, and macro
invocations.
* Division, modulug, and multiplication.
* Relative comparison operators. (<, >, <=, and >=). ¢
* Allowed operations
® ‘All bit-level and logic operations.
* Left and right shifts, but only-with shift amounts between Oand w = 1.+
* Addition and subtraction.
*» Equality (==) and inequality (1=) tests. (Some of the problems do not allow
these.) '
* Integer constants INT_MIN add INT_MAX.
» Casting between data types idt and unsigned, either explicitly or im-
plicitly.

Even with these rules, you should try to make your code readable by choosing
descriptive variable names and using comments to describe the logic behind-your
solutions. As an example, the following code extracts the most significant byte
from integer argument x:

/* Get most significant byte from x +/
int get_msb(int %) {

/% Shift by w-8 */

int shift_val = (sizeof (int)-1)<<3;

/% Arithmetic shift */

int xright = x >> ghift_val;

/* Zero all but LSB */

return xright & OxFF;

261 ¢
Write C expressions that evaluate to 1 when the following conditions are true and
to 0 when they are false. Assume x is of type int.

A. Any,bit of x equals 1.
B. Any bit of x equals 0.
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C. Any bit in theleast significant byte of x equals 1.
D. Any bit in the most significant byte of x equals 0.

Your code should follow the bit-level integer coding rules (page 128), with the i
additional restriction that you may not use equality (==) or inequality (1=) tests.

2.62 ¢

Write a fupction int_shifts_are_arithmetic () that yields 1 when Tun on a
machine thaf tises arithmetic right shifts for data type int and yields 0 otherwise.
Your code should work on a machine with any word size. Test your code onseveral
machines.

P

2.63 *o¢ '

Fill in code for the following C functions. Funétion srl performs a logical right
shift using an arithmetic right shift (given by-vahit xsra), followed by other oper-
ations not including right shifts or division. Function sra-performs an arithmetic
right shift using a logical right shift (given By value xstl), followed by other
operations not including right shifts or division. You may use the computation
s+sizeof (int) to determine w, the number of bits in data type int. The shift
ambunt k can range from 0 to w — 1. '

unsigned srl(unsigned x, int k) { v

/* Perform, shift arithmetjically «/ .

unsigned xsra = (int) x >> k; "
Ce. -
} ' ‘

int sra(int x, int k) {
/* Perform shift logically %/ ; 3\
int xsrl = (unsigned) x >> k;

}
264 ¢
Write code to implement thé following function:

/+ Return 1 when any odd bit of x equals 1; 0 otherwise. i
. Assume w=32 ¥/ » .
int any_odd_one(unsigned xJ);

Your function should follow the bit-level integer coding rules '(pa'g‘e 128),
except that you may assume that data type int has w = 32 bits.
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2.65 ¢4

Write code to implement the following function: 1

/% Return 1 when x contains an odd number of 1s8; O otherwise.
Aszume w=32 */
int odd_ones(unsigned x);

Your function should follow the bit-level integer coding rules (page 128),
except that you may assume that data-type int.has w = 32,bits. '

Your code should contain a totai of at most 12 arithmetic, bitwise, and logical
operations.

2.66 ¢o¢
Write code to implement the following function:

J/*

* Generate mask indicating leftmost 1 in x. Assume w=32,

* Forjexample, OxFF00 -> 0x8000, and 0x6600 --> 0x4000. "
* If x = 0, then return 0.

*/

int leftmost_one(unsigned x);

T
Your funttion should follow the bit-level integer coding rules (page 128),
except that you may assume that data type int has w = 32 bits,
Your code should contain a total of at most.15 arithmetic, bitwise, and logical
operations. .
Hint: First transform x into.a bit vector of the form [0---011-.-1)

2.67 o¢

You are given the task of writing a procedure int_size_is_32() that yields 1
when run on a machine for which an int is 32.bits, ahd yields 0 otherwise. You are
not allowed to use the sizeof operator. Here is a first attempt:

1 /* The following code does not rum broperly on some machines */
2 int bad_int_size_ds_32() {

3 /* Set most significant bit (msb) of 32-bit machine */

4 int get_msb = 1 << 31;

5 /* Shift past msb of 32-bit word */

6 int beyond_msb = 1 << 32;

7

8

9

/* set_msb is nonzero when word size >= 32
beyond_msb iz zero when word size <= 32 */
10 return set_msb && !beyond_msb;

1} £

When compiled and run on a 32-bit SUN SPARC, however, this prpcedure
returns 0. The fdllowing compiler messdge gives us an’indication of the'p‘rb'blem:
LY i ,

warning: left shift count >= width,. of type

131
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A. In what way does our code fail to comply with the C standard?

B. Modify the code to run properly on any machine for'which data type int is
at least 32 bits,

C. Modify the code to run properly on any machine for which data type int is
at least 16 bits.

2.68 ¢}
Write code for a function with therfollowing prototype:

/*
Mask with least signficant n bits set to 1
* Examples: n = 6 ~—> 0x3F, n = 17 -—> Ox1FFFF
* Assume 1 <= mn <= W LI
*/

int lower_one_mask(int m);

Your function should-follow the bit-level integer coding rules (page 128). Be
careful of the case n = w.

2.69 *¢¢
Write code for a function with the following prototype:

- 54

/*

% Do rotating left shift. Assume D<=n<w
* Examples when x = 0x12345678 and w = 32:

* n=41-> 0x23456781, n=20 —> 0x67812345
*/

unsigned rotate_left(unsigned x, int n);
1

Your function should follow 1hé bit-level integer coding rules (page 128). Be
careful of the casen =0.

2.70 ¢
Write code for the function with the following prototype:

/*

+ Return 1 when x can be represented as an n-bit, 2's-complement
* pumber; 0 otherwise

* Assume 1 <= n <= W

®/

int fits_bits(int x, int n); “

Your function should follow the bit-level integer coding rules (page 128).

271 & .

Fe : L PR
You just startgd working for a company that is implementing a s¢t of procedures
to operate on a data structure where 4 signed bytes are packed into a 32-bit
unsigned. Bytes within the word .are numbered from O (least significant) to 3
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(most significant). You have been assigned the task of implementing a function
for a machine using two’s-complement arithmetic and arithmetic right shifts with
the following prototype:

/# Declaration of data type where 4 by%es are packed
into an unsigned */
typedef unsigned packed_t;

/* Extract byte from word. Return as signed intager */
int xbyte(packed_t word, int bytenum) ;

That’is, the function will extract the designated byte and sign extend it to be
a 32-bit int.
Your predecessor (who was fired for incompetence) wrote the following code:

/* Failed attempt at xbyte */
int xbyte(packed_t word, irt bytenum)
{
return (word >> (bytenum << 3)) & 0xFF;
}

A. What is wrong with this code?

B. Give a correct implementation of the function that uses only left and right
shifts, along with one subtraction.

2.72 &

You are given the task of writing a function that will copy an'integer val into a

buffer buf, but it should do so only if enough space is available in the buffer.
Here is the code you write:

/* Copy integer into buffer if space’ is available %/
/* WARNING: The ‘following code is buggy */
void copy_int(int val; void *buf, int maxbytes) {
if (maxbytes-sizeof (val) >= ()
memcpy (buf, (void *) &val, sizeof(val));

This code makes use of the library function remcpy. Although its use is a bit
artificial here, where we simply want to copy an int, it illustrates an approach
commonly used to copy larger data structufes. '

You carefui]y test the code and discover that it always copies the value to the
buffer, even when maxbytes is too small. '

A. Explain why the conditional test in the code always succeeds. Hint: ‘The
sizeof operator returns a value of type size_t.

B. Show how you can rewrite-the conditional test to make it work properly.
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273 ¢
Write 2ode-for a function with the following prototype:

/* Addition that saturates to TMin or TMax */
int saturating_add(int x, int yJ;

Instead of overflowing the way normal two’s-complement addition does, sat-
urating addition returns TMax when there would be positive overflow, and TMin
when there would be negative overflow. Saturating arithmetic is commonly used
in programs that perform digital signal processing.

Your function should follow the bit-level integer coding rules (page 128).

2.74 ¢ .
Write a function with the following prototype:

/* Determine whether arguments cdn be sibtracted without overflow */
int tsub_ok{int x, int y¥); i

This function should return 1 if the computation x~y does not overflow.

275 ¢ .
Suppose we want to compute the complete 2w-bit representation of x - y, where

both x and y are unsigned, on a machine for which data type unsigned is w bits.
The low-order w bits of the product can be computed with the expression x*y, s0

we only require a procedure with prototype
unsigned unsigned_high_prod (unsigned x, unsigned y);

that computes the high-order w bits of x - y for unsigned variables. <
We have access.to a library function with prototype *

int signed_high_prod(int x, 'int y); /!

that computes the high-order w bits of x - y for the case where x and y are in two’s-
complement form. Write code calling this procedure to implement the function
for unsigned arguments. Justify the correctness of your solution.

Hint: Look at the relationship between the signed product x - y and the un-
signed product x’ - y' in the derivation of Equation 2.18,

276 &
The library function calloc has the following declaration:

void *calloc(size_t nmemb, sizert size); '
Abcordfflg to the library documentation, “The calloc function allocates memory
for an array of nmemb elements of size bytes each. The mgmory is set to Zero. I
nmemb or size is Zero, then cd110¢ réturns NULL.?

Write an implementation of calloc that performs the allocation by a call to
nalloc-ahd sets the memory to zero via memset. Your code shotld not have dny
vuinerabilities due to arithmetic overflow, and it should work correctly regardless

of the number of bits used to represent data of type size_t.
As a reference, functions malloc and memset have the following declarations:
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vbid *malloc(size_t size);
void *memset(void #s, int c, size_t n);

277 ¢

Suppose we are given the task of generating code to multiply integer variable x
by various different constant factors K. To be efficient, we want to use only the
operations +, —, and <<. For the following values of K, write C expressions to
perform the multiplication using at most three operations per expression.

A K=17

B K=-7

C,[ K=60

D. K=-112
278 ¢¢

Write code for a function with the following prototype:

/% Divide by power of 2. Assume 0 <=k < w-1 */
int divide_power2(int x, int k);

'The function should compute x /2% with correct rounding, and it should follow
the bit-level integer coding rules (page 128).

279 *¢

Write code for a function nul3div4 that, for integer argument x, computes 3 %

x/4 but follows the bit-level integer coding rules (page 128). Your-code should
replicate the fact that the computation 3*x can cause overflow.

2.80 ¢4

Write code for a {unction threefourths that, for integer argument x, computes

the value of %x, rounded toward zero, It should not overflow. Your function should
follow the bit-level integer coding rules (page 128).

2.81 ¢+

Write C expressions to generate the bit patterns that follow, where a* represents
k repetitions of symbol a. Assume a w-bit data type. Your code may contain
references to parameters j and k, representing the values of j and &, but not a
parameter representing w.

A, 1w—kpk

B. Ow—*—itkpi

282 ¢

We are running programs where values of type int are 32 bits. They are repre-

sented in two’s complement, and they are right shifted arithmeticaily. Values of
type unsigned are also 32 bits.

[ e

135




s — — A s — e ——— e = it - -

136  Ghapter 2: Representing and Manipulating Information

We generate arbitrary values x and y, and convert them to unsigned values as
follows: N

/% Create some arbitrary values */
int x = randop();

int y-= random();

/% Convert to unsigned */

unsigned ux = (unsigned) x; '

.
:

]

|

unsigned uy = (unsigned) y;

For each of the following C expressions, you are to indicate whether ;or
not the expression always yields 1. If it always yields 1, describe the underlying
mathematical principles. Otherwise, give an example of arguments ‘that make it
: yield 0. f
| A. (x<y) == (-x>-y)

| B. ((x+y)<<4) + y-x =7 LT*y+1b*x

| D. (ux-uy) == -(unsigned) (y-x)
I E. ((x>2)<<2)<=x

¥

2.83 ¢¢ 5

Consider numbers having a binary representation consisting of an infinite string
of the form 0.y yyyyy - - -, where y is a k-bit sequence. For example, the binary
representation of % is-0.01010101 - -  (y =01); while the representation of % is
0.00110011001%- - - (y = 0011).

A. Let Y = B2U,(y), that is, the number having biﬁar; represehtation y. Give
a formula in terms of ¥ and k for the value represented by the infinite string.
Hint: Consider the effect of shifting the binary point & positions to the right.

B, ‘What is the numeric value of the string for the following values of y?
(a) 101 a
(b) 0110
(c) 010011

] C. ~x+~y+l == ~(x+y) 1
|
|
\
|

284 ¢ ¢ |
Fill in the return value for the %ollowing procedure, which tests whether its first
argument is less than or equdl to its second. Assume the fiinction £2u returns an
unsigned 32-bit number having the same bit representation_ as its floating-point
argument. You can assume that neither argument is NaN. The two flavors of zero,

+0 and =0, are considered equal.

int float_le(float x, float y) {
unsigned ux = f2u(x);
unsigned uy = f2u(y);

i
|
E
|
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/* Get the sign bits */
unsigned sx = ux >> 31;
unsigned sy = uy >> 31;

/* Give an expression using only ux, uy, sx, and sy */
return H

}

285 +

Given a floating-point format with a k-bit exponent and an #-bit fraction, write
formulas for the exponent E, the significand M, the fraction f, and the value V
for the quantities that follow. In addition, describe the bit representation.

A. The number 7.0
B. The largest odd integer that can be represented exactly
C. The reciprocal of the smallest positive normalized value

286 ¢

Intel-compatible processors also support an “extended-precision” floating-point
format with an 80-bit word divided into a sign bit, k¥ = 15 exponent bits, a single
integer bit, and n = 63 fraction bits. The integer bit is an explicit copy of the
implied bit in the IEEE floating-point representation. That is, it equals 1 for
normalized values and O for denormalized values. Fill in the following table giving
the approximate values of some “interesting” numbers in this format:

Extended precision

Description Value Decimal

Smallest positive denormalized
Smallest positive normalized
Largest normalized

This format can be used in C programs compiled for Intel-compatible ma-
chines by declaring the data to be of type long double. However, it forces the
compiler to generate code based on the legacy 8087 floating-poirit instructions.
The resulting program will most likely run much slower than would be the case
for data type float or double.

287 ¢
The 2008 version of the IEEE floating-point standard, named IEEE 754-2008,
includes a 16-bit “half-precision” floating-point format, It was originally devised
by computer graphics companies for storing data in which a higher dynamic range
is required than can be achieved with 16-bit integers. This format has .1 sign
bit, 5 exponent bits (k =5), and 10 fraction bits (n = 10). The exponent bias is
2-1-1=15.

Fillin the table that follows for each of the numbers given, with the following
instructions for each column:
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Hex: The four hexadecimal digits describing the encoded form.

M: The value of the significand. This should be a number of the form x or f,
where x is an integer and y is an integral power of 2. Examples include 0,
%%, and %3

E: The integer value of the ¢xponent.

V: The numeric value represented. Use the notation x or x x 2%, where x and
z are integers.

D: The (pos§ibly approximate) numerical value, as is* printed uding the’ %£

formatting specification of printf.
o

As an example, to represent the number %, we would have s =0, M = %,
and E = —1. Our number would therefore have an exponent field of 01110,
(decimal value 15 — 1= 14) and a significaid field of 1100000000,, giving a hex
representation 300. The numerical value is 0.875. )

You need not fill in entries marked —.

Description Hex M E v D
-0 ' —0 ~0.0
Smallest value > 2 . - A
512 512 512.0
Largest denormalized N
—00 — — -0 —00
Number with hex 3BBO !

representation 3BBO |

2.88 +¢
Consider the following two 9-bit floating-point representations based on the IEEE

floating-point format.

1. Format A .
= There is 1 sign bit.

3, £ { Pa— .
“a There are k = 5 exponent bltSl. The exponent bias 1s'!1S. -
» There are n = 3 fraction bits.
2. Format B
= There is 1 sign bit. i

33

s There are k-= 4 exponent bits. The expofient bias is 7.

4 4 . .
= 'There are n = 4 fractionbits.
i

Th the following table, you are given some bit patterns in format A, and your
task is to conyert them to the closest value in format B. If rounding is necessary
you should round toward +oco. In addition, give the values of numbers given by
the format A and format B bit patterns. Give these as whole numbers (e.g., 17)or

as fractions (e.g., 17/64 or 17/25).
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Format A $ Format B
Bits Value Bits Value M €l

101111 001 3 10111 0010 2
010110 011
100111 010
0 00000 111
111100000
010111100 . N

289 ¢
We are running programs on a machine where ‘fv;lues of type int have a 32-
bit two’s-complement representation. Values of type float use the 32-bit IEEE
format, and values of type double use the 64-bit IEEE format.

We generate arbitrary integer values x, y, and z, and convert them io values
of type double as follows:

/* Create some arbitrary values */
int x = randem();

int y = random();

int z = random();

/* Convert to double */

double dx = (double) x;

double dy = {(double) y;

double dz = (double) z;

B

1l

For each of the following C expressions, you are to indicate whether or
not the expression always yields 1. If it always yields 1, describe the underlying
mathematical principles. Otherwise, give an example of arguments that make
it yield 0. Note that you cannot use an 1A32 machine running Goc to test your
answers, since it would use the 80-bit extended-precision representation for both
float and double.

A. (float) x == (float) dx

dx - dy == (double) (x-y)
(dx + dy) + dz == dx + (dy + dz)
(d¥ * dﬁ ¥ dz == dx * (dy * dz)

i

dx / dx ==dz Z_d'z

Mmoo W

=

¥

290 ¢

You have been assigned the task of writing a C function to compute .a floating-
point representation of 2%. You decide that the best,way to do this is to directly
construct the IEEE single-precision tepresentation of the result. When x is too
smali, your routine-will return 0,0. When x'is'too large, it will return’'+-oc, Fill in the
blank portions of the code that follows to compute the correct result.’Asshime the
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function u2f returns a floating-point value having an identical bit representation
as its unsigned argument.

float fpwr2(int x)

{
/% Result expoment and fraction */
unsigned exp, frac;
unsigned u;

if (x < 3 A{
/* Too small. Return 0.0 */
exp = )
frac = H
} else if (x < DA
" /% Denormdlized result */
exp = ;
frac = ___ oo ___;
} else if (x < ) {
/* Normalized result. */
exp =
frac = ..}
} else {
/* Too big. Return +oo */
eXp =
frac = .
} -
. i
/* Pack exp angd frac into,32 bifs */
u = exp << 23 | frac;
/* Return as float */
return u2f{u);

291 ¢

Around 250 B.C., the Greek mathematician Archimedes proved that % << % .
Had he had access to a computer and the standard library <math.h>, he would have
been able to determine that the single-precision floating-point apptoximation of
x has the hexadecimal representation 0x40490FDB. Of course, all of these are just
approximations, since 7 is not rational.

A. What is the fractional binary number dénoted by this floating-point value?

B. What is the fractional binary representation of 3%‘? Hint? See Problem 2.83.

1
C. At what bit position.(relative to the binary point) do these two approxima-
tions to & diverge? . r
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Bit-Level Floating-Point Coding Rules

In'the following problems, you will write code td implement floating*péint func-
tions, operating directly on bit-level representations of floating-point numbers.
Your code should exactly replicate the conventions for IEEE floating-point oper-
ations, including using round-to-even mode when rounding is required,

To this end, we define data type float_bits to be é'quivalent to unsigned:

. £ i ;

/* Access bit-ievel reprééentation floafihg-po;pt number */
typedef unsigned float_bits; .

114

Rather than using data typt fidat in yout code, you' will use £10at_bits.
You may use both int and unsigned data types, including unsigned and integer
constants and operations. You may not use any unions, structs, or arrays. Most
significantly, you may not use any floating-point data types, operations, or con-
stants. Instead, your code should perform the bit manipulations that implement
the specified floating-point operations. .

The following function illustrates the use of these coding rules. For argument
f, it returns £0 if f is denormalized (preserving the sign of £), and returns f
otherwise,

4 -
/¥ If £ is denorm, return 0. Otherwise, return f */
float_bits flogt_denorm_zero(float bits f) {

/* Decoppose bit representation into parts */

msigned sign = f>>31;

unsigned exp.= £>>23 & OxFF;

unsigned frac = f & Ox7FFFFF;

if- (exp == 0) { |

/* Denormalized. Set fraction to O */
frac = Q;

}

/* Reassemble bits */

return (sign << 31) | (exp << 23) | frac;

} (A

292 ¢

Following the Bit-level floating-point: coding, rules, implement the: function with
the following prototype:

/* Compute ~f. If f is NaN, then return f. +/
float_bits float_negate(float_bits £);

For floating-point number £, this function computes — f. If f is NaN, your
function should simply return f.

Test your function by evaluating it for all 232 values of argument £ and-com-
paring the result to what would be obtained using your machine’s floating-point
operations.
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293 ¢¢ "
Following the bit-level floating-point coding rules, implement the function with
the following prototype: ’

1

/% Compute 1| Tf £ it NaN, ‘then réturn . */
float_bits float_absval(float_bits £);

For floating-point number f, this function computes | f|. If f is NaN, your
funétion should simply return f. ok

Test your function by evaluating it for all 232 yalues of arghment £ ‘and com-
paring the result to what would be obtained usir;%_,youg; machine’s floating-point

operatlons. N

294 40 ‘ :
Following the bit-level floating-point coding riles, implement the funétion with
the following prototype: ‘

/* Computé 2%f. If f is NaN, then return f. %/
float_bits Ffloat_twice(float_bits-f};

For floating-point number £, this function computes 2.0 f.If fis NaN, your
function should simply return f.

Test your function by evaluating it for all 232 yalues'df argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

295 46
Following the bit-level fioating-point coding rules, implement the function with
the following prototype: ’

/* Compute 0.5%f. If £ is NaN, then return £f. */
float_bits float_half (float_bits f);

For floating-point number f, this function computes 0.5 f.1f f is NaN, your
function should simply return f.

Test your function by evaluating it for all 2% values of argument £ and com-
paring the.resulf to what would be obtained using your machine’s floating-point
operations. “

296 soee ‘
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

]

/*

* Compute !6int) £% ¢ h

* If copversion causes overflow or.f is NaN, return 0x80000000
*/

int float_f2i(fleat_bits £);




Solutions to Practice Problems 143

For floating-point number f, this function computes'(int)} f. Your function
should round toward zero. If f cannot be represented as an integer (e.g., it is out
of range, or it is NaN), then the function should return 0x80000000.

Test your function by evaluating it for all 2%2 valiies of argument £ and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

2.97 oo
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/% Compute (float) i */
float_bits float_i2f(int i);

For argument i, this function computes the bit-level representation of
(float) i.

Test your function by evaluatihg it for all 22 yalues of argument £ and com-
paring the result to what would be obtained using your machine’s floating-point
operations,

Solutions to Practice Problems

Solution to Problem 2.1 (page 37)

Understanding the relation between hexadecimal and binary formats will be im-
portant once we start looking at machiné-level programs. The method for doing
these conversions is in the text, but it takes a little practice to beconie familiar.

A. 0x39ATFS to binary:

Hexadecimal 3 9 A 7 F 8
Binary 0011 1001 1010 0111 1111 1000

B: Binary 1100100101111011 to hexadecimbl:

Binary 1100 1001, 0111 1011
Hexadecimal C 9 7 B

C. 0xD5E4C to binary:

Hexadecinial D 5 E 4 ¢
Binary 1101 0101 1110 0100 1100

D. Binary 1001101110011110110101 to hexadecimal:
Binary 10 0110 1110 0111 1011 0101

Heéxadecimal 2 6 E 7 B 5

Solution to Problem 2.2 (page 37)
This problem gives you a chance to think about powers of 2 and their hexadecimal
Tepresentations,
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n 27 (decimal) 27 (hexadecimal)

9 512- 0x200
19 524,288 0x80000
14 16,384 bx4090
16 65,536 0x10000
17 131,072 0x20000
5 32 0x20
7 '128 0x80 ‘

Solution to Problem 2.3 (page 38)

This problem gives you a chance to try out conversions between hexadecimal and
decimal representations for some smaller numbers. For larger onés, it becomes
much, more ¢pnvenient and reliable to use;a calculator, or conversion progra.

Decimal Binary He!xadechnql‘,

0 0000 0000 0x00

167=10-16+7 10100111 OxAT

62=3-16+14 0011 1110 0x3E

188=11-16+12 10111100 0xBC s
3-16+7=55 0011 0111 0x37

8-16+8=136 1000 1000 0x88
15.16+3=243 11110011 0xF3 | »
5-16+2=§2 0301 0010 0552,

10-16+12=172 10101100 0xAC

14.16+7=231 11100111 0xET

Solution to Problem 2.4 (page 39)

When you begin debugging Inachine-level programs, you will find many cases
where some simple hexadecimal ,arithmetic would be useful. You can always
convert pumbers to decimal, perform the arithmetic, and convert them back, but

L

being able to work directly in hekadecimal is more efficient and informative.

o
A. 0x503c + 0x8 = 0x5044. Adding 8 to hex ¢ gives 4 with a carry of 1.

B. 0x503c — 0x40 = Ox4ffc. Subtracting 4 from 3 in the second digit position
requires a borrow from the third. Since this digit is 0, we must also borrow
.y * ]
from the fourth position.

C. 0x503¢ + 64 = 0x507c. Decimal 64 (2%) equals hexadecimal 0x40.

D. (x50ea — 0x503¢ = 0xae.To subtract hex c'(decimfil 12) from hex a (decimal
10), we borrow 16 from the second digit, giving hex e (decimal 14). In
the second digit, we now subtract 3 from hex d (decimal 13), giving hex a
(decimal 10).

".!

Solution to Problem 2.5-(page 48). .. )
This problem tests your understanding of the byte representation of data-and the
two different byte orderings.




Solutions to Practice Problems 145

A.  Little endian; 21 Big endian: 87
B. Little endian: 2143 1Big endian: 87 65
C. Little endian: 21 43 65  Big endian: 87 65 43

Recall that show_bytes enumerates a series of bytes starting from the one with
lowest address arid working toward the one with highest address. On a little-
endian machine, it will list the bytes from least signiificant to most. On a big-endian
machine, it will list bytes from the most significant byte to the least,

Solution to Problem 2.6 (page 49) . ]

This problem is another chance to practice hexadecimal to binary conversion. It
also gets you thinking about integer and floating-point representations. We will
explore these representations in more detail later in this chapter.

A. Using the notation of the example in the téxt, we write the two strings as
follows:

O 0 3 5 9 1 4 1
00000000001101011001000101000001,
Aok ok Rk sk ol o ok K ko

4 A 5 6 4 5 0 a
01001010010101100100010100000100

B. With the second word shifted two positions to the right relative to the first,
we find a sequence with 21 matching bits.

C. We find all bits of the integer emb?dded in the ﬂoatkfng-point number, except
for the most significant bit having value 1. Such is the case for the example
in the text as we]l. In addition, the floating-point number has some nonzero
high-order bits that do not match'thosé of the integer.

Solution to Problem 2.7 (page 49)

It prints 61 62 63 64 65 66. Recall also ‘that the library routine strien does not
count the terminating null character, and so show_bytes printed only through the
character ‘f’. u

Solution to Problem 2.8 (page 51)
This problem is a drill to help you become more familiar With Boolean operations.

Operation Result

a [01101001)
b [01010101]
~a [10010110]
~b [10101010]
akb [01000001]
alb [01111101]

a~b (00111100]




= e e g T |

146 Chapter 2 Representing and Manipulating Information

Solution to Problem 2.9 (page 53) e
This problem illustrates how Boolean algebra‘can be used to describe and reason
about real-world systems. We can see that this color algebra.is identical to the

Boolean algebra over bit vectors of length 3.
4

17 ta f. fa
i : A. Colgrs ar:.a complemented by.,gorgplementing the values of R,:G, and B.

|
: From this, we can sce that white is the complement of black, yellow is the
f % complement of blue, magenta is the complement of green, and cyan is the

complement of red.
Lk B. We perform Boolean operations based on a bit-vector representation of the
l colors. From this we get the following: e -
1 ! 4
' Blue 00) 1 Green(010) = Cyan(011)
Yellow (110) & Cyan (011) =5, Greep (p}Q) \ } -

Blue (001)

=

Red (100) -~ Magenta (101)

3 solution to Problem 2.10 (page 54)
This procedure relies on the fact that EXCLUSIVE-OR is comrhutative arid associative,

! and that a ~ a = 0 for any a. "

Step *¥ *y‘ b8l r~

Initially 4 b |
Step 1 a ,a"b
Step 2 a~(@~"b)y=(@~a)"b="pb ab

Step3 b oo b @D =) a=a

See Problem 211 for a case where il}is{ fubiction will fail. 5 v
AL F

Solution to Problem 2.11 (page 55)
This problem illustrates a subtle,and interesting feature of our inplace swap

routjne. .
‘ A. Both first and last have value k, so we are attempting to swap the middle
I element with itself. |

B. In this case, argnments x agd y to inplace_swap ‘both point to the same
location. When we compute *x ~ *y, we get 0. We then store Qasthemiddle
element of the array, and the subsequent steps keep setting this elementto

‘ 0. We can see that our reasoning in Problem 2.10 im'}?licitly assumed that x

| and y denote different locations.

f, .
C. Simply replace the testin line 4 of reverse_array to be first < last,since
there is no need to swap the middle element with itself |

Solution to Problem 2.12 (page 55)
Here are the expressions:

o m L
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A. x & OxFF
B, x - ~0OxFF
C. x| OxFF

These expressions are typical of the kind commonly found in performing low-level
bit operations. The expression ~0xFF creates a mask where the 8 least-significant
bits equal 0 and the rest equal 1. Observe that such a mask will be generated

regardless of the word size. By contrast, the expression 0xFFFFFF00 would only
work when data type int is 32 bits,
1 W

o -
Solution to Problem 2.13 (page 56)

These problems help you think about the relation between Boolean operations
and typical ways that programmers apply masking operations. Here is the code:

/* Declarations of functions implementing operations. bis and bic */
int bis(int x, int m);

int bic{int x, int m);

/* Compute x|y using only calls to functions bis and bic */
int bool_or(int x, int y) {
int result = bis(x,¥); ?
return result;

¥

/% Compute x"y using only calls’ to functions bis and bic */
int bool xor{int x, int y) {

int result = bis(bic(x,y), bicly,x));

return result;

¥

The bis operation is equjvalent to Boolean OrR—a bit is set in g if either this
bitis set in x or it is set in m. On the other hand, bic(x, m} is equivalent tox & ~m;
we want the result tg,equal 1 only when the corresponding bit of xis 1 and of m is
0.

Ty -
Given that, we can implement | with a single call to bis. To iInpfement ", we
take advantage of the property

x"y={xk-y) | (~x&y)
&

Solution to Problem 2.14 (page 57)

This problem highlights the relation between bit-level Boolean operations and

logical operations in C. A common programming error is to use a bit-level oper-
ation when a logical one is intended, or vice versa.

147
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Expression  Value Expression  Value
x&ky 0x20 x&&y 0x01
9 xly 0x7F xhly 0x01
1 ~x |~y 0xDF 1x ity 0%00
©u ty 0x00 Ko~y 0x01

{ golgtion to Problem 2,15 (page 57)
j! The expression is ! (x ~ y).

That is, x~y will be zero if and only if every bit of x matches the corresponding
! bit of y. We then exploit the ability of ! to determine whether a word contains any
b1 nonzero bit.

1 There is no redl reason to use this expression rather’than simply writing x ==
! v; but it demonstrates some’of the nuances™of bit-level and logical operations.

i Solution to Problem-2.16 (page 58}
, This problem is a drill to help you understand the different shift operations.

Logical Arithmetic
pid x << 3 x>> 2 x>> 2
Hex Binary Binary Hex Binary Hex Binary Hex

0xC3  [11000011]  [00011000] oxi8  [00110000] ~ox30  [11110000] 0xFO
w ox75  [01110101]  [10101000] oOxA8  [00011101] ~ o0xiD  [00011101]  Ox1D
¢ 1 0x87  [10000111]  [00111000] ©0x38  [0010000]]  ©0x21  [11100001]  OxEl
. 0x66  [01100110]  [00110000] 0x30  [00011001] oxts  [00011001]  Oxi9

Solution to Problem 2.17 (page 65)
In general, working through examples for very small word sizes is a very good way
to understand computer arithmetic.

The unsignéd values correspond to those in Figure 2.2. For the*two’s-
complement values, hex digits 0 through 7 have a most significant bit of 0, yielding
fionnegative values, while hex digits 8 through F have a most significant bit of 1,
yielding a neigative value.

e

Hexadecimal  Binary

% B2U4(3) B2T4(%)
| OxE [1110]  23+22+21=14 —28422421=-2
B 0x0 [0000] O 0
L 0x5, [o101] 2% 42°=5 2242055
1 oxg  [1000) 2°=8 . P=-8, .,
S 0xD [1o1] 2+22+2°=13 ~2+22420=-3
OxF 1111 2+2+21420=15 2 42242142°=-1

1
#
i
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Solution to,Problem 2.18 (page 69) »

. For a 32-bit word, any value consisting of 8 hexadecimal digits beginning with one
. of the digits 8 through f represents a negative number. It is quite common to see
 numbers beginning with a string of £’s, since the leading bits of a negative number
t are all ones. You must look carefully, though. For example, the number 0x8048337
has only 7 digits. Filling this out with-a leading zero gives 0x08048337, a positive
number.

e
4004d0: 48 81 ec €0 02 00 00 sub, $0x2e0, ¥rsp

A. 736
| 4004d7: 48 8b 44 24 a8 mov  }-0x58(%rsp) ,%rax B. 88
| 4004dc: 48 03 47 28 add  O0x28(¥%rdi) ,%rax ¢. 40
| 4004e0: 48 89 44 24 40 mov  %rax,-0x30(%rsp) p. -48
| 4004e5: 48 8b 44 24 78 mov  0x78(%rsp),%rax E. 120
| 4004ea: 48 B89 87 88 00 00 00 mov  %rax,0x88(%rdi) F. 136
: 4004f1: 48 8b 84 24 £8 01 Q0 mov  Ox1f8(Yrsp) .%rax G. 504
| 4004£8: 00
| 4004f8: 48 03 44 24 08 add  0x8(Y%rsp),%rax
| 4004fe: 48 89 84 24 c0 00 ©C mov  Y%rax,0xcO(¥%rsp) H. 192
| 400B0B: 00
| 400506: 48 8b 44 d4 b8 mov  -0x48(Y4rsp,%rdx,8),%rax I. -72

I Solution to Problem 2.19 (page 71)

, The functions T2U and U2T are very peculiar from a mathematical perspective,
. Itis important to understand how they behave.

| We solve this problem by reordering the rows in the solution of Problem 2.17
. according to the two'sscomplement value and then listing the unsigned value as

I the result, of the function application. We show the, hexadecimal values to make
this process more concrete,

' % (hex) x T2U 4(x)

[ 0x8 -8 8
‘ OxD -3 13
| oxE -2 14
ot 15
| 0x0Q ] 0
I 0x5 5 5

| Solution to ‘igrobllem 2. FO (page 73)

| This exercise tests your understandmgtof Equation 2.5.

| For the first four entries, the values of x are negatwe and T2U a(x) =x 4 2%,
| For the remaining two entries, the values of x are nonnegative and T2U4(x) = x.

| Solution tp Problem 221 (page 76)
| This problem .reinforces your understanding.of the relation between two’s-

complement and unsigned representations, as well as the effects of the C promo-
tion rules. Recall that TMina, is —2,147,483,648, and that when cast to unsigned it
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. becomes 2,147,483,648. In addition, if either operand is unsigned, then the other
]l operand will be cast to unsigned before comparing.

i
Expression Type Evaluation g

Al 21472836471 == 21474836480  Unsigneds; 1 \
a —2147483647-1 < 2147483647 Signed 1

. —2147483647-1U < 2147483647 Unsigned 0

' -2147483647-1 < -2147483647 Signed 1

1

' —214748364T-1U < —2147483647 Unsigned

: Solution to Problem 2.22 (page 79)
; This exercise provides g concrete-demonstration of how sigh extension preserves
the numeric value ofia two’s-complement representation.

g A, [1011] 22342420 = —g4+2+1 = -5
' B.  [11011] ¥4l 42 = —16+8+2+1 = -5

C. [111011) 5B 42i420 = 32416484241 = 3
Solution to Problem 2:23 (page 80) *’

The expressions in’thése functions are common program “idioms” for extracting

values from a word in which multiple bit fields have been packed. They exploit

: the zero-filling 4nd sign-extending properties of the differént shift operations.
Note carefillly the ordering of-the cast and shift operations. In funi, the shifts

} ' are‘performed on unsigned variable word and hence are logical. In fun2,-shifts
are performed after casting word to int and hence are arithmetic.

A, W funl (w) fun2(w)

} 0x00000076 0x00000076 0x00000076
] 0x87654321 0x00000021 0x00000021
0x000000C9 0x000000C2 OxFFFFFFCY
0xEDCBASST 0x00000087 OxFFFFFF87

B. Function funi extracts a value from the low-order 8 bits of the argument,
giving an integer ranging between 0 and 255. Function fun2 extracts a value
from the low-order 8 bits of the argumet, but it also performs sign extensiof.
The result will be a number betweeh —128 and 127.

| !

[ Solution to Problem 2.24 (page 82)

i The effect of truncation is fairly intuitive for unsigned numbers, but not for two’s-
complement numbers. This exercise lets you explore its properties using:very small

‘ : word sizes. : i

|

4 I

r )'i
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Hex Unsigned Two’s complement
Original  Truncated Original  Truncated Original  « Truncated
0 0 0 0 0 0
2 2 2 2 2 2
9 1 9 1 -7 1
B 3 11 3 -5 3
F 7 15 7 -1 -1

As Equation 2.9 states, the effect of this truncation on unsigned values is to
simply find their residue, modulo 8. The effect of the truncation on signed values
is a bit more complex. According to Equatiom2.10, we first compute the modulo 8
residue of the argument. This will give values Q through 7 for arguments 0 through
7, and also for arguments.—8 through' ~1. Then we apply function U275 to these
residues, giving two repetitions of the sequences (} through 3 and —4 through —1.

Solution to Problem 2.25 (page 83)

This problem is designed to demonstrate how easily bugs can arise due to the
implicit casting from signed to unsigned. It seems quite natural to pass parameter
length as an unsigned, since one would never want to use a negative length. The
stopping criterion i <= length-1 also seems quite natural. But combining these
two yields an unexpected outcome!

Since parameter 1ength is unsigned, the corhputation 0 — 1is performed using
unsigned arithmetic, which is equivalent to modular addition. The result is then
UMax. The < comparison is also performed using an unsigned comparison, and
since any number is less than or equal to UMax, the comparison always holds!
Thus, the code attempts to access invalid elements of array a.

The code can be fixed either by declaring 1ength to be an int or by changing
the test of the for loop to be i < length,

Solution to Problem 2.26 (page 83)

This example demonstrates a subtle feature of unsigned arithmetic, and also the
property that we sometimes perform unsigned arithmetic without realizing it. This
can lead to very tricky bugs.

A. For what cases will this function produce an incorrect result? The function
will incorrectly return 1 when s is shorter than t.

B. Explain how this incorrect result comes about. Since strlen is defined to
yield an unsigned result, the difference and the comparison are both com-
puted using unsigned arithmetic. When, s is shorter than t, the difference
strlen(s) - strlen(t) should be negative, but instead becomes a large,
unsigned number, which is greater than 0.

C. Show how to fix the code so that it will worl reliably. Replace the test with
the following: .

return strlen(s) > strlen(t);
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Solution'to Problem 2.27 (page 89)
This function is a direct implementation of the rules given to determine whether
or not an unsigned addition overflows.

/* Determine whether arguments ¢an be added without overflow */
= int uadd_ok(unsigned x, unsigned y) {

: unsigned sum = x+y;

return sum >= x;

by .
I
Solutionito Problem 2.28 (page 89) 3
\ Thig problem is a'simple demonstration of arithmetic modulo 16. The easiest way
to solve it is to convert'the hex pattern into it§ unsigned detimal value. For nonzerod
values of ¥, we must have (-4 x) 4+ x = 16. Then we convert the <omplémented

1 value back to hex. . .
| ,
| x TaX ;
i Hex Decimal Decimal Hex -
" 0] 0 0 0 ’ 2w
_ 5 5 11 B
8 8 ’ 8 8 '
D 13 N 3 I
F 15 ’ 1 1

s

i
' Solution to’Problem 2.29. (page 93)
This problem is an exercise to make sure you understand twd’s-complement

: addition.

l' ' x ¥y ‘x4 ¥ x5y Case

~12 15 ~27 501

f (10100]  [10001]  [100101]  [00101]

-8 -8 ~16 -16 2
[11000]  [11000]  [110000]  [10000]
-9 8" -1 -1 2"

[10111]  [01000]  [111111]  [11111] |
i 2 5 7 7 3 : |
I 1 [00010]  [00101]  [000111]  [00111] '

! 12 4 16 ~16 4

[01100]  [00100]  [010000]  [10000] - ,
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Solution to Problem 2.30 (page 94)
This function is a direct implementation of the rules given to determine whether
Or not a two’s-complement addition overflows,

/* Determine whether, arguments can be added without overflow */
int tadd_ok(int x, int y) {

int sum = x+y;

int neg over = x < 0 g4 ¥y < 0 && sum >= 0;

int pos_over = x >= 0 && Yy >= 0 && sum < 0;

return !neg_over && Ipos_over;

}

Solution to Problem 2.31 (page 954)

Your coworker could”*have learned, by studying Section 2.3.2, that two's-
complement addition forms an abelian group, and so the expression (x+y)-x
will évaluate to y regardless of whethél ‘or not the addition overflows, and that
(x+y) -y will always evaluate to x.

Solution to Problem 2.32 (page 94)
This function will give correct values, except when y is 7Min. In this case, we
will have -y also equal to TMin, and so theicall to function tadd_ok will indicate
overflow when x is negative and no overflow when x is nonnegative. In fact, the
opposite is true: tsub_ok(x,' TMin) should yield O when x is negative-and 1 when
it is nonnegative. 1

One lesson to be learned from this exercise is that TMin should be included
as one of the cases invany test procedure for a function.

Solution to Problem 2.33 {page 95)
This problem helps you understand two 's-complement negation using a very small
word size. , ‘

For w =4, we have TMiny=—8,80 -8 is its own additive inverse, while other
values are negated by integer negation.

x -;x
Hex Decimal Decimal Hex
0 0 0 0
5 5 ~5 B
8 -8 —8 8
D -3 3
F -1 1 1

The bit patferns are the same as for unsigned negation.

Solution to Problem 2.34 (page 98)
This problem is an exercise to make sure you understand two’s-complement
multiplication, .
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Mode X ¥ x-y Truncated x - y
Unsigned 4 [100] 5 [101) 20 fOlOlOO] 4 [100]
Two's complement —4 [100] -3 [101] 12 [001100] —4 [100]
Unsigned T2 [010] 7 [111] 14  [001110] 6 [110]
Two's complement 2 0100 -1 [111] -2 [11110) -2 {110]
Unsigned 6  [110] 6  [110] 36 [100100] 4 [100]
Two’s complement -2 [110] -2  [110] 4  [oo0100] -4 [100]

Solution to Problem 2.35 (page 99)

It is not realistic to test this function for all possible values of x and y. Even if
you could run 10, billion tesgs per second, it would require over 58 years to test all
combinations when dafa type int ig 32 bits. On the gther hand, it is feasiple to test
your code by writing the function with data type short or char and then testing
it exhaustively.

1

Here’s a more principled approach, following the proposed set of arguments:

We know that x » yican be written as a 2w-bit two’s-complement number. Let
u denote the unsigned number represented by the lower w bits, and v denote
the two’s-complement number represented by the upper w bits: Then, based
on Equation 2.3, we can see that x - v = v2¥ + u.

‘We also know that w = 72U ,(p), since they are unsigned and two’s-
complement numbers arising from the same bit pattern, and so by, Equation
2.6, we can write & = p + p,,_12%, where p,,_; is the most significant bit of p.
Lettingr=v + p,,_q, we have x - y = p 4 12%,

Whenr =0, wehave x - y = p; thé thultiplication does not overflow. When
t #0, we have x - y # p; the multiplication does overflow.

. By definition of integer d1v131on dividing p by nonzero x gives a quotient

g and a remainder r such that p = x - g+, and |[F| < |x| (We use absolute
values here, because the signs of x and r may differ. For example, dividing —7
by 2 gives quotient —3 and remainder —1.) ,
Suppose ¢ = y. Then we have x -y =x - y +r +12%. From this, we can see
that r + 2% = 0. But |r| < |x| <2¥, and so this iidentity can hold only if t =0,
in which case r =0.

Suppose r =t =0, Then we will have x - y = x - ¢, implying that y = q.

‘When x equals 0, multiplication does not overflow, and so we see that our code

provides a reliable way to test whether or not two’s-complement multiplication
causes overflow.

Solution to Problem;2.36 (page.99)
With 64 bits, we can perform the multiplication without overflowing. We then test
whether casting the product to 32 bits changes the value:
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1 /# Determine whether the arguments: canibe'multiplied
2 without overflow */

3 int tmult_ok{int x, int y) {

4 /* Compute product without overflow #/

5 int64_t pll = (int64_t) x»y;

6 /* See if casting to int preserves value */

7 return pll == (int) pll;

8

‘ 1 Note that the casting on the right-hand side of line 5 is critical. If we instead
wrote the line as

‘ int64_t pll = x+y;

t  the product would be computed as a 32-bit value (possibly overflowing) and then
‘ sign extended to 64 bits,

‘ . Solution to Problem 2.37 (page 99)

A. This change does not help at all. Even though the computation of asize will
be accurate, the call to malloc will cause this value to be converted to a 32-bit
‘ ’ unsigned number, and so the same overflow conditions will occur.

B. With malloc having a 32-bit unsigned nymber as its argument, it cannot

possibly allocate a block of more than 232 bytes, and so’there is no point

y attempting to allocate or copy this much memory. Instead, the function

' should abort and return NULL, as illustrated by the following replacement
to the original call to malloc (line 9):

L uintB4_t required_gize = ele_cnt * (uint64_t) ele_size;
i size_t request_size = (size_t) required_size;
if (required_size != request_size)
" /* Overflow must have occurred. Abort operation */
return NULL;
void *result = malloc(request_size);
‘ if (resnlt == NULL)
/* malloc failed */
return NULL;

Solution to Problem 2.38 (page 102)

- In Chapter 3, we will see many examples of the LEA instruction in action. The

‘ mstruction is provided to support pointer arithmetic, but the C compiler often
uses it as a way to perform multiplication by small constants.

: For each value of k, we can compute two multiples: 2% (when bis 0) and 2% + 1

‘ (when b is a). Thus, we can compute multiples 1,2, 3, 4, 5, 8, and 9.
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Solution to Problem 2.39- (page 103) 3T
The expression simply becomes - (x<<m). Tosee this, let the word size be w so that
n = w — 1. Form B states that we should compute (x<<w) - {x<<md, but shifting
x to the left by w will yield the value 0. ul

Solution to Problem 2.40 (page 103)
This problem requires you to try out the optimizations already described and also
to supply a bit of your own ingenuity.

K Shifts ~ Add/Subs  Expression ,

6 2 1 (x<<2) + (x<<1)
31 1 1 (x<<B) - x
—6 2 1 (x<<1) - (x<<3)
55 2 2 (x<<6) - (x<<3) - x

Observe that the fourth case uses a modified version of form B. We can view
the bit pattern [110111] as having a run of 6 ones with a zero in the middle, and so
we apply the rule for form B, but then we subtract the term corresponding to the
middle zero bit. '

»

Solution to Problem 2.41 (page 103)
Assuming that addition and subtractionhave the same performance, the rule is
to choose form A when 7 = m, eitheriform when n=m +1, and form B, when
n>m+1l L. ¥

The ‘justification for this rule is asifollows. Assume first that m > 0. When
n=m, form A requires only a single shift, while form B requires two shifts
and a subtraction. When n =m + 1, both forms fequire two shifts and either an
addition.or a subtractiop-Whenn > m + 1, form B requires only twe shifts and one
subtraction, while form A requiresn —m +1> 2 shifts.and.n —m > 1 additions.
For the case of m = 0, we get one fewer shift for both forms A and B, and so the
same rules apply for choosing between the two.,

a

Solution to Problem 2.42 (page 107) "

The only chajlenge here is to compute the bias without any testing or conditional
operations. We use the trick that the expression x >>31 generates a word with all
ones if x is negative, and all zeros otherwise. By masking off the appropriate bits,
we get the desired bias value. |

-y

int divi1B(int.x) {
/% Compute bias to be sither 0 (x >=70) or 15 Hx < 0) */ or
int bias = {(x ¥> 31) & OxF;
return (x + ‘bias) >> 4; arpr




Solutions to Practice Problems

Solution to Problem 2.43 (page 107)
We have found that people have difficulty with this exercise when working di-
rectly with assembly code. It becomes more clear when put in the form shown in
optarith..

We can see that M is 31; x+M is computed as (x<<5)—x.

We can see that N is 8; a bias value of 7 is added when y is negative, and the
right shift is by 3.

Solutjon to Problem 2.44 {page 108)

These “C puzzle” problems provide a clear demonstration that programmers must
understand the properties of computer arithmetic:

A (x>0) || (x-1<0)
False. Let x be —2,147,483,648 (TMins;). We will then have x—1 equal to
2,147,483,647 (TMaxz,).
B (x&7) 1=7 1] (x<<29<0) ,
True. If (x & 7) !=7 evaluates to 0, then we must have bit X3 equal to 1.
When shifted left by 29, this will become the sign bit.
C (x*xx)>0
False. When x is 65,535 (0xFFFF), x*x is —131,071 (OxFFFE0001).
D. x<0 ”-‘,x$=-04
True. If x is nopnegative, then -x is nonpositive.
E x>01l{-x»>=0
False. Let x be —2,147,483,648 (TMins,). Then both x and -x are negative.
F  x+y == uy+ux
True. Two’s-complement and unsigned addition have the same bit-level be-
havior, and they are commutative.

G. xx~y + uysux == -x
True. =y equals -y~1. uy*ux equals x+y. Thus, the left-hand side is equivalent
tO x*—y-x+x*y,

Solution to Problem 2.45 (page 111)
Understanding fractional Binary representations is an important step to under-

standing floating-point encodings. This exercise lets you try out some simple ex-
amples.
0.001 0.125
0.11 0.75
1.1001 1.5625
10.1011 2.6875
1.001 1.125
101.111 5.875
11.0011 3.1875

2 oo|By coire SUE S siws oo
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One simple way to think about fractional binary representations is to repre-
sent a-number as a fraction of the form ;. We can write this in binary using the
i binary representation of x, with the binary point inserted k positions from the
5 right. As an example; for'f—g, we have 25,5 = 11001,. We then put the binary point

four positions from the right to get 1.1001,.

il Solution to Problem 2.46 (page 111) .
1. In most cases, the limited precision of floating-point numbers is not a major
P problem, because the relative error of the computation is still fairly low. In this
- example, however, the system was sensitive to the absolute error.

A. We can see that 0.1 — x has the binary representation

0.000000000000000000000001100{1100] - - - 2

B. Comparing this to the binary representation of 1—10, we can see that it is simply
2720 » L which is around 9.54 x 1078, ¢

C. 954 x 105 x 100 x 60 x 60 x 10%0.343 seconds.
D. 0.343 x 2,000 ~ 687 meters.

R N e

Solution to Problem 2.47 (page 117)

|
4 Working through floating-point representations for very siiiall word sizes helps
I clarify how IEEE floating point works. Note especially the transition between
g denormalized and normalized values. %
¥ Bits e E 22 f M 2 m 14 Decimal
| | ogooo o o 1 ¢ G., % 0 00
; 3 o000t o0 o0 1 1 1} 1 L 0.25
- oooto o0 0 1 § % 2 i 0.5
,' | coo11 o o 1 3 3 3 2 “0.75
E n oot 1 o 1 § % % 1 10
! ootor 1 o 1 %+ 3 3 3 1.25
ootgo 1 g 1 % ¢ : 3 LS )
| oo111 1 0 1 % ] I i 175
E | o000 2 1 2 & 4 g 2 20
- o000 2 1 2 3 3 1 ; 25
i o010 2 1 2 2 8 L 3 30
o011 2 1 2 % 3 1 1 35
01100 — — — — — — 00 —
01101 — —_ —_ _— —_ — NaN —

|
|
|
|
l
g
=

01110 —
01111 — - - == = —

g
5
l




*  Solutions to Practice Problems 159

Solution to Problem 2.48 (page 119)

Hexadecimal 0x359141 is equivalent to binary (1101011001000101000001]. Shift-
ing this right 21 places gives 1.101011001000101000001, x 2?!, We form the frac-
tion field by dropping the leading 1 and adding two zeros, giving

[10101 100100010100000100]

The exponent is formed by adding bias 127 to 21, giving 148 (binary [10010100]).
We combine this with a sign field of 0 to give a binary representation

{01001010010101 100100010100000100]

We see that the matching bits in the two representations correspond to the low-
order bits of the integer, up to the most significant bit equal to 1 matching the
high-order 21 bits of the fraction:

0 0 3 5 9 1 4 1
00000000001101011001000101000001
Fof kK ROR o ok Kok o
4 A 5 6 4 5 0 a
010010100190101100100010100000100

Solution to Problem 2.49 {page 120)

This exercise helps you think about what numbers cannot be represented exactly
in floating point.

'y
A. The number has binary representation 1, followed by n zeros, followed by 1,
giving value 2%+1 4 1,

B. When n =23, the value is 224 + 1= 16,777,217.

Solution to Problem 2.50 (page 121)

Performing rounding by hand helps reinforce the idea of round-to-even with
binary numbers.

Original Rounded
10010, 21 100 2
001, 23 101 24
10110, 22 110 3
11001, 33 110 3

Solution to Problem 2.51 {(page 122)

A. Looking at the nonterminating sequence for 15 We see that the 2 bits to the

right of the rounding position are 1, s0 a better approximation to % would be
obtained by incrementing x to get x’ = 0.00071001 100110011001101,, which
is larger than 0.1.

B. We can see that x’ — 0.1 has binary representation

J
0.0000000000000000000000000[1100]




2

|
i
H
'

160 Chapter 2 Representing and Manipulating Information

Comparing this to the binary representation of -fﬁ, we can see that it is
2722 x ., which'is around 2.38 x 1075,

C. 2.38 x 1078 x 100 x 60 x 60 x 10 =~ (.086 seconds, a factor of 4 less than the
error in the Patriot system.

D. 0.086 x 2,000 = 171 meters.

Solution to Problem 2.52 (page 122) _
This problem tests a 16t of coricepts about floating-point representa’t’ions, including
the encoding of normalized and denormalized yalues, as well as rounding.

Format A Format B
Bits Value Bits  Value Comments
011 0000 1 0111 000 1
101 1110 B 1001 111 B
010 1001 z 0110 100 3 Round down
110 1111 3 1011 000 16,  Roundup
000 0001 & 0001 000 & Denorm — norm )

Solytion to Problem 2.53 (page 125)
In general, it is better to use a library macro rather than inventing your own code.
This code seems to work on a variety of machines, however.

We assume that the valué 1e400 overflows to infinity.

#define POS_INFINITY 1e400
#define NEG_INFINITY (-POS_INFINITY)
#define NEG_ZERQ (-1.0/POS_INFINITY)

solution to Problem 2.54 (page 125)
Exercises such as this one help you develop your ability to reason about floating-
point operations from a programmer’s perspective. Make sure you understand
each of the answers.
A. x == (int) (double) x
Yes, since double has greater precision and range than int.
B. x == (int) (float) x
No. For example, when x is TMax.

C. d == (double) (float) d .
No. For example, when'd islie40, we will get +oo on the right.

D. £ == (float) (double)-f
Yes, since double has greater precision and range than float.

E. £ ==-(-1)

Yes, since a floating-point number is negated by simply inverting its sign bit.

;
<
E
:
]
|
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F t.0/2==1/2.0
Yes, the numerators and denominators will both be converted to floating-
point representations before the division is performed.

G. d*d >=0.0
Yes, although it may overflow to +oc.

H. (f+d)-f ==
No. For example, when £ is 1.0e20 and d is 1.0, the expression f+d will be
rounded to 1.0e20, and so the expression on the left-hand side will evaluate
to 0.0, while the right-hand side will be 1.0.
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164 Chapter 3 Machine-Level Representation of Programs

Computers execute machine code, sequences of bytes encoding the low-level
operations that manipulate data, manage memory, read and write data on
storage devices, and communicate over networks. A compiler generates machine
code through a series of stages, based on the rules of the programming language,
the instruction set of the target machine, and the conventions followed by the op-
erating system. The Gcc C compiler generates its output in the form of assembly
code, a textual representation of the machine code giving the individual instruc-
tions in the program. Gec then invokes both an assembler and a linker to generate
the executable machine code from the assembly code. In this chapter, we will take
a close look at machine code and its human-readable fepresentation as assem-
bly code.

When programming in a high-level language such as C, and even more so
in Java, we are shielded from the detailed machine-level implementation of our
program. In contrast, when writing programs in assembly code (as was done in the
early days of computing) a programmer must specify the low-level instructions
the program uses to carry out a computation. Most of the time, it is much more
productive and reliable to work at the higher level of abstraction provided by a
high-level language. The type checking provided by a compiler helps detect many
program errors and makes sure we reference and manipulate data in consistent
ways. With modern optimizing compilers, the generated code is usually at least as
efficient as what a skilled assembly-language programmer would write by hand.
Best of all, a program written in a high-level Janguage can be compiled and
executed on a number of different machines, whereas assembly code is highly
machine specific.

So why should we spend our time learning machine code? Even though com-
pilers do most of the work in generating assembly code, bemg able to read and
understand it is an important skill for serious programmers. By invoking the com-
piler with appropriate command-line parameters, the compiler will generate a file
showing its output in assembly-code form. By reading this code, we can under-
stand the optimization capabilities of the compiler and analyze the underlying
inefficiencies in the code. As we will experience in Chapter 5, programmers seek-
ing to maximize the performance of a critical section of code often try different
variations of the source code, each time compiling and examining the generated
assembly code to get a sense of how efficigntly the program will run. Furthermore,
there are times when the layer of abstraction prowded by a high-level language
hides information about the run-time behavior of a program that we need to under-
stand. For example, when writing concurrent pro grams using a thread package, as
covered in Chapter 12, it is important to understand how program data are shared
or kept private by the different threads and precisely-how and where shared data
are accessed. Such information is visible at the machine-code level. As another
example, many of the ways programs can be attacked, allowing malware to in-
fest a system, involve nuances of the way programs store their run-time control
information. Many attacks involve exploiting weaknesses in system programs to
overwrite information and thereby take control of the system. Understanding how
these vulnerabilities arise and how to guard against them requires a knowledge of
the machine-level representation of programs. The need for programmers to learn
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machine code has shifted over the years from one of being able to write programs
directly in assembly code to one of being able to read and understand the code
generated by compilers,

In this chapter, we will learn the details of one particular assembly language
and see how C programs get compiled into this form of machine code. Reading
the assembly code generated by a compiler involves a different set of skills than
writing assembly code by hand. We must understand the transformations typical
compilers make in converting the constructs of C into machine code. Relative to
the computations cxpressed in the C code, optimizing compilers can rearrange
cxecution order. eliminate unneeded computations, replace slow operations with
faster cnes, and even change recursive computations into iterative ones. Under-
standing the relation belween source code and the generated assembly can often
be a challenge—it's much like putting together a puzzle having a slightly differ-
ent design than the picture on the box. It is a form of reverse engineering—1rying
to understand the process by which a system was created by studying the system
and working backward. In this case, the system is a machine-generated assembly-
language program, rather than something designed by a human. This simplifics '
the task of reverse engincering because the generated code follows fairly regu-
lar patterns and we can run experiments, having the compiler generate code for
many different programs. In our presentation, we give many examples and pro-
vide a number of exercises illustrating different aspects of assembly language and
compilers. This is a subject where mastering the details is a prerequisite to under-
standing the deeper and more fundamental concepts. Those who say “lunderstand
the general principles, T don’t want to bother lcarning the details™ are deluding
themselves. It is critical for you to spend time studying the examples, working
through the exercises, and checking your solutions with those provided.

Our presentation is based on x86-04, the machine language for most of the
processors found in today's laptop and desktop machines, as well as those that
power very large data centers and supercomputers. This language has evolved
over a long history, starting with Inte! Corporation’s first 16-bit processor in 1978,
through to the expansion to 32 bits, and most recently (o 64 bits. Along the way,
features have been added to make better use of the available semiconductor tech-
nology, and to satisfy the demands ol the marketplace. Much of the development
has been driven by Intel, but its rival Advanced Micro Devices (AMD) has also
made important contributions. The result is a rather peculiar design with featurcs :
that make sense only when viewed [rom a historical perspective. It is also laden
with features providing backward compaltibility that are not used by modern com-
pilers and operating systems. We will focus on the subsel of the features used by
cce and Linux. This allows us to avoid much of the complexity and many of the
arcane features of x86-64.

Our technical presentation staris with a quick tour to show the relation be- "
tween C, assembly code, and machine code. We then proceed to the details of
x86-64, starting with the representation and manipulation of data and the imple-
mentation of control. We see how control constructs in C, such as if, while, and
switch statcments, arc implemented. We then cover the implementation of pro-
cedures, including how the program maintains a run-time stack lo support the
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passing of data and control between procedures, as well as storage for local vari-
ables. Next, we consider how data structures such as arrays, structures, and unions
are implemented at the machine level. With this background in machine-level pro-
gramming, we can examine the problems of out-of-bounds memory references and
the vulnerability of systems to buffer overflow attacks. We finish this part of the
presentation with some tips on using the DB debugger for examining the run-time
behavior of a machine-level program. The chapter concludes with a presentation
on machine-program representations of code involving floating-point data and
operations,

The computer industry has recently made the transition from 32-bit to 64-
bit machines. A 32-bit machine can only make use of around 4 gigabytes (2%
bytes) of random access memory, With memory prices dropping at dramatic
rates, and our computational demands and data sizes increasing, it has become
both economically feasible and technically desirable to go beyond this limitation.
Current 64-bit machines can use up to 256 terabytes (2*8 bytes) of memory, and
could readily be extended to use up to 16 exabytes (2% bytes). Although it is
hard to imagine having a machine with that much memory, keep in mind that
4 gigabytes seemed like an extreme amount of memory when 32-bit machines
became commonplace in the 1970s and 1980s.

Our presentation focuses on the types of machine-level programs generated
when compiling C and similar programming languages targeting modern oper-
ating systems. As a cbnsequence, we make no attempt to describe many of the
features of xB86-64 that arise out of its legacy support for the styles of programs
‘written in the early days of microprocessors, when much of the code was writ-
ten manually and where programmers had to struggle with the limited range of
addresses allowed by 16-bit machines,

3.1 A Historical Perspective

The Intel processor line, colloquially referred to as x86, has followed a long evo-
lutionary development. It started with one of the first single-chip 16-bit micropro-
cessors, where many compromises bad to be made due to the limited capabilities
of integrated circuit technology at the time. Since then, it has grown to take ad-
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vantage of technology improvements as well as to satisfy the demands for higher
performance and for supporting more advanced operating systems.

The list that follows shows some modeis of Intel processors and some of their
key features, especially those affecting machine-level programming. We use the
number of transistors required to implement the processers as an indication of
how they have evolved in complexity. In this table, “K” denotes 1,000 (10%), “M”
denotes 1,000,000 (106), and “G” denotes 1,000,000,000 (10%).

8086 (1978, 29 K transistors). One of the first single-chip, 16-bit microproces-
sors. 'The 8088, a variant of the 8086 with an $-bit external bus, formed
the heart of the original IBM personal computers. IBM contracted with
then-tiny Microsoft to develop the MS-DOS operating system. The orig-
inal models came with 32,768 bytes of memory and two floppy drives (no
hard drive). Architecturally, the machines were limited to a 655,360-byte
address space—addresses were only 20 bits long (1,048,576 bytes address-
able), and the operating system reserved 393,216 bytes for its own use.
In 1980, Intel introduced the 8087 floating-point coprocessor (45 K tran-
sistors) to operate alongside an 8086 or 8088 processor, executing the
floating-point instructions. The 8087 established the floating-point model
for the x86 line, often referred to as “x87.

80286 (1982, 134K transistors). Added more (and now obsolete) addressing
modes. Formed the basis of the IBM PC-AT personal computer, the
original platform for MS Windows.

1386 (1985, 275 K transistors). Expanded the architecture to 32 bits, Added the
flat addressing model used by Linux and recent versions of the Windows
operating system. This was the first machine in the series that could fully
support a Unix operating system.

1486 (1989, 1.2 M transistors). Improved performance and integrated the float-
ing-point unit onto the processor chip but did not significantly change the
instruction set,

Pentium (1993, 3.1 M transistors). Improved performance but only added mi-
nor extensions to the instruction set.

PentiumPro, (1995, 5.5 M transistors). Introduced a radically new processor
design, internally known as the P6 microarchitecture. Added a class of
“conditional move” instructions to the instruction set.

Pentium/MMX (1997, 4.5 M transistors). Added new class of instructions to the
Pentium processor for manipulating vectors of integers. Each datum can
be 1, 2, or 4 bytes long. Each vector totals 64 bits.

Pentium II (1997, 7 M transistors). Continuation of the P6 microarchitecture.

Pentium I11 (1999, 8.2 M transistors). Introduced SSE, a class of instructions for
manipulating vectors of integer or floating-point data. Each datum can be
1,2, or 4 bytes, packed into vectors of 128 bits, Later versions of this chip
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went up to 24 M transistors, due to the incorporation of the level-2 cache
on chip.

Pentium 4 (2000, 42 M transistors). Extended SSE to SSE2, adding new data
types (including double-precision floating point), along with 144 new in-
structions for these formats. With these extensions, compilers can use SSE
instructions, rather than x87 instructions, to compile floating-point code.

Pentium 4E (2004, 125 M transistors). Added hyperthreading, a method to run
two programs simultaneously on a single processor, as well as EM64T,
Intel’s implementation of a 64-bit extension to IA32 developed by Ad-
vanced Micro Devices (AMD), whichwe refer to as x86-64.

Core 2 (20b6, 291 M transistors). Returned to a microarchitecture similar to
P6. First multi-core Intel microprocessor, where multiple processors are
implemented on a single chip. Did not support hyperthreading.

Core i7, Nehalem (2008, 781 M transistors). Incorporated both hyperthreading
and multi-core, with the initial version supporting two executing pro-
grams on each core and up to four cores on each chip.

Core i7, Sandy Bridge (2011, 1.17 G transistors). Introduced AVX, an exten-
sion of the SSE to support data packed into 256-bit vectors.

Core i7, Haswell (2013, 1.4 G transistors). Extended AVX to AVX2, adding
more instructions and instruction formats.

Each successive processor has been designed to be backward compatible—
able to run code compiled for any earlier version. As we will see, there are many
strange artifacts in the instruction set due to this evolutionary heritage. Intel has
had several names for their processor line, including IA32, for “Intel Architecture
32-bit” and most recently Intel64, the 64-bit extension to 1A32, which we will refer
to as x86-64. We will refer to the overall line by the commonly used collogufial
name “x86,” reflecting the processor naming conventions up through the i486.

Over the years, several companies have produced processors that are com-
patible with Intel processors, capable of running the exact same machine-level
programs. Chief among these is Advanced Micro Devices (AMD). For years,
AMD lagged just behind Intel in technology, forcing a marketing strategy where
they produted processors that were less expensive although somewhat lower in
performance. They became more competitive around 2002, being the first to break
the 1-gigahertz clock-speed barrier for a commercially available microprocessor,
and introducing x86-64, the widely adopted 64-bit extension to Intel’s 1A32. Al-
though we will talk about Intel processors, our presentation holds just as well for
the compatible processors produced by Intel’s rivals.

Much of the complexity of x86 is not of concern to those interested jn programs
for the Linux operating system as generated by the Gcc compiler. The memory
model provided in the original 8086 and its extensions in the 80286 became ob-
solete with the i386. The original x87 fioating-point instructions became obsolete
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If we plot the numbet of transistors in the different Intel processors versus the year of introduction, and
use a logarithmic scale for the y-axis, we can see that the growth has been phenomenal. Fitting a line
through the data, we sce that the number of transistors.increases at an annual raté of approximately
37%, meaning that the.number 'of transistors doubles about every 26 months. This growth has been
sustained over the multiple-decade history of x86 micropracessors.

In 1965 Gordon Moore, a foiinder.of Intel Corporation, extrapolated from the chip technology of
the day (by which they could fabricate circuits with around 64 transistors on a single chip) to predict
that the number of transistors per chip would double every year for, the next 10.years. This prediction
became known as Moore!s Law. As it turns out, his pred:cnon was just a httle bit optimistic, but also too
short-sighted. Qver more*thari 50 years, the semiconductor industzy has b_een able to double transistor
counts on average ‘every 18 months. ’ g

Similar expariential growth rates have'occurred for other aspects of computer technology, including
the storage capacities of magnetic'disks and semiconductor memagries. These remarkable growth rates
have been the major driving forces of the computer fevolution» -
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with the introduction of SSE2. Although we see vestiges of the historical evolu-
tion of x86 in x86-64 programs, many of the most arcane features of x86 do not
appear.

3.2 Program Encodings

Suppose we write a C program as two files p1.c and p2.c. We can then compile
this code using a Unix command line:



D e e e

170 Chapter 3 Machine-Level Representation of Programs

linux> gec -0g -0 p pl.c p2.c

The command gcc indicates the oo C compiler. Since this is the default compiler
on Linux, we could also invoke it as simply cc. The command-line option -0g!
instructs the compiler to apply a level of optimization that yields machine code
that follows the overall structure of the original C code. Invoking higher levels of
optimization can generate code that is so heavily transformed that the relationship
between the generated machine code and the original source code is difficult to
understand. We will therefore use -Og optimization as a learning tool and then see
what happens as we increase the level of optimization. In practice, higher levels
of optimization (e.g., specified with the option -01 or -02) are considered a better
choice in terms of the resulting program performance.

The gce command invokes an entire sequence of programs to turn the source
code into executable code. First, the C preprocessor expands the source code to
include any files specified with #include commands and to expand any macros,
specified with #define declarations. Second, the compiler generates assembly-
code versions of the two source files having names pl.s and p2.s. Next, the
assembler converts the assembly code into binary object-code files p1.o and p2. o.
Object code is one form of machine code—it contains binary representations of all
of the instructions, but the addresses of global values are not yet filled in. Finally,
the linker merges these two object-code files along with code implementing library
functions (e.g., printf) and generates the final executable code file p (as specified
by the command-line directive -o p). Executable code is the second form of
machine code we will consider—it is the exact form of code that is executed by
the processor. The relation between these different forms of machine code and
the linking process is described in more detail in Chapter 7.

3.2.1 Machine-iLevel Code

As described in Section 1.9.3, computer systems employ several different forms
of abstraction, hiding details of an implementation through the use of a simpler
abstract model. Two of these are egpecially important for machine-level program-
.ming. First, the format and behavior of a machine-level program is defined by the
instruction set architecture, or ISA, defining the processor state, the format of the
instructions, and the effect each of these instructions will have on the state. Most
ISAs, including x86-64, describe the behavior of a program as if each instruction is
executed in sequence, with one instruction completing before the next one begins.
The processor Hardware is far more elaborate, executing many instructions con-
currently, but it employs safeguards to ensure that the overéll behavior matches
the sequential operation dictated by the ISA. Second, the memory addresses used
by a machine-level program are virtual addresses, providing a memory model that

1. This optimization level was introduced in Gce version 4.8. Earlier versions of e, as well as non-
GNU compilers, will not recognize this option. For these, using optimization level one (specified with
the command-iine flag ~01) is probably the best choice for generating code that follows the original
program structure.
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appears to be a very large byte array. The actual implementation of the mem-
ory system involves a combination of multiple hardware memories and operating
system software, as described in Chapter 9.

The compiler does most of the work in the overall compilation sequence,
transforming programs expressed in the relatively abstract execution model pro-
vided by C into the very elementary instructions that the processor executes. The
assembly-code representation is very close to machine code. Its main feature is
that it is in a2 more readable textual format, as compared to the binary format of
machine code. Being able to understand assembly code and how it relates to the
original C code is a key step in understanding how computers execute programs.

The machine code for x86-64 differs greatly from the original C code. Parts of
the processor state are visible that normally are hidden from the C programmer:

* The program counter (commonl'y referred to as the PC, and called %rip in x86-
64) indicates the address in memory of the next instruction to be executed.

» The integer register file contains 16 nameg locations storing 64-bit values.
These registers can hold addresses (corresponding to C pointers) or integer
data. Some registers are used to keep track of critical parts of the program
state, while others are used to hold temporary data, such as the arguments
and local variables of a procedure, as well as the value to be returned by a
function. :

The condition code registers hold status information about the most recently
executed arithmetic or logical instruction. These are used to implement con-
ditional changes in the control or data flow, such as is required-to implement
if and while statements.

* A set of vector registers can each hold one or more integer or floating-point

values.

Whereas C provides a model in which objects of different data types can be
declared and allocated in memory, machine code views the memory as simply
a large byte-addressable array. Aggregate data types in C such as arrays and
structures are represented in machine code as contiguous collections of bytes.
Evenfor scalar data types, assembly code makes no distinctions betwéen signed or
unsigned integers, between different types of pointers, or even between pointers
and integers.

The program memory contains the executable machine code for the program,
some information required by the operating system, a run-time stack for managing
procedure calls and returns, and blocks of memory allocated by the user (e.g., by
using the malloc library function). As mentioned earlier, the program memory
is addressed using virtual addresses. At any given time, only limited subranges of
virtual addresses are considered valid. For example, x86-64 virtual addresses are
represented by 64-bit words. In current implementations of these machines, the
upper 16 bits must be set to zero, and so an address can potentially specify a byte
over a range of 2%%, or 64 terabytes. More typical programs will only have access
to a few megabytes, or perhaps several gigabytes. The operating system manages
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this virtual address space, translating virtual addresses into the physical addresses
of values in the actual Processor memory.

A single machine instruction performs cnly a very elementary operation. For
example, it might add two numbers stored i registers, transfer data between
memory and a register, or conditionally branch to a new instruction address. The
compiler must generate sequences of such instructions to implement program
constricts such as arithmetic expression evaluation, loops, or procedure calls and
returns,

3.2.2 Code Examples

Suppose we write a C code file mstore. ¢ containing the following function defi-
nition:

long mult2{long, long);

void multstore(long x, long y, long *dest) {
long t = mult2(x, ¥);

*daest = t;
i }
§ To see the assembly code generated by the C compiler, we can use the, -§
option on the command line:

linux> gcc -Og -S mstore.c

! This will cause Gee to run the compiler, generating an assembly file mstore. s,
and go no further. (Normally it would then invoke the assembler to genérate an
object-code file.)

The assembly-code filé contains various declarations, incliding the following
set of lines: '

multstore:
pushq  %rbx '
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To, display-the binary object codefora program (say, mstore),we use a cfisasgembler (described below)
; to determine that the code for the-procedure is 14 bytes long. Then-we.run.the-GNU debugging tool
4 3

: GDB on file mstore. o and ive it the command

¢ (gdb) x/14xb multstore

® e g

* tellifg it to display (abbreviated ‘=H 14 hiex-formatted (also,'x") byies (‘p) starting at the address where

+ function multstore js located. Yop wilt find that GpB has many useful features for,analyzing machine-

level progrdms, as will be discussed in Sec}ion 3.10.2.

LT PO N S - | TR - T N A e TS s
L
*y
movq srdx, Yrbx

call mult2

movg %rax, (%rbx)
popg hrbx

Tot

Each indented line in the code corresponds to a single machine instruction. For
example, the pushq instruction indicates that the contents of register %rbx should
be pushed onto the program stack. All information about local variable nares or
data types has been stripped away.

If we use the -¢ command-line option, ‘Gee will both compile and assemble
the code

linux> gec -Og -¢ mstore.c

This will generate an object-code file.mstore . o that is in binary format and hence
cannot be viewed directly. Embedded within the:1,368 bytes of the file mstore.o
is a 14-byte sequence with the hexadecimal representation

53 48 89 d3 8 00 00 00 0O 48 89 03 5b <3

"Thisis the object code corresponding to the assembly instructions listed previously.
A key lesson to learn from this is that the program executed by the machine is
simply a sequence of bytes encoding a sefies of instructions. The machine has
very little information about the source code from which these instructions were
generated.

To inspect the contents of machine-code files, a class of programs known as
disassemblers can be invaluable., These programs generate a format similar to
assembly code from the machine code. With Linux systems, the program oBIDUMP
(for “object dump™) can serve this role given the -d command-line flag:

linux> objdump ~-d mstore.o

The result (where we have added line numbers on the left and annotations in
italicized text) is as follows:
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Disassembly of function sum in binar? file mstore.o
1 0000000000000000 <multstore>:

i
1 3
i3
!}. Offset Bytes Equivalent assembly language %
2 0: 53 push  %rbx
3 1: 48 89 43 mov %rdx, %rox
1 4 4: e8 00 00 00 0O callg 9 <multstore+0x9> i
lE: 5 9: 48 89 03 mov  Y%rax, (%rbx) p
i 6 c:  5b pop hrbx
i 7 d: 3 retq

On the left we see the 14 hexadecimal byte values, listed in the byte sequence
¢ shown earlier, partitioned into groups of 1 to 5 bytes each. Each of these groups
'S is a single instruction, with the assembly-language equivalent shown on the right.
Several features about machine code and its disassembled representation are

) worth noting: ’

i « x86-64 instructions can tange in length from 1 to 15 bytes. The instruction
encoding is designed so that commonly used instructions and those with fewer

4 operands require a smaller number of bytes than do less common ones or ones

¥ with more operands. " ’
e The instruction format is designed in such a way that from a given starting |
position, there is a unique decoding of the bytes into machine instructions. &
4 For example, only the,instruction pushq %rbx can start with byte value 53. ’
o The disassembler determines the assembly code based purcly on the byte 8
1 sequences in the machine-code file. It does not require access to the source or 1 ‘
L assembly-code versions of the program. ’

r * The disassembler uses a slightly different'naming convention for the instruc- ’
tions than does the assembly code generated by Gge. In our example; it has

| omitted the suffix ‘q’ from many of the instructions. These suffixes are size

9 designators and can be omitted in most cases. Conversely, the disassembler i
adds the suffix ‘q’ to the call and ret instructions. Again, these suffixes can ’
i safely be omitted. i

!
| Generating the actual executable code requires running a linker on the set

1 of object-code files, one of which must contain a function main. Suppose in file  § ‘
; main.c we had the following function: -
l

#include <stdic.h> .

void multstore{long, long, long *); ‘
"

int main() {
long 4; 5
multstore(2, 3, &d); ‘|
printf("2 * 3 —-> %ld\n", d;
return 0;
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long mult2(long a, lomg b) {
long 8 = a * b;
return s5;

}
Then we could generate an executable program prog as follows:
linux> gee ~0g -o prog main.c mstore.c

The file prog has grown to 8,655 bytes, since it contains not just the machine
code for the procedures we provided but also code used to start and terminate
the program as well as to interact with the operating system.

We can disassemble the file prog:

linux> objdump -d prog
'The disassembler will extract various code sequences, including the following:

Disassembly of function sum in binary file prog
0000000000400540 <multstore>:

1

2 400540: &3 push  %rbx

3 400541: 48 89 d3 mov %rdx, %rbx

4 400544: e8 42 00 00 00 callg 40058b <mult2>
5 400549: 48 89 03 mov Yrax, (%rbx)

6 40054¢c: 5b pop  Yrbx

7 40054d: c3 retq

B 40064e: 90 nop

9 40054f: 90 nop

This code is almost identical to that generated by the disassembly of mstore. c.
One important difference is that the addresses listed along the left are different— ,
the linker has shifted the location of this code to a different range of addresses. A
second difference is that the linker has filled in the address that the callq instruc-
tion should use in calling the function mu1t2 (line 4 of the disassembly). One task
for the linker is to match function calls with the locations of the executable code for
those functions. A final difference is that we see two additional lines of code (lines
8-9). These instructions will have no effect on the program, since they occur after
the return instruction (line 7). They have been inserted to grow the code for the
function to 16 bytes, enabling a better placement of the next block of code in terms
of memory system performance.

l‘
5
|
|
-i

3.2.3 Notes on Formatting

The assembly code generated by Gec s difficult for 2 human to read. On one hand,
it contains information with which we need not be concerned, while on the other
hand, it-does not provide any description of the program or how it works. For
example, suppose we give the command

linux> gcc -Og -S mstore.c
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to generate the file mstore. s. The full content of the file is as follows:

.file "010-nstore.c"

.text

.globl multstore

.type multstore, @function
multstore:
" pushq  Yrbx
. movg hrdx, %rbz

1? call mult2

i movq ¥rax, (frbx)

L; Pepq %rbx

i ret

' .size multstore, .-multstore

. .ident "GCC: (Ubuntu 4.8.1-2ubuntui~12.04) 4.8.1" ‘
{f .section .note.GNU-stack,"" ,@progbits

All of the lines beginning with .’ are directives to guide the assembler and . l

linker. We can generally ignore these. On the other hand, there are no explanatory
i remarks about what the instructions do or how they relate to the source code,
To provide a clearer presentation of assembly code, we will show it in a form
! that omits most of the directives, while including line numbers and explanatory
‘ annotations. For our example, an annotated version would appear as foliows:

I
!= void multstore(long x, long y, long *dest)
x in ¥rdi, y in Xrsi, dest in Xrdx

i 1 wultstore:
I 2 pushg %rbx Save Jrbx
‘; 3 movq Y%rdx, Yrbx Copy dest to jrbx
‘ 4 call mult2 Call mult?(x, y)
5 movq  Jrax, (%rbx)  Store result at *dest
1 6 popq %rbx iRestore Jrox .
4 7 ret Return

‘._ . We typically show oiﬂy the lines of code relevapt to the point being discussed.
5 Each line is numbered on the left for reference and annotated on the right by a
| brief description of the effect of the instruction and how itrelates to the computa-
; tions of the original C code. This is a stylized version of the way assembly-language
programmters format their code.

We alsoprovide Web asides to cover material intended for dedicated. machme—
language enthusiasts. One Web aside describes IA32 machin€ code. ‘Having' &
background in x86-64 makes learning IA32 fairly simple. Another Web aside gives
a brief presentation of ways to incorporate assembly code into,C, programs. For
some applications, the programmer must drop down.to assembly code to access
low-level features of the machine. One approach is to write entire functions in
assembly code and combine them with C functions during the linking stage. A
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dink, -m

Aside ATT versus totel assembly-code formats

In our predentation, we show assembly code in ATT, format (named after AT&T,.jhe company.that
operated Bell Laboratories for many y€ars), the default format for Gec, oBIpUMP, and the other tools we
will consider. Other programming«qols, includipg those from Microsoft as well as the documentation
from-Intel, show assembly code in Inte! format. The two formats differ in a number of ways. As an
example, GCe can generate cide in Intel format for the sum function-using the following command line:

linu¥> goe -U¢ =S -masm=intel mstorg.c

This gives the following assembly code:

multstore: : ¢ ’ #
¢ push  rbx » :
mov r‘bx rdx
"call mu.ltZ
nov®  QWORD PTR [rbx], rax’ % -
pop rbx "
ret

% 1

We see that.the'Inté) and ATT formats différ in the following ways:

< The Intel code priiits the size designation suffixes, We see instruction push andmov instead of pushq

and movg. "
A,

* The Intel code omits the ~“A character in frgnt of register names, usmg rbxinstead of Jrbx.

. The»Intel code has a‘dlfferent way of' -descrxbmg locations-ins memory—»«for exampie @WORD PTR

"[zbx] rather than (%zbx). %
* Instructiohs with mult1ple operands list them in the reverse order. This ¢an be very confusing when
sivitchin} between thestwo formats. -

»

o

Although we-will not be? using Inte! {ormat in our presamatlon, you wiit encounté;' jt in documentatjon
from Intel and Microsoft:

ot
LR

*

second is to use Gee’s support for embedding assembly code directly within C
programs.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel
uses the term “word” to refer to a 16-bit data type. Based on this, they refer to 32-
bit quantities as “double words,” and 64-bit quantities as “quad words.” Figure 3.1
shows the x86-64 representations used for the primitive data types of C. Standard
int values are stored as double words (32 bits). Pointers (shown here as char *)
are stored as 8-byie quad words, as would be expected in a 64-bit machine. With
x86-64, data type long is implemented with 64 bits, allowing a very wide range
of values. Most of our code examples in this chapter use pointers and long data

»—'—'f
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Web Aside ASM:EASM  Combining assembly cédeWith C'programs -

Although a C compiler does’a good job of conveérting the computations expressed in a program into
machine code, there are some features of a machine that cannot be accessed by a C program. For
exaniple, every time an x86-64 processor executes an-afithmetic or logical operation, it sets a 1-bit
condition code flag, named PF (for “parity flag”), to 1 when the lower 8 bits in the resulting computation
have an even number of ones and to O otherwise. Computing this information in C requires at least
seven shifting, masking, and EXCLUSIVE-OR operations (see Problem 2.65). Ever'though the hardware
performs this computation as part of ‘every arithmetic or logical operation, there is no way fora C
program to determine the value of the PF condition code flag. This task can readily bé perférmed by
incorporating a small number of assembly-code instructions into the program. i

There are two ways to incorporate assembly code into C programs. First, we can.write an-entire :
function as a separate ‘assembly-code file and let the assembler and Tinker combine*this, with code we
have written in C. Second, we can use the inline assembly feature of Gee, where brief sections of assembly
code can be incorporated into 4 C prograin using the asm directive. This approach has the advantage
that it minimizes the amount of machine-specific code.

Of course, including assembly codeina C program makes the code specific to a particular class of
machines (such as x86-64), and so it should only be used when the desjred feature can only be accessed
in this way.
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C declaration Intel data type Assembly-code suffix  Size (bytes)
char Byte b 1
short Word v 2

int Double word 1 4
long Quad word q 8
char * Quad word q 8 .
float Single precision s 4
double Double precision 1 8

Figure 3.1 Sizes of C data types in x86-64. With a 64-bit machine, pointers are 8 bytes
long.

types, and so they will operate on quad words. The x86-64 instruction set includes
a full complement of instructions for bytes, words, and double words as well.
Floating-point numbers come in two principal formats: single-precision (4-
byte} values, corresponding to C data type float, and double-precision (8-byte)
values, corresponding to C data type double. Microprocessors in the x86‘family
historically implemented all fioating-point operations with a special 80-bit (10-
byte) floating-point format (see Problem 2.86). This format can be specified in C
programs using the declaration long double. We recommend against using this
format, however. It is not portable to other classes of machines, and it is typically

B aa s e
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not implemented with the same high-performance hardware as is the case for
single- and double-precision arithmetic.

As the table of Figure 3.1 indicates, most assembly-code instructions gener-
ated by Gce have a single-character suffix denoting the size of the operand. For
example, the data movement instruction has four variants: movb (move byte),
movw (move word), movl (move double word), and movg (move quad word). The
suffix ‘1’ is used for double words, since 32-bit quantities are considered to be
“long words,” The assembly code uses the suffix 1 to denote a 4-byte integer as
well as an 8-byte double-precision floating-point number. This causes no ambigu-
ity, since floating-point code involves an entirely different set of instructions and
registers.

3.4 Accessing Information

An x86-64 central processing unit (CPU) contains a set of 16 general-purpose
registers storing 64-bit values. These registers are used to store integer data as well
as pointers, Figure 3.2 diagrams the 16 registers. Their names all begin with Zr, but
otherwise follow multiple different naming conventions, owing to the historical
evolution of the instruction set. The original 8086 had eight 16-bit registers, shown
in Figure 3.2 as registers ¥%ax through %bp. Each had a specific purpose, and hence
they were given names that reflected how they were to be used. With the extension
to JA32, these registers were expanded to 32-bit registers, labeled %eax through
#%ebp. In the extension to x86-64, the original eight registers were expanded to 64
bits, labeled ¥%rax through %rbp. In addition, eight new registers were added, and
these were given labels according to a new naming convention: %r8 through %r15.

As the nested boxes in Figure 3.2 indicate, instructions can operate on data
of different sizes stored in the low-order bytes of the 16 registers. Byte-level
operations can access the Ieast significant byte, 16-bit operations can access the
least significant 2 bytes, 32-bit operations can access the least significant 4 bytes,
and 64-bit operations can access entire registers.

In later sections, we will present a number of instructions for copying and
generating 1-, 2-, 4-, and 8-byte values. When these instructions have registers as
destinations, two conventions arise for what happens to the remaining bytes in
the register for instructions that generate less than 8 bytes: Those that generate 1-
or 2-byte quantities leave the remaining bytes unchanged. Those that generate 4-
byte quantities set the upper 4 bytes of the register to zero. The latter convention
was adopted as part of the expansion from IA32 to x86-64.

As the annotations along the right-hand side of Figure 3.2 indicate, different
registers serve different roles in typical programs. Most unique among them is the
stack pointer, %rsp, used to indicate the end position in the run-time stack. Some
instructions specifically read and write this register. The other 15 registers have
more flexibility in their uses. A small number of instructions make specific use of
certain registers. More importantly, a set of standard programming conventions
governs how the registers are to be used for managing the stack, passing function
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Figure 3.2 Integer registers. The low-order portions of all 16 registers can be accessed 3
as byte, word (16-bit), double word (32-bit), and quad word (64-bit) quantities. ; |

1 arguments, returning values from functions, and storing local and temporary data.
; - We will cover these conventions in our presentation, especially in Section 3.7, ‘
i where we describe the implementation of procedures. ‘

3.4.1 Operand Specifiers

Most instructions have one or more operands specifying the source values to use
in performing an operation and the destination location into which to place the
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Type Form Operand value Name
Immediate $Imm Imm Imnmediate
Register T, R[x,] Register
Memory Imm M[Imm) Absolute
Memory (r,) MIRix.]] Indirect
Memory Imm(zy) M[Imm +R[x,]] Base + displacement
Memory (zp,x;) M[R[r;] + R[z;]] Indexed
Memory Imm(zy,x;) M{Imm + R[x,] + R[x;]] Indexed
Memory (,r;,8) M[R[x;]- 5] Scaled indexed
Memory Imm(,r;,s5) Mifmm + R[z;] - 5] Scaled indexed
Memory {rp,r;,5) MIR[rs] + R[z;]- 5] Scaled indexed
Memory Imm(xy,x;,s) M[Imm + R[x;]+ R[x;]-s]  Scaled indexed

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register
values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.

result. x86-64 supports a number of operand forms (see Figure 3.3). Source values
can be given as constants or read from registers or memory. Results can be stored
in either registers or memory. Thus, the different operand possibilities can be
classified into three types. The first type, immediate, is for constant values. In ATT-
format assembly code, these are written with a ‘$’ followed by an integer using
standard C notation—for example, $-577 or $0x1F. Different instructions allow
different ranges of immediate values; the assembier will automatically select the
most compact way of encoding a value. The second type, register, denotes the
contents of a register, one of the sixteen 8-, 4-, 2-, or 1-byte low-order portions of
the registers for operands having 64, 32, 16, or 8 bits, respectively. In Figure 3.3,
we use the notation r,, to denote an arbitrary register  and indicate its value with
the reference R[r,], viewing the set of registers as an array R indexed by register
identifiers.

The third type of operand is a memory reference, in which we access some
memory location according to a computed address, often called the effective ad-
dress. Since we view the memory as a large array of bytes, we use the notation
M,[Addr] to denote a reference to the b-byte value stored in memory starting at
address Addr. To simplify things, we will generally drop the subscript b.

As Figure 3.3 shows, there are many different addressing modes allowing dif-
ferent forms of memory references. The most general form is shown at the bottom
of the table with syntax frmm (x,,x;,5). Such a reference has four components: an
immediate offset frmm, a base-register r,, an index register r;, and a scale factor
s, where s must be 1, 2, 4, or 8. Both the base and index must be 64-bit registers.

The effective address is computed as Imm + R[r,] + R[x;] - 5. This general form is -

often seen when referencing elements of arrays. The other forms are simply spe-
cial cases of this general form where some of the compenents are omitted. As we
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will see, the more complex addressing modes are useful when referencing array
and structure elements.

A
registers:

Address Value Register ~ Value

0x100 0xFF hrax 0x100
0x104 0xAB %rex 0x1
0x108 0x13 frdx 0x3
0x10C 0xii

Fill in the following table showing the values for the indicated operands:

Operand Value

Yrax e eeem
0x104

$0x108

(%rax)

4(%rax)

9(Yrax,hrdx)

260 (Yrcx, %rdx)
OxFC(,%rex,4)
(Y%rax,%rdx,4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those-that copy data from one lo-
cation to another. The generality of the operand-notation allows a simple data
movement instruction to express a range of possibilities that in many machines
would require a number of different instructions. We present a number of differ-
ent data movement instructions, differing in their source and destination types,
what conversions they perform, and other side effects they may have. In our pre-
sentation, we group the many different instructions into instruction classes, where
the instructions in a class perform the same operation but with different operand
sizes.

Figure 3.4 lists the simplest form of data movement instructions—Mov class.
These instructions copy data from ‘a source location to a destination location,
without any transformation. The class consists of four instructions: movb, movw,

- movl, and movq.-All four of these ‘instructions have similar effects; they differ
primarily. in that they operate on data of different sizes: 1, 2, 4, and 8 bytes,
respectively.
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Instruction Effect Description
MOV S5, D D «~ 8 Move
movb Move byte
movw ‘Move word
movl Move double word
movg Move quad word

movabsg [/, R R « I Move absolute gquad word

Figure 3.4 Simple data movement instructions.

The source operand designates a value that is immediate, stored in a register,
orstored in memory. The destination operand designates a location that is either a
register or a memory address. x86-64 imposes the restriction that a move instruc-
tion cannot have both operands refer to memory locations. Copying a value from
one memory location to another requires two instructions—the first to load the
source value into a register, and the second to write this register value to the des-
tination. Referring to Figure 3.2, register operands for these instructions can be
the labeled portions of any of the 16 registers, where the size of the register must
match the size designated by the last character of the instruction (‘b’, ‘w’, “1', or
‘g"). For most cases, the Mov instructions will only update the specific register bytes
or memory locations indicated by the destination operand. The oaly exception is
that when movl has a register as the destination, it will also set the high-order 4
bytes of the register to 0, This exception arises from the convention, adopted in
x86-64, that any instruction that generates a 32-bit value for a register also sets the
high-order portion of the register to 0.

The following mMov instruction examples show the five possible combinations
of source and destination types. Recall that the source operand comes first and
the destination second.

1 movl $0x4050,%eax Immediate~-Register, 4 bytes
2 movw %bp,%sp Register-—Register, 2 bytes
3 movb (¥%radi,%rex),¥%al Msmory-—Register, 1 byta
4 movb $-17, (Jiesp) Immediate--Memory, 1 byte
5 movq Y%rax,—12(%rbp) Register--Memory, 8 bytes

A final instruction documented in Figure 3.4 is for dealing with 64-bit imme-
diate data. The regular movq instruction can only have immediate source operands
that can be represented as 32-bit two’s-complement numbers, This value is then
sign extended to produce the 64-bit value for the destination. The movabsq in-
struction can have an arbitrary 64-bit immediate value as its source operand and
can only have a register as a destination.

Figures 3.5 and 3.6 document two classes of data movement instructions for
use when copying a smaller source value to a larger destination. All of these
instructions copy data from a source, which can be either a register or stored
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Wiy, £

Aside Understanding how data md:ement chariges a déstifiation register

.
As described, there are two different conventions regarding whether and how data movement mstruc- g
%

“9«

tions modify the upper bytes ; of a destination register. This distinction is xllustrited by the foltowmg

code sequence: .
g P

f movabsq $0x0011223344556677, Jrax  Xrax-= 0011223344556677
2 movb  $-1, %al irax = Q0112233445566FF *

3 movy $-1,nm%ax Yrax &' 001122334466EFFF" # -

4 mo¥l  $-1, %dax Arax = Q000CO0QFFFFFFFF

5 movq  $-1, Yrax Yrax < FFFEFFFEFFREEFFF ¥ ;

In the following-discussion, we use hexadecimal notatlon In the example, the instrbetion on life 1
tnitializes register %rax to the pattern 00112233445566'IZ The re‘malmng instructions have immediate. %
value —1 as their source values, Recall that the.hexadgcimal fepreseptation 6f +] is'of the form FF-.. ;F
Where the number of F’s is'twice, the niymber of bytes inthe representauon The movb instruction {ling; 2)
therefore sets the low-order byte of.%rax to FFy while thé Jovw insgruction (ling 3).sets'the low-ordgr %
y) bytes to FFFF, with the remaining b¥tes unchafiged, The mov} mstruc}xon (line 4) sets thedow-qrder ;g

i
- 3

M..aea P TS T

4 bytes 1o FFFFFFFF, but it also sets the high-order’4 bytes to 00000000. Kinaily, the moyq instruction
(line 53) sets the complgte register to FFFFFFFFFFFEFFFE . w i s,

N W o WK a o MO e e PR RT TR ¥ i B e oy, WA et

Instruction Effect Description

MovZz S, R R +« ZeroExtend(S) Move with zero extension
movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwq Move zero-€xtended word to quad word

Figure 3.5 Zero-extending data movement instructions. These instructions have a
register or memory location as the source and a register as the destination.

in memory, to a register destination. Instructions in the mMovZz class fill out the
remaining bytes of the destination with zeros, while those in the Movs class fill
them out by sign extension, replicating copies of the most significant bit of the
source operand. Observe that each instritction name has size designators as.its
final two characters—the first specifying the source size, and the second specifying

the destination size. As can be seen, there are three instructions in each of these
classes, covering all cases of 1- and 2-byte source sizes and 2- and 4-byte destination
sizes, considering only cases where the destination is larger than the source, of
course.
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Instruction Effect Description
movs S, R R <« SignExtend(S) Move with sign extension
movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movshq Move sign-extended byte to quad word
movawq Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq %rax <« SignExtend(%eax)  Sign-extend %eax to %rax

Figure 3.6 Sign-extending data movement instructions. The Movs instructions have
a register or memory location as the source and a register as the destination. The cltq
instruction is specific to registers %eax and %rax.

Note the absence of an explicit instruction to zero-extend a 4-byte source
value to an 8-byte destination in Figure 3.5. Such an instruction would logically
be named movzlg, but this instruction does not exist. Instead, this type of data
movement can be implemented using a movl instruction having a register as the
destination. This technique takes advantage of the property that an instruction
generating a 4-byte value with a register as the destination will'fill the upper 4
bytes with zeros. Otherwise, for 64-bit destinations, moving ‘with sign extension is
supported for all three source types, and moving with zero extension is supported
for the two smaller source types.

Figure 3.6 also documents the cltq instruction. This instruction has no
operands—it always uses register {eax as its source and %rax as the destination for
the sign-extended result. It therefore has the exact same effect as the instruction
movslq %eax, %rax, but it has a more compact encoding.

For each of the followmg hnes of assembly language determine the appropnate
instruction suffix based on the operands. (For example, mov can be rewritten as
movb, movw, movl, Or movq.)

mov__.  Yeax, (%rsp)
mov_ . (%rax), %dx

mov__  $OxFF, %bl

mov__  (%rsp,%rdx,4), %dl
mov_.. (%rdx), jrax

mov %dx, (Yrax)
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Aside Comparing byte movement instguctions’

The following example illustrates how different data movement instructions elther do or do not change
the high-order bytes of the destination. Observe that the three byte-movement instructions mdovb, .

movsbq, and movzbg differ from'each other in subtle ways. Here is an example:

movabsq $0x0011223344556677, Jrax Arax = 0011223344556677
movb $0xAA, ¥d1 ¥d1 = Ad

movb ‘Z:il,‘f/.al Krax-= 0011223344556644
movsbg %dl,%rax Yrax = FFFFFFFFFFRFFFA4

movzbg %dl,%rax _hrax = 0000000000000044

wr AW A

In the following discussion, we use hexademmal notation -for all of the values. The first two lines
of the code initialize registers ¥%rax and %d1 to 0011223344556677 and A4, respectively The remammg
instructions all copy the low-order byte of %rdx to the low-order byte of %raz. The movb instruction |
(line 3) does not change the other bytes. The movsbq instruction (lin€ 4) sets the other 7 bytes to .
either all ones or all zeros depending on the high-order bit of the source byte. Since hexadecimal &
represents binary value 1010, sign extension causes the higher-order bytes to edch be set to FF. The ,

movzbq instruction (line 5) always sets the other 7 bytes to zéro.

™ Fideea, =X I &

~z iy xv ,rw; - v Ww“ﬂwp

(SOl UIOTRaTS, 328), o s

W,

o TR A€ e s '?www%

i . i

Each of the followmg lines of code generates an error message when we invoke

the assembler. Explain what is wrong with each line.

movb $0xF, (%ebx)
movl %rax, (%rsp)
movw (Yrax),4(%rasp)
movb #al,¥sl

movq ¥rax,$0x123
movl %eax,%rdx
movb %si, 8(%rbp)

3.4.3 Data Movement Example

As an example of code that uses data movement instructions, consider the data
exchange routine shown in Figure 3.7, both as C code and as assembly code

generated by Gec.,

As Figure 3.7(b) shows, function exchange is implemented with just three
instructions: two data movements (movq) plus an instruction to return back to
the point from which the function was called (ret). We will cover the details of
function call and return in Section 3.7. Until then, it suffices to say that arguments
are passed to functions in registers. Our annotated assembly code documents
these. A function returns a value by storing it in register %rax, or in one of the

low-order portions of this register.
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{(a) C code
long exchange(long *xp, long y)
{
long x = #xp;
*Xp = ¥,
return x;
}
(b) Assembly code
long exchange(long #xp, long y)
xp in Zrdi, y in Yrsi
1 exchange: -
2 movq (%rdi), Yrax Get x at xp. Set as return value.
3 movgq hrsi, (Yrdi) Store y at xp.
4 ret Return.

Figure 3.7 C and assembly code for exchange routine. Registers %rdi and %rsi
hold parameters xp and y, respectively.

When the procedure begins execution, procedure parameters xp and y are
stored in registers %rdi and %rsi, respectively. Instruction 2 then reads x from
memory and stores the value in register %rax, a direct implementation of the
operation x = *xp in the C program. Later, register %rax will be used to return
a value from the function, and so the return value will be x. Instruction 3 writes v
to the memory location designated by xp in register %rdi, a direct implementation
of the operation *xp = y. This example illustrates how the Mov instructions can be
used to read from memory to a register (line 2), and to write from a register to
memory (line 3).

Twofeatures about this assembly code are worth noting. First, we see that what
we call “pointers” in C'are simply afldresses, Dereferencing a pointer involves
copying that pointer into a register, and theh using this register in a memory
reference. Second, local variable's such as x are often kept in registers rather than
stored in memory locations. Register actess is much faster than memory access,

Src_t  #sp;
dest_t *dp;

where src_t and dest_t are data types declared with typedef. We wish to use
the appropriate pair-of data movement instructions to implement the operation

*dp = (dest_t) #*sp;
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New to C? Some examples of pointers

Function exchange (Figure 3.7(a)) provides a good illustration of the use of pointers in C. Argliment ]
xp is a pointer to a long integer, while y is a long integer itself. The statement t

long x = *Xp;

indicates that we should read the value stored in the location designated i)y xp and store it as a local

variable named x. Thisread operation is known as pointer defeferencing. The C operator “+' performs

pointer dereferencing. ¢ ’
The statement

*Xp = ¥
does the reverse—it writes the value of parameter y at the location designated by xp. This is also a form
of pointer dereferencing (and hence the operator *), but it indicates a write operation since it is on the.
left-hand side of the assignment.

The following is an gxample of ex¢hange in action:

,long a = 4; )

long b = exchange(&a, 3);

printf("a = %1d, b = %ld\verbe\en", a, b);

This code willpprint .o ¥ i iy

a=3,b=4
W oaftip? ¥ .

" % k
The C operatdr ‘& (calléd-tht “gddress of” operator) cieate$-a pointer, in.this case to the location
holding local variable a. Fiinction:exchangg overwrites the valuerstored in a with 3 but returns the
previous value, 4, as the fynction Value. Qbserve how by passing 4 pointer to exchange, itcould mpdify .
data held at some remoté location. - . fe . o .

i 2%

Assume that the values of sp and dp are stored in_registers %rdi and %rsi,
respectively. For each entry in the table, show the two instructions that implement
the specified data movement. The first instruction in the sequence should read
from memory, do the appropriate conversion, and set the appropriate portion of
register %rax. The second instruction should then write the appropriate portion
of %rax to memory. In both cases, the portions may be Yrax, %eax, %ax, or %al,
and they may differ from one another.

Recall that when performjng a cast that involves both a size change and a
change of “signedness” in C, the operation should change the size first (Section
2.2.6).

src_t dest_t Instruction

long long movq (¥rdi), %rax
movgq %rax, (frsi)
char int




Section 3.4 Accessing Information 189

char ungigned

unsigned char long

int c¢har
unsigned unsigned char
char short

void decodel(long *xp, long *yp, long *zp);

is compiled into assembly code, yielding the following:

void decodel(long *xp, long *yp, long *zp)

xp in Xrdi, yp in %rsi, zp in jrdx
decodel:

movq (¥rdi), %r8

movg (%rsi), Yrcx

movq (Yrdx), Yrax

movg %r8, (%rsi)

movq %rex, (Ardx)

movyg Yrax, (Urdi)

rat

Parameters xp, yp, and zp are stored in registers %rdi, %r4i, and %rdx, respec-
tively.

Write C code for decodel that will have an effect equivalent to thé assembly
code shown.

3.4.4 Pushing and Popping Stack Data

§ IH ‘¢
The final two data movement operations are used to push data onto and pop data
from’the program stack,-as documented in Figuré 3.8.. As we will see, the stack
plays a vital role in the handling of procedure calls. By way of background,ia stack
is 4 data structure where values can be added or deleted, but-only according to
a‘last-in, first-out” discipline. We add data to a stack via a push operation and
remove it via a pop operation, with the property that the value popped will always
be the value that was most recently pushed-and is still on.the stack. A staclcan be
implemented as an array, where we-always insert and remove elements from one
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Instruction  Effect Description

pushq § R[%rsp] « R[%rsp]—8&  Pushquad word
M[R[%zep]] « §

popg D D « M[R[%rspl}; Pop quad word
R[%rsp] <« R[%rspl+8

Figure 3.8 Push and pop instructions.

Initially pushq %rax popq Ardx
frax 0x123 Yrax 0x123 hrax 0x123
hrdx 0 Yrdx 0 Yrdx 0x123
Yrsp 0x108 #rsp 0x100 #rsp 0x108

Stack *bottom” Stack “bottom” Stack "bottom”

T R R R n )
L i

FEE A, e

Increasing T oo Ee
address ty - o e 5

#

o B tc”f.f i
R 0x108 Ls = R
Stack “top” 0x100 0x123

Stack “top”

Stack “top”

Figure 3.9 Illlustration of stack operation. By convention, we draw stacks upside down,
so that the “top” of the stack is shown at the bottom. With x86-64, stacks grow toward
lower addresses, so pushing involves decrementing the stack pointer (register %rsp) and
storing to memory, while popping involves reading from memory and incrementing the
stack pointer. -

end of the array. This end is called the top of the stack. With x86-64, the program
stack is stored in some region of memory. As illustrated in Figure 3.9, the stack
grows downward such that the top element of the stack has the lowest address of
all stack elements..(By convention, we draw stacks upside down, with the.stack
“top” shown at the bottom of thefigure.) The stack pointer %xsp holds the address
of the top stack element. T

The pushq instruction provides the ability to push data onto the stack, while
the popq instruction pops it. Each of these instructions takes a single operand—the
data source for pushing and the data destination for popping.

Pushing a quad word value onto the stack involves first decrementing the
stack pointer by 8 andithen writing the value at the new top-of-stack address.
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Therefore, the behavior of the instruction pushq %rbp is equivalent to that of the
pair of instructions

subq $8,%rsp Decrement stack pointer
movq %rbp, (%rsp) Store Zrbp on stack

except that the pushq instruction is encoded in the machine code as a single byte,
whereas the pair of instructions shown above requires a total of 8 bytes. The first
two columns in Figure 3.9 illustrate the effect of executing the instruction pushq
#rax when %rspis 0x108 and %rax is 0x123. First #rsp is decremented by 8, giving
0x100, and then 0x123 is stored at memory address 0x100,

Popping a quad word involves reading from the top-of-stack location and
then incrementing the stack pointer by 8. Therefore, the instruction popq %rax
Is equivalent to the following pair of instructions:

novq (%rsp),%rax Read %rax from stack
addq $8,%rsp Increment stack pointer

'The third column of Figure 3.9 illustrates the effect of executing the instruction
popq %edx immediately after executing the pushg. Value 0x123 is read from
memory and written to register %rdx. Register “rsp is incremented back to 0x108.
As shown in the figure, the value 0x123 remains at memory location 0x104 until it
is overwritten (e.g., by another push operation). However, the stack top is always
considered to be the address indicated by Y%rsp.

Since the stack is contained in the same memory as the program code and
other forms of program data, programs can access arbitrary positions within the
stack using the standard memory addressing methods. For example, assuming the
topmost element of the stack is a quad word, the instruction movq 8(%rsp), %rdx
will copy the second quad word from the stack to register %rdx.

3.5 Arithmetic and Logical Operations

Figure 3.10 lists some of the x86-64 integer and logic operations. Most of the
operations are given as instruction classes, as they can have different variants with
different operand sizes. (Only leaq has no other size variants.) For example, the
instruction class ADD consists of four addition instructions: addb, addw, add1, and
addq, adding bytes, words, double words, and quad words, respectively. Indeed,
each of the instruction classes shown has instructions for operating on these four
different sizes of data. The operations are divided into four groups: load effective
address, unary, binary, and shifts. Binary operations have two operands, while
unary operations have one operand. These operands are specified using the same
notation as described in Section 3.4.

3.5.1 Load Effective Address

The load effective address instruction leaq is actually a variant of the movq in-
struction. It has the form of an instruction that reads from memory to a register,
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Instruction Effect Description
leag §,D D « &S§ Load effective address
INC D D « D+l Increment
DEC D D « D-1 Decrement
I NG D D « -D Negate
} notr D D « -D Complement
E
app S, D D « D+S Add
sue S,D D «~ D-S§ Subtract
muL S, D D «~ D=x*S§ Multiply
' xor §,D D <« D-S§ Exclusive-or
OR S, D D <« D|S Or
anp S, D D « D&S And
saL  k, D D « D<<k Left shift
sHL k, D D « D<<k Left shift (same as saL)
3 SAR, kD D « D>>pk Arithmetic right shift
: SHR k, D D « D>>pk Logical right shift

] Figure 3.10 integer arithmetic operations. The load effective address (leaq)
instruction is commonly used to perform simple arithmetic. The remaining ones are
’ more standard unary or binary operations. We use the notation »>> 4 and => to denote
1 arithrrietic ‘and logical right shift, respectively. Note the nonintuitive ordering of the
operands with ATT-format assembly code.

but it does not reference memory at all. Its first operand appears to be a meni-
ory reference, but instead of reading from the designated location, the instruction
) copies the effective address to the destination. We indicate this computation in
' Figure 3.10 using the C address operator &S. This instruction can be used to gener-
ate pointers for later memory references. In addition, it can be used to compactly
describe common arithmetic operations. For example, if register %rdx contains
value x, then the instruction leag 7 (Y%rdx,%rdx,4) , %rax will set register %rax
to 5x + 7. Compilers often find clever uses of leag that have nothing to do with
effective address computations. The destination operand must be a register.

Suppose register %rax holds value x and %rcx holds value y. Fillin the table below
with formulas-indicating the value that will be stored in register %rdx for each of
the given assembly-code instructions:

Instruction Result

leaq 6(%rax), %rdx —
leaq (%rax,%rcz), %rdx i
leaq (%rax,¥%rcx,4), brdx

leaq 7 (Y%rax,%rax,8), %rdx
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leaq 0xA(,%rcx,4), %rdx e
leaq 9(Yrax,%rcx,2), Yrdx

As an jllustration of the use of leaq in compiled code, consider the following
C program: )

long scale(long x|, lomg y, long z) {
10ngt=x‘+4my+12*-z;n-_>
return t;

i !

When compiled, the arithmetic operations of the function are implemented
by a sequence of three leaq tunctions, as is documented by the comments on the
right-hand side:

long scale(ong x, long y, long z)
x in 4rdi, y in Xrsi, z in Yrdx

scale:
leag (hrdi,%rsi,4), Yrax X + 4xy
leag (%rdx,%rdx,2), %rdx Z + D%z = 3z
leaq (Vrax|irdx,4), %Yrax (xtday) + 4#(3%z) = x + dwy + 124z
ret

The ability of the leaq instruction’to perform addition and limited forms of
multiplication proves useful when compiling simple arithmetic expressions such
as this example.

Consider the following code, in which we: have omitted the expression being
computed;

long scale2(long x, long y, long z) {
long t = PR ;
return t;

Compiling the actual function with gce yields the following assembly code:

long scale2(long x, long y, long z)
x in Jrdi, y in ¥fsi, z in Yrdx

scale2:
leag (hrdi,%rdi,4), Yrax
leag (lrax,%rsi,2), Yrax
leag (hrax,%rdx,8), Yrax
Yet )

Fill in the missing expression in the C code.
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3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the ‘single operand
serving as both source and destination. This operand can be either a register or
a memory location. For example, the instruction incq (%rsp) causes the 8-byte
clement on the top of the stack to be incremented. This syntax is remihiscent of
the C increment (++) and decrement (——) operators.

The third group consists of binary operations, where the second operand
is used as both a source and a destination. This syntax is reminiscent of the C
assignment operators, such as x —= y. Observe, however, that the source operand
is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subq %rax,%rdx decrements register
%rdx by the value in %rax. (It helps to read the insfruction as “Subtract %rax from
%rdx.”) The first operand can be either an immediate value, a register, or amemory
location. The second can be either a register or a memory location. As;with-the
Mov instructions, the two operands cannot both be memory locations. Note that
when the second operand is a memory location, the processor must read the value
from memory, perform the operation, and then write the result back to memory.

S R S :
ues are stored at the indicated memory addresses gnd

registers:

Address  Value Register Value

0x100 OxFF Yrax 0x100
0x108 0xAB frex 0x1
0x110 0x13 %rdx 0x3
0x118 Ox11

Fill in the following table showing the effects of the following instructions,
in terms of both the register or memory location that will be updated and the
resulting value:

Instruction Destination Valug

addq Y%rex, (Yrax) —

subq %rdx,8{%rax)

imulg $16, (%rax, %rdx,8)
incq 16 (Yrax)

decq %rex

subq %rdx,Yrax

3.5.3 Shift Operations

X
The final group consists of shift operations, where the shift amount is given first

and the value to shift is given second. Both arithmetic and logical right shifts are




Section'd:5  Arithmetic and-Logical Operations 195

possible. The different shift instructions can specify the shift amount either as
an immediate value or with the single-byte register %c1. (These instructions are
unusual in only allowing this specific register as the operand.) In principle, having
a 1-byte shift amount would make it possible to encode shift amounts ranging up
to 28 — 1=255. With x86-64, a shift instruction operating on data values that are
w bits long determines the shift amount from the Jow-order m bits of register
%el, where 2™ = w. The higher-order bits are ignored, So, for example, when
register %cl has hexadecimal value OxFF, then instruction salb would shift by
7, while salw would shift by 15, sall would shift by 31, and salq would shift
by 63.

As Figure 3.10 indicates, there are two names for the left shift instruction: $av
and sHL. Both have the same effect, filling from the right with zeros. The right
shift instructions differ in that sar performs an arithmetic shift (fill with copies of
the sign bit), whereas sur performs a logical shift (fill with zeros). The destination
operand of a shift operation can be either a register or a memory location. We
denote the two different right shift operations in Figure 3.10 as > > 4 (arithmetic)

and >>; (logical).
D] T o sy

Suppose we want to generate assembly code for the following C function:

long shift_left4_rightn(long x, long n)

{
x <<= 4;
X >»= n;
return x;
}

The code that follows is a portion of the assembly code that performs the
actual shifts and leaves the final value in register %rax. Two key instructions
have been omitted. Parameters x and n are stored in registers %rdi and srsi,
respectively.

long shift_leftd_rightn(long x, long n)
x in Frdi, n in Yrsi
shift_leftd_rightn:

movg #rdi, Yrax Get x
X <<= 4

movl fesi, Yecx Get n (4 bytes)
x >>»=n

Fill in the missing instructions, following the annotations on the right. The
right shift should be performed arithmetically.
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(a) C code '
long arith(long x, long y, long z) L
{
long t1 =x ~ ¥; N
long t2 = z * 485
long t3 = t1 & OxOFOFOFOF;
f : long t4 = t2 - t3;
return t4;
}
{b) Assemnbly code
Y  18dg arith(long x, long y, long z)
x 'in ¥rdi,ty in Xrsi, z in Jrdx
1 arith: =
2 xorq %rsi, %rdi t1=x"y
3 leaq (Yrdx,%rdx 23, Yrak 3¥z
4 salqg $4, Yrax t2 = 16 # (3%z) = 48+z
5 andl $252645135, Yedi t3 = t1 & O0xOFOFOFQF |
6 subq  %rdi, %rax Return t2 - t3 " ‘
7 ret |

Figure 3.11 C and assembly codefor arithmetic function. |

3.5.4 Discussion ] |

We see that most of the instructions shown in Figure 3.10 can be used for either  § l
unsigned or two’s-complement arithmetic. Only right shifting requires instructions |
that differentiate between signed versus unsigned data. This is one of the features j
that makes two’s-complement arithmetic the preferred way to implement signed {\
integer arithmetic. B
Figure 3.11 shows an-example of a'fufiction that performs arithmetic opera- ‘
tions*and its translation into assembly code. Arguments x, y, and z ar‘initidlly
stored in registers %rdi, %rsi, anld %rdx; respectively’ The assembly-code instruc- : ‘ }
tions correspond closely with the lines of C source code. Line 2 computes the value
of x*y. Lines 3 and 4 compute the expression z*48 by a combination of 1eaq and
. shift instructions. Line 5 computes the axD of t1 and 0xOFQFOFOF. The final sub-
traction is computed by line 6. Since the destination of the subtraction is register ]
%rax, this will be the value returned by the function. | "
In the assembly code of Figure 3.11, the sequence of values in register “rax $
corresponds to program values 3*z, z*48, and t4 (as the return value). In general, B
compilers generate code that uses individual registers for multiple program values ‘
and moves program values among the registers. J

i e LY

In the following variant of .the function of Figure 3.11(a), the expressions have ‘
been replaced by blanks: B




Section 3.5  Arithmetic and Ldgital Operations 197

long arith2(long x, long y, long z) .
{
long t1 =
long' £2
long 3
long t4 =
return t4;

[

u

The portion of the generated assembly code implementing these expressions
is as follows:

long arith2(leng x, long y, long z)
x in Xrdi, y in'Xrsi, z in Xtdx

arith2: .
org Yrsi, %rdi
sarq $3, %rdi
noty ¥rdi

novg %rdx, Yrax
subq %rdi, Yrat’
ret

Based on thissassembly code, fill in the missing portions of the C code.

Y T 7 0 LG

It is common to find assembly-code lines of the form

xorq, %rdx, Y rdx t

in code that was generated from C where no EXCLUSIVE-OR operations were
present.

A. Explain the effectof this particular EXCLUSIVE-OR instruction and what useful
operation it implements.

B. What would be the more straightforward way to express this operation in
assemmnbly code?

C. Compare the number of bytes to encode these two different implementa-
tions of the same operation.

3.5.5 Special Arithmetic Operations

As we saw in Section 2.3, multiplying two 64-bit signed or unsigned integers can
yield a product that requires 128 bits to repkesent. ‘The x86-64. instruction set
provides limited support for opérations involving 128-bit (16-byte) numbers. Con-
tinuing with the naming convention of word (2 bytes), doubleword (4 bytes), and
quad word (8 bytes}, Intel refers to a 16-byte quantity as an oct word. Figure 3.12

et e R
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Instruction Effect Description

imulq § R[%rdx]:R[%rax] <- S x R[%rax] Signed full multiply
mulg S R{%rdx]R[%rax] <« § x R[}rax] Unsigned full multiply
cqto R[%rdx]R(%rax] <« SignExtend(R[%rax])  Convert to oct word
idivq § R[%rdx] < R[¥%rdx}R[¥%rax]mod S; Signed divide

R[%rax} < R[%rdx]R[4rax]- S

divqg § R[%rdx] + R[#rdx]R[%rax]mod 5, Unsigned divide
R[%rax] « R[%rax]R[¥rax]+ S

Figure 3.12 Special arithmetic operations. These operations provide full 128-bit
multiplication and division, for both signed and unsigned numbers. The pair of registers
¥rdx and %rax are viewed as forming a single 128-bit oct word.

describes instructions that support generating the full 128-bit product of twg 64-bit
numbers, as well as integer division.

The imulq instruction has two different forms One form, shown in Figure 3.10,
is as a member of the UL instruction class. In this form, it serves as a “two-
operand” multiply instruction, generating a 64-bit product from two 64-bit oper-
ands. It implemehts the operations *; arid *;, describéd in Sections 2.3.4 and2.3.5.
(Recall that when truncating the product to 64 bits, both unsigned multiply and
two’s-complement multiply have the same bit-level behavior.)

Additionally, the x86-64 instruction set includes two different “one-operand”
multiply instructions to compute the full 128-bit product of two 64-bit values—
one for unsigned (mulq) and one for two’s-complement (imulq) multiplication.
For both of these instructions, one argument must be in register %rax, and the
other is given as the instruction source operand. The product is then stored in
registers %rdx(high-order 64 bits) and %rax (low-order 64 bits). Although the
name imulq is used for two distinct multiplication operations, the assembler can
tell which one is intended by counting the number of operands.

As an example, the following C code demonstrates the generation of a 128-bit
product of two unsigned 64-bit numbers x and y:

#include <inttypes.h>
typedef unsigned __int128 uint128_t;

void store_uprod(uintl28_t *dest, uint64_t x, uinté4_t y) {
*dest = x * (uint128_t) y; .
}

4
In this program, we explicitly declare x and y to be 64-bit numbers, using defi-
nitions declared in the file inttypes.h, as part of an extension of the Cstandard.
Unfortunately, this standard does not'make provisions for 128-bit values. Instead,

é
z
|
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we rely on support provided by Gce for'128-bit integers, declared using the name
__int128. Our code uses a typedef declaration to define data type uint128_t,
following the naming pattern for other data types found in inttypes.h. The code
specifies that the resulting product should be stored at the 16 bytes designated by
pointer dest.

The assembly code generated by Gcc for this function is as follows:

Void store_uprod(uinti28_t *dest, uintb4_t x, uint64_t y)
dest in Xrdi, x in Jrsi, y in Krdx
store_uprod:

1

2 movq %rsi, %rax Copy x to multiplicand

3 mulg %rdx Multiply by y

4 movq hrax, (Yrdi) Store lower 8 bytes at dest

5 movq %rdx, 8(%rdiY™" Store upper 8 bytes at dest+8
6 ret

Observe that storing the product requires two movq instructions: one for the
low-order 8 bytes (line 4), and one for the high-order 8:bytes (line 5). Since the
code is generated for a little-endian machine, the high-order bytes are stored at
higher addresses, as indicated by the address specification 8 (%rdi).

Our earlier table of arithmetic operations (Figure 3.10) does not list any
division or modulus operations. These operations are provided by the single-
operand divide instructions similar to the single-operand multiply instructions.
The signed division instruction idivl takes as its dividend the 128-bit quantity
in registers %rdx (high-order 64 bits) and %rax (low-order 64 bits). The divisor is
given as the instruction operand. The instruction stores the quotient in register
%rax and the remainder in register %rdx.

For most applications of 64-bit addition, the dividend is given as a 64-bit value.
This value should be stored in register %rax. The bits of %rdx should then be set to
either all zeros (unsigned arithmetic) or the sign bit of %rax (signed arithmetic).
The latter operation can be performed using the instruction cqto.2 This instruction
takes no operands—it implicitly reads the sign bit from %rax and copies it across
all of %xdx. )

As an illustration of the implementation of division with x86-64, the following
C function computes the quotient and remainder of two 64-bit, signed numbers:

void remdiv(long x, long y,
long *gp, leng *rp) {
long q = x/y;
‘long r = x%y;
*qp = q;
*rp = Ir;

n

. This instruction is called cqo in the Intel documentation, one of the few cases where the ATT-format
amte for an instruction does not match the Intel name,
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This compiles to the followinig assembly code:

void remdiv(long x, long y, long *gp, long *rp)
x in ¥rdi, y in Jrsi, qp ir Xrdx, zp .En Yrex

1 remdiv:

2 movq %I"dX, %FB Cc‘)lp'y qp '

3 movq %rdi, Yrax Move x to lower 8 bytes of dividend

4 cqto Sign-extend to upper 8 bytes of dividend
5 idivq Yrsi Divide by y

6 movy %rax, (%r8) Store quotient at gp

7 movq Yrdx, (Yrex) Store remainder at rp

8 ret

In this code, argument rp must first be saved ip a different register (line 2),
since argument register %rdx is required for the division opération. Lines 3-4 then
prepare the dividend by copying and sign-extending x. Following the division, the
quotient in register %rax gets stored at gp (lipe 6), while the remainder in register
%rdx gets stored at rp (line 7).

Unsigned division makes use of the divq instruction. Typically, register %rdx
is set to zero beforehand. T

Consider the following function for computing the quotierit and remainder of two
unsigned 64-bit numbers:

veoid uremdiv(unsigned long x, unsigned long y,
unsigned long *qp, unsigned long *rp):{
unsigned long q = x/¥;
unsigned long r = xhy;
*qp = 4; ‘
*rp = I; i

} — '

LLLLLL

1

3.6 Control

So far, we have only considered the behavior of straighi-line code, where instruc-
tions follow one another in sequence. Some constructs in C, such as conditionals,
loops, and switches, require conditional execution, where the sequence of oper-
ations that get performed depends on the outcomes of tests applied to the data.
Machine code provides two basic low-level mechanisms for implementing condi:
tional behavior: it tests data values and then alters either the control flow or the
data flow based on the results of these tests.

Datg-dependent control flow is the more general and more common approach
for implementing conditional behavior, and so we will examine this first. Normally,
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| both statements in C and instructions in machine code are executed sequentially,

| inthe order they appear in the program. The execution order of a set of machine-
code instructions can be altered with a jump instruction, indicating that control

should pass to some other part of the program, possibly contingent on the result

of some test. The compiler must generate instruction sequences that build upon

| this low-level mechanism to implement the control constrcts of C.

‘ In our presentation, we first cover the two ways of implementing conditional

| operations. We then describe methods for presenting loops and switch state-
| ments.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition
‘ code registers describing attributes of the most recent arithmetic or logical oper-

, ation. These registers can then bé tested to perform conditional branches, These
| condition codes are the most useful:

| CF: Carry flag. The most recent operation generated a carry out of the most
significant bjt. Used to detect overflow for unsigned operations,

‘ ZF: Zero flag. The most recent operation yielded zero.
SF: Sign flag. The most recént operation yvielded a negative value.

| OF: Overflow flag. The most recent operation caused a two’s-complement
overflow—either negative or positive.

For example, suppose we used one of the ApD instructions to perform the

I equivalent of the C assignment t = a+b, where variables a, b, and t are integers.

‘l Then the condition codes would be set according to the following C expressions:.

'CF  (unsigned) t < (unsigned) a Unsigned overflow
(ZF (t==0) Zevo
|8F (£t <O Negative

IOF (a<0==b<0)&& (t<0!=a<0)
|

Signed overflow

The leaq instruction does not alter any condition codes, since it is intended
'to be used in address computations. ‘Otherwise; all of the instructions listed in
‘ F1gure 3.10 cause the condition codes to be set. For thé logical operations, such
as XOR, the carry and overflow flags are set to zero. For the shift operations, the
carry flag is set to the last bit shifted out, while the overflow flag is set to zero. For
ireasons that we will not delve into, the 1vc and pEc instructions set the overflow
rand zero flags, but they leave the carry flag unchanged.
I Inaddition to the setting of condition.codes by the instructions of Figure 3.10,
'there are two instruction classes (having 8-, 16-, 32-, and 64-bit forms) that set
condlnon codes withoit altering any other registers; these are listedin Figure 3.13.
The cMP instructions set the condition codes according to the differences of their
two operands. They behave in the.sdme way as the suB instructions, except that

they set the condition codes without updating their destinations. With ATT format,
|

w
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Instruction Based on Description

CMP S1, 52 S —5 Compare
cmpb Compare byte
copw Compare word
cmpl Compare double word
cmpq Compare quad word

TEST S, 8 51 &5 Test
testb Test byte
testw Test word
testl Test double word
testq Test quad word

Figure 3.13 Comparison and test instructions. These instructions set the condition
codes without updating any other registers.

the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can
be used to determine ordering relations between the two operands. The TEST
instructions behave in the same manner as the AND instructions, except that they
set the condition codes without-altering their destinations. Typically, the same
operand is repeated (e.g., testq %rax, frax to see whether %rax is negative, zero,
or positive), or one of the operands is a mask indicating which bits should be tested.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, .there are three common ways
of using the condition codes: (1) we can set a single byte to 0 or 1 depending
on some combination of the condition codes, (2) we can conditionally jump to
some other part of the program, or (3) we can conditionally transfer data. For the
first case, the instructions described in Figure 3.14 set a single byte to Qortol
depending on some combination of the condition codes. We refer to this entire
class of instructions as the SET instructions; they differ from one’another based on
which combinations of conditiof codes they consider, as indicated by the different
suffixes for the instruction names. It is important to recognize that the suffixes for
these instructions denote different conditions and not different operand sizes. For
example, instructions setl and setb. denote “set less” and “set below,” not “set
long word” or “set byte.” k

A sETinstruction has eithier dne of the low-order single-byte register elements
(Figure 3.2) or a sifigle-byte memory location as its destination, setting this byte to
either 0 or 1. To generate a 32-bit or 64-bit result, we must also clear the highsorder
bits. A typical instruction sequence to compute the C expression a < b, where a
and b are both of type long, proceeds as follows:

i
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Ifstruction  Synonym  Effect . Set condition
sete D setz D « ZF ‘ Equal / zero
setne D .setnz D « -~ZF . Not equal / not zero
sets D D « 8F Negative
setns D D « ~3F Nonnegative
setg D setnle D « ~(SF~0OF)&~ZF  Greater (signed >)
setge D ‘setnl D « ~(SF~0OF) Greater'or equal (signed >=)
setl D setnge D <« SF~OF Less (signed <)
setle D setng D « (SF~0F) | zZF :( " Lids or equal (signed <=)
A ]
seta,1 1D . _setnbe D <« +CF&+ZF Above(nnsigned >)
setae D.  setmb D -~ CF Above &1 equal (unsigned >=)
setb D sethae D «.CF Below (unsigned‘<)
setbé D  setma D <« CF/ZF Belbw or equal.(unsigned <=)
* I *

Figure 3.14 The seT instructions. Each instruction sets a single byte to 0 or-1 based on
some combination of the condition.codes. Some instructions have ¥synonyms,” that is,
alternate names for the same machine instruction. .

int comp(data_t a, data_t b)
a in Jrdi, b in %rsi

1 comp:

2 cmpq %rsi, Yrdi Compare a:b

3 =atl %al Set low-order bytae of Yeax to 0 or I
4 movzbl %al, %eax Clear rest of Y¥eax (and rest of Yrax)
5 ret

Note the comparison order of the cmpq instruction {line 2). Although the
arguments are listed in the order %rsi (b), then %rdi (a), the comparison is
réally between a and b. Recall also, as discussed'in Sectibn3.4.2, that the movzbl
instruction (line'4) clears not just the high-order 3 bytes of %eax, but thé upper 4
bytes of the entire register, %rax, as well.

For some of the underlymg machine instructions, there are multlple possible
nathes, which We:list as ‘ ‘synonyms.” For example, both setg (for “set gréater”)
and setnle (for “set not less or éfual”) refer to the same machme ifistruction.
Compllers and disassemblers hake arbitrary choices of which ndrhes to use.

Although all arithrhetic and logical operatloné set the condition codes, the de-
scriptions of the different seT instructions apply to the case where a comparison
instruction has been executed, setting the condition codes according to-the com-
putation t = a-b. More specifically, let a, b, and ¢ be the integers represented in
two’s-complement form by variables a, b, and t, respectively, and so t =a -} b,
where w depends on the sizes associated with a and b.

203
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Consider the sete, or “set when equal,” instruction. When a = b, we will
have ¢ = 0, and hence the zero flag indicates equality. Similarly, consider testing
for signed comparison with the setl, or “set when less,” instruction. When no
overflow occurs (indicated by having OF set to 0), we will have a < b whena -, b <
0, indicated by having SF set to 1, and a > & when a —L) b > 0, indicated by having
SF set to 0. On the other hand, when overflow occurs, we will have a < b when
a-! b> 0 (negative overflow) anda > bwhena -, b <0 (positive overflow). We
cannot have overflow when a = b. Thus, when OF is set to 1, we will have g < b if
and only if SF is set to 0. Combining these cases, the EXCLUSIVE-OR of the overflow
and sign bits provides a test for whether a < b. The other signed comparison tests
are based on other combinations of SF = OF and ZF.

For the testing of unsigned comparisons, we now let a and & be the integers
represented in unsigned form by variables a and b. In performing the computation
t = a-b, the carry flag will be set by the cMp instruction when a — b < 0, and so the
unsigned comparisons use combinations of the carry and zero flags.

It is important to note how machine code does or does not distinguish be-
tween signed and unsigned values. Unlike in C, it does not associate a data type
with each program value. Instead, it mostly uses the same instructions for the two
cases, because many arithmetic operations have the same bit-level behavior for
unsigned and two’s-complement arithmetic. Some circunfstances require different
instructions to handle signed and unsigned operations, such as using differ-
ent versions of right shifts, division and multiplication instructions, and different
combinations of condition codes.

‘Bractice Propient 3.13 (s
The Ccode

int comp(data_t a, data_t b) {
return a COMP b;
}

—_—

shows a general comparison between arguments a and b, where data_t, the data
type of the arguments, is defined (via typedef) to be one of the integer data types
listed in Figure 3.1 and either signed or unsigned. The comparison COMP is defined
via #define.

Suppose a is in some portion of %xdx while b is in some portion of %rsi. For
each of the following instruction sequences, determine which data types data_t
and which comparisons COMP could cause the compiler to generate this code.
(There can be muiti,;)‘le correct answers; you should list them all.)

A.  cmpl Yesi, %edi
setl %al

cmpy %si, %di
setge Yal
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C.  cmpb Asil, %dil.”
setbe %al

D.  cmpg hrsi; %rdi
setne Ja

The Ceode

int test(data_t a) {
return a TEST 0;
1

shows a general compaf"ison between argument a and 0, where we can set the
data type of the argument by declaring data_t with a typedef, and the nature
of the comparison by declaring TEST with a #define declaration. The following
Instruction sequences implement the comparison, where a is held in some portion
of register %rdi. For each sequence, determine which datatypes data_t and which
comparisons TEST,could cause the compiler to generate this code. (There can be
multiple correct answers; list all correct ones.)

r

} “
A.  testq Y%rdi, Yrdi
getge Yal

B. testw  %di, Y%di
sete %al N

e
C. testb  %di1 %411

seta %al v

D, testl %edi, %Yedi
setle %al t §

I E— T

Il

3.6.3 Jump Instructions

. . My
Under normaj execution, instructions follow each other in the order they.are
listed. A jump instruction can cause the execution to. switch to 2 completely
1eW position in the program. These jump destinations are generally indicated in
assembly code by a label. Consider the following (very contrived) assembly-code

equence: .

movg $0,%rax Set Yrax to 0

Jjmp L1 Goto .L1

movq (Yrax),%rdx Null pointer dereference (skipped)
L1 1 -

.popq <hrdx Jump target

e
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Instruction

Synonym

Jump condition

Description

jmp
jop
je
jne
js
jns
jg
jge
i,
jle
ja
jae
jb

Label
*Operand

Label
Label

Label
Label

Label
Label
Label
Label

Label
Label
Label

jbet Label

jnle
jnl
jnge
jng
jnbe
jnb
jnae
jna

1
1

ZF
~ZF

SF
~8F

~(SF ~ OF) & ~ZF
~(SF ~ OF)

SF -~ OF

(SF ~0OF) | ZF

~CF & ~ZF
~CF

CF

CF | ZF

Direct jump
Indirect jump

Equal / zero
Not equal / not zero

Negative
Nonnegative

Greater (signed >)

Greater or equal (signed >=)
Less (signed <)

Lebs or équal (signed <=)

Above (unsigned >)

Above or equal (unsigned >=).
Below (unsigned <)

Below or equal {unsigned <=)

1
Figure 3.15 The jump instructions, These instructions jump to a labeled destination
when the jump condition holds. Some instructions have “synonyms,” alternate names
for the same machine instruction. v

¥
i
K

The instruction jmp .L1 will cause the program to skip over the movq instruc-
tion and instead resume execution with the popq instruction. In generating the
object-code file, the assembler determines the addresses of all labeled instruc-
tions and encodes the jump targets (the addresses of the destination instructions)
as part of the jump instructions. -

Figure 3.15 shows the different jump instructions. The jmp instruction jumps
unconditionally. It can be either a direct jump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jump target is read from
a register or a memory location. Direct jumps are written in- assembly code by
giving a label as the jump target, for example, the label .L1 in the code shown.
Indirect jumps’are written using “*’ followed by an operand specifier using dne of

the memory operand formats deseribed in Fighre 3.3. As examples, the instruction
jmp *¥%rax

uses the value in register %rax as the jump target, and the instruction
jmp *(rax)

reads the jump target from memory, using the value in %rax as the read address.

The remaining jump instructions in the table are conditional—they either
jump or continue executing at the next instruction in the code sequence, depending
on some combination of the condition codes. The names of these instructions
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and the conditions under which they jump match those of the seT instructions
(see Figure 3.14). As with the set instructions, some of the underlying machine
instructions have multiple names. Conditional jumps can only be direct.

3.6.4 Jump Instruction Encodings

For the most part, we will not concern ourselves with the detailed format of ma-
chine code. On the other hand, understanding how the targets of jump instructions
are encoded will become important when we study linking in Chapter 7. In ad-
dition, it helps when interpreting the output of a disassembler. In assembly code,
jump targets are written using symbolijc labels. The assembler, and later the linker,
generate the proper encodings of the jump targets. There are several different en-
codings for jumps, but some of the most commonly used ones are £C relative. That
is, they encode the difference between the address of the target instruction and
the address of the instruction immediately following the jump. These offsets can
be encoded using 1, 2, or 4 bytes. A second encoding method is to give an “abso-
lute” address, using 4 bytes to directly specify the target. The assembler and linker
select the appropriate encodings of the jump destinations.

As an example of PC-relative addressing, the following assembly code for a
function was generated by compiling a file branch. c. It contains two jumps: the
jmpifistruction on line 2 jumps forward to a highér address, while the jginstruction
on line 7 jumps back to a lower one.

1 movg %rdi, Yrax
2 jmp 12

3 -L3:

4 sarq Jirax

5 -L2:

6 testq Yrax, %rax
7 jg L3

8 rep; ret

The disassembled version of the .o format generated by the assembler is as
follows:

i 0: 48 89 f8 mov %rdi,Yrax

2 3: eb 03 jmp 8 <loopH0x8>
3 5: 48 41 £8 sar %rax

4 8: 48 85 c0 test  Yrax,jrax

5 b: 7f £8 jg 5 <looptOx5>
6 d: £3 ¢3 repz retq

Inthe annotations on the right gencrated by the disassembler, the jump targets
are indicated as Ox8 for the jump instruction, on line-2 and 0x5 for the jump
instruction on line 5 (the disassembler lists all numbers in hexadecimal). Looking
at the byte encodings of the instructions, however, we see that the target of the first
jump instruction is encoded (in the second byte) as 0x03. Adding this to 0x5, the

207
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Line 8 of the assembly code siowh ord pddé 207 contains the inétruction combmauon tep; fet™These ¢
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address of the following instruction, we get jump target address 0x8, the address
of the instructicn on line 4.

Similarly, the target of the second jump instruction is encoded as 0x£8 (deci-
mal —8) using a single-byte two’s-complement representation. Adding this to 0xd
(decimal 13), the address of the instruction on line 6, we get 0x5, the address of
the instruction on line 3.

As these examples illustrate, the value of the program counter when perform-
ing PC-relative addressing is the address of the instruction following the jump, not
that of the jump itself. This convention dates backto early implementations, when
the processor would update the program counter as its first step in executing an
instruction.

The following shows the disassembled version of the program after linking:

1 400440: 48 89 £8 mov %rdi,%rax

2 400443: eb 03 jmp 400448 <loop+0x8>
3 4004d5: 48 41 f8 sar Yrax

4 400448: 48 85 c0 test  Yrax,¥%rax

5 4004db: 7f £8 ig 4004d5 <loop+0x5>
6 4004dd: £3 c3 Tepz retq

The instructions have been relocated to different addresses, but the encodings
of the jump targets in lines 2 and 5 remain unchanged. By using a PC-relative
encoding of the jump targets, the instructions'can be compactly encoded (requiring
just 2 bytes), and the object code can be shifted.to different-positions in memory
without alteration.
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In the following excerpts from a disassembled binary, some of the information has
been replaced by X’s. Answer the following questions about these instructions.

¥
A. What is the target of the je instruction below? (You do not need to know
anything about the callq instruction here.)

4003fa: 74 02 Je XXXXXX
4003fc: £f dO callg #*¥rax

B. What is the target of the je instruction below?

40042f: 74 f4 Jje XXXXXX
400431: 5d pop #rbp

C. What is the address of the ja and pop instructions?

XXXXXX: 77 02 ja 400547
XXXXXX: 5d pop %rbp

D. Inthe code that follows, the jump target is encoded in PC-relative form as a 4-
byte two’s-complement number. The bytes are listed from least significant to
most, reflecting the little-endian byte ordering of x86-64, What is the address
of the jump target?

4005e8: o9 73 ff ff ff jopg  XXXXXXX
4005ed: 90 nop

The jump instructions provide,a means to implement conditional execution
(if), as well as several different loop constructs.

3.6.5 Implementing Conditional Branches with Conditional Control

The most general way to translate conditional expressions and statements from
C into machine code is to use combinations of conditional and unconditional
jumps. (As an alternative, we will see in Section 3.6.6 that some conditionals
can be implemented by conditional transfers of data rather than control.) For
example, Figure 3.16(a) shows the C code for a function that computes the absolute
value of the difference of two numbers? The function also has a side effect of
incrementing one of two counters, encoded as global variables 1t_cnt and ge_
ent. Gee generates the assembly code shown as Figure 3.16(c). Our rendition of
the'machine code into C is shown as the function gotodiff_se (Figure 3.16(b)).
It uses the goto statement in C, which is similar to the unconditional jump of

3. Actually, it can return a negative value if one of the subtractions overflows. Our interest-here is to
demonstrate machine code, not to implement robust code.

209
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(a) Original C code {b) Equivalent goto version

g long lt_cnt = 0 1 long gotodiff_se(long x, long y)
‘ . long ge_cnt = (1; 2 o
s 3 long result;
. long absdiff_se(leng x, long y) 4 if (x >=y)

I { 5 goto x_ge_y;

P ) long result; 6 1t_cnt++;
1 if (x<y){ 7 result = ¥ -~ x;
” 1t_cnt++; 8 return result;
‘ result = y - Xx; 9 X_ge_y:
I b 10 ge_cnt++;
E ' else { n result = x - y;
‘ ge _cnt++; 12 return resuit;
. result = x - ¥; 13}

}

! return result;
)
(¢) Generated assembly code
f long hbsdiff_de(long x, lomg y)

: I ) x in Zrdi, y in Jrsi

‘ i 3 1 absdiff_se:

. 2 cmpg Yrsi, %rdi Compare.x:y

‘ 3 jge .L2 LI »= goto x_ge_y

| i 4 addq $1, 1t_cot(Yrip) 1t_cot++
E 5 movg %rsi, krax
s 6 subq %rdi, %rax result =.y - X

. ; 7 ret * Return

‘ 8 L2: x_ge_¥: I
; ) addg  $1, ge_cnt{Yrip) go_cnt++

‘ ] 10 movq %rdi, %hrax »

| 11 subq %rsi, %rax result = x - ¥

‘ ‘ 12 rel’ M heturn

i H
‘ ! Figure 3.16 Compilation of conditional statements. (a) C;procedure absdiff_se
3 contains an.if-else statement. The generated assembly ¢qde is shown (c), along with ]
i (b) a C procedure gotpdiff_se that mimics the control flow of the assembly code.

1 1) {

a ¥ ape
assembly code: Using goto statements is generally considered a bad programming
style, since their use can make code very difficult to read and debug. We use.them
in our-presentation as a way'to construct C programs that describe the control
flow of machine code, We call this style of programming “goto code.”
In the goto code (Figure 3.16(b)), the statement goto x_ge_y on line 5 causes
a jump to the label x. ge_y (since it occurs when x > y) on line 9, Continuing the
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{ Figure 3.16 shows an example of how we wilt demonstratés«the trahslanon 6f.C language control
cotistructs intp machine code. The figure contains an example C function (a) and an annotated version
of the assembly code generated by Gcc (c). It also contains a version in C that closely matches the
structure of the dssembly code (b) Although these versions were generated in the sequence (a), {c),

} and'(b), we'recominend that you read them in the order (a); (b), and then (c). That is, the C rendition

of the machine code will hélp you understand the key points, and this cap gmde you in understanding
the actual assembly code.
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execution from this point, it completes the computations specified by the else
portion of function absdiff_se and returns. On the other hand, if the test x >=y
fails, the program procedure will carry out the steps specified by the if portion of
absdiff_se and return.

The assembly-code implementation (Figure 3.16(c)) first compares the two
operands (line 2), setting the condition codes. If the comparison result indicates
that x is greater than or equal to y, it then jumps to a block of code starting at
line 8 that increments global variable ge_cnt, computes x-y as the return value,
and returns. Otherwise, it continues with the execution of code beginning at line
4 that increments global variable 1t_cnt, computes y-x as the return value, and
returns. We can see, then, that the control flow of the assembly code generated for
absdiff_se closely follows the goto code of gotodiff_se.

The general form of an if-else statement in C is given by the template

if (test-expr)
then-statement

else
else-statement

where test-expr is an integer expression that evaluates either to zero (interpreted
as meaning “false”) or to a nonzero value (interpreted as theaning “true”™). Only
one of the two branch statements (then-statement or else-statement) is executed.

For this peneral form, the assembly implementation typically adheres to the
following form, where we use C syntax to describe the control flow:

t = test-expr,;
if (!t)
goto false;
then-statement
goto dene;
false:

else-statement
done:;

A K i 3
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That is, the compiler generates separate blocks of code for then-statement and
else-statement. Tt inserts conditional and unconditional branches to make sure the

correct block is executed. "

When given the C code

void cond(long a, long #p)
{
if (p k& a > *p)
Xp = a;

¥

Gcc generates the following assembly code:

void cond{(ieng a, long #p)
a in ¥rdi, p in Krsi

cond:
testq ¥rsi, Yrsi
jé 11
cmpq  4rdi, (krsi)
jge’ L1
movq Yrdi, (%rsi)
L1 N
Irep; ret

A. Write a goto version in C that performs the same computation and mimics
the control low of the assembly code, in the style shown in Figure 3.16(b).
You might find it helpful to first annotate the asserably code as we have done
in our examples.

B. Explain why the assembly code contains two conditional branches, even
though the C cog;;ef has anly gne if statement. Ny

Praciice By OBl 3T/ 0Nt oN DAgEE 310, IRy et

An alternate rule for translating if statements into goto code is as follows:

t = lest-expr,
it (&)
goto true;

elve-statement

goto done;
true;

then-statement
done:
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A. Rewrite the goto version of absdiff_se based o this alternate rule.

B. Can you think of any reasons for choosing one rule over the other?

Starting with C code of the form
long test(long x, long y, long z) {
long wal =, ;
if ( ) {
if (. _)
val =
else
val = ;
}elge if (L. __ )
val =
return val;

}
Gee generates the following assembly code:

long test(long x, long y. long z)

x in ¥rdi, y in %rsi, z in Yrdx
tast:

leag (%rdi,%rsi), Y%rax

addq %rdx, drax

cmpy $-3, %rdi

jge L2
cmpq %rdx, %rsi
Jjge .13
movq yrdi, %rax
imulg  %rsi, Yrax
ret
.L3:
movq %rsi, %rax
imulg  Hrdx, %rax
ret
A2:
cmpg $2, Yrdi
jle L4
movq %rdi, Y%rax
imulg  Yrdx, %rax
L4
rep; ret

Hill in the missing expressions in the C code.

213
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3.6.6 Implementing Conditional Branches with Conditional Moves

The conventiénal way to implement conditional operations is through a condi-
tional transfer of control, where the program follows one execution path when
a condition holds and another when it does not. This mechanism is simple and

general, but it can be very inefficient on modern processors.

An alternate strategy is through a conditional transfer of data. This approach
computes both outcomes of a conditional operation and then selects one based on
whether or not the condition holds. This strategy makes sense only in restricted
cases, but it can then be implemented by a simple conditional move instruction
that is better matched to the performance characteristics of modern processors.
Here, we examine this strategy and its implementation with x86-64.

Figure 3.17(a) shows an example of code that can be compiled using a condi-
tional move. The function computes the absolute value of its arguments x and y,
as did our earlier example (Figure 3.16). Whereas the earlier example had side ef-

fects in the branches, modifying the value of either 1t_cnt or ge_

simply computes the value to be returned by the function.

(a) Original C code

Figure 3.17 Compilation of conditional statements using conditional assignment.

absdiff contains a conditional expression. The generated assembly code is shown (¢},
C function cmovdiff that mimics the operation of the assembly code.

cnt, this'vérsion

(b) Implementation using conditional assignment

long absdiff(long x, long ¥) 1 long cmovdiff(long x, long y)
{ 2 {
long result; 3 long rval = yX;
if (x <y) 4 long eval = X-Yy;
result = y — Xx; 5 lonig ntest ="x >= ¥;
else 6 /* Line below requires
result = X - ¥; 7 single instructiom: */
return result; 8 if (ntest) rval = eval;
} 9 return rval;
i}
(c) Generated assembly code —
long absdiff(long x, long y)
x in %zdi, y in Arsi
1 absdiff:
2 movq Yrsi, ¥%rax
3 subq %rdi, %rax rval = y-x
4 movq Yrdi, %rdx
5 subg Yrsi, %rdx eval = X~y
6 cmpgq %rsi, %rdi Compare X:¥y
7 cmovge %rdx, %rax If >=, rval = eval
8 ret Return tval

(a) C function
along with (b) a
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For this function, Gce generates the assembly code shown in Figure 3.17(c),
having an approximate form shown by the C function cmovdiff shown in Figure
3.17(b). Studying the C version, we can see that it computes both y-x and x-y,
naming these rval and eval, respectively. It then tests whether x is greater than
or equal to y, and if so, copies eval to rval before returning rval. The assembly
code in Figure 3.17(c) follows the same logic. The key is that the single cmovge
instruction (line 7) of the assembly code implements the conditionai assignment
(line 8) of cmovdiff. It will transfer the data from the source register to the
destination, only if the cmpq instruction of line 6 indicates that one value is greater
than or equal to the other (as indicated by the suffix ge).

JTo.understand why code based on conditional data transfers can outperform
code based on conditional control transfers (asin Figure 3.16), we must understand
something about how modern processors operate. As we will see in Chapters 4
and 5, processors achieve high performance through pipelining, where an instruc-
tion is processed via a sequence of stages, each performing one small portion of
the required operations (e.g., fetching the instruction from memory, determining
the instruction type, reading from memory, performing an arithmetic operation,
writing to memory, and updating the program counter). This approach achieves
high performance by overlapping the steps of the successive instructions, such
as fetching one instruction while performing the arithmetic operations for a pre-
vious instruction. To do this requires being able to determine the sequence of
instructions to be executed well ahead of time in order to keep the pipeline full of
instructions to be executed, When the machine encounters a conditional jurp (re-
ferred to as a “branch™), it cannot determine which way the branch will go until it
has evaluated the branch condition. Processors employ sophisticated branch pre-
diction logic to try to guess whether or not each jump instruction will be followed.
As long as it can guess reliably (modern microprocessor designs try to achieve
success rates on the order of 90%), the instruction pipeline will be kept full of
instructions. Mispredicting a jump, on the other hand, requires that the processor
discard much of the work it has already done on future insiructions and then begin
filling the pipeline with instructions starting at the correct location. As we will see,
such a misprediction can incur a serious penalty, say, 15-30 clock cycles of wasted
effort, causing a serious degradation of program performance.

As an example, we ran timings of the absdiff function on an Iute] Haswell
processor using both methods of implementing the conditional operation. In a
typical application, the outcome of the test x < y is highly unpredictable, and
so even the most sophisticated branch prediction hardware wiil guess correctly
only around 50% of the time. In addition, the computations performed in each
of the two code sequences require only a single clock cycle. As a consequence,
the branch misprediction penalty dominates the performance of this function. For
x86-64 code with conditional jumps, we found that the function requires around 8
clock cycles per call when the branching pattern is easily predictable, and arcund
17.50 clock cycles per call when the branching pattern is random. From this, we can
infer that the branch misprediction penalty is around 19 clock cycles. That means
time required by the function ranges between around 8 and 27 cycles, depending
on whether or not the branch is predicted correctly.
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On the other hand, the code compiled using conditional moves requires
around 8 clock cycles regardiess of the data being tested. The flow of control
does not depend on data, and this makes it easier for the processor to keep-its

pipeline full.

Runnmg on an older processor model our code requlred around 16 cycles when
the branching -pattern was highly predictable, and around 31 cycles when,the

pattern was random.
A. What is the approximate miss penalty?
B. How many cycles would the function require when the branch is mispre-
dicted?,

Figure 3.18 illustrates some of the conditional move instructions available with
x86-64. Each of these instructions has two operands: a source register or memory
location §, and a destination register R. As with the different seT (Section 3.6.2)
and jump (Section 3.6.3) instructions, the outcome of these instructions depends
on the values of the condition codes. The source value is read from ‘either memoty
or the source register, but it is copied to the destination only if the specified
condition holds.

The source and destination values can be 16, 32, or 64 bits long. Single-
byte conditional moves are not supported. Unlike the unconditional instructions,
where the operand length is explicitly encoded in the instruction name (e.g., movw
anid movl), the assembler can infer the operand Iength of a conditional move
instruction from the name of the destination'register, and so the same instruction
name can'be used for all operand lengths.

Unlike conditional jurps, the processor can execute conditional move in-
structions without having to predict the outcome of the test. The processor simply
reads the source value (possibly from memory), checks the condition code, and
then either updates the destination register or keeps it the same. We will explore
the implementation of conditional moves in Chapter 4.

Te understand how conditional operations can be implemented via -condi-
tional data transfers, consider the following general form of conditional expression

and assignment:
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Instruction Synonym Move condition Description

cmove S, R Cmovz ZF Equal / zero V
¢movne §,R  cmovnz ~ZF Not equal / not zero

cmovs S,R " SF Negative

cmovns S, R ~8F Nodnnegative

cmovg S, R cmovnle ~(SF ~ OF) & ~2F Greater (signed >) i
cmovge S,R  cmovnl ~(SF ~ OF) Greater or equal (signed >=) )
cmovl S,R  cmovnge SF - OF Less (signed <)

cmovle S,R  cmovng (SF~OF) | ZF Less or equal (signed <=)

cmova S, R cmovnbae ~CF & ~ZF Above (unsigned >)

cmovae S,R  cmovmb ~CF Above or equal (Unsigned >=) :
cnovb S, R' cmovnae CF Below (unsigned <) i

cmovbe S,R  cmovna CF | ZF Below or equal (unsigned <=). l

Figure 3.18 The conditional move instructions. These instructions copy the source
value § to its destination & when the move condition holds. Some instructions have
“synonyms,” alternate names for the same machine instruction,

v = lest-expr 7 then-expr : else-expr; '

The standard way to compile this expression using conditional control transfer
would have the following form:

if (lrest-expr)
goto false;
&V = then-expr;
goto done;
false: :
v = else-expr; !
dona: |

This code contains two code sequences—one evaluating then-expr and one evalu-
ating else-expr. A combination of con&itic_)nal and unconditional jumps is used to
ensure that just one of the sequences is evaluatfé_d.

For the code based on a conditional rp?:ve, both the then-expr ?nd the else-
expr are evaluated, with the final value chosen based on the evaluation test-expr. i
This can be described by the following abstract code:

v = then-expr; !
ve = else-expr;
t = test-expr;
if (It) v = ve;

]

The final statement in this sequence is implemented_with a conditional move—
value ve is copied to v only if test condition t does not hold.




o g

|
1 !:
i
.
J

e —
el i S -

Eow—

218 Chapter 3 Machine-Level Representation of Programs

Not all conditional expressions can be compiled using conditional moves,
Most significantly, the abstract code we have shown evaluates both then-expr and
else-expr regardless of the test outcome. If one of those two expressions could
possibly generate an error condition or a side effect, this could lead to invalid
behavior. Such is the case for our earlier example (Figure 3.16). Indeed, we put the
side effects into this example specifically to force Gee to implement this function
using conditional transfers.

As a second illustration, consider the following C function:

long cread{long *xp) {
return (xp 7 *xp : 0);

1

At first, this seems like:a good candidate to compile using a conditional move to
st the result to zero when the pointer is null, as shown in the following assembly
code:

long créad(long *xp)
Invalid implementation of function cread
xp in register Ardi

1 cread:

2 movq (%rdi), ¥%rax v = *xp

3 testq %rdi, ¥rdi Test x

4 movl . $0, %edx Set ve = 0

5 cmove  Yrdx, %rax If x==0, v = ve
6 ret Return v

This implementation is invalid, however, since the derefetencing of xp by the
movq instruction (line 2) occurs even when the test fails, causing a null pointer
dereferencing error. Instead, this code must be compiled using branching code.

Using conditional moves also does not always improve code efficiency. For
example, if either the then-expr or the else-expr évaluation requires a significant
computation, then this effort is wasted when the corresponding condition does
not hold. Compilers must take into account the relative performance of wasted
computation versus thge‘pote'flt{ill for performanc’:'é penalty due té branch mispre-
diction. In truth, they do not really have enough information td make this decision
reliably; for example, they do not knpw how well the bran(ghes will follow pre-
dictable patterns. Our exPeriments:w’irth Goc indicate thét it only uses conditional
moves when the two expressiors ¢an be computed very easily, for example, with
single add instructions. In our experience, Goc ‘uses conditional control transfers
even in many cases where the cost of branch misprediction would exceed even
more complex computations.

Overall, then, we see that conditional data transfers offer an alternative
strategy to conditional control transfers for implementing conditional operations.
They can only be used in restricted cases, but these cases are fairty common and
provide a much better match to the operation of modern processors.




In the followmg C functlon, we have left the deﬁmtmn of operatmn OP mcomplete
#define OP

/* Unknown operator */

long arith(long x) {
return x OP 8;

}

When compiled, Gcc generates the following assembly code:

long arith(long xJ
x in Frdi

arith:
leaq 7(%rdi), %rax
testq %rdi, %rdi
cmovas Y%rdi, %rax

sarq $3, Yrax
ret

A. What'operation is OP?

¥ ih " X |
B. Annotate the code to explain how,it works.

Startmg w1th C oode of the form

long test(long %, long y) {
long val = ..
if )1
if ()
val =
elge
val = __ .
Yelse 3f (L. )
val = . .
return val;

}

: Gce generates the following assembly code:

long test(long x, long y)
x in Xrdi, y in Xrsi

tegt:

leagq 0(,%rdi,8), %rax
testq! %rsi; Yrsi
Jle .L2

W—‘

A Section 3.6, Control
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novq %rsi, %rax

; subq %rdi, %rax s
movy Y%rdi, ¥rdx

' andq Yrsi, %rdx

cmpq Yrsi, %rdi
cmovge %rdx, ¥%rax

1
- L, ret
{f LL2:

addgq Yrsi, 4rdi
j | cmpq $-2, Yrsi
cmovle %rdi, %rax
] ret
;

Fill in the missing expressions in the C code.

3.6.7 Loops

C provides several looping constructs—namely, do-while, while, and for. No

corresponding instructions exist in machine code. Instead, combinations of con-
ditional tests and jumps are used to implement the effect of loops. Gee and other
compilers generate loop code based on'the two basic loop patierns. We' will study
the translation of loops as a progression, starting with do-while and then working

£

i

i

toward ones with more complex implementations, covering both patterns.

Do-While Loops

The general form of a do-while statement is as follows: O

déd
body-staterment i
i while (test-expr);

] The effect of the loop is to repeatedly execute body-statement, evaluate test-expr,
j and continue the loop if the evalvation result is nonzero. Observe that body-
] statement is executed at least once.

i This general form can be translated into conditionals and goto statements as

follows:

l. loop:
body-statement
t = test-expr;
o if (1)

gobto loop;

That is, on each iteration the program evaluates the body statement ‘and then the
test expression. If the test succeeds, the program.goes back for another iteration.
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(@) C code (b} Equivalent goto version
long fact_do{long n) long fact_do_goto(long n)
{7 {
long result = {; long result = 1;
do { loop:
result *= n; result *= n;
n = n-1; n = n-1;
} while (n"> 1): if (n > 1)
return result; goto loop;
} return result;
1

1

() Corresponding assembly-language code

long fact_do(long n)

n in Xrdi
1 fact_do:
2 movl $1, Yeax Set result = 1
3 L2: loop:
4 imulqg  ¥%rdi, %rax Compute result »= n
5 subq $1, Yrdi Decrement n
6 cmpq $1, %rdi . Compare n:1
7 jg L2 If >, goto loop
8 rep; ret Return

Figure 3.19 Code for do-while version of factorial program. A conditional jump
causes the program to loop.

As an example, Figure 3.19(a) shows an implementation of a routine to com-
pute the factorial of its argument, written »!, with a do-while loop. This function
only computes the proper value for n > 0,

s

A. What is the maximum value of » for which we can represent n! with a 32-bit
int?

B. What about for a 64-bit 1ong?

The goto code shown in Figure 3.19(b) shows how the loop gets turned into
a lower-level combination of tests and conditional jumps. Following the initial-
ization of result, the program begins looping. First it executes the body of the
loop, consisting here of updates to variables result and n. It then tests whether
n > 1, and, if so, it jumps back to the beginning of the loop. Figure 3.19(c) shows
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Aslde Reverse-engineering loops

A key tounderstanding how the generdted assembly code relates to the original source code s t6 firld a=
mapping betweefi program values‘aitd registers. This task was simple enough for the loop of Figureg 3.1391;
* but it can be much more challengfng for more complex programs. The C compiler will often reagrange °
, the computations, so that somie Variables jn the C code have no counterpart in the machine code, and |
new values are introduced into the machine code that-do not exist in the source code.jMoreover, itwill |
often try to minimize register usage by mapping multiple program values onto 3 single register. |
The process we described fg?' faét_do works as a general strategy for reverse egg@neérigg.\loops. )
Look at how registérs are initialized vbmgforcﬂ the loop, updated and tested within the loop, and used
after the loop. Each of these provides a clue that can be,combined to solve a puzzle. Be prepared for
surprising transformations, some of which are clearly, cases where the compiler was able to‘optimize
! the code, and others where it i$ hard to explajn why the compiler chose that E?ani_gulqar* strategy..  ,
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the assembly code from which the goto code was generated. The conditional jump
instruction jg (line 7) is the key instruction in implementing a loop. It determines
whether to continue iterating or to exit the loop.

Reverse engineering assembly code, such as that of Figure 3.19(c), requires
determining which registers are used for which program values. In this case, the
mapping is fairly simple to determine: We know that r will be passed to the
function in register %rdi. We can see register %rax getting initialized to 1 (line
2). (Recall that, although the instruction has %eax as its destination, it will also
set the upper 4 bytes of %rax to 0.) We can see that this register s also updated
by multiplication on line 4. Furthermore, since %rax is used to return the function
value, it is often chosen to hold program values that are returned. We therefore
conclude that %rax corresponds to program value result.

- %’gfﬁ o

For the C code

long dw_loop(long x) {
long y = X*X;
long *p = &x;
long n = 2¥X;

do {
LS
(*p)++;
n—;

} while (n > 0);
return X;

}

Gce generates the following assembly code:

4
|
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long dw_loop(long: x)
x initially in Xrdi
dw_loop:
movqg Y%rdi, Yrax
movqg %rdi, Yrex
imulg  %rdi, %rex
leaq (Yrdi, %edi), %rdx
L2:
leaq 1(%rex,%rax), %rax
subg $1, Yrdx
testq Yrdx, ¥rdx
ig L2
rep; ret

A. Which registers are used to hold program values x, y, and n?

B. How has the compiler eliminated the need for pointer variable p and the
pointer dereferencing implied by the expression (*p)++?

C. Add annotations to thie assembly code describing the operation of the pro-
gram, similar to those shown in Figure 3.19(c).

While Loops
The general form of a while statement is as follows:

vhile {fest-expr)
body-statement

It differs from do-while in that test-expr is evaluated and the loop is potentially
terminated before the first execution of body-statement, There are a number of
ways to translate a while loop into machine code, two of which are used in code
generated by Gcc. Both use the same loop structure as we saw for do-while loops
but differ in how to implement the initial test,

The first translation method, which we refer to as jump to middle, performs
the initial test by performing an unconditional jump to the test at the end of the
loop. It can be expressed by the following template for translating from the general
while loop form to goto code:

goto test;
loop:
body-statement
test:
t = fesr-expr;
if (t)
goto loop;

As an example, Figure 3.20(a) shows an implementation of the factorial func-
tion using a while loop. This function correctly computes 0! = 1. The adjacent
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(a) C code (b) Equivalent goto version

long fact_while(long n) long fact_while_jm_goto(long n)

{ {
long result = 1; long result = 1;
while (n > 1) { goto testy
result *= n; loop!
! n = n1; result *= n;
: ¥ n = n-1;
return result; test:
} if {n > 1)

goto loop;
return result;

{c) Corresponding vassembly-laqguaggicodg

long fact_while(long n)

n.in Zrdi
fact_while: ]
movl $1, %eax Set result = I
jmp L6 Goto test
.L6: loop:
imulq  %rdi, %rax Compute result #*= 1
i subg $1, Yrdi Decrement 2 !
f .Lb: tost: X
, cmpq $1, %rdi Compare n:1 ;
g L6 If >, goto loop
rep; rét Retirn

a ] n +! . L .
Figure 3.20 C and assembly, code for yhile version of factorial using jump-to-
middle translation. The C function fact_while_jm_goto illustrates the operation of
the assembly-code version.

¥

function fact_while. jm_goto (Figure 3.20(b)) i$ a C rendition of the assembly
code generated by Gtk when optimization is specified with the cémmand-line op-
tion -0g. Comparing the goto code generated for fact_while (Figure 3.20(b)) to
that for fact_do (Figure 3.19(b)), we see that they are very similar, except that
the statement goto test before the loop causes the program to first perform.the
test of n before modifying the values of result or n. The bottom portiop, of the
figure (Figure 3.20(c)) shows the actual assembly code generated.

For C code having the general form

long loop_while(long a, long b)
{
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long result = _

while (___ ) {
result = -
a = H

}

; return result;
"- i e
GCC, run with command-line option -0g, produces the following code:
t r
longiloop. while (long a, long b)

a in frdi, b da Zrsi .
1 ,loop_while;
2 movl $1, Yeax
3 jmp L2
4 .L3:
5 Lleag (%rdi,%rsi)* frdx
6 imulg  %rdx, Yrax;
7 addq $1, Yrdi
& L2:
9 cmpg srsi, Yrdi
10 j1 L3
n rep; ret

We can see that the compiler used a jump-to-mjddle translation, using the jmp
instruction on line 3 to jump to the test starting with label .L2. Fill in the missing
parts of the C code.

The second translation method, which we refer tg as guarded do, first trans-
forms the code into a do-while loop by using a conditional branch to skip over the
loop if the initial test fails. Gee follows this strategy when compiling with higher

i levels of optimization, for example, with command-line option -01. This method
} can be expressed by the following template for translatin g from the general while
-~ loop form to a do-while loop:

t = test-expr’}
if (1t) v
goto done;
do
body-statement
while (test-expr):
- done:

 This, in turn, can be transformed into goto code as

t = test-expr;
if (1)
goto done;
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loop:
body-statement
t = test-expr;
if (%)
goto loop;
done:

Using this implementation strategy, the compiler can often optimize the initial
test, for example, determining that the test condition will always hold.

As an example, Figure 3.21 shows the same C code for a factorial function
as in Figure 3.20, but demonstrates the compilation that occurs when GcC is
given command-line option -01. Figure 3.21(c) shows the actval assembly code
generated, while Figure 3.21 (b) renders this assembly code in a more feadable C
representation. Referring to this goto code, we see that the loop will be skipped
if n < 1, for the initial value of n. The loop itself has the same general structure
as that generated for the do-while version of the function (Figure 3.19). One
interesting feature, however, is that the loop test (line 9 of the assembly code)
has been changed from n > 1 in the original C code to ns# 1. The compiler has
determined that the loop can only be entered when n >+I, and that d¥crementing
1 will result in either # > 1 or n = 1. Therefore, the testn s 1 will be equivalent to
the testn < 1. "
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For Cicode having the general form

Th H 1
long loop_while2(long a, long b)
{
long result = _
while () 1
result =
b= L
}
return result;

} .

Gec, run with command-line option -01, produces the following code:

a in Yrdi, b in Xrsi ’

1 loop_while2:

2 testq frsi, %rsi
3 jle .L8

4 movq Yrsi, %rax
5 L7

6 imulg  %rdi, %rax
7 subq %rdi, %rsi
8 testq #rsi, krsi




(a) C code

long fact_while(long n)
{
long result = 1;
while (n > 1) {
result *= p;
n=n-1;
}

return result;

long fact_while(leng n)
n in Yrdi

1 fact_while:

2 cmpq $1, %rdi

3 jle L7

4 movl $1, Jeax
5 .L6:

6 imulg  %rdi, Yrax
7 subg $1, Yrdi

3 cmpg $1, %rdi

9

jne L6
10 rep; ret
1 L7
12 movl $1, Yeax
13 ret

Section 3.6 Control

(b) Equivalent goto version

long fact_while_gd_goto(long n)
{
long result = 1;
if (n <= 1)
goto done;
loop:
result *= n;
n =n-1;
if (m 1= 1)
goto loop;
done:
return result;

{c) Corresponding assembly-language code

Compare n:!
If <=, goto done
Set result = 1
loop:
Compute result #=
Dacrement n
Compare n:i
If {=, goto loop
Return
done:
Compute rasult = 1
Return

" Figure 3.21 C and assembly code for while version of factorial using guarded-
¥ do translation. The fact_while_gd_goto function illustrates the operation of the

assembly-code version.

E 9 jg L7

F 10 rep; ret

£ 1 .L8:
12 movq 4rsi, Yrax
13 ret

We can see that the compiler used a guarded-do translation, usipg the jle
instruction on line 3 to skip over the loop code when the initial test fails. Fiil in
the missing parts of the C code. Note that the control structure in the assembly

227
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code does not exactly match what would be obtained by a direct translation of the
C code according to our translation rules. In particular, it has two different ret
instructions (lines 10 and 13). However, you can fill out the missing portions of
the C code in a way that it will have equivalent behavior to the assembly code.

IPractice PrOBIEIY 3,26 (sOlution Pade 336V, s
un_a has the following overall structure:
long fun_a(unsigned long x) {
long val = 0;
while ( ... ) &

}

return ...;

}
The cce C compiler generates the following assembly code:

long fun_a(unsigned long x)
x in Jrdi
fun_a:
movl $0, %eax
jmp L&
.L6:
xorq %rdi, %rax
shrq %rdi Shift right by 1
.L5:
testq Y%rdi, %rdi
jne .L6
andl $1, %eax
ret

1
2
3
4
5
6
7
8
9

e —
——

Reverse engineer the operation of this code and then do the following:
A. Determine what loop translation method was used.
B. Use the assembly-code version to fill in the missing parts of the C code.
C. Describe in English what this function computes.

For Loops

The general form of a £or loop is as follows:

for (init-expr; testexpr; update-expr)
body-statement
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The Clanguage standard states (with one exception, highlighted in Problem 3.29)
that the behavior of such a loop is identical to the following code using a while
loop:

[nit-expr;

while (test-expr) {
body-statement
update-expr;

The program first evaluates the initialization expression init-expr. It enters a
loop where it first evaluates the test conditian tese-expr, exiting if the test fails, then
executes the body of the loop body-statement, and finally evaluates the update
expression update-expr.

The code generated by Gcc for a for loop then follows one of our two trans-
lation strategies for while loops, depending on the optimization level. That is, the
jump-to-middle strategy yields the goto code

init-expr;

goto test;
loop:

body-statement

update-expr;
tast:

t = fest-expr;

if (%)

goto loop;

while the guarded-do strategy yields

init-expr;
t = test-expr;
if (1t)
goto dons;
loop:
body-statement
update-expr;
t = test-expr;
if (v)
goto loop,
done:

As examples, consider a factorial function written with a for loop:

long fact_for(long n)
{

long i;

long result = 1;

229
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for (i = 2:°i <= n; i++)
result *= i;
return result;

As shown, the natural way of writing a factorial function with a for loop is
to multiply factors from 2 up to n, and so this function is quite different from the
code we showed using either a while or a do-while loop.

We can identify the different components of the for loop in this code as
follows: . .
init-expr i=2
test-expr i<=mn
update-expr ir+
body-statement ~ Tesult *=1; 3

Substituting these components into the template we have shown to transform a
for loop into a while loop yields the following:

long fact_for_while(long n)
{
long i = 2;
long result = 1;
while (i <= n} {
rasult *= i;
i++;
}
return result;

}

Applying the jump-to-middle transformation to the while loop then yields the
following version in goto code:

long fact_for_jm_goto(long n)
{

long i = 2;

long result = 1;

goto test;
loop:

result *= 1i;

i++;
test:

if (i <= 1)

goto loop;
return result;
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Indeed, a close examination of the assembly code produced by ccc with
command-line option ~Og closely follows this template:

long fact_for(long n)

n in Xrdi

fact_for:
movl $1, Yeax Set result = 1
movl $2, Yedx Sat i = 2
jmp .L8 Goto test

.L9: loop:
imulq  %rdx, %rax Compute result *= i
addq $1, Yrdx Increment 1

.L8: . test:
cmpq %rdi, %rdx Compare i:n
jle L9 If <=, goto loop
rep; ret Return

Practice Probleny 3:27-(solution Daae 336) . . & ey
Write goto code for fact_for based on first transforming it to a while loop and
then applying the guarded-do transformation.

We see from this presentation that all three forms of loops in C—do-while,
s while, and for—can be translated by a simple strategy, generating code that con-
tains one or more conditional branches. Conditional transfer of control provides
the basic mechanism for translating loops into machine code.

n Y " ® R A A i ki ) o £ M £
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A function fun_b has the following overall structure:

long fun_b{unsigned long x) {

fi long val = 0;

E long i;

- for ( ... ; ... ; ... )<
3

e ¥

return val;

The cee C compiler generates the following assembly code:

long fun_b(unsigned long x}
x in jrdi

1 fun_b:

2 novl $64, Yedx

231
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3 movl $0, %eax

4 .L10:

5 movq Yrdi, %rcx

6 andl $1, %ecx

7 addg %rax, Yrax

8 orqg Yrcx, fhrax

9 shrq ¥rdi Shift right by 1
10 subg $1, %rdx

1 jne’ .L10

12 rep; ret

L

Reverse engineer the operation of this code and then do the following:

A. Use the assembly-code version to fill in the missing parts of the.C coc&le.

B. Explain why there is neither an initial test before the loop nor an initial jump
to the test portion of the loop.

. Describe in English what this function computes.

Executing a continue statement in C causes the program to jump to the end of
the current loop iteration. The stated rule for translating a for loop into a while
loop needs some refinementwhen dealing with continue statements. Forexample,
consider the following code: h, -

/* Example of for loop cop;g%ning a gontinue SQapemgn: */
/% Sum even numbers between 0 and 9 */
long sum = 0;
long i; w!
for (i = 0; i < 10; i++): { d

if 1&1)

continue;

gum += 1i;

}
A. What would we get if we naively applied our rule for translating the for loop

into a while loop? What would be wrong with this code?

B. How cotld you replace the continue statement with a goto statement to
ensure that the while loop correctly duplicates the behavior of the forloop?

3.6.8 Switch Statements

A switch statement provides a multiway branching capability based on the value
of an integer index. They are particularly useful when dealing with tests where
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there can be a large number of possible outcomes. Not only do they make the C
code more readable, but they also allow an efficient implementation using a data
structure called a jump table. A jump table is an array where entry{ is the address of
acode segment implementing the action the program should take when the switch
index equals /. The code performs an array reference into the jump table using the
switchindex to determine the target for a jump instruction. The advantage of using
a jump table over a long sequence of if-else statements is that the time taken to
perform the switch is independent of the number of switch cases. Gee selects the
method of translating a switch statement based on the number of cases and the
sparsity of the case values. Jump tables are used when there are a number of cases
(e.g., four or more) and they span a small range of values.

Figure 3.22(a) shows an example of a C switch statement. This example has a
number of interesting features, including case labels that do not span a contiguous
range (there are no labels for cases 101 and 105), cases with multiple labels (cases
104 and 106), and cases that fai! through to other cases (case 102) because the code
for the case does not end with a break statement.

Figure 3.23 shows the assembly code generated when compiling switch_eg.
The behavior of this code is shown in C as the procedure switch_eg_impl in
Figure 3.22(b). This code makes use of support provided by Gee for jump tables,
as an extension to the C langvage. The array jt contains seven entries, each of
which is the address of a block of code. These locations are defined by labels in
the code and indicated in the entries in jt by code pointers, consisting of the labels
prefixed by &&. (Recall that the operator ‘¥’ creates a pointer for a data value. In
making this extension, the authors of Goc created a new operator &% to create
a pointer for a code location.) We recommend that you study the C procedure
switch_eg_impl and how it relates to the assembly-code version.

QOur original C code has cases for values 100, 102--104, and 106, but the switch
variable ncan be an arbitrary integer. The compiler first shifts the range to between
0 and 6 by subtracting 100 from n, creating a new program variable that we call
index in our C version. It further simplifies the branching possibilities by treating
index as an unsigned value, making use of the fact that negative numbers in a
two’s-complement representation map to large positive numbers in an unsigned
representation. It can therefore test whether index is outside of the range 06
by testing whether it is greater than 6. In the C and assembly code, there are
five distinct locations to jump to, based on the value of index. These are loc_A
(identified in the assembtly code as ,13), loc_B (.L5), loc_C (.L6), Loc_D (.L7),
and loc_def (.L8), where the latter is the destination for the default case. Each
of these labels identifies a block of code implementing one of the case branches.
Inboth the C and the assembly code, the program compares index to 6 and jumps
to the code for the default case if it is greater.

The key step in executing a switch statement is to access a code location
through the jump table. This occurs in line 16 in the C code, with a goto statement
that references the jump table jt. This computed goto is supported by Gcc as an
extension to the C language. In our assembly-code version, a similar operation
occurs on line 5, where the jmp instruction’s operand is prefixed with ‘#’, indicating
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{a) Switch statement (b) Translation into extended C

void switch_eg(lofig x, leng n, void switch_eg_impl(long x, long m,

long *dest)
{

long val = Xx;
switch (n) {

case 100:
val *=
break;

case 102:
val += 10;
/* Fall through %/

case 103:
val += 11;
break;

case 104:

case 106:
val *=
break;

default:
val = 0;
¥

*dest = val;

{

loc_C:

long *dest)

/* Table of code pointeré */

static void *jt[7] = {

¥ ghloc_A, ZEloc_def, %&loc B,
d%loc_C, k&loc D, &kloc_def,
k&loc_D

};

unsigned’ long index = n < 100;

long val; l'

if (index > 6)

goto loc_def;
/* Multiway branch #/
goto *th%ndex];

loc'A: /* Case 100 */

val = x * 13;
goto done;

loc_B: /* Case 102 x/

x =x + 10;

/* Fall through */

P 7% Case 103 */
val = x + 11;

lgoto done;

loc_D: /% Cases 104, 106 */

val = x * X;

goto doney
Toé_def: /* Default case */
=
val = O;
done:
*degt' & val;  _|

} at L

1
Figure 3.22 Example switch statement and its translation into extended C. The translation shows the
structure of jump table jt and how it is accessed. Such.tables are supported by GCC ag.an extension to the C
language.

an indirectjump, and the operand specifies amemory lo¢ation indexed by register
Yeax, which holds the value of index. (We will see in Section 3.8 .)how array
references are translated into machine code.) .

Our C code declares thé jump, table as-an array of seven elements, each
of which is a pointer to a code location. These elements span values 0-6 of
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¥ in Zrdi, n in Yrsi, dest in Yrdx
. switch_eg:

subq $100, Yrsi

<mpq $6, Yrsi

ja .L8
jmp *.L4(,%rsi,8)
.L3:

leaq (%rdi,%rdi,2), Yrax
leag (Yrdi,%rax,4), Yrdi

Jmp .L2
Lb:

addq $10, %rdi
12 .L6:
13 addg $11, Yrdi
14 jmp L2
15 L7
16 imulqg  %rdi, %rdi
17 jmp L2
18 .L8:
19 movl $0, Yedi
20 .L2:
b3l movq wrdi, (Yrdx)

Section 3.6

void switch_eg(long x, long n, long *dest)

Compute index = n-100
Compare index:6

If >, goto loc_def
Goto *jg[index]

loc_A:

3%x

val = 13*x

Goto done
loc_B:

X =x + 10
loc_C:

val = x + 11

Goto done
loc_D:

val = x + x +

«Goto done
loc_def:

val = 0
done:

*dest = val

Return

Figure 3.23 Assembly code for switch statement example in Figure 3.22,

index, corresponding to values 100-106 of n. Observe that the jump table handles
duplicate cases by simply having the same code label (loc_D) for entries 4 and 6,
and it handles missing cases by using the label for the default case (loc_def) as

entries 1 and 5.

In the assembly code, the jump table is indicated by the following declarations,

to which we have added comments:

10 .quad  .L7

Align address to multiple of 8

1 .section .rodata

2 .align 8

3 L4:

4 -quad .L3 Case 100: loc_A

5 .quad .L8 Case 101: loc_def
6 .quad .L5 Case 102: loc_B

7 -quad L6 Case 103: loc_¢

8 .quad L7 Case 104: loc_D

9 .quad .L8 Case 105: loc_def

Casa 106: loc_D

Control
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These declarations state that within the segment of the object-code file called
.rodata (for “read-only data”), there should be a sequence of seven “quad” (8-
byte) words, where the value of each word is given by the instruction address :
associated with the indicated assembly-code labels (e.g., .L3). Label .L4 marks i
the start of this allocation. The address associated with this label serves as the '
base for the indirect jump (line 5).

The different code blocks (C labels 1oc_A through loc.D and loc_def) im-
I plement the different branches of the switch statement. Most of them simply
compute a value for val and then go to the end of the function. Similarly, the
assembly-code blocks compute a value for register %rdi and jump to theposition
indicated by label .L2 at the end of the function. Only the code for case label 102
does not follow this pattern, to account for the way the code for this'case falis
through to the block with label 103 in the original C code. This is handled in the
assembly-code block starting with label .15, by omitting the jmp instruction at
the end of the block, so that the code continues execution of the next block. Simi-
larly, the C version switch_eg_impl has no goto statement at the end of the block
starting with label loc_B.

Examining all of this code requires careful study, but the key point is to see
that the use of a jump table allows a very efficient way to implement a multiway
branch. In our case, the program could branch to five distinct locations with a
single jump table reference. Even if we had a switch statement with hundreds of
cases, they could be handled by a single jump table access.

In the C function that follows, we have omitted the body of the switch statement.
i In the C code, the cade labels did not span a contigugus range, and some cases had
multiple labels.

void switch2{long x, long ¥dest) { |
s long val = 0;
switch (x) {

Body of switch statement omitted

| Y ,

E *dest = val;

: In compiling the function, Gce generates the assembly code that follows for ‘
Lo : the initial part of the procedure, with variable x in %rdi: 3

x in Zrdi

switch2:
addq $1, Yrdi
cmpy $8, Yrdi [
ja L2 ' ‘
jmp *.L4(,%rdi,8)

void switch2(long x, long *dest) ‘

th b w N =
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It generates the following code for the jump table:

1 L4
2 .quad .L9
3 .quad .L5
4 .quad  .L6
5 .quad L7
: & .quad L2
\ 7 -quad L7
8 .quad L8
\ 9 .quad  .L2
.quad .L&

(=]

Based on this information, answer the following questions:

A. What were the values of.the case labels in the switch statement?
B. What cases had multiple labels in the C code?
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For a C function switcher with the general structure

ad

void switcher(long a, long b, long c, long *dest)
{
long val;
switch(a) {
case ... __: /* Case A %/
c=__
/% Fall through */
case : /* Case B */
val = e}
break;
case /* Case C %/
Case ot /* Case D %/
val =
break;
case ___ /* Case E */
val = .}
break;
default:
val =

¥

*dest = val;

}

Gce generates the assembly code and jump table shown in Figure 3.24.
Fill in the missing parts of the C code. Except for the ordering of case labels
€ and D, there is only one way to fit the different cases into the template.
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(a) Code

void switcher{long a, long b, long ¢, long *dest}
a in Yrsi, b in ¥rdi, ¢ in ¥rdx, d in frcx
switcher:
cmpq $7, %rdi
ja L2
jmp *.L4(,%rdi,8)
.section .rodata
LT
xorq $15, %rsi
movq Yrsi, %rdx
L3:
leaq  112(%rdd), %rdi
jmp L6
.L5:
leaq (Yrdx,%rsi), %rdi
salq $2, Yrdi
jmp L6
.L2:
movq Yrsi, %rdi
.L6:
movq %rdi, (Yrex)
20 ret

(b) Jump table

.L4:
.quad .L3
.quad .L2
.quad .LE
.quad L2
.quad .L6
.quad .L7
.quad .L2
.quad .L&
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Figure 3.24 Assembly code and jump table for Problem 3.31,

3.7 Procedures

£

Procedures are a key abstraction in software. They provide a way to package code
that implements some functionality with a designated set of arguments and an
optional return value. This function can then be invoked from different pointsin
a program. Well-designed software uses procedures as an abstraction mechanism,
hiding the detailed implementation of some action while providing a clear and ;
concise interface definition of what values will be computed and what effects |
the procedyre will have on the program state. Procedures come in many guises §
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in different programming languages—functions, methods, subroutines, handlers,
and so on—but they all share a peneral set of features. |

There are many different attributes that must be handled when providing
machine-level support for procedures. For discussion purposes, suppose proce-
dure P calls procedure @, and ( then executes and returns back to P. These actions
involve one or more of the following mechanisms:

S

Passing control, The program counter must be set to the starting address of the
code for Q upon entry and then set to the instruction in P following the
call to § upon return.

Passing data. P must be able to provide one or more parameters to [, and Q must
be able to return a value back to P.

T ——

Allocating and deallocating memory. Q may need to allocate space for local
variables when it begins and then free that storage before it returns,

! The x86-64 implementation of procedures involves a combination of special

4 instructions and a set of conventions on how to use the machine resources, such as
the registers and the program memory. Great effort has been made to minimize
the overhead involved in invoking a procedure. As a consequence, it follows what

' can be seen as a minimalist strategy, implementing only as much of the above set
of mechanisms as is required for each particular procedure. In our presentation,
we build up the different mechanisms step by step, first deseribing control, then
data passing, and, finally, memory management.

T A T v ——

3.7.1 The Run-Ttme Stack

A key feature of the procedure-calling mechanism of C, and of most other lan-
guages, is that it can make use of the last-in, first-out memory management disci-
pline provided by a stack data structure. Using our example of procedure  calling
procedure Q, we can see that while Q is executing, P, along with any of the proce-
dures in the chain of calls up to P, is temporarily suspended. While Q is running,
onlyit will need the ability to allocate new storage for its local variables or to set up
acall to another procedure. On the other hand, when Q returns, any local storage it
has allocated can be freed. Therefore, a program can manage the storage required
by its procedures using a stack, where the stack and the program registers store
the information required for passing control and data, and for allocating memeory.
As P calls Q, control and data information are added to the end of the stack. This
information gets deallocated when P returns.

As described in Section 3.4.4, the x86-64 stack grows toward lower addresses !
and the stack pointer %rsp points to the top element of the stack. Data can be
stored on and retrieved from the stack using the pushq and popq instructions. |
Space for data with no specified initial value can be allocated on the stack by simply
decrementing the stack pointer by an appropriate amount. Similarly, space can be
deallocated by incrementing the stack pointer.

When an x86-64 procedure requires storage beyond what it can hold in reg-
isters, it allocates space on the stack. This region is referred to as the procedure’s

o A P—— —
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Figure 3.25
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stack frame. Figure 3.25 shows the overall structure of the rin-time stack, includ-
ing its partitioning into stack frames, in its mest general form. The frame for the
currently executing procedure is always at'the top of the stack. When procedure P
calls procedure @, it will push the return address onto the’stack, indicating where
within P the program should resume execution once Q returns. We consider the
return address to be part of P’s stack.frame, since it holds state relevant to P. The
cade for Q allocates the space required for its stack frame by extending the cur-
rent stack boundary. Within that space, it can save the values of registers, allocate
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space for local variables, and set up arguments for the procedures it calls. The
stack frames for most procedures are of fixed size, allocated at the beginning of
the procedure. Some procedures, however, require variable-size frames. This issue
is discussed in Section 3.10.5. Procedure P can pass up to six integral values (i.e.,
pointers and integers) on the stack, but if Q requires more arguments, these can
be stored by P within its stack frame prior to the call.

In the interest of space and time efficiency, x86-64 procedures allocate only
the portions of stack frames they require. For example, many procedures have
six or fewer arguments, and so all of their parameters can be passed in registers.
Thus, parts of the stack frame diagrammed in Figure 3.25 may be omitted. Indeed,
many functions do not even require a stack frame. This occurs when all of the local
variables can be held in registers and the function does not call any other functions
(sometimes referred to as a leaf procedure, in reference to the tree structure of
procedure calls). For example, none of the functions we have examined thus far
required stack frames,

3.7.2 Control Transfer

Passing control from function P to function Q involves simply setting the program
counter (PC) to the starting address of the code for . However, when it later
comes time for ( to return, the processor must have some record of the code
location where it should resume the execution of P. This information is recorded
in x86-64 machines by invoking procedure Q with the instruction call §. This
instruction pushes an address A onto the stack and sets the PC to the beginning
of Q. The pushed address A is referred to as the return address and is computed
as the address of the instruction immediately following the call instruction. The
counterpart instruction ret pops an address A off the stack and sets the PC to A.

The general forms of the call and ret instructions are described as follows:

Instruction Description
call Label Procedure call

call =*Operand Procedure call

ret, Return from call

(These instructions are referred to as callq and retq in the disassembly outputs
generated by the program oBinump. The added suffix ‘g’ simply emphasizes that
these are x86-64 versions of call and return instructions, not 1A32. In x86-64
assembly code, both versions can be used interchangeably.)

The call instruction has a target indicating the address of the instruction
where the called procedure starts. Like jumps, a call can be either direct or indirect.
In assembly code, the target of a direct call is given as a label, while the target of
an indirect call is given by ‘*’ followed by an operand specifier using one of the
formats described in Figure 3.3.
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{a) Executing call (b) After call (c) After ret

Figure 3.26 [lllustration of call and ret functions. The.call instruction transfers control to the start of a,
function, while the ret instruction returns back to the instruction following the call.

Figure 3.26 illustrates the execution of the call and ret instructions for the
multstore and main functions introduced in Section 3.2.2. The following are
excerpts of the disassembled code for the two functions:

Beginning of function multstore

0000000000400540 <multstore>.
400540: 53 push  Yrbx
400541: 48 89 d3 mov %rdx, hrbx

Return from functicn multstore

40054d: «c3 retq

Call to multstore from main
400563: e8 d8 .£f ff If callg 400540 <multstore>
400668: 48 8b 54 24 08 mov 0x8 (Yirsp) , hrdx

In this code, we can see that the call instruction with address 0x400563 in
main calls function multstore. This status is shown in Figure 3.26(a), with the
indicated values for the stack pointer %rsp and the program counter Zrip. The
effect of the call is to push the return address 0x400568 onto the stack and to jump
to the first instruction in function multstore, at address 0x0400540 (3.26(b)).
The execution of function multstore continues until it hits the ret instruction
at address 0x40054d. This instruction pops the value 0x400568 from the stack
and jumps to this address, resuming the execution of main just after the call
instruction (3.26(c)).

As a more detailed example of passing control to and from procedures, Figure
3.27(a) shows.the disassembled code fortwo functions, top and leaf, as well as
the portion.of code in function main where top gets called. Each instruction is
identified by labels L1-L2 (in leaf), T1-T4 (in top), and M1-M2 in main. Part (b)
of the figure shows a detailed trace of the code execution, in which main calls
top(100), causing top to call leaf (95). Function leaf retirns 97 to top, which
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{a) Disassembled code for demonstrating procedure calls and returns

bisassembly of leaf(long yJ}

¥ in Ardi
1 0000000000400640 <leaf>:
I 2 400540: 48 84 47 02 lea 0x2 (¥rdi) ,%rax Li: z+2
\ 3 400544: <3 retq L2: Return
4 0000000000400545 <top>:
Disassembly of top(long x}
x in frdi
. 5 400545: 48 83 ef 05 sub $0x%5,%rdi Ti: x-5
6 400549: eB f2 £ff ff ff callq 400540 <leaf> T2: Call leaf(x-5)
\ 7 40054e: 48 01 cO add %rax,jrax T3: Double result
8 400851: «c3 retqg T4: Returp
Call to top from function main
\ 9 40065b: e8 eb ff ff ff callq 400545 <top> M1: Call top(100)
10 400560: 48 89 ¢2 mov rax,irdx M2: Resume
{b) Execution trace of example code
Instruction State values (at beginning)
' Label PC Instruction %rdi Y%rax %rsp sfrsp  Description
! M1 0x40055b callg 100 — Ox7E£fffE£feB820 — Call top(100)
T1 0x400545 sub 100 — Ox7Tfffffffe818 0x400560 Entry of top
T2 0%400549 callg 95 —  OX7TIffffffes818 0x400560 Call leaf (95)
11 0x400640 1lea 95 — Ox7fffffffe810 0x40054e Entry of leaf
: L2 0x400544 retq — 97 Ox7Tfffffffe810 0x40054e Return 97 from leaf
' T3 0x40054e add — 97 Ox7iffffffa818 0x400560 Resume top
T4 0x400551 retg — 194  Ox7Effffffe818 0x400660 Return 194 from top
M2 0x400660 mov — 194 Ox7fffffffe820 — Resume main

Figure 3.27 Detailed execution of program involving procedure calls and returns. Using the stack to
store return addresses makes it possible to return to the right point in the procedures.

then returns 194 to main. The first three columns describe the instruction being
executed, including the instruction label, the address, and the instruction type. The
next four columns show the state of the program before the instruction is executed,
including the contents of registers %rdi, %rax, and %rsp, as well as the value at
the top of the stack. The contents of this table should be studied carefully, as they

_—-—————
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demonstrate the important role of the run-time stack in managing the storage
needed to support procedure calls and returns.

Instruction L1 of 1eaf sets {rax to 97, the value to be returned. Instruction L2
then returns. It pops 0x400054e from the stack. In setting the PC to this popped
value, control transfers back to instruction T3 of top. The program has successfully
completed the call to leaf and returned to top.

Instruction T3 sets %rax to 194, the value to be returned from top. Instruction
T4 then returns. It pops 0x4000560 from the stack, thereby setting the PC to
instruction M2 of main. The program has successfully completed the call to top
and returned to main. We see that the stack pointer has also been restored to
Ox7iffffffe820, the value it hagd before the call to top.

We can see that this simple mechanism of pushing the r¢turn address onto
the stack makes it possible for the function tolater return t¢ the proper point
in the program. The standard gall/return mechanism of C (and of most program-
ming languages) conveniently ‘matches the last-in, first-out memory management
discipline provided by a stack.

The disassembled codé for two functions first and last is shown below, along
with the code for a call of first by function main: .

Disassembly of last(long u, long v)
w in Yrdi, v in Xrsi

1 Q000000000400540 <last>:

2 400540: 48 89 {8 mov %rdi,frax Li: u

3 400543: 48 0f af <6 imml  Yrsi,drax L2: uwv

4 400647: <¢3 retq L3: Return

Disassembly of last(long x)
x in Zrdi

5 0000000D000400548 <first>:
6 400548: 48 8d 77 01 lea  Ox1(%rdi),%¥si  F1: x+1

7 40054c: 48 83 ef 01 sub = $0x1,%rdi F2: x-1

8 400550: e8 eb ff ff ff callq. 400540 <last> F3: Call last(x-1,x+1)
9 400585: 13 <3 repz retq F4: Return

400560: o8 e3 ff ff ff callg 4005648 <first> Mi: Call first(10)
11 400565: 48 89 c2 mov Yirax,Yirdx M2: Resume

Each of these instructions is given a label, similar to those in Figure 3.27(a). A
Starting with the calling of first (10) by main, fill in the following table to trace ‘ ‘
instruction execution through to the point where the program returns back to iR
main.
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Instruction State values (at beginning)

Label PC Instruction %rdi  Jrsi  Yrax 4rsp

#jrsp Description

M1 0x400560 callq 10 — — Ox7TLiffff{eB820 -—

Call first (10)

a3z

L1

L2

F4

M2

3.7.3 Data Transfer

In addition to passing control to a procedure when called, and then back again
when the procedure returns, procedure calls may involve passing data as argu-
ments, and returning from a procedure may also involve returning a value. With
x86-64, most of.these data passing to and from procedures take place via regis-
ters. For example, we have.already seen numerous examples of functions where
arguments are passed in registers %,rdi, %rsi, and others, and where values are re-
_ turned in register %rax. When procedure P calls procedure G, the code for P must
) firstcopy the arguments into the proper registers. Similarly, when Q returns back
i toP,the code for P can‘access the returned value in register %rax. In this section,
/ we explore these conventions in greater detail.
\i With x86-64, up to six integral (i.e., integer and pointer) arguments can be
passed via registers. The registers are used in a specified order, with the name
“_ used for a register depending on the size of the data type being passed. These are
shown in Figure 3.28. Arguments are allocated to these registers according to their

Argument number

} Operand
& size (bits) 1 2 3 4 5 6
‘ : 64 Yrdi  Yrsi  Yrdx  Y%rex %r8 %r9
] 32 %edi %esi Yedx %ecx %red %rod
16 %di %si %dx %ex %r8w Yrov
8 Adil  %sil %d1 el %rsb  %rob

Figure 3.28 Registers for passing function arguments. The registers are used in a
specified order and narmed according to the argurment sizes.
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ordering in the argument list. Arguments smaller than 64 bits can be accessed using
the appropriate subsection of the 64-bit register. For example, if the first argument
is 32 bits, it can be accessed as %edi.

When a function has more than six integral arguments, the other ones are
passed on the stack. Assume that procedure P calls procedure Q with » integral 4
arguments, such that » > 6. Then the code for P must allocate a stack frame with
enough storage for arguments 7 through », as illustrated in Figure 3.25. It copies
arguments 1-6 into the appropriate registers, and it puts arguments 7 through »
onto the stack, with argument 7 at the top of the stack. When passing parameters ;
on the stack, all data sizes are rounded up to be multiples of eight. With the E
3 arguments in place, the program can then execute a call instruction to transfer ;
3 control to procedure Q. Procedure Q can access its arguments via registers and
} possibly from the stack. If @, in turn, calls some function that has more than six
arguments, it can allocate space within its stack frame for these, as is illustrated
by the area labeled “Argument build area” in Figure 3.25.

As an example of argument passing, consider the C function proc shown in
Figure 3.29(a). This function has eight arguments, including integers with different
E: numbers of bytes (8, 4,2, and 1), as well as different types of pointers, each of which
is 8 bytes.

The assembly code generated for proc is shown in Figure 3.29(b). The first
: six arguments are passed in registers. The last two are passed on the stack, as
i documented by the diagram of Figure 3.30. This diagram shows the state of the
stack during the execution of proc. We can see that the return address was pushed
onto the stack as part of the procedure call. The,two arguments, therefore, are
at positions 8 and 16 relative to the stack pointer. Within the code, we can se¢
that different versions of the APD instruction are used according to the sizes of the
operands: addq for a1 (1ong), add1 for a2 (int), addw for a3 (short), and addb for
a4 (char). Observe that the movl instruction of line 6 Teads 4 bytes from memory,
the following addb instruction only makes use of the low-order byte.

Iee FroBlem a3 sohidonna0e 329 MR E S

A C function procprob has four arguments u, a, v, and b. Each is either a signed
number or a pointer to a signed number, where the numbers have different sizes.
The function has the following body:

*u += a;
*v += b;
return sizeof(a) + s@zeof(b);

It compiles to the following x86-64 code:

procprob:
movslg %edi, %rdi
addg %rdi, (hrdx)
addb hsil, (%rex)

bW =
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(a) C code . |

void proc(long at, long *alp,
int azZ, ins.  %alp,
short a3, ghort *a3lp,
char a4, char *adp)

{ {
*alp += ai;
; *a2p += af;
*a3p += a3,
*adp += a4,
}

(b) Generated assembly code

void proc(al, alp, a2, a2p, a3, adp, a4, adp)
Arguments passed as follows:

al in %rdi (64 bits)

alp-in ¥rei (64 bits)

a2 in Yedx (32 bits)

aZp in Frex (64 bits}

a3 iIn ¥r8w (16 bits)

alp in %rg {64 bits)

a4 at frsp+8 { 8 bits)

adp at }rsp+if (64 bits)}

1 ~proc:

_ 2 movq 18(4rbp), Jrax  Fetch adp (54 bits)
3 ‘addq Yrdi, (%rai) *alp += al (64 bits)
E 4 addl  Jedx, (Yrex) *aZp += a2 (32 bits)
E s addw  “%rsw, (%r9) *adp += a3 (16 bits)
k¢ movl 8(%rsp), %edx Fatch a4 ( & bits)
E addb  %dl, (Yrax) *adp += ad ( @ bits)
8 ret Return £ F

Figure 3.29 example of function with multiple arguments of different types.
Arguments 1-6 are passed in registers, while arguments 7-8 are passed on the stack,

Figure 3,30

Stack frame structure for 16

function proc. Arguments 8
¥ a4 and adp'are passed on ‘ Stack poi
4 . pointer
E  the stack. Return address 0 4-‘__'/.1:'3}3
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5 movl $6, %eax
ret

Determine a valid ordering and types of the four parameters. There are two
correct answers.

3.7.4 Local Storage on the Stack .

Most of the procedure examples we have seen 5o far did not require any local
storage beyond what could be held in registers. At times, however, local data must
be stored in memory. Common cases of this include these:

e There are not enough registers to hold all of the local data.

* The address operator ‘¢’ is applied to a local variable, and hence we must be
able to generate an address for it.

e Some of the local variables are arrays ot structures and hence must be accessed
by array or structure references. We will-discuss this possibility'when we
describe how arrays and structures are allocated.

Typically, a procedure allocates space on the stack frame by decrementing the
stack pointer. This results in the portion of the stack frame labeled “Local vari-
ables” in Figure 3.25.

As an example of the handling of the address operator, consider the two
functions shown in Figure 3.31(a). The function swap_add swaps the two values
designated by pointers xp and yp and also returns the sum of the two values. The
function caller creates pointers to local variables argl and arg?2 and passes these
to swap_add. Figure 3.31(b) shows how caller uses a stack frame to implement
these local variables. The code for caller starts by decrementing the stack pointer
by 16; this effectively allocates 16 bytes on the stack. Letting S denote the value of
the stack pointer, we can see that the code computes &arg2 as S 4+ 8(line 5), &argl
as S (line 6). We can therefore infer that local variables argl and arg2 are stored
within the stack frame at offsets O and 8 relative to the stack pointer. When the call
to swap_add completes, the code fof caller then retrieves the two values from
the stack (lines 8-9), computes their difference, and multiplies this by the value
returned by swap_add in register %rax (line 10). Finally, the function deallocates
its stack frame by incrementing the stack pointer by 16 (line 11.) We can gee with
this example that the run-time stack provides a simple mechanism for allgcating
local storage when it is required and deallocating it when the function completes.

As a more complex example, the function call_proc, shown in Figure 3.32,
illustrates many aspects of the x86-64 stack discipline. Despite the length of this
example, it is worth studying carefully. It 'shows a function that must allocate
storage on the stack for local variables, as well as to pass values to the 8-argument
function proc (Figure 3.29). The function creates a stack frame, diagrammed in
Figure 3.33.

Looking at the assembly code for call_proc (Figure 3.32(b)), we can see
that a large portion of the code (lines 2-15) involves preparing to call function
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(a) Code for swap_add and calling function

long swap_add(long *xp, long *yp)
{

long x = =xp;

long y = *yp;

*Xp = y;

*Yp = X5

return x + y;

b

long caller()
{
long argl = 534;
long arg2 = 1057;
long sum = swap_add(kargl, Sarg2);
long diff = argl - arg2;
Teturn sum * diff;

1
(b) Generated assembly code for calling function

long caller()

1 caller:

2 subg $16, Yrsp Allocate 16 bytes for stack frame
3 movyg $534, (Yrsp) Store 534 in argl

4 movq $1057, 8(%rsp) Store 1057 in arg?

5 leaq 8(Yrsp), %rsi Compute &arg? as second argument
6 movq %rsp, %rdi Compute fargl as first argument
7 call swap_add Call swap_add(&argl, &arg2)

B movy (%rsp), %rdx Get argt

9 subq 8(irsp), Yrdx Compute diff = argl - arg?

i0 imulq  Yrdx, Yrax Compute sum * diff

1 addq $16, %rsp Deallocate stack frame

12 ret Return

Figure 3.31 Example of procedure definition and call. The calling code must allocate
a stack frame due to the presence of address operators,

proc. This includes setting up the stack frame for the local variables and function
parameters, and for loading function arguments into registers. As Figure 3.33
shows, local variables x1-x4 are allocated-on the stack ‘and have different sizes,
Expressing their locations as offsets relative to the stack pointer, they occupy bytes
24-31 (1), 20-23 (x2), 18-19 (x3), and 17 (s3). Pointers to these locations are
generated by leaq instructions (lines 7, 10, 12, and 14). Arguments 7 (with value
4) and 8 (a pointer to the location of x4) are stored on the stack at offsets 0 and 8
relative to the stack pointer,
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(a) C code for calling function

long call_proc()
{
long x1 = 1; int x2 = 2;
short x3 = 3; char x4 = 43
proc(x1, &xl1, x2, ux2, x3, &x3, x4, kxd);
return (x1+x2)*(x3-x4);
}

(b) Generated assembly code

long call_proc(}
call_proc:
Set up arguments io proc
subg $32, %rsp Allocate 32-byte stack frame
novq $1, 24(%rsp) Store 1 in &x1
movl $2, 20(%rsp) Store 2 in &x2
movw $3, 18(%rsp) Store 3 in &x3
movb $a, 17(%rsp) Store 4 in &x4
leagq 17 (Yrsp), %rax Create &x4
movg Yrax, 8(%rsp) Store &xd as argument 8
movl $4, (Yrsp) Store 4 as argument 7
leaq 18(%rsp), %r9 Pass &x3 as argument &
movl $3, %rs8d Pass 3 as argument 5
leaq 20(%rsp), hrex Pass &x2 as argument 4
movl $2, %edx Pass 2 as argument 3
leagq 24 (%rsp), hrei Pass &x1 as argufent 2
movl $1, %edi Pass 1 as argument 1
Call proc
16 call proc
Retrieve changes.to memory
17 movslq 20(Y%rsp), %rdx Get x2 and cenvert tolong
18 addq 24 (%rsp), drdx Compute x1+x2
19 movswl 18(%rsp), %eax Gat x3 and convert to int
20 movsbl 17 (%rsp), %ecx Get x4 and convert to int
21 subl Ylecx, heax Compute x3-x4
22 cltq Convert to long
23 imalg  %rdx, %rax Compute (x1+x2) * (x3-x4)
24 addg $32, %rsp Deallocate stack frame
25 ret’ Return
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Figure 3.32 [Example of code to call function proc, defined in Figure 3.29. This code
creates a stack frame.
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Fgure 3.33 . Return address

Stack frame for function 32

call_proc. The stack x1 24

frame contains local %2 x3 | xdl”

variables, as well as two of 20 18] 17; 18

the arguments to pass to Argument 8 = &x4 8

function proc, AR T2 i

w0 o /> o Stack pointer

- %rsp
Argument 7/

When procedure proc is called, the program will begin executing the code
shown in Figure 3.29(b). As shown in Figure 3.30, arguments 7 and 8 are now
at offsets 8 and 16 relative to the stack pointer, because the return address was
pushed onto the stack.,

When the program returns to call_proc, the code retrieves the values of the
four local variables {lines 17-20) and performs the final computations. It finishes
by incrementing the stack pointer by 32 to deallocate the stack frame.

3.7.5 Local Storage in Registers

The set of program registers acts as a single resource shared by all of the proce-
dures. Although only one procedure can be active at a given time, we must make
sure that when one procedure (the caller) calls another (the callee), the callee does
not overwrite some register value that the caller planned to use later. For this rea-
son, x86-64 adopts a uniform set of conventions for register usage that must be
respected by all procedures, including those in program libraries.

By convention, registers %rbx, %rbp, and %ri12-%ri5 are classified as callee-
saved registers. When procedure P calls procedure Q, Q must preserve the values
of these registers, ensuring that they have the same values when Q returns to P as
they did when Q was called. Procedure { can preserve a register value by either not
changing it at all or by pushing the original value on the stack, altering it, and then
popping the old value from the stack before returning. The pushing of register
values has the effect of creating the portion of the stack frame labeled “Saved
registers” in Figure 3.25. With this convention, the code for P can safely store a
value in a callee-saved register (after saving the previous value on the stack, of
course), call Q, and then use the value in the register without risk of it having been
corrupted.

All other registers, except for the stack pointer %rsp, are classified as caller-
saved registers. This means that they can be modified by any function. The name
“caller saved” can be understood in the context of a procedure P having some local
data in such a register and calling procedure Q. Since @ is free to alter this register,
itis incumbent upon P (the caller) to first save the data before it makes the call.

Asanexample, consider the function P shown in Figure 3.34(a). It calls Q twice.
During the first call, it must retain the value of x for use later. Similarly, during
the second call, it must retain the value computed for Q(y). In Figure 3.34(b),

g‘ . e S S —
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(a) Calling function

long P(long x, long y)
{
long u = Q(y};
long v = Q{x);
return + v;

}
(b) Generated assembly code for the calling function

long P(long x, long y)
x in #rdi, y im %rsi
P: -
pushg  %rbp Save frbp
pushq  %rbx Save [rbx
subg $8, %rsp Align stack frame
movg %rdi, %rbp Save x
movg*  Y%rsi% -Yidi Move yMto first argument
call @ Call Q{y)
movq %rax, %4rbx Save result
novq %rbp, Ardi Move x to fikst argument il
call Q Call Q(x}
addq %rbx, %rax Add saved Q(y) to {(x)
addq $8, Yrsp Deallocate last part of stack
popq  drbx Restore Yrbx
popa %rbp’ Restore Arbp
ret

o I N ¥ N T N

-

Figure 3.34 Code demonstrating use of callee-saved registers. Value x must be
preserved during the first call, and value Q{y} must be preserved dyring the second.,

k] i .

we can see that-the code generated by, Gcc uses two callee-saved registers: %rbp
to hold x, and %rbx to hold the computed value of Q(y). At the beginning of the
function, it saves the values of these two registers on the stack (lines 2-3). It copies
argument x to %rbp before the first call'to (line 5). It copies the:result of this call
to *%rbx before the second call to  (Jline 8). At the end of the function (lines 13-
14), it restores the values of the two callee-saved registers by popping them off:the
stack. Note how they are popped in the reverse order from how they were pushed,
to account for the last-in Afirst-out discipline of a stack. v »

-y

code for the first part of P:

1
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long P(long x)

x in Ardi
1 P:
2 pushq %ri5
3 pushq Yrid
4 pushg  %ri3
5 pushq  %ri2
6 pushg  Jrbp
7 pushg  Yrbx
8 subg $24, Yrsp
9 move %rdi, %rbx
10 leag 1(%rdi), %rib
n leaq 2(%rdi), ¥%ri4d
12 leag 3(%rdi), %r13
13 leaq 4(%rdi), %ri2
14 leaq  5(%rdi), irbp
15 leag 6{%rdi}, %rax
16 movy %rax, (Yrsp)

17 leag T(hrdi), %rdx
18 movg  %rdx, 8(%rsp)
19 movl $0, Yeax

20 call q

A. Identify which local values get stored in callee-saved registers.
B. Identify which local values get stored on the stack.

C. Explain why the program could not store all of the local values in callee-
saved registers.

3.7.6 Recursive Procedures

The conventions we have described for using the registers and the stack allow
%86-64 procedures to call themselves recursively. Each procedure call has its own
private space on the stack,/dnd-so the local variables of the multiple outstanding
talls do not interfere with one another. Furthermore, the stack discipline naturally
provides the proper policy for aliocating local storage when the procedure is cailed
and deallocating it before returning.

Figure 3.35 shows both the C code and the ‘generated assembly code for a
recursive factarial functiol, We can see that the assembly code uses register %rbx
to hold the parameter n, after first saving the existing value on the stack (line 2)
and later restoring the value before returning (line 11). Due to the stack discipline,
and the register-saving conventions, we can be assured that when the tecursive call
to rfact (n-1) returns (line 9) that (1) the result of the call will be held in register
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(a) C code

long rfact(long mn)
{
long result;
if (n <= 1)
result = 1;
else
result = n * rfact(n-1);
return result;

}
(b) Generated assembly code

long rfact(long n)
n in Zrdi
rfact:
pushq  Yrbx Save Xrbx
movq Yrdi, Yrbx Store m in callee-saved register’

1

2

3

4 movl $1, %eax Set return value = 1
5 cmpq $1, Yrdi Compare n:i
6

7

8

9

jle .L35 If <=, goto done
leaq -1(%rdi), %rdi Compute n-1
call rfact Call rfact(n-1)
imulg Y%rbx, krax Multiply result by n
10 .L356: done:
1 popq hrbx Restore Z¥bx
12 ret Return

Figure 3.35 Code for recursive factorial program. The standard procedure handling
mechanisms suffice for implementing recursive functions.

%rax,and (2) the value of argument n will held in register %rbx. Multiplying these
two values then computes the desired result.

We can see from this example that calling a function reqursively proceeds just
like any other function.call. Our stack discipline provides a mechanism.where
each invocation of a functionthas its:own private.storage for state-information
(saved values: of the, return location and callee-saved registers). If need be, it
cart also provide storage forlocal variables. The stack discipline of allocation and
deallocation naturally matches the call-return ordering of functions: This method
of implementing function calls and returns even works for more complex patterns,
including mutual recursion ¢¢.g., when procedure P calls Q, which in turn calls P).

For a C function having the general structure
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|

™ 3
| long rfun(unsigned leng x) { |
| if { )
| return . .2 b

| aunsigned long nx = o
\ Tong rv = rfun{nx);
| return

[
|

.}

. Gce generates the following assembly code:

long rfun(unsigned long x)

| x in frdi T i
L i rfun: '
2 pushq  Zrbx

I3 rnovy %rdi, %rbx

u 4 movl %0, Yeax

LS testq 4rdi, %rdi

! 6 je L2

P 7 shrq $2, Yrdi

i call rfun

b9 addq Yrbx, Y%rax

10 L2

1 Popq 4rbx

112 ret

A. What value does rfun store in the callee-saved register %rbx?
|
B. Fill in-the missing expressions in the C code shown above:

e
|

bR

3.8 Array Allocation and Access

T
'Arrays in C are oge means of aggregating scal‘ar data into larggr data types. C
uses a particularly sunp]e implementation of arrays, and hence the translanpn
mto machine code is fairly straightforivard. One unusual feature of C is that we
ran generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into address computations in machine code.
1 Optimizing compilers are pArticularly good at simplifying the address compu-
iations used by array indexing, This can make the correspondence between the C
:ode and its translation into machine code somewhat difficult to decipher.
|

1.8.1 Basic Principles

lor data type T and integer constant N, consider a declaration of the form

' AIN;




t copy the resuit to register %eax. The allowed scaling fadtors 6f 1,2, 4, and 8 cover

Fill in the following table describing the element size, the total size, and the |
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Let us denote the starting location as x,. The declaration has two effects. First,
it allocates a contignous region of L - N bytes in memory, where L is the size (in
bytes) of data type 7. Second, it introduces an identifier A that can be used as
a pointer to the beginning of the array. The value of this pointer will be.x,. The
array elements can be accessed using an integer index ranging between 0 and N—1
Array element i will be stored at address x, + L.i.

As examples, consider the following declarations:

char Al12);
char *B[8];
int cl6];
double *D[5];

These declarations will generate arrays with the following parameters:

Array  Element size Total size Start address  Element {

4 1 12 X xy+1i
B 8 64 X xp + 8i
C 4 24 xc xg+ M
D 8 40 xp xp+ 8i

Array A consists of 12 single-byte (char) clements. Array C consists of 6 integers,
each requiring 4 bytes. B and D are both arrays of pointers, and hence the array
elements are 8 bytes each. '

The memory referencing instructions of x86-64 are designed to simplify array
access. For example, suppose E'is an array of values of fype int and we wish'to
evaluate E[1], where the address of E is stored in register %rdx and’i is stored in

register %rcx. Then the instruction

movl (%rdx,%rcx,4),keax

will perform the address computation xg + 4i, read that memory location, and

the sizes of the common primitive data types.
o f

Consider thetfollowing decldrations:

short S[71; 3
ghort  *T[3];
short #*U[B];
int v[8]l;
double #*W[4];

address of element i for each of these arrays.




Array  Elementsize  Totalsize  Startaddress  Elementi

~ - Xg
! xT'

Xy

Xy

= < g3

Xy ———

3.8.2 Pointer Arithmetic

C atlows arithmetic on pointers, where the computed value is scaled according to
the size of the data type referenced by the pointer. That is, if p is a pointer to data
of type 7, and the value of p is x;, then the expression p+i has value x, + L - i,
where L is the size of data type 7.

The unary operators ‘&’ and ‘*’ allow the generation and dereferencing of
pointf:rs ‘That is, for an expression Expr denoting some object, &Expr is a pointer
giving the address of the object. For an expressmn AExpr denoting an address,
*AExpr givés the value at that address. The expressmns Expr and =&Expr are
therefore equivalent. The array subscripting operation can be applied to both
arrays and pointers. The array reference A[i] isidentical to the expression * (A+1).
It computes the address of the ith array element and then accesses this memory
location.

Expanding on our earlier example, suppose the starting address of integer
array E and integer index i are stored in registers %rdx and %rcx, respectively.
The following are some expressions involving E. We also show an assembly-code
‘ implementation of each expression, with the result being stored in either register

%eax (for data) or register %rax (for pointers).

| Expression  Type Value Assembly code

' E int+ | X5 movl %rdx,%rax

| Ef0] int Mlxz} movl (rdx) ,%eax

I E[i] int M[xg + 4i] movl (%rdx,%rcx,4) ,%eax

| gE[2] int*  xg+8 leaq 8(Y%rdx) ,%rax

l‘ E+i-1 int = xg+ 4 —4 leaq —4{%rdx,%rcx,4) ,%rax

| *(E+i-3}) int Mixg +4i —12]  movl -12{¥%rdx,%rcx,4) ,%eax
| §E[i]-E long i movq frex, hrax

' In these examples, we see.that operations that return array values have type
 int, and hence involve 4-byte operations (e.g, movl) and registers (e.g.; %eax).
| Those that return pointers have type int #, and hence involve 8-byte operations
| (e.g., leaq) and registers (e.g., %rax). The final example shows that one can
| compute the difference of two pointers within the same data structure, with the

‘ result being data having type long and value equal to the difference of the two
| | addresses divided by the size of the data type.
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Pract leri3,37..45 L 3ATY L A # s v g T :
Suppose xg, the address of short integer array g, and long integer index i are stored
in registers %rdx and %rcx, respectively. For each of the following expressions, give
its type, a formula for its value, and an assembly-code implementation. The result
should be stored in register %rax if it is a pointer and register element %ax if it has

data type short.

Expression Type Value Assembly code

S+1 — e
s3] e e
&S[i] I PR e
S [4:“ i+1] 4 i
g+i-5 . DU

3.8.3 Nested Arrays \

The general principles of array allocation and réferencing hold even when we
create arrays of arrays. For example, the declaration

int Af5]1(31;
is equivalent to the declaration

typedef int row3_t[3];
row3_t A[B];

Data type row3_t is defined to be an array of three integers. Array A contains five
such clements, each requiring 12 bytes to store the three integers. The-total array
size is then 4 - 5. 3 = 60 bytes.

Array A can also be viewed as a two-dimensional array with five rows and
three columns, referenced as A[0] [0] through A[41[2]. The arrgy €lements are
ordered in memory in row-major order, meaning all‘elements of row 0, which
can be written A 0], followed by all elements of row 1 (A[11), and so on. This is
illustrated in Figure 3.36.

This ordering is & consequence of our nested declaration. Viewing A as an
array of five elements, each of which is an array of three int’s, we first have A[0], |
followed by A[11, arid so on.

To access elements of multidimensional arrays, the compiler generates codeto
compute the offset of the desired element and then uses one of the Mov instructions
with the start of the array as'the’ base address’and the (possibly scaled) offset as {
an index. In general, for an array declared as . “

T DIR]IC];

array element D[1] [3] is at memory address

&oli][j)=xp+ L(C-i+ J) 61|
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Figure 3.36 Row Element Addjess
Elements of array in ALO] | ALOI[0] | x,

row-major order, A[OTO1] | x, + 4
A

Afoj[21 | x, +8

AL1D (A1) (0] | x, + 12
ALY | X, + 16
Al1202] | x, + 20
AL2) | AL2)[0] | %, +24
AL2111] | x, + 28
A[21[2] | %, +32
A[3) [AL3] 0] | x, + 36
ALSI[1] | x, + 40
AT41[2] | x, + 44
Af4] | Al41[0] | x, + 48
Al41[1] | x, + 52
Al41[2] | x, +56,

e - 5.

where L is the size of data type T inbytes. As an example, consider the § x 3integer
array A defined earlier. Suppose x,, i, and j are in registers %rdi, %rsi, and hrdx,
respectively, Then array element A[i] [ 31 can be copied to register %eax by the
following code:

A in Jrdi, i in 4rsi, and j in Yrdx

leag (%rsi,%rsi,2), Yrax Compute 3
2 leag ('V.rdf,%rax,4) , hrax Compute x; + 12i
3 movl (Wrax,rdx,4), %eax Read' from M[x, + 12i + 4]

As can be seen, this code computes the element’s address as X+ 12i +4j =x, +
4(3i 4 j) using the scaling and addition capabilities of x86-64 address arithmetic.

Consider the follo
#define:

leng P[M][N];
long Q[NJ[M];

long sum”element (long i, long j) {
return P[i] [j]°+ Q[3I[4]1;
}

In compiling this program, ce generates the following assembly code:

259
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long sum_element(long i, long j)
i in ¥rdi, j in Xrsi

el ST e rE s y gyl

i sum_element:
2 leagq 0(,%rdi,8), %rdx
3 subg Yrdi, ¥%rdx
: 4 addq %rsi, drdx
: 5 leaq (%rsi,%rsi, ), Yrax
6 addg Yrax, %rdi
7 movq Q(, %rdi,8), Yrax
8 addg P(,%rdx,8), ¥rax
9 ret

e .

i Use your reverse engineering skills to determine the values of M and N based
i on this assembly code.

. l J 3.8.4 Fixed-Size Arrays

The C compiler is able to make many optimizations for code operating on mualti-

Iy
. 3 dimensional arrays of fixed size. Here we démonstrate some of the optimizations
\ | : made by cee when the optimization level is set with the flag -01. Suppose we
-k declare data type fix_matrix to be 16 x 16 arrays of integers as follows:
| - #define N 16
| I typedef int fix_matrix[N]N];

; (This example illustrates a good coding practice. Whenever a program uses some
. constant as an array dimension or buffer sjze, it is best to associate a name with
i ] it via a #define declaration, and then use this name consistently, rather than
: j the numeric value. That way, if an occasion ever arises to change the value, it
f can be done by simply modifying the #define declaration.) The code in Figore
‘ J 3.37(a) computes element i, k of the product of arrays 4 and B—that is, the.
| ! inper product of row i ‘from A-and column & from B. This product is given by
A ' the formula 3 4.y 4, - &4 Gce generates tode that we then recoded into
j C, shown as function fix_prod_ele_opt in Figure 3.37(b). This code contains
a number of clever optimizations. It removes the integer index j and gonverts all
J array references to pointer dereferences. This involves (1) gedérating'a pointer,

which we have named Aptr, that points to successive elements in row i of 4,
(2) generating a pointer, which we have named Bptr, that points to successive
elements in column k of B, and (3) generating a pointer, which we have, named
Bend, that equals the value Bptr will have when if is time to terminate the loop.
The initial value for Aptx is the address of the first element of row { of 4, given
by the C expression &A[1] [0]. The initial value for Bptr is the address of the first
J element of column & of B, given by the C expression &B[0] [k]. The value for Bend
is the index of what would be the (n + 1)st element in column j of B, given by the
C expression &B[N] [k].
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(a) Original C code

/* Compute i,k of fixed matrix product */

int fix prod_ele (fix_matrix A, fix_matrix B, long i, long k) {
long j;
int result = 0;

for (j = 0; j < N; j++)
result += A[1](j1 * B[j][k];

return result;

}
(b) Optimized C code

1 /* Compute i,k of fixed matrix product */

2 it fix_pfod_elé_opt(fix _matrix A, fix matrix B, long i, long k) {

3 int =Aptr = &A[i][0]; /* Points to elements in row i of A */
4 int *Bptr = &B[0] [k]; /* Points to elements in column k of B */
5 int *Bend = &B[N] (k] ; . /* Marks stopping point for Bptr */
3
7
8
9

*int result = Q;

do { /* No need for initial test */
result += *Aptr * *Bptr; /+ Add next product to sum %/
Aptr ++; /* Move Aptr to next column */
Bptr += N; /* Move Bptr to next row  */

} while (Bptr != Bend); /* Test for stopping point */

return result;

}

Figure 3.37 Original and optimized code to compute element /, k of matrix product
for fixed-length arrays. The compiler performs these optimizations automatically.

The following is the actual assembly code generated by Gec for function fix_
prod_ele. We see that four registers are used as follows: %eax holds result, %rdi
holds Aptr, %rcx holds Bptr, and %rsi holds Bend.

int fix_prod_ele_opt(fix_matrix A, fix_matrix B, long i, long k)

A in Yrdi, B in Yrsi, i in Xrdx, k in Yrcx

fix_prod_ele:
salq $6, Yrdx Compute 64 % i
addq hrdx, %rdi Compute Aptr = x, +64i = gA[i][0]
leaq (%rsi,%rcx,4), %rcx  Compute Bptr = xp+4k = &B[0OF [k}
leaq 1024 (Yrcx), Yrsi Compute Bend = xp+ 4k + 1024 = &BIN] [K]
movl $0, Yeax Set result = 0

L7 loop:
movl (Yrdi), %edx Read *Aptr
imull  (Yrex), Yedx Multiply by #Bptr
addl %edx, %eax 4dd to result

= - N = L " TS PU R N N
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n addgq $4, Yrdi _ Increment Aptr ++
12 addg $64, Yrecx Increpent Bptr += N
13 cmpq %rsi, ¥rcx Compare Bptr;Bend
14 jne LT If 1=, goto loap

15 rep; ret Rsturn

Use Equation 3.1 to explain h
Bptr, and Bend in the C code of Figure 3,37(b) (lines
computations in the assembly code generated for £ix_prod_sle (lines 3-5).

i

The following C code sets the diagonal elements of one of our fixed-size arrays to
val:

1
/% Set all diagondl eléménts to val */
void fix_set_diag(fix_matrix £, int val) {
long i;
for (i = 0; i < N; i++)
A[i1[i] = val;

When compiled with optimization level ~01, GCc generates the following
assembly code:

1 fix_set_diag:
void fix_set_diag(fix_matrix 4, int~val)
A ip Yrdi, val in"Jrsd
movl $0, Yeax
L13:
movl Yesi, (Yrdi,%rax)
addq $68, Yrax
cmpq $1088, Yrax
jne .L13
rep; ret

Create a C code program fix_set_diag_opt that uscs optimizations similar
to those in the assembly code, in the same style as the code in Figure 3.37(b). Use
expressions involving the parameter N rather than infeger constants, sO that your
code will work correctly if N is redefined. '

3.8.5 Variable-Size Arrays

Historically, C only supported multidimensional arrays where the sizes (with the
possible exception of the first dimension) could be determined at compile time. |
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Programmers requiring variable-size arrays had to allocate storage for these arrays

using functions such as malloc or calloc, and they had to explicitly encode the

mapping of multidimensional arrays into single-dimension ones via row-major in-

dexing, as expressed in Equation 3.1. ISO C99 introduced the capability of having

array dimension expressions that are coraputed as the array is being allocated.
In the C version of variable-size arrays, we can declare an array

int Alexpri] [expr2]

either as a local variable or as an argument to a function, and then the dimensions
of the array are determined by evaluating the expressions exprl and expr2 at the
time the declaration is encountered. So, for example, we can write a function to
access element ¢, j of an n x n array as follows:

int var_ele(long n, int Aln][n], long i, long j) {
return A[i] [j];
}

The parameter n must precede the parameter A [n] [n] , 80 that the function can
compute the array dimensions as the parameter is encountered.
Gcec generates code for this referencing function as

int var_ele(long n, imt Afn](n], long i, long j)

o in Jrdi, 4 in 4rsi, i in Yrdx, J in Zrex

1 var_ele:

2 imulq  Yrdx, ¥%rdi Compute n - i

3 leag (hrsi,%rdi,4), %rax Compute x; +4(n- |

4 movl (%rax,¥rcx,4), Yeax Read from Mx, +4{n. i)+4]]
5 ret

As the annotations show, this code computes the address of element i, jasx, +
dn-i)+4j=x,+4(n-i+ j). The address computation is similar to that of the
fixed-size array (Section 3.8.3), except that (1) the register usage changes due to
added parameter n, and (2) a multiply instruction is used (line 2) to compute n - i,
rather than an leagq instruction to compute 3i. We see therefore that referencing
variable-size arrays requires only a slight generalization over fixed-size ones. The
dynamic version must use a multiplication instruction to scale i by n, rather than
a series of shifts and adds. In some processors, this multiplication can incur a
significant performance penalty, but it is unavoidable in this case.

When variable-size arrays are referenced within a loop, the compiler can often
optimize the index computations by exploiting the regularity of the access patterns.
For example, Figure 3.38(a) shows C code to compute element i, k of the product
of two n x n arrays A and B. Gee generates assembly code, which we have recast
into C (Figure 3.38(b)). This code follows a different style from the optimized
code for the fixed-size array (Figure 3.37), but that is more an artifact of the choices
made by the compiler, rather than a fundamental requirement for the two different
functions. The code of Figure 3.38(b) retains loop variable j, both to detect when
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(a) Original C code

1 /* Compute i,k of‘varia‘dle matrix product */

2z int var_prod_eie(long n, int ilf:;]’[n] , int Blnl[n], long i, long x)'y

3 long i PR if ¢ w4 G

4 int result = 0; ! b ’
5

6 gor (j = 0; j < m; j++)

7 result += A[i][j]1 * BLi)[k]; B
a 1 N
9 return re§ult;

10 } '

(b) Optimized C code

/* Compute i,k of variable matrix product */
int var_prod_ele_opt(long n, int A[n][n], int B[nl[n], long i, long k) {
int *Arow = A[il;
int *Bptr = &B[O][KI;
int result = 0;
long j;
for {j =0; J<m; j++) 1 '
result += Arow[j] * *Bptr;
Bptr += n;
H
return result;

¥

Figure 3.38 Original and optimized code to compute element i, k of matrix pro‘d;.lct for variable-size
arrays. The compiler performs these optimizations automatically. R

the loop hds'terminated and to indéx into an array consisting of the @lemen’t‘s of
row i of A. N .
The following is the assembly sode for the loop of var_prod_ele:
£l -

e

Régisters:'n in ¥rdi, Arow in %rsi, Bptr-in Xrex
dn in 4r9, result im #dax, j’im %édx

1 L24: o loo¥: A

2 movl (%rsi,%rdx,4), %réd Read Arow[j] |
3 jmall  (hrex), %eed ™ ' midtiply by *Bptr
4 ‘addl Y%r8d, %eax 4dd to result
5 addq $1, %rdx s j+t 4. LI |
6 addq %r9, %hrex 4 Bptr += n fe
7 cmpq fyrdi, Wrdx Compare jin |
8 jne o Lo4 ‘If !=, goto loop }

™ s
We see that the program makes use of both a scaled value 4n (register-%r9) for
incrementifg Bptr as well as the value of n (register %rdi)-to:check the loop




Section 3.9 Heterogeneous Data Structures

bounds. The need for two values does not show up in the C code, due to the scaling
of pointer arithmetic.

We have seen that, with optimizations enabled, Gce is able to recognize pat-
terns that arise when a program steps through the elements of a multidimensional
array. It can then generate code that avoids the multiplication that would result
from a direct application of Equation 3.1. Whether it generates the pointer-based
code of Figure 3.37(b) or the array-based code of Figure 3.38(b), these optimiza-
tions will significantly improve program performance.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of dif-
ferent types: structures, declared using the keyword struct, aggregate multiple
objects into a single unit; unions, declared using the keyword union, allow an
object to be referenced using several different types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly
different types into a single object. The different components of a structure are
referenced by names. The implementation of structures is similar to that of arrays
in that all of the components of a structure are stored in a contiguous region of
memory and a pointer to a structure is the address of its first byte. The compiler
maintains information about each structure type indicating the byte offset of
each field. It generates references to structure elements using these offsets as
displacements in memory referencing instructions.
As an example, consider the following structure declaration:

struct rec {
int 1i;
int j;
int a[2];
int *p;

+

This structure contains four fields: two 4-byte values of type int, a two-element
array of type int, and an 8-byte integer pointer, giving a total of 24 bytes:

Offset 0 4 8 16 24
Contentsl i I h] | al0] | al1) | p l

Observe that array a is embedded within the structure. The numbers along
the top of the diagram give the byte offsets of the fields from the beginning of the
structure.

To access the fields of a structure, the compiler generates code that adds the
appropiiate offset to the address of the structure. For example, suppose variable r
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¥

New to C? 'Representingan object,as a struct

%

The struct data type constructor is the closést thing C provides to the objects of C++ and Java, Ifallows
the programmer to kéep inforination about Yome entity in-asingle data struéturé arid to referencé that
information with names. * to " s

Y

g For example, a graphlcs prégram might répresent arectangle asd structhre i
|
i
: v struct rect { _ _ .
long 11x; /* X coordinate of lower—left corner’ */
long lly; /* Y coordinate of lower-left corner */
unsignéd long width; /* Width (in pixels). * L :
unsigned long height; /* Height (in p:.xels) */ -
unsigned color; © Y% Colling 6f color” % k/
}; 1 [ L. ;
¥ e P % wy bt i.J . . P *
H We can,declare a variable r of typ¢ struct rect and set its field values ds follows:
I N i1 - k) - 3 @ x *
struct rect r;
r‘*.lll?( =r.lly = 0; T
r.color = OxFFOOFE;
- r.width =
r. height 1_. . % E i 4 P & -
L ¥

: where the expressmn r.]1x selects field J1x of structure r.
Alternatively, we can both declare ‘the vanaEle and mltlahze its ﬁe"lds w1th a smgle statement

I struct rect r = {0, 0, OXFFQOFF; .10; 20,3;- . .

f

| It is common to pass pointers to structures from one place t6 afdther rather than copymg" ‘them.
For example, the following function computes the area’of a réctan le ‘where'd pointer to the rectangle .

P b4 P g P g
struct is passed to the function:

long area(struct rect *rp) {

return (#rp).width * (*rpl.height;
! ¥
: The expression (*rp).width dereferences the pointer and’ se]ects the width-field of the resultmg
' structure. Parentheses are required, because the compiler would mterpret the expression *rp. widthas
*(rp. width), which is not valid. This combinatioh of dereferencmg and field selection is so common
that C provides an, alternative notation using -3, That is, rp->width is equivalent to the expression ,
; L*rp) .width. For example, we can wrife a funptlon that rotates’a rectangle counterclockw1se by 90

i degrees as
' void rotate_left(dtrugt rect *rp), {w
/* Exchange width and height */ : . ‘
long t = rp->height; * ’ w 4
B . rp->height = rp->width; - . ;
' rp—>width = t; P “ t ¢ N . *
g /% Shift to new lower-left corner #/
[ 1 rp->11x  ~<.t; : :
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A AN NI LS, SRS W W = L aeeads e Rt T R L ]

. New to €? Representing an object as a struct (continued)
é The objects of C++ and Java are more elaborate than structutes in C, in that they also associate

¥

i aset ofynethods with an object that can be invoked to perform compitation.-In-C, we would simply
j write these as ordinary functions, such as the functions area and rotate_left shown previously.

L . R S, e upe wn R wa W w e Y 3

F

of type struct rec * is in register %rdi. Then the following code copies element
r~>1 to element r->j:

Registers: r in Jkdi
movl (%rdi), Yeax Get r->i
movl Y%eax, 4(%rdi) Store in r->j

Since the offset of field i is 0, the address of this field is simply the value of r. To
store into field j, the code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add the
field’s offset to the structure address. For example, we can generate the pointer
&(r->a[1]) by adding offset 8 + 4 - 1 = 12. For pointer r in register %rdi and long
integer variable i in register %rsi, we can generate the pointer value &(r->a[1])
with the single instruction

Registers: r in frdi, i Xrsi
leag 8(%rdi,%rsi,4), Yrax Set Yrax to &r->ali]

As a final example, the following code implements the statement

r~>p = &r->alr->i + r->j];
starting with r in register %rdi:

Registers: r in Xrdi

movl 4(%rdi), Yeax Get r->j

addl (Yrdi), Yeax Add r->3i

¢cltg Extend to 8 bytes

leag 8(%rdi,%rax,4), Yrax Compute &r->alr->i + r->j]
movq Yrax, 16(%rdi) Store in r->p

As these examples show, the selection of the different fields of a structure is
handled completely at compile time. The machine code contains no information
about the field declarations or the names of the fields.




Ferie BBl
Consider the follow
struct prob {
int *p;
struct {
int x;
int ¥;
} s
struct prob #next;

};

This declaration illustrates that one structure can be embedded within another,
just as arrays can be embedded within structures and arrays can be embedded

within-arrays. ,
The following procedure (with some expressions omitted) operates on this

structureg: .

v o

void sp_jnit{(struct prob *sp) { ©oo ! '
Sp—g a.x = A __—_;:[ .
e S — i !
lsﬁi>ﬁex‘é [ U — )

Y . : %
} oy

A. What are the offsets (in bytes) of the following fields?

P-

s5.X:

s.y:

next:

B. How many total bytes does the structure require?
C. The compiler generates the following assembly code for sp_init:

void sp_init(struct prob *sp)

sp in jrdi
1 sp_init: 4
2 movl 12(%rdi), %eax - '
3 movl Yeax, 8(%rdi) “
4 leaq 8(%rdi), Yrax
5 movy %rax, (%rdi)
6 movg %rdi, 16(%rdi)d
7 ret i p

*  On‘the basis of this information, fill in the missing expréssions in'the code
for sp_init. . o "
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'I‘ne followmg code shows the declaratlon of a structure of type ELE and the
prototype for a function fun:

§ struct ELE {
% long  v; . .

struct ELE #p;
IH

long fun(struct ELE #ptr);

When the code for fun is compiled, gce generates the following assembly
code:

long fun{struct ELE #ptr)

ptr in Xrdi
1 fun;
2 movl $0, Yeax
3 jmp L2
4 L3 t
5 addq (%rdi), ¥rax b
6 novqg 8(%rdi), %rdi i
77 .L2: -
B testq Jrdi, %rdi
9 jne L3 '
10 rep; ret

A. Use your reverse engineering skills to write C code for fun.

B. Describe the data structure that this structure implements and the operation
performed by fun.

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object
to be referenced according to multiple types. The syntax of a union declaration is
identical to that for structures, but its semantics are very different. Rather than
having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:

struct 83 {
char c;
int i[2];
double v;

};
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union U3 {
char c;
int i[2];
double v;
};

When compiled on an x86-64 Linux machine, the offsets of the fields, as well as
the total size of data types S3 and U3, arc as shown in the following table:

Type c i v Size

53 0 4 16 24
U3 0 0 0 8

(We will see shortly why i has offset 4 in 83 rather than 1, and why v has offset 16,
rather than 9 or 12.) For pointer p of type union U3 *, references p->c, p—>1[0],
and p->v would ali reference the beginning of the data structure. Observe also
that the overall size of a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty
bugs, since they bypass the safety provided by the C type system. One application
is when we know in advance that the use of two different fields in a data structure
will be mutually exclusive. Then, declaring these two fields as part of a unionrather
than a structure will reduce the total space allocated. '

For example, suppose we want to implement a binary tree data-structure
where each leaf node has two double data values and each internal node has
pointers to two children but no data. If we declare this as

struct node_s {
struct node_s *left;
struct .npde_s *right;
double datal[2];

};

then every node requires 32 bytes, with half the bytes wasted for each type of node.
On the other hand, if we declare a node as - .t

union node_u {
struct {
unioh node_u *left;
union fode_u *right;
} internal;
double datal2];
};

then every node will require just 16 bytes. If n is a pointer to a node of type
union node_u *, we would reference the data of a leaf node as n->datal0]
and n—->data[1], and the children of an internal node as n->internat.left and

n->internal .right. !




structure containing a tag field and the union:

typedef epum { N_LEAF, N_INTERNAL } nodetype_t;

Struct node_t {
nodetype_t type;
union {
struct {
struct node_t *¥left;
struct node_t *right;
} internal;
double data(2];
} info;

};

This structure requires a total of 24 bytes: 4 for type, and either 8 each for
info.internal.left and info. internal.right or 16 for info. data. As we will
discuss shortly, an additional 4 bytes of Padding is required between the field for

example, suppose we use a simple cast to convert a value d of type double to a
value u of type unsigned long:

unsigned long u = (unsigned long) 4;

Value u will be an integer representation of d. Except for the case where d is 0.0,
the bit representation of 4 will be very different from that of d. Now consider the
following code to generate a value of type unsigned long from a double:

unsigned long doubleZbits (double d) {
union {
double d;
unsigned long u;
} temp;
temp.d = d;
return temp.u;

};

In this code, we store the argument in the unjon using one data type and access it
using another. The result will be that u will have the same bit representation as q,
including fields for the sign bit, the ®Xponent, and the significand, as described in
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Section 3.11The numeric value of u will bear no relation to that of 4, except for

the case when-d is 0.0.
When using unions to.combine data types of different sizes, byte-ordering

issues can become important. For example, sippose we write-a procedure that
will create an 8-byte double using the bit patterns given by two 4-byte unsigned

values:

double uu2double(unsigned word0, unsigned wordl)

{

union { 5
double d;

unsigned ul2];

} temp; 5‘

1

temp.u[0] = word0;

temp.ull] = wordl; T |

return temp.d; E

} |

On,a little-endian maching, such as an x86-64, processor, argument word0 will
becogmge the low-order 4 bytes of d, while wordt will become the high-order 4,
bytes. On a big-endian machine, the role of the.two arguments will be reversed,

i T RT 14 e

e “jifm‘ Zhe ko e i LI R
Sugpose you are {gi}}{pg the joll?jof checking thata C compiler generates the proper
code for structure arid unipn access. You write the fg}loﬁving structure declaration:

1 4 af

typedef union {

struct {
long u;
short v;
char w3 )
|i ) i
} t1; i
- '[ A3
struct {
int al[2]; "
char *p;
} t2;
} u_type;

You write a series of functions of the form

void get(u_type *up, fype *dest) {
*dest = expr;

}

with different access expressions expr and with déstination data type ‘typeiset
acdording to type associated ‘with expr. You then examine the code generated
when compiling the functions to see if they match your expectations.
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Suppose in these functions that up and dest are loaded into registers %rdi and
#rsi, respectively. Fill in the following table with data type type and sequences of
one to three instructions to compute the expression and store the result at dest.

f

expr type Code ,

up->tl.u long movq (%rdi), %rax
movq ¥rax, (%rsi)

up->tl.v

fup->t1.w

up—>t2.a e 3 :

up—>t2.alup->ti.u]

*up->t2.p

3.9.3 Data Alignment

Many computer systems place restrictions on the allowable addresses for the
primitive data types, requiring that the address for some objects must be a multiple
of some value K (typically 2,4, or 8). Such alignment restrictions simplify the design
of the hardware forming the interface between the processor and the memory
system. For example, suppose a processor always fetches 8 bytes from memory
with an address that must be a multiple of 8. If we can guarantee that any double
will be aligned to have its address be a multiple of 8, then the value can be read
or written with a single memory operation. Otherwise, we may need to perform
two memory accesses, since the object might be split across two 8-byte memory
blocks.

The x86-64 hardware will work correctly regardless of the alignment of data.
However, Intel recommends that data be aligned to improve memory system
performance. Their alignment rule is based on the principle that any primitive
object of K bytes must have an address that is a multiple of K. We can see that
this rule leads to the following alignments:

K Types

1 char

2 short

4 int, float

8 long, double, char *
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Alignment is enforced by making sure that every data:type is organized and
allocated in such a:way that eveiy object within the type satisfies its alignment
restrictions. The comnpiler places directives inthe assembly code indicating the
desired alignment for global data. For example, the assembly-code declaration of
the jump table on page 235 contains the following directive on line 2:

.align 8

This ensures that the data following it (in this case the start of the jump table) will
start with an address that is a multiple of 8. Since each table entry is 8 bytes long,
the successive elements will obey the 8-byte alignment restriction.

For code involving structures, the compiler may need to insert gaps in the
field allocation to ensure that each structure element satisfies its alignment re-
quirement. The structure will then have some required alignment for its starting

address.
For example, consider the structure declaration

struct S1 {
int 1i;
char ¢;
int j;
};

Suppose the compiler used the minimal 9-byte allocation, diagrammed as follows:

Offset 0 4 5 g

Contents L i ET 3 J

3

f

Kl

Then it would be unposmble to satlsfy the 4-byte ahgnment requ;remegt for both
fields i {offset 0) and j (offset 5). Instead, the compiler inserts a 3-byte gap (shown
here, as shaded in blue) between fields ¢ and j:

Oftset 0
Contents

As aresult, j has offset 8, and the overall structure size is 12 bytes. Furthermore,
the compiler must ensire that any pointer p of type struct Si* satisfies a 4- byte
alignment. Using our earlier notation, let pointer p have (value Xp- 'Ihen Xy, must
be a multiple of 4. This guarantees that both p->i (address xp) and p—> j (address
xp, + 8) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure
so that each element in an array of structures will satisfy its alignment requlrement
For example, consider the following structure declaration:
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struct 52 {
int i;
int  j;
char ¢;
};

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements
for fields i and j by making sure that the starting address of the structure satisfies
a 4-byte alignment requirement. Consider, however, the following declaration:

struct 82 d[4];

With the 9-byte allocation, it is not possible to satisfy the alignment requirement
for each element of d, because these elements will have addresses x,, x4 + 9,
x4 + 18, and x4 +27. Instead, the compiler allocates 12 bytes for structure S2,
with the final 3 bytes being wasted space:

Ofiset 0 4 8 9 12
Contents L i ] J ’

That way, the elements of d will have addresses x4, x4 + 12, x4 + 24, and x; + 36.
As long as x, is a multiple of 4, all of the alignment restrictions will be satisfied.

< T 3

Pra blern YT VS Y
For each of the foIlowmg structure declaratlons, determine the offset of each field,
the total size of the structure, and its alignment requirement for x86-64:

A. struct P1{ int i; chaxr ¢; int j; char d; };
B. struct P2 { int i; char ¢; char d; long j; };
C. struct P2 { short w[3]; char ¢[3] };

D. struct P4 { short w(5); char *c[3] };

E. struct P5 { struct P3 a[2]; struct P2 t };

Practice Problem m.3. 45 (sol

Answer the followmg for the structure declaratlon

ion pa

struct {
char *a; i
short b;
double c;
char d;
float e;

char £
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Aside A case pof mandatory alignment,

-5 For most x86-64 instructions, keeping data aligned"irﬁf:roves" efficiency, but it does not affett program
. i ' behavior. On the other hand, sonie models pf Infel and AMD processo;s ‘will not-work correctly-,
with unaligned data for some of the SSE instructions 1mplement1ng muitimedia operations. These' ¥ !
instructions operate on 16—byte blocks of data, and the 1?§t;uct10ns that t}ransfer data between the SSE: ¢ !
‘ ! unit and memory reqlure the memqry a&dresses to'be mult;ples of'16. Any attempt to access memory

! . with an address thai does not satisfy this ahgnment ylll lead't6 an exceprzon (see Sectxon 8 ’lﬁ) with the g

] _ * default behavior fop-the prograin to terminate. v A "

Asaresult, any compder and riti-time systeém for an’¥86-64 processar must ensure that any INemory « _
aliocated to hold a°data structure that may be réad from onstored-mto an SSE reglst“er must satisfy a i

i |

f e o b - ¥
;

H

| ; !

é 16-byte alignment. This reqmrementshas” the. followmg two consequeﬂces ¥ ) -‘: :
R * FEONET VI - |
| s The starting address for any block genérated;bya memory allopatlon funcnon 1 (alloga,-malloc, ; j
I 3 calloc, or realloc) must be a multiple of 16. L Com gy by g ]
| , o The stack frame for most functions rhust be aligned on a 16-byteboundary. (Thls requirement has :
| 4 J a number of exceptions.) i

i . i f e ) M !

5 g More recent versions of x86-64 processors 1mplement the AVXmultimedia-instructits. In addl— J
| 8 tion to providing a spperset.of the SSE instiyctions, progessors spppqumg AVX also dg npt have a ¢ ;
| 8 1 magdatbry alxgnment régwrement o e el A .
| : - - ]
§ | |
I B " long £;
| X 1 int h;
I ! } rec;

1

3 ‘ A. What are the byte offsets of all the fields in the structure?

N L

| ! ] B. What is the total size of the structure?
oA F
' " o C. Rearrange the fields of the structure to minimize wasted space, and then
| 4 d show the byte offsets and total size for the rearranged structure.

5 ' 3.10 Combining Control and Data in
| ] Machine-Level Programs

] So far, we have looked separately at how machine-level code implements the
" control aspects of a program and how it implements different data structures. In
this section, we look at ways in which data and control interact with each other.
We start by taking a deep look into pointers, one of the most important concepts
: I in the C programming language, but one for which many programmers only have
i : a shallow understanding, We review the use of the symbolic debugger ons for
i examining the detailed operation of machine-level programs. Next, we see how
understanding machine-level programs enables us to study buffer overflow, an
important security vulnerability in many real-world systems. Finally, we examine
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how machine-level programs implement cases where the amount of stack storage
required by a function can vary from one execution to another.

3.10.1 Understanding Pointers

Pointers are a central feature of the C programming language. They serve as a
uniform way.to generate references to elements within different data structures.
Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. Here we highlight some key principles of pointers and
their mapping into machine code.

» Every pointer has an associated type. This type indicates what kind of object
the pointer points to. Using the following pointer declarations as illustrations

int *ip;
char **cpp;

variable ip is a pointer to an object of type int, while cpp is a pointer to an
object that itsel{is a pointer to an object of type char. In general, if the object
has type T, then the pointer has type *T. The special void * type represents a
generic pointer. For example, the malloc function returns a generic pointer,
which is converted to a typed pointer via either an explicit cast or by the
implicit casting of the assignment operation. Pointer types are not part of
machine code; they are an abstraction provided by C to help programmers
avoid addressing errors.

» Every pointer has a value. This value is an address of some object of the
designated type. The special NULL (0) value indicates that the pointer does
not point anywhere.

* Pointers are created with the ‘%’ operator. This operator can be applied to any
C expression that is categorized as an Ivalue, meaning an expression that can
appear on the left side of an assignment. Examples include variables and the
elements of structures, unions, and arrays. We have seen that the machine-
code realization of the ‘%’ operator often uses the leaq instruction to compute
the expression value, since this instruction is designed to compute the address
of a memory reference.

¢ Pointers are dereferenced with the ‘*’ operator. The result is a value having the
type associated with the pointer. Dereferencing is implemented by a memory
reference, either storing to or retrieving from the specified address.

* Arraysand pointers are closely related. The name of an array can be referenced
(but not updated) as if it were a pointer variable. Array referencing (e.g.,
af3]) has the exact same effect as pointer arithmetic and dereferencing (e.g.,
*(a+3)). Both array referencing and pointer arithmetic require scaling the
offsets by the object size. When we wrile an'‘expression p+i for pointer p with
value p, the resulting address is computed as p + L - i, where L is the size of
the data type associated with p.

277
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e Casting from one type of pointer to another changes its type but not its value.
One effect of casting is to change any scaling of pointer arithmetic. So, for
example, if p is a pointer of type char * having value p, then the expression
(int *) p+7 computes p + 28, while (int *) (p+7) computes p + 7. (Recall
that casting has higher precedence than addition.)

* Pointers can also point to functions. This provides a powerful capability for

4 i storing and passing references to code, which can be invoked in some other |
4 part of the program. For example, if we have a function defined by the proto- |
type |
I int fun(int x, int =p);

[

i? ) then we can declare and assign a pointer £p to this function by the following

i code sequence:

L

i ! int (*fp) (int, int #*);

’ j! fp = fun;

; We can then invoke the function using this pointer:

; i int y = 1;

i int result = fp(3, &y);

| [l
B i The value of a function pointer is the address of the first instruction in the

i : machine-code representation of the function.

‘L i

! - - s R Y ECRET P s g s " . wa My B
New to €C? Function pointérs R of
=2
_ The syntax for declarmg functlpn pomters 1s e”bpemally dlfﬁcult for"nbvxce programﬂ},ers 1o understand
g For a declaration such as \ - .g
. 3 * ¥ £ 8 . 3 o~ s
int (*£) (int*); s L

: it helps to read it startmg ‘from the nside (startmg with f ) aiid working ¢ oufward THuiS, we'see that £
i is a poirter,.as indicated” by (¥%). It is a pointer to a fl.Il‘lCthl'l thaﬁ 14s" a,,smgle int *‘as an‘argument
as indicated by (*£) (int#). Fmally we seg that 1t is a*pomter to a function thdt4akes an int * as'an

argument and returns-int,  « . L 3 - 3
| The parentheses around *f are required,’because-otherwise the declaratior -
; W ¥ @ o o * & "
int *f(int*); v " fi 5 v ’
woovom & o g T . o ¥
| would be read as _ ] . Iy
gt % ¥ My “ P M
i (int *) £(int*)} . - oo ‘ u
[ «
That is, it would bé, interﬁreteaaés a Tunctiofi protot‘ype, declarln“g a func‘uon f "that hasan int as its
! argument and returns an ing *.

Kernighan ang Ritchie [61, Set:t 5. 12] present 4 helpful. ,tutorlal on, readmg C declaratxons
ot ot W @ SR A & owm e Wmm Ww e :o‘""imwimmqﬁmw =
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3.10.2 Life in the Real World: Using the Gps Debugger

The GNU debugger GpB provides a number of useful features to support the ]
run-time evaluation and analysis of machine-level programs. With the examples
and exercises in this book, we attempt to infer the behavior of a program by
just looking at the code. Using cpa, it becomes possible to study the behavior
by watching the program in action while baving considerable control over its
execution.

Figure 3.39 shows examples of some GbB commands that help when working
with machine-level x86-64 programs. It is very helpful to first run oBIDUME to get
a disassembled version of the program. Our examples are based on running GDB
on the file prog, described and disassembled on page 175. We start 6DB with the
following command line:

linux> gdb prog

The general scheme is to set breakpoints near points of interest in the pro-
gram. These can be set to just after the entry of a function or at a program address.
When one of the breakpoints is hit during program execution, the program will
halt and return controel to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the
program, running just a few instructions at a time, or we can proceed to the next
breakpoint.

As our examples'suggest, GDB has an obscure command syntax, but the online
help information (invoked within 6pB with the help command) overcomes this !
shortcoming. Rather than using the command-line interface to 6pB, many pro-
grammers prefer using ppD, an extension to GDB that provides a graphical user
interface.

3.10.3 Out-of-Bounds Memory References and Buffer Overflow )

We have seen that C does not perform any bounds checking for array references,
and that local variables are stored on the stack along with state information such ;
as saved register values and return addresses. This combination can lead to serious B
program errors, where the state stored on the stack gets corrupted by a write to an Il,"l '
out-of-bounds array element. When the program then tries to reload the register "
or execute a ret insttuction with this corrupted state, things can go seriously ‘
wrong. :

A particularly common source of state corruption is known as buffer overflow.
Typically, some character array is allocated on the stack to hold a string, but the
size of the string exceeds the space allocated for the array. This is demonstrated
by the following program example:

/* Implementation of library function gets() */
char *gets{char *s)
{

int ¢;
char *dest = s;
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Command Effect "
Starting and stopping !
quit . Exit GDB

run Run your prografh {give dotamand-line argurhents here)
kill Stop your-program ! ;

o

Breakpoints

break multstore Set breakpoint at entry to function multstore

break *0x400540 Set breakpoint at-address 0x400540

delete 1 Delete breakpoint 1 '
delete Delete all breakpoints

Execution '

stepi Execute one instruction

stepi 4 Execute four instructions

nexti " Like stepi, but-proceed-through function calls
continue Resumé execution £
finish Rufi-until cirrentfanction retiirns

Examining code

disas )
disas multstore

disas 0x400544

disas 0x400540, 0x40054d
print /x $rip

Examining data

print $rax

print /x $Tax

print /t $rax

print 0x100

print /x 555

print /x ($rsp+8)

print *(long *) Ox7EffEff£eB18
print *(long *) ($rsp+8)
x/2g OxTELf£f£fa818
x/20b multstore

Useful information
info frame

info registers
help

7 w o ut !

Drsassemble current function

Disassemble function multstore

Disassemble function around addregs 0x400544
Disassemble codeiwithin specified address.range

Print grogram counter in-hex
P S

Print contents of %rax in decimal

Print contents of frax in hex

Ptint contents of %rax in binary

Print decimal representation of 0x100

Print hex representation of 555

Print contents of %rsp plus 8 in hex

Print Jong integer at address 0x7£ff{£fe818
Print long integer at address 4rsp + 3
Examine two (8-byte) words starting at address Ox7f££££f1e818
Examine first 20 bytes of function multstore

Information about current stack frame
Values of all the registers
Get information about GDB

Figure 3.39 Example GDB commands. These examples illustrate s

of machine-level programs.

ome of the ways GDB supports debugging

3
|
|
|
|
|
|




Figure 3.40

Stack organization for
acho function. Character
array buf is just part of
the saved state, An out-of-
bounds write to buf can
corrupt theprogram state,
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Stack frame
for caller

Return address *  |w— Yrsp+24
" T zﬁ; 5 E"'ﬁ’.\gﬁ:ﬁ’.‘}"‘“ i
;l?fa‘f-?i%w ?ﬁ;e*«wfl ,, v
C72{te1[s)[r4a]r3I L2011 ]f07|<— but = %rsp

Stack frame )
for echo

while ((c = getchar()) != "\n' && ¢ (= EOF)

*dest++ = c;

if (c == EOF && dest == s)
/* No characters read */

return NULL;
*dest++ = *'\0'; /+ Terminate string #*/
return s;

/* Read input line and write it back */

void echo()

{

char buf(8); /+ Way too small! %/ -

gets{buf);
puts(buf);

The preceding code shows an implementatjon of the library function gets
to demonstrate a serious problem with this function. It reads a line from the
standard input, stopping when either a terminating newline character or some
error condition is encountered. It copies this string to the location designated by
argument s and terminates the string with a null character. We show the use of
gets in the function echo, which simply reads a line from standard input and echos

it back to standard output.

The problem with gets is that it has no way to determine whether sufficient
space has been allocated to hold ‘the entire string. In our echo example, we have
purposely made the buffer very small—just eight, characters long. Any string
longer than seven characters wil cause an out-of-bounds write.

By examining the assembly code generated by Goc for echo, we can infer how

the stack is organized:

void echo()

1 echo:

2 subq $24, %rsp
3 movq  %rsp, %rdi
4 call gets

5 movg %rsp, %rdi

Allocate 24 bytes om stack
Compute buf as Jrsp

Call gets

Compute buf as ¥rep
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6 call puts Call puts
7 addq $24, Jrsp Deallocate stack space
ret Return

Figure 3.40 illustrates the stack organization during the execution of echo. The
program allocates 24 bytes on the stack by subtracting 24 from the stack pointer
(line 2). Character buf is positioned at the top of the stack, as can be seen by the
fact that %rsp is copied to %rdi to be used as the argument to the calls to both
gets and puts. The 16 bytes between buf and the stored return pointer are not
used. As long as the user types at most seven characters, the string returned by
gets (including the terminating null) will fit within the space allocated for buf.
A longer string, however, will cause gets to overwrite some of the information
stored on the stack. As the string gets longer, the following information will get
corrupted:

Characters typed ~ Additional corrupted state

0-7 None

9-23 Unused stack space
24-31 Return address

32+ Saved state in caller

No serious consequence occurs for strings of up to 23 characters, but beyond
that, the value of the return pointer, and possibly additional saved state, will
be corrupted. If the stored value of the return address is corrupted, then the
ret instruction (line 8) will cause the program to jump to a totally unexpected
locaticn. None of these behaviors would seem possible based on the C code. The
impact of out-of-bounds writing to memory by functions such as gets can only be
understood by studying the program at the machine-code level.

Our code for echo is simple but sloppy. A better version involves using the
function fgets, which includes as an argument a count on the maximum number
of bytes to read. Problem 3.71 asks you to write an echo function that can handle
an input string of arbitrary length. In general, using gets or any function that
can overflow storage is considered a bad programming practice. Unfortunately,
a number of commonly used library functions, including strepy, streat, and
sprintf, have the property that they can generate a byte sequence without being
given any indication of the size of the destination buffer [97]. Such conditions can
lead to vulnerabilities to buffer overflow.

Practice Problem 3.46 (solutionpage 346)... . R
) A Figure 3.41 shows a (low-quality) implementation of a function that reads a line
— | from standard input, copies the string to newly allocated storage, and returns a
} pointer to the result.

Consider the following scenario. Procedure get_lineis called with the return
r address equal to 0x400776 and register %rbx equal to 0x0123456789ABCDEF. You
type in the string

0123456789012345678901234
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{a) C code

/» This is very low-quality code.
It is intended to illustrate bad programping'practites.
See Practice Problem 3.46. =/

char *get_line()

{

char buf[4]; 1

char *result;

gats(buf); 3]
result .= malloc{strlen{puf));
strepy(result, buf);

return result;

}
(b) Disassembly up through call to gets

char =get_line()
1 0000000000400720 <get_line>:

2 400720: 53 push  %rbx

3, 400721; 48 83 ec 10 sub $0x10,%rsp
Diagram stack at this peint

4 400725: 48 89 o7 mov  Yrsp,irdi

5 400728: e8 73 ff ff ff ca.llq 4006a0 <gets>

Medify diagram to show stack contents at this peint

Figure 3.41 C and disassembled cade for Practice Problem 3.46.

The program- terminates with a segmehtation fault. You run.ps dnd determine
that the error occurs during the execution of the ret ifistruction of 'get_line.

A, Fillinthe diagram that follows, ;ndlcatmg as much as you can about the stack
just after executing the instruction at line 3 i in the dlsassembly Label the
quantities stored on the stack (e.g., “Return address”) on the nght, and their
hexadecimal values (if known) within the box, Each box represents 8 bytes.

Indicate the position of %rsp. R&call that the ASCH cBdes for chafacters 0-9
are 0x30-0x39.

00 00 0B 00 00 40 0C 76 | Retum addrass

A

B. Modify your diagram to show the effect of the call to gets (line 5).
C. To what address does the program attempt to return?

283
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!

bk -
i3
1

b

;.

i

D. What register(s) have corrupted value(s) when get_line returns?

E. Besides the potential for buffer overflow, what two other things are wrong
i with the code for get_1ine?

\3

A more pernicious use of buffer overflow is to get a program to perform

1 a function that it would otherwise be unwilling to do. This is one of the most
common methods to attack the security of a system over a computer network.

Typically, the program is fed with a string that contains the byte encoding of some
executable code, called the exploit code, plus sonie extra bytes that overwrite the
return address with a pointer to the exploit code. The effect of executingthe ret
instruction is then to jump to the exploit code.
!; In one form of attack, the exploit code then uses a system call to start up a
!
|

shell program, providing the atiacker with a range of operating system functions.
ik In another form, the exploit code performs some otherwise unauthorized task,
. repairs the damage to the stack, and then executes ret a second time, causing an
(apparently) normal return to the caller. !

As an example, the famous Internet worm of November 1988 used four dif-
ferent ways to gain access L0 many of the computers across thé Internet. One was
a buffer overflow attack on the finger daemon fingerd, which serves requests by
. the FINGER command. By invoking FINGER with an appi‘opriﬁte string, the wortn
? could make the daemon at a remote site have a buffer overflow and‘execute code
I that gave the worm access to the remote system. Once the worm gained accesstoa
it system, it would replicate itself and consume virtually all of the machine’s comput-
i 3“ ing resources. As a consequence, hundreds of machines were effectively paralyzed

| until security experts could determine how to climinate the worm. The author of
the worm was caught and prosecuted. He was sentenced to 3 years probation, 400
¥ hours of community service, and a $10,500 fine. Even to this day, however, people
f continue to find security leaks in systems that leave them vulnerable to buffer
overflow attacks. This highlights the need for careful programming. Any interface

2 ) I HLeLls

to the external environment should be made “bulletproof” so that no behavior by
an external agent can cause the system to misbehave.

LS e

3.10.4 Thwarting Buffer Oirterﬂow Attﬁcks "

.

Buffer overflow attacks have become soO pervasive and have caused so many
problems with computer systems that modern compilers and operating systems

% have implemented mechanisms 0 make it more difficult to mount these-attacks
f and to limit the ways by which an intrider can seize control of a system via a butfer

overflow attack. In this section, we will present mechanisms that are provided by
, ! recent versions of ce for Linux.

it Stack Randomization

In order to insert exploit code into a system, the attacker needs to injgct both §

F the code as well as a pointer to this code as pait of the attack string. Genérating |
;o
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Both worms and vifues &ie pleﬁes,of code that attempt to spread them%e[ves dthong computers. As
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this pointer requires knowing the stack address where the string will be located.
Historically, the stack addresses for a program were highly predictable. For all
systems running the same combination of program and operating system version,
the stack locations were fairly stable across many machines. So, for example, if
an ‘attacket could determine the stack addresses used by a common Web server,
it could devise an attack that would work on many machines. Using infectious
disease as an analogy, many systems were vulnerable to the exact same strain of
a virus, a phenomencn often referred to as a security monoculture [96].

The idea of stack randomization is to make the position of the stack vary from
onerun of a program to another. Thus, even if many machines are running identical
code, they would all be using different stack addresses. This is implemented by
allocating a random amount of space between 0 and » bytes on the stack at the
start of a program, for example, by using the allocation function alloca, which
allocates space for a specified number of bytes on the stack. This allocated space is
not used by the program, but it causes all subsequent stack locations to vary from
one execution of a program to another. The allocation range » needs to be large
enough to get sufficient variations in the stack addresses, yet small enough that it
does not waste too much space in the program.

The following code shows a simple way to determine a “typical” stack address:

int main() {
long local;
printf("local at %p\n", &local);
return 0;

b

This code simply prints the address of a local variable in the main function.
Running the code 10,000 times on a Linux machine in 32-bit mode, the addresses
ranged from Oxff7fc59c¢ to Oxffffd09c, a range of around 223, Running in 64-
bit mode on the newer machine, the addresses ranged from 0x7£££0001b698 to
0x7ffffffaada8, arange of nearly 22,

Stack randomization has become standard practice in Linux systems. It is
one of a larger class of techniques known as address-space layout randomization,
or ASLR [99]. With ASLR, different parts of the program, including program
code, library code, stack, global variables, and heap data, are loaded into different
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regions of memory each time a programis run. That means that a program running
on one machine will have very different address mappings than the same program
running on other machines. This can thwart some forms of attack.

Overall, however, a persistent attacker can overcome randomization by brute
force, repeatedly attempting attacks with different addresses. A common trick is
to include a long sequence of nop (pronounced “no op,” short for “no operation™)
instructions before the actual exploit code. Executing this instruction has no ef-
fect, other than incrementing the program counter to the next instruction. As long
as the attacker can guess an address somewhere within this sequence, the program
will run through the sequence and then hit the exploit code. The common term for
this sequence is a “nop sled” [97], expressing the idea that the program “slides”
through the sequence. If we set up a 256-byte nop sied, then the randomization
over n = 2% can be cracked by enumerating 215 = 32,768 starting addresses, which
is entirely feasible for a determined attacker. For the 64-bit case, trying to enumer-
ate 224 = 16,777,216 is a bit more daunting. We can see that stack randomization
and other aspects of ASLR can increase the effort required to successfully attack a
system, and therefore greatly reduce the rate at which a virus or worm can spread,
but it cannot provide a complete safeguard.

Prohl e : NS T
Runmng our stack checkmg code 10, 000 times on a system running Linux ver-
sion 2.6.18, we obtained addresses ranging from a minimum of 0xffffb7§4 toa
maximum of Oxf{££d754.

A. What is the approximate range of addresses?

B. If we attempted a buffer overrun with a 128-byte nop sled, about how many
attempts would it take to test all starting addresses?

Stack Corruption Detection

A second line of defense is 10 be able to detect when a stack has been corrupted.
We saw in the example of the echo function (Figure 3.40) that the corruption
typically occurs when the program overruns the bounds of a local buffer. In C,
there is no reliable way to prevent writing beyond the bounds of an array. Instead,
the program can attempt to detect when such a write has occurred before it can
have any harmful effects.

Recent versions of Gee incorporate a mechanism known as a stack protector
into the generated code to detect buffer overruns. The idea is to store a special
canary value? in the stack frame between any local buffer and the rest of the stack
state, as illustrated in Figure 3.42 [26, 97]. This canary value, also refetred to as a
guard value, is generated randomly each time the program runs, and so there is no

4, The term “canary” refers to the historic use of these birds to detect the presence of dangerous gases
in coal mines. .
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Stackframe | |+, = 4 ;;

for calter

T ¥
R Al w4

Return address ~— frsp+24
By £ o

Canary
[72[t61]1s]]141[t3)[(23[[13](0]|+— but = %rsp

Stack frame
for echo

Figure 3.42 Stack organization for echo function with stack protector enabled. A
special "canary” value is positioned between array buf and the saved state. The code
checks the canary value to determine whether or not the stack state has been corrupted.

easy way for an attacker to determine what it is. Before restoring the register state
and returning from the function, the program checks if the canary has been altered
by some operation of this function or one that it has called. If §0, the program
aborts with an error.

Recent versions of Gec try to determine whether a function is vulnerable to
a stack overflow and insert this type of overflow detection automatically. In fact,
for our earlier demonstration of stack overflow, we had to give the command-line
option ~fno-stack-protector to prevent ec from inserting this code. Compiling
the function echo without this option, and hence with the stack protector enabled,
gives the following assembly code:

void echo{)

echo:
subgq $24, %rsp Allocate 24 bytes on stack
movq #fs:40, Yrax Retrieve canary
movy hrax, 8(%rsp) Store on stack
xorl %eax, Yeax Zero out register
movqg %rsp, Yrdi Compute buf as jrsp
call gets Call gets
movg #rsp, %rdi Compute buf as Yrsp
call puts Call puts
movy 8(%rsp), Yrax Retrieve canary
x0Tq %#fs:40, %rax Compare te stored valne
je L9 If =, goto ok
call ~-8tack_chk_fail Stack corrupted!

.L9: ok:
addq $24, Yrsp Deallocate stack space
ret

We see that this version of the function retrieves a value from memory (line 3)
and stores it on the stack at offset 8 from %rsp, just beyond the region allocated for
buf. The instruction argument %fs : 40 is an indication that the canary value is read
from memory using segmented addressing, an addressing mechanism that dates
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back to the 80286 aud is seldom found in,programs running on modern systems,
By storing the canary in a special segment, it can be marked as “read only,” so
that an attacker cannot overwrite the stored canary value. Before restoring the
register state and returning, the function compares the value stored at the stack
location with the canary value (via the xorq instruction on line 11). If the two are
identical, the xorq instruction will yield zero, and the function will complete in the
normat fashion. A nonzero value indicates that the canary on the stack has been
modified, and so the code will call an error routine.

Stack protection does a good job of preventing a buffer overflow attack from
corrupting state stored on the program stack. It incurs only a smali performance
penalty, especially because Gce only inserts it when there is a local buffer of
type char in the function. Of course, there are other ways to corrupt the state
of an executing program, but reducing the vulnerability of the stack thwarts many

common attack strategies.

The functions intlen, len, and iptoa provide a very convoluted way to compute
the number of decimal digits required t6 represent an integer. 'We will use this as
a way to study some aspects of the gce stack-protector facility.

int len(char *s) {
return strlen(s);

}

void iptoa(char *s, long *p) {
long val = *p;
sprintf(s, "%ld", val);

}

int intlen(long x)} {
long v,
char buf[12];
v = x;

iptoa(buf, &v);
return len(buf);

The following show portions of the code for intlen, compiled both with and
without stack protector:

(a) Without protector

int intlen(loag x)

X in Krdi ’ .
1 intlen: it NP
subg- $40, %I‘Sp et
3 novy %rdai, 24(%rsp)

™~
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4 leaq 24(Y%rsp), %rsi
5 movg %rsp, %rdi
6 call iptoa

{b) With protector

int intlen(long x)
x in Zrdi

1 intlen:

2 subgq $56, Yrsp

3 movgq %fa:40, Jrax

4 movg %rax, 40(%rsp)
5 xorl heax, %eax

6 movg %rdi, 8(%rsp)
7 leaq 8(%rsp), ¥rsi
8 leaq 16(¥%rsp), %rdi
9 call iptoa

A. For both versions; What are the positions in the stack frame for buf, v, and
(when present) the canary value?

B. How does the rearranged ordering of the local variables in the protected
code provide greater security against a buffer overrun attack?

Limiting Executable Code Regions

A final step is to eliminate the ability of an attacker to insert executable code into
a system. One method is to limit which memory regions hold executable code.
In typical programs, only the portion of memory hoiding the code generated by
the compiler need be executable. The other portions can be restricted to allow
just reading and writing. As we will see in Chapter 9, the virtual memory space
is logically divided into pages, typically with 2,048 or 4,096 bytes per page. The
hardware supports different forms of memory protection, indicating the forms of
access allowed by both user programs and the operating system kernel. Many sys-
tems allow control over three forms of access: read (reading data from memory),
write (storing data into memory), and execute (treating the memory contents as
machine-level code). Historically, the x86 architecture merged the read and exe-
cute access controls into a single 1-bit flag, so that any page marked as readable
was also executable. The stack had to be kept both readable and writable, and
therefore the bytes on the stack were also executable. Various schemes were im-
plemented to be able to limit some pages to being readable but not executable,
but these generally mtroduced significant inefficiencies.

More recently, AMD introduced an NX (for “no-execute”) bit into the mem-
ory protection for its 64-bit processors, separating the read and execute access
modes, and Intel followed suit. With this feature, the stack can be marked as be-
ing readable and writable, but not executable, and the checking of whether a page
is executable is performed in hardware, with no penalty in efficiency.

289
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Some types of programs require the ability to dynamically generate and ex-
ecute code. For example, “just-in-time” compilation techniques dynamically gen-
erate code for programs written in interpreted languages, such as Java, to improve
execution performance. Whether or not the run-time system can restrict the ex-
ecutable code to just that part generated by the compiler in creating the original
program depends on the language and the operating system.

The techniques we have outlined—randomization, stack protection, and lim-
iting which portions of memory can hold executable code—are three of the most
common mechanisms used to minimize the vulnerability of programs to buffer
overflow attacks. They all have the properties that they require no special effort
on the part of the programmer and incur very little or no performance penalty.
Each separately reduces the level of vulnerability, and in combination they be-
come even more effective. Unfortunately, there are still ways to attack computers
[85, 97], and so worms and viruses continue to compromise the integrity of many
machines,

3.10.5 Supporting Variable-Size Stack Frames

We have examined the machine-level code for a variety of functions so far, but
they all have the property that the compiler can determine in advance the amount
of space that must be allocated for their stack frames. Some functions, however,
require a variable amount of local storage. This can occur, for example, when the
function calls alloca, a standard library function that can allocate an arbitrary
number of bytes of storage on the stack. It can also occur when the code declares
a local array of variable size.

Although the information presented in this section should rightfully be con-
sidered an aspect of how procedures are implemented, we have deferred the
presentation to this point, since it requires an understanding of arrays and align-
ment.

The code of Figure 3.43(a) gives an example of a function containing a
variable-size array. The function declares local array p of »# pointers, where #n is
given by the first argument. This requires allocating 8» bytes on the stack, where
the value of n may vary from one call of the function to another. The compiler
therefore cannot determine how much space it must allocate for the function’s
stack frame. In addition, the program generates a reference to the address of local
variable i, and so this variable must also be stored on the stack. During execution,
the program must be able to access both local variable i and the elements of array
p. On returning, the function must deallocate the stack frame and set the stack
pointer to the position of the stored return address.

To manage a variable-size stack frame, x86-64 code uses register %rbp to serve
as a frame pointer (sometimes referred to as a base pointer, and hence the letters
bp in %rbp). When using a frame pointer, the stack frame is organized as shown
for the case of function virame in Figure 3.44. We see that the code must save
the previous version of %rbp on the stack, since it is a callee-saved register. It then
keeps ¥%rbp pointing to this position throughout the execution of the function, and
it references fixed-length local variables, such as i, at offsets relative to ¥rbp.
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(a) C code

long vframe(long n, long idx, long *q) o{
long i;
long *pinl;
plol = &i;
for (i = 1; i < n; i++)
pli] = q;
return *p[idx];

}
{b) Portions of generated assembly code

long vframe(long n, long idx, long *q)
o in Xrdi, idx in Yrsi, q in Jrdx
Ooly portions of code shown
virame: --
pushq  Yrbp Save old 4rbp
movq  %rsp, %rbp Set frame pointer
subq $16, Yrsp Allocate space for i (4rsp = s;)
lead 22(,%rdi,8), Y%rax
andq $-16, %rax
subg %rax, %rsp dllocate space for array p (Arsp = ),
Teaq 7(%rsp), Y%rax
shrq $3, %rax
leaq 0(,%rax'8), %rs Set Xr8 to &pl0]
movyg %r8, Yrcx Set rcxtto &pl0] (Yrex = p)

3

1
2
3
4
5
&
7
8
9

—_— -
- o

*Code for initializ&tion loop
i in ¥ra# and on stack, n in Yrdi, P in frcx, q in Yrdx
.L3: loop:
movq  ‘%rdx, (frexs,Y%rax,8) Set pli] to g
addgq $1, Yrax Increment i
movqg hrax, -8(%rbp) Store on stack
.L2:
movq -8(¥%rbp), Yrax Retrieve i from stack
cmpq %rdi, Yrax Compare i:n
il .L3 If <, goto loop
1 e
Code for function exit
. 20 leave Restore Yrbp and [rsp
2 ret Return

Figure 3.43 Function requiFing the use of a frame pointer. The variable-size array implies that the size of

£ the stack frame cannot be determined at compile time.
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Figure 3.44

Stack frame structure
for function vframe. Frame pointer Saved %rbp
The function uses register hrbp 8 i
%rbp as a frame pointer. (Unused)
The annotations along P
the right-hand side are S
in reference to Practice
Problem 3.49.

Return address

T

8 bytes <

Stack pointer
Yrsp

Figure 3.43(b) shows portions of the code Gee generates for function virame.
At the beginning of the function, we sce code that sets up the stack frame,and
allocates space for array p. The code starts by pushing the current valug of %rbp
onto the stack and setting %rbp to point to this stack position (lines 2-3). Next, it
allocates 16 bytes on the stack, the first 8 of which are used to store local variable
1, and the second 8 of which are unused. Then it allocates space for array p (lines
5-11). The details of how much space it allocates and where it positiops p within
this space are explored in Practice Problem 3.49. Suffice it to say that by the time
the program reaches line 11, it has (1) allocated at least 8r bytes on the stack and
(2) positioned array p within the allocated region such hat at least 8n bytes are
available for its use.

The code for the initialization loop shows examples of how local;yariables
1 and p are referenced. Line 13 shows array element p[i] being set to q. This
instruction uses the value in register %rcx as the address for the start of p. We can
see instances where local variable i is updated (line 15) and read (line 17). The
address of i is given by reference -8 (%rbp)—that is, at-offset —8 relative to the
frame pointer.

At the end of the function,the frame pointer is restored to its previous value
using the leave instruction (line 20). This instruction takes no arguments. Itis
equivalent to executing the following two instructions:

movq %rbp, 4rsp Set stack pointer to beginning of frame
popq %rbp Restore saved J4rbp and set stack ptr

r

te end of caller's frame

That is, the stack pointer is first set to the position of the saved value of %rbp, and 38
then this value is popped from the stack into %rbp. This instruction combination §
has the effect of deallocating the entire stack frame.
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In earlier versions of x86 code, the frame pointer was used with every function
call. With x86-64 code, it is used only in cases where the stack frame may be of
variable size, as is the case for function vframe. Historically, most compilers used
frame pointers when generating 1A32 code. Recent versions of e have dropped
this convention. Observe that it is acceptable to mix code that uses frame pointers
with code that does not, as long as all functions treat %rbp as a callee-saved register,

(PracticeProblem 390, (seiution pade ST s w o o TR IR
In this problem, we will explore the logic behind the code in lines 5-11 of Fig-
ure 3.43(b), where space is allocated for variable-size array p. As the annotations
of the code indicate, let us let s; denote the address of the stack pointer after exe-
cuting the subq instruction of line 4. This instruction allocates the space for local
variable i. Let 5 denote the value of the stack pointer after executing the subg
instruction of line 7. This instruction allocates the storage for local array p. Finally,
let p denote the value assigned to registers %r8 and %rcx in the instructions of lines
10-11. Both of these registers are used to reference array p.

_ The right-hand side of Figure 3.44 diagrams the positions of the locations
indicated by sy, 55, and p. It also shows that there may be an offset of ¢, bytes
between the values of s, and p. This space will not be used. There may also be an
offset of ¢) bytes between the end of array p and the position indicated by 5.

A. Explain, in mathematical terms, the logic in the computation of s, on lines
5-7. Hint: Think about the bit-level representation of —16 and its effect in
the andgq instruction of line 6.

B. Explain, in mathematical terms, the logic in the computation of p on lines
8-10. Hint: You may want to refer to the discussion on division by powers
of 2 in Section 2.3.7.

C. For the following values of n and sy, trace the execution of the code to
determine what the resulting values would be for s,, p, ¢;, and e;.

i 5 52 ., P € €
5 2,065
6 2,064

D. What alignment properties does this code guarantee for the values of 5
and p?

3.11 Floating-Point Code

The floating-point architecture for a processor consists of the different aspects
that affect how programs operating on floating-point data are mapped onto the
machine, including '

* How floating-point values are stored and accessed. This is typically via some
form of registers,
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» The instructions that operate on floating-point data.

» The conventions used for passing floating-point values as arguments to func-
tions and for returning them as results,

i * The conventions for how registers are preserved during function calls—for
example, with some registers designated as caller saved, and others as callee
saved.

To understand the x86-64 floating-point architecture, it is helpful to have a
' brief historical perspective. Since the introduction of the Pentium/MMX in 1997,
both Intel and AMD have incorporated successive generations of media instruc-
tions to support graphics and image processing. These instructions originally fo-
. cused on allowing multiple operations to be performed in a parallel mode known
as single instruction, multiple data, or SIMD (pronounced sim-dee). In this mode
the same operation is performed on a number of different data values in Parallel
Over the years, there has beena progresswn of these extensions. The namies have
changed through a series of major revisions from MMX to SSE (for “strearhing
SIMD extensions”) and most recently AVX (for “advanced vector extensions”).
Within each generation, there have also been different versions. Each of these ex-
tensions manages data in sets of registers, referred to as “MM” registers for MMX

“XMM?” for SSE, and “YMM" for AVX, ranging from 64 bits for MM registers,
to 128 for XMM, to 256 for YMM. So, for example, each YMM register can hold
eight 32-bit values, or four 64-bit values, where these values can be either integer
or floating point.

Starting with SSE2, introduced with the Pentium 4 in 2000, the media in-
structions have included ones to operate on scalar floating-point data, using single
values in the low-order 32 or 64 bits of XMM or YMM registers. This scalar mode
provides a set of registers and instructions that are more typical of the way other
processors support floating point. All processors capable of exécuting x86-64 code
support SSE2 or higher, and hence x86-64 floating point is based on SSE or AVX,
including conventions for passing procedure arguments and return values [77].

Our presentation is based on AVXZ2, the second version of AVX, introduced
with the Core i7 Haswell processor in 2013. Gee will generate AVX2 code when
given the command-line parameter -mavx2. Code based on the different versions
of SSE, as well as the first version of AVX, is conceptually similar, although they
differ in the instruction names and formats, We present only instructions that
b arise in compiling floating-point programs with Gce. These are, for the most part,
f the scalar AVX instructions, although we document occasions where instructions

intended for operating on entire data vectors arise. A more complete coverage
i of how to exploit the SIMD capabilities of SSE-and AVX is presented it Web
f
|
i

Aside oPT:SIMD on page 546. Readers may wish to refer to the AMD and Intel

documentation for the individual instructions [4, 51]. As with integer operations,

note that the ATT format we use in our presentation differs front the Intel format

used in these documents. In particular, the instruction operands are listed in a
£ different order in these two versions.
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1st FP arg./Return value

2nd FP argument

B A o
A kT 3rd FP argument
XL w5 B e

4th FP argument

oMt E o REE T g
by sl %Z. . _7’5'%; Y xmmd. Sth FP argument

W ww W w

9 o 6th FP argument

& vxwme 7th FP argument
o ttxcmm7 8th FP argument
Caller saved
Caller saved
Calier saved
Caller saved
3 G| o 2 Caller saved
T A P SR
Yyamidp s S 5 e B | Yymm13 Caller saved
i W, TGS <1 o K
o
o] Yxmmi4 Caller saved
Yymndb ke g Yxmm15 Caller saved

Figure 3.45 Media registers. These registers are used to hold floating-point data.
tach YMM register holds 32 bytes. The low-order 16 bytes can be accessed as an XMM
register.

As is illustrated in Figure 3.45, the AVX floating-point architecture allows
data to be stored in 16 YMM registers, named Aymm0-Y%ymm15. Each YMM register
is 256 bits (32 bytes) iong. When operating on scalar data, these registers only
hold floating-point data, and only the low-order 32 bits (for float) or 64 bits (for
double) are used. The assembly code refers to the registers by their SSE XMM
register names %xmm0-%xmm15, where each XMM re gister is the low-order 128 bits
(16 bytes) of the corresponding YMM register.
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Instruction  Source  Destination  Description

VIOVSS Msy X Move single precision
§ VIOVSS X Mi, Move single precision
it vmovsd Mgy X Move double precision
{ vmovsd X M Move double precision
. vmovaps X X Move aligned, packed single precision
vmovapd X X Move aligned, packed double precision

Figure 3.46 Floating-point movement instructions. These operations transfer values
between memory and registers, as well as between' pairs of registers. (X: XMM register
(e.g., %xmm3); M3,: 32-bit memory range; Mg,: 64-bit memory range)

3.11.1 Floating-Point Movement and Conversion Operations

Figure 3.46 shows a set of instructions for transferring floating-point data between
memory and XXMM registers, as well as from one XMM register to another without
any conversions. Those that reference memory are sealar instructions, meaning
that they operate on individual, rather than packed, data values. The data are
held either in memory (indicated in the table as M3; and Mg,) or in XMM registers
(shown in the table as X). These instructions will work correctly regardless of the
alignment of data, although the code optimization guidelines recommend that 32-
bit memory data satisfy a 4-byte alignment and that 64-bit data satisfy an 8-byte
alipnment. Memory references are specified in the same way as for the integer mMov
instructions, with all of the different possibie combinations of displacement, base
register, index register, and scaling factor.

(Gcc uses the scalar movement operations only to transfer data from memory
to an XMM register or from an XMM register to memory. For transferring data
between two XMM registers, it uses one of two different instructions for copying
the entire contents of one XMM register to another—namely, vmovaps for single-
precision and vmovapd for double-precision values. For these cases, whether the
program copies the entire register or just the low-order value affects neither the
program functionality nor the execution speed, and so using these instructions
rather than ones specific to scalar data makes no real diffetence. The letter ‘a’
in these instruction names stands for “aligned.” Whén used to read and write
memory, they will cause an exception if the address does not satisfy a 16-byte
alignment. For transferring between two registers, there is no possibility of an
incorrect alignment,

As an example of the different floating-point move operations, consider the |
i C function ] |

_1 float float_mov{float vi, float *src, float *dst) {

I float v2 = *src;

*dst = v1; >
return v2;

g
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Instruction Source  Destination Description

vevttss2si XMy Rap Convert with truncation single precision to integer
vevttsd2si XiMgy Rz Convert with truncation double precision to integer
vevttssasiq X/M;, Rga Convert with truncation single precision to quad word integer
vevttsd2siq X/Mg, Rgq Convert with truncation double precision to quad word integer

Figure 3.47 Two-operand floating-point conversion operations. These convert floating-point data to
integers. (X: XMM register (e.g., %xmm3); R3: 32-bit general-purpose register (e.g., %eax); Rgy: 64-bit
general-purpose register (e.g., %rax); Ms;: 32-bit memory range; Mg,: 64-bit memory range)

Instruction Source 1 Source2  Destination Description

vevtai2ss M/ Rap X X Convert integer to single precision

vevtsiZ2sd Mz Ry X X Convert integer to double precision
vevtsilZssq Mea/Rey X X Convert quad word integer to single precision
vevtsiZadg  Mgy/Rey X X Convert gquad word integer to double precision

Figure 3,48 Three-operand floating-point conversion operations. These instructions convert from the
data type of the first source to the data type of the destination. The second source value has no effect on the
low-order bytes of the result. (X: XMM register (e.q., %xmm3); May: 32-bit memory range; Mgy: 64-bit memory
range)

and its associated x86-64 assembly code

float float_mov(flecat v1, float *src, float #dst)
vl in %xmm0, src in jrdi', dst in Jrsi

1 float_mov:

2 vmovaps %xmmQ, %xmmil Copy vl

3 ymovss (Yrdi), %xmmO Read v2 from src
4 vmovss %xmmi, (%rsi) Write vl tg dst

5 ret Return XQ in ZxmmO

We can“see in this example the use of the vmovaps instruction to copy data from
one register to another and the use of the vmovss instruction to copy data
from memory t6 an XMM register and from an XMM register to memory.

Figures 3.47 and 3.48 show sets of instructions for converting between floating-
point and intéger data types, as well as between different floating-point formats.
These are all scalar instructions operating on individual data values. Those ‘in
Figure 3.47 convert fiém a'floating-point value read from either an XMM register
or memory and write the resuit to a general-purpose register (e.g., %rax, %ebx,
etc.). When converting floating-point values to integers, they perform rruncation,
rounding values toward zero, as is required by C and most other programming
languages.

The instructions in Figure 3.48 convert from integer to floating point. They
use an unusual three-operand format, with two sources and a destination. The




298 Chapter 3 Machine-Leve! Representation of Programs

first operand is read from memory Or from a general-purpose register. For our
purposes, we can ignore the second operand, since its value only affects the upper
bytes of the result. The destination must be an XMM register. In common usage,
both the second source and the destination operands are identical, as in the
instruction

vevtsi2sdq  Y%rax, Yxmmi, ¥%xmml

This instruction reads a long integer from register %rax, converts it to data type
double, and stores the result in the lower bytes of XMM register %xmm1.

Finally, for converting between two different floating-point formats, current
versions of Gce generate code that requires separate documentation. Suppose
the low-order 4 bytes of %xmm0 hold a single-precision value; then it would seem
straightforward to use the instruction

vevtss2sd  YxmmO, %xmmO, %xmm0

to convert this to a double-precision value and store the result in the lower 8 bytes
of register %xmm0. Instead, we find the following code generated by Gcc:

Conversion from single to double precision
vunpcklps Y%xmm0, %xmmO, YxmmQ Replicate first vector element
vevtps2pd  YxmmO, YxmmO Convert two vactor elements to double

The vunpcklps instruction is normally used to interleave the values in two
XMM registers and store them in a third. That is, if one source register contains
wotds [s3, 5, 51, 5o] and the other contains words [ds, dy, dy, dp), then the value
of the destination register will be [sy, 41, 50, dy)- In the code above, we sec the
same register being used for all three operands, and so if the original register
held values [x3, x5, X1, Xg], then the instruction will update the register to hold
values [x1, x1, X, X} The vevtps2pd instruction expands the two low-order single-
precision values in the source X MM register to be the two double-precision values
in the destination XMM register. Applying this to the result of the preceding
vunpcklps instruction would give values [dxg, dxg), where dxg is the result of
converting x to double precision. That is, the net effect of the two instructions is
to convert the original single-precision value in the low-order 4 bytes of %xmm0 t0
double precision and store two copies of it in %xmm0, It is unclear why GCC generates
this code. There is neither benefit nor need to have the value duplicated within
the XMM register.

Gee genérates similar code for converting from double precision to single
precision:

Conversion from double tc single precision
vmovddup %xmm0, %xmmO Replicate first vector element
vovtpd2psx  %xmm0, %xmmO Convert two vector elements to single
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Suppose these instructions start with register %xmm0 holding two double-precision
values [x}, xg]. Then the vmovddup instruction will setit to [xy, xp]. The vevtpd2psx
instruction will convert these values to singfe precision, pack them into the
low-order half of the register, and set the upper half to 0, yielding a result
[0.0, 0.0, xq, xg] (recall that floating-point value 0.0 is represented by a bit pat-
tern of all zeros). Again, there is no clear value in computing the conversion from
one precision to another this way, rather than by using the single instruction

vevtsdZ2ss Yxmm0, Lxmm0, LxmmQ

As an example of the different floating-point conversion operations, consider
the C function e

double fcvt(int i, float *fp, double, *dp, long *1p)

{
float f = *fp; double d = *dp; long 1 = #1lp;
*1p = (long) d;
*fp = (float) i;
*dp = (double) 1;
return (double) f;
}

and its associated x86-64 assembly code

double fcvt(int i, float #fp, double *dp, long #1p)
1 in Yedi, fp im %rsi, dp ia %rdx, lp in Yrcx

1 fovt:
2 vmovss {(Jrsi), Y%xmmO Get £ = *fp
3 movq (Jrex), Yrax Get 1 = x1p
4 vevttsd2siq (%rdx), %r8 Get d = *dp and convert to long
5 movq %r8, (Yrcx) Store at 1p
6 vevtsilZss hedi, %xmml, Y%xmmi Convert i to float
7 vmovss Jxmml, (%rsi) Store at fp
8 vevtsi2adg %rax, %xmml, %xmmi Convert 1 to double
9 vmovsd Axmml, (Yrdx) Store at dp
The following two instructioms comvert f to double
10 vunpcklps Axmm0, %xmmO, %xmmO
n vevtps2pd %xmmO, %xmmO
12 ret Return f

All of the arguments to £cvt are passed through the general-purpose registers,
since they are either integers or pointers. The result is returned in register %xmm0,
As is documented in Figure 3.45, this is the designatedireturn register for float
or double values. In'this code, we see a number of the movement and ¢onversion
wnstructions of Figures 3.46-3.48: as well as Gce’s preferred method of converting
from single to double precision. :
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For the followmg C code the expréssmns vali-val4 all map to the program values
i, f,4d,and 1:

double fcvt2(int *ip, float *fp, double *dp, long 1)
{

int i = *ip; float f = *fp; double d = *dp;

*ip = (int) vall;

*fp (£loat) val2;

#dp = (double) val3;

return {(double) vald;

Determine the mapping, based on the following x86-64 code for the function:

double fcvt2(int #ip, float #fp, double »dp, long 1)
ip in Jrdi, fp in ¥rsi, dp in Xrdx, 1 in Zrcx
Result returmed in XxmmQ
fovt2:
movl (%xdi), %eax
vmovss (%rsi), %xmm0
vevttsd2si (%rdx), %rsd
movl %r8d, (%rdi)
vevtsiZss %eax, Y%xmml, %xmml
vmovss dxmml, (%rsi) .
vevtsiZsdg %rcx, Yxmml, %xfml
vmovsd Yxmmi, (%zdx)
vunpcklps %xmm0, %xmmO, Y xmm0
vevtps2pd Hxmm0, %xmm0
ret

L -2 R NI - T A

T —
N~ o

Practice Problem 3.51 (solutipn page 348) e
The following C function converts an argument of type src_t to areturn value of
type dst_t, where these two types are defined using typedef:

dest_t cvt(src_t x)

{
dest_t y = (dest_t) x;
return y;

For execution on x86-64, assume that argument x s eithier in %xmm0 or in
the appropriately named portion: of register %rdi (ie., 4rdi or %edi). One or
two instructions are.to be used to perform the type conversion and to copy the
value to the appropriately named portion of register ¥rax (integer result) or
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%xmm0 (floating-point result). Shew the instruction(s), including the source and
destination registers.
T, T,
long double vevtsil2sdq Yrdi, %xmmO
double int
double float
long float
fleat long

Instruction(s)

3.11.2 Floating-Point Code in Procedures

With x86-64, the XMM registers are used for passing floating-point arguments to
functions and for returning floating-point values from them. As is illustrated in
Figure 3.45, the following conventions are observed:

* Up to eight floating-point arguments can be passed in XMM registers }xmm0O—
#xmn7. These registers are used in the order the arguments are listed. Addi-
tional floating-point arguments can be passed on the stack.

* A function that returns a floating-point value does so in register %ammo.

» All XMM registers are caller saved. The callee may overwrite any of these
registers without first saving it.

When a function contains a combination of pointer, integer, and floating-
point arguments, the pointers and integers are passed in general-purpose registers,
while the floating-point values are passed in XMM registers. This means that the
mapping of arguments to registers depends on both their types and their ordering.
Here are several examples:

double f1(int x, double y, long z);

This function would have x in %edi, y in %xmm0, and z in Yrsi.
double f2(double y, int x, long z);

This function would have the same register assignment as function £1.
double fi(float x, double *y, long *z);

This function would have x in %xmm0, yin %rdi, and z in %rsi.

KODICMN3; 32 $solition pade 348 RT i i S i S R A 1

functidd ine the register assignments

] For each of the following

for the arguments:

A. double gi(double a, long b, float c, int d);
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B. double g2(int a, double *b, float *c, long d);
C. double g3(double *a, double b, int c, float 4);

D. double g4{float a, int *b, float ¢, double d);

3.11.3 Floating-Point Arithmetic Operations

Figure 3.49 documents a set of scalar AVX2 floating-point instructions that.per-
form arithmetic operations. Each has either one (8) or two {8y, Sp) source oper-
ands and a destination operand D. The first source operand §; can be either an
XMM register or a memory location. Fhe second sourcegpperand and the desti-
nation operands must be XMM registers. Each operation has an instruction for
single precisioft and an instruction for double precision :The result is stored in the
destination registér.
As an example, consider the following floating-point function:

double funct({double a% float x, double b, int i)
{
return a*x - b/i;

)
The x86-64 code is as follows:

double fumct(double a, flcat x, double b, imt i)

a in’Yxmm0®, x in Yxwml, b in Zxmm2, i in Yédi

funct:
The! following two instrictions convért x to double
vunpcklps %amml, Yxmml, %xmml '
vevtps2pd Yxmml, %xmml
vmuled %xmmQ, %xmml, ¥xmmQ Multiply a by x
vevtsi2sd %edi, Yxmmi, %xmml Convert i to double
vdivsd %xmml, %xmm2, %¥mm2 " Compute b/i

L

Single Double Description |,

vaddss  vaddsd S+ 85 Floating-point add

vsubss  vsubsd 8§ =5 Floating-point subtract

vmulss  vmulsd S x 8 Floatifig-point multiply 1

vdivss  vdivsd $2/5 Floating-point divide

vmaxss  vmaxsd max(S,, §;)  Floating-point maximum

vmings  vminsd min(Sy, ), Floating-point minimum

sqrtss  sqrtsd JS Floating-point square root R

S gyt g

Y

Figure 3.49 Scalar floating-point arithmetic operations. These have either one or
two source operands and a destination operand.
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vsubsd 4xmm2, %xmm0, %xmm0 Subtract from a¥x
ret Return

The three floating-point arguments a, x, and b are passed in XMM registers
Axmm0—¥%xmm2, while integer argument i is passed in register %edi. The standard
two-instruction sequence is used to convert argument x to double (lines 2-3).
Another conversion instruction is required to convert argument i to double (line
5). The function value is returned in register %xmm0.

BRI Coie T iy
guments are defined by
typedef:

double functi(argl_t p, arg2_t q, arg3_t r, argd_t s)
{
return p/(q+r) - s;

1
When compiled, Gee generates the following code:

double functi(argl t p, arg2.t g, arg3_t r, argd_t s)
functl:

vevtsi2ssq 4rei, Yxmm2, %xmm2

vaddss YxmmO, %xmm2, %xmm0

vevtsilss %hedi, Yxmm2, Yxmm?2

vdivss Yxmm0, ¥%xmm2, Y%xmmO

vunpcklps %xmm0, %xmm0O, Y%xmmo

vevtps2pd Axmm0, Y%xmmO

vsubsd Zxmml, YxmmO, YxmmO

ret

Determine the possible combinations of types of the four arguments (there
may be more than one).

R B o, I o0, 5 st
B

i S R T e L S

Function funct2 has the following prototype:

double funct2(double w, int x, float ¥, long z);
Gec generates the following code for the function:

double funct2(double w, int x, float ¥, long z)
w in ZxmmO, x in Jedi, ¥ in Zxmml, z in ¥rsi

1 funct2:

2 vcvtsiZss “edi, %xmm2, %xmm2

3 vmulss Zxmml, %xmm2, Y%xmmi

303
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vunpcklps Yxmmi, Yxmmi, %xmmi
vevtps2pd hxmml, ¥Axmm2
vevtsiZadg %rsi, %xmmi, %xmml

vdivsd Yxmml, Y%xmmO, %xmmO
vaubsd %xmm0, %xmm2, %xmm0
ret

MmN S b

Write a C version of funct?2.

3.11.4 Defining and Using Floating-Point Constants

Unlike integer arithmetic operations, AVX floating-point operations cannot have
immediate values as operands. Instead, the compiler must allocate and initialize
storage for any constant values. The code then reads the values from memory. This
is illustrated by the following Celsius to Fahrenheit conversion function:

double cel2fahr{double temp)

{
return 1.8 * temp + 32.0;
}
The relevant parts of the x86-64 assembly code are as follows:
double cel2fahr(double temp)
temp in XxmmO
1 cel2fahr:
2 veulsd .LC2(%rip), %xmmO, %xmmO  Multiply by 1.8
3 vaddsd .LC3(Yrip), %xmm0, %xmm0  4dd 32.0
4 ret
5 .LC2:
6 .long 3435973837 Low-order 4 bytes of 1.8
7 :long 1073532108 High-order 4 bytes of 1.8
8 LE3: )
9 Jdong G Low-order 4 bytes of 32.0
10 .long 1077936128 High-order 4 bytes of 32.0

We see that the function reads the value 1.8 from the memory lotation labeled
.LC2 and the value 32.0 from the memory location Jabeled- <1.C3. Looking at the
values associated with these labels, we see that each is specified by a pair of . long
declarations with the values given in decimal. How should these be interpreted
as ficating-point values? Looking at the declaration labeled .LC2, we see that the
two values are 3435973837 (Oxccceeccd) and 1073532108 (0x3ffccecce.) Since
the machine uses little-endian byte ordering, the first value gives the low-order 4
bytes, while the second gives the high-order 4 bytes. From the high-order bytes,
we can extract an exponent field of 0x3f£ (1023), from which we subtract a bias of
1023 to get an exponent of 0. Concateniiting the fraction bits of the two values, we
get a fraction field of Oxcccececccccced, which can be shown to be the fractional
binary representation of 0.8, to which we add the implied leading one to get 1.8.
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Single Double  Effect Description
vxorps  xorpd D « § -8  Bitwise EXCLUSIVE-OR
vandps andpd D «— 5&5 Bitwise AND

Figure 3.50 Bitwise operations on packed data. These instructions perform Boolean
operations on all 128 bits in an XMM register.

A

4

3.11.5 Using Bitwise Oper&tions in Floating-Point Code

At times, we find Gce generating code that performs bitwise operations on XMM
registers to implement useful floating-point results. Figure 3.50 shows some rele-
vant instructions, similar to their counterparts for operating on general-purpose
registers. These operations all*act on packed data, meaning that they update the
entire destination XMM register, applying the bitwise operation to all the data in
the two source registers. Once again, our only interest for scalar data is the effect
these instructions have on the low-order 4 or 8 bytes of the destination. These op-
erations are often simple and convenient ways to manipulate floating-point values,
as is explored in the following problem.

}

Consider the following C function, where EX

Y. 4 i b
PR is a macro defined with #define:

AL A

;

double simplefun{double x) {
return EXPR(x);

}

Below, we show the AVX?2 code generated for different definitions of EXPR,
where value x is held in %xmm0. All of them correspond to some useful operation on
floating-point values. Identify what the operations are. Your answers will require
you to understand the bit patterns of the constant words being retrieved from
MeMmory.

A vmovsd .LC1(%rip), %xmml
2 vandpd Y%xmml, %xmm0O, %xmmO
3 .LC1:
4 .long 4294967285
5 ~long 2147483647
6 .long 0
7 dong 0O

B. 1 vxorpd %xmmQ, %xmmQ, %xmmO
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C. 1 vmovsd .LC2(%rip), %xmmi
2 vxorpd Yxmml, %xmmO, ¥xmmO
3 LC2:
4 .long O
5 .long —2147483648
6 .lomg 0
7 .long O

3.11.6 Floating-Point Comparison Operations

AVX2 provides two instructions for comparing floating-point values:

Instruction Basedon  Description
ucomiss Si, 5 $—8 Compare single precision
ucomisd 8,5, §—5 Compare double precision

These instructions are similar to the cMr instructions (see Section 3.6), in that
they compare operands $; and S, (but in the opposité order one might expect) and
set the condition codes to indicate their relative values. As with cmpg, they foliow
the ATTformat convention of listing'the'operands in reverse order. Argument
Sy must Be.in an XMM register, while S, can be either in an XMM register or in
memory.

The floating-point comparison instructions-set three condition codes: the zero
flag ZF, the carry flag CF, and the parity flag PF. We did not document the parity
flag in Section 3.6.1, because it is not commonly found in Gce-generated x86 code.
For integer operations, this flag is set when the most recent arithmetic or logical
operation yielded a valué ‘where the least significant bytg*has ‘even parity (i.e.,
an even number of ones in the byte). For floating-point comparisons, however,
the flag is set when either operand is NaN. By convention, any ‘comparison in C
is considered to fail when one of the arguments is NaV, and this flag is used to
detect such a condition. For example, even the comparison x == x yields 0 when x
is NaN.

"The condition codes are set as follows:

Ordering 5,'S; CF ZF  PF

Unordered "1 1 1
S <8 1 0 t
8§y = 8y 0 1 0
Sz > Sl 0 O 0

The unordered case occurs when either operand is NaN. This can be detected
with the parity flag. Commonly, the jp (for “jum’jon parity”) instrdction is used to
conditionally jump when a floating-point comparison yields an unordered result.
Except for this case, the values of the carry and zero flags are the same as those
for an unsigned comparison: ZF is set when the two operands are equal, and CF is
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typedef epum {NEG, ZERO, P0S, OTHER} range_ t;

range_t find_range{float x)
{
int result;
if (x < O)
result = NEG;
else if (x == Q)

resylt = ZERO;
else if (x > O)

result = PQOS;
else

result = OTHER;
return result;

}
(b) Generated assembly code

range_t find_range(float x}

x i Zymmo -
1 find_range:
2 vxorps Yxmml, %xmmi, ¥%xmmi
3 vucomiss %xmm0, %xmml
4 ja .Lb
5 vucomiss %xmml, %xmmO
6 ip L8
7 movl $1, Yeax
& ie L3
9 18-
1w vncomiss LLCo(%rip), YwrmO
" setbe  Jal
2 movzbl %al, ¥%eax
13 addl $2, Yeax
14 rat
15 .Lb:
16 movl $0, %eax
L 17 L3
- 18 rep; ret

Set Xxmml = 0

Compare 0:x

If >, goto neg

Compare x:0

If NaN, goto posorpan

rasult ~ ZERO

If =, goto done
poesornan:

Compare x:0

Set result = NaV 7 1

Zero-exténd

Floating-Point Code

: 0

result += 2 (POS for > 0@, OTHER for Nal)

Return
neg:

result = NEG
done:

Return

; Figure 3.51 [lustration of conditional branching in floating-point code.
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- ! set when S; < §;. Instructions such as ja and jb are used to conditionally jump on
}: various combinations of these flags.

3 l As an example of floating-point comparisons, the C function of Figure 3.51{a)
I classifies argument x according to its relation to 0.0, returning an enumerated type

1 \ as the result. Enumerated types in C are encoded as integers, and so the possible
| function values are; 0 (NEG), 1 (ZERO}, 2 (POS), and 3 (OTHER). This final outcome
. occurs when the value of x is NaN.
' Gcce generates the code shown in Figure 3.51(b) for find_range. The code
is not very efficient—it compares x to 0.0 three times, even though the required
: information could be obtained with a single comparison. It also generates floating-
’ point constant 0.0 twice—once using vxorps, and once by reading the value from
memory. Let us trace the flow of the function for the four possible comparison
results:

x < 0.0 The jabranch on line 4 will be taken, jumping to the end with a return
value of (.

x=0.0 The ja (line 4) and jp (line 6) branches will not be taken, but the je
branch (line 8) will, returning with %eax equal to 1.

x> 0.0 None of the three branches will be taken. The setbe (line 11) will yield
{J; and this will be incremented by the addl instruction (line 13} to give a
return value of 2.

x=NaN The jpbranch (line 6) will be taken. The third vucomiss instruction
(line 10) will set both the carry and the zero flag, and so the setbe
instruction (line 11) and the following instruction will set %eax to 1. This
gets incremented by the addl instruction (line 13) to give a return value
of 3.

In Homework Problems 3.73 and 3.74, you are challenged to hand-generate
more efficient implementations of find_range.

| Practice Problem 357, soktion pade 250 bt o

Function funct3 has the following prototype:

double funct3(int *ap, double b, long ¢, float *dp);
For this function, Goc generates the following code:

double funct3(int *ap, double b, long c, float *dp)
ap in ¥rdi, b in Xxmm0, ¢ iIn ¥%rsi, dp,in Yrdx
- »

I i Aot T i Tt aci

1 funct3:
2 vmovss  (%rdx), ¥xmml
3 vevtsi2sd (4rdi}, %xmm2, %xmm2
4 vucomisd hxmm2, %xmmQ J
5 jbe .L8 i
i 6 vevtsi2ssq Yrsi, %xmmO, ¥%xmmO i
! 7 viulss %xmmi, %xmmO, %xmmil
1
. !
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8. vunpcklps Axmml, ¥xmmi, %xmmi
9 veytps2pd hxmml, %xmmO

10 ret

N .L8:

12 vaddss Yxmml, Yxmml, %xmml

13 vcvtsilssq Wrsi, %xmm0, %xmmO
14 vaddss Yxmmi, %xmmO, %xmmO

15 vunpeklps 4xmm0, %xmm0, %xmmo
16 vevtps2pd hxmmQ,  %xmm0

17 ret,

Write a C version of funct3.

3.11.7 Observations about Floating-Point Code

We see that the general style of machine code generated for operating on floating-
point data with AVX2 is similar to what we have seen for operating on integer data.
Both use a collection of regisiers to hold and operate on values, and they use these
registers for passing function arguments.

Of course, there are many complexities in dealing with the different data types
and the rules for evaluating expressions containing a mixture of data types, and
AVX2 code involves many more different instructions and formats than is usually
seen with functiops that perform only integer arithmetic.

AVX? also has the potertial to make computations run faster by performing
parallel operations on packed data. Compiler developers are working on automat-
ing the conversion of scaldr codé to parallel code, but currently the most reliable
way to achieve higher performance thfough parallelism is to use the extensions to
the C language supported by Gec for manipulating vectors of data. See Web Aside
OPT:SIMD on page 546 to see how this can be done.

3.12 Summary

In this chapter, we have peered beneath the layer of abstraction provided by the
Clanguage to get a view of machine-level programming. By having the compiler
generate an assembly-code representation of the machine-level program, we gain
insights into both the compiler and its optimization capabilities, along with the ma«
chine, its data types, and its instruction set. In Chapter 5, we will see that knowing
the characteristics of a compiler can help when trying to write programs that have
efficient mappings onto the machine. We have also gotten a more complete picture ¥
of how the program stores data in different memoty regions. In Chapter 12, we
will see many examples where application programmers need to know whether
a program variable is on the run-time stack, in some dynamically allocated data
structure, or part of the global program data. Understanding how programs map
onto machines makes it casier to understand the differences between these kinds
of storage.
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Machine-level programs, and their representation by assembly code, differ
in many ways from C programs. There is minimal distinction between different
data types. The program is expressed as a sequence of instructions, each of which
performs a single operation. Parts of the program state, such as registers and the
run-time stack, are directly visible to the programmer. Only low-level operations
are provided to support data manipulation and program control. The compiler
must use multiple instructions to generate and operate on different data structures
and to implement control constructs such as conditionals, loops, and procedures.
We have covered many different aspects of C and how it gets compiled. We
have seen that the lack of bounds checking in C makes many programs prone to
buffer overflows. This has made many systems vulnerable to attacks by malicious
intruders, although recent safeguards provided by the run-time system and the
compiler help make programs more secure.

We have only examined the mapping of C onto x86-64, but much of what we
have covered is handled in a similar way for other'combinations of language and
machine. For example, compiling C++ is very similar to compiling C. In fact, early
implementations of C++ first performed a source-to-source conversion from C++
to Cand generated object code by running a C compiler on the result. C++ objects
are represented by structures, similar to a C struct. Methods are represented by
pointers to the code implementing the methods. By contrast, Java is implemented
in an entirely different fashion. The object code of Java is a special bipary repre-
sentation known as Java byte code. This code can be viewed as a'machine-level
program for a virtual machine. As its name suggests, this machine is not imple-
mented directly in hardware. Instead, software interpreters process the byte code,
simulating the behavior of the virtual machine. Alternatively, an approach Known
as just-in-time compilafion dynamically translates byté code sequences into ma-
chine instructions. This approach provides faster execution when code is executed
multiple times, such as in loops. The advantage of using byte code as the low-level
representation of a program is that the same code can be “executed” on many
different machines, whereas the machine code we have considered runs only on
x86-64 machines.

Bibliographic Notes

Both Intel and AMD provide extensive documentation on their processors. This
includes general descriptions of an assembly-language programmer’s view of the
hardware [2, 50], as well as detailed references about the’individual instruc-
tions [3, 51]. Reading the instruction descriptions is complicated by the facts that
(1) all documentation is based on the Intel assembly-code format, (2) there are
many variations for each instruction due to the different addressing and execution
modes, and (3) there are no illustrative examples. Still, these remain the authori-
tative references about the behavior of each instruction.

The organization x86-64.org has been responsible for defining the application
binary interface ( ABI) for x86-64 code running on Linux systems [77]. This inter-
face describes details for procedure linkages;.binary code files, and a number:of
other features that are required for machine-code programs to execute properly.
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As we have discussed, the ATT format used by Gee is very different from the
Intel format used in Intel documentation and by other compilers (including the
Microsoft compilers).

Muchnick’s book on compiler design [80] is considered the most comprehen-
sive reference on code-optimization techniques It covers many of the techniques
we discuss here, such as register usage conventions.

Much has been written about the use of buffer overflow to attack systems over
the Internet. Detailed analyses of the 1988 Internet worm have been published
by Spafford [105] as well as by members of the team at MIT who helped stop its
spread [35). Since then a number of papers and projects have generated ways both
to create and to prevent buffer overflow attacks. Seacord’s book [97] provides a
wealth of information about buffer overflow and other attacks on code generated '
by C compilers.

Homework Problems

3.58 ¢
For a function with prototype

long decode2(long x, loug y, long 2);

Gce generates the following assembly code:

1 decodeZ:

2 gubq Yrdx, Arsi ‘
3 imulg %rsi, frdi

4 move %rsi, Yrax

5 salq $63, Yrax

6 sarqg $63, Jjrax

7 Xoxq %rdi, Yrax

8 ret

Parameters x, y, and z are passed in registers %rdi, %rsi, and %rdx. The code
stores the return value in register jrax.

Write C code for decode2 that will have an effect equivalent to the assembly
code shown.

Yy

3.59 ¢+ 3
The following code computes the 128-bit product of two 64-bit signed values x and '+ ]
y and stores the result in memory:

typedef __intl128 intl128_t;

*dest = x » (intl28_t) y;

T

1
2
3 void store_prod{int128_t *dest, int64_t x, int64_t y) {
4
5

}

Gece generates the following assembly code implementing the computation:
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storerprod:

movg
cqto
mevy
sarq
imulq
imulq
addq
mulq
addqg
movq*
movq
ret

This code uses three multiplicati
to implement 128-bit arithmeticon a
to compute the product, and a

%rdx, %rax

Yrsi, %rex
$63, Yrcxd
Yrax, HILCX
Yrsi, Yrdx
yrdx, hrcx
%rsi

Yrex, Ardx
Yrax,s (%rdi)

Yrdx, 8(%rdi) ¢

your algorithm. Hinf: When ext

be rewritten as x = 2% - x,, +x;and
bit values. Similarly, the 128-bit product canbe written as
py, and p, are 64-bit values. Show how the code computes

in terms of Xpy X5 Yhs and M

3.60 ¢¢

Consider the following assembly code:-

long loop(long x, imt a}

x in Yrdi, n in %esi

loop:
movl
movl
movl
Jmp

.L3;
movq
andq
orq
salq

L2
testq
jne

%esi, Whecx
$1, Yedx
$0, Y%eax
L2

Yrdi, %r8
yrdx, %ré
%re, frax
%cl, Yrdx

Yrdx, %rdx
L3

Tep; ret

The preceding code was generated by compiling C code that had the
overall form:

ons for the muitiprecistionnarithmetic required
64-bit machine. Describe the algorithm iised
nnotate the assembly code to show how it realizes
ending arguments of x and y to 128 bits, they can
w + ¥i, where Xy, Xis Vi and y; are 64-
p= 264 - ph,+ D1 where
the values of p;, and p;
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long loop(long x, long n)
{
long result = __
long mask;
for (mask = ______ ; mask ___ . ; mask =
result = ________;
}

return result;

L I« LY T N T

b

Your task is to fill in the missing parts of the Ccode to get a program equivalent
to the generated assembly code. Recall that the result of the function is returned
in register %rax. You will find it helpful to examine the assembly code before,
during, and after the loop to form a consistent mapping between the registers and
the program variables.

A. Which registers hold program values x, n, result, and mask?
. What are the initial values of result and mask?
. What is the test condition for mask?

B
C
D. How does mask get updated?
E

. How does result get updated?
FE Fill in all the missing parts of the C code.

3.61 ¢o
In Sectior 3.6.6, we examined the following code as a candidate for the use of
conditional data transfer:

long cread(long *xp) {
return (xp 7 *xp : 0);

}

We showed a frial implementation using a conditional move instruction but argued
that it was not valid, since it could attempt to read from a null address.

Write a C function cread_alt that has the same behavior as cread, except
that it can be compiled to use conditional data transfer. When compiled, the
generated code should use a conditional move instruction rather than one of the
jump instructions.

3.62 ¢9

The code that follows shows an example of branching on an enumerated type
value in a switch statement. Recall that enumerated types in C are simply a way
tointroduce a set of names having associated integer values. By default, the values
assigned to the names count from zero upward. In our code, the actions associated
with the different case labels have been omitted.
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1

2
3
4
5
6
7
8
9

10
"
12
13
4
15
16
17
18
19
20
21
22

/* Enumerated type creates set of constants mumbered 0 and upward */
typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t;

long switch3(long *pl, long *p2, mode_t action)
{

long result = 0;

switch(action) {

case MODE_A:

case MODE_B:
case MQDE_C:
“case MODE_D:
case MODE_E:
default:

} '
return result;

}

&

The part of the generated assembly code implementing the differentactionsis
shown in Figure 3.52. The annotations indicate the argument locations, the register
values, and the case labels for the different jump destinations.

Fill in the missing parts of the C code. It contained one case that fell through

to another—try to reconstruct this. L

3.63 ¢¢
This problem will give you a chance’to revers¢ éngineer a switch stitbrent from

disassembled fnachine codé. In the follswing procedure, the'body ofithe switch
statement has been omitted:"™

1 ) '

.

long switch_prob(long X, longin) {
long result = x;
suitch(n) {

/% Fill in code here */

1

return result;
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P! in Jrdi, p2 in ¥rsi, action in Yedx
L8: MODE_E
movl $27, Yeax
ret
.L3:
movy (hrsi), Yrax
movg (%rdi), Y%rdx
movq drdx, (Jrsi)
rat
.Lb:
movq (rdi), Yrax
addq (%rsi), Yrax
movq hrax, (%rdi)
ret
.L6:
movq $59, (Yrdi)
movq (Yrsi), Yrax
ret
L7 MODE_D
movq (drsi), Yrax
movq Yrax, (%rdi)
movl $27, Yeax
ret
.L9: default
movl $12, Yeax
ret

ML N O W B W R e

Figure 3.52 Assembly code for Problem 3.62. This code implements the different
branches of a switch statement.

Figure 3.53 shows the disassembled machine code for the procedure.
The jump table resides in a different area of memory. We can see from
[ the indirect jump on line 5 that the jump table begins at address 0x4006£8.
¢ Using the GpB debugger, we can examine the six 8-byte words of memory compris-
| ing the jump table with the command x/ 6gx 0x4006£8. GDB prints the following:

b (gdb) x/6gx 0x4006£8

{ 0x4006£8:  0x00000000004005a1  0x00000000004005¢3
f 0x400708:  0x00000000004005a1  0x00000000004005aa
| 0x400718:  0x0000000000400562  0x00000000004005b%

Fill in the body of the switch statement with C code that will have the same
b behavior as the machine code,
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1

2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18

long switch_prob(long x, long o)

x in Xrdi, n in frsi -
0000000000400590 <switch_prob>:

400590:
400594 :
400598
40059a:
4005al:
4008a8:
4005a9:
4005aa:
400bad:
4005b1:
4005b2:
4005b5:
4005b9:
4005bc:
4005b1f:
4005c3:
4005bc7:

Figure 3.53 Disassembled code for Problem 3.63.

48 83 ee 3c sub $0x3c, krei
48 83 fe 05 cmp $0x6,%rsi
77 29 ja 4005c¢3 <switch_prob+0x33>

£f 24 £5 £8 06 40 00  jmpq ‘*0x4006£8(,%rsi,8)
48 8d 04 fd 00 00 00  lea  0x0(,%rdi,8),%rax’

00

c3 retq

48 89 f§ mov %rdi,%rax

48 c1 £8 03 sar $0x3, Yrax :
c3 retq

48 89 f8 mov #rdi,%rax

48 cl1 0 04 shl $0x4 ,%rax

48 29 £8 sub %rdi,frax

48 89 c7 mnov Yrax,frdi

48 Of af ff imul  Yrdi,¥rdi

48 84 47 4b lea Ox4b (%rdi) ,%rax v
c3 retq

3.64 ¢4
Consider the following source code, where R, S,and T are ‘constants declared with

#define:

e

long A[R] [81[T1%

]
2
3 long store_ele(long i, long j, long k, long *dest)
4 1
a1gt 1 F
5 *dest = A[i} [§1[k];
6 Treturn sizéof (A);
7

3

¥ 1

1 ¥

e

In-conifilifig this program, G¢c generates the'following assembly codéfre’

long store_ele(long i, long j, long k, long *dest) J
i dn ¥rdi, j in Xredk,; k in frdx, dest in rrex* 3

1 store_ele: - -

2 leaq (%rsi,%rsi,2), %rax o

3 leaq (%rsi,%rax,4), %rax

4 movqg %rdit Yrsi 1 )

5 salqg $6, ¥Yrsi . ‘)

6 addq %rsi, %rdi

7 addq Yrax, ¥rdi




Homework Problems 317

addq Aikdi, Jrdx
movq  +A(,%rdx,8), Yrax

10 movq %rax, (%rex)
1n movl $3640, Yeax
12 ret [

A. Extend Equation 3.1 from two dimensions to three to provide a formula for
the location of array element A(i] [] [k].

B. Use your reverse éngineering skills to determine the values of R, S,and T
based on the assembly code.

365 #
The following code transposes the elements of an M x M array, where M is a
constant defined by #define:

1 void transpose(long A[M](M]) {

2 long i, j;

3 for (i =0; i < M; i++)

4 for (j =0; j < i; j++) {
5 long t = A[il[1;

6 ATi] 031 = A(31[4);

7 ALGIIET = x5

8

9

1

When compiled with optimization level -01, Gcc generates the following code
for the inner loop of the function:

.L6:
movqg (%rdx), %rex
novgq (Jrax), ¥%rsi
movq srei, (hrdx)
movq hrex, (Yrax)

addq $8, Yrdx
addg $120, %rax
cmpq rdi, Yrax
jne .L8

v 5 i Fl *f

We can see that'Gee has converted the array indexing to pointer code.

M N D b B W N —

A. Which register holds a pointer to array elémient A[1] [§1?

B. Which register holds a pointer tg array element A[j3 [1]?

C. What is the value of M?

L 366 ¢

p Consider the following source code, where NR and NC are macro expressions de-

 clared with #define that compute the dimensions of array A in terms of. parame-
 ter n. This code computes the sum of the elements of column J of the array.
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1 long sum_col{long n, long A[NR(n)] [NC(n)]5 long j) {
2 long i; FO
3 long result = 0;
4 for (i = 0; i < NR(n); i++)
5 result += A[i][j); R
6 return result;
7 1 ’ !
M T i
In compiling this program, GCC generates the following assembly code:
3 § .
long sum_col(long n, long A[NR(n)] [NC(n})], long j) ’ N
o in Yrdi, A ia Xrsi, j in Srdx
sum_col:
leaq 1(,%rdi,4), %r8
leaq (Yrdi,%rdi,2), %rax
movqg %rax, hrdi
testq hrax, %rax
jle L4
salq $3, %r8
leaq (%rsi,%rdx,8), %rex
movl $0, %eax
movl $0, %edx
.L3:
addg (%rex), %rax
addq, $1, %rdx
addq ¥rg8, frcx
cmpq Yrdi, #rdx
jne L3
rep; ret
L4:
movl $0, %eax *

v

ret g

&
Use your reverse engineering skills to determine the defipitions of NR and NC.

3.67 ¢

For this exercise, we will examine the code generated by GcC for functions that have
structures as arguments and return values, and from this see how tilese language |
features are typically irqplpmqgted. ‘

L 1 T - . o
The following C code has a function‘l;rocess having strictures as argument
and return values, and a function eval that talls process! r

typedef struct {
long al2];
long *p;i* %
} stri;

2




typedef struct {
long ul2];
long q;

} strB;

strB process(strd s) {
8trB r;
r.ul0] = s.aT1];
r.ull]l = s.a[0];
r.q= *S.p;
return r;

long eval(long x, long y, lomg z) {
strh s;
s.al0] = x;
s.al1] = y;
8.p = &z;
StrB r = process(s);
return r.ul0} + r.uf1l + r.q;

}

Gee generates the following code for these two functions:

strB process(strd s)

process:
movq  ¥rdi, Yrax
movq 24(%rsp), %rdx
movgq (Ohrdx), %rax
movg 16 (Y%rsp), %rcx
movq Arex, (Yrdi)
movq 8(%rsp), %rcx
movq hrcx, 8(%rdi)
movg hrdx, 16(%rdi)
ret

long eval(long x, long y, long =)
X in rdi, y in Yrsi, z in Yrdx
eval:
subq $104, Yrsp
movq hrdx, 24(%rsp)
leag 24 (%rsp), %rax
movq 4rdi, (Yrsp)
movq %rsi, 8(%rsp)
movq Jrax, 16(Y%rsp)
leag 64 (%rsp), %rdi
call process

Homework Problems
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10
1
12
13
14

moow

i

movq  72{%rsp), krax
addg 64(%rsp), Yrax
addq 80(%rsp), %rax
addq $104, Yrsp

ret

We can see on line 2 of function eval that it allocates 104 bytes on the stack.
Diagram the stack frame for eval, showing the values that it stores on the
stack prior to calling process.

What value does eval pass in its call to process?
How does the code for process access the elements of structure argument s?
How does the code for process sct the fields of result structure r?

Complete your diagram of the stack frame for eval, showing how eval
accesses the elements of structure r following the return from process.

What general principles can you discern about how structure values are
passed as function arguments and how they are returned as function results?

3.68 ¢¢e¢
In the following code, A and B are constants defined with #def ine:

1
2
3
4
5
6
7
8
9
0

1
1
12 -
13
14
15
16
17

typedef struct {
int x[A][B]; /¢ Unknown constants 4 and B */
long y;

} stri;

typedef struct {

" char array[Bl;
int t;
short s[A]l;
long u;

} str2;

void setVal(strl *p, str2 =q) {
long vl = g—>t;
long v2 = g->u;
P>y = vitvl;

}

Gcc generates the following code for setVal:

void setVal(strl *p, str2 #q)
p in %rdi, g in Zrsi
setVal:
movslq 8(%rsi), %rax
addq 32(%rsi), Yrax
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movg hrax, 184(%rdi)
ret

What are the values of A and B? (The solution is unique.)

3.69 ¢ee
You are charged with maintaining a large C program, and you come across the
following code:

typedef struct {
int first;
a_struct a[CNT];
int last;

} b_struct;

void test(long i, b_struct *bp)

{
int n = bp~>first + bp->last;
a_struct *ap = &bp—>ali];
ap->x[ap~>idx] = n;

The declarations of the compile-time constant CNT and the structure a_struct
are in a file for which you do not have the nécessary access privilege. Fortunately,
you have a copy of the .o version of code, which you are able to disassemble with
the oBIDUMP program, yielding the following disassembly:

void test(long 1, b_struct =*bp)

i in jrdi, bp in Yrsi

0000000000000000 <test>:
8b 8e 20 01 00 00 mov 0x120(%rsi) ,Yecx
03 Qe add (Arsi),%ecx
48 8d 04 bf lea (%rdi,%rdi,4),%rax
48 84 04 c6 lea (drsi,%rax,8),Y%rax
48 8b 5O 08 mov 0x8(Yrax),%rdx
48 63 c9 movslg Yecx,Y%rcx
48 89 4c¢ 40 10 mov hrex,0x10(Yrax,%rdx,8)
c3 retq

Using your reverse engineering skills, deduce the following:

A. The value of CNT.

B. A complete declaration of structure a_struct. Assume that the only fields
in this structure are idx and x, and that both of these contain signed values.
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3.70 ¢4
Consider the following union declaration:

1 uniom ele {

2 struct {

3 long *p;

4 long ¥i.

5 T} el;

6 struct {

7 long x;

8 union ele *next;
9 Y} e2;

0}

This declaration illustrates that structures can be embedded within unions.
The following function (with some expressions omitted) operates on a linked
list having these unions as list elements: )

1 void proc (union ele *up) {
2 up—> = *( ) o i
3}

A. What are the offsets (in bytes) of the 'follppvﬁi‘ng fields:
el.p .
el.y
e2.x N
e2.next -

B. How many total bytes does the structure require?
C. The compiler generates the following assembly code for proc:

void proc (unibn ele *up)

up in ¥di

1 proc: o

2 movq 8(%rdi), %rax

3 mévg/  (%rax), %rdx

4 movq (%rdx), %rdx

5 subq 8(¥%rax), %rdx

6 movq Yrdx, (%rdi)

7 ret .

On the basis of this informiation, fill in the missing expressions in the code
for proc. Hint: Somé union references can havé ambiguous interpretations. ;
These ambiguities get resolved as you see where the references lead. There §
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is only one answer that does not perform any casting and does not violate
any type constraints.

371 & .

Write a function good_echo that reads a line from standard input and writes it to
standard output. Your implementation should work for an input line of arbitrary
length.“You may use the library function fgets, but you must make sure your
function works correctly even when the input line requires more space than you
have allocated for your buffer. Your code should also check for error conditions
and return when one is encountered. Refer to the definitions of the standard I/O
functions for documéntation [45, 61].

372 ¢

Figure 3.54(a) shows the code for a function that is similar to function viunct
(Figure 3.43(a)). We used vfunct to illustrate the use of a frame pointer in man-
aging variable-size stack frames. The new function aframe allocates space for local

(a) C code

{
#inclpde <alloca.h>

long aframe(long n, long idx, long *q) |
long 1i;

plCl = &i;
for (i = 1; 1 < n; i++)
plil = q;

1
2
3
4
5 long #*p = alloca(n * sizeof(long *));
5
7
8
9 Feturn *p[idx];

L
(b) Portions of generated assembly code

long aframe{long n, long idx, long *g)
@ in Xrdi, idx in Jrei, g in Yrdx
aframe:
pushg %rbp
movgq %rsp, %rbp
,subq $16, Yrsp Allocate space for i (%rsp = &)
leag  30(,%rdi,8), %rax
andq $-16, Yrax
subg hrax, ¥rsp Allocate space for array p (4rsp = sp)
leaq 15(krsp), %r8
andq $-16, %rs Set Xr8 to &pl0]

figure 3.54 Code for Problem 3.72. This function is similar to that of Figure 3.43.
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array p by calling library functionalloca. This function is similar to the more com-
monly used function malloc, except that it allocates space on the rugstime stack.
The space is automatically deallocated when the executing procedure returns.

Figure 3.54(b) shows the part of the assembly code that sets up therfraime
pointer andrallocates space for local variables i and p. It'is very similar to the
corrésponding¢ode-for vframe. Let us use-the same notation as in Problem 3.49:
The stack pointer is set to values s, at liné 4 and s, at line 7. The start-address-of
array p is set to value p at line 9+Extra space e, may arise between s; and p,-and
extra space ¢; may.arise between the end of array p and s;.

A. Explain, in mathematichl terms, the logic in the comp'l:ltatiorf‘(';f 8-

B. Explain, in mathematical terms, the logic in the computation of p.

C. Pind values of # and s; that lead to minimum and maximum values of &;.
D.

What alignriient properties does thi§ odé guarantee for the values of 5,
and p? * v

373 ¢

Write a function in assembly code that matches the behavior of the function find_
range in Figure 3.51. Your code should contain only one floating-point comparison
instruction, and then it should use conditional branches to generate the correct
result. Test your code on all 232 possible argument values. Web AsidS ASM:EASM
on page 178 describes how to incorporate functions written in assembly code into
C programs.

3.74 ¢¢ =

Write a function in assembly code that matches the behavior of the function find_
range in Figure 3.51. Your code should contain only one floating-point comparison
instruction, and then it should use conditional moves to generate the correct result.
You might want to make use of the instruction cmovp (move'if even parity). Test
your code on all 2% possible argument values. Web Aside AsM:EASM on page 178
describes how to incorporate functions written in assembly code into C prggrams,

375 ¢

ISO €99 includes extensions to support complex numbers. Any floating-point type
can be modified with the keyword complex. Here are some sample functions that
work with complex data and that call some of the associated library-functions:

#include <complex.h>

-

double c_imag(double complex x) {
return cimag(x);

double c_real{double complex x) {
return creal{x);

1
2
3
4
5 %
6
7
8
9

10 !
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11 double: complex c_sub(double complex x, double. complex v {
122 7 return x - y; T,

13}

When compiled, ce generates the following assembly code for these func-
tions:

double c_imag(double complex x}

1 ¢_imag:
2 movapd Yxmml, %xmmQ
3 ret

double c_real(double complex x)

4 c_real:
5 rep; ret

¥
double complex c_sub(double complex x, double complex y)
Cc_sub:

subsd  Jxmm2, %xmm0

subsd  Yxmm3, %xmmil

ret

A - T - I T S

Based on these examples, determine the following:

A. How are complex arguments passed to a function?
B. How are complex values returned from a function?

Solutions to Practice Problems

Solution to Prob‘[em 3.1 (page 182)
This exercise gjves you practice with the different operand forms.

Operand Value  Comment

frax 0x100  Register

0x104 OxAB Absolute address
$0x108 0x108 Immediate
(%rax) OxFF Address 0x100
4(%rax) OxAB Address 0x104
9(¥rax,¥%rdx), Ox11 Address 0x10C
260 {{rcx, Yrdx) 0x13 Address 0x108
0xFC(,%rcx, 4) O0xFF Address 0x100
(Jrax,¥rdx,4) Ox11 Address 0x10C

Solution to Problem 3.2 (page 185)
& As we have seen; the assembly code generated by Gee inclides suffixes on the
§ instructions, while the disassembler does not, Being able to switch between these
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two forms is an important skill to learn. One important feature is that memory
references in x86-64 are always given with quad word registersysuch as %rax, even
if the operand is a byte, single word, or double word.

Here is the code written with suffixes:

it 2

. movl Y%eax, (%rsp)

' movw  {drax), %dx

movb $0xFF, ¥%bl

movb  (%rsp,%rdxz,4), %di
movq (%rdx), Yrax

movw  %dx, (Yrax)

Solution to Problem 3.3 (page 186)
Since we will rely on Goe to generate most of our assembly codé, being able to
write correct assembly code is not a critica) skill. Nonetheless, this exercise will

help you become more familiar with the different instruction and operand Types.
Here is the code with explanations of the errors:

3
movb $0xF, (lfebx) Capnot use Yebx as address register ]
movl Xrax, {(¥rsp) Mismatch between imstruction suffix and register ID
movw (%raz),4(%rsp) Cannot hayg.both source and destination be memory refereaces
movk %al,%sl No register named %5l
movl %eax,$0x123 Cannot hdve ilmediate as destination t 4
movl JYeax,}dx Destination operand :incorract gize
movb %si, 8(%rbp) ‘Mismatch between instruction suffix and register ID

F .

Solution to Problem 3.4 (page 187)

This exercise gives you more experience with'the different data movement in-
structions and how they relate to the data types and convetion riles of C. Tht
nuances of conversions of both signedness and size, as well as integral promotion,
add challenge to this problem. .

src_t dest_t Instruétion Comments

long long movqg (%rdi), Yrax Read 8 bytes N
movq %rax, (jrsi) Store 8 bytes-

char int movsbl (%fdi), %¢ax  Convert char to int. "%
movl Yeax, {lrsi) Store 4 bytes

char unsigned movsbl (%rdi), feax Convert char to int
movl %eax, {/irsi) Store 4 bytes

unsigned char long movzbl (%rdi),.%eax Redd byte and zero-extend

J movq Arax, (%rsi) «+Store 8 bytes

I ¢
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int char movl (%rdi), Yeax Read 4 bytes ‘,
movb %al, (%rsi) Store low-order byte
unsigned unsigned movl (Y%rdi), %eax Read 4 bytes
char movb %al, (Yrsi) Store low-order byte
char short movsbw (%rdi), %ax Read byte and sign-extend
movw %ax, (%rsi) Store 2 bytes

Solution to Problem 3.5 (page 189)

Reverse enginéering is a good ‘way to understand systems. In this case, we want
to reverse the effect of the C compiler to determine what C code gave rise to this
assembly code. The best way is to run a “simulation,” starting with values x, y, and
z at the locations designated by pointers xp, yp, and zp, respectively. We would
then get the following behavior:

void decodel(long *xp, long #yp, long *zp)
xp in Zrdi, yp in ¥rsi, zp in Xrdx

decodel:

movyg (%rdi), %z8 Get x = *xp
movq (Ursi), %rex Get y = *yp
movq (rdx), Yrax Get z = #zp
movq w8, (Arsi) Store x at yp
movq #rex, (frdx) Store y at zp
movq %rax, (hrdi) Store z at xp
rat

From this, we can generate the following C code:

void decodel{long *xp, long *yp, long *zp)

{
long x = *xp;
long y = *yp;
long z = *zp;
*yp = x;
*Zp = ¥;
*Xp = Z;
} f

Solution to Problem 3.6 (page 192)

This exercise demonstrates the versatility of the 1eaq instruction and gives you
more practice in deciphering the different operand forms. Although the operand
forms are classified as type “Memory” in Figure 3.3, no memory access occurs.
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Instruction Result
leaq 6(%rax}, %rdx 6+x
leaq (%rax,%rex), %rdx x4y

leaq (%rax,%rex,4), hrdx x +4y
leaq 7(Y%rax,Yrax,8), hrdx  7+9x
leaq OxA(,%rex,4), %rdx 10+ 4y
leag 9{%rax,%rcx,2), Yrdx G4x 42y

solution to Problem 3.7 (page 193) i
Again, reverse engineering proves to be a useful way to learn the relationship
between C code and the generated assembly gpde.

L
The best way fo so]ve;problems of this type is to annotate the lines gf assembly

. PF
k)

code with information about the operations being performed. Here is a sample:

long scale2(long x, long ¥, long z)
x in ¥rdi, y in ¥rsi, z in Xrdx

scalel:
leaq (%rdi,%rdi,4), %rax 5E*x
leag (%rax,%rsi,2), %rax E*x+ 2%y
leaq (Yrax,%rdx,8), %rax Gxx+2*y+B*z
ret

From this, it is easy to generate the missing expression:
long t =65 *x + 2 %y + 8 *z;

Solution to Problem 3.8 (page 194) .

This problem gives you a chance to test your understanding of operands and the
arithmetic instructions. The instruction’sequence is designed so that the result'of
each instruction does not affect the behavior of subsequent ones.

Instruction Destination ~ Value

addq %rex, (%rax) 0x100 0x100 7
subg %rdx,8(}rax) 0x108 0xA8

imulq $16, (%rax,%rdx,8) 0x118 0x110

incg 16 (%rax) 0x110 0x14

decq %rex frcx 0x0

subq %rdx,%rax frax OxFD

Solution to Problem 3.9 (page 195)

This exercise gives you a chance to generate a little bit of assembly code. The
solution code was generated by Gcc. By loading parameter n in register %ecx, it
can then use byte register %cl to specify the shift amount for the sarq instruction.
It might seem odd to use a mo¥l instruction, given that n is eight bytes.long, but
keep in.mind that only-the least significant byte is required to specify the shift
amount.
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long shift_leftd_rightn(long x, long n) o
x In Xrdi, n in Yrsi
shift_left4_rightn:

movq %rdi, %rax Get x

salq $4, ¥rax X <<= ¢

movl %esi, Yecx Get n (4 bytes)
sarq %cl, %rax x >>= g

Solution to Problem 3.10 (page 196)
This problem is fairly straightforward, since the assembly code follows the struc-
ture of the C code closély.

long t1 = x | y;
long t2 = t1 >> 3;
long t3 = ~t2;

long t4 = z-t3;

Solution to Problem 3.11 (page 197)

A. This instruction is used to set register %rdx to zero, exploiting the property
that x ~ x = 0 for any x. It corresponds to the C statement x = 0,

B. A more direct way of setting register %rdx to zero is with the instruction movg
$0, %rdx.

C. Assembling and disassembling this code, however, we find that the version
with xorq requires only 3 bytes, while the version with movqrequires 7. Other
ways to set Zrdx to zero rely on the property thdt any instruction that updates
the lower 4 bytes will cause the high-order bytes to be set to zero. Thus, we
could use either xorl %edx,%edx (2 bytes) or movl $0,%edx (5 bytes).

Solution to Problem 3.12 (page 200)

We can simply replace. the cqto instruction with one that sets register %rdx to
zero, and use divq rather than idivq as our division instruction, yielding the
following code:

volid urémdiv(unsigned long x, unsigned long y,
unsigned long *gp, unsigmed long #rp)
x in Ardi, y im %rsi, gp im Xrdx, rp in ¥rex

1  uremdiv:

2 movqg %rdx, %r8 Copy gp

3 movq 4rdi, Yrax Move x to lower § bytes of dividend
4 movl $0, Y%edx Set upper 8 bytes of dividend to 0
5 divq ¥rsi Divide by y

6 movq %rax, (%4rs) Store guotient at gp

7 movq drdx, (Arex) Store remainder at rp

8 ret

329




LT A

P

330 Chapter3 Machine-

Level Representation of Programs

Solution to Problem 3.13 (page 204)

It is important to understand that assembly code does not keep track of the type
of a program value. Instead, the different instructions determine the operand
sizes and whether they are signed or unsigned. When mapping from instruction
sequences back to C code, we must do a bit of detective work to infer the data

types
A.

of the program values.

The suffix *1’ and the register identifiers indicate 32-bit operands, while the
comparison is for a two’s-complement <. We can infer that data_t must be
int.

The suffix ‘v’ and the register identifiers indicate 16-bit operands, while the
comparison is for a two’s-complement >=. We can infer that data_t must be
short.

The suffix v’ and the register identifiers indicate 8-bit operands, while
the comparison is for an unsigned <=. We can infer that data_t must be
unsigned char,

The suffix ‘g’ and the register identifiers indicate 64-bit operands, while
the comparison is for !=, which is the same whether the arguments are
signed, unsigned, or pointers. We can infer that data_t could be either long,
unsigned long, or some form of pointer.

Soiution to Problem 3.14 (page 205)
This problem is similar to Problem 3.13, except that it involves TEST instructions

rather than cMp instructions.

A,

D.

The suffix ‘g’ and the register identifiers indicate a 64-bit operand, while the
comparison is for >=, which must be signed. We can infer thatdata_t must
be long.

The suffix ‘v’ and the register identifier indicate a 16-bit operand, while the
comparison is for ==, which is the same for signed or unsigned. We can infer
that data_t must be either short or ungigned short.,

The suffix ‘b’ and the register identifier indicate an 8-bit operand, while the
compdrison is for unsigned >. We can infer that data_t must be unsigned
char.

The suffix *1* and the register identifier indicate 32-bit operands, while the
comparison is for <. We can infer that data_t must be int.

Solution to Problem 3,15 (page 209)
This exercise requires you to examine disassembled code in detail and reason

about the encodings for jump targets. It also gives you practice in hetadecimal |
arithmetic.
A. The je instruction has as its target 0x4003fc + 0x02. As the original disas-

sembled code shows, this is 0x4003fe:

4003fa: 74 02 je 4003fe
4003fc: £f 40 callg =*jrax
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B. The je instruction has as its target 0x0x400431 — 12 (since 0xf4 is the 1-
byte two’s-complement representation of —12). As the original disassembled
code shows, this is 0x400425;

40042f: 74 £f4 je 400425
400431: 54 pop ¥rbp

C. According to the annotation produced by the disassembler, the jump target |
is at absolute address 0x400547. According to the byte encoding, this must
be at an address 0x2 bytes beyond that of the pop instruction. Subtracting
these gives address 0x400545. Noting that the encoding of the ja instruction
requires 2 bytes, it must be located at address 0x400543, These are confirmed
by examining the original disassembly:

400543: 77 02 ja 400547 t
400545: 5d pop %rbp

D. Reading the bytes in reverse order, we can see that the target offset is
Oxf£££££73, or decimal —141. Adding this to 0x0x4005ed (the address of
the nop instruction) gives address 0x400560:

4005e8: o9 73 ff ff f£f jmpq 400560
4005ed: 90 nop

Solution to Problem 3.16 (page 212)

Annotating assembly code and writing C code that mimics its control flow are good
first steps in understanding assembly-language programs. This problem gives you
practice for an example with simple control flow. It also gives you a chance to
exalim'ne the irrgplementation of logical operations.

A: Here is the C code:

void goto_cond(long a, long *p) {
if (p == 0)
goto done;
if (*#p >= a)
goto done;
*p = a;
done:
return;

¥

B. The first conditional branch is part of the implementation of the && expres-
sion. If the test for p being non-null fails, the code will skip the test of a > *p.

Solution to Problem 3.17 (page 212)

This is an exercise to help you think about the idea of a general translation rule
and how to apply it.

A. Converting to this alternate form involves only switching around a few lines
of the code:
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long gotodiff_se_alt(long X, long. y). {
long result;
if (x <y)
goto x_1t_ ¥;
ge_cnti+;
result = X —- ¥;
return result;
a . XLy
lt_gnt+t;,
result = ¥y - X;
return result; .

¥ fr 1

B. In most respects, the choice is arbitrary. But the original'rule-works better
for the.common cas€ Where there is no else statement. For this tase, we can
sjmplyrmoq'i.fy the translation rule to be, ag follows: .

v {
t = test-expr;
if (1t)
goto done;
then-statement
done:

A trafislation based on the'Alterhate rule is more gﬁftibe;some.

3 FEamH

Solution to Problem 3.18 (page 213) ¢ o
This problem requires that you work through a nested branch structure, where
you will see how our rule for translating if statements has beelr applied. ‘On.the
whole, the machine code is a straightforward transiatior} of the C code.,
long test(long x, long y, long z) o
long val = xty+z;
if (x < -3) {
if (y < =)
val = X¥y;
else
val = y*z;
} else if (x > 2)
vali= x*z; »m
return val;

}

¥

af

solution to Problem 3.19 ‘(page 276)
This problem reinforces our method of éomputing the misprediction penalty.

, F i . N . . I - r .o,
A. We cah apply our formula difeetly to get Togp = 2031-'16) = %Qf o »J
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B. When misprediction occurs, the function will require around 16 + 30 = 46
cycles.

Solution to Problem 3.20 (page 219)
This problem provides a chance to study the use of conditional moves.

A. The operator is ‘/’. We see this is an example of dividing by a power of 3 by
right shifting (see Section 2.3.7). Before shifting by k = 3, we must add a bias
of 2 — 1 =7 when the dividend is negative.

. Here is an annotated version of the assembly code:

long arith(long x)
¥ in ¥rdi
arith:
leaq 7(%rdi), %rax temp = x+7
testq Y%rdi, %rdi Text x
cmovns  %rdi, Yrax If x>= 0, temp = x
sarq  $3, Yrax result = temp >> 3 (= x/8)
ret

i
The program creates a temporary value equal to x + 7, in anticipation of x
being negative and therefore requiring biasing. The cmovns instruction con-
ditionally changes this number to x when x > 0, and then it is shifted by 3to
generate x /8.

Solution to Problem 3.21 (page 219)

This problem is similar to Problein 3.18, except that some of the conditionals have

been implemented by conditional data transfers. Althou gh it might seem daunting
¢ tofitthis code into the framework of the original C code, you will find that it follows
; the translation rules fairly closely.

long, test(long x, long y) {
long val = 8*x;
if (>0 {
if (x <y
val = y-x;
else
val = xky;
'} else if (y <= -2)
sval = x+y;
return val;

2

Solution to Problem 3.22 (page 221)

A. If we build up a table of factorials computed with data type int, we get the
following:
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n! OK?
1

6

24

120

720

5,040
40,320
362,880
3,628,800
39,916,800
479,001,600
1,932,053,504

4+

SB\OW\]G\U\ANNH ]
Z o

e
W N

We can see that the computation of 13! has overflowed. As weilearned in
Problem 2.35, when we get value x while attempting to compute nl, we can
test for overflow by computing x/n and seeing whether it equals (n —1)!
(asstiming that we have Hlready ensured that the computation of (» — 1)! did
not overflow). In this case we get 1,932,053 504/13 161,004,458.667. Asa
second test, we can see that any factorial bejorid 10! must be a multiple of
100 and therefore have zeros for the last two digits. The correct value of 13!
is 6,227,020,800,

. Doing the computation with data type long lets us go up to 20!, yleldmg
2,432,902,008,176,640,000

Solution to Problem 3.23 (page 222)

The code generated when compiling loops can be tricky to analyze, because the
compiler can perform many different optimizations on loop code, and because it
can be difficult to match program variables with registers. This particular example
demonstrates several places where the assembly code is not just a direct translation
of the C code.

A. Although parameter x is passed to the function in register %rdi, we can see
that the register is never referenced once the loop is entered. Instead, we
can see that registers %rax, %rcx, and %rdx are initialized in lines 2-5:to x,
x+x, and x+x. We can conclude, therefore, that these registers contain the
program variables.

. The compiler determines that pointer p always points to x, and hence the
expression (*p)++ simply increments x. It combines this incrementing by 1
with the increment by y, via the leaq instruction of line 7.

C. The annotated code is as follows: '




long dw_lovop(long x)

x initially in Xrdi
1 dw_loop:
2 movg drdi, Yrax Copy x to ¥rax
3 movq %rdi, Yrex
4 imulq  Yrdi, %rcx Compute y = x*x
5 leagq (%rdi,%rdi), %rdx Compute n = 2#x
6 LL2: loop:
7 leaq 1(hrex,%rax), jrax Compute x += y + 1
8 subq $1, %rdx Dacrement n
9 testq Yrdwx, Yrdx Test n
10 jg .L2 If > 0, goto loop
11 rep; ret Return

Solutions to Practice Problems

Solution to Problem 3.24 (page 224)

This assembly code is a fairly straightforward translation of the loop using the
jump-to-middle method. The full C code is as follows:

long loop_while(long a, long b)
{
long result = 1;
while (a < b) {
result = result * (atb);
a = atl;
}

return result;

Solution to Problem 3.25 (page 226)

While the generated code does not follow the exact pattern of the guarded-do
translation, we can see that it is equivalent to the following C code:

long loop_while2(long a, long b)
{
long result = b;
while (b > 0) {
result = result * a;
b = b-a;
}

return result;

We will often see cases, especially when compiling with higher levels of opti-
mization, where Gce takes some liberties in the exact form of the code it generates,
while preserving the required functionality.

335
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Solution to Problem 3.26 (page 228)
Being able to work backward from assembly code to C code is a prime example
of reverse engineering,

A. We can see that the code uses the jump-fo-middle translation, using the jmp
instruction on line 3.

B. Here is the original C code:

long fun_a(unsigned long x} {
long val = Q;
while (x) {
val "= x;
x >= 1;
}
return val & Ox1;

}

C. This code computes the parity of argument x. That is, it returns 1 if there is
an odd number of ones in x and 0 if there is an even number.

Solution to Problem 3.27 (page 231)
This exercise is intended to reinforce your understanding of how loops are imple-
mented.

long fact_for_gd_goto(long n)
{
lopg 1 = 2;
long result = 1;
if (n <= 1)
goto done;
loop:
result *= i;
i++;
if (i <= n)
goto loop;
done:
return result;

}

Solution to Problem 3.28 (page 231}
This problem is trickier than Problem 3.26, since the code within the loop is more
compiex and the overall operation is less familiar.

A, Here is the original C code;,

long fun b{unsigned long xy {
long val = Q;
long i;

£
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for (i = 64; i 1= 0; 1-—-) 1
val =.(val << 1), | (x & 0x1); . ,
[P t X 2= 1; I t >
}
return val;

1'}

B. The code was generated using the guarded-do transformation, but the com-

Jpiler detected }hat, since i is initiqliged to 64, it will satisfy the test ;i ;é 0, and
therefore the initial test is not required.

C. This ¢ode reverses the Dits ip x, creating a mirror image. It does this by

shifting,the bits of x from left to tight, and then filling these bits in as it

shifts val from right to left.

Solution to Problem 3.29- (page 232)

Our stated rule for trahslating a for loop' into a-while loop i$'just a bif too
simplistic—this is the only aspect that requires special consideration,

A. Applying our translation hrl}lle would yield the follo?{vil}g code:
# 4

.
/* Naive translation of for loop into while loop */
/* WARNINGY' This {s buggy code %/
long sum,’= 0; =
long i = Q;
while (i < 10) {
if (i & 1)
/* Thig will cause an ihfidite loop-#/
continue;
sum += i;
i++;

¥

i

}

This code has an infinite loop, since the continue statement would prevent
index variable i from being iipdated,

B. The genéral solutign is to repl'éce the contin‘ue statement with a ‘goto

. T

statement that skips the rest of theloop body and goes directly to the update’
portion: ;

N

/* Correct translation of for loop into while loop */
long sum = Q;
long i = Q;
while (i < 10) {

if (g 1)

goto update;

sum += i;
update:

i++;

}
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Solution to Problem 3.30 (page 236)
This problem gives you a chance to reason about the control flow of a switch j
statement. Answering the questions requires you to combine information from ]
several places in the assembly code.

* Line 2 of the assembly code adds 1 to x to set the lower range of the cases to
zero. That means that the minimum case label is —1.

» Lines 3 and 4 cause the program to jump to the default case when the adjusted
case value is greater than 8 This implies that the maximum case label is

J -1+8=7.

e In the jump table, we see that the entry on lines 6 (case value 3) and 9 (case
value 6) have the same destination (.L2) as the jump instruction &n line 4,
indicating the default case behavior. Thus, case labels 3 dnd 5 are missing in
the switch statement body.

* In the jump table, we see that the entries on lines 3 and 10 have the same
destination. Thesg correspond to cases 0 and 7.

¢ [n the jump table, we see that the entries on lines 5 and 7 have the same
destination. These correspond to cases 2 and 4.

From this reasoning, we draw the following conclusions:

A. The case labels in the switch statement body have values —1,0, 1, 2, 4, 5,
and 7.

B. The case with destination .L5 has labels 0 and 7.
C. The case with destination ,L7 has labels 2 and 4.

Solution to Problem 3.31 (page 237}
The key to reverse engineering compiled switch statements is to combine the
information from the assembly code and the jump table to sort out the different
cases. We can see from the ja instruction (line 3) that the code for the default case
has label .L2. We can see that the only other repeated label in the jump table is
.L5, and so this must be the code for the cases C and ID. We can see.that the code
fails through at line 8, and so label . L7 must match case A and label .13 must
match case B, That leaves only label . L6 to match case E.

The original C code is as follows:

void switcher(long a, long b, long ¢, long *dest)
{
long val;
switch(a) {
case 5:
c=b - 15;
/% Fall through */
case O:
val = ¢ + 112;
break;
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case 2: 1
case 7:
val = (c + b) << 2; ]
break;
case 4:
val = a;
break;
default:
val = b;
¥

*dest = val;

)

Solution to Problem 3.32 (page,244)

Tracing through the program execution at this level-of detail reinforces many
aspects of procedure call and return. We can see clearly how control is passed to
the function when it is called, and how the calling function resumes upon return.
We can also see how arguments get passed through registers %rdi and %rsi, and
how results are returned via register %rax.

Instruction State values (at beginning)
Label PC Instruction Yrdi Y%rsi Yrax %rsp *jrsp  Description
M1 0x400560 callqg 10 -— — OxVEffffffe820 — Call first(10)
F1 0x400548 lea 10 — —  Ox7iffffffe818 0x400565 Entryof first
F2 0x40054¢ sub 10 11 —  OxTLffffffe818 O0x400585
Fa. 0x400550 callq 11 —  OxViffffffe818 02400565 Calllast(9, 11)
L1 0x400540 mov 11 — OxTfffffffe810 0x400555 Eniry of last

L2 0x400543 imul
L3 0x400547 retq

11 9 Ox7fE££££££e810 0x400555
11 99  OxTEffffffe810 Ox400555 Return 99 from last

11 99 OxTfffffffe818 0x400565 Return 99 from first

9
9
9
9
F4 0x400555 Trepz repq 9
9

M2 0x4Q0565 mov 11 99  Ox7ffffiffe820 — Resume main

Solution to Problem 3.33 (page 246) .
This problem is a bit tricky due to the mixing of different data sizes.

Let us first describe one answer and then explain the second possibility. If
we assume the first addition (line 3) implements *u += a, while thesecond (line 4)
implements v += b, then we can see that a was passed as the first argument in %edi
and converted from 4 bytes to 8 before adding it to the 8 bytes pointed to by %rdx.
This implies that a must be of type int and u must be of type long *. We can also
see that the low-order byte of argument b is added to the byte pointed to by %rcx.
This implies that v must be of type char *, but the type of b is ambiguous—it could
be 1,2, 4, or 8 bytes long, This ambiguity is resolved by noting the return value of
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6, computed as the sum of the sizes of a and b. Since we know a is 4 bytes long,
we can deduce that b must be 2.
An annotated version of this function explains these details:

int procprobl{int a, short b, long #u, char #*v)
a in %edi, b in ¥si, uw in frdx, v in Jrex

1 procprob:

2 movslq %edi, %rdi Convert a to leng

3 addgq %rdi, (Yrdx) Add to *u (long)

4 addb %sil, (Yrcx) Add low-order byte of b to *v
5 movl $6, %eax Return 4+2

6 ret

Alternatively, we can see that the same assembly code would be valid if the
two sums were computed in the assembly code in the opposite ordering as they are
in the C.code. This would result in interchanging arguments-a and b and arguments
u and v, yielding the following prototype: T

! h

int procprob(int b, short a, long #*v, char *u};

Solution to Problem 3.34 (page 252)
This example demonstrates the use of callee-saved registers as well as the stack
for holding local data.

A. We can see that lines 9-14 save local values a0—a5 into callee-saved registers
%rbx, %ri15, Yri4, %ri3, %r12, and %rbp, respectively.

B. Local values a6 and a7 are stored on the stack at offsets 0 and 8 relative to
the stack pointer (lines 16 and 18).

C. After storing six local variables, the program has used up the supply of callee-
saved registers. It stores the remaining two local values on the gtack.

Solution to Problem 3.35 (page 254)

This problem provides a chance to examine the code for a recursive function. An
important lesson to learn is that recursive code has the exact same structure as the
other functions we have seen. The stack and register-saving disciplines suffice to
make recursive functions operate correctly.

A. Register %rbx holds the value of parameter x, so that it can be used to
compute the result expression.

B. The assembly code was generated from the following C code:
7

long rfun{unsigned long x)} {
if {x == 0)
¢ return 0; :
unsigned long nx = x>>2;
lbng rv = rfun(ox); t
returnx + rv;
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Solution to Problem 3.36 (page 256)

This exercise tests your understanding of data sizes and array indexing. Observe
that a pointer of any kind is 8 bytes long. Data type short requires 2 bytes, while
int requires 4. - !

Array Element size Total size Start address Element i

3 2 14 Xg xg + 2i
T 8 24 X1 X7 + 8i
) 8 48 Xy xy + 8i
v 4 32 Xy Xy +4i
W 8 32 . Xy X+ 8i

£y 4
Solution to Problem 3.37 (page 258) .
‘This problem is a variant of the one shown for integer array E. It is important to
understand the diffgrence between a pointer and the object being pointed to. Since
data type short requires 2 bytes, all of the array indices are scaled by-a factor of
2. Rather than using movl, as before, we now use movw.

Expression  Type Value Assembly

S+1 short *  xg-+2 leaq 2(%rdx),Yrax

5[3] short M[xg + 6] movw 6 (%rdx) ,%ax

&3[i] short * xg+2f leag (Yrdx,¥recx,2),%rax
S[4*i+1] short Mlxg+8i +2]  movw 2(%rdx,%rcx,8),%ax
5+i-5 short *  xg+42i —10 leaq -10(%rdx,%rcx,2), frax

.
Solution to Problem 3.38 (page 259)

This problem requires you to work through the scaling operations to determine
the address computations, and to apply Equation 3.1 for row-major indexing. The
first step is to annotite the assembly code to determine how the addréss references
are computed:

‘"long sum_element(long i, long j)
i in %rdi, j in Yrsi
1 sum_element :»

2! ledq: 0(,%rdi,8), %rdx Compute 8i

3 sudbq %rdi, %rdx Compute 7i

4 addq Y%rsi, %rdx Compute i7i + j

5 leag (frsi,%rsi,d), %rax *Computeh 5 j

6 addq hrax, %rdi Compute i + 5j

7 movq Q(,%rdi,8), Y%rax Retrieve Mlxy + 8 (3/ + )]
8 addq P(,%rdx,8), Yrax Add Mlxp + 8 (7i + )]

g ret

We can see that the reference to matrix P is at byte offset & - (7i + f), while
the reference tq matrix Q is at byte offset 8 - (57 + {). From this, we can determine
that P has 7 columns, while Q has 5, giving M =5and N =7.

Iy
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Solution te Problem 3.39 (page 262)
These computations are direct applications f Equation 3.1:

s For L =4,C = 16, and j =0, pointer Aptr is computed as x, + 4 - (16 + 0) =
Xy + 641

* ForL=4,C=16,i =0,and j =k, Bptriscomputedasxg +4- (16 -0 +%) =
xB + 4k

s For L=4, C=16, i=16, and j=1k, Bend is computed as xz-+4 -
(16 -16 4 k) = x5 + 1,024 + 4k.

Solution to Problem 3.40 (page 262)
This exercise requires that you be able to study compiler-generated assembly code
to understand what optimizations have been performed. In this case, the compiler
was clever in its optimizations,

Let us first study the following C code, and then see how it is derived from the
assembly cdde generated for the original function.

/* Set all diagonal elements to val */
void fix_set_diag opt(fix_matrix A, int val) {
int *Abase = &A[0]{0];
long i = 0;
long iend = N#*(N+1};
do {
Abaseli] = val; .
i+= (N+1);
} while (i'!= iend);
3 '

This function introduces a variable; Abase, of type int %, pointing to the start
of array A. This pointer designates a sequence of 4-byte integers consisting of
elements of 4 in row-major order. We introduce an integer variable index that
steps through the diagonal elements of A, with the property that diagonal elements
i andi + larespaced N + 1elements apart in the sequence, and that once we reach
diagonal element N (index value N (N + 1)), we have gone beyond the end.

The actval assembly code follows this general form, but now-the pointer
increments must be scaled by a factor of 4, We label register %rax as holding a value
index4 equal to index in our C version but scaled by-a factor of 4. For N.= 16, we
can see that our stopping point for index4 willbe 4 - 16(16 + 1) = 1,088.

1 fix_set_diag:
void fix_set_diag(fix_matrix 4, int val)
A ip ¥rdi, val im Hrsi
movl $0, %eax Set index4 = 0

2

3 .L13: loop:

4 movl hesi, (%rdi,lrax) Set Abaselindexd/4] to val
5 addq $68, %rax ? Increment index4 += 4(N+1)

ek
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6 cmpq $1088, Yrax Compare indexd: 4N(N+1)
Jjne .L13 If {=, goto loop
8 rep; ret Return

Solution to Problem 3.41 (page 268)

This problem gets you to think about structure layout and the code used to access
structure fields. The structure declaration is a variant of the example shown in
the text. It shows that nested structures are allocated by embedding the inner
structures within the outer ones.

A. The layout of the structure is as follows:

Ofiset 0 .. 8 12 16 24
Contents L P ] 8.x | 8.y I nexty,

B. Tt uses 24 bytes.
C. As always, we start by annotating the assembly code:

void sp_init(struct prob *sp)

sp in Xrdi
1 sp_init:
2 movl 12(%rdi), %eax  Get sp->s.y
3 movl %eax, 8(%rdi) Save in sp-»s.x
4 leaq 8(%rdi), Yrax Compute &(sp->s.x)
5 movq %rax, (%rdi) Store in sp~>p
6 movq Yrdi, 16(%rdi) Store sp in sp->next
7 et

From this, we can generate C code as follows:

void sp_init(struct prob #sp)

{
Sp—>8.%X = sp->8.¥;
sp—>p = &(8pr>s.x);
sp—>next = sp;

}

Solution to Problem 3.42 ((page 269)

This problem demonstrates how a very common data structure and operation on
it is implemented in machine code. We solve the problem by first annotating the
assembly code, recognizing that the two fields of the structure are at offsets 0
(for v) and 8 (for }3)

long fun(struct ELE #ptr)

ptr in Xrdi
1 fun:
2 movl $0, %eax result = 0
3 Jmp L2 Goto middle
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4 .L3: loop:

5 addq (%rdi), %rax result += ptr—>v

6 movq 8(%rdi), Krdi ptr = ptr—>p

7 .L2: niddle:

8 testq %rdi, Hrdi Test ptr

9 jne L3 If I= NULL, goto loop
0 rep; ret

A. Based on the annotated code, we cant generate a C Version:

long fun(struct ELE wptr) {
long val = O;
while (ptr) {
val += ptr->v;
ptr = ptr—>p;
H
return val;

}

B. We can see that each structure is an element in a stngly linked list, with field
v being the value of the element and p being a pointer to the next element.
Function fun computes the sum of the element values in the Iist.

Solution to Problem 3.43 (page 272)
Structures and unions involve a simple set of concepts, but it takes practice to be
comfortable with the different referencing patterns and their implementations.

EXPR TYPE Code

up->tl.u long movq (%rdi), %rax
movq 4rax, (Yrsi)

. A .
up->t1.v ghort movw 8(%rdiy, Yax
novw Yax, Cirsi)

gup->t1.% addq $10, %rdi
movq ¥rdi, (hrsi)

up->t2.a movg %rdi, (%rsi)

up—>t2 .a[up—>t1.1] i movq (¥rdi), Yrax
movl (Yrdi,%rax,4) , %eax
movl %eax, (hrsi)

*up->t2.p movq 8(%rdi), hrax
movb (Yrax), %al
movb %al, (%rsi)
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Solution to Problem 3.44 (page 275)

Understanding structure layout and alignment is very important for understand-
ing how much storage different data structures require and for understanding the
code generated by the compiler for accessing structures. This problem lets you
work out the details of some example structures.

. A, struct P1 { int i; char ¢; int j; chard; };

, i e ] d Total  Alignment
0 4 8 12 16 4

B. struct P2 { int i; char ¢; char d; long j; };

c d ] Total  Alignment
0 4 5 8 16 8

C. struct P3 { short w[3]; char c[3] };

w ¢ Total  Alignment
6 10 2

;* D. struct P4 { short w[5]; char *c[3] };

W c Total  Alignment
16 40 8

E. struct PS5 { struct P3 a[2]; struct P2t };

¥

a t Total Alignment
24 40 8

Solution to Problem 3.45 (page 275)
This is an exercise in understanding structure layout and alignment.

A. Here are the object sizes and byte offsets:

Field a b c d e f g h

Size 8 2 8 1 4 1 8 4
Offset 0 8 16 24 28 32 40 48

B. The structure is a total of 56 bytes long. The end of the structure must be
padded by 4 bytes to satisfy the 8-byte alignment requirement.

C. One strategy that works, when all data elements have a length equal to a
power of 2, is to order the structure elements in descending ordér of size,
This leads to a declaration
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struct {
char
double
long
float
int
short
char
char

} rec;

with the following offsets:

a h b f

Size 8 4 4 2 1 1
Offset 0 8 24 28 32 34 35

The structure must be padded by 4 bytes to satisfy the 8-byte alignment
requirement, giving a total of 40 bytes.

Solution to Problem 3.46 (page 282)

This problem covers a wide range of topics, such as stack frames, string represen-
tations, ASCII code, and byte ordering. It demonstrates the dangers of out-of-
bounds memory references and the basic ideas behind buffer overflow.

A. Stack after line 3:

00 00 00 00 00 40 00 76| Return address
01 23 45 67 89 AB CD EF|Saved %rbx

«— buf = Yrap

B. Stack after line 5:

00 00 00 0C 00 40 00 34| Return address
33 32 31 30 39 38 37 36| Saved %rbx

35 34 33 32 31 30 35 38
37 36 35 24 33 32 31 30| -— buf = Yrsp

C. The program is attempting to return to address 0x040034. The low-order 2
bytes were overwritten by the code for character ‘4’ and the terminating null
character,

D. The saved value of register %rbx was set to 0x3332313039383736. This value
will be loaded into the register before get_line returns.
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E. The callto malloc should have had strien(buf)+1 as its argument, and the
code should also check that the returned value is not equal to NULL.

Solution to Problem 3.47 (page 286)

A. This corresponds to a range of around 2" addresses.

B. A128-byte nop sled would cover 27 addresses with each test, and so we would
only require around 29 = 64 attempts.

This example clearly shows that the degree bf randomization in this version
of Linux would provide only minimal deterrence against an overflow attack.

Solution to Problem 3.48 (page 288)
This problem gives you another chance to see how x86-64 code mana ges the stack,
and to also better understand how to defend against buffer overflow attacks.

A. Forthe unprotected code, we can see that lines 4 and 5 compute the positions
of v and buf to be at offsets 24 and 0 relative to %rsp. In the protected code,
the canary is stored at offset 40 (line 4), while v and buf are at offsets & and
16 (lines 7 and 8).

B. In the protected code, local variable v is positioned closer to the top of the
stack than buf, and so an overrun of buf will not corrupt the value of v,

Solution to Problem 3.49 (page 293)
This code combines many of the tricks we have seen for performing bit-level
arithmetic. It requires careful study to make any sense of it.

A. The leag.instruction of line 5 computes the walue 8z + 22, which is then
rounded down to the nearest multiple of 16 by the andq instruction of line 6.
The resulting value will be 8z + 8 when n is odd and 8n + 16 when n is even,
and this value is subtracted from s to give s,.

B. The three instructions in this sequence round s, up to the nearest nmultiple
of 8. They make use of the combination of biasing and shifting that we saw
for dividing by a power of 2 in Section 2.3.7.

C. These two examples can be seen as the cases that minimize and maximize
the values of e; and e,.

n 51 57 P € €
5 2,065 2,017 2,024 1 7
6 2,064 2,000 2,000 16 0

D. We can see that s, is computed in a way that preserves whatever offset st has
with the nearest multiple of 16. We can also see that p will 88 aligned on a
multiple of 8, as is recommended for an array of 8-byte eleménts.

Solution to Problem 3.50 (page 300)

This exercise requires that you step through the code, paying careful attention to
which conversion and data movement instructions are used. We can see the values
being retrieved and converted as follows:
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JPES——

e The value at dp is retrieved, converted to an int (line 4), and:then stored at
ip. We can therefore infer that vall is d. i

e The value at ip is retricved, converted to a float (lipe 6), and then stored at
£p. We can therefore infer that val2is i.

e The value of 1 is converted to a double (line 8) dnd stored at dp. We ‘can
therefore infer that val3is 1. ,

e The value at £p is retrieved on line’ 3. The two instructions“at:lines 10-11
convert this to double precjsion as the.value returned in register %xmp0. We
can therefore infer that val4 is £. 1

o o B i g T Y M i
r - - . —_— R

Solution to Problem 3.51 (page 300)
These cases can be handled by,selecting the appropriate entries from the tables in
Figures 3.47 and 3.48, or-using one of the code sequences for converting between

floating-point formats.
£

T, T, Instruction(s)

long double vcvtsi2sEiq Yrdi, %xmm0, %xmm0
double int vevitsd2si %xmm0, heax
float double  vunpéklpd %xmm0, %ximO, HxmmO
vevtpd2ps %xmm0, %xmm0
long float vevtsiZssq %rdi, %xmm0, %xmmO
float long, vevttss2sig Yxmmd, Yrax
Solution to Problem 3.52 (page 301’ ' !
The basic rules for mapping arguments to registers are fairly simple.(althouigh they

become much more complex with more and other types of arguments. [77D).

A. double gl(double a, long b, float ¢, int a);

Registers: a in %xmn0, b in Yrdi ¢ indxmmi, d in %esi.

. double g2(int a, -double *b, float *c, long d)s
¥

Registers: a in %edi, bin Y%rsi, c in %rdx, d in }rex

. double g3(double *a, double b, int c, float d};

Registers: a in %rdi, b in %xmm0, ¢ in %esi, d in %xmm1

D. double ga(float a, int *b, float ¢, dduble d);

Registers: a in %xmm0, b in %rdi, c in %xmmi, d in %xmm2
Solution to Problem 3.53 (page 303) E
We can see from the assembly code that there are two integer arguments, passed
in registers %rdi and %rsi. Let us name these i1 and i2. Similarly, there are two
floating-point arguments, passed in registers %xmm0 and %xmm1, which we name £1 §
and £2. r " ]
We can-then annotate the assembly code:
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Refer to arguments as i1 (¥rdi), i2 (%esi)
f1 (Zxmm0), and £2 (¥Yxmml}
" E

double functi(argi_t p, arg2 t ¢, arg3_t r, a.'rgé_t s)

1 functl:

2 vévtsil2esq hrsi, Komm2, Y%xmmZ Qe 12 and convert from long to float
3 vaddss %xmm0, %xmm2, ¥xmmO Add f1 (type float)

4 vcvtsil2ss hedi, Yxmm2, Yxmm2 Get il and convert from int to float
5 vdivss JxmmO, %xmm2, %xmmO - Compute i1 / (i2 + £1)

6 vunpcklps %xmmQ, ¥xmm0, %xmm0

7 vevips2pd %xmmQ, %xmmO Convert to double

8 vsubsd, Yxmml, Y%xmm0O, %xmmO Compute i1 / (i2 + f1) - 2 {(double)
g ret

From this we see that the codé computes the value i1/ (i2+£1)—-£2. We'can also
see that i1 has type int, i2 has type long, £1 has type float, and £2 has type
double. The only ambiguity in matching arguments to the named values stems
from the commutativity of multiplication—yielding two possible results:

double functla(int p, float q, long r, double s);
double functib(int p, long q, float r, double s);

Solution to Problem 3.54 (page 303)
This problem can readily be solved by stepping through the assembly code and
determining what is computed on each step, as shown with the annotations below:

double funct2(double w, int x, float y, long z)
w in JxmmQ, x in Xedi, y in Yxmmi, z in Yrsi

1 funct2:

2 vevtsilss %edi, %kmm2, ¥%xmm?2 Convert x to fleoat

3 vmulss %xmml, Yxmm?2, %xmmi Multiply by y

4 vunpcklps %xmmi, ¥xmmil, Yxmmil

5 vevtps2pd %xmml, %xmm2 Convert x+y to double
6 vevtsiZsdg Arsi, %xmml, %xmmi Convert z to double

7 vdivsd Yxmml, %ommQ, %xmmO Compute w/z

] vsubsd %xmm0, ¥xmm2, %xmm0 Subtract from x*y

9 ret ‘ Return

We can conclude from this analysis that the function computes y % x — w/z.

Solution to Problem 3.55 (page 305)
This problem involves the same reasoning as was required to see that numbers
declared at label . LC2 encode 1.8, but with a simpler example.

We see that the two values are 0 and 1077936128 (0x40400000). From the
high-order bytes, we can extract an exponent field of 0x404 (1028), from which
we subtract a bias of 1023 to get an exponent of 5. Concatenating the fraction bits
of the two values, we get a fraction field of 0, but with the implied leading value
giving value 1.0. The constant is therefore 1.0 x 2° = 32.0.
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Solution to Problem 3.56 (page 305)

A. We see here that the 16 bytes starting at address .LC1 form a mask, where
the low-order 8 bytes contain all ones, except for the most significant bit,
which is the $ign bit of a double-precision value. Wheén we compute the AND
of thig mask with %xmm0, it will clear the sign bit of x, yielding the absolute
value. In fact, we generated this code by defining EXPR(x) to be fabs(x),
where fabs is defined in <math.h>.

_ We see that the vxorpd instruction sets the entire register to zero, and so this
is a way to generate floating-point constant 0.0. -

. We see that the 16 bytes starting at address .LC2 form a mask with a single
1 bit, at the position of the sign bit for the low-order*vatue in the XMM
register. When we compute the ExcLUSIVE-OR of this mask with %xmm0, we
change the sign of x, computing the expression —x.

Solution to Problein 3.57 (page 308)
Again, we annotate the'code, includihg dealing with the conditional branch:’

double funct3(int *ap, double b, long ¢, float *dp)

ap in frdi, b in Lxmm0, ¢ in 4rsi, dp in Yrdx

funct3:
vmovss (%rdx), %xmml Gap d = *dp Ly
vevtsi2sd (Yrdi), Y%xmm2, %xmm2, udﬁe} a = +ap and copvert; to double
vuccygl,isd 'r‘:Axrmqu YxmmO Compare b:p .

i

2

3

4 T

5 jbe L8 If <=, goto lesseq
6 vevtsi2ssq Yrei, %xmmQO, %xmmO Convert ¢ to float
7 vmulss %xmml, %xmmO, Yxmml Multiply by d

8 vunpcklps Yxmmi, %xmml, %xmml

9 vevtps2pd %xmml, %xmmO Confrert to deuble
10 ret Return

11 .L8: lesseq:

12 vaddss Yxmml, %xmmi, Yxmmi Compute d+d = 2.0 * d
13 vevtsi2ssq Yrsi, %xmm0, %xmmd Convert ¢ to float
14 vaddss %xmmi, %xmmQ, %xmmO Compute ¢ +.2%d
15 vunpcklps Yxmm®, %xmmO, %xmm0

16 vevtps2pd YxmmO, %xmmO Convert to double

7 rat Return
H

From this, we can write the following code for funct3:

double funct3(int; *apsdouble b, long ¢, float *dp) {
int a = *ap; ¥
float d = *dp;
if (a < Db)
return c*d;
else ]
return c+2*d;.
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352 Chapter 4 Processor Architecture

odern microprocessors are among the most complex systems ever created

by humans. A single silicon chip, roughly the size of a fingernail, can con-
tain several high-performance processors, large cache memories, and the logic
required to interface them to external devices. In terms of performance, the pro-
cessors implemented on a single chip today dwarf the room-size supercomputers
that cost over $10 million just 20 years ago. Even the embedded processors found
ineveryday appliances such as cell phones, navigation systems, and programmable
thermostats are far more powerful than the early developers of computers could
ever have envisioned.

So far, we have only viewed computer systems down to the level of machine-
language programs. We have seen that a processor must execute a sequence of
instructions, where each instruction performs some primitive operation, such as
adding two numbers. An instruction is encoded in binary form as a sequence of
1 or more bytes. The instructions supported by a particular processor and their
byte-level encodings are known as its instruction set architecture (ISA). Different
“families” of processors, such as Intel TA32 and x86-64, IBM/Freescale Power,
and the ARM processor family, have different ISAs. A program compiled for one
type of machine will not run on another. On the other hand, there are many dif-
ferent models of processors within a single family. Each manufacturer produces
processors of ever-growing performance and complexity, but the different models
remain compatible at the ISA level. Popular families, such as x86-64, have pro-
cessors supplied by multiple manufacturers. Thus, the ISA provides a conceptual
layer of abstraction between compiler writers, who need only know what instruc-
tions are permitted and how they are encoded, and processor designers, who must
build machines that execute those instructions.

In this chapter, we take a brief look at the design of processor hardware. We
study the way a hardware system can execute the instructions of a particular ISA.
This view will give you a better understanding of how computers work and the
technological challenges faced by computer manufacturers. One important con-
cept is that the actual way a modern processor operates can be quite different
from the model of computation implied by the ISA. The ISA model would seem
to imply sequential instruction execution, where each instruction is fetched and
executed to completion before the next one begins. By executing different parts
of multiple instructions simultaneously, the processor can achieve higher perfor-
mance than if it executed just one instruction at a time. Special mechanisms are
used to make sure the processor computes the same results as it would with se-
quential execution. This idea of using clever tricks to improve performance while
maintaining the functionality of a simpler and more abstract model is well known
in computer science. Examples include the use of caching in Web browsers and

information retrieval data structures such as balanced binary trees and hash tables. "

Chances are you will never design your own processor. This is a task for

experts working at fewer than 100 companies worldwide. Why, then, should you
learn about processor design?

i

* ltisintellectually interesting and important. There is an intrinsic value in learn- |

ing how things work. It is especially interesting to learn the inner workings of |

1
3
|
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Aside “The progress of computer technology. »

To get-a sense of hgw.fhuch comphter techno'logy has nﬁ”proved over the past four decades, consider
the followirig two processors.- A

The' first Cray I supercomputér Was delivered to Los Alamos National Laboratory in 1976. It was

the fastest computer in the world, able to perform as many-as 250 million arithinetic operations per

+ second. It caine with 8 mégabytes-of random atcess niémory, the maximum configuration allowed by
the hardware. The macliine was also very large—it weighed 5,000 kg, consumed 115 kilowatts, and cost
$9-million, In total, aroufid 80 of them-were thahufactured.

= The Apple ARM A7- mlcroprocessor chip, introducéd i#i" 2013 to power the ‘iPhone 58, contains
two CPUs, each of which can perform several billion arithmetic operations per $econd, and 1 gigabyte
of randont actess memory Thie eritire phéne weighs just 112 grams; cohsunies around 1 watt, and costs
less than $800. Over’9 million units were'sold in the first Weékend of its infroduction. In addition to
being a powerful computer, it can be used to take pictures, to‘place phoné calls, and to provide driving
directidns, fedtures never tonsidered for thé Cray 1.

These two systems, spaced just 37 years apart, demonstrate the tremendols progress of semicon-
ductor technology. Wheéreds the Cray 1's CPU was constructed using around 100,000 semiconductor
chips,"each containing less than 20 tfansistors, the Appl€ A7 has over 1 billion t¥ansistors on its single
chip. The Cray 1 8-megab§"te memory reqmred 8,192 Ch]pS wherédas the iPhone’s gigabyte memory is
containéd i ina single chip.

T

ot

a system that is such a part of the daily lives of computer scientists and engi-
neers and yet remains a mystery to many. Processor design embodies many of
the principles of good engineering practice. It requires creating a simple and
regular structure to perform a complex task.

Understanding how the processor works aids in understanding how the overall
computer system works. In Chapter 6, we will look at the memory system and
the techniques used to create an image of a very large memory with a very
fast access time. Seeing the processor side of the processor-memory interface
will make this presentation more complete.

s Although few people design processors, many design hardware systems that
contain processors. This has become commonplace as processors are embed-
ded into real-world systems such as automobiles and appliances. Embedded-
system designers must understand how processors work, because these sys-
tems are generally designed and programmed at a lower level of abstraction
than is the case for desktop and server-based systems.

¢ You just might work on a processor design. Although the number of compa-
nies producing microprocessors is small, the design teams working on those
processors are already large and growing. There can be over 1,000 people
involved in the different aspects of a major processor design.

In this chapter, we start by defining a simple instruction set that we use as a
running example for our processor implementations. We call this the “Y86-64”
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instruction set, because it was inspired by the x86-64 instruction set. Compared
[ with x86-64, the Y86-64 instruction set has fewer data types, instructions, and |
addressing modes. It also has a simple byte-level encoding, making the machine |
' code less compact than the comparable x86-64 code, but also much easier to design
' the CPU’s decoding logic. Even though the Y86-64 instruction set is very simple,
it is sufficiently complete to allow us to write programs manipulating integer data.
Designing a processor to implement Y86-64 requires us to deal with many of the
challenges faced by processor designers.

We then provide some background on digital hardware design. We describe
the basic building blocks used in a processor and how they are connected together
and operated. This presentation builds on our discussion of Boolean algebra and
bit-level operations from Chapter 2. We also introduce a simple language, HCL
(for “hardware control language™), to describe the control portions of hardware
systems. We will later use this language to describe our processor designs. Even if
you already have some background in logic design, read this section to understand
our particular notation.

As a first step in designing a processor, we present a functionally correct,
but somewhat impractical, Y&6-64 processor based on sequential operation. This
processor executes a complete Y86-64 instruction on every clock cycle, The clock
must run slowly enough to allow an entire series of actions to complete within one
cycle. Such a processor could be implemented, but its performance would be well
below what could be achieved for this much hardware.

With the sequential design as a basis, we then apply a series of transforma-
tions to create a pipelined processor. This processor breaks the execution of each
. instruction into five steps, each of which is handled by a separate section or stage of
) the hardware. Instructions progress through the stages of the pipeline, with one in-
! struction entering the pipeline on each clock cycle. As a result, the processor can
be executing the different steps of up to five instructions simultaneously. Mak-
ing this processor preserve the sequential behavior of the Y86-64 ISA requires
. handling a variety of hazard conditions, where the location or operands of one
instruction depend on those of other instructions that are still in the pipeline.

We have devised a variety of tools for studying and experimenting with our
processor designs. These include an assembler for Y86-64, a simulator for running
Y86-64 programs on your machine, and simulators for two sequential and one
pipelined processor design. The control logic for these designs is described by
files in HCL notation. By editing these files and recompiling the simulator, you can
alter and extend the simulator’s behavior. A number of exercises are provided that
involve implementing new instructions and modifying how the machine processes
instructions. Testing code is provided to help you evaluate the correctness of your
modifications. These exercises will greatly aid your understanding of the material
and will give you an appreciation for the many different design alternatives faced
by processor designers.

Web Aside ARCH:vLOG on page 467 presents a representation of our pipelined
Y86-64 processor in the Verilog hardware description language. This involves
creating modules for the basic hardware building blocks and for the overall pro-
cessor structure. We automatically translate the HCL description of the control

—— W D e e
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logic into Verilog. By first debugging the HCL description with our simulators, we
eliminate many of the tricky bugs that would otherwise show up in the hardware
design. Given a Verilog description, there are commercial and open-source tools
to support simulation and logic synthesis, generating actual circuit designs for the
microprocessors. So, although much of the.effort we expend here is to create picto-
rial and textual descriptions of a system, much as one would when writing software,
the fact that these designs can be automatically synthesized demonstrates that we
are indeed creating a system that can be realized as hardware.

4.1 The Y86-64 Instruction Set Architecture

Defining an instruction set architecture, such as Y86-64, includes defining the
different components of its state, the set of instructions and their encodings, a
set of programming conventions, and the handling of exceptional events.

4.1.1 Programmer-Visible State

AsFigure 4.1illustrates, each instruction in a Y86-64 program can read and modify
some part of the processor state. This is referred to as the programmer-visible
state, where the “programmer” in this case is either someone writing programs
in assembly code or a compiler generating machine-level code. We will see in our
processor implementations that we do not need to represent and organize this
state in exactly the manner implied by the ISA, as long as we can make sure that
machine-level programs appear fo have access to the programmer-visible state.
The state for Y86-64 is similar to that for x86-64. There are 15 program registers:
4rax, frex, frdx, %rbx, frep, #rbp, %rsi, drdi, and %rs through %r14. {We omit
the x86-64 register %r15 to simplify the instruction encoding.) Each of these stores
a 64-bit word. Register %rsp is used as a stack pointer by.the push, pop, call, and
return instructions. Otherwise, the registers have no fixed meanings or values.
There are three ‘single-bit condition codes, ZF, SF, and OF, storing information

Figure 4.1 RF: Program registers
Y86-64 programmer-

visible state, As with

x86-64, programs for Y86-
64 access and modify hrdx Yrsi J%r10
the program registers, Yrbx yrdi Yri
the condition codes, the

rogram counter (PC), and cC .
preg (PC) Condition Stat: Program slatus

the memory. The status codes l:l
code indicates whether

the program is running ZF | SF| OF DMEM: Memory
normally or some special PC

event has occurred, I l

hrax hrsp w8

Yrox #rbp Ar9

B B
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about the effect of the most recent arithmetic or logical instruction. The program
counter (PC) holds the address of the instruction currently being executed.

The memory is conceptually a large array of bytes, holding both program
and data. Y86-64 programs reference memory locations using virtual addresses.
A combination of hardware and operating system software translates these into
the actual, or physical, addresses indicating where the values are actually stored
in memory. We will study virtual memory in more detail in Chapter 9. For now,
we can think of the virtual memory system as providing Y86-64 programs with an
image of a monolithic byte array.

A final part of the program state is a status code 5tat, indicating the overail
state of program execution. It will indicate either normal operation or that sbme
sort of exception has occurred, such as when an instruction attempts to read
from an invalid memory address. The possible status codes and the handling of
exceptions is described in Section 4.1.4. ’

4.1.2 Y86-64 Instructions

Figure 4.2 gives a concise description of the individual instructions in the Y86-64
ISA. We use this instruction set as a target for our processor implementations. The
set of Y86-64 instructionsis largely a subset of the x86-64 instruction set. It includes
only 8-byte integer operations, has fewer addressing modes, and includes a smaller
set of operations. Since we only use 8-byte data, we can refer to these as “words”
without any ambiguity. In this figure, we show the assembly-code representation
of the instructions on the left and the byte encodings on the right. Figure 4.3 shows
further details of some of the instructions. The assembly-code format is similar to
the ATT format for x86-64.
Here are some details about the Y86-64 instructions.

* The x86-64 movq instruction is split into four different instructions: irmovgq,
rrmovq, mrmovq, and rmmovq, explicitly indicating the form of the source and
destination. The source is either immediate (1), register (r), or memory (m).
It is designated by the first character in the instruction name. The destination
is either register (r) or memory (m). It is designated by the second character
in the instruction name. Explicitly identifying the four types of data transfer
will prove helpful when we decide how to implement them.

The memory references for the two memory movement instructionshave
a simple base and displacement format. We do not support the secong index
register or any scaling of a register’s value in the address computation,

As with x86-64, we do not allow direct transfers from one memory loca-
tion to another. In addition, we do not allow a transfer of immediate data to
MEMOry. 1

¢ There are four integer operation instructions, shown in Figure 4.2 as DPq.
These are addq, subq, andq, and xorq. They operate only on register data,
whereas x86-64 also allows operations on memory data. These instructions
set the three condition codes ZF, SF, and OF (zero, sign, and overflow).
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Byte

halt

nop

EHF.O
H -

rrmovq rA, rB

irmovq V, rB 3 O|F|rBl

[]

rmmovqg TA, D(rB) | 4 J 0 JrAIrB|

i
5|0 HrAerI

mrmovq D(rB}, rA

Opq rA, 1B

jXX Dest

,__
~
-
=]

cmovXX rA, rB

call Dest

o
<

ret

moh  [a[0]a]F]

popq fra

ﬂbH
o] [=] [of
7]

Figure 4.2 Y86-64 instructjon set. Instruction encodings range between 1 and 10

bytes. An instruction consists of a 1-byte instruction specifier, possibly a 1-byte register
specifier, and possibly an 8-byte constant word. Field £n specifies a particular integer
operation (OPq), data movement,condition (cmovXX), or branch condition (FXX). All

numeric values are shown in hexadecimal,

¢ The seven jump instructions (shown in Figure 4.2 as,jXX) are jmp, jle, j1, je,
jne, jge, and jg. Branches are taken according to the type of branch and the
settings of the condition codes. The branch conditions are the same as with
x86-64 (Figure 3.15).

* There are six conditional move instructions (shown in Figure 4.2 as cmovXX):
cmovle, cmovl, cmove, cmovne, cmovge, and cmovg. These have the same
format as ‘the régister-register move instruction rrmovq, but the destination
register is updated only if the condition codes satisfy the required constraints.

* The call instruction pushes the return address on the stack and jumps to the
destination address. The ret instruction returns from such a call.

* The pushq and popq instructions implement push and pop, just as they do in
x86-64.

* The halt instruction stops instruction execition. x86-64 has a comparable
instruction, called hlt. x86-64 application programs are not perrfitted to*use
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this instruction, since it causes the entire system to suspend operation. For
Y86-64, executing the halt instruction causes the processor to stop, with the
status code set to HLT. (See Section 4.1.4.)

4.1.3 Instruction Encoding

Figure 4.2 also shows the byte-level encoding of the instructions. Each instruction
requires between 1 and 10 bytes, depending on which fields are required. Every
instruction has an initial byte identifying the instruttion type. This byte is split
into two 4-bit parts; the high-order, or code, part, and the low-order, or function,
part. As can be seen in Figure 4.2, code values range from 0 to 0xB. The functicn
values are significant only for the cases where a group of related instructions share
a common code. These are given in Figure 4.3, showing the specific encodings of
the integer operation, branch, and conditional move instructions. Observe that
rrmovq has the same instruction code as the conditional moves. It can be viewed
as an “unconditional move” just as the jmp instruction is an uncondifional jump,
both having function code 0,

As shown in Figure 4.4, each of the 15 program registers has an associated
register identifier (ID) ranging from 0 to 0xE. The numbering of registers in Y86-
64 matches what is used in x86-64. The program registers are stored within the
CPU in a register file, a small random access memory where the register 1Ds serve
as addresses. ID value OxF is used in the instruction encodings and within ,our
hardware designs when we need to indicate that no register should be aceessed,

Some instructions are just 1 byte long, but those that require operands have
longer encodings. First, there can be an additional register specifier byte, specifying
either one or two registers. These register fields are called rA and (B in’ Figlire
4.2. As the assembly-code versions of the instfuctions show, they can specify the
registers used for data sources and destinations, as well as the base register used in
an address computation, depending on the instruction type. Instructions that have
no register operands, such as branches and call, do not have a register specifier
byte. Those that require just one register operand (irmovg, pushq, and popq) have

Operations Branches Moves

se[7[4]  rrwova[2[0] caome[2[2]
” B coovgs[313]
cmov2 cnove
o cnovs [2]3]

Figure 4.3 Function codes for Y86-64 instruction set. The code specifies a particular
integer opeyation, branch condition, or data transfer condition. These instructions are
shown as OPq, jXX, and cmovXX in Figure 4.2,

addqg

subq
andq

xorq

Blotals
L
.
=] 5] [
aiale
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Number  Register name Number  Register name
¢ %rax 8 %r8
1 drcx 9 hro
2 Yhrdx 4 #%ri0 [
3 %rbx B %ril
4 4rsp C %ri2
5 %rbp D #ri3
6 Arsi E %rid
7 srdi F No register

Figure 4.4 Y86-64 program register identifiers. Each of the 15 program registers
has an associated identifier (ID) ranging from 0 to OxE. ID 0xF in a register field of an
instruction indicates the absence of a register operand.

the other register specifier set to value 0xF. This convention will prove useful in
our processor implementation.

Some instructions require an additional 8-byte constant word. This word can
serve as the immediate data for irmovq, the displacement for rmmovq and mrmovg
address specifiers, and the destination of branches and calls. Note that branch and
call destinations are given as absolute addresses, rather than using the PC-relative
addressing seen in x86-64. Processors use PC-relative addressing to give more
compact encodings of branch instructions and to allow code to be shifted from
one part of memory to another without the need to update all of the branch target
addresses. Since we are more concerned with simplicity in our presentation, we ]
use absolute addressing. As with x86-64, all integers have a little-endian encoding,
When the instruction is written in disassembled form, these bytes appear in reverse
order.

As an example, let us generate the byte encoding of the instruction rmmovq
firsp,0x12345678%abcd (%rdx) in hexadecimal. From Figure 4.2, we can see that
ramovq has initial byte 40. We can also see that source register ¥rsp should be
encoded in the rA field, and base register %rdx should be encoded in the rB field.
Using the register numbers in Figure 4.4, we get a register specifier byte of 42.
Finally, the displacement is encoded in the 8-byte constant word. We first pad
0x123456789abcd with leading zeros to fill out 8 bytes, giving a byte sequence of
(0012345 67 89 ab cd. We write thisin byte-reversed order as cd ab 89 67 45 23 01
06. Combining these, we get an instruction encoding of 4042¢dab836745230100. i

One important property of any instruction set is that the byte encodings must ]
have a unique interpretation. An arbitrary sequence of bytes either encodes a
unique instruction sequence or is not a legal byte sequence. This property holds for
Y86-64, because every instruction has a unique combination of code and function
in its initial byte, and given this byte, we can determine the length and meaning of
any additional bytes. This property ensures that a processor can execute an object-
code program without any ambiguity about the meaning of the code. Even if the
code is embedded within other bytes in the program, we can readily determine i
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[ * Compared with the instruction eficbdings used i in x86-64; the encoding of 'Y86-64 1 s fnch simpier But i

also less compact. The register fieids occur only i in fixed posmofls in all Y86-64 instructions, whereas

; they are packed into various positigns.in_ the different x86:64 mstrucuons\ An x86° 64 instruction can i
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i
! ] the instruction sequence as long as we start from the first byte in the sequence.
¥ On the other hand, if we do not know the starting position of a code sequence, we
i cannot reliably determine how to split the sequence into individual instructions,
This causes problems for disassemblers and piher tools that attempt to extract
machine-level programs directly from object-code byte sequences.

3 Determine the byte encodmg of the Y86- 64 instruction sequence that follows. The
| iine .pos 0x100 indicates that the starting address of the object code should be
. 0x100.

! I .pos 0x100 # Start code at address 0x100

irmovq $15,%rbx

i rrmovq 4rbx,%rcx

: loop:

C rmmovq %rex,-3(%rbx) '
{ addg  %rbx,lrex

| S Jjmp loop

3 S —

] IPractice Problem®d:2 Tsolution &
| Co For each byte sequence hsted deterrmne the Y86-64 mstrucuon sequence it en-
codes. If there is some invalid byte in the sequence, show the instruction sequence
up to that point and indicate where the invalid value occuys. For each sequence,
we show the starting address, then a colon, and then the  byte sequence.

A. 0x100: 30f3fcffffLfEf£F£1££40630008000000000000

B. 0x200: a06£800c020000000000000030£30200000000000000
C. 0x300: 5054070000000000000010£0b0O1LE 1
D. 0x400: 611373000400000000000000

prme

e T ——

! E. 0xB00: 6362a0£0
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Aside RISC and CISC instruction sets

x86-64 is sometimes labeled as'a “complex instruction set computer” (CISC—pronounced “sisk™),
and is deemed to be the opposne of ISAs that are classified as “reduced instruction set computers”
CISC machines came first, having evolved from the earliest
computers. By the early 19805, instruction sets for mainframe and minicomputers had grown quite large,
as machine designers incorporated new instructions to support high“level tasks, such as manipulating
circular buffers, performing decimal arithmetic, and evaluating polynomials. The first microprocessors
appeared in the early 1970s and had limited instruction sets, because the integrated-circuit technolo 2y
then pgsed severe constraints on what could be implemented on a single chip, Mig¢roprocessors evolved
quickly and, by the early 1980s, were following the same path of increasing instruction set complexity
that had peen the case for mainframes and minicomputers. The x86 family took this path, evolving into
1A32, and more recently into x86-64. Thé x86 line continues to evolve as new classes of instructions are
added based ofi the needs of emerging applications.

The RISC design philosophy developed in the early 1980s as an alternative to these trends. A group
of hardware and” compller experts at IBM, strongly influénced by the ideas of IBM researcher John
Cocke, recognized that they could generate efficient code for a much simpler form of instruction set. In
fact, many of the high-level instructions that were being added to instruction sets were very difficult to
generate with a compiler and were seldom used. A simpler instruction set could be implemented with
much less hardware and could be organized in an efficient pipeline structure, similar to those described
later in this chapter. IBM did not commerciatize this idea until many years later, when it developed the
Power and PowerPC ISAs.

The RISC concept was further developed by Professors David Patterson, of the University of
Califorpia at Berkeley, and John Hennessy, of Stanford University Patterson gave the name RISC to
this new class of maehlnes and CISC to the existing class, since there had previously been no need to
have a special designation for a nearly universal form of instruction set.

When comparing CISC .with the original RISC instruction sets, we find the following general
characteristics:

CISC Early RISC

A large number of instructions. The Intel Many fewer instructions—typically less than 100.
document describing the complete set of
instructions [51] is over 1,200 pages long,

Some, instructions:with long execution times. No instruction with a long executidn time. Some
These include instructions that copy an entire early RISC machines did not even have an
block from one part of memory to another and integer multiply instruction, requiring compilers
others that copy multiple registers to and from to implement multiplication as a sequence of
memory. additions.

Variable-size encodings. x86-64 instructions can Fixed-length encodings. Typically all instructions

range from 1 to 15 bytes. are encoded as 4 bytes.

&
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Aside RISC and CISC instruction sets (continued)

CISC

Early RISC

Multiple formats for specifying operands. In x86-
64, a memory operand specifier can have many
different combinations of displacement, base
and index registers, and scale factors.

Arithmetic and logical operations can be applied
to both memdry and register operands.

Implementation artifacts hidden from machine-
level programs. The ISA provides a clean
abstraction between programs and how they
get executed.

Condition codes. Special flags are set as a
side effect of instructions and then used for
conditional branch testing.

Stack-intensive procedure linkage. The stack
is used for procedure arguments and return
addresses.

Simple addressing formats. Typically just base
and displacement addressing,

Arithmetic and logical operations only use
register operands. Memory referencing is only
aliowed by load instructions, reading from
memory into a register, and store instructions,
writing from a register to memory. This
convention is referred’to as a load/store
architecture.

Implementation artifacts exposed to machine-
level programs. Some RISC machines prohibit
particular instruction sequences and have
jumps that do not take effect until the following
instruction is executed. The compiler is given
the task of optimizing performance within these
constraints.

No condition codes. Instead, explicit test
instructions store the test results in normal
registers for use in conditional evaluation.

Register-intensive procedure linkage. Registérs
are used for procedure arguments and return
addresses. Some procedures can thereby avoid
any memory references. Typically, the processor
has many more (up to 32) registers.

The Y86-64 instruction set includes attributes of both CISC and RISC instruction sets. On the
CISC side, it has condition codes and variable-length instructions, and it uses the stack to store return
addresses. On the RISC side, it uses a load/store architecture and a regular instruction encoding, and it
passes procedure arguments through registers. [t can be viewed as taking a CISC instruction set {x86)
and simplifying it by applying some of the principles of RISC.
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Aside The RISC versus CISC controversy

Thrpugh the 1980s, battles raged in the computer archxtecture community regardmg the merits of RISC
versus CISC instruction sets. Proponeﬁts of RISC clainjed they could get more computing power for
a given amount of hardware through a combinatioh’of’ streamhned instruction set design, advanced
compiler, technology, and pipelined processor 1mp1ementanon ICISC proponents countered that fewer
CISC instructjong were required to gegfog(n;l a given task, and so their machines could achieve higher
overdll performance. '

Major comphnies introduced RISC processor lines, including Sun Microsystems (SPARC), IBM
and Motorola (PowerPC), and Digital Equipment Corporation (Alpha). A British company, Acorn
Computers Ltd., developed its own architecture, ARM (ongmally an acronym for “Acormn RISC
machiné’ ) which has becomeé widely used in embedded appllcanons suth as cell ‘phones.

Ih the ear[y 1990s, the debate d:imlmshed as it becarié clear that neither RISC nor CISC in their
puirest forms weré bettér than de31 gns that' ;ncorporated the best ideas of both. RISC machines evolved
and introduted more 1nsfruct10ns many of which take{multlple cycles to execufe RISC machines
today hdve' hundreds of indirdctions in their répértoire, hardly ﬁttlﬁg the namé “reduced instruction
sét machin” The idea of exposmg 1mp1ementat19n artifacts to ma‘thme—level programs proved to be
shor{sughted As'new procéssor models weré deve10ped usmg mor€ advantecl hardware structures,
many of these artifacts became irrelevant, but they still remamed part of thie instruction set. Still, the
core of RISC de51gn is an mstructlon set'that’is well ‘smfed to execution on a pipelined machine.

More recent CISC machines alig take advahi;age of hxgh-performance pipeline structures. As we
will discuss i in"Section 5.7, they’ fetth the CISC instfuctiors %nd dynamlcally’ translate them into a
“sequence of s1mp1er RTSC hke operafiohs. For example, an inbtruction that adds a register to memory
is translated irifo three opératlons oneto read fhe oi*lgmal mefnory value, one to perform the addition,
and a third<o write the suni to memory. Since thé tyflamic translation can generally be performed well
in advance of the actual instruction execution, the processor can sustain a very high execution rate.

Marketing issues, apart from technoelogical ones, have also played a majof role.in determining the
success of-different instruction sets. By maintaining compatibility with its existing processors, Intel with
x86 made it.€asy to’keep moving from©One generation of prdcéssor to'the next.«As integrated-circuit
technology improved, Intel and other x86 processor manufacturers could overcome the inefficiencies
created by the original 8086 instruction set dekign, usmg RISC téchniques to produce performance
comparable to the best RISC machines. As we saw in Section 3. 1, the evolution of IA32 into x86-64
provided an oppprtunity to incorporate several features of RISC inito? the x86 family. In the areas of
desktop, laptop, and server-based computing, x86 has achiéVved nedr total domination.

RISC processors have done very well in the market for enibédded processors, controlling such
systems as cellular telephones, automobile brakes, and Interngt appliances. In these applications, saving
on cost and power is more important than maintaining backwatd dompatibility. In terms of the number
of processors sold, this is a very large and growing market.

4.1.4 Y86-64 Exceptions

The programmer-visible state for Y86-64 (Figure 4.1) includes a status code Stat
describing the overall state of the executing program. The possible values for this
code are shown in Figure 4.5. Code value 1, named AOK, indicates that the program

o
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Value  Name  Meaning

1 ACK Normal operation

2 HLT halt instruction encountered

3 ,ADR Invalid address encountered

4 INS JInvalid instruction encountered

Figure 4.5 YB86-64 status codes. In our design, the processor halts for any code other
than AOK.

is executing normally, while the other codes indicate that some type of exception
has occurred. Code 2, named HLT, indicates that the processor has executed ahalt
instruction. Code 3, named ADR, indicates that the processor attempted to read
from or write to an invalid memory address, either while fetching an instruction
of while reading or writing data. We limit the maximum address (the exact limit
varies by implementation), and any access to an address beyond this limit will
trigger an ADR exception. Code 4, named INS, indicates that an invalid instruction
code has been encountered.

For Y86-64, we will simply lave the processor stop executing instructions
when it encounters any of the exceptions listed. In a more complete design, the
processor would typically invoke an exception handler, a procedure designated
to handle the specific type of exception encountered. As described in Chapter 8,
exception handlers can be configured to have different effects, such as aborting
the program or invoking a user-defined signal handler.

:

4.1.5: Y86-64 Programs

Figure 4.6 shows x86-64 and Y86-64 assembly code for the following C function:

1, long sum(long *start, long count)
2 1

3 long sum = Q;

4 while (count) {

5 sum += *start;
6 start++; .

7 count——;

8 }

9 return sum;
0

}

The x86-64 code was generated by the GCC compiler. The Y86-64 code is
similar, but with the following differences:

o The Y86-64 code loads constants into registers (lines 2-3), since it cannot use 1
immediate data in arithmetic instructions.




Section 4.1 The Y86-64: Instruction Set Architecture

x86-64 code

long sum(long #start, long count)

start imr Jrdi, count in Yrsi
]

sum:
“movl $0, Yeax sum = O
jmp L2 Goto test

L3 loop:
addq {(¥rdi), Y%rax Add *start to sum
addg $8, Yrdi start++
subq $1, Yrsi count——

L2 test!
testq Jrsi, Yrsi Test sum

Wo0e N W b W pa

_
[=]

jne .L3 If I=0, goto loop

-

rep; ret Return

Y86-64 code

long*$um(long *start, long count)
stdrt in ¥rdi, count in Yrsi

sum:
irmovq $8,%r8 Constant &
irmovq $1,%r9 Constant }
xorq %rax,irax sum = 0
andq %rsi,¥rsi Set cC
jmp test Goto test
loop:
mrmovq (¥rdi),%r10 Get *start
addq %rio0,%rax Add to sum
addq %r8,%rdi start++
subé %r9,Y%rsi count-~, Set CC
test:

2
3
4
5
6
7
8
g

—
L=

jne loop Stop whern 0
ret Return
| Figure 4.6 Comparison of Y86-64 and x86-64 assembly programs. The sum function

} computes the sum of an integer array. The Y86-64 code followss the same general pattern
E as the x86-64 code,

365
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¢ The Y86-64 code requires two instructions (lines 8-9) to read a value from
memory and add it to a register, whereas the x86-64 code can do this with a
single addq instruction (line 5).

¢ Our hand-coded Y86-64 implementation takes advantage of the property that
the subg instruction (line 11) also sets the condition codes, and so the testq
instruction of the Gec-generated code (line 9) is not required. For this to work,
though, the Y86-64 code must set the condition codes prior to entering the
loop with an andq instruction (line 5).

Figure 4.7 shows an example of a complete program file written in Y86-
64 assembly code. The program contains both data and instructions. Directives
indicate where to place code or data and how to align it. The program specifies
issues such as stack placement, data initialization, program initialization, and
program termination.

In this program, words beginning with ‘.’ are assembler directives telling the
assembler to adjust the address at which it is generating code or to insert some
words of data. The directive .pos 0 (line 2) indicates that the assembler should
begin generating code starting at address 0. This is the starting address for all
Y86-64 programs. The next instruction (line 3) initializes the stack pointer. We
can see that the label stack is declared at the end of the program (line 40), to
indicate address 0x200 using a .pos directive (line 39). Our stack will therefore
start at this address and grow toward lower addresses. We must ensure that the
stack does not grow so large that it overwrites the code or other program data.

Lines 8 to 13 of the program declare an array of four words, having the values

0x000400040004000d, 0x00c000c000c000c0,
0x0b000b00OLO0O0LO0, 0xal00a000a000a000

The label array denotes the start of this array, and is aligned on an 8-byte boundary
(using the .align directive). Lines 16 to 19 show a “main” procedure that calls
the function sum on the four-word array and then halts.

As this example shows, since our only tool for creating Y86-64 code is an
assembler, the programmer must perform tasks we ordinarily delegate to the
compiler, linker, and run-time system. Fortunately, we only do this for small
programs, for which simple mechanisms suffice.

Figure 4.8 shows the result of assembling the code shown in Figure 4.7 by an
assembler we call yas. The assembler output is in ASCII format to make it more
readable, On lines of the assembly file that contain instructions or data, the object
code contains an address, followed by the values of between 1 and 10 bytes.

We have implemented an instruction set simulator we call vis, the purpose
of which is to model the execution of a Y86-64 machine-code program without
attempting to model the behavior of any specific processor implementation. This
form of simulation is useful for debugging programs before actual hardware is
available, and for checking the result of either simulating the hardware or running
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# Execution begins at address 0

.pos 0

irmovq stack, %rsp # Set up stack pointer
call main # Execute main program
halt # Terminate program

# Array of 4 elements
.align 8

L= - I U - Y T N T N

array:

—
(=

.quad 0x0004000d0004
-gquad 0x00c000c000c)
12 -quad 0x0b00Q0bLOGObLOO
-quad 0xa000a000a000

—_
p—

w

15 main:

16 irmovq array,%rdi

17 irmovq $4,%rsi

18 call sum ) # sum(array, 4)
19 ret’

20

21 # long sum(long *start, long count)
22 # start in Yrdi, count in ¥rsi

23 sum:

24 irmovq $8,%r8 # Constant 8

25 irmovq $1,%r9 # Constant 1

26 xorq %rax,%rax # sum =0

27 andq %rsi,%rsi # Set CC

28 jmp test # Goto test

29 loop:

30 mrmovqg (%rdi),%r10 # Get *start

3 addq %r10,%rax # Add to sum

32 addq %r8,%rdi # start++

33 subq %r9,%rsi # count—--. Set CC
34 test:

35 joe loop # Stop when 0

36 ret # Return

37

38 # Stack starts here and grows to lower addresses
39 .pos 0x200

40  stack:

Figure 4.7 Sample program written in Y86-64 assembly code. The sum function is
called to compute the sum of a four-element array.
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| # Execution begins at address 0
0x000: ! .pos O
0x000: 30£40002000000000000 [  irmovq stack, #rsp # Set up stack pointer
0x00a: 803800000000000000 |  call main # Execute main program
0x013: OO | halt # Terminate program
I
| # Array of 4 elements
0x018: ! .align 8
0x018: { array:
0x018: 04000d0c00d000000 | .quad 0x0004000d000d
0x020: ¢000c000c0000000 | .quad 0x00c000c000c0
0x028: 000bOOOLOOOLCOCO | .quad 0x0b000bO00BO0
0x030: 00a000a000a00000 |  .quad 0xa0002000a000
!
0x038: | main:
0x038: 30£71800000000000000 | irmévyg array,’rdi
0x042: 30£60400000000000000 |  irmovq $4,%rsi
0x04c: 805600000000000000 | call sum # sum(array, 4)
0x0B5: 90 | ret
|
| # long sum(long *start, 1dng count)
{ # start in ¥rdi, count i frsi
0x056: | sum:
0x056: 30£80800000000000000 I irmovg $8,%r8 # Constant 8
0x060: 30£90100000000000000 |  irmovg $1,%r9 # Constant 1
0x06a: 6300 |  xorq #rax,irax # sum = 0
0x06c: 6266 | andq %rsi,irsi # Set CC
0x06g: T08700000000000000 ! jmp test # Goto test
0x077: | loop:
0x07T: 50a70000000000000000 |  mrmovq (4rdi) ,%ri0 # Get *start
0x081: 60a0 | addg %ri0,%rax # Add to sunm
0x083: 6087 }  addg %r8,jrdi # start++
0x085: 6196 |  subq %r9,%rsi # count--. Set CC
0x087: | test:
0x087: T4T700000000000000 | jne loop # Stop when O
0x090: 90 | ret # Return
|
| # Stack starts here and grows to lover addresses’
0x200: | .pos 0x200
0x200: | stack:

Figure 4.8 Output of YAS assembler. Each line includes a hexadecimal address and between 1‘and 10 bytes
of object code.
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the program on the hardware itself. Running on our sample object code, vis
generates the following output:

Stopped in 34 steps at PC = 0x13. Status 'HLT', CC Z=1 $=0 0=0

Changes
Yrax:
Yrsp:
Yrdi:
%r8:
%r9:
hri0:

Changes
0x01£0:
0x01£8:

to registers:

0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000

to memory:

0x0000000000000000

0x0000000000000000

Qx0000abcdabcdabed
0x0000000000000200
0x0000000000000038
0x0000000000000008
0x0000000000000001
0x0000a000a000a000

0x0000000000000055
0x00000000000006013

The first line of the simulation output summarizes the execution and the
resulting values of the PC and program status. In printing register and memory
values, it only prints out words that change during simulation, either in registers
or in memory. The original values (here they are all zero) are shown on the left,
and the final values are shown on the right. We can see in this output that register
“rax contains Oxabcdabedabedabed, the sum of the 4-element array passed to
procedure sum. In addition, we can see that the stacf;, which starts at address 0x200
and grows toward lower addresses, has been used, causing changes to words of
memory at addresses 0x1£0-0x1£8. The maximum address for executable code is
0x090, and so the pushing and popping of values on the stack did not corrupt the
executable code.

Prachice;Rroblem:4.3: Tsolution page482). T T ¥ el VI U
One common pattern in machine-level programs is to add a constant value to a
register. With the Y86-64 instructions presented thus far, this requires first using an
irmovq instruction to set a register to the constant, and then an addg instruction to
add this value to the destination register. Suppose we want to add a new instruction
iaddq with the following format:

Byte 4] 1 2
iaddq V,rB [c | o] F [mB]

This instruction adds the constant value V to register rB.

Rewrite the Y86-64 sum function of Figure 4.6 to make use of the iaddg
instruction. In the original version, we dedicated registers %r8 and %r9 to hold
constant values. Now, we can avoid using those registers altogether.
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ractice.Pi 4 DAGEABD)E b e owa
Write Y86-64 code to 1mplement a recursive sum function rsum, based on the 3
following C code:

long rsum(long *start, long count)

{
if (count <= Q)
return O; .
return *start + rsum(start+l, count—1);
}

Use the same argument passing and register saving conventions as x86-64 code
does. You might find it helpful to compile the C code on an x86-64 machine and
then translate the instructions to Y86-64.

B actics Bra e A o S Al L S ST T
Modify the Y86-64 code for the sum function (Figure 4.6) to implement a function
absSum that computes the sum of absolute values of an array. Use a conditional
jump instruction within your inner loop.

Modlfy the Y86- 64 code for the sum functlon (Figure 4. 6) to implement a function
absSum that computes the sum of ahsolute values of an array. Use a conditional
move instruction within your inner loop.

4.1.6 Some Y86-64 Instruction Details

Most Y86-64 instructions transform the program state in a straightforward man-
ner, and so defining the intended effect of each instruction is not difficult. Two
unusual instruction combinations, however, require special attention.

The pushq instruction both decrements the stack pointer by & and writes a
register value to memory. Itis therefore not totally clear what the processor shouid
do when executing the instruction pushq %rsp, since the register being pushed is
being changed by the same instruction. Two different conventions are possible:
(1) push the original value of %rsp, or (2) push the decremented value of %rsp.

For the Y86-64 processor, let us adopt the same convention as is used with
x86-64, as determined in the following problem.

Practice’Probieri™.7 Golitich b

Let us determine the behavior of the 1nstruct10n pushg %rsp for an x86-64 pro-
cessor. We could try reading the Intel documentation on this instruction, but a
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%

';_ simpler approach is to conduct an experiment on an actual machine. The C com-
ii piler would not normally generate this instruction, so we must use hand-generated
f assembly code for this task. Here is a test function we have written (Web Aside
} ASM:EASM on page 178 describes how to write programs that combine C code with
handwritten assembly code):

1 .text
2 .globl pushtest
3  pushtest:
4 movq ¥rsp, Yrax Copy stack pointer
H pushqg  Yrsp Push stack pointer
! 6 popq hrdx Pop it back
: 7 subq %rdx, %rax  Return 0 or 4
; 8 ret

In our experiments, we find that function pushtest always returns 0. What
;  does this imply about the behavior of the instruction pushq %rsp under x86-64?

A similar ambiguity occurs for the instruction popq %rsp. It could either set
%rsp to the value read from memory or to the incremented stack pointer. As with
Problem 4.7, let us run an experiment to determine how an x86-64 machine would

handle this instruction, and then design our Y86-64 machine to follow the same
convention.

T R A e

The followmg assembly code functlon lets us determine the behavior of the in-
struction popq %rsp for x86-64:

1 .text

2 .globl poptest

3 poptest:

4 movq Arsp, #rdi Save stack pointer

5 pushq  $0xabed Push test value

6 popq %rsp Pop to stack pointer

7 movq %rsp, Yrax Set popped value as return value
8 movq %rdi, %rsp Restore stack pointer

9 ret

We find this function always returns Oxabcd. What does this imply about the

behavior of popq %rsp? What other Y86-64 instruction would have the exact same
behavior?

5
%
5
1
|
|
;
.
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& . 1’% ._‘?g
Aside Getting the details right: Inconsistencies agross x86,models, . .

Practice Problems &7 %mdﬂ4.8“ar*e“d’esigned td help s devise a consistent set of donventions for instruc-
tions that push or pop the'stack pointer, There seems t3 be little réason why oné would want to'perform
either of these operations, and so«a natural question to ask is, “Why worry about $uch pickydetails?” 3

Several useful lessons can be learned about the importance of consistency from the following
exderpt from the Intel documentation of the pusH instruction [51]:

For IA-32 processors from the Inte] 286 onsthe PUSH ESP instruction pushes the valye of the ESP
register as it existed before the instruction was executed. (This is"alsd true for Intel 64 architecture,
real-address and virtual-8086 modes of IA-32 architecture.)-For the Intef® 8086 processor, the
PUSH SP instruction pushes thé newivalug of the SP register (that is thé value,aftér it has been
decremented by 2). (PUSHESP instruction. Intel-Corporation. 50.)

Although the exact details of this note may be difficult to follow, we-can see that it States that,
depending on what mode an x86 processor operates under, it will do different things'when instructed to
push the stack pointer registér. Some rhodés push f_}{e originaf value, whilé others push'the decremented
value. (Interestingly, there is no'corfeSponding ambiguity about popping to the stack pointer register.)
There are two drawbacks fo this inconsistency:

1 * It decreases code portibility, Programs ff}ajg‘.“}igvé,q“{fgtérep; behaviongepending on,the procegsor
mode. Although the particular,instructjn is not at all commop, even the potential for incompati- «
bility can have serious consequences, \ ;
¢ It complicates the:logumentation..As we seg here, a special noteds requirgd to try tosclarify-the
differences. The docuiientation for'x86 is already complex enough' without special cases such as

this one.

We conclude, therefore, that working out details in advance and striving for complete consistency can
save a lot of trouble in the long run,

£l

4.2 Llogic Design and the Hardware Control Language HCL

In hardware design, electronic circuits are used to compute functions on bits and
to store bits in different kinds of memory elements. Most contemporary circuit
technology represents different bit values as high or low voltages on signal wires.
In current technology, logic value 1 i1s represented by a high voltage of around 1.0
volt, while logic value 0 is represented by a low yoltage of around 0.0 volts. Three
major components are required to implement a digital system: combinational logic
to compute functions on the bits, memory elements to store bits, and clock signals
to regulate the updating of the memory elements.

In this section, we provide a brief description of these different components.
We also introduce HCL (for “hardware control language”), the language that
we use to describe the control logic of the different processor designs. We only
describe HCL. informally here. A complete reference for HCL can be found in
Web Aside ARCH:HCL on page 472.
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[T T i

Aside Modern logic design

P

R T o
Atone time, hardwate dgsigners éreated circuit designs by drawing schematic diﬂéfgram}s*-éf-légfb‘éircﬁﬁé“ ;
(first with paper and pencil, and later "with* computer graphics. terminals). Nowadays, 'mist’ tesjgns’ »
are expressed in a hardware description language (HDL), a textual notation ‘that*{ooks' sithila¥ 167a
programming language buit that is used to,describe hardwire structires rather than program behavidrs.
The most commonly used languages are Verilog, having a syntax similar to C, and VHDL, having
a syntax similar to the Ada programming language. These languages were originally designed for
creating simulation models of digital.circuits, In the mjd-1980s, researchers developed logic synthesis
programs that cé‘ulﬁ‘ggr?é‘i’at’é ‘efficieiit circuitdess, ghéfrom HDL dé&triptions. Theré are now a number
of commercial §ynfl£§si§brograms, and this has become the dominant technigue for generating digital
circuits. This shift from.Hand-designed .circuits to synthiesized, ones can be likefied to the shift from
writing programs ‘in assembly, code” to writing them'in a hgghflgyel;Jgngpage and having a compiler
generate the machijne code. . ' .
Our HEL language expresses only.the contiol portions of 2 hdrdware des; gn, with only a limited set
1 of operations.and with no modulz‘irity.misgs we will seefHiowever; thé control logic is the most difficult part
of designing asmi"él;oproc’gssor.mWezlfa?re “Ele‘,jireloped tools that can ~'dirf:ctly,.tgjanslgttf: HCL into Verilog,
and by combining this nglg with;ﬁVe‘r;lb"g" code for the basic hardwarg units,»we can generate HDL
descriPtigngsﬁfromﬁﬁiqh Actual working rﬁicroggoges;ors can be synthesized. By carefiilly separating
out, designing, agd testing the cpntr:’qlmlggi‘c:z we can cfga}:te,av-)\;}_'o;lg’in‘gi}mggpgrgcessor with reasonable
effort. Web ASide axci:{LoG bn'page 467 gissq;ibqs how we can ’g%ner_;afe}\/eriylog versions of a Y86-64

d *

processor. " B
“ga % w =, " * ?'h i o N
Figure 4.9 AND OR NOT

Logic gate types. Each
gate generates output
equal to some Boolean
function of its inputs.

4.2.1 Logic Gates

Logic gates arc the basic computing elements for digital circuits. They generate an
output equal to some Boolean function of the bit values at their inputs. Figure 4.9
shows the standard symbols used for Boolean functions AND, OR, and Nor. HCL
expressions are shown below the gates for the operators in C (Section 2.1.8): &&
for aND, 1| for or, and ! for NoT. We use these instead of the bit-level C operators
&, |, and ~, because logic gates operate on single-bit quantities, not entire words,
Although the figure illustrates only two-input versions of the AND and or gates, it
is common fo see these being used as n-way operations for n > 2. We still write
these in HCL using binary operators, though, so the operation of a three-input
AND gate with inputs a, b, and ¢ is described with the HCL expression a && b && c.

Logic gates are always active. If some input to a gate changes, then within
some small amount of time, the output will change accordingly.
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Figure 4.10

Combinational circuit to a .
test for bit equality. The .
output will equal 1 when , e
both inputs are 0 or both . v

are 1.

Bit equal

— eq

4.2.2 Combinationaf Circuits and HCL Boolean Expressions

By assembling a number of logic gates into a network, we can construct computa-
tional blocks known as combinational circuits. Several restrictions are placed on
how the networks are constructed:

* Every logic gate input must be connected to exactly one of the following:
(1) one of the system inputs (known as a primary input), (2) the output
connection of some memory element, or (3) the output of some logic gate.

* The outputs of two or more logic gates cannot be connected together. Oth-
erwise, the two could try to drive the wire toward different voltages, possibly
causing an invalid voltage or a circuit malfunction,

¢ The network must be acyclic. That is, there cannot be a path through a series
of gates that forms a loop in the network, Such loops can cause ambiguity in
the function computed by the network.

Figure 4.10 shows an example of a simple combinational circuit that we will
find vseful. It has two inputs, a and b. It generates a single output eq, such that
the output will equal 1 if either a and b are both 1 (detected by the upper anp
gate) or are both 0 (detected by the lower AND gate). We write the function of this
network in HCL as

bool eq = (a && b) [{ (la && !b);

This code simply defines the bit-level (denoted by data type bool) signal eq asa
function of inputs a and b. As this example shows, HCL uses C-style syntax, with
‘=" associating a signal name with an expression. Unlike C, however, we do not
view this as performing a computation and assigning the result to some memory
location. Instead, it is simaply a way to give a name to an expression.

e R T Yo g
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Write an HCL expression for a signal xor, equal to the EXCLUSIVE-OR of inputsa  §
and b. What is the relation between the signals xor and eq defined above? '

Figure 4.11 shows another example of a simple but useful combinational
circuit known as a multiplexor (commonly referred to as a “MUX"). A multiplexor #
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Figure 4.11 s Bit MUX *
Single-bit multiplexor Y

circuit. The output will

equal input a if the control

signal s is 1 and will equal b
input b when s is 0,

selects a value from among a set of different data signals, depending on the value
of a control input signal. In this single-bit multiplexor, the two data signals are the
input bits a and b, while the control signal is the input bit s. The output will equal
awhen sis 1, and it will equal b when s is 0. In this circuit, we can see that the two
AND gates determine whether to pass their respective data inputs to the or gate.
The upper AND gate passes signal b when s is 0 (since the other input to the gate
is 1s), while the lower AND gate passes signal a when s is 1. Again, we can write an
HCL expression for the output signal, using the same operations as are present in
the combinational circuit:

bool out = (s &% a) Il (!s && b);

Our HCL expressions demonstrate a clear parallel between combinational
logic circuits and logical expressions in C. They both use Boolean operations to
compute functions over their inputs. Several differences between these two ways
of expressing computation are worth noting:

* Since a combinational circuit consists of a series of logic gates, it has the
property that the outputs continually respond to changes in the inputs. If
some input to the circuit changes, then after some delay, the outputs will
change accordingly. By contrast, a C expression is only evalnated when it is
encountered during the execution of a program.

* Logical expressionsin C allow arguments to be arbitrary integers, interpreting
0 as FALSE and anything else as TRUE. In contrast, our logic gates only operate
over the bit values 0 and 1.

* Logical expressions in C have the property that they might only be partially
evaluated. If the outcome of an AND or or operation can be determined by just
evaluating the first argument, then the second argument will not be evaluated.
For example, with the C expression

(a && 1a) && func(b,c)
the function func will not be called, because the expression (a && !a) evalu-

ates to 0. In contrast, combinational logic does not have any partial evaluation
rules, The gates simply respond to changing inputs.
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(a) Bit-level implementation (b) Word-level abstraction

Figure 4.12 Word-level equality test circuit. The output will equal 1 when each bit
from word A equals its counterpart from word B. Word-level equality is one of the

operations in HCL,

4.2.3 Word-Level Combinational Circuits and HCL Integer Expressions

By assembling large, networks of logic gates, we can construct combinational
circuits that compute much more complex functions. Typically, we design circuits
that operate on data words. These are groups of bit-level signais that represent an
integer or some control pattern. For example, our processor designs will contain
numerous words, with word sizes ranging between 4 and 64 bits, representing
integers, addresses, instruction codes, and register identifiers.

Combinational circuits that perform word-level computations are constructed
using logic gates to compute the individual bits of the output word, based on the
individual bits of the input words. For example, Figure 4.12 shows a combinationa)
circuit that tests whether two 64-bit words A and B are equal. That is, the output
will equal 1 if and only if each bit of A equals the corresponding bit of B. This
circuit is implemented using 64 of the single-bit equality circuits shown in Figure
4.10. The outputs of these single-bit circoits are combined with an aND gate to

form the circuit output.,

In HCL, we will declare any word-level signal as an int, without specifying §

the word size. This is done for simplicity. In a full-featured hardware description
language, every word can be declared to have a specific pumber of bits. HCL aliows #88
words to be compared for equality, and so the functionality of the circuit shown #
in Figure 4.12 can be expressed at the word level as

bool Eq = (4 == B};

where arguments A and B are of type int. Note that we use the same syntax
conventions as in C, where ‘=’ denotes assignment and ‘==" denotes the equality {

operator.
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. As is shown on the right side of Figure 4.12,we will draw word-level circuits
. using medium-thickness lines to represent the set of wires carrying the individual

‘ bits of the word, and we will show a single-bit signal as a dashed line.

‘ . el

Suppose you want to nnplement a word level equahty cu'cmt usmg the EXCLUSIVE-
' or circuits from Problem 4.9 rather than from bit-level equality circuits. Design
|

. suchacircuit for a 64-bit word consisting of 64 bit-level EXCLUSIVE-OR circuits and
. two additional logic gates.

Figure 4.13 shows the circuit for a word-level mudtiplexor. This circuit gener-
|

. atesa 64-bit word Out equal to one of the two input words, A or B, depending on

! - ‘ /e OUlea

Qg3 ~—

| bea

| g2

| %0

*a) Bit-level implementation

, the control input bit s. The circuit consists of 64 identical subcircuits, each hav-
ing a structure similar to the bit-level multiplexor from Figure 4.11. Rather than

replicating the bit-level multiplexdr 64 times, the word-level version reduces the

number of inverters by generating !s once and feusing it at each bit position.

I

int Out = [
8 : A;
1 : B;
1;

{p) Word-level abstraction

tigure 4.13 Word-level multiplexor circuit. The output will equal input word A when
khe control signal s is 1, and it will equal B otherwise. Muitiplexors are described in HCL

ising case expressions.

M
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We will use many forms of multiplexors in our processor designs. They allow
us to select a word from a number of sources depending on some control condi-
tion. Multiplexing functions are described in HCL. using case expressions. A case
expression has the following general form:

l
selecty : expry;
select; 1 expry;
select, : expry;
]

The expression contains a series of cases, where each case / consists of a Boolean
expression select;, indicating when this case should be selected, and an integer
expression expr;, indicating the resulting value.

Unlike the switch statement of C, we do not require the different selection
expressions to be mutually exclusive. Logically, the selection expressions are eval-
uated in sequence, and the case for the first one yielding 1 is selected. For example,
the word-level multiplexor of Figure 4.13 can be described in HCL. as

word OQut = [
A;
B-

H

s:
1:
1;

In this code, the second selection expression is simply 1, indicating that this
case should be selected if no prior one has been. This is the way to specify a default
case in HCL. Nearly all case expressions end in this manner.

Allowing nonexclusive selection expressions makes the HCIL. code more read-
able. An actual hardware multiplexor must have mutually exclusive signals con-
trolling which input word should be passed to the output, such as the signals s and

ts in Figure 4.13. To transtate an HCL case expression into hardware, a logic syn-
thesis program would need to analyze the set of selection expressions and resolve
any possible conflicts by making sure that only the first matching case would be
selected.

The selection expressions can be arbitrary Boolean expressions, and there can
be an arbitrary number of cases. This allows case expressions to describe blocks
where there are many choices of input signals with complex selection criteria. For
example, consider the diagram of a 4-way multiplexor shown in Figure 4.14. This
circuit selects from among the four input words A, B, C, and D based on the control
signals s1 and s0, treating the controls as a 2-bit binary number. We can express

this in HCL using Boolean expressions to describe the different combinations of

control bit patterns:

word Dutd = [
tsl && 1s0 : A; # OO

ke i e S
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Figure 4.14

Four-way multiplexor.
The different combinations
of control signals s1 and
50 determine which data
input is transmitted to the
output,

Qut4

sl : B; # 01
1s0 : C; # 10
1 : D’,r # 1t

The comments on the right (any text starting with # and running for the rest of
the line is a comment) show which combination of s1 and sO will cause the case to
be selected. Observe that the selection expressions can sometimes be simplified,
since only the first matching case is selected. For example, the second expression
can be written !s1, rather than the more complete !s1&& s0, since the only other
possibility having s1 equal to 0 was given as the first selection expression. Similarly,
the third expression can be written as !'s0, while the fourth can simply be written
as 1.

As a final example, suppose we want to design a logic circuit that finds the |
minimum value among a set of words A, B, and C, diagrammed as follows:

We can express this using an HCL case expression as

word Min3 = [
A<=B&& A<=C : A;
B<=A&& B < C : B;

The HCL code given for computing the minimum of three words contains four

comparison expressions of the form X <= ¥. Rewrite the code to compute the
same result, but using only three comparisons.
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Figure 4.15 Arithmetic/logic unit (ALU). Depending on the setting of the function
input, the circuit will perform one of four different arithmetic and logical operations.
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Write HCL code descnbmg a circuit that for word inputs A, B and C selects the
median of the three values. That is, the output equals the word lying between the

minimum and maximum of the three inputs.

Combinational logic circuits can be designed to perform many different types
of operations on word-level data. The detailed design of these is beyond the
scope of our presentation. One important combinational circuit, known as an
arithmetic/logic unit (ALU), is diagrammed at an abstract level in Figure 4.15.
In our version, the circuit has three inputs: two data inputs labeled A and 8 aud
a control input. Depending on the setting of the control input, the circuit will
perform different arithmetic or logical operations on the data inputs. Observe
that the four operations dlag;ammcd forthis ALU correspond to the four different
integer operations supported by the Y86-64 instruction set, and the dontrol values
match the function codes for these instructions (Figure 4.3). Note also the ordering
of operands for subtraction, where the A input is subtracted from the B input.
This ordering is chosen in anticipation of the ordering of arguments in the subg

instruction.

4.2.4 Set Membership

In our processor designs, we will find many examples where we want to compare

one signal against a number of possible matching signals, such as to test whether §
the code for some instruction being processed matches some category of instruc-

tion codes. As a'simple example, suppose we want to generate the signals s1 and

s0 for the 4-way multiplexor of Figure 4.14 by selecting the high- dndlow-order I

bits from a 2-bit signal code, as follows:

FE N

code Goh&trq‘l

Qut4
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In this circuit, the 2-bit signal code would then control the selection among the
four data words A, B, C, and D. We can express the generation of signals s1 and sO
using equality tests based on the possible values of code:

bool s1 = code == 2 || code
bool 80 = code == 1 || code

=3;
=3;

A more concise expression can be written that expresses the property that s1
is 1 when code is in the set {2, 3}, and s0 is 1 when code is in the set {1, 3}

bool s1 = code in { 2, 3 };
bool 80 = code in { 1, 3 };

The general form of a set membership test is
lexpr in {iexpry, iexpry, ..., iexpry}

where the value being tested (iexpr) and the candidate matches (iexpr| through
iexpr,) are all integer expressions.

4.2.5 Memory and Clocking

Combinational circuits, by their very nature, do not store any information. Instead,
they simply react to the signals at their inputs, generating outputs equal to some
function of the inputs. To create sequential circuits—that is, systems that have state
and perform computations on that state—we must introduce devices that store
information represented as bits.-Our storage devices are all controlled by a single
clock, a pefiodic signal that determines whien new values are to be loaded into the
devices. We consider two classes of memory devices:

Clocked registers {or simply registers) store individual bits or words. The clock
signal controls the loading of the register with the value at its input.

Random access memories (or simply memories) store multiple words, using
an address to select which word should be read or written. Examples
of random access memories include (1) the virtual memory system of
a processor, where a combination of hardware and operating system
software make it appear to a processor that it can access any word within
a large address space; and (2) the register file, where. register identifiers
serve as the addresses. In a Y86-64 processor, the register file holds the
15 program registers (%rax through %ri4).. .

As we can see, the word “register” means two slightly different things when
speaking of hardware versus machine-language programming. In hardware, a
register is directly connected to the rest of the circuit by its input and output
wires. In machine-level programming, the registers represent a small collection
of addressable words in"the CPU, where the addresses consist of register IDs.
These words are generally stored in the register file, although we will see that the
hardware can sometimes pass a word directly from one instruction to another to
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State = x

Input =y Output = X Rising
—) clock

= T

Figure 4.16 Register operation. The register.outputs remain held at the current register
state until the clock signal rises. When the clock rises, the values at the register inputs are

captured to become the new register state.

avoid the delay of first writing and then reading the register file. When necessary
to avoid ambiguity, we will call the two classes of registers “hardware registers”

and “program registers,” respectively.

Figure 4.16 gives a more detailed view of a hardware register and how it
ate (shown as
¢"through the
lue for the register
input (shown as y), but the register output remains fixed as long as the'clock is low.
As the clock rises, the input signals ar¢ loaded into the register as its next state
(y), and this becomes the new register output until the next'rising clock edge. A
key point is that the registers serve as barriers between the combinational logic
in different parts of the circuit. Values only propagate from a register in
output once every clock cycle at the ising clock edge. Our Y86-64 processors
use clocked registers to hold the program counter (PC), the condit@c’m go&es (CC),

operates. For most of the time, the register remains in a fixed st

Y

x), generating an output equal to its current state. Signals propagat

combinational logic preceding the register, creating a new va

and the program status (Stat). '
The following diagram shows a typical register file:
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This register file has two read poris, named A and B, and one wtite port, named
W. Such a multiported random access Memory allows multiple read and write §
operations to take place simultaneously. In the register file diagrammed, the circuit
can readl the values of two program registers arid update the state of a third. Edch

port has an address input, indicating which program Tegister s
and a data output or inplt giving a value for that program regis
ate register identifiers, using’ he encoding shown in Figtre' 4.4.

hould be selected, §
tér. The addresses §
The two read ports |
have address inputs srcAand srcB (short for “gource’A” and “source B”
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outputs valA and valB (short for “value A” and “value B”). The write port has
address input dstW (short for “destination W?”) and data input valW (short for
“value W”).

The register file is not a combinational circuit, since it has internal storage. In
our implementation, however, data can be read from the register file as if it were
a block of combinational logic having addresses as inputs and the data as outputs.
When either srcA or srcB is set to some register ID, then, after some delay, the
value stored in the corresponding program register will appear on either valA or
valB. For example, setting srcA to 3 will cause the value of program register 4rbx
to be read, and this value will appear on output valA,

The writing of words to the register file is controlled by the clock signal in
a manner similar to the Joading of values into a clocked register. Every time the
clock rises, the value on input valW is written to the program register indicated by
the register TD on input dstW. When dstW is set to the special ID value 0xF, no
program register is written. Since the register file can be both read and written,
a natural question to ask is, “What happens if the circuit attempts to read and
write the same register simultaneously?” The answer is straightforward: if the
same register ID is used for both a read port and the write port, then, as the clock
rises, there will be a transition on the read port’s data output from the old value to
the new. When we incorporate the register file into our processor design, we will
make sure that we take this property into consideration,

Our processor has a random access memory for storing program data, as
illustrated below:

data out
L R —— T

I P - o s %
rea b fa

MMy 1 _ clock
&3

5
< G

Pt

address data in

This memory has a single address input, a data input for writing, and a data cutput
for reading. Like the register file, reading from our memory operates in a manner
similar to combinational logic: If we provide an address on the address input and
set the write control signal to 0, then after some delay, the value stored at that
address will appear on data out. The error signal will be set to 1 if the address
is out of range, and to 0 otherwise. Writing to the memory is controlled by the
clock: We set address to the desired address, data in to the desired value, and
write to 1. When we then operate the clock, the specified location in the memory
will be updated, as long as the address is valid. As with the read operation, the
error signal will be set to 1 if the address is invalid. This signal is generated by
combinational logic, since the required bounds checking is purely a function of
the address input and does not involve saving any state.

383




e A e e o

—— - —

384 Chapter4 Processor Architecture

Aside Real-life memory design . a4

The memory systemin a full-scale mlcroprocessor is far more complex than the sxmple one we assime
in our design. It consists of several forms of hardware meinories, including ‘several random acéess
memories, plus nonvolatlle memory or maghetic disk, 4§ well as a variety of hardwarb and'%oftWafé*
mechanisms for managmg thésé-dévices. The design and charactéristics of thé memory systern are
described in Chapter's. A Yot

Nouetheless, our'simple 1 memory “design, «can be uséd for smaller systeins, and it provides us'with
an abstraction of the ifterfdeé betweén the processor and memory fot rtiore complex systems.
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Our processor includes an additional read-only memory for reading instruc-
tions. In most actual systems, these memories are merged into a single memary
with two ports: one for reading instructions, and the other for reading or writ-
ing data.

4.3 Sequential Y86-64 Implementations

Now we have the components required to implement a Y86-64 processor. As a first
step, we describe a processor called SEQ (for “sequential” processor). On each
clock cycle, SEQ performs all the steps required to process a complete instruction.
This would require a very long cycle time, however, and so the clock rate would be
unacceptably low. Our purpose in developing SEQ is to provide a first step toward
our ultimate goal of implementing an efficient pipelined processor.

4.3.1 Organizing Processing into Stages

In general, processing an instruction invalves a number of operations. We organize
them in a particular sequence of stages, attempting to make all instructions follow
a uniform sequence, even though the instructions differ greatly in their actions.
The detailed processing at each step depends on the particular instruction being
executed. Creating this framework will allow us to design a processor that makes
best use of the hardware. The following is an informal description of the stages
and the operations performed within thera:

Fetch. The fetch stage reads the bytes of an instruction from memory, using
the program counter (PC) as the memory address. From the instruction
it extracts the two 4-bit portions of the instruction specifier byte, referred
to as icode (the instruction code) and ifun (the.instruction function). It
possibly fetches a register specifier byte, giving one or both of the register
operand specifiers rA and rB. It also possibly fetches an 8-byte constant
word valC. It computes valP to be the address of the instruction following
the current one in sequential order. That is, valP equals the value of the
PC plus the length of the fetched instruction.
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Decode. The decode stage reads up to two operands from the register file, giving
values valA and/or valB. Typically, it reads the registers designated by
instruction fields rA and B, but for some instructions it reads register %rsp.

Execute. In the execute stage, the arithmetic/logic unit (ALU) either performs
the operation specified by the instruction (according to the value of ifun),
computes the effective address of a memory reference, or increments or
decrements the stack pointer. We refer to the resulting value as valE. The
condition codes are possibly set. For a conditional move instruction, the
stage will evaluate the condition codes and move condition (given by ifun)
and enable the updating of the destination register only if the condition
holds. Similarly, for a jump instruction, it determines whether or not the
branch should be taken.

Memory. The memory stage may write data to memory, or it may read data
from memory. We refer to the value read as valM.

Write back. The write-back stage writes up to two results to the register file.

PC update. The PC is set to the address of the next instruction.

The processor loops indefinitely, performing these stages. In our simplified im-
plementation, the processor will stop when any exception occurs—that is, when it
executes a halt or invalid instruction, or it attempts to read or write an invalid ad-
dress. In a more complete design, the processor would enter an exception-handling
mode and begin executing special code determined by the type of exception.

As can be seen by the preceding description, there is a surprising amount of
processing Tequired to execute a single instruction. Not only must we perform
the stated operation of the instruction, we must also compute addresses, update
stack pointers, and determine the next instruction address. Fortunately, the overall
flow can be similar for every instruction. Using a very simple and uniform struc-
ture is important when designing hardware, since we want to minimize the total
amount of hardware and we must ultimately map it onto the two-dimensional
surface of an integrated-circuit chip. One way to minimize the complexity is to
have the different instructions share as much of the hardware as possible. For
example, each of our processor designs contains a single arithmetic/logic unit
that is used in different ways depending on the.type of instruction being exe-
cuted. The cost of duplicating blocks of logic in hardware is much higher than
the cost of having multiple copies of code in software. It is also more difficult to
deal with many special cases and idicsyncrasies in a hardware system than with
software,

Our challenge is to arrange the computing required for each of the different
instructions to fit within this general framework. We will use the code shown in
Figure 4,17 to illustrate the processing of different Y86-64 instructions. Figures
4.18 through 4.21 contain tables describing how the different Y86-64 instructions
proceed through the stages. It is worth the effort to study these tables carefully.
They are in a form that enables a straightforward mapping into the hardware.
Each line in these tables describes an assignment to some signal or stored state
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0x000:
0x00a:
Ox014:
0x016:
0x020:
0x02a:
0x02¢:
0x02e:
0x037:
0x040:
0x040:
Ox041:
0x041:

30£20900000000000000 | irmovq $9, %rdx
30£3150G000000000000 | irmovq $21, %rbx
6123 ! gubq %rdx, Yrbx # subtract
30£48000000000000000 | irmovq $128,%rsp # Problem '4.33
40436400000000000000 | rmmovq %4rsp, 100(¥rbx) # store
a02f | pushq %rdx # push
b0OE | popq #rax # Problem 4.14
734000000000000000 | je done # Not taken
804100000000006G00 | call proc # Problem 4.18
| done:
00 [ halt
| proc:
90 | ret # Return
!

Figure 4.17 Sample Y86-64 instruction sequence. We wiil trace the processing of these instructions through

the different stages.

L]

(indicated by the assignment operation ‘«). These should be read as if they were
evaluated in sequence from top to bottom. When we later map the computations
to hardware; we will find that we do'not need to perform these evaluations in strict
sequential order.

Figure 4.18 shows the processing required for instruction types OPq (integer
and logical operations), rrmovq (register-register move), and irmovg (immediate-
register move). Let us first consider the integer operations. Examining Figure 4.2,
we can see that we have carefully chosen an encoding of instructions so that the
four integer operations {(addq, subq, andg, and xorq) all have the same value of
icode. We can handie them all by an identical sequence of steps, except that the
AL computation must be set according to the particular instruction operation,
encoded in ifun.

The processing of an integer-operation instruction follows the general pattern
listed above. In the fetch stage, we do not require a constant word, and so valP
is computed as PC + 2. During the decode stage, we read both operands. These
are supplied to the ALU in the execute stage, along with the function specifier

ifun, so that valk becomes the instruction result. This computation is shown as the 1

expression valB OP valA, where OP indicates the operation specified by ifun. Note

the ordering of the two arpuments—this order is consistent with the conventions }
of Y86-64 (and x86-64). For example, the instruction subq %rax,%rdx is supposed §

to compute the value R[%rdx] — R[%raxz]. Nothing happens in the memory stage

for these instructions, but vaiE is written to register rB in the write-back stage, and

the PC is set to valP to complete the instruction execution.

Executing an rrmovg instruction proceeds much like an arithmetic operation. 4
We do not need to fetch the second register opgrand, however. Instead, we set the §
second ALU input to zero and add this to the first, giving valE = valA, which is |

ot iy e s 40 0, o et
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Stage OPqrA, 1B rrmovq rA, rB irmovq V, 1B

Fetch icode:ifun <« M,{PC] icode:ifun « M;[PC] icode:ifun « M,[PC]
rA:rB « My[PC+1] rA:rB « M3[PC+1] rA:rB < My[PC+1]

valC « Mg[PC+2]

valP « PC+2 valP < PC+2 valP « PC+10

Decode valA « R[rA] valA « R[rAj
valB « R[rB]

Execute valE « vaiB OP vala valE < 0+ valA valE « 0+ valC
Set CC

Memory

Write back R[rB] « valE R[rB] <« valE R[rB] <+ valE

PC update PC « valP PC « valP PC « valP

Figure 4.18 Computations in sequential implementation of Y86-64 instructions OPq, rrmovq, and
irmovq. These instructions compute a value and store the result in a register. The notation icode : ifun
indicates the two components of the instruction byte, while rA : 1B indicates the two components of the
register specifier byte. The notation M [x] indicates accessing (either reading or writing) 1 byte at memory
location x, while Mg[x] indicates accessing 8 bytes,

then written to the register file. Similar processing occurs for irmovq, except that
we use constant value valC for the first ALU input. In addition, we must increment
the program counter by 10 for irmovq due to the long instruction format. Neither
of these instructions changes the condition codes.

s
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Fill in the right-hand column of the following table to describe the processing of
the irmovq instruction on line 4 of the object code in Figure 4.17:

Generic Specific
Stage irmovq V, rB jirmovq $128, ¥%rsp
Fetch icode:ifun « M;[PC)

rA:rB «— My[PC+1] “
valC « Mg[PC+2] b
valP « PC+10

Decode

Execute valE « 0,4+ valC

[




i
i
l 388 Chapter4 Processor Architecture

Aside Tracing the execution of a subg instruction’ " "
28 . * v & ve?‘ a"‘% . ¥ . Vi ki * g B
As an’exainple, let us follow the processing of the subq instruction on line 3 of the abject cdde shown

in Figuré 4.17, Wg can see that the prévious two instructions initialize registers %rdx and %rbx to 9 and
21, respectively: We can also see that the instruction is located at address 0x014 and consists of 2 bytes,
l havingvalues 0x61 and bx23. The stages would proceed as shown in the following table, which lists the
b

_generic rule for processing an OPq instruction’ tFigure 4.18) on the left, apnd the computations for this
specifi¢ instruction on the right. '

| Stage OPq rA, r_li : &ibq %rdx, %rbx .

: Fetch icode fun « My[PC] icode:ifun < My[0x014] = 6:1

| tA:rB « My[PC+1] rA:rB « M [0x015]=2:3

| valP <« PC+2 valP <« 0x014+ 2 =0x016 #
Decode vilA_ « ”R[:J:A]w yalA <« R[¥rdx]=9 ‘

| valB « R[rB] valB « R[%rbx]==21

. Execute, valE < valB,OP valA valE < 21 —-9=12

! - ,;Set_‘x(;gq » oy ZF & 0, 8F ~— (.)%:DB «— 0, i

|k E = * & ioF at "
Memory, . P " - . ot

| Write back  _R[rB] <~ valE " R[%rbx) <« VAE=12 e )
PC update PC « valP PC < valP =0x016

2 5% . - . HE g - s

1 Ags this trace shiows, We achiéve the desired effect of setting register %rbx’to 12, setting all-three

: condition codes to'zerojand incrémenting the PCby 2. i

L - ": w fa " a w B ke St % [P PR P

b Generic Specific

: Stage irmovq V, rB irmovg $128, %rsp

Memory
Write back R[rB] « valE
PC update PC <« valP

How does this instruction execution modify the registers and the PC?

Figure 4.19 shows the processing required for the memory write and read in-
structions rmmovq and mrmovq. We see the same basic flow as before, but using the |
ALU to add valC to valB, giving the effective address (the sum of the displacement
and the base register value) for the memory operation. In the memory stage, we \
either write the register value valA to memory ot read valM from memory.
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Stage ) rmmovq rA, D(rB) mrmovg D(rB), rA
Fetch icode:ifun « M;[PC] icode:ifun <« M;[PC]
rA:rB « My[PC+1] rA:rB «— My[PC+1]
valC « Mg[PC+2] valC « Mg[PC+2]
valP « PC+10 valP «— PC+ 10
Decode valA <« R[rA]
valB <« R[rB] valB <« R[rB]
Execute valE <« vaiB + valC valE < valB+ valC
Memory Mg[valE] « valA valM <« Mg[valE]
Write back
R[rA] « valM
PC update PC «- valP PC <« valP

Figure 4.19 Computations in sequential implementation of Y86-64 instructions
rmmovq and mrmovq. These instructions read or write memory.

Figure 4.20 shows the steps required to process pushg and popq instructions.
These are among the most difficult Y86-64 instructions to implement, because
they involve both accessing memory and incrementing or decrementing the stack
pointer. Although the two instructions have similar flows, they have important
differences. '

The pushq instruction starts much like our previous instructions, but in the
decode stage we use %rsp as the identifier for the second register operand, giving
the stack pointer as value valB. In the execute stage, we use the ALU to decrement
the stack pointer by 8. This decremented value is used for the memory write
address and is also stored back to %rsp in the write-back stage. By using valE
as the address for the write operation, we adhere to the Y86-64 (and x86-64)
convention that pushq should decrement the stack pointer before writing, even
though the actual updating of the stack pointer does not occur until after the
memory operation has completed,

The popq instruction proceeds much like pushq, except that we read two
copies of the stack pointer in the decode stage. This is clearly redundant, but we
will see that having the stack pointer as both valA and valB makes the subsequent
flow more similar to that of other instructions, enhancing the overall uniformity
of the design. We use the ALU to increment the stack pointer by 8 in the execute
stage, but use the unincremented value as the address for the memory operation.
In the write-back stage, we update both the stack pointer register with the incre-
mented stack pointer and register rA with the value read from memory. Using the
unincremented stack pointer as the memory read address preserves the Y86-64
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Aside Tracing'the execution of an Fmmovéy instruction ’

Jet us trace the processing of the rumovy instruction on line5 of the object code showin Figure 4.17. %
We can see that the previous instruction i;}itiaiized fégister %xsp to 128, while Yrbx still holds 12, as §
computed by the subq instruction (line 3). Wé can also sec that the instruction is located at address ¢
0x020 and consists'0f.10 bytes."Th*eﬂﬁrst 2 bytes have values 0x40 and 0x43, while the final 8 bytes are

a byte-reversed version of the aumber 0x0000000000000064 (decimal 100). The stages would-proceed g‘

as follows:

Generic §peciﬁc ) ) 3
Stage Tmmovq JA, D{rB) . Tmmovg Y%rsp, 100(%rbx) §
Fetch icode:ifun < My[PC] icode:ifun - M[0x020]=4:0 ¥
tA:rB «— My[PCH1] rA:rB « M[0x021]=4:3

valC « Mg[PC+2] valC <« Mg[0x022] = 100.

valP « PC-+10 valP < 0x020 + 10 ="0x02a

Decode valA + R[rA] valA « Rf‘}f.rsp]=128
vald <+ R[rB] valB, « R[hrbx]=12

Execute valE < yalB 4 vqIC valE < 124100=112, .

4

Memory Mg[valE] < valA Mg[112] <- 128
Write back

PC update PC ¢ valP 7’ PCiu— 0Ox02a -

"

As this trace shows, the instruction has the .effect of “writing 128" to wglemgry“address;ﬂ-12‘and 3
iricrementing the PC by 10 " % e t

e ] £ o Rt A BT B SRN WR

(and x86-64) convention that popq should first read memory and then increment
the stack pointer.

Practics Probldm AR ion pase e LI N PSR AN

Fill in the right-hand column of the following table to describe the processing of
the popq instruction on line 7 of the object code in Figure 4.17.

Generic Specific
Stage popq rA popq hrax
Fetch icode:ifun « My[PC]

rA:rB « My[PC+1]

valp « PC+2
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Stage pushqg rA popq rA
Fetch icode:ifun « M;[PC] icode:ifun + M¢[PC]
rA:rB <« M[PC+1] TAB «— My[PC+1]
valP « PC+42 valP « PC+2
Decode valA « R[rA] valA «- R[¥rsp]
valB « R[¥rsp] valB <+ R[%rsp]
Execute valE « valB 4 (—8) valE « valB+38
Memory +  Mg[valE] « valA valM « Mg[valA]
Write back R[%rsp] <« wvalE R[%rsp] « valE
R[rA] <« valM
PCupdate PC « valP PC « valP

Figure 4.20 Computations in sequential implementation of Y86-64 instructions
pushq and popq. These instructions push and pop the stack.

Generic Specific
Stage popg rA popq #rax
Decode valA « R[%rsp]

valB <« R[%rsp}]
Execute valE « valB+8
Memory valM « Mg[valA]
Write back R[%rsp] <« valE

R[rA] « valM
PC update PC <« valP

What effect does this instruction execution have on the registers and the PC?

Practice Problemd TS (S0lGHOoN Page aBEY it Ho. vl i T, pad 0 Ioitral]
What would be the-effect of the insfruction pushq %rsp according to the steps

listed in Figure 4.20? Does this conform to the desired behavior for Y86-64, as
determined in Problem 4.77
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Aside Tracing the execution of a pushq instruction

Let us trace the processing of the pushq instrugfi‘on on line 6 of the-object code sholén in Figure 417. i
At this point,'we have 9in register %rdx and 128 in régister frsp."We can also see that the instruction is
located at address 0x02a and consists of 2 bytes having values 0xa0 and 0x2£. The stages would proceed
as follows:

Generic Specific | )
Stage pushgq rA pushq %rdx
JFetch icode:ifun <« M;[PC] icode:ifun « My[0x024]=2:0

rA:rB « M[PC+1] rA:FB, <= Mj[0x02b]=2:f

valp +— PC+2 valP « 0x02a+2=0x02c
Decode valA <« R[rA] valA « R[Yrdil=9 ) i

val8 « R[%rsp] YalB « R[%rsp]=128 ¥
Execute valE « valB + (—8) valE « 128+ (—8)="120
Memory” Mg[valE] < .valA Mg[120] < K )

X B i -

Write back  R[%rsp] « valt R[%rsp] « 120 .
PC update PC « valP PC <~ 0x02c

As this trace shows, the instruction has the effect of setting %rspto 120, writing 9 to address 120,
and incrementing the PC by 2.

3 * g dm S

“baciice ProblemA, 16 Goluibmonos M8 T e mos )
Assume the two register writes in the write-back stage for popq occur in the order
listed in Figure 4.20. What would be the effect of executing popq %rsp? Does this
conform to the desired behavior for Y86-64, as determined in Problem 4.8?7

Figure 4.21 indicates the processing of our three control transfer instructions:
the different jumps, call, and ret. We see that we can implement these instruc-
tions with the same overall flow as the preceding ones.

As with integer operations, We can process all of the jumps in a uniform
manner, since they differ only when determining whether or not to take the
branch. A jump instruction proceeds through fetch and decode much like
the previous instructions, except that it does not require a register specifier byte.
In the execute stage, we check the condition codes and the jump condition to de-
termine whether or not to take the branch, yielding a 1-bit signal Cnd. During the §
PC update stage, we test this flag and set the PC to valC (the jump target) if the |
flag is 1 and to valP (the address of the following instruction) if the flag is 0. Our
notation x ? a : b is similar to the conditional expression in C—it yiclds @ when x §
is 1 and b when x is 0. ]
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Stage XX Dest call Dest ret
Fetch icode:ifun « My[PC] icode:ifun <- M;[PC] icode:ifun « MPC]
|
valC « Mg[PC+1] valC < Mg[PC+1] |
valP « PC4+9 valP « PC+9 valP « PC-+1
Decode valA <« R[%rsp]
valB <« R[%rsp] valB <« R[%rsp]
Execute valE < valB+ (—8) valE « valB+ 8

Cnd <« Cond(CC, ifun)

Memory Mg[valE] « valP valM « MgfvalA]
Write back R[%rsp] < valE R[%rsp] « valE
PC update PC « Cnd?valC:valP PC <« wvalC PC « valM

Figure 4.21 Computations in sequential implementation of Y86-64 instructions jXX, call, and ret.
These instructions cause control transfers.

We can see by the instruction encodings (Flgures 4 2 and 4.3) that the rrmovq
instruction is the unconditional version of a more general class of instructions
that include the conditional moves. Show how you would modify the steps for the
rrmovq instruction below to also handle the six conditional move instructions.
You may find it useful to see how the implementation of the jXX instructions
(Figure 4.21) handles conditional behavior.

Stage cmovXX rA, rB
Fetch icode:ifun « M4[PC]
rA:rB <« My[PCH+1]
valP « PC+2 .
Decode valA <« R[rA]
Execute valE « 04 valA
Memory
Write back
R[rB] « walE

PC update PC « valP
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N :

Aside Tracing the exécution of a je instruction

Let us trace the processing of the je instruction on line 8 of the object code shown it Figure 4.17. The
condition codes were all set 1 zero by the stibq instruction (line 3), and so the branch.will not be taken.
The instruction is located at address Ox02e and consists of 9°bytes. The first has value 0x73, while the
remaining 8 bytes are a byte-reversed version of the number 0x0000000000000040, the jump target.

The stages would proceed as follows:

i T e B e

Generic Specific
Stage XX Dest je 0x040 . .
Fetch icode:ifun <« M;[PC] icode:ifun « My[0x028]=17:3
valC « Mg[PC+1] valC « Mg[0x02f]= 0x040
valP < PC+9 valP <« 0x02e -+ 9==0x037
Decode
Execite _
Cnd & Cond(CC,ifuny  Cnd & €ond({0, 0, 0y, 3) =0
Memory
Write back
PC update PC <« Cnd?valC:valP PC « 070x040:0x037 = 0x037

“As this trace shows, the instruction has the effect of incrementing the PCby 9.

“ w w B e « w @

Instructions call and ret bear some similarity to instructions pushq andpopq,  {
except that we push and pop program counter values. With instruction call, we
push vaiP, the address of the instruction that follows the call instruction. During
the PC update stage, we set the PC to valC, the call destination. With instruction
ret, we assign valM, the value popped from the stack, to the PCin the PC update

stage.

b R T v % LT S . MR L R w; e v, W g g WY, ;,,r;,w.ww o TE g ¥ R s
wamrom&mﬂjﬁﬁol&ti% ade 487 S ¥ e s AR
Fill in the right-hand column of the following table to describe the processing of
the call instruction on line 9 of the object code in Figure 417

Generic Specific
Stage call Dest call Ox041
Fetch icode:ifun «+ M;[PC]

valC « Mg[PC+1]
valP « PC+9
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g g sz W g da o wmwn ST S 27 B «
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Aside Tracing the execution of a ret instructidﬂn

LEt us trace thegqprocessmg of tixe ret ipstruction on llpg I; oj 'ghé Jobject gogle shgwn in Figure 4.17.
., The lnstrucqon address is Oxp41 and«is encoded by asmgle“byte Ox90 The prevmus call instruction
setjrspto 120'and stored the return addrpss 0x040 at memory addxess 120 'Ihe stages would proceed
agfollows . R

v ) o £ PR i i

B H G eh & 1‘ 16 " iy ) S,P ¢ nific & e wh é\

i Stage’ ret * ”x re o :
e - ; — T T T s
Felch |codgjjfun e *MI[PC]U‘ . Icode:ifun ot M1f0x0%41]=9:0 ;

i b
vaIP « PC 41 - vaﬂ‘-: — 0x081 %+ 0%042
B @ fo ittt w1 v GH

= -

Degodé ™ % valA e Wotsp] © * valA < Rigrspl= toornd B
w vals’ < R[4rsp] VaIB - R[/rsﬁ]_mo

*

sda RS P Y
“Execute ©  ValE < valB 8 valE « *120'f.8L128 ‘o
% u B A KT 5

Memory. valM Mg[vaIAf valM* % Mg[120] =.0x040~ '

Write back” R[%rsp] <« YalE [Arsp] «— 128

iy 0@ p M o e %
» PCupdate *RC \’raIM&" « +PC <+ 0x040 & :

N

“As this trace shows tg}e instriiction has the efcht of settmg the PC tg 0x040 the address of the
*“ialt jnistruction. It also ets %rsp tof 1i8

S B &
Generic Specific

Stage call Dest call 0x041

Decode
valB « R[%rsp]

Execute valE <« valB 4+ (—8)

Memory Mg[valE] « valP

Write back R[%rsp] « valE

PC update PC <« valC

What effect would this instruction execution have on the registers, the PC,
and the memory?

‘We have created a uniform framework that handles all of the different types of
Y86-64 instructions. Even though the instructions have widely varying behavicr,
we can organize the processing into six stages. Our task now is to create a hardware
design that implements the stages and connects them together.
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4.3.2 SEQ Hardware Structure

The computations required to implement all of the Y86-64 instructions can be or-
ganized as a séries of six basic stages: fetch, decode, execute, memory, write back,
and PCupdate. Figure 4.22 shows an abstract view of a hardware structure that can
perform these computations. The program counter is stored in a register, shown
in the lower left-hand corner (labeled “PC”). Information then flows along wires
(shown grouped together as a heavy gray line), first upward and then around to
the right. Processing is performed by hardware units associated with the different
stages. The feedback paths coming back down on the right-hand side contain the
updated values to write to the register file and the updated program counter. In
SEQ, ali of the processing by the hardware units occurs within a single clock cycle,
as is discussed in Section 4.3.3. This diagram omits some small blocks of combi-
national logic as well as all of the control logic needed to operate the different
hardware units and to route the appropriate values to the units, We will add this
detail later. Qur method of drawing processors with the flow going from bottom
to top is unconventional. We will explain the reason for this convention when we
start designing pipelined processors.
The hardware units are associated with the different processing stages:

Fetch. Using the program counter register as an address, the instruction mem-
ory reads the bytes of an instruction. The PC incrementer computes valP,
the incremented program counter.

Decode. The register file has two read ports, A and B, via which register values
valA and valB are read simultaneously.

Execute. The execute stage uses the arithmetic/logic (ALUJ) unit for different
purposes according to the instruction type. For integer operations, it per-
forms the specified operation. For other instructions, it serves as an adder
to compute an incremented or decremented stack pointer, to comipute
an effective address, or simply to pass one of its inputs to its outputs by
adding zero.

The condition code register (CC) holds the three condition code bits,
New values for the condition codes are computed by the ALU. When
executing a conditional move instruction, the decision as to whether or
not to update the destination register is computed based on the condition
codes and move condition. Similarly, when executing a jump instruction,
the branch signal Cnd is computed based on the condition codes and the

jump type.

Memory. The data memory reads or writes a word of memory when executing a
memory instruction. The instruction and data memories access the same
memory locations, but for different purposes.

Write back. The register file has two write ports. Port E is used to write values
computed by the ALU, while port M is used to write values read from the
data memory.
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Figure 4.22 Abstract view of SEQ, a sequential implementatioh. The information
processed during execution of an instruction follows a clockwise flow starting with an
instruction fetch using theprogram counter (PC), shown in the lower left-hand corner
of the figure.
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PC update. The new value of the program counter is sclected to be either
valP, the address of the next instruction, valC, the destination address
specified by a call or jump tnstruction, or valM, the return address read
from memory.

'l

Figure 4.23 gives a more detailed view of the hardware required to implement
SEQ (although we will not see the complete details until we examine the individual
stages). We see the same set of hardware nits as earlier, but now the wires are
shown explicitly. In this figure, as well as in our other hardware diagraims, we use
the following drawing conventions:

s Clocked registers are shown as white rectangles. The program counter PC is the
only clocked register in SEQ.

* Hardware units are shown as light blue boxes. These include the memories,
the AL, and so forth. We will use the same basic set of units for all of our
processor implementations. We will treat these units as “black boxes” and not
go into their detailed designs.

¢ Control logic blocks are drawn as gray rounded rectangles. These blocks serve
to select from among a set of signal sources or to compute some Boolean func-
tion. We will examine these blocks in complete detail, including developing
HCL descriptions.

s Wire names are indicated in white circles. These are simply labels on the wires,
not any kind of hardware element.

* Word-wide data connections are shown as medium lines. Each of these lines
actually represents a bundle of 64 wires, connected in parallel, for transferring
a word from one part of the hardware to another.

* Byte and narrower data connections are shown as thin lines. Each of these lines
actually represents a bundle of four or eight wires,. depending on what type of
values must be carried on the wires.

* Single-bit connections are shown as dotted lines. These represent control valaes
passed between the units and blocks on the chip,

All of the computations we have shown in Figures 4.18 through 4.21 have the
property that each line represents either the computation of a specific value, such
as valP, or the activation of some hardware unit, such as the memory. These com-
putations and actions are listed in the second column of Figure 4.24. In addition
to the signals we have already described, this list includes four register ID signals:
srcA, the source of valA; srcB, the source of valB; dstE, the register to which valE
gets written; and dstM, the register fo which valM gets written.

The two right-hand columns of this figure show the computations for the
0Pq and mrmovq instructions to illustrate the values being computed. To map the
computations into hardware, we want to implement control logic that will transfer
the data between the different hardware units and operate these units in such a way
that the specified operations are performed for each of the different instruction
types. That is the purpose of the control logic blocks, shown as gray rounded boxes
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Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the
control signals, as well as the register and control word connections, are not shown.
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Stage Computation OPq rA, 1B mrmovq D{rB), rA

Fetch icode, ifun icode:ifun « M;[PC] icode:ifun « My[PC]
rA, rB rA:B « M [PC+1] rA:rB « M[PC-+1]
valC valC - Mg[PC +2]
valP valP « PC4-2 valP «— PC+10

Decode

Execute

Memory

Write back

PC update

valA, srcA valA <« R[rA]
valB, srcB valB « R{rB] valB <« R[rB]

valE valE « valB QP valA valE <« wvalB + valC
Cond. codes Set CC

Read/fwrite valM « Mgfvalk]

E port, dstE R[rB] <« wvalE

M port, dstM RIrA] « wvalM

PC PC <« valP PC « valP

Figure 4.24 Identifying the different computation steps in the sequential imple-
mentation. The second column identifies the value being computed or the operation

being performed in the stages of SEQ. The computations for instructions OPq and mrmovg

are shown as examples of the computations.

4.3.3 SEQ Timing

In introducing the tables of Figures 4.18 through 4.21, we stated that they should
be read as if they were written in a programming notation, with the assignments

in Figurg 4.23. Our task is to proceed through the individual stages and create
detailed designs for these blocks.

performed in sequence from top to bottom. On the other hand, the hardware
structure of Figure 4.23 operates irr a fundamentally different way, with a single
clock transition triggering a flow through combinational logic to execute an entire
instruction. Let us see how the hardware can.implement the behavior listed in

these tables.

Our implementation of SEQ consists of combinational logic and two forms |
of memory devices: clocked registers {the program counter and condition code
register) and random access memories (the register file, the igstruction memory,
and the data memory). Combinational logic does not require any sequencing
or control—values propagate through a network of logic gates whenever the
inputs change. As we have described, we also assumne that reading from a random
access memory operates much like combinational logic, with the output word

generated based on the address input. This is a reasonable assumpticon for smaller
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memories (such as the register file), and we can mimic this effect for larger circuits
using special clock circuits. Since our instruction memory is only used to read
instructions, we can therefore treat this unit as if it were combinational logic.

We are left with just four hardware units that require an explicit control
over their sequencing—the program counter, the condition code register, the data
memory, and the register file. These are controlled via a single clock signal that
triggers the loading of new values into the registers and the writing of values to the
random access memories. The program counter is loaded with a new instruction
address every clock cycle. The condition code register is loaded only when an
integer operation instruction is executed. The data memory is written only when
an rmmovq, pushq, or call instruction is executed. The two write ports of the
register file allow two program registers to be updated on every cycle, but we can
use the special register ID 0xF as a port address to indicate that po write should
be performed for this port.

This clocking of the registers and memories is all that is required to control the
sequencing of activities in our processor. Our hardware achieves the same effect as
would a sequential execution of the assignments shown in the tables of Figures4.18
through 4.21, even though all of the state updates actually occur simultaneously
and only as the clock rises to start the next cycle. This equivalence holds because
of the nature of the Y86-64 instruction set, and because we have organized the
computations in such a way that our design obeys the following principle:

PRINCIPLE: No reading back

The processor never needs to read back the state updated by an instruction in
order to complete the processing of this instruction. ]

This principle is crucial to the success of our implementation. As an illustra-
tion, suppose we implemented the pushgq instruction by first decrementing %rsp
by 8 and then using the updated value of %rsp as the address of a write operation.
This approach would violate the principle stated above. It would require reading
the updated stack pointer from the register file in order to perform the memory
operation. Instead, our implementation (Figure 4.20) generates the decremented
value of the stack pointer as the signal valE and then uses this signal both as the
data for the register write and the address for the memory write. As a result, it
can perform the register and memory writes simultaneously as the clock rises to
begin the next clock cycle.

As another illustration of this principle, we can see that some instructions (the
integer operations) set the condition codes, and some instructions (the conditional
move and jump instructions) read these condition codes, but no instruction must
both set and then read the condition codes. Even though the condition codes are
not set until the clock rises to begin the next clock cycle, they will be updated
before any instruction attempts to read them.

Figure 4.25 shows how the SEQ hardware would process the instructions at
lines 3 and 4 in the following code sequence, shown in assembly code with the
instruction addresses listed on the left:
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0x000:  irmovq $0x100,%rbx  # Yrbx <-- 0x100

0x00a: irmovq $0x200,%rdx # Yrdx <—— 0x200

0x014: addq ¥%rdx,%rbx # Yrbx <—-- 0x300 CC <-- 000
0x016: je dest # Not taken

0x01f: rmmovqg Y%rbx,0(frdx) # M[0x200] <-- 0x300

0x029: dest: halt

oo bW N

Each of the diagrams labeled 1 through 4 shows the four state elements plus
the combinational logic and the connections among the state elements."We show
the combinational logic as being wrapped around the condition code register,
because some of the combinational logic (such as the ALU) generates the input
to the condition code register, while other parts (such as the branch computation
and the PC selection logic) have the condition code register as input. We show the
register file and the data memory as having separate connections for reading and
writing, since the read operations propagate through these units as if they were
combinational logic, while the write operations are controlled by the clock.

The color coding in Figure 4.25 indicates how the circuit signals relate to the
different instructions being executed. We assume the processing starts with ‘the
condition codes, listed in the order ZF, SF, and OF, set to 100. At the beginning of
clock cycle 3 (point 1}, the state elements hold the state as updated by the second
irmovq instruction (line 2 of the listing), shown in light gray. The combinational
logic is shown in white, indicating that it has not yet bad time to react to the
changed state. The clock cycle begins with address 0x014 loaded into the program
counter. This causes the addq instruction (line 3 of the listing), shown in blue, to
be fetched and processed. Values flow through the combinational logic, including
the reading of the random access memories. By the end of the cycle (point 2),
the combinational logic has generated new values (000) for the condition codes,
an update for program register %rbx, and a new value (0x016) for the program
counter. At this point, the combinational logic has been updated according to the
addq instruction (shown in blue), but the state still holds the values set by the
second irmovq instruction (shown in light gray).

As the clock rises to begin cycle 4 (point 3), the: updates to-the program
counter, the register file, and the condition code register occur, and so we show
these in blue, but the combinationil logic has not yet reacted to these changes, and
so we show this in white. In this cycle, the je instruction (line 4in the listing), shown
in dark gray, is fetched and executed. Since condition code ZF is 0, the branch is not
taken. By the end of the cycle (point 4), a new value of 0x01f has been generated
for the program counter. The combinational logic has been updated according to
the je instruction (shown in dark gray), but the state still holds the values set by
the addq instruction (shown in blue) until the next cycle begins.

As this example illustrates, the use of a clock to control the updating of the
state elements, combined with the propagation of values through combinational
logic, suffices to control the computations performed for each instruction in our
implementation of SEQ. Every time the clock transitions from low to high, the
processor begins executing a new instruction.
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Figure 4.25 Tracing two cycles of execution by SEQ. Each cycle begins with the state
elements (program counter, condition code register, register file, and data memory)

set according to the previous instruction. Signals propagate through the combinational
logic, creating new values for the state elements. These values are loaded into the state

elements to start the next cycle.
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4.3.4 SEQ Stage Implementations

In this section, we devise HCL descriptions, for the control logic blocks required
to implement SEQ. A complete HCL description for SEQ is given in Web Aside
ARCH:HCL on page 472. We show some example blocks here, and others are given as
practice problems. We recommend that you work these problems as a way to check
your understanding of how the blocks relate to the computational requirements
of the different instructions.

Part of the HCL description of SEQ that we do not include here is a definition
of the different integer and Boolean signals that can be used as arguments to the
HCL operations. These include the names of the different hardware signals, as
well as constant values for the different instruction codes, function codes, Tegister
names, ALU operations, and status codes. Only those that must be explicitly

Name Value (hex)  Meaning ;
THALT 0 Code for halt instruction

Ingp 1 Code for nop instruction

IRRMOVQ 2 Codé for rrmovq instruction

ITRMOVQ 3 Code for irmovq instruction

IRMMOVQ 4 Code for rmmovq instruction

IMRMOVQ 5 Code for mrmovq instruction

1I0PL 6 Code for integer operation instructions
1JXX 7 Code for jump instructions

ICALL 8 Code for call instruction

IRET 9 Code for ret instruction

IPUSHQ A Code for pushq instruction

IPOPQ B Code for popq instruction

Default function code

o

FNONE

RESP 4 Register 1D for {rsp
RNONE F Indicates no register file access
ALUADD 0 Function for addition operation

SADK 1 Status code for normal operation

SADR 2 Status code for address exception

SINS 3 Status code for illegal instruction exception

SHLT 4 Status code forhalt ™!

Figure 4.26 Constant values used in HCL descriptions. These vatues rep’[esent the
encodings of the instructions; function codes; register IDs, ALU operations, and status
codes.
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Figure 4.27 Jeode ifun fA B valC valP

SEQ fetch stage. Six f r
bytes are read from the

instruction memory using - f
the PC as the starting e
address. From these bytes,

we generate the different

instruction fields. The PC

increment block computes

signal valP.

imem_error

referenced in the contro] logic are shown. The constants we use are documented
in Fgure 4.26. By convention, we use uppercase names for constant values.

In addition to the instrucfions shown in Figures 4.18 to 4.21, we include the
processing for the nop and halt instructions. 'The nop instruction simply flows
through stages without much processing, except to increment the PC by 1. The
halt instruction causes the processor status to be set to HLT, causing it to halt
operation.

Fetch Stage

Asshownin Figure 4.27, the fetch stage includes the instruction memory hardware
unit. This unit reads 10 bytes from memory at a time, using the PC as the address of
the first byte (byte 0). This byte isinterpreted as the instruction byte and is split (by
the unit labeled “Split”) into two 4-bit Quantities. The control logic blocks labeled
“icode” and “ifun” then compute the instruction and function codes as equaling
either the values read from memory or, in the event that the instruction address
is not valid (as indicated by the signal imem_error), the values corresponding to
anop instruction. Based on the value of icode, we can compute three 1-bit signais
(shown as dashed lines):

instr_valid. Does this byte correspond to a legal Y86-64 instruction? This signal
is used to detect an illegal instruction. ]

need_regids. Does-this instruction include a register specifier byte? 5

need_valC. Does this instruction include a constant word?

The signals instr_valid and imem_error (generated when the instruction address
is out of bounds) are used to generate the status code in the memory stage.
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As an example, the HCL description for need_regids simply determines
whether the value of icode is one of the instructions that has a register speci-
fier byte:

bool need_regids =
icode in { IRRMOVQ, IOPQR, IPUSHQ, IPOPQ,
IIRMOVQ, IRMMOVQ, IMRMOVQ };

Wnte HCL code for the 51gnal need valC in the SEQ unplementatlon

AsTFigure 4.27 shows, the remaining 9 bytes read from the instruction memory
encode some combination of the register specifier byte and the constant word.
These bytes are processed by the hardware unit labeled “Align” into the register
fields and the constant word. Byte 1 is split into register specifiers rA and rB when
the computed signal need_regids is 1. If need_regids is 0, both register specifiers
are set to OxF (RNONE), indicating there are noregisters specified by this instruction.
Recall also (Figure 4.2) that for any instruction having only one register operand,
the other field of the register specifier-byte will,be 0xF (RNONE). Thus, we can
assume that the signals rA and rB either encode registers we want to access or
indicate that register accessis not required. The unit labeled “Align” also generates
the constant word valC. This will either be bytes 1-8 or bytes 2-9, depending on
the value of signal need_regids.

The PC incrementer hardware unit generates the signal valP, based on the
current value of the PC, and the two signals need_regids and need_valC. For PC
value p, need_regids value r, and need_valC value i, the incrementer generates
the value p +14r + 8.

Decode and Write-Back Stages

Figure 4,28 provides a detailed view of logic that implements both the decode
and write-back stages in SEQ. These two stages are combined because they both
access the register file. 1

The register file has four ports. It supports up to two simuitaneous reads (on 1
ports A and B) and two simultaneous writes (on ports E and M). Each port has §
both an address connection and a data connection, where the address connection §
is a register ID, and the data connection is a set of 64 wires serving as either an
output word (for a read port) or an input word (for a write port) of the register |
file. The two read ports have address inputs srcA and srcB, while the two write |
ports have address inputs dstE and dstM. The special 1denf1ﬁer OxF (RNDNE) onan j
address port indicates that no register should be-accessed.

The four blocks at the bottom of Figure 4.28 generate the four different
register IDs for the register file, based on‘the instruction code icode, the régister {
specifiers rAand rB, and possibly the condition signal Cnd computed in the execute §
stage. Register ID srcA indicates which register should be read to generate valA. §
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Figure 4.28 cnd
SEQ decode and write-back t
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The desired value depends on the instruction type, as shown in the first row for the
decode stage in Figures 4.18 to 4.21. Combining all of these entries into a single

computation gives the following HCL description of srcA (recall that RESP is the
register ID of %rsp):

word srch = [
icede in { IRRMOVQ, IRMMOVQ, IOPQ, IPUSHQ } : rA
icode in { IPOPQ, IRET } : RRSP;
1 : RNONE; # Don't need register

The reglster 51gnal srcB 1nd1cates Wthh reglster should be read to generate the
signal valB. The desired value is shown as the second step in the decode stage in
Figures 4.18 to 4.21. Write HCL code for srcB.

Register ID dstE indicates the destination register for write port E, where the
computed value valE is stored. This is shown in Figures 4.18 to 4.21 as the first
step in the write-back stage. If we ignore for the moment the conditional move
istructions, then we can combine the destination registers for all of the different
instructions to give the following HCL description of dstE:

# WARNING: Conditional move not implemented correctly here
word dstE = [

icode in { IRRMOVQ } : B

icode in { IIRMOVQ, IOPQ} : rB

icode in { TPUSHQ, IPOPQ, ICALL, IRET } : RRSP;

1 : RNONE; # Don't write any register
I;

We will revisit this signal and how to implement conditional moves when we
examine the execute stage.
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Register ID dstM indicates rt M, where valM,
the value read from memory, is stored. This is shown in Figures 4.18 to 4.21 as the
second step in the write-back stage. Write HCL code for dstM.
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Only the popq instruction uses both register file write ports simultaneously. For
the instruction popq %rsp, the same address will be used for both the E and M
write ports, but with different data. To handle this conflict, we must establish a
priority among the two write ports so tHat when both attempt to write the same
register on the same cycle, only the write from the higher-priority port takes place.
Which of the two ports should be given priority in order to implement the desired
behavior, as determined in Practice Problem 4.87

Execute Stage

The execute stage includes the arithmetic/logic unit (ALU). This unit performs
the operation ADD, SUBTRACT, AND, Of EXCLUSIVE-OR Ol inputs aluA and aluB based
on the setting of the alufun signal. These data and control signals are generated
by three control blocks, as diagrammed in Figure 4,29. The ALU output becomes
the signal valE.

In Figures 4.18 to 4.21, the ALU computation for each instruction is shown as
the first step in the execute stage. The operands are listed with aluB first, followed
by aluA to make sure the subq instruction subtracts valA'from valB. We can see
that the value of aluA can be valA, valC, or either —8 or +8, depending on the
instruction type. We can therefore express the behavior:of the control block that
generates aluA as follows:

word alud = [
icode in { IRRMOVQ, IOPQ } : valh;
icode in { IIRMOVQ, IRMMOVQ, IMARMOVG } : valC;

Figure 4.29

SEQ execute stage. The

ALU either performs the

operation for an integer

operation instruction or

acts as an adder. The

condition code registers

are set according to the

ALU value. The condition

code values are tested |
to determine whether a icode ifun valC valA valB
branch should be taken.
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icode in { ICALL, IPUSHQ } : -
icode in { IRET, IPOPQ } : 8
# Other instructions don't need ALU
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Based on the ﬁrst operand of the first step of the execute stage in Figures 4.18 to
4,21, write an HCL description for the signal aluB in SEQ.

Looking at the operations performed by the ALU in the execute stage, we
can see that it is mostly used as an adder. For the 0Pq instructions, however, we
want it {0 use the operation encoded in the ifun field of the instruction. We can :
therefore write the HCL description for the AT.U control as follows: o

word alufun = [
icode == I0OPQ : ifun;
1 : ALUADD;

1;

The execute stage also includes the condition code register. Our ALU gen-
erates the three signafs on which the condition codes are based—zero, sign, and
overflow—every time it operates. However, we only want to set the condition
codes when an OPq instruction is executed. We therefore generate a signal set_cc
that controls whether or not the condition code register should be updated:

bool set_cc = icode in { IOPQ };

The hardware unit labeled “cond” uses a combination of the condition codes
and the function code to determine whether a conditional branch or data transfer
should take place (Figure 4.3). It generates the Cnd signal used both for the setting
of dstE with conditional moves and in the next PC logic for conditional branches.
For other instructions, the Cnd signal may be set to either 1 or 0, depending on
the instruction’s function code and the setting of the condition codes, but it will
be ignored by the control logic. We omit the detailed design of this unit.

Pracfice Problém'4.24 (selution ageas®). L. Sl S U LA IS |
The cond1t10nal move instructions, abbreviated cmovXX, have 1nstruct10n code
IRRMOVQ. As Figure 4.28 shows, we can implement these instructions by making
use of the Cnd signal, generated in the execute stage. Modify the HCL code for
dstE to implement these instructions. '

Memory Stage

The memory stage has the task of either reading or writing program data. As
shown in Figure 4.30, two con