
THIRD EDITION

.

COMPUTER SYSTEMS

BRYANT • O'HALLARON
I

C·oni.puter Systems
A Programmer's Perspective

THIRD EDITION

"Randal E. Bryant
Carnegie Mellon University

David R. O'Hallaron
Carnegie Mellon University

Pearson

Boston Columbus Hoboken Indianapolis New York San Francisco

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montre'h.1 .Jbro:rito

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

\
I

Vice President and Editorial Director: Marcia J. Horton
Executive Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Joanne Manning
Procurement Manager: Mary Fischer

Senior Specialist, Program Planning and Support:
Maura Zaldivar-Garcia

Cover Designer: Joyce Wells
Manager, Rights Management: Rachel Youdelman
Associate Project Manager, Rights Management:

William J. Opaluch
Full-Service Project Management: Paul Anagnostopoulos,

Windfall Software
Composition: Windfall Software
Printer/Binder: Courier Westford
Cover Printer: Courier Westford
Typeface: 10/12 Times 10, ITC Stone Sans

Tue graph on the front cover is a "memory mountain" that shows the measured read throughput of an Intel Core i7 processor

as a function of spatial and temporal locality.

Copyright© 2016, 2011, and 2003 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States
of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording. or otherwise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in

initial caps or all caps.

Tue author and publisher of this book have used their best efforts in preparing this book. These efforts include the development,
research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty
of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author
and publisher shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing,

performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education-Japan
Pearson Education Australia PTY, Limited
Pearson Education North Asia, Ltd., Hong Kong
Pearson Educacill de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

Library of Congress Cataloging-in-Publication Data

Bryant, Randal E. Computer systems: a programmer's perspective I Randal E. Bryant, Carnegie Mellon University, David R. O'Hallaron,

Carnegie Mellon. University.-Third edition.
pages cm

Includes bibliographical references and index.
ISBN 978-0-13-409266-9-ISBN 0-13-409266-X
1. Computer systems. 2. Computers. 3. Telecommunication. 4. User interfaces (Computer systems) I. O'Hallaron,

David R. (David Richard) II. Title.
QA76.5.B795 2016 OOS.3--dc23 2015000930

10 9 8 7 6 5 4 3 2

PEARSON
wmv.pearsonhighered.com

ISBN 10: 0-13-409266-X

ISBN 13: 978-0-13-409266-9

,.

To the ~tutjenfs ~lid instructors of the 15-213

course at Carnegie Mellon University, for inspiring

us to develop and refine the material' fo'r this book.

-
Mastering Engineering®
For Computer Systems: A Programmer's Perspective, Third Edition

Mastering is Pearson's proven online Tutorial Homework program, newly available with the third
edition of Computer Systems: A Programmer's Perspective. The Mastering platform allows you to
integrate dynamic homework-with many problems taken directly from the Bryant/O'Hallaron
textbook-with automatic grading. Mastering allows you to easily track the performance of your
entire class on an assignment-by-assignment basis, or view the detaileq work of an individual
student.

t -. I ~

, "
For more information or a demonstration of the course, visit www.MasteringEngineering.com

I '

or contact your local Pearson representative.

.._._.

Contents
t "

,.

Preface xix

About the Autho~s xxxv

1
A Tour of Cqmputer ~ystell!;s 1

Information Is,Bits + Context ''.l 1.1
L2
L3
1.4

Programs Are Translated .by Other P,rograms into Different Forms 4
It Pays to Understand How_ Compilation Systems Work 6

1.5

Processors Read and-Interpret Instructions Stored in Memory 7
1.4.1 Hardware Organization of a System 8
1.4.2 Running the hello Program 10
Caches Matter 11

1.6 Storage Devices Form a Hierarchy. 14
1. 7 The Operating System Manages the Hard~are 14

1.7.1 Processes 15
1.7.2 Threads 17
1.7.3 Virtual Memory 18
1.7.4 Files 19

LS Systems Communicate with Other Systems Using Networks 19.
1.9 Important Themes 22

1.9.1 Amdahl's Law 22· '•·
1.9.2 Concurrency and Parallelism 24
1.9.3 The Importance of Abstractions in Computer Systems 26

1.10 Summary 27
Bibliographic Notes 28
Solutions to Practice Problems 28

Part I Program Structui:e and.Execution

2
Represepting and Manipulating Information Jl
2.1 Information Storage 34

2.1.1 Hexadecimal Notation 36
2.1.2 Data Sizes 39

vii

viii Contents

2.1.3 Addressing and Byte Ordering 42
2.1.4 Representing Strings 49
2.1.5 Representing Code 49
2.1.6 Introduction to Boolean Algebra 50
2.1.7 Bit-Level Operations in C 54
2.1.8 Logical Operations in C 56
2.1.9 Shift Operations in C 57

2.2 Integer Representations 59
2.2.1 Integral Data Types 60
2.2.2 Unsigned Encodings 62
2.2.3 1\vo's-Complement Encodings, 64
2.2.4 Conversions between Signed and Unsigned 70
2.2.~ Signed versus Unsigned inC 74
2.2.6 Expanding"the Bit Representation of a Number 76
2.2.7 Truncating Numbers 81
2.2.8 Advice on Signed versus Unsigned 83

2.3 Integer Arithmetic 84
2.3.1 Unsigned Addition 84
2.3.2 1\vo's-Complement Addition 90
2.3.3 1\vo's-Complement Negation 95
2.3.4 Unsigned Multiplication 96
2.3.5 1\vo's-Complement Multiplication 97
2.3.6 Multiplying by Constants 101
2.3.7 Dividing by Powers of 2 103
2.3.8 Final Thoughts on Integer Arithmetic 107

2.4 Floating Point 108
2.4.1 Fractional Binary Numbers 109
2.4.2 IEEE Floating-Point Representation 112
2.4.3 Example Numbers 115
2.4.4 Rounding 120
2.4.5 Floating-Point Operations 122
2.4.6 Floating Point in C 124

2.5 Summary 126

3

Bibliographic Notes 127
Homework Problems 128
Solutions to Practice Problems 143

Machine-Level Representatioll'of Progralhs 163
3.1 A Historical Perspective 166

-- - .

•

3.2 Program Encodings 169

3.3

3.4

3.5

3.6

3.2.l Machine-Level Code 170
3.2.2 Code Examples 172
3.2.3 Notes on Formatting 175

Data Formats 177· (I ' 11

Accessing Infonrlation 17~
3.4.l , (!peranq,Speciflers. 180 "
3.4.2 'Data Movell).ent Instwcti<;ms , 1~2
3.4.3 Data Moyement Exllmple

0

186
3.4.4 Pushing and' Poppi~g Stack Data

Arithmetic and Logical Operations 191
3.5.1 Load Effective Address 191

i89

3.5.2 Unary and Bi~ary 9peqtip,J!~r 194
3.5.3 Shift Operations 194
3.5.4 ,. Disc_u~sion, 196 ,
3.5.5 Special Arithmetic Operatio11s 197

Control 200'
3.6.1 Condition Codes 201

l J

I '

"

f;t

I ·'\

,,

• ' l

3.6.2 Accessing the Condition Codes 202 · • ~· ,
3.6.3 Jump Instructions 205 •
3.6.4 Jump Instruction Encodings 207
3.6.5 Impleme9ting Conditional Branches with

Conditional ·Control 209
3.6.6 Implementing.Conditional Branches.with

Conditional Moves 214 >
3.6.7 Loops 220
3.6.8 Switch Statements 232

3.7 Procedures 238
3.7'.l The Run-Turie, Stack 23~
3.7.2 Control Transfer 241
3.7.3 Data Transfer 245
3.7.4
3.7.5
3.7.6

Local Storage on the Stack 248
• • J

Local Storage m Registers 251
Recursive Procedure~ 253

"

"· 3.8 :Array Allocati91)-~nd Access 255
3.8.1 Basic Principles 255
3.8.2 Pointer Arithmetic 257
3.8.3 Nested Arrays 258
3.8.4 Fixed-Size Arrays 260,
3.8.5 Variable-Size Arrays 262

, ,

" ;

l

"

Co,ntents- ix

{

,,

') '

,,,

x Contents

3.9 Heterogeneous Data Structures 265
3.9.l Structures 265
3.9.2 Unions 269
3.9.3 Data Alignment 273

3.10 Combining Control and Data in Machine-Level Progri'ms 276
3.10.1 Understanding Pointers 277

""---l ..II

3.10.2 Life in the Real World: Using ihe GDB Debugger 279
3.10.3 Out-of-Bounds Memory References and Buffer b,v,erflow 279
3.10.4 Thwarting Buffer Overflow Attacks 284
3.10.5 Supporting Variable-Size StacltFrames' 290

3.11 Floating-Point Code 293
3.11.l Floating-Point Movement and Conversion Operations 296
3.11.2 Floating-Point Code in Procedures 301
3.11.3 Floating-Point Arithmetic Operations 302
3.11.4 Defining and Using Floating-Point Constants 304
3.11.5 Using Bitwise Operations in Floating-Point Gode 305
3.11.6 Floating-Point Comparison Operations 306
3.11.7 Observations about Floating-Point Code 309

3.12 Summary 309

4

Bibliographic Notes 310
Homework Problems 311
Solutions to Practice Problems 325

Processor Architecture 351
4.1 The Y86-64 Instruction Set Architecture 355

4.1.1 Programmer-Visible State 355
4.1.2 Y86-64 Instructions 356
4.1.3 Instruction Encoding 358
4.1.4 Y86-64 Exceptions 363
4.1.5 Y86-64 Programs 364
4.1.6 Some Y86-64 Instruction Details 370

4.2 Logic Design and the Hardware Control Language HCL 372

4.2.1 Logic Gates 373
4.2.2 Combinational Circuits and HCL Boolean Expressions 374
4.2.3 Word-Level Combinational Circuits and HCL

Integer Expressions 376
4.2.4 Set Membership 380
4.2.5 Memory and Clocking 381

4.3 Sequential Y86-64 Implementations 384
4.3.1 Organizing Processing into Stages 384

4.3.2 SEQ Hardware Structure 396G0 . ,. '· ' • 1., • ·'

4.3.3 SEQ Timing 400 ·¥. " ,. '! n•J '""
4.3.4 SEQ Stage Jmplementations 404 11"' ., '

4.4 General Principles of Pipelining 412 , l"

4.4.1 Coi;nputat~onal Pipelines 412· '(It .t/
4.4.2 A Detailed Look at Pipeline Operation,. il14l
4.4.3 Limit,atiqns of Pipelining 416
4.4.4 <•,l?ipelihingc.a'System with Feedback· 419 1 , :.

4.5 Pipelined Y86'64 Impleinentations• '421·tJ .·11<

4.5.l SEQ+: Rearranging the Computation Stagesu-.421
4.5.2 Insefting.Pipeline Registers 422 , .fi"
4.5.3 Rearranging and Relabeling Signals 426
4.5.4 Next PC Prediction 427 • >

4.5.5 Pipeline Hazards 429
4.5.6 Exception Handling 444 _,
4.5.7 PIPE Stage Implementations 447
4.5.8 Pipeline Control Logic 455
4.5.9 - Performance Analysis -464.
4,5.10 Unfinisped Business 468

4.6 Summary 470

5

4.6.1 Y86-64 Simulators 472
Bibliographic Notes 473
Homework Problems 473
Solutions to Practice Problems 480

. .

,,

Optimizing Program'P'erforniqnc~; 495
5.1
5.2
5.3
5.4
5.5
5.6
5.7

Capabilities and Limitations· of Optimizing Compilers 1198
Expressing Program Performance. ·502
Program Example 504
Eliminating Loop•I:gefficiencies 508 .J•
Reducing Procedure Calls 51'.Z.< '" "
Eliminating Unneeded Memory Referencesu514 ...
Understanding Modern Processors ·517,.
5.7.l Overall Operation 518
5.7.2 Functional Unit Performance 523
5.7.3 An Abstract Model of Processor Operation 525

5.8 Loop Unrolling 53.hr" "'
5.9 Enhanqing Parallelism 536

5.9.l Multiple.Accumulators 536
5.9.2 Reassociation Transformation 541

~Contents xi

Xii Contents

5.10 Summary of Results for Optimizing Combining Code 547

5.11 Some Limiting Factors 548
5.11.1 Register Spilling 548
5.11.2 Branch Prediction and·Mispredictipn Penalties ·'549

5.12 Understanding Memory Performance 553 ,... •L

5.12.1 Load Performance 554'ri 1 d"
5.12.2 Store Performance 555

5.13 Life in the Real World: Performance"Improvement Techniques • 561
5.14 Identifying and Eliminating Performance Bottlenecks 562

5.14.1 Program Profiling 562
5.14.2 Using a Profiler to Guide Optimization 565 •

5.15 Summary 568
Bibliographic Notes 569 "
Homework Problems 570
Solutions to Practice Problems 573

6
The Memory Hierarchy 579
6.1 Storage Technologies 581

6.1.1 Random Access Memory 581
6.1.2 Disk Storage 589
6.1.3 Solid State Disks 600
6.1.4 Storage Technology Trends 602

6.2 Locality 604
6.2.1 Locality of References to Program Data 606
6.2.2 Locality of Instruc,tion Fetche'l , 601
6.2.3 Summary of Locality 608 "'

6.3 The Memory Hierarchy 609
6.3.1 Caching in the Memory Hierarchy 610
6.3.2 Summary of Memory Hierarchy Concepts 614

6.4 Cache Memories 614
6.4.1 Generic Cache Memory Organization '615
6.4.2 Direct-Mapped Caches 617 "
6.4.3 Set Associative Cadres 624 "
6.4.4 Fully Associative Caches 626
6.4.5 Issues with Writes 630
6.4.6 Anatomy of a Real Cache Hierarchy 631
6.4.7 Performance Impact of Cache Parameters 631

6.5 Writing Cache-Friendly Code 633
6.6 Putting It Together: The Impact of Caches on Program Performance 639

6.6.1 The Memory Mountain 639
6.6.2 Rearranging Loops to Increase Spatial Locality 643
6.6.3 Exploiting Locality in Your Programs '647

6.7 Summary 648
Bibliographic Notes 648

' Homework' Problems 649
Solutions to Practice Problems 660

'
Part II Running Programs on a System

7
Linking 669
7.1 Compiler Drivers 671
7.2 Static Linking 672
7.3 Object Files 673
7.4 Relocatable Object Files 674
7.5 SY1Pbols and Symbol.Tables 675
7.6 Symbol Resolution 679

7.6.1 How Linkers Resolve Duplicate Symbol Names 680
7.6.2 Linking with Static Libraries 684
7.6.3 How Linkers Use Static Libraries to Resolve References 688

7.7 Relocation 689
7.7.1 Relocation Entries 690
7.7.2 Relocating Symbol References 691

7.8 d Executable Object Files 695
7.9 Loading Executable Object Files 697
7.10 Dynamic Linking with Shared Libraries 698 ' . 7.11 Loading and Linking Shared Libraries from Applications 701
7.12 Position-Independent Code (PIC) 704
7.13 Library Interpositioning 707

7.13.1 Compile-Time Interpositioning 708
7.13.2 Link-Time Interpositioning 708
7.13.3 Run-Time Interpositioning 710

7.14 Tools for Manipulating Object Files 713
7.15 Summary 713

Bibliographic Notes 714
Homework Problems 714
Solutions to Practice Problems 717

Contents xiii

xiv Contents

8
Exceptional Control Flow" 721
8.1

8.2

8:3
8.4

8.5

8.6
8.7
8.8

9

Exceptions 723
8.1.1 Exception Handling 724
8.1.2 Classes of Exceptions 726
8.1.3 Exceptions in Linux/x86-64 Systems
Processes 732
8·.2.1 Logical ControfFlow 732
8.2.2 Concurrent Flows 733
8.2.3 Private Address Space 734
8.2.4 User and Kernel Modes 734
8.2.5 Context Switches 736
System Call Error Handling 737
Process Control 738
8.4.1 Obtaining Process IDs 739

729

8.4.2 Creating and Terminating Processes 739
8.4.3 Reaping Child Processes 743
8.4.4 Putting Processes to Sleep 749 ,
8.4.5 Loading and Running Programs 750
8.4.6 Using fork and execve to Run Programs 753
Signals 756
8.5.1 Signal Terminology 758
8.5.2 Sending Signals 759
8.5.3 Receiving Signals 762
8.5.4 Blocking and Unblocking Signals 764
8.5.5 Writing Signal Handlers 766 11
8.5.6 Synchronizing Flows to Avoid Nasty. Concurrency Bugs
8.5.7 Explicitly Waiting fat Signals 778
Nonlocal Jumps 781
Tools for Manipula\ing Processes. 786
Summary 787 ,
Bibliographic Notes 787
Homework Problems 788
Solutions to Practice Problems 795

Virtual Memory 801
9.1 Physical and Virtual Addressing 8Q3
9.2 Address Spaces 804

776

9.3 VM as a Tool f6r Caching 805
9.3.1 DRAM Cache Organization 806
9.3.2 Page Tables 806
9.3.3 Page Hits, 808
9.3.4 Page Faults 808- 1

9.3.5 Allocating Pages 810
9.3.6 Locality to the Rescue Again 810

9.4 VM as \I Tool fdr Memory Management 811

9.5 VM as a Tool for Mem'ofy Protection .812

9.6 Address Translation 813
9.6.l Integrati~g Caches andYM 817
9.6.2 Speeding Up Address 'Ifanslation with a TLB 817
9.6.3 Multi-Level Page Tables 819

('

9.6.4 Putting It Together: End-to-End Addrl',s~ Trapslation ~21
9.7 Case Study: The Intel Core i7/Linux Memory System 825

9.7.1 Core i7 Address Translation 826
9.7.2 Linux Virtual Memory System 828

9.8 Memory Mapping 833
9.8.1 Shared Objects Revisited 833
9.8.2 The fork Function Revisited 836
9.8.3 The execve Function Revisited 836
9.8.4 User-Level Memory Mapping with the mmap Function 837

9.9 Dynamic Memory Alloqtion 839
9.9.l
9.9.2
9.9.3
9.9.4
9.9.5
9.9.6
9.9.7
9.9.8
9.9.9
9.9.10
9.9.11
9.9.12
9.9.13
9.9.14

The malloc and free Functions ~40

Why Dynamic Memory Allocation? 843
Allocator Requirements and Goals 844
Fragmentation 846
Implementation Issues 846
Implicit Free Lists 847
Pl~cing Allocated Blocks 849
Splitting· Free Blocks -849' 1

L '

Getting Additional Heap Memory '850
Coalescing Free Blocks 850
Coalescing with Boundary Tags 851
Putting It Together: Implementing a Simple Allocator
Explicit Free Lists 862
S_egregated Free Lists 863

9.10 Garbage Collection 865'
9.10.l Garbage Collector Basics 866
9.10.2 Mark&Sweep Garbage Collectors 867 · •
9.10.3 Conservative Mark&Sweep for C Programs 869

.,

"

854

h

' I

..
~ ..

Gontents xv

xvi Conterits

9.11 Common Memory-Related Bugs in-CPrqgfams 870.
9.11.1 Dereferencing Bad Pointers 870
9.11.2 Reading Uninitialized Memory 871
9.11.3 Allowing Stack Buffer Overflows 871
9.11.4 Assuming That Pointers and the Objects They Point to

Are the Same Size 872
9.11.5 Making Off-by-One Errors 872
9.11.6 Referencing a Pointer Instead of the Object It Points f'o 873
9.11.7 'Misunderstanding Pointer Arithmetic &73
9.11.8 Referencing Nonexistent Variables 874
9.11.9 Referencing Data in Free Heap Blocks 874
9.11.10 Introducing Memory Leaks 875.

9.12 Summary 875
Bibliographic Notes 876
Homework Problems 876
Solutions to Practice Pr6blems 880'

Part Ill Interaction and Communicatiqn
between Programs

10
System-Level I/O 889
10.1 Unix I/O S90
10.2 Files 891
10.3 Opening and Closing Files 893
10.4 Reading and Writing Files 895
10.5 Robust Reading and Writing with the Rm Pack~ge 897_

10.5.1 Rm Unbuffered Input and Output Functions 897
10.5.2 Rio Buffered Input Function§ 898

10.6 Reading File Metadata 903
10.7 Reading Directory Contents 905
10.8 Sharing Files 206
10.9 I/O Redirection 909
10.10 Standard I/O 911
10.11 Putting It Together: Which I/O Functions Shoul,d I Use? 911
10.12 Summary 913

Bibliographic Notes 914
Homework Problems 914
Solutions to Practice Problems 915

11
Network Programming 917
11.l The Client-Server Programming M9del 918
11.2 Networks 919
11.3 The Global IP Inten;iet 924

11.3.1 IP .:\dc!resses 925
11.3.2 Internet Domain N'ames 927
11.3.3 Internet Connections 929

11.4 The Sockets Interface 932
11.4.1 Socket Addre,ss Structures 933
11.4.2 The socket Function 934
11.4.3 The connect Function 934
11.4.4 The bind Function 935

r ·~ f
11.4.5 The listen Function 93~

r .
11.4.6 The acc-:pt Function 936
11.4.7 Host and Service Conversion 937

£ I

11.4.8 Helper Functions for the Socket~ Ip.terface 942
11.4.9 Example Echo Client and Server ·944

11.S Web Servers 948
11.5.1 Web Basics 948
11.5.7 Web Content 949
11.5.3 HTIP Transactions 950
11.5.4 Serving Dynamic Content 953

11.6 Putting It Together: The TINY Web Server 956
11.7 Summary 964

Bibliographic Notes 965
Homework Problems 965
Solutions to Practice Problems 966

12
Concurrent Programming 971
12.l Concurrent Programming with Processes 973

12.1.1 A Concurrent Server Based on Processes 974
12.1.2 Pros and Cons of Processes 975

12.2 Concurrent Programming with I/O Multiplexing 977
12.2.l A Concurrent Event-Driven Server Based on I/O

Multiplexing 980
12.2.2 Pros and Cons of I/O Multiplexing 985

12.3 Concurrent Programming with Threads 985
12.3.l Thread Execution Model 986

Contents xvii

xviii Contents

12.3.2 Posix Threads 987
12.3.3 Creating Threads 988
12.3.4 Terminating Threads 988
12.3.5 Reaping Terminated Threads 9~9

12.3.6 Detaching Threads 989
12.3.7 Initializing Threads 990
12.3.8 A Concurrent Server Based on Threads 9~1

12.4 Shared Variables in Threaded Programs 992
12.4.1 Threads Memory Model 993

12.5

12.4.2 Mapping Variables to Memory 994
12.4.3 Shared Variables 995
Synchronizing Threads with Semaphores 995
12.5.1 Progress Graphs 999
12.5.2 Semaphores 1001
12.5.3 Using Semaphores for Mutual Exclusion lp02
12.5.4 Using Semaphores to Scqedule Shared Respurces. 1004
12.5.5 Putting It Together: A Concurrent Server Based on

12.6
12.7

Prethreading 1008
Using Threads for Parallelism 1013
Other Concurrency Issues 1020
12.7.1 Thread Safety 1020
12.7.2 Reentrancy 1023 "
12.7.3 Using Existing Library Functions in Threaded Programs
12.7.4 Races 1025
12.7.5 Deadlocks 1027

12.8 Summary 1030

A

Bibliographic Notes 1030
Homework Problems 1031
Solutions to Practice Problems 1036

Error Handling 1041:
A.1 Error Handling in Unix Systems 1042
A.2 Error-Handling Wrappers 1043

References 1047

Index 1053

-

1024

Preface

This book (known as CS:APP) is for computer scientists, computer engineers, and
others who want to be able to write better programs by learning what is going on
"under the hood'" of.a computer systefn.

Our aim'is to explain the enduring concepts underlying all computer systenls,
and to show you the cohcrete ways that these ideas affect the correctn'ess;perfSr­
mance,'lmd utility of your application programs.'Mlmy systems bob ks are1\vritten
from a builder's perspective, describing how to implement the hardware or th'e sys­
tems software, inC!uding the operating system, compiler, and network·iiltefface.
Thisbook is wrihen from"a progr'dmme""' pefspective,'describing how application
programmers can use their knowledge of a system to write better programs. 'Of
course, learning what a system i§ supposed to do provide&.a good first step in learn­
ing how to build one,'so this book also serves as a· valuable introduction to those
who go on to iinplemeht systems hardware and soffware. Most systems books also
tend to focus on just one aspect of the system, for example, the•hardware archi­
tecture: the operating system, the compiler, or the "network. Tiiis book" spans all
of·these aspects,' with !lie unifying theme of a progranfmer's perspective.

If you·study ancl-learh>.the-concepts-in-this-!:mok~you-.wiU1:le"on·yoni-wzj>'tcr-- -
becoming the 'rare power progranimer'who knows how things work'and how io
fix them when tbey'bteak. You will· be able to write programs that·make•better
use of the'caP,abiij(ies provided by theloperating systeni'and systellis software,
that operate 'correctly across'1i wicte' range of operating conditibhs and run'.-t:llne
parameters,' that run faster, and that avoid the flaws that make·ptogramS vu!Iler-
able t'6 cybefatt'ack-. You will be prepared to delve deeper into 'advanced topics
sucn as conipilers;'c6mputer architecture, 'operating sy~tems, embedded systems,
networking, and cybersecurity.

Assumptions' abou't the Reader's Backgrourid "

This book focuses on systems that execute x86-64 machine code. x86-64 is the latest
in an evolutionary path followed by Intel and its competitors .that started with the
8086 microprocessor in 1978. Due to the naming conventions used by Intel for
its microprocessor line, this class of microprocessors is referr~d tq coll9ql'ially as
"x86." As semiconductor technology has evolved to allow more transistors to be
integrated onto a single. chip, these processors have progressed greatly in their
computing.ppwer. and theii:.mel)lory capacity. 'As.part of, this ptogression, (hey
have gone from pp,erating on· 16-bit 'XQW, to.32-bit.words with the; introduction
of IA32 processors, and most recently to 64-bit words with x86-64.

We consider how these machines execute C programs on Linux. Linux is.one
~ of a number·of operating systems·having their heritage in the Unix operating

system developed originally by Bell Laboratories. Other members-of this class

xix

xx Preface

l
I
II

t

of operating systems include Solaris, FreeBSD, and MacOS X. In recent years,
these operating systems have maintained a high level of compatibility through the
efforts of the Posix and Standard Unix Specification standardization efforts. Thus,
the material in this book applies almost directly to these "Unix-like" operating
systems.

The, text contains numerous programming examples that have been compiled
and run on Linux systems. We assume that you have access to such a machine, and
are able to log in and do simple things such as listing files and changing directo­
ries. If your computer runs Microsoft Windows, we recommend that you install
one of the many different virtual machine environments (such as Virtua!Box or
VMWare) that allow programs written for one operating system (the guest OS)
to run under another (the host OS).

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C (particularly pointers, explicit dynamic memory
allocation, and formatted I/O) that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic "K&R" text
by J?rian Kernighan and Dennis Ritchie [61]. Regardless of your programming
background, consider K&R an essential part of your personal systems library. If
your prior experience \s with an interpreted language, such as Python, Ruby, or
Perl, you will definitely want to devote some ti_me to learning C before you attempt
to use this book.

Several of the early chapters in the book explore the interactions between C
programs and their machine-language counterparts. The machine-language exam­
ples were all generated by the GNU ace compiler running on x86-64 processors.
We do not assume any prior experience with hardware, machine language, or
assembly-language programming.

How to Read the Book

Learning how computer systems work from a programmer's perspective is great
fun, mainly because you can do it actively. Whenever you learn somethihg new,
you can try it out right away and see the result firsthand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work

--~· ~· ------'----------~-'---'code!intro/hello.c

1' #include <st!dio.h>
2

3 int main()
4 {

5 printf("hello, world\n");
6 return O;
7 }

-------------~---------- code/introlhel/o.c

Figure 1 A typical code exqmple.

immeC!iately to test your understanding. Solutions t6 the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own
and then check the solution to make sure you are on the rigll.t track. Each chapter
is fallowed by a s6t of homework problems of varying difficulty. Your instructor
has the solutiohs to \he h6mework p1ob!ems in an instructor's manual. For each
homew9rk problem, we show a rating 6f the amount of effort we feel it will require:

' '
+ Should require just a few min~t~s. Little or no programming required.

~ • ~ • .1 •

~,t MighVygui,re up, to 20 mip.utes. Often il)volves Wfili.i;ig.and ,t,esting some
code. (Many of these,arq'flerived from pn1blems.we ha,ve given on exams.)

+++ Requires a sjgnificant;,effort1 perhaps1-2 hours. Generally in\lolves writ­
ing and testing a significant amount of code ..

++++ A lab assignment, requiring up to 10 hours of effort.

Each eode example in the te;t was formatted directly, Without any manual
intervention, from a C program compile<i":ith clC<; and' tested on a Lin ID:· system.
of"course, your system may have a different version of ace, or a different compiler

• ' ' '<}

altogether, so your compiler might generate different \fiachme code; but the
overall behavior should be the same. All bf the.source code!i§' available from the
CS:APP Web page ("CS:APP" being our shorthahd fot 146 book's title) at csapp
.cs.cmu.edu. In the text, the filenarlies 6f the so'urce progrAhts are docuinented
in horizont111 bars that sutround the formatted code. For example; the program in
Figure' I can be found in the file hello. c in directory code"f intro/. We encourage
yoli1o try rurming the example programs on your system as you encounter them.

To avoid.having a.book that is overwhelming, both irrbulk and in content, we
have:cre'ated•a'number of.w.rb asides containing matetial that.supplements the
main presentatioh of1ha boolo.,These asides are referenced!Within the book with
a notation'of the form CHAE:TOP, where CHAP is ashoi;~ encoding of the chapter sub­

·iect, and TOPds.a shott-cocje·fonthe topic-that is covered.·For example, Web Aside
DATK.BOOL contains supplementary material on·Booleanalgebra for the presenta­
tion on data representations in Chapter 2, while Web Aside ARCH:VLOG contains

Preface ,xxi

xxii Preface

I,,
I

material describing processor designs using the Verilog hardware description lan­
guage, supplementing the presentation of processor design in Chapter 4. All of
these Web asides are available from the CS:APP Web page.

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems. Here is an overview.

Chapter 1: A Tour of Computer Systems. This chapter introduces the major ideas
and themes in computer systems by tracing the life cycle of a simple "hello,
world" program.

Chapter 2: Representing and Manipulating Information. We cover computer arith­
metic, emphasizing the properties of unsigned and two's-complement num­
ber representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and
unsigned numbers. We cover the mathematical properties of arithmetic op­
erations. Novice programmers are often surprised to learn that the (two's­
complement) sum or product of two positive numbers can be negative. On
the other hand, two's-complement arithmetic satisfies many of the algebraic
properties of integer arithmetic, and hence a compiler can safely transform
multiplication by a constant into a sequence of shifts and adds. We use the
bit-level operations of C to demonstrate the principles and applications of
Boolean algebra. We cover the IEEE floating-point format in terms of how
it represents values and the mathematical properties of floating-point oper­
ations.

Having a solid understanding of computer arithmetic is critical to writ­
ing reliable programs. For ex~ple, programmers and compilers cannot re­
place the expression (x<y) with (x-y < O), due to the possibility of overflow.
They cannot even replace it with the expression (-y < -x), due to the asym­
metric range of negative and positive numbers in the two's-complement
representation. Arithmetic overflow is a common source of programming
errors and security vulnerabilities, yet few other books cover the properties
of computer arithmetic from a programmer's perspective.

Chapter 3: Machine-Level Representation of Programs. We teach you how to read
the x86-64 machine code generated by a C compiler. We cover the ba­
sic instruction patterns generated for different control constructs, such as
conditionals, loops, and switch statements. We cover the implementation
of procedures, including stack allocation, register usage convention~, and
parameter passing. We cover the way different data structures such as struc­
tures, unions, and arrays are allocated and accessed. We cover the instruc­
tions that implement both integer and floating-point arithmetic. We also
use the machine-level view of programs as a way to understand common
code se~urity vulnerabilities, such as buffer overflow, and steps that the pro-

grammer, the compiler, and the operating system can take to reduce these
threats. Learning the concepts in this chapter helps you become a better
programmer, because you will understand how programs are represented
on a machine. One certain benefit is that you·will develop a thorough and
concrete understanding of pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational and
sequential logic elements, and then shows how these elements, can be com­
bined in a data path that executes a simplified subset of the x86-64 instruction
set called "Y86-64." We begin with the design of a single-cycle datapath.
This design is conceptually very simple, but it would not be very fast. We
then introduce pipelining, where the different steps required to process an
instruction are implemented as separate stages. At any given.time, each
stage can work on a different instruction. Ol!r five,stage processor pipeline is
much more realistic. The control logic for the processor designs is described
using a simple hardware description language called HCL. Hardware de­
signs written in HCL can be compiled and linked into· simulators provided
with the textbook, and they can be used to generate Verilog descriptions
suitable for synthesis into working hardware.

Chapter 5: Qptimizing fro gram Performance. This chapter introduces a number
of techniques for improving code performance, with the idea being that pro­
grammers leafll to write their C code in such.a way that a compiler can then
generate efficient maGhine, code. We start wiih transformations that reduce
the work to be dope qy ,a program and,Q7ncl' ~hould be standar,d practice
when writing any program for any machine. We then progress to trans­
formations that enhance the degree of instruction-le~el parallelism in the
generated machine code, thereby improving their performance on modern
"superscalar" processors. To motivate these transformations, we introduce
a simple operational model of how modern out-of-order processors work,
and show how to measure the potential performance of a program in terms
of the critical paths through a graphical representation of a program. You
will be surprised how much you can speed up a program by simple transfor­
mations of the C code.

Preface xxiii

xxiv Preface

i

11

t

,,,

Chapter 6: The Memory Hierarchy. The memory system is one of the most visible
parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array
with uniform access times. In practice, a memory system is a hierarchy of
storage devices with different capacities, costs, and access times. We cover
the different types of RAM and ROM memories and the geometry and
organization of magnetic-disk and.solid state drives. We describe how these
storage devices are arranged in a hierarchy. We show how this hierarchy is
made possible by locality of reference. We make these ideas concrete by
introducing a unique view of a memory system as a "memory mountain"
with ridges of temporal locality and slopes of spatial locality. Finally, we
show you how to improve the performance of application programs by
improving their temporal and spatial locality.

Chapter Z· Linking. This chapter covers both static and dynamic linking, including
the ideas of relocatable and executable object files, symbol resolution, re­
location, static libraries, shared object libraries, position-independent code,
and library interpositioning. Linking is not covered in most systems texts,
but we cover it for two reasons. First, some of the most confusing errors that
programmers can enc9unter are related to glitches during linking, especially
for large software packages. Second, the object files produced by linkers are
tied to concepts such as loading, virtual memory, and memory mapping.

I

Chapter 8: Exceptional Control Flow. In this part of the presentation, we step
beyond the single-program model by introducing the general concept of
exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware ex­
ceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the receipt of Linux signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea
of a process, an abstraction of an executing program. You will learn how
processes work and how they can l:le created and manipulated from appli­
cation programs. We show how application programmers can make use of
multiple processes via Linux system calls. When you finish this chapter, you
will be able to write a simple Linux shell with job control. It is also your first
introduction to the nondeterministic behavior that arises with concurrent
program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks
to give some understanding of how it works and its characteristics. We want
you to know how it is that the different simultaneous processes can each use
an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manip­
ulating virtual memory. In particular, we cover the operation of storage
allocators such as the standard-library malloc and free operations. Cov-

ering this material serves several purposes. It reinforces the concept that
the virtual memory spac~ is just an array of bytes that the program can
subdivide info different storage units. It helps you understand thy effects
of programs containing memory referencing errors such as storage leaks
an'a invalid pointer references. Ffnaliy;many a~plication programmers write
'their own' storage allocators optimized toward the needs and characteris­
tics of the application. This chapter, more than any other, dem8nstrates the
benefit of covering lioth the'hardw'are and the foftware aspec:ts'bf computer
systems in a unified way. Traditional computer architecture and operating
systems texts present only part of the virtual memory story.

Chapter 10: System-Level 110. We cover the basic concepts of Unix I/O such as
files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered
I/O package that deals coqect)y with a curious behavior known as. s/iort
counts, where the library function reads only parb of the iµput data. We
cover the C standard I/O lib~ary and its relationship to Linux I/O, focusing
on limitations of standard I/O that make it unsuitable fbr'network program­
ming. In .general, the topics covered in this'chapter are-building blocks for
'the next two c)lapters on network and concurrent programming .

.... t ~ • '

Chapter JJ; Network Programming. Networks are interesting I/O clevices to pro­
gram, tying together many of the ideas that we study earlier in'the text, such
as processes, signals, byte ordering, memory mapping, and dynamic storage
allocation. Net)V6fk programs also provide a -compelling context for con­
currerlc~, which is the topic of the next chapfe'r. 'This chapter' is· a thin slice
through network programmin'_g that' gets you to the' pbilli wbere you can
w'rite'a simple Web server. We cover tlie client-server model that underlies
all network applications. We preselit a programmer's view of the Internet
and show how to write Internet clients 'ahll servers using the sockets inter­
face. Finally, we introduce HTTP and develop a simple iterative Web server.

Chapter 12: Concurrent Programming. This cha'pt'er iniroduces concurrent pro­
gramming using Internet'sei:ver design as the tunifing motivational·example.
We compare and contrast the three basic mechanisms for writing concur­
rent programs-;;P,rocesses'II/O multiplexing, al\d thread,s-al).d sh9w how
to use them to build concurrent Intyrn~t servers. We cover basic principles
of synchr0nization,usipg P and y semaphore opera,tions,,thrp,ad safety and

, ,. reyntrancy, race condition~, and deadloc,ks. Writing concur,rent code is es­
sential for mo~t server appl1cations. We also nescribe the use of thread-level IJ I ror"l'Jit I { '}

programming to express parallelism in.an applicatiop.,.pro!f~m, enabling
faster execution on multi-core processors. Getting all of the cores working
on a single computational P.roblem requires a. careful coordination of the
concurrent threads, both fo; correctness and to achieve high performance.

Preface xxv

II

1
'i

xxvi Preface

New to This Edition

Th~ first edition of this book was published with a copyright of 2003, while the
second had a copyright of 2011. Considering the rapid evolution of computer
technology, the book content has held up surprisingly well. Intel x86 machines
running C programs upder Linux (and related operating systems) has P,roved to
be a combination that continues to encompass many systems today. However,
changes in hardware technology, compilers, program library interfaces, and the
experience of many instructors teacl).ing the material have prompted a substantial
revision.

The biggest overall change from the second edition is that we have switched
our presentation from one based on a mix of IA32 and x86-64 to one based
exclusively on x86-64. This shift in focus affected the contents of many of the
chapters. Here is a summary of the significant changes.

Chapter 1: A Tour of Computer Systems We have moved the discussion of Am­
dahl's Law from Chapter 5 into this chapter.

Chapter 2: Representing an/i Manipulating Information. A consistent bit of feed­
back from readers and reviewers is that some of the material in this chapter
can be a bit overwhelming. So we have tried to make.the material more ac­
cessible by clarifying the points at which we delve into a more mathematical
style of presentation. This enables readers to first skim over mathematical
details to get a high-level overview and then return for a more thorough
reading.

Chapter 3: Machine-Level Representation of Programs. We have converted from
the earlier presentation based on a mix of IA32 and x86-64 to one based
entirely on x86-64. We have also updated for the style of code generated by
more recent versions of Gee. The result is a substantial rewriting, including
changing the order in which some of the concepts are presented. We also
have included, for the first time, a presen\ation of the machine-level support
for programs operating on floating-point data. We have created a Web aside
describing IA32 machine code for legacy reasons.

Chapter 4: Processor Architecture. We have revised the earlier processor design,
based on a 32-bit architecture, to one that supports 64-bit words and oper­
ations.

Chapter 5: Optimizing Program Performance. We have updated the material to
reflect the performance capabilities of recent generations of x86-64 proces­
sors. With the introduction of more functional units and more sophisticated
control logic, the model of program performance we developed based on a
data-flow representation of programs has become a more 'reliable predictor
of performance than it was before.

Chapter 6: The Memory Hierarchy. We have updated the material to refle.ct more
recent technology.

-

Chapter 7: Linking. We have rewritten this chapter. for x86-64, expanded the
discussion of using the GOT and PLT to create position-independent code,
ansl.added a new section on a powerful linking techniqiie known as library
interpositioning.

Chppt~r 8.!'Exr~ptio'!'al Control Flow .. We have addpd a more rigorous treatment
,,1 of sig~a.l',hand~~rs, including as~c-sig9al-sa\f functions'. specific guidelines

{or wntm&,sll!J!~l):landlers, and usmg sigsuspend to wait for handlers.

Chapter 9: Virtual Memory. This chapter has changed only slightly.

<;f'apter,10: Sy-;iem-Level 110. We hav,e added 'I new section on files and the file
(~ ~ } ' U I

hierarchy, but 9therwise, this chapter has changed only slightly.

Chapter JI: Network Programming. We have introduced techniques for protocol­
independent and thread-safe network programming using the modern
getaddrinfo and getnameinfo functions, which replace the obsolete and
non-reentrant gethostbyname and gethostbyaddr functions.

Chapter 12: Concurrent Programming. We have increas,ed our coverage of using
thread-level parallelism to make programs run faster on multi-core ma­
chines.

In addition, we have added and revised a number of practice and homework
problems throughout the text.

Origins of the ~ook

This book stems from an introductory course that we developed at Carnegie Mel­
lon University in the fall of1998, called 15-213: Introduction to Computer Systems
(rCS) [14]. The res cburse has' been taught every semester since then. Over 400
students.take the; course each semester. Jbe students range from sophomores to
gra<;luate ~tudents ip a wide variety of majors. It is a required core course for all
undergradu~t<;s in the C~ and ECE departments at Carnegie Mellon, and it has
become a prerequisite for most upper-level systems courses in CS and ECE.

The idea with res was to introduce students to computers in a different way.
Few of our students would have the opportunity to build a computer system. On
the other frand, most students, inchtding all computer scientists and computer
engineers, w'ould be required to use arid program computers on a daily basis. So we
decided to teach about systems from the point of view of the programmer, using
the following filter: we would cover a iOpic only if it affected the performance,
correctness, or. utility of user-level C programs.

For example, topics such as hardwate adder and bus designs were out. Top­
ics such as machine language were in; but instead of focusing on how to write
assembly language by hand, we would look at how a C compiler translates C con­
structs into.machine code, includipg pointers, loops, procedure calls, and switch
statements. Further, we wo'uld take a broader and more holistic view of the system
as both hardware and systems software, covering such topics as linking, loading,

Preface xxvii

11

'• '·

xxviii Preface

processes, signals, performance optimization, virtual memory, I/O, and network
and concurrent programming.

This approach allowed us to teach the res course in a way that is practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real­
ized that others outside of CMU might benefit from using our approach. Hence
this book, which we developed from the res lecture notes, and which we have
now revised to reflect changes in technology and in how computer systems are
implemented.

Via the multiple editions and multiple translations of this book, ICS and many
variants have become part of the computer science .and computer engineering
curricula at hundreds of colleges and universities worldwide.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach a number of different types of
systems courses. Five categories of these courses are illustrated in Figure 2. The
particular course depends on curriculum requirements, personal taste, and
the backgrounds and abilities of the students. From left to right in the figure,
the courses are characterized by an increasing emphasis on the programmer's
perspective of a system. Here is a brief description.

ORG. A computer organization course with traditional topics covered in an un­
traditional style. Traditional topics such as logic design, processor architec­
ture, assembly language, and memory systems are covered. However, there
is more emphasis on the impact for the programmer. For example, data rep­
resentations are related back to the data types and operations of C programs,
and the presentation on assembly code is based on machine code generated
by a C compiler rather than handwritten assembly code.

ORG+. The ORG course with additional emphasis on the impact of hardware
on the performance of application programs. Compared to ORG, students
learn more about code optimization and about improving the memory per­
formance of their C programs.

ICS. The baseline JCS course, designed to produce enlightene9 programmers who
understand the impact of the hardware, operating system, and compilation
system on the performance and correctness of their application programs.
A significant difference from ORG+ is that low-level processor architecture
is not covered. Instead, programmers work with a higher-level model of a
modern out-of-order processor. The JCS course fits nicely into a 10-week
quarter, and can also be stretched to a 15-week semester if covered at a
more leisurely pace.

JCS+. The baseline ICS course with additional coverage of systems programming
topics such as system-level 1/0, network programming, and concurrent pro­
gramming. This is the semester-long Carnegie Mellon course, which covers
every chapter in CS:APP except low-level processor architecture.

!=hapter

·1
2
3
4

5

10

11
12

Topic

' ~Tour of systems

Data repres'en'tation

Machine language,
Processor architecttlre

Code optimization
11 1 T

Memo)"Y hierarchy
' j .I

Linking I!, ,
Exception\tl ~pntrol.flow
Virtual memory

System-level r/O
Network .Programming
Concurrent programming . '

ORQ

•
" •

•
•

0<•)

Q,RG+
• ·•
•
•
•
•
•

•

res

•
.;

•

•
•
0(c)

•
•

res+ SP

• ••
• 0(d)

• •

•
• 0<•>
0(c) •
• •
• •
• •
• •
• •

Figure 2 FiV'e systems ~ourses based on the CS:APP book. ICS+'is the 15-213 course
from Carnegie Mellon'. Notes: The 0 symbol denotes ·partial coverage of a chapter, as
follows: (a) hardware only; (bl no dynamic storage ~llocaHon; (c) no dynamic'linking;
(d) no floating poini. " '

'I

SP. A sys\ems pro'~tariuhing course. Th~s course is' similar to JCS+, 6ut if drops
floating point "and performance 'optimiZati:on, 'and it places more empha­
sis on systems 'PJOgramJlling, iµclm~ing proces§ ,control, dynamic linking,
system-ley<;>) 1/0, qe~work; Jlf9gramming, qnd con01rrent pr9gramming. In­
structqr~ mjght,w,ant tq supply,n;ient fr,9111 othyr sources for advanced topics
,such as dayl1JO!}~,;terprinal ~ontr9l, anq U,Q,qJPC.

The main mes~ag;'ofFigu)'~ 2 is that t)l~ CS:APP'boqj< giyrs a lot 9f options
to students anil instructors. If you wai:it your students to be exposed to lo.wer­
level processor architecture, then that option is aval!able via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer
organization course !lo an JCS or JCS+ course, but are wary of making such a
drastic change all at once, then you •can move toward JCS incrementally. You
can start with ORG,.which teaches the traditional topics in a nontraditional way.
Once you are comfortable with that material, then you can move to ORG+,
and eventually to·tcs: If students have no experience iii C (e.g., they have only
pro~rJ!mme~Iin Java),.you could spend several weeks on C and then cover the
matetial of ORG or res.

Finally, we note that the ORG+ aiid SP courses would make a nice two-term
sequence (either quarters or semesters). Or you might consider offering res+ as
one term of res and one term of SP.

Preface xxix

I ,,
j

xxx Preface

For Instructors: Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students.
Median scores of 5.0/5.0 and means of 4.6/5.0 are typical for the student course
evaluations. Students cite the fun, exciting, and relevant laboratory exercises as
the primary reason. The Jabs are available from the CS:APP Web page. Here are
examples of the Jabs that are provided with the book.

Data Lab. This Jab requires students to implement simple logical and arithmetic
functions, but using a highly restricted subset of C. For example, they must
compute the absolute value of a number using only bit-level operations. This
Jab helps students understand the bit-level representations of C data types
and the bit-level behavior of the operations on data.

Binary Bomb Lab. A binary bomb is a program provided to students as an object­
code file. When run, it prompts the user to type in six different strings. If
any of these are incorrect, the bomb "explodes," printing an error message
and Jogging the event on a grading, server. Students must "defuse" their
own unique bombs by disassembling and reverse engineering the programs
to determine what the Si)\ strings shoqld be. The lab teaches students to
understand assembly language and also forces them to learn ,how to use a
debugger.

Buffer Overflow Lab. Students are required to modify the run-time behavior of
a binary executable by exploiting a buffer overflow vulnerability. This Jab
teaches the students about the stack discipline and aJ;>,out the ,danger of
writing code that is vulnerable to buffer overflow attacks.

Architecture Lab. Several of the homework problems of Chapter 4 can be com­
bined into a lab assignment, where students modify the HCL description of
a processor to add new instructions, change the branch prediction policy, or
add or remove bypassing paths and register ports. The resulting processors
can be simulated and run through automated tests that will detect most of
the possible bugs. This Jab lets students experience the exciting parts of pro­
cessor design without requiring a complete background in logic design and
hardware description languages.

Performance Lab. Students must optimize the performance of an application ker­
nel function such as convolution or matrix transposition. This Jab provides
a very clear demonstration of the properties of cache memories and gives
students experience with low-level program optimization.

Cache Lab. In this alternative to the performance lab, students write a general­
purpose cache simulator, and then optimize a small matrix transpose kernel
to minimize the number of misses on a simulated each~. We use the Valgrind
tool to generate real address traces for the matri/< transpose kernel.

Shell L'ab. Students implement their own Unix shell program with job control,
including the Ctrl+C and Ctrl+Z keystrokes and the fg, bg, and jobs com-

•
'I

i
' I

j
l
i

mands. This is the student'sdirst introduction to concurrency, and it gives
them a clear idea of Unix process control, signals, and signal ·handling.

Ma/Joe Lab. Students implement their myn versions• of ~ailoc, free, and'(op­
tionally) realfoc. This lab gives students a clear understanding of data
layout anCI organization, and requires them to evaluate different trade-offs
between space anCI time

1
efficiency.

Proxy Lab. •Students implement a concl\rr.ent1 Web ,proxy tha~ sits between their
, , browsers and the rest of the World Wide Web. '!his lab exposes the students

to such topics as Web clients and servers, and ties together many of the con­
cepts from the course, such as byte ordering, file 1/0, process control, signals,
signal handling, memory mapping, sockets, and concurrency. Students like
being able to see their programs in action with real Web browsers and Web
servers. , t. ·,

The CS:APP instructor's manual has a detailed discussion of the labs, as well
as directions for downloading the support software .

•

Acknowledgments for the Third Edition

It is a pleasure to acknowledge and thank those who have helped us produce this
third edition of.the CS:APP text.

We would like to thank our Carnegie Mellon colleagues who have taught the
JCS course over the years and wlio have provided so much in'sightful feedback
and encouragement: Guy Blelloch, Roger Dannenberg, David Eckhardt, Franz
Franchetti, Greg Ganger, Seth Goldsteirt, Khale!f Harras,,Greg Kesden, Bruce
Maggs, Todd Mowry, Andreas Nowatzyk, Frank Pfenning, Markus Pueschel, and
Anthony Rowe. David Wirtters was very helpful in installing and configuring the
reference Linux box. .,

Jason Fritts (St. Louis University) and• i=;indyi Norris (Appalachian State)
provided us with detailed and thoughtful reviews of the second edition. Yili Gong
(Wuhan University) wrote the Chinese'translation, maintained the errata page for
the Chinese.version, and contributed many bug reports. Godmar Back (Virginia
Tech) helped us improve the text significantly by introducing us to the.notions of
async-signal safety and protocoi'independeb.M1etwork programming.

Many. thanks to our eagle-eyed readers who reported bugs in the second edi­
tion: Rami Ammari, Paul Anagn6stopoulos, Lucas Biirenfiinger, Gotlmar Back,
Ji Bin, Sharbel Bousemaan, Ric'hard..callahan, Seth Chaiken, Cheng Chen, Libo
Chen; Tao Du, Pase~! Garcia, Yili .Gong, Ronald Greenberg, Dorukhan Gill6z,
Dong Han,· Dominik Helm, Ronald Jones, Mustafa Kazdag!i, Gordon Kindlmann,
Sankar Krishnan, Kianak Kshetri, Jun!in Lu, Qiangqiang Luo, Sebastian Luy,
Lei Ma, Ashwin Nanjappa, Gr~goir~ Paradis, Jonas Pfenninger, Karl Pichotta,
David Ramsey, Kaustabh Roy, David.Selvaraj, Sankar Shanmugam, Dbminique
Smulkowska, Dag S111rb111, Michael Spear, Yu Tanaka, Steven Tricanowicz, Scott
Wright, Waiki Wright, Han Xu, Zhengshan Yan, Firo Yang, Shuang·Yang, John
Ye, Taketa Yoshida, Yan Zhu, and Michael Zink.

Preface xxxi

xxxii Preface

Thanks also to our readers who have contributed to the labs, including God­
mar Back (VJrginia Tech), Taymo'n Beal (Worcester Polytechnic Institute), Aran
Clauson (Western Washington University), Cary Gray (Wheaton College), Paul

' Haiduk (West Texas A&M University), Len Hamey (Macquarie University), Ed-
die Kohler (Harvard), Hugh Lauer (Worcester Polytechnic Institute), Robert
Marmorstein (Longwood University), and James Riely (DePaul University).

Once again, Paul Anagnostopoulos of Windfall Software did a masterful job
of typesetting the book and leading the production process. Many thanks to Paul
and his stellar team: Richard Camp (copy editing), Jennifer McClain (proofread­
ing), Laurel Muller (art production), and Ted Laux (indexing). Paul even spotted
a bug in our description of the origins of the acronym BSS that had persisted
undetected since the first edition!

Finally, we would like to thank our friends at Prentice Hall. Marcia Horton
and our editor, Matt Goldstein, have been unflagging in their support and encour­
agement, and we are deeply grateful to them.

Acknowledgments from the Second Edition

We are deeply grateful to the many people who have helped us produce this second
edition of the CS:APP text.

First and foremost, we would like to recognize our colleagues who have taught
the ICS course at Carnegie Mellon for their insightful feedback and encourage­
ment: Guy Blelloch, Roger Dannenberg, David Eckhardt, Greg Ganger, Seth
Goldstein, Greg Kesden, Bruce Maggs, Todd Mowry, Andreas Nowatzyk, Frank
Pfenning, and Markus Pueschel.

Thanks also to our sharp-eyed readers who contributed reports to the errata
page for the first edition: Daniel Amelang, Rui Baptista, Quarup Barreirinhas,
Michael Bombyk, forg Brauer, Jordan Brough, Yixin Cao, James Caroll, Rui Car­
valho, Hyoung-Kee Choi, Al Davis, Grant Davis, Christian Dufour, Mao Fan,
Tim Freeman, Inge Frick, Max Gebhardt, Jeff Goldblat, Thomas Gross, Anita
Gupta, John Hampton, Hiep Hong, Greg Israelsen, Ronald Jones, Haudy Kazemi,
Brian Kell, Constantine Kousoulis, Sacha Krakowiak, Arun Krishnaswamy, Mar­
tin Kulas, Michael Li, Zeyang Li, Ricky Liu, Mario Lo Conte, Dirk Maas, Devon
Macey, Carl Marcinik, Will Marrero, Simone Martins, Tao Men, Mark Morris­
sey, Venkata Naidu, Bhas Nalabothula, Thonias Niemann, Eric Peskin, David Po,
Anne Rogers, John Ross, Michael Scott, Seiki, Ray Shih, Darren Shultz, Erik
Silkensen, Suryanto, Emil Tarazi, Nawanan Theera-Ampornpunt, Joe Trdinich,
Michael Trigoboff, James Troup, Martin Vopatek, Alan West, Betsy Wolff, Tim
Wong, James Woodruff, Scott Wright, Jackie Xiao, Guanpeng Xu, Qing Xu, Caren
Yang, Yin Yongsheng, Wang Yuanxuan, Steven Zhang, and D~y Zhong. Special
thanks to Inge Frick, who identified a subtle deep copy bug in our lock-and-copy
example, and to Ricky Liu for his amazing proofreading skills.

Our Intel Labs colleagues Andrew Chien and Limor Fix were exceptionally
supportive throughout the writing of the text. Steve Schlosser graciously provided
some disk dri~e characterizations. Casey Helfrich and Michael Ryan installed

g

and maintained our· new Core i7 box .. Michael Kozuch, Babu Pillai, and Jason
Campbell provided valuable insight !On memory system performance, multi-core
systems, and the power wall. Phil Gibbons and Shimin Chen shared their consid;
erable expertise on solid state disk. designs.

We have·been able to call on.the talents' of many, including Wen-Mei Hwu;
Markus Pueschel, and Jiri Sinisa, to provide both detailed comments and high­
level advice. James Hoe helped us create a Verilog version of the Y86 processor
and did all of the'work needed to sy~thesize working hardware.

Many thanks to our colleagues who..provided reviews,0£ the draft manu­
script: James Archibald (Brigham Yonng University), Richard Carver (George
Mason University), Mirela Damian (Villanova University), Peter Dinda (North­
western University), John Fiore (Temple University), Jason Fritts (St: Louis Uni­
versity), John Greiner (Rice University), Brian Harvey (University of California,
Berkeley), Don Heller (Penn State Unive~sity), Wei.Chung Hsu (University of
Minnesota), Michelle Hugue (University of Maryland),.Jeremy Johnson (Drexel
University), Geoff Kuenning (Harvey Mudd College), Ricky Liu, Sam.Mad­
d.en (MIT), Fred Martin (University otMassachusetts, Lowell), Abraham Matta
(Boston University), Mqrkus Pueschel (Carnegie Mellon University), Norman
Ramsey (Tufts University), Glenn Reinmann (UCLA): Michela Taufer (Univer­
sity of Delaware), and Craig Zilles (UIUC).

Paul Anagnostopoulos of Windfall Software did an outstanding job of type­
setting the book and leading the production team. Many thanks to Paul and his
superb team: Rick Camp (copyeditor), Joe Snowden (compositor), Mary Ellen N.
Oliver (proofreader); Laurel Muller (artist), andTed Laux (indexer).

Finally, we would like to thank our friends at Prentice Hall: Marcia Horton has
always been there for us. Our editor, Matt Goldstein, provided stellar leadership
from·beginning to end. We are profoundly grateful for their help, encouragement,
and insights.

Acknowledgments from the First Edition

We are deeply indebted to many friends and colleagues for their thoughtful crit­
icisms and encouragement. A special thanks to our 15-213 students, whose infec­
tious energy and enthusiasm spurred us on. Nick Carter and Vinny Furia gener­
ously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry taught the course
over multiple semesters, gave us encouragement, and helped improve the course
material. Herb Derby provided early spiritual guidance and encouragement. Al­
lan Fisher, Garth Gibson, Thomas Gross, Satya, Peter Steenkiste, and Hui Zhang
encouraged us to develop the course from the start. A suggestion from Garth
early on got the whole ball rolling, and this was picked up and refined with the
help of a group led by Allan Fisher. Mark Stehlik and Peter Lee have been very
supportive about building this material into the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on.the OS course. Greg
Ganger and Jiri Schindler. graciously provided some disk drive characterizations

Preface xxxiii

~' - ~ - - -- -
I

,,
!I~

xx xiv Preface

and answered our questions on modern disks. Tom Stricker showed us the mem­
ory mountain. James Hoe provided useful ideas and feedback on how to present
processor architecture.

A special group of students-Khalil Amiri, Angela Demke Brown, Chris
Calahan, Jason Crawford, Peter Dinda, Julio Lopez, Bruce Lowekamp, Jeff
Pierce, Sanjay Rao, Balaji Sarpeshkar, Blake Scholl, Sanjit Seshia, Greg Stef­
fan, Tiankai Tu, Kip Walker, and Yinglian Xie-were instrumental in helping
us develop the content of the course. In particular, Chris Calahan established a
fun (and funny) tone that persists to this day, and invented the legendary "binary
bomb" that has proven to be a great tool for teaching machine code and debugging
concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadas, John Greiner,
Don Heller, Bruce Jacob, Barry Johnson, Bruce Lowekamp, Greg Morrisett,
Brian Noble, Bobbie Othmer, Bill Pugh, Michael Scott, Mark Smotherman, Greg
Steffan, and Bob Wier took time that they did not•have to read· and advise us
on early drafts of the book. A very special thanks to Al Davis (University of
Utah), Peter Dinda \Northwestern University), John Greiner (Rice University),
Wei Hsu (University of Minnesota), Bruce Lowekamp'(College of William &
Mary), Bobbie Othmer (University of Minnesota), Michael Scott (University of
Rochester), and Bob Wier (Rocky Mountain College) for class testing the beta
version. A special thanks to their students as well!

We would also like to thank our colleagues at Prentice Hall. Marcia Horton,
Eric Frank, and Harold Stone have been unflagging in their support and vision.
Harold also helped us present an accurate historical perspective on RISC and
CISC processor architectures. Jerry Ralya provided sharp insights and taught us
a lot about good writing.

Finally, we would like to acknowledge the great technical writers Brian
Kernighan and the late W. Richard Stevens, for showing us that technical books
can be beautiful.

Thank you all.

Randy Bryant
Dave O'Hallaron
Pittsburgh, Pennsylvania

About the Auth.ors
.r

Randal E. Bryartt received his bachelor's degree from
the University of Michigan in 1973 and then attended
graduate school at the Massachusetts Institute of
Technology, receiving his PhD degree in computer
science in 1981. He spent three years as an assistant

' professor at the California Institute of Technology,
-dnd'has been on the faculty at Carnegie Mellon since
1984. For five of those years he served as head of the
Computer Science Department, and for ten of them
he served as Dean of the Schoolbf Computer Science.
He is currently a university professor of computer sci­

ence. He also holds a courtesy appointment with the Department of Electrical and
Computer Engineering.

Professor Bryant has taught courses in computer systems at both the under­
graduate and graduate level for around 40 years. Over many years of teaching
computer architecture courses, he began shifting the focus from how computers
are designed to how programmers can write more efficient and reliable programs
if they understand the system better. Together with Professor O'Hallaron, he de­
veloped the course 15-213, Introduction to Computer Systems, at Carnegie Mellon
that is the basis for this book. He has also taught courses in algorithms, program­
ming, computer networking, distributed systems, and VLSI design.

Most of Professor Bryant's research concerns the design of software tools
to help software and hardware designers verify the correctness of their systems.
These include several types of simulators, as well as formal verification tools that
prove the correctness of a design using mathematical methods. He has published
over 150 technical papers. His research results are used by major computer manu­
facturers, including Intel, IBM, Fujitsu, and Microsoft. He has won several major
awards for his research. These include two inventor recognition awards and a
technical achievement award from the Semiconductor Research Corporation, the
Kanellakis Theory and Practice Award from the Association for Computer Ma­
chinery (ACM), and the W.R. G. Baker Award, the Emmanuel Piore Award, the
Phil Kaufman Award, and the A. Richard Newton Award from the Institute of
Electrical and Electronics Engineers (IEEE). He is a fellow of both the ACM and
the IEEE and a member of both the US National Academy of Engineering and
the American Academy of Arts and Sciences.

xxxv

I

I'

u , ,
I!

II

1'
1'

xxxvi About the Authors

David R. O'Hallaron is a professor of computer science
and electrical and computer engineering at Carnegie
M~llon University. He received his PhD from the Uni­
versity of Virginia. He served as the director of Intel
Labs, Pittsburgh, from 2007 to 2010.

He has taught computer systems courses at the un­
dergraduate and graduate levels for 20 years on such
topics as computer architecture, introductory com­
puter systems, parallel processor design, and Internet
services. Together with Professor Bryant, he developed
the course at Carnegie Mellon that led to this book. In

2004, he was awarded the Herbert Simon Award, for Teaching Excellence by the
CMU School of Computer Science, an award for which the winner is chosen based
on a poll of the student&

Professor O'Hallaron works in the area of computer systems, with specific in­
terests in software systems for scientific computing, data-intensive computing, and
virtualization. The best-known example of his work is the Quake project, an en­
deavor involving a group of computer scientists, civil engineer~, and seismologists
who have developed the ability to predict the motion of the ground during strong
earthquake& In 2003, Professor O'Hallaron and the other members of the Quake
team won the Gordon Bell Prize, the top int~rnational prize in high-performance
computing. His current work focu~es on the notion of autograding, that is, pro­
grams that evaluate the quality of other programs.

"

A Tour of Computer Systems

1.1

1.2

1.3

1 . .4

1.5

1.6

1.7

1.8

1.9

1.10

Information Is Bits + Context 3

Programs Are Translated by Other Programs into Different Forms 4

It Pays to Understand How Compilation Systems Work 6

Processors Read and Interpret Instructions Stored in fylemory 7

Caches Matter 11

Storage Devices Form a Hierarchy 14

The Operating System Manages the Hardware 14

Systems Communicate with Other Sy~tems Using Networks 19

Important Themes 22

Summary 27

Bibliographic Notes 28

Solutions to Practice Problems 28

1

I'

I'
. !
I
~

I
'I
'

2 Chapter 1 A Tour of Computer Systems

A
computer system consists of hardware and systems software that work to­
gether to run application programs. Specific implementations of systems

change over time, but the underlying concepts do not. All computer systems have
similar hardware and software components that perforin.similar functions. This
book is written for programmers who want to get better at their craft by under­
standing how these components work and how they affect the correctness and
performance of their programs.

You are poised for an exciting journey. If you ded\cate yourself to learning the
concepts in this book, then you will be on your way to becoming a rare "power pro­
grammer," enlightened by an unfferstanding of the undeHyiiig "computer system
and its.impact on your application programs.

'Y-ou are.g'bing i6'1earn·pi:actica1 skiJI& s_uch as ho'Y to avoid strange numerical
errors caused by the way that computers represent numbers. You will learn how
to optimize your C code by using clever tricks that exploit the designs of modern
processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from
buffer overflow vulnerabilities that plague network and Internet software. You will
learn how to recognize and avoid the nasty errors during linking that confound
the average programmer. You will learn ho~Jo write your own Unix shell, your
own dynamic storage allocation package, and even your own Web server. You will
learn the promises and pitfalls of concurrency, a topic of increasing importadce as
.multiple processor cores are integrated onto single ,cgips.

In their classic text on 'the C programming language [61], Kernighan and
Ritchie introduce rea-ders to e using the hello program shown in Figure 1.1.
Although hello is a very simple program, every major part of the system must
work in concert in order for it to run to completion. In a sense, the goal of this
book is to help you understand what happens and why when you run hello on
your system.

We begin our study of systems by tracing the lifetime of the hello program,
from the·time it is created by a programmer, until.it runs on a system, prints its
simple message, and terminates. As we follow tl:je lify~ime of the program, we will
briefly introduce the key concepts, terminology, and domponents that come into
play. Later chapters will expand on these ideas.

-------------------------- code!intro/hello.c

1 #include <stdio.h>

2

3 int main()
4 {

5 printf(11hello, world\n 11
);

6 return O;

7 }

-------------------------- code/intro!hello.c

Figure 1.1 The hello program. (Source: [60])

I

' I

!

l

I

Section,t.1 Information 1s Bits + Context

i n c 1 u d e SP < s t d i
35 105 110 99 108 117 100 101 32 60 115 116 100 105

h > \n \n i n t SP m a i n (

104 62 10 10 105 ·110 ,116 32 109 97 105 110 40 41

\n SP SP SP SP p r i n t f .(h
10 32 32 32 32 112 114 105 110 116 102 40 34. 104

' 1 0 SP w 0 r 1 d \ n
108 111 44 32 119 111 114 108 100 92 110 q4 41 59

SP SP SP r e t u I' n SP 0 \n '}

32 32 32 114 101 116 117 114 110 32 48 59 10 125

Figure 1.2 The ASCII text representation of hello. c.

1.1 Information Is Bits + Context

Our hello program begins life as a source program (or source file). that the
programmer creates with an editor and saves in a text file called hello. c. The
source program is a sequence of bits; each with a value of 0or1, organized in 8,bit
chunks called bytes. Each byte represents some text character in the program.

Most computer systems represent text characters using the ASCII standard
that represents each character with a unique byte-size integer value.1 For example,
Figure 1.2 shows the ASCII representation of the hello. c program.

The hello. c program is stored in a file as a sequence of bytes. Each byte has
an integer value that corresponds to some character. For example,. the first bytei
has the integer value 35, which corresponds to the character'#'. The second byte
has the integer value 105, which corresponds to the character' i ',and so on. Notice
that each text line is terminated by the invisible newline character '\n', which is
represented by the integer value 10. Files such as hello. c that consist exclusively
of ASCII characters are known as text files. Al! 6thei files are known as binary
files.

The representation of hello. c illustrates a fundamental idea: All information
in a system-including disk files, programs stored in memory, user data stored in
memory, and data transferred across' a network-is ieilresented 'as a bunch of bits.
The only thing that distinguishes different data objects is the context: in which
we view them. For example, in different contexts,, the same sequence of bytes
might represent an integer, floating-point number, chardcter string, or machine
instruction. •

As programmers, we need to understand machine representations of numbers
because they are not the same as intygers and real numbers. They' are finite

,•
I' ,)

1. Other encoding methods are used to represent text in non-English languages. See the asidp on page
50 for a discussion on this.

0

111 46

\n {

10 123

e ·l
101 108

\n SP
10 32

\n
10

3

'I
"

~ II

l

4 Chapter 1 A Tour of Computer Systems

h ""' iii ~"' ·it---- ·~ ?<-~

Aside Origins of the C·programming. languagj! . ' ,
~ ~ ,, % "# ~~

C was developed from 1969.fo 1923 b~ Dennis.Ritchie of ~ell Laboraiories. The·Alnerican National !
Standarqs Insti_~ute (ANSIYr~tifi~\it)le ANSI"~ standardii:!J.989", ahll tpis.staridardl~!J.tiort later became j
the responsibility of the International Standar'ds Orgaqization (ISO). The standards define the C !
language and a set of library functions known· as the'~ standard library. Kernighan and Rifcnie dessrilie !
ANSI,C in their'.classic book, which is linown affectionately as '\K&R" [61]. IitRitchie's word~:{92]"Q: 'I
is "quirky, ftaweQ, and anienormous suCcess." S.o WhY the success? l

~ ~. ~ " *
• O was- closely tied with "the. U(lix operating system. C ".was ·l!el>elope"d•fnlm the '.)Jeginp.ing as the 1·

•· system prqgramming-languag'l fo.r Unixo Most ot the \)nix.kernel (the core part of tl;J.e operating,
system), and alt of its suppqrting tools and.libraries, were,,.ritt~n-irt.c: As Unix became popular in I

•universities in the late i970s and early 1980s, mai:!y people_ wpre exposed to C and found that they,{
liked it, Since Unix was written almo~t.entirely in.f:, it could b.e easily ported to new mjlchines; f
which created an even wider aqdience for.both.C and Unix'. •. • j

• c is a sman simpte language. The design was controil"1:! by"a single person;rather tl\ali a committee, !
and the result was a cl earl, consi;teht d~sjgn)viih little, bA,gkage. Tue;, K&R book, describes tjle .
complete language and stahdarMibrar'y, wiili lmlheroils examples and exercises, in only 261 pages.
The simplicityJJf crhad~. it relatively.e~sy tP learn and t6' port "to diffe(enfcojtlputei~, • "

'* " ~ ~
• C was designed'[or a practical ptlrpose. C was d~igned to implement tlie:Uhix operating s"ystelh.

Larer, other p~opfe'found that they could wrif~ t,he !lrogI~nl.s they w~ntedywi!ho~t\he language<
getting jn thy way: ~ ~ · "< i ''

,~, ~~

c i,s the language, oLchoice.for'.~ysfetifJeveI'progranimfog, and' there is li"huge installed ba!e of' j
application-level progra,ms a~ well. However, iUs notperfect for.,pUprogr~lhmerslai_id all situatioiJ.§.· j
c pointers are a corrimoh source Q(C(lnfu,siop andl'rogranimin~ errors. G,also lack~ explicit support l

, •for qseful abstractions sucli."as'Classes/ 61\jects, a11d ,exceptions.'N. e"I. er lahg"uages suc.h ai .Gt+ and Java ·1.
~ address these issues fqr application~lev~l·programs: l'i> ~'"" '•"" ·f ~ "" ~~"

7

"""'&,.o;,> -o,;,--,...,.oil'/ ~'>--W-,~~~,--,~'""""1~'~tS.., ... 4'>,.,A~41¢ (!\>~

approximations that can behave in unexpected ways. This fundamental idea is
explored in detail in Chapter 2.

1.2 Programs Are Translated by Other Programs
into Different Forms

The hello program begins life as a high-level C program because it can be read
and understood by human beings in that form. However, in order to run hello. c
on the system, the individual C statements must be transl~ted by o\her programs
into a sequence of low-level machine-language instructions. These instructions are
then packaged in a form called an executable object program and stored as a binary
disk file. Object programs are also referred to as executable object files.

On a Unix system, the translation from source file to object file is performed
by a compiler driver:

Section 1.2 Programs Are Translated by Other Programs into Different Forms S

hello.c Pre- hello.i Compiler processor
(cc!)

hello.s Assembler
(as)

printf.o

hello.a Linker
(ld)

hello

Source (cpp)
Modified

program source
(text) program

(text)

Assembly
program

(text)

RelocatBble
object

programs
(binary)

'---~ Executable
object

program
(binary)

Figure 1.3 The compilation system.

linux> gee -o hello hello. c

Here, the Gee compiler driver reads ~he source file hello. c and translates it into
an executable object file hel~o. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler, and linker) are known collectively as the
compilation system.

• Preproce~~ing phase. The preprocessor (cpp) modifies the original C program
according to directives that begi;i with the '#' character. Fpr example, the
#include <stdio .h> command in line 1 of hello. c tells the preprocessor
to read the contents of the system head,er file stdio. h and insert it directly
into the program text. The result is another C program, typically with the . i
suffix.

• Compilation phase. The compiler (eel) translates the text file hello. i into
the text file hello. s, which contains an assembly-language program. This
program includes the following definition of function main:

1 main:
2 sub'q $8, %rsp
3 movl $.LCO, %edi
4 call puts
5 movl $0, %eax
6 addq $8, %rsp
7 ret

Each of lines 2-7 in. tllis definition describes one low-level \Ilachine-
. language instruction in a textual form. Assembly language is useful because
it provides JI cpmmon output language for different compilers for different
high-level languages. For example, C compil<;rs and Fortran compilers both
generate output files in the same assembly language.

• Assembly phase. Nextdhe assembler (as) translates hello. s into machine­
language instructions, packages them in a form known as a relocatable object
program, and stores the result in the object file hello. o. This file is a binary
file containing 17 bytes to encode the instructions for function main. If we
were to view hello. o with a text editor, it would appear to be gibberish.

• - .:'"' - - ----

6 Chapter 1 A Tour of Computer Systems

r A;.;.; -~~;~NU project - ~--- -* - -- --1
' Gee is one of many useful topls developed by the GNU (short-for GNU's Not Unix) project. The 1

GNU project is a tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of I
developing a: complete Unix-like system whose source code is unencumbered by restrictfons on how
it can be modified or ,distributed. The GNU project has developed a~ environment with all the major I
components ·of a Urux operatmg system, except for the kernel, which was developed separately by 1·

the Linux project. The GNU environment includes the EMACS editor, pee compiler, GDB debugger,
assembler, linker, utilities for manipulating binaries, and other components. The qcc compiler has

t
grown to support many different languages, with the ability to generate code for many different
machines. Supported languages.include C, C++, Fortran, Java, Pascal, Objective,C, and Ada.

The GNU project is a remarkable achievement, and yet it is often overlooked. The modern open­! source movement (commonly associated with Linux) owes its intellectual origins to the GNU project's
notion of free software ("free" as in "free speech," not ''free beer"). Further, Linux owes much of its
popularity to the GNU tools, which provide the environment for the Linux kernel.

~ ... _""" .. ,.,___.....,...,.,..,.._ ____ ..;,_._~---""-'---""~
• Linking phase. Notice that our hello program calls the printf function, which

is part of the standard C library provided by every C compiier. The printf
function resides in a separate precompiled object file called printf . o, which
must somehow be merged with our hello. o program. The linker (ld) handles
this merging. The result is the hello file, which is an executable object file (or
simply executable) that is ready to be loaded into memory and executed by
the system.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as hello. c, we can rely on.the compilation system to
produce correct and efficient machine code. However, there are some important
reasons why programmers need to understand how compilation systems work:

• Optimizing program performance. Modern compilers are sophisticated tools
that usually produce good code. As programmers, we do not need to know
the inner workings of the compiler in order to write efficient code. However,
in order to make good coding decisions in our C programs, we do need a
basic understanding of machine-level code and how the compiler translates
different C statements into machine code. For example, is a switch statement
always more efficient than a sequence of if-else state'tnents? How much
overhead is incurred by a function call? Is a while loop more efficient than
a for loop? Are pointer references more efficient than array indexes? Why
does our loop run so much faster if .we sum into a local variable instead of an
argument that is passed by reference? How<:an a function run faster when we
simply rearrange the parentheses in an arithmetic expression?

''

'•
\

'

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 7

In Chapter 3, we introduce x86-64, the machine language of recent gen­
erations of Linux, Macintosh, ,and Windows co111puters. We describe how
compilers translate different C constructs into this language. In Chapter 5,
you will learn ho)" to tune the perforlljance of yqur C progquns by making
simple transforni,~ti'?9s tq}he C coC!e th,ai help the.compiler do its job better.
In Chapter 6, you will learn about the hierarchical nature of the memory sys­
tem, ho'w C compilers store data arrays in memory, and how your C programs
can expl~it-this knowledge to run i;nore efficiently.

• Understartding link-time errors. In our experience;·some of the most perplex­
ing programming errors are related to the operation of the linker, especially
whep you are trying to bµild large software systems. For example, what does
it meal)'wherithe linker reports that it cannot resolve a reference? What is the
diff'<);ence between a static variable and a.global variable? What happens if
you define two glob,aJ.variables in dif{ere!Jt C files with the same name? What
is the ~erence between a static library and a dynamic library? Why does it
mat~~r wlj_at orqer 'Ye list libraries on the command line? And scariest of all,
why do some· linker-related errors not appear until run time? You will !earn
the answers to these kinds of questions in Chapter 7.

• Avoiding security holes. For many years, buffer overflow vulnerabilities have
accounted for many of the security holes in network and Internet servers.

., ']1ie~.'i ".11\ner~bilities i;xist pecause top few p,rogrammers understanq the need
t\) carefully ~~strjct ti/,~, quantity and forms pf data they acci;ptfrom untrusted
sources.,A fir,~~,:;tep,\n le<l;rning seciµ7 progr?,l'Il1)lil\g is to understand the con­
seq1;1enc~s of t~e wa:r, datp ~d. controj information are stored on the program
stack. We cover the stack discipline and buffer overflow vulnerabilities in
Chapter 3 'as part of our study of assembly language. We will also learn about
methods that can be used by the programmer, compiler, and operating system
to reduce the threat of attack.

() .
1.4 Processors. Read and Interpret Instructions

Stored-in Memory
• •

At this point, our hello. c source program has been translated by the compilation
system into an executable object file called hello that is stored on disk. To run
the executable file on a Unix system, we type its name to an application program
known as a shell:

linux> ./hello·
hell~, world n
linuX>

' '
The shell.is a command-line interpreter that prints a prompt, waits for you

to type a command-line;·and then performs the command. If the first word of the
command line does not correspond to a built-in shell command, then the shell

I,

''
I

I

I

I

~- __ .. -- -- -·- -

8 Chapter 1 A Tour of Computer Systems

Figure 1.4 CPU y

Hardware organization
of a typical system. CPU:
central processing unit,
ALU: arithmetic/logic unit,
PC: program counter, USB:

Sys{em bus Memoi'y buS •

110 /' r, h.) Main
Universal Serial Bus.

Bus interface

Graphics
adapter

i
Mouse Keyboard Display

bridge "'I-_... -"'"I' memory

' 110 bus
l;:xpansion slots for

~--,.-'"---~ other devices such
as network" ~dapters

hell:'O executable
stol"ed on disk

assumes that it is the name of an executable file that it should load' and run. So
in this case, the"shell loads and runs the hello program and ihen"waits for it to
terminate. The hello program pfints iis.inessage'to the screen and ihen terminates.
'The shell then prints a prompt aiid ":'.ait~ for the next input command line.

1.4.1 i-lardware Organization of a System

To understand what happens to our hello program when we run it, we µeed
to understand the hardware organization of a typical system, which is shown
in Figure 1.4. This particular picture·fS inodel~d after the· family of recent Intei
systems, but all system's have a similar look and feel. Don't ·worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical condµits called buses
that carry bytes of information back and forth between the componepts. Buses
are typically designed to transfer fixed-size chunks of bytes known as wor~. The
number of bytes in a word (the word size) is aiundamental system parameter that
varies across systems. Most machines todcyy have word-sizes of either 4 bytes (32
bits) or 8 bytes (64 bits). In this book, we do not assume any fixed definition of
word size..Instead, we will specify what we mean by a "word" in any context that
requires this to be defined.

I
1
l

.
•

' I

1
I
'

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 9

1/0 Devices

Input/output (I/O) devices are the system's connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) fo~ long-t<;rm storage of
data and programs. Initially, the executable hello program resides on the disk .

. ,Each I/O device is connected to the IIO bus by either a controller or an adapter.
'Die lf\stinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system's main printed circuit board (often called
the motherboarlfJ. An adapter is a card that plugs into a slot on the motherboard.
Regardles~, the purpose of each is to transfer information back and forth between
the I/O 0us 'and an iio device.

Chapter 6 has more to say about how I/O devices such as disks work. In
Chapter 10, you will learn how to use the Unix 110 interface to access devices from
your application programs. We focus on the especially interesting class of devices
known as networks, but the techniques generalize to other kinds of devices as well.

Main Memory

The main memory is a temporary storage device that holds both a program and
the data it manipulates while the processor is executing the program. Physically,
main memory consists of a collection of dynamic random access memory (DRAM)
chips. Logically, memory is organized as a linear array of bytes, each with its own
unique address (array index) starting at zero. In general, each of the machine
instructions that constitute a program can consist of a variable number of bytes.
The sizes of data items that correspond to C program variables vary according
to type. For example, on an x86-64 machine running Linux, data of type short
require 2 bytes, types int and float 4 bytes, and types long and double 8 bytes.

Chapter 6 has more to say about how memory technologies such as DRAM
chips work, and how they are combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that inter­
prets (or executes) instructions stored in main memory. At its core is a word-size
storage device (or register) called the program counter (PC). At any point in time,
the PC points at (contains the address of) some machine-language instruction in
main memory.2

From the time that power is applied to the system until the time that the
power is shut off, a processor. repeatedly executes the instruction pointed at by the
program counter and updates the program counter to point to the next instruction.
A processor appears to operate according to a very simple instruction execution
model, defined by its instruction set architecture. In this model; instructions execute

2. PC is also a commonly used acronym for "personal computer." However, the distinction between
the two should be clear from the context.

10 Chapter 1

'

A Tour of Computer Systems

in strict sequence, and executing a single instruction involves performing a series
of steps. The processor reads the instruction from memory pointed at by the
program counter (PC), interprets' t~e bits in the instruction, performs some simple
operatlon dictated by t\i'e instruction: and then updates the PC to point to the,next

', ' t ,.
instruction, whict, mar. or may not be contiguous in memory to the instruc,tion t~at
was iust executed.

There are
0

bnly a few of these simple operations, and lhey revolve 'around
main memory, the register file, and tl;ie arithmetic/logic unit (A~U). nfe r~gister
file is a small storage device that consists of a collection of word-size registers, each
with its own unique name. The ~LU computes new data and addfess values. 'Here
are some examples of the simple operations that tt,e ~PU \fiJght carry out at tlie
request of an instruction:

• Load: Copy a byte or a word from main memory into a register, overwriting
the previous contents of tlie register.

• Store: Copy a bYte or a word from a register to a 1ocation in main memory,
overwriting the previous contents of that location.

• Operate: Copy the contents of two registers to the ALU, perform an arithmetic
operation on the two words, and store the result in a register, overwriting the
previous contents of that register.

• Jtlrrlp: Extract a word from the' instruction itself and copy that word into 'the
program counter (PC), overwriting the previous value of the PC.

We say that a processor appears ,to be a ~imple)mplemen\ation of,its in,
struction set architecture: but in fact moderp. processors 'usy1far more complex
mechani~ms to speed up program. execution. Thus, -we can distinguish the pro­
cessor's instruction,~et.architecture,.describing the effect of each machine-code
instruction, from its microarchitecture, describing how the processor is actually
implemented. When we study machine code· in Chapter 3, we "{ill, consider the
abstraction provided by the machine's instruction set architecture. Chapler 4 has
more to say about how processors are actually implemented. Chapter 5 descril)es
a model of how modern processors work that enables predicting and optimizing
the .performance of machine-language programs'.

1.4.2 Running the h'Hlo' Program
'·

Given this simple view of a system's hardware organization and operation, we can
begin. to understand .what happens when we run our example program. We must
omit a lot of details here.that will be filled in later, but for now we will be content
with the big picture.

Initially, the shell programis executingiits instructions, waiting for us to type a
command. As we type the characters . /hel!lO: at the keyhoard, the shell program
reads each one into a register and then stores it in memory, as shown in Figure 1.5.

When we hit the enter key on the keyboard, the shell knows that we have
finished typi,ng the command. The shf:ll th~n loads the ,executable hello file by
executing a sequence of instructions that copies the code and data in the hello

Section 1.S Caches Matter 11

Figure 1.5
Reading the hello
command from the
keyboard.

CPU
Register file

System bus Memory bus

ff;:i#::;;::f~t:31,..d..._1:J~,.i:!::::.~viCo~_=i,.t_..il:_~~: 'i~a;/~ "hello"
li:::~L;~:::;:;:p..c---""f-."'"t.!!62ricl~g!!!e!EJ''·r '-~--- • :m~on\

._::•.::.·..1

Graphics
a'dapter

Mouse Keyboard Display

User
types
"hello"

1/0 bus

object file from disk to main memory. The data includes the string of characters
hello, world \n that will eventually be printed out.

Using a technique known as direct memory access (DMA, discussed in Chap­
ter 6), the data travel directly from disk to main memory, wit\lout passing through
the processor. This step is shown in Figlire 1.6.

Once the code and data in the hello object file ·are loaded.into memory,
the processor begins executing the machine-language instructions in the hello
program's main routine. These instructions copy the bytes in the hello' world\n
string from memory to the register file, and from there ic;i the display device, where
they are displayed on the screen. This step is shown in Figure 1.7.

1.5 Caches Matter

A~ important lesson from this ~imple 1example is that a system spends a lot of
time movihg information from dne"place to another. The machine instructions in
the hello program are originally storeq on disk. When the program is loaded,
they are copied to main .memory. As the processor runs the program, instruc­
tions are copied from main memory into the processor. Similarly, the data string
hello, world\n, originallx on disk, is copied to main memory and then copied
from main memory to the 'di'splay device. From a pro'grammer's perspective, inuch
of this copying is overhead that slows down the "real work" of the program. Thus,
a major goal for system designers is to make these copy operations run as fast as
possible.

Because of physical laws, larger storage devices 'are slower than smaller stor­
age devices. And faster devices are more expensive to build than their slower

1 I

' I

~--- ----~-- .. -- """"'~
... --- - ... ----· """"'"-=---'--=

12 Chapter 1 A Tour of Computer Systems

CPU

Register file "

System bus

1/0 bus

Mouse Keyboard Display

Memory bus

l

'

"hello, world\n"

hello code

Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

Figure 1.6 Loading the executable from disk into main memory.

CPU

. Syste'l' ,b4s

" '

,.

"hello, world\n"

hello cod~.

¢:::::i=:::;;::::::::=:::::::;f?!l!!!!l!lll!l/~O~b=u=s~
Expansion

11
~Lots for.

~--Y--~ other devices sUch

'lhello, world\n"

as.rietwork adapters.

hello executcib10
stored on disk

Figure 1.7 WritirJg the output string from memory to the.drsplay.

' ' '

'I

·~·

Figure 1.8 CPU chip
Cache memories. Register file

Bus interface

Section 1.S Caches Matter 13

1/0
bridge

counterparts. For example, the disk drive on a typical system might be 1,000 times
larger than the main memory, but it might take the processor 10,000,000 times
longer to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred oytes of information,
as opposed to billions of bytes in the main memory. However, the processor can
read data from the register file almost 100 times faster than from memory. Even
more troublesome, as semiconductor technology progresses over the years, this
processor-lJlemory gap continues to increase. It. is easier and cheaper to make
processors run faster than it ls to make main memory run faster.
" To deal with the processor-memory gap, system designers include smaller,

faster storage devices called cache memories (or simply caches) that serve as
temporary staging areas for information that the processor is likely to need in
the near future. Figure 1.8 shows the cache memories in a typical system. An LI
cache on the processor chip holds tens of thousands of bytes and can be accessed
nearly as fast as the register file. A larger L2 cache with hundreds of thousands
to millions of bytes is connected to the processor by a special bus. It might take 5
times ionger for the processor to access the L2 cache than the L1 cache, but this is
stil! 5 to 10 times faster than accessing the main memory. The Ll and L2 caches are
implemented \Y.ith a hardware (echnology known as static random access memory
(SRAM). Newer, and m,ore powerful sy~tems even have three levels of cache: Ll,
L2, and L3. The idea behind caching is that a system can get the effect of both
a very large memory and a very fast one by exploiting locality, the tendency for
programs to access data and code in localized regions. By setting up caches to hold
data that are likely to be accessed often, we can perform most memory operations
using the fast caches.

One of the most important lessons in this book is that application program­
mers who are aware of cache memories can exploit them to improve the perfor­
mance of their programs by an order of magnitude. You will learn more about
these important devices and how to exploit them in Chapter 6.

i

! i
I I

I
' I

I

I

-.. --- --· =' ~

14 Chapter 1 A ·Tour of Computer Systems

Smaller,
faster,

and
costlier

(per byte)
storage
devices

Larger,
slower,

L4: and
cheaper

(per byte)
storage
devices

L2 cache
(SAAM)

L3 cache
(SAAM)

Main memory
(DRAM)

..
}

CPU registers hold words
retrieved from cache memory ..

}
L 1 cache holds cache lines
retrieved from L2 cache.

}
L2 cache holds cache lines
retrieved from L3 cache.

}
L3 cache holds cache lines
retrieved from memory.

Local secondary storage
(local disks)

}
Main memory holds disk blocks_
retrieved from local disks.

}

Local disks hold files
retrieved from disks on
remote network server. Remote s'econdary storage

(distributed file sy~tems, Web .servers)

,,

ifi~

Jl(l !'.)

Figure 1.9 An example of,a memory hier~r_Fhy. .r,.

1-,6 Storage D~vices.F:orm ~.Hierarct)y
This notiori of inserting a sdililler, faster'st6rage device (e.g., 'cache rrieni.ory)
between the processor aqd a larger, slower device (e.g., maill'membry)'t1lrns out
to' be a general iqea. In'l'acf, the storage devices 'in every computer system are
organized as,a memory hiefarchy similar to'Figur,e 1.9. As we move from the top
pf the hierarchy to the bottom, the deviees become slower, larger; and less costly
per byte. The register file. occupies the top level in the hierarchy, which is known
as level 0 or LO. We. shqV; three leyels of caching L1 to L3, occupying memory
hierarchy levels 1 to 3.'Mafo memory occupies level 4, and so oh.

The main idea of a memory hierarchy is that storage at one level serves' as a
cache for stor11ge at the next lower level. Thus, the register file is a cache for the
L1 cache. Caches L1 and L2 are cacnes for Li'and L3, respectiv,ely:',The L3 cache
is a cache for the main memory, which is a cache for the disk. On some networked
systems with distributed file systems, the local'disk serves as-a'.-cadl.e for data stored
on the disks of other systems. ' , '

Just as programrrlers can exploit l<ho)Vledge of the different i:aches to improve
petMrmance, programmers ean'exploit their understanaing of the entire memory
hierarchy. Chapter 6 will.have much inore t}J say about this. !

•(l

1.7 The Operating S.¥stem Man'ages the- Hardware

Back to our hello exitmplel When the shell loaded and ran the hello program,
and when the hello program printed its message, neither program accessed the

Figure 1.10
Layered view of a
computer system.

Figure 1.11
Abstractions pro~ided by
an operating system.

Pr,pcessor

Processor

Section 1 .7 The Operating System Manages the Hardware 15

Application programs

Oper'ating system

] Main niemory J 1/0 devices

Processes

Virtual memory

Files

Main memory 1/0 devices

} Software

}Hardware

keyboar,d, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
a layer of softwai;e interposed between the application program.and the hardware,,
as shown iJl Figure ~.10. All attempts by an application program to manipulate the"
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway appli~~tio};ls and, (2) to provid,e applications with simple
and unifo~m m~chanisms for manip,uli!ting complicated 1\nd of\en wildly differ~nt
low-level hardware devices. The .opyrating system acl:Jieve,s both goals via the
fundamental abstractfons shown in Figure 1.11: processes, virtual memory, and
files. As this figure suggests, files are abstractions for I/O devices, vi~tual memory
is an abstraction for both the main memory and disk 1/0 devices, and processes'
are abstractions for the processor, main memory, ?nd I/O devices. We will discuss
each in turn. 1t

1.7.1 Processes

When a program such as. heHo runs.on a modern system,.the operating system
provides th~ illusiollithat the program is the only.one running on the system. The
program appears to have exclusi_ve ,use of both the processor, main memory, and
l/Qdevices.•The·processor appears to execute. the instructions in the program, one
after the other, without interrnption. And the code and.data of the program appear
to be the only objects in the system'.s !llemory. These illusions are pro:vided by the
notion of a process,. one of the most ilnportant and successful ideas in computer
science.

A.process is the operating system~s· abstraction for a running.program. Multi­
ple processes can run concurrently on the same system, and each process appears
to have exclusive use of the hardware. By concu[rently, we mean·that the instruc­
tions of one process are interle~ved.Jwith the instructions of another process. In
most systems, there are more processes to run than there are CPUs to run them.

•I

I
I

I '

-·-- --),

16 Chapter 1 A Tour of Computer Systems

Aside Unix,_PpsixJ and the Standard Unix Specitl'c:ation
. l f l(

' '

The 1960s was aI!J'r)i, of h11ge, comp\ex·openltil'&. systems, such' ~s IBM's OS/360 and Honeywell 'Ir '
Multics-systems. While OS/360 was ohe'cif the.most successfuLsoftware projects in history, Multics
dragged on for~years and never achieved ivi4,e-scale use. B~l LabqratorieS was an original partner in
the Multics project but dropped out in l969 because.of concern'bver the>conlplexity of the project
and the lack of progress .• In reaction to their unpleasant Multics experience, a group of Bell Labs
researchers-Ken Thompson, Dennis Ritchie, r:5oug Mcllroy, and Joe Ossann,a~egan work in 1969
on a simpler operating.system for a Digital Equipment Corporation PDP:? computer,>.vritterientirely
in machine language. Many of tfie ideas in the new system, such. as the hierarchical file system and the
notion of a shell as a user-level.proc,ess, were borrowedJrom Multics·but implemented in a smaller,
simple~ package. lri 1~7a; .~i:Lan Kerni&han.- <!i;l;>l;>e.<l t)J,en!"..y1'yste'!! ':!]rlix" as!' pun on the complexity
of "Multics." The.kernel was rewritten in C in 1973, and Unix.was annouriced to the outside world in

0

1974 [93]. • ,;: •
Because Bell Labs made the'llource code available io schools with generous termS, Unix developed

a large following atjmive1")lities. The .. most infiuential '"Cod~ was done'at tne' University o(California
at Berkclley in the lafo 1970s and ear1y·f9s6s, with'Berl<e)efresearch'S~s addingvirtual·merriory and l
the Il\ternet protoc~.~ i~"f'serfeS: of. rele'a~~:cru\ed Up& 4,XB~D (B,e~k'eley siiftwa.re'Distributi?n'.J,
<;:on~urreJ!.tly, B~ll;t:abs,waS, rele.~si1.1ftlie1r'g-.yl) versi?nS. _:;'hie~ b~cam:.~nmy.n as Sl''\em V !-.Jn!x.
Versions from oth~r vendors, such as the·Su1"M1crosystems Solans systenf, were ~enved from'th~se ''
otiginal BSD and System V,versioris. · . ' ,. ·' ' ' ' "'

Trouble arosein:ihe m1ct'·t980s as Unix V'enilors'iried 'tb differentfate'il.iemsel~es by a1:lding new
and often incompatible !eatuJs. To conil:lkt fu'ii;'ttenc('IEEE"(Ins!itute f~r Electrical artd Electrdn'. ,
ics Engineets) spons9r6il:-an 10ffort'tli ;tandar1:lize't.Jlfix, l";at d;;Bbed"l'PosiX-•

0

by Richard 'st,;llman. '
The result was a fanwy Of ~randards, k'nowh:~li ffie 'fosix'stan'tl~¥ds, ilfat c:Ovef'sucli'"lssues'as tlfe.C •
language interface:~or, Unix sy.ste~ ~an;1 shefrp'rograms·~nd ~Jilitie~'. t~eads, ~n~"het-±?~Jlrdg;a"rr,,
ming. More recent!~, .a, ~eparate standardi~";tipn effort;kfiown a,s the "Stand;va.tlnix Specificat~on," '
has joined forces with Posix'to'create a single, unified standard foflln'ix systems. As a'result'ufthese
stiindardization efforts, tfie

0

diffe;enc~s bei~Jen Un!l<: \ler~iolis liave largely di5appeaiei\.

Traditional systems could only execute one program at a time, while newer multi­
core processors can execute several programs simultaneously. In either case, a
single CPU can appear to execute multiple processes concurrently by having the
processor switch among them. Tue operating system performs this interleaving
with a mechanism known as context switching. To simplify the rest of this discus­
sion, we consider only a uniprocessor system containing a single CPU. We will
return to the discussion of multiprocessor systems in Section 1:9.2.

Tue operating system keeps track of all the state information that the process
needs in order to run. This state, which is known as the context, includes informa­
tion such as the current values of the PC, the register file, and the contents of main
memory. At any point in time, a uniprocessor system can only execute the code
for a single process. When the operating system decides to transfer control from
the current process to some new process, it performs a context switch by saving
the context of the current process, restoring the context of the new process, and

Figure 1.12
Process context
switching.

Time

Section 1.7 The Operating System Manages the Hardware 17

Process A Process B
·~-~---------

User code

Ker-;~od-; } Co_ntext
-"-"•----------- switch

: User code
Disk interrupt-----------,--- ---------}Context

Return 1 Kernel code switch
from read---... ~- :------u;er code

·-'-~-- ---
'

then passing control to the new process. The new process picks up exactly where
it left off. Figure 1.12 shows the basic idea for our example hello scenario.

There are two concurrent processes in our example scenario: the shell process
and the hello process. Initially, t,he shell process is running alone, waiting for input
on the command line. When we.ask it to run the hello program, the shell carries
out our request by invoking a special function known as a system call that passes
control to the operating system. The operating system saves the shell's context,
creates a new hello process and its "context, anCI then passes control to the new
helfo process. After hello terminates, the operating system restores the context
of th~ shell.prpcess anq passes control back to it, where it waits for the next
command-line mput.

As Figure 1.12. indicates, the transition from one process to another is man­
aged by the operating system kernel. The kernel is the portion of the operating
system code that is always resident in memory. When an application program
requir~~ some ac\ion by th<; operat~g system,, ~uch as to read or write a file, it
exec1.j!!'s a spe~ial,system call inst~uction, trans~erring control to the kernel. The
kerneUhen r.erforms 1h~ requested ope~ation and returns back to the application
prp&~am. Not~ ~hat thy kernel is J!Ot,a separate process. Instead, it is a collection
of code and data structures that the system uses to manage all the processes.

'rm11lementing the,process abstractio11 requires close i;ooperation between
bot}' th~,Io~-level hardware anp the operating system software. We will explore
how this works, and how l\pplications can create and control their own processes,
in Chapter 8.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern
systems a process can actually consist•of multiple execution units, called threads,
each runnin_g in the context of the process "11-d sharing the same code and global
data'. Threads are an increasingly important programming model because of the
requirement for concurrencyin network servers, becabse1 it is easier to share data
between multiple threads than between multiple processes, and because th'reads
are typicallymor~ efficient than processes. Multi-threading is also one way to make
programs·run faster-when multiple processors are available, as we will discuss in

---,,_ .-- -

18 Chapter 1 A Tour of Computer·Systems

Figure 1.13
Process virtual address
space. (The rJ'gions are not
drawn to scale.)

Kerner virtual memory ff j
1--....... -----~-...,..-I

user stack
(created at run time)

Memory
invisible to
user code

m flun-time heap
(created by mallqc)

,printf function

t' Re~d/write data }
1----'----'-----1 Loaded from the

hello executable file
Read-only cOde and datam

Program
start­

o

Sectioq 1.9.2. You will learn the basic concepts of concurrency, including how to
write threaded programs, in Chapter 12.

,l .7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the illusion that it
has exclusive use of the main memory. Each process has the same uniform View of
memory, Which is known as its virtual address space. The virtual address spAce for
Linux processes is shown in Figure 1.13. (Other Unix systems use a similar layout.)
In Linux, the topmost region of the address space is reserved fol code and data
in the operating system that is common to all processes.

0

The lower region df the
address space holds the cdile and data defined by'the user's process. Note thlit
addresses in the figure increase from the bottom to 'tlie"tbp. "'

The virtual address space seen by each process consists of a number of wbll'
defined areas, each with a specific purpose: You will learn more about these areas
later in the book, but it will be helpful to look briefly at each, starting with the
lowest addresses and working our way up:

' .
~ Program code and data. Cod!' beg\ns at the ~ame.fixed address for all processes,

followed by data locations that correspond to gl0bal C variables. The code.and
data,·ateas are initi!l.lized directly.from the contents of an exec4table object
file-in.our case, th~;heJ,lo executable. You wiJl learn more-apout this part of
tl;le address spaye when we study linking ang loading in Chapter J.

• Heap. The code and data areas are followed immediately'by the-run-time heap.
Unlike the code and data areas, which·are fixed in size once the process begins

)

I ,,
R
1

..

Section 1.8 Systems Communicate with Other Systems Using Networks 19

running, the heap expands and contracts dynamically at run time as a result
of calls to C standard library routines such as malloc and free. We will study
heaps in detail when we learn about managing virtual memory in Chapter 9.

• Shared libraries. Near the middle of the address space is an area that holds the
code and data for shared libraries such as the C standard library and the math
library. The notion of a shared library is a powerful but somewhat difficult
concept. You will learn how they work when we study dynamic linking in
Chapter?.

• Stack. At the top of the user's virtual address space is the user stack that
the compiler uses to implement function calls. Like the heap, the user stack
expands and contracts dynamically during the execution of the program. In
particular, each time we call a function, the stack grows. Each time we return
from a function, it contracts. You will learn how the compiler uses the stack
in Chapter 3.

• Kernel virtual memory. The top region of the address space is reserved for the
kernel. Application programs are not allowed to read or write the contents of
this area or to directly call functions defined in the kernel code. Instead, they
must invoke the kernel to perform these operations.

For virtual memory to work, a sophisticated interaction is reqµired between
the hardware and the operating system software, including a hardware translation
of every address generated by the processor. The basic idea is to ~tore the contents
of a process's virtual memory on disk and then use the main memory as a cache
for the disk. Chapt~r 9 explajns how this works and why it is ,so important to the
operation of modern systems.

1.7.;4 Files

A file is a sequence of bytes, nothing more and nothing less. Every 1/0 device,
including disks, keyboards, displays, and even networks, is modeled as a file. All
input and output in the system is performed by reading and writing files, using a
small set of system calls known as Unix 110.

This simple and elegant notion of a file is nonetheless very powerful because
it provides applications with a uniform view of all the varied 1/0 devices that
might' be contained in the system. For example, application programmers who
manipulate the contents of a disk file are blisSfully unaware of the specific dfsk
technology. Fiirther, the same program will run on different systems that u~e
different disk technologies. You will learn about Unix I/CJ'in Chapter 10.

1.8 Systems Communicate 'with Other Systems
Using·Networks

Up to this point in our tour of systems, we have treated a system as an isolated
collection of hardware and software. In practice, modern systems are often linked
to other systems by networks. From the point of view of an individual system, the

I

,;;;;;;=

20 Chapter 1 A Tour of Computer Systems

t .. . •"" ,·· ,ff, ' ,j} '.fp; ;.< '"l;~~,;j.~.p:.}-;ft,J.L, "~%¢.\}.~ .J~Y~ . ., 4,'i> < "'4'""lJj!'"f"~~. :Z.,""W!.> ~ "4 t. ~·\i;f

' 4side' The t:inux,prpJ·~ct., .,: • ' w, , • · .. · •· <,. · . 4• , .. "
~ !// ¥~ ~~ '·"' .. ··- _·· "';.}"~ -" '~'" -#t_o/ '' -Jt'ft:~. ~. ' ~ ii ~.

;, !u..An_gust 1991; ~ Fmnlsh1rKaualy stul:lelii ri'a'!ile(! u1ust,r'cl'i'NaI\J§,ril~&sdy~'lii1ltlrcecfa if e\\>U' riix-like
~ -'"onerating syStem Kernel:i ~,-.,; _ ··i11 ~y.,, ""?-"' ,,., ' :Jc.,,r ,;, :r ;,- il if fy 1 '<'J "'}_

~ !,; .,, 10,11 {1' 9/0 '<1, ''\, ~~ ; ·~

l:'rom : ... ,,tOrv. aids@t1~a.va .. Hel~iiJ1.'". F1;=-<t:.(nJ~~"i'exieditt f,,Th"~.Ji3.1:J\.')¥ .. ~.~··. ;, -~·q.,. 'ff'

1

~ -5ti '"'·!:M4." ~- l .• ,..' ' " "-., .,, • " ~~ . "~., ~ . .J: " .• "; ~ .Jl'
Newsgr:ollpS: comp:dS'".niirlix"' .. _ ~ .~t,,. -~ ,. - :'f • .-,,. ~ ~~-i"'" · •• 4 ~· 1 ""'

Subje~t: "'\.f~a'b wo~l~~ _YcfJ"'~ilit~~o-, s~; qlo·~-~rl': mi~ix? "'~ 9 }Jl '"'-~): ~ I&

.s1119ma.,,r9": s~al'i pp~l .. ~or~,,.nry:;'~,e~.§g.p~r~t'in&··~xst~i ~,~ "71, 1$ -~ • ., ·i-.

Date:" 25.. Au,;g 91 ~~O·t.,57; :ros:"Gf1J } ,. ''") ·0• •. ,.. ~'" "/! efo :k ~ ~i"~!, J·1.~ ·~
,1 ~~J·,*"~ ';}.;~J --~ '."] .. . 14"t:t- "° . ~·If~ ·~fl- £l r \

Hello ~verjbod~,,.q~~i;:·ft·~herp'.: Usi~&;_·¥}i~ip --_,
1

• "4.~ . _,, % "~r J~., ~ J v.&.ftt·~ ~'i""~i
, I 1 m doing a, (fr~){ qp~r;,a~in~g ~~Y~~em~ ,.(jdst_ ~a ~._h9bq~_•,;.~R1t.,' ~~ pe ~b}"g :t"~~· l!

~~ ~r~of~s'Sional fik.~ ~u~i*"fp}i'lr:S8§,(~8.P) £AT:;k-foR~s.~~. T~~s,; '11a~:-~beJ~_Ii 12!~~ii;g"i' ~"'
.. si~ce' April, <lll:d. is ~tartin~ t~o·~~··@:et read~ .. ff!• 1 d

0

likeJ""anl fe~dba9k~~o~
~)11:,ngs- ~G~o'Ele"""~ii~e/~di~l~k~ 'Iit~mi.nix. ft.~ ·19y,. D~~~r,f's~e~bllS :~:;t li'9mewh_<\Z
(same physical 1"'.' du£, ··.of t.ll• :ii1e''·~v:.:stem.'~dll.ll. 'to .:prac'ti'cal rt. asons'·'<. ;\' ,, ~~ , ::." -~ ~. ::r···""· •• ,~ '% .,i) t.'$·1'·.;;, ~ ~ ~" "4 , "·~ ., .• , ., ~. ··~"i.,

among other thl~&.s)"·J. · &;_,, ~, ·~:i#~. "4· 1.. y,, ,, ·~·~. ··~ ·~~
• 1.1/,,,~'ffe. .," ' ' " if'' ' ~ :J ~

'I':• curr•'l;'J.Y, f'Rr.ted '.bas1hCi-,08),$~d ,!it~ Ct(ig)·, .~\i!thirlgs; ~ee? ;'t:p,.llof:K(,'• ,

•
'

1
1
l •
I

This i_m~l~?s·' ~~~~ ,.~;J.1~.~~t···~~e;;li~n~g~~n:a.5~1~'!f: ,,w~ith.;ip-~ a . .,. ~_ew :mqnths'.,, and ·•}
I! a ~rke to kilbw'-wnat,fbatJi'M• most" 'j:f~9p'le, .\roulfi'.~ant. ,4nyo.suggestions 'il• ,

aie welscq,m~;, 17ut':'t,.·~~b,a_.1 K:J>rOJE!S~f'l;!:tT~i,,iJl~J-~ffiefj.'"t ~ta~qf~~.;.;,~)'t ;t· '1 .1
~ 'efi~ .~1· ;t ~)f·~f::4"' ~~- ~...Jt, '~1'l!t, -tw-~. w,. "] • '0"'' 'if' ·~;" ~

t.lnus ··(torvaltj.fo@IsruUn.a~.,h'81Si~i ;"f_i~~ 1kJ,t{; "t ~·('' w;; ~ x~ .. ;~. ~ 1.-· ~ , if j
$.s 1:6rvalds. iri1$Jt4te~~liis'~t~tiP)' ;o~~!~cJ~~~~~;~~~\\r&]Virn~7~art ?fief~t~~ 1sys~t~m~devef-

oped by Andrew ,S:'I'anenll~\lm'f()r ,i:'~l~19atlqi:aJ.i;urpos,~s [i;)'.3} "
The rest: as tl;ley s~y, i,~ ~flito11'. Linux Ms ~yoly~,a.jnfo1~ technical ,and cultural P,henomenon·, BJ ,,

C;_ombihing fofc'es ,WtJi the QNl;FP,rojeqt, ,the Linjlltppof e~~,has,\l~VS~'IPed:a complete, Ppsix-cbmpllant
version of the Unix operating, system, incluc;!ing th<fkemel'and all•of the supeortiog·infrastructure,
Linux is avail~bie prr,a:;.ide,irliy oisofuii~!erS.,v~iph;~ill\~1{deyi~es tcl-mainfriin,le,Go.~p11t~rs. A l
group atJBM bas even po't\ell Lih!\?.<:t'o~ii w~iSiiVafcb'1 " "' ' • - -< ;

~~ ~ ~-:~~ .. -l~.:,,0~.;;,:~·J;i,,,_"li:;n~.:?.A·'' ·~ ~~~~-':!v= ..

network can be viewed as just another I/O device, as shown in Figure 1.14. When
the system copies a sequence of bytes from main memory to the network adapter,
the data flow across the, network to another machine, instead of, say, to a local
disk drive, Similarly, the system can read data sent from other machines and copy
these data to its main memory.

With the advent of global networks such as the Internet, copying information
from one machine to another has become one of the most important uses of
computer systems. For example, applications such as email, instant messaging, the
World Wide Web, FrP, and telnet are all based on the ability to copy information
over a network.

- - -
---~

Section 1.8 Systems Communicate, with Other Systems Using NetM:orks 21

Figure 1.14
A network is another 1/0
device.

CPU chip

Bus interiace

SystelJl bus

1/0
bridge f';r---v

Main
memory

{
Expansion slots

'
1/0 bus

r, .,..

,,
1.User types "

''hello" at the
keyboard

5. Client prints
Mhello, world\n"

string on display

I·

... , lj'

Local
telnet
client

Mouse Keyboard, Monitor

fl

2. Client sends ''hello"
string to telnet se1Ver _____________ , _____ _

' ~--------------------
4. Telnet server sends

Mhello, world\n" string
to client

Remote
telnet
server

Figure 1.15 Using telnet to run hello remotely over a network.

,.

4
§ .. , """""""""'

3. Server sends "hello"
string to the shell, which
runs the hell,o program
and pB.sSes the output

to the telnet Server

Returning to our hello example, we could use the familiar telnet application
to run hello on a remote machine.·Suppose we use a telnet client running on our
local machine,\o connect to ii telnet ser;v,rr on a remqf,'r machi\le, After we log in
10 the remote piachine and run a shell, the ~~mote shell is ,waiting to ~eceive an
input cpmmand. From this point, running, the hello pr9i;r~m1e11Joteli; 'involves
the five basic steps sJiown in Figure 1.15. ,

After we type in, th~ hel:j.o stri,ng to the telnet client and' hit the enter key,
the c~ent sends the string to tl:)e tflnet serypr. :~,ft~r,the,ieln~t server receives th~
string from the network, it passes it along to the. remote shell p,rogram.Nej<t, th~
remote shell runs the hello program and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string acros~ the network to
the telnet client, which prints the output string on our local terminal.

This type elf exchange between clients and servers is. typical of all network
applications. In Chapter 11 you will learn how .to' build network applications and
apply this knowledge to build a simple Web server.

"

-~--- -- ~ ~ -~----------·--- ,,.,_ __ _ ---

22 Chapter 1 A Tour of Compufer'Systems

1.9 Important Themes

This concludes our initial whirlwind tour of systems. An important idea to .take
away from this discussion is that a system is more than just hardware. It is a
collection of intertwined hardware and systems software that must cooperate in
order to achieve the ultimate goal of running application programs. The rest of
this book will fill in some details about the hardware and the software, and it will
show how, by knowing these details, you can write;programs that are faster, more
reliable, and more secure.

To close out this chapter, we highlight several important concepts that cut
across all aspects of computer systems. We will discuss the importance of these
concepts at multiple places within the book.

1.9. l Amdahl's Law

Gene Amdahl, one of the e,arly pioneers in computing, made a simple but insight­
ful observation about the effectiveness of improving the performance of one part
of a system. This observation has come to be known as Amdahl's law. The main
idea is that when we speed up one part of a system, the effect on the overall sys­
tem performance depends on both how significant this part was and how much
it sped up. Consider a system in which executing some application requires time
Told· Suppose some part of the system requires a fraction a of this time, and that
we improve its performance by a factor of k. That is, the component originally re­
quired time aT01ct, and it now requires time (aT01ctl/ k. The overall execution time
would ·thus be

Tnew = (1- a)Told + (aT01ctl/ k

= T01ct[Cl - a)+ a/ k]

From this, we can compute the speedup S = T01ctl Tnew as

1 S=---=----
(1- q) + a/k

'(1.1)

As an example, consicteP the case where a paft ,of the system that initially
consumed. 60% of the time (a = 0.6) is sped up by a factor of 3 (k = 3). Then
we get a speedup of'l/[0.4 + o:6y3]"" 1.67x. Even though we mad'd a'substantial
improvement to a major part of the system, our net speedup -.yas significantly less
than the speedup for the one part. This is the major insight of, Amdahl's law­
io significantly speed' up the entire system, we must ifnprove the speed of'a very
large fraction onhe1bverall systeni.

~~i~oltrt1:i'\1 rriQ'.iiitiifiJUlf!im?&t,l;&JJ.W~ii!i;';U{i!i
Suppose you work as a truck driver, and you have been hired to carry a load of
potatoes from Boise, Idaho, to Minneapolis, Minnesota, a total distance of 2,500
kilometers. You estimate you can average 100 km/hr driving within the speed
limits, requiring a total of 25 hours for the trip.

i
!
~
I

J

Section 1.9 Important Themes 23

A. You hear on the news that Montana has just abolished ifs speed limit, which
· constitutes 1,50Q km 0£ the trip. ;your truck can travel at 150 kmfhr. What

'will·be your speedup for the trip?J

B. 'You can buy a new ttubochargerfi;>r your truck at www.fastttucks.com. They
stock' a variety of nlod~ls, but the faster you want to go, the mbre it will cost.
How fast must 'you travel through Montana to get an overall speedup for

II you'r trip o'f 1.67 X?

rn;®i§;~-----,~~i~
The marketing deparfl\lent'at your company has promised your customers that
the next software release will show a 2x performance improvement. You have
been a~signed the task of delivering on that promise. You have determined that
only 80% of the system can be improved.' How much (i.e., what value of k) would
you need to improve this part to meet the overall performance target?

,.
, One interesting SP\'!'ial case of Amdahl's law is to c9nsider the effect of setting

k to oo. That is, we are able to take some part of the system and speed it up to the
point.at which it takes I\ negligibl<; ~ount of time. We then get

1
Soo=---

(1-a)
(1.2)

So, for example, if we can speed upii0% of the system to the point where it requires
close to no time, our net speedup will still only be 1/0.4 = 2.5 x.

Amdahl's law describes a general principle for improving any process. In
addition to its application to speeding up computer systems,:itcan guide a company
trying to reduce the cost of manufacturing razor blades, or a student trying .to
improve his or her grade point average. Perhaps it is most meaningful in the world

.! . I
- --·--~

I i 24 Chapter 1 A Tour of Computer Systems

Figure 1.16

of computers, where we routinely improve performance by factors of 2 or mqre.
Such high factors can only be achieved by optimizing large parts of a system~

J,

1.9.2 Concurrency and Parallelism

Throughout the history of digital computers, two demands h~ve been constant
forces in driving in_iprovements: we want them to dq,mqre, and we want them to
run faster. Both of these factors improve when the processor does more things at
once. We use the term concurrency to refer to the general coqcept of a system with
multiple, simultaneous activities, and the term parallelism to refer to the use of
concurrency to make a system run faster. Parallelism can be exploited at multiple
levels of abstraction in a computer system. We highlight th~ee levels here, working
from the highest to the lowest level in the system hierarchy.

Thread-level Concurrency

Building on·the process abstraction, we are able to devise syst"ms where multiple
programs execute at the same time, leading to concurrency. With threads, we
can even have multiple control fiows executing within a sin!lle process. Support
for concurrent execution has been found in comp4ter ~ystems,since the advent
of time-sharing in the early 1960s. Tradition,ally, this concurre,nt el'ecution was
only simulated, by having a single computer rapidly switch am?,ng its e1<ecuting
processes, much as a juggler keeps multiple balls flying through the air. Titis form
of concurrency allows multiple users to interact with a system at the same time,
such as when many people want to get pages from a single Web server. It also
allows a single user to engage in multiple tasks concurrently, ·such as having a
Web browser in one window, a word processor in anoth~r. -and stro<aming music
playing at the same time. Until :recently, most actual computing was done by a
single processor, even if that processor had to switch among multiple tasks.,This
configuration is known as a uniprocessor flYStem. ,

When we construct a system consisting of JTIUltiple prpcessors all under the
control of a single operating system kernel, we have a multiprocessor system.
Such systems have been available for large-scale computing since the 1980s, but
they have more recently become commonplace with the advent of multi-core
processors aiid hyperthreading. 'Figure 1.16 shows a taxonomy of these different
processor types,

Multi-core processors have several CPUs (referred to as "cores") integrated
onto a single integrated-circuit chip. Figure 1.17 illustrates the organization of a

AU processors

Categorizing different
processor configurations.
Multiprocessors are
becoming prevalent Uniprocessors

Multiprocessors

with the advent of multi­
core processors and
hyperthreading.

•

Section 1.9 Important Themes 25

Processor package Figure 1.17
Multi-core processor
organization. Four
processor cores are
integrated onto a single
chip.

--,
Core o Core 3 :

typical multi-core processor, where the chip has1four CPU cores, each with its
own L1 and L2 caches, and with each L1 cache split into two parts-<me to hold
recently fetched instructions and one fo hold data. The cores share higher levels of
cache afi well· as the interface to m"ain memory. Industry experts predict that they
will be able to have dozens, and ultimately hundreds, of cores on a single chip.

Hyperthreading, sometimes called simultaneous multi-threading, is a tech­
nique that allows a single .CPlJi t?. execute mµltiple flows of control. It involves
having multiple copies of spme of the CPU hardware, such as program counters
and register:files, while·frnvitfg only single copies of other parts of the hardware,
such as the'units'that perform floating-point arithmetic. Whereas a wnventional
processor requires around'20:000 clock cycles to shift between different•threads,
a hyperthreaded processor decides which of its threads to execute on a eycle-by­
eycle basis. It enables the CPU to take'better advantage of its processing resources.
For example, if one thread must wait for some data tdbe loaded into a cache, the
CPU can proceed wiih the eitecution of a differ~nt thread. As an example, the In­
tel Core i7 processot can have each core executinl!; two threads, and so a four-core
system cah actually execute eight threads in parallel.

The use of·multiprocesshtg can improve system performance in two ways.
First, it reduce$ the need to simulare·concurreney when performing multiple tasks.
As mentioned, even a personal computer being used by a single person is expected
to perform many ,llf.tiyitil's concurrently. Sy9ond, it can.run a single applic,at,ion
program faster, but only if that program is expressed in terms of multiple threads
that can effectively .execute in parallel. Thus, although the principles of concur­
rency have been formulated and studied for over SU years, the advent of multi-core
and hyperthreaded systems has greatly increased the desire to find ways to write
application programs that can exploit the thread-level parallelism available with

' '

-------- ----- ·- ---
1' · -

26 Chapter 1 A Tour of Computer Systems

the hardware. Chapter 12 will look much more deeply into concurrency and.its
use to provide a sharing of processing resources and to enable more .parallelism
in program execution. ., ,.

lnstruction-~evel Parallelism

At a much lower level of abstraction, modern processors can execute multiple
instructions at one time, a property known as instruction-level parallelism. For
exa_mple, early microproc~ssors, such as the 1978-vintage Intel 8086, required
multiple (typically 3-10) clock cycles to execute a single instruction. More recent
processors can sustain execution rates of 2-4 instructions per clock cycle. Any
given instruction requires much longer from start to finish, perhaps 20 cycles or
more, but the processor uses a number of clever tricks to process as many as 100
instructions at a time. In Chapter 4, we w)ll explore the use of pipelining, where the
actions.requir!'d to execute an instr)lction are partitioned into different steps and
the processor hardware is organized as a series of stages, each performing one
of these steps. The stages can operate in parallel, working on different parts of
different instructions. We will see that a fairly simple hardware design can sustain
an execution rate close to 1 instruction per clock cycle.

Processors that can sustain execution rates faster than 1 instruction per cycle
are known as superscalar processors. Most modern processors support superscalar
operation. In Chapter 5, we will desoribe a high-level model of such processors.
We will see that application programmers can use this model. to understand the
performance of their programs. They can then write programs such that the gen­
erated code achi,eves higher degree~ of instruction-level parallelism and therefore
runs faster.

Single:lnstruction, Multiple-Data (SIMD) Parallelism

At the lowe~t level, many modern processors have'Special hardware that allows
a single instruction to;cause multiple,operations to be performed in parallel,,a
mode known as single-instruction, multip.fe-data (SIMD) parallelism. Fpr example,
recent generations of Intel and AMD,processors have instructions that can add 8
pairs of single-precisjon llof!ting-point-numbers (C data type float) in paq1llel.

These SIMD instructions are provided mostly JP speed ,up applications that
process image, sound, and·vi<;l,eo data. e..Lthough sotne.compijers attempt·to auto­
matically extract SIMD parallejismJrom C prog,~ms,-a ijlore reliable method is to
write programs using special vettoi:data types supported in.compilers sucQ. as acc.
We describe this style of programiµingjn. Web As,ide 0PT:s1Mo, as, a supp)ement to
the more general present~tion,on progr,am optimization found in C(lapte,r 5. ~

1.9.3 The Importance bf Abstractions iri Computer :>ystems . ')

The use of abstractions is one of the most important concepts in computer science.
For example, one aspect of'good programming practice is to formulate a simple
applicatton prbgram interface'(API) for a set of functions that allow pr'ogrammers
to use ihe code without having to delve into its inner workihgs. Different program-

Section 1.10 Summary 27

Figure 1.18 Virtual machine

Processes

Some abstractions
provided .by a computer
system. A major theme
in computer systems
is to pr9vide abstract
representations at
different levels to hide
the complexity of the.
ac}ua/ implementations.,

Instruction set
architecture Virtual memory

Files

Operating system Processor Main memory 1/0 devices

ming languages provide different forms and levels of support for abstraction, such
as Java class declarations and C': function prototypes.

We have already been introduced to several of the abstractions seen' in com­
puter systems, as indicated in Figure 1.18. On the processor side, the instruction set
architecture provides an abstraction of the actual processor hardware. With this
abstraction, a machine-co~e program. behaves as if it were executed on a proces­
sor that performs just ope instruction at a time. The uqderlying hardware is far
more elaborate, executing multiple instn,ictions in parallel, but always in a way
that is consistent with the simple, seqm1µtial model. By keeping the same execu­
tion model, different processor implementations can execute the same machine
code while offering a range of cost and performance.

On the operating system side, we have introduced threl! abstractions: files as
an abstraction of I/O devices, virtual memory as an abstraction of program mem­
ory, and processes as an abstraction of a running program. To these abstractions
we add a new one: the virtual machine, providing an abstraction of the entire
computer, including the operating system, the processor, and the programs. The
idea of a virtual machine was introduced by IBM in the 1960s, but it has become
more prominent recently as a way to manage computers that must be able to run
programs designed for multiple operating systems (such as Microsoft Windows,
Mac OS X, and Linux) or different versions of the same operating system.

We will return to these abstractions in subsequent sections of the book.

1.10 Summary

A computer system consists of hardware and systems software that cooperate
to run application programs, Information inside tqe computer is represented as
groups of bits that are interpreted in differeµt ways, depending on the context.
Programs are translated by other programs into different forms, beginning as
ASCII text and th'en translated by compilers and linkers into binary executable
files.

Processors read and interpret binary instructions that are stored in main mem­
ory. Since computers spend most of their time copying data between memory, I/O
devices, and the CPU registers, the storage devices in a system are arranged in a hi­
erarchy, with the CPU registers at the top, followed by multiple levels of hardware
cache memories, DRAM main memory, and disk storage. Storage devices that are
higher in the hierarchy are faster and more costly per bit than those lower in the

I
' I ,,

I
I
I

I '"

28 Chapter 1 A Tour of Computer Systems

hierarchy. Storage devices that are higher in the hierarchy serve as caches for c,le­
vices that are lower in the hierarchy. Programmers can optimize the performance
of their C programs by understanding and exploiting the memory hierarchy. ·'

The operating system kernel serves as au intermediary between the' applica­
tion and the hardware. It provides three fundamental abstractions: (1) Files are
abstractions for I/O devices. (2) Virtual memory is an abstraction for both main
memory and disks. (3) Processes are abstractions for the processor, main meniory,
and I/O devices; · ~

Finally, ne'tworks provide ways for computer systems to communicate with
one another. From the viewpoint of a particular system, the network is just another

I/O device.
'

Bibli<?graphic; Notes

Ritchie has written'.intefesting firsthand accounts of the early days of C and
Unix [91, 92]. Ritchie and Thompson ~rese'~tbd the first"publishgd accouilt of
Unix [93]. Silberscnatz: Galvin, and Gagne'(102f prov'icle a comprehepsive history
of the differeht flavors of Unix. The GNU (www.gmi.oP~j and Linux (www.linu'x
.org)' Web pages 'have loads 'of current and historical irifotmation. The Posix
standards are available online at (ww\v'.unix.org).

t •

Solutions lo Practi~e Pr<:>bl,ems

Soh,1tion to Problem 1.1 (page 22)
This1prbblem illustrates that Amdahl's law a~plies to more 'than just computer

systems. "
1

;

A. In teqns of.Equation 1.1, we have a= 0.6<md k = 1.5. Mqre directly, travel­
ing the l,500 kilometers t,hrqugh Montana will require 10 hours, and the rest
of the trip .also requires 10 hours. This will giv~ a speedup, qf 25/(10 + 10)""
l.25x. ~

B. -In, terms of Equation 1.1, we have a = 0.6, and we require S = 1.67, from
which we can solve fork. More directly, to speed up the trip by l.67x, we
must decrease the overall time to 15 hours. The parts outside of Montana
will still require 10 hours, so we must drive through Montana in 5 hours.
This requires traveling at ~OQ km/ju, which is pretty fast for a truck!

Solution to Problen\ 1.2 (pag1e 23j·
Amdahl's law /s best understood 'iiy workihg through some examples. "This oh.~
requires you to look at Equatiqn·l.l from an unusual perspective, ·

This problem'is a simple gpplication or the' equation. You are given S = 2 and
a = 0.8, and you must then solve for k:

y' •

2= lJ .
'('l''- 0.8) 'I- 0.8/ k

<l'.4 + 'i.6/ k = 1.0

k=2.67

-rt I

,. - ' \ :·,;,,;·' ~..,,._,,, ~·rt:~,---
'- ::,_ ;,v, 'I .'~,,..~~:.;,-7; ;,;,, ,f,.

~r ·~ \'.i.c~ ; 'c l •'e·· . . ur exploration of computer systems starts by studying the com-
:·::";;('}''', ~~-" · · -" · puter itself, comprising a processor· and a memory subsystem. At
:~;fp~,~~'.1~~1s: ~.~~-" .: ' ~,, the core, we require ways to represent basic data types, such as

">-l•~~>~ .. -~~~-·.,,!·r";>~:.~Pp~o:iimations to integer and real arithmetic. From there, we can con-
" ·' . " ·fA "•· . . ·;, h h' 1 1 . . . 1 d d h ,_~,:--.;.:.-;.,.,+.'"·,.~<:\~ ";t..,. ___ s1uer ow mac 1ne- eve 1nstruct1ons man1pu ate ata an ow a com-«:t;o, "''''~~;!,.("'<':_"'···"' ~~ .

. ~i·t,~t~:~~:~:·';\1 \'.~\:~11~_i'-transla:est progr~ms into these instru~tions. Next, we study s~veral
.... ,.,;,~ :<', ·methods of unj\lementmg a processor to gam a better understandmg of -', :__t,,, "~.4 ,._~ ..), , ' . .
:Ct~~-~~,,-.,>»"> :;ho'Y l!ar_dware resources are used to execute 1nstruct1ons. Once we under­

" 11 ,;~ ~:zi".:: ·~~' ,SJ~pd ~o'mpilers and machine-leVel code, we can examine how to maxi­
·~{;;:~~,. }':'ii· "~\ie J?rogram performance by writing C programs that, when compiled,
.,., ''·>·,;,""' '" ·.·h. ' h . 'bl ' W 1 d . h h d ~~ ~ 1··::·~· ·.'ii'. ~ ·., .pc ieve,, t e maXllllum poss1 e per1ormance. e cone u e wit t e e-
-~ ,.~ ·r;;r "~ .,, ~~. ' .~

·-'~ '~"'/; ~~,- ·,:·;sign bl the memory subsystem, one of the most complex components of i}.}e >·"';"'A,':,; / , ~' ' ' . •
:·:·?'t'~";r~., ;1:··:;· .';._,,f« .;· a<q1odern computer system.
" ~ ~,.,, .,. ' ·" ·> -,, '

:,. · . •,-.,,,•:',, • This part of.the book will give you a deep understanding of how
' <.•· ' '.".. ·~r.ograms are represented and executed. You will gain skills

,;;,.,Jftat !).elp you \vrite programs that are secure, reliable, and make the best
:. '' '.ilse•ohhe codiputing resources. •''. . J

: ·~%"'*!· ~-
~":,-".._ .:

·~ '
·' --· -~··

29

t i

'I ,,,
: i~

-- --·-·

'·'

- -- __ ,.. __ a•'

,.

..

·'

':Representing and Manipulating
Information

2. 1 Information Storage 34

2.2 Integer Representations 59

2'.3 Integer Arithmetic 84

2.4 Floating Point 108

2.5 Summary· 12q"

Bibliographic Notes 127

Homework Problems 128

Solutions to Practice Problems 143

31

----- ·~--·

32 Chapter 2 Representing and Manipulating Information

Modern computers store and process information represented as two-valued
signals. These lowly binary digits, or bits, form the basis of the digital revo­

lution. The familiar decimal, or base-10, representation has been in use for over
1,000 years, having been developed in India, improved by Arab mathematicians in
the 12th century, and brought to the West in the 13th century by the Italian mathe­
matician Leonardo Pisano (ca. 1170 to ca. 1250), be her known as Fibonacci. Using
decimal notation is natural for 10-fingered humans, but binary values work better
when building machines that store and process information. Two-valued signals
can readily be represented, stored, and transmitted-for example, as the presence
or absence of a hole iii a punclied card, as a high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
for storing al\'d performiJ?-g. computations on two-vafoed ,s1gnals~s very simple and
reliable, enabling manufacturers to integrate millions, ·or even billions, of such
circuits on a single silicon chip. . 1 !

In isolation, a single bit is not v'ery•useful. When we groui}·bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate_real num15ers.

We consider the three most important r~presenta,tions of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two's-complement encodings·are the m6st common way to
represent signed integers, that is, numbers that may be either positive or negative.

·I Floating-point encodings are a base-2 version of scientific notation for represent­
ing real numbers. Computers implement arithmetic operations, such as addition
and multiplication, with these different representations, similar to the correspond-

"l•
ing operations on integers and real numbers.

Computer repre§entations'llsea limited,number of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep­
resented. This can lead to some surprising results. For example, on most of today's
computers (those using a 32-bit representation for data type int), computing the
expression

200 * 300 * 400 * 500

yields -884,901,888. This runs counter to the properties of integer arithmetic­
computing the product of a set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
and commutative, so that computing any of the following C expressions yields
-884,901,888:

(500 * 400) • (300 * 200)

((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200 • (300 * 500))

Chapter 2 Representing and Manipulating Information 33

The computer might not generate the expected result, but at least it is con­
sistent!

Floating-point arithmetic has altogether different mathematisal properties.
The product of a set of positive numbers will always be positive, althougp over­
flow will yield the special value +oo. Floating-point arithmetic is not associative
due to the finite precision of the representation. For example, the C expression
(3 .14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3 .14+(1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
versus floating-point arithmetic stem frqm the difference in ho)V.they handle the
finitenes~,of their representation,s-integer representations can encode a compar­
atively small range of values, but do so precisely, while floating-point representa­
tions can encode a wide range o'f values, but only approximately.

By studying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This under,standing is critiCJ1l to writing programs th~t work correctly
over the full range of numeric values and thpt are portable across different combi­
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon­
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people's systems. This puts a higher level of obligation on rrogrammers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with ·these representations as you progress
into machine-level· programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason aboutnumber representations.

We derive several ways to perform arithmetic' operations by directly ma­
nipulating the bit-level representations of numbers. Understanding these tech­
niques will be important for understanding the machine-level code.generated by
compilers in their attempt to optimize the performance of arithmet_ic expression
evaluation.

Our treatment of this material is based on a core set of mathematical prin­
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations. We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a· clear unqerstanding of how computer arithmetic relates to the more
familiar. integer and real arithmetic.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java .. language defiµition, on the other hand, created a new set of
standards for numeric representations and operations. Whereas the C standards
are &signed to allbw a wide range of implementations, the Java standard is quite
specific on the formats and encodings of dat'a .. We highlight the representations
and operations supported by Java at several places in the chapter.

I:'

I
"

·-· -· ____________ ._. ·--..:-=-::...c===--=-::........:1-

34 Chapter 2 Representing and Manipulating Information

, ~ ·f': '"": .,..~ ip.t- " r~t • ;""· tii ,jl'.:t: ~ ~ • ,·:1· °" ~., ·"'"~ i .~ ~::t ~f'e~,;;'t},A:t "'i ~· ~ ;

"'side. How to reac;f·,this ,chapte~ ~ .,, , , ., ,, ' "1>· , ct ''-" , 1 ·1~,Y

In th{s chapter, we examin~~the~(Jtia.am~~ntil'piOp1eiu·es·~oi'~o\v llUrilb~S~~1Jd Jth'if~Qrin~_~i ~tat;~~ -
. represenkd on a c(>fu~u-~ii~~ef tlie-pr?~e?ti~~ of~~\, ~i;~i;,i.~~o_n~ [Ii'\~ 1,o'ql:P,ul~l~"Jle~f~'.fu b~. t-~~s~aata~-
Th1s reqmres us tq cfelV'e-mto:ilie ll!ng\i1lgebf malhfapahcs;'Wr1bnglorlnulas·dha'equat10ns a11t1showmg'
d~rivatiOns of imPSrta:rlt Pr~~;;"ftie~./.{,' ~ \,. ~ .J•·~ """'·'f.~~.,,~.. '·5 ·.tt ttL ~, '.·~ ' _;d'"ol ~ ·, ~

To help you mivlgatl:'tliis" ei'ebsfilon~.,,ie '!i\ve sfrilclurea th'e'pre'seriflitiBn to•ffr~t stale a property :
a~ a p/frieiple in ma;~~µiati~ti1 .~ota;io~:~~ t~ln ill~st.rate iN~J?tinc!pl~~il?.ei~fa:!Pl~'<lnd _an)h[,0;~~1- j
d1scuss1on. We ~ec?~YJe~~·t~a~7d';"&_o ba~k ~n:d:f?r~H betw:en t~~-s~a~~~en;'~) the, p~~!p!e:ai;d,fil.b' •
examples and ihscussmrl until yoll•have a sohd mtmtmnjqr what 1s, bemg said ~nd·whans~mpqrtanr 1
al;>out the proper,ty.~or m6re cblriPJex p.r?pertl,e~,·~\ ;a,ls9):~r'O~id,~ll 'de~"tfia~o~~ s:ruc~upld'.J;l~ch)i~e~'.~
a.mathematical proof. ¥ou'should try to'un:derstand these·denvat1drt! even,llally, but y6'U'could"'Sk1p ~
overthemonfirstre·aOing. ·;~, _·t•:"' .''-..~ . ~~ 't•, ~ g~ ~t.i·~~.' ~~..,

3

• q.t "t,(~1 .. ,.~fi};.- _1.f~fl "1

W~ ~!_so encouf~ge~?;!'~o w-:Or~on lhirrac~~ p~obie~~isy?u p,;oci;,fd1?r~~?~ t~eptest,'!~a~ibn. !
The practice proble!'ls"ngiige'y,ou•m active learmng, lielpn';g you put~hoµghts mfo;action. W1tntJiese.1
as background, yov'will'i\il<l l{muc1i.!'llsi~r'tl:>·g,o·$acli:.aiid·follow tlie'!leiiv~tiong_ Be assdr~d; as \v!'il:" 1

thatJhe mathematicai'sKills'required ti> unde;star\a lhfs'm~tetiill ,ar~ J.ithin &licfi'.of's;,meoiif>·with'a· 1
good wasp of high ~tHooi'aljebpf. "· "'"' ' . " • • "» •))!' ,. '~ •' ~· ''\..' !

,,,;' 1,;:i~,~J.'.'~.~-t "'" .,,, .,,.,..JiJ::. ~~t."~,,,_,!.....,,~,.,, "'.....,} ,~1b. _.,,,.,~~__.~ .. --...... ·I Uw s~:~

·'

2.1 lnfbrmation Storage

Rather than accessing individual bits in memory, most computers use blocks of
8 bits, or bytes, as the smallest addressable unit of memory. A: machine-level
program views memory as a very large array of bytes, referred to as virtual
memory. Every byte of memory is identified by a unique number, known as its
address, and-the set of all possible'addresses is known as the virtual addre~s space.
As indicated by its' name, this virtual address space is just a ·conceptual image
presented to the machine-level program. The actual i)Iiplementation (presented
in Chapter 9) tlses a combination of dynamic random •access memory (DRAM),
flash memory, disk storage, special hardware, and operating system software to
provide the program with what appears to be a monolithic byte array.

In subsequent chapters,. we will cover how the compiler and run-time system
partitions this memory space into more·manageablemnits:to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to all0cate and manage the storage for different
patts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C-whether it,points trr an integer,
a structure, or some other program <;>bject-is the virtual address of the first byte
of some block of storage. The C compiler also associ~tes ·type· information with
each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointeP dependingwn the type of
that value. Although the' C•compiler maintains:this type information, tlie actual
machine.Jevel program it generates has no information about data types. It simply
treats each p<ogram object as a.block of bytes and the program itself as a sequenc;e
of bytes.

Section 2.1 Information Storage 35

i.'!".,,--~ _,......,.,,.~ ·""·'· -- . ""('- ,, --·h'• ·-""' "" i Aside 'fhe evolution of the C programming languag,e' "

I As-was described in an aside on page 4, lhe'C programming lang'Uage w/s first developed by Dennis I Ritchie of Bell Laboratories for.use with the Unix operati~g system '(also developed at'Bell Labs). At

I' the time, pi9st.system programs, such as operating systems, had to be written larg:Iy in assembly code
• in order to;chave access to the low-level representation&of different data'types:.For.example, it was

I not feasible to write a mem' ory allocator, such as is provided by,.the malloc Jibrllry function, in other
high-level languages of that' era. · "

! The origiral Bell Labs ve~1io!' pf C was dofumented \n th.e first edition of the book by .Brian
Kernigh~n and :genri~ Ritcpie (691· Ov,er }ime, C _has evolv~.d tfir0ugh the effortf of several standard­

i izi'tion grpups. The ~rst major revision of }he original Bell~bs. C led, to the AN~I C standard in 1989;
by a 'group working under the auspices of:lhe Amerfoan National Stanilarcli; institute. ANSI C was a

[m~jor departure from B~ll l:~bs C, &p7cia!ly~ the, w?-f functions' are <!?~Jar;;{ ANSI C is descriped.
j i\i the.s";c,o;i<l.e$tio}l of Kernighan ~!'d Ritcnie's,boof [6t], whjch' is stjll considered one of the best.
!. refereµcesonC.,, , , , , . . , , ,
I ,,. 1/le,Jntef!1atipna! ,Sta\lc;lards,grgaoiz~tio,n ,to~k oyer .respp11sibiii\Y for, stand~rdizing the C lao-

1
.guag~, ado. ,Ptio¥ a v,e,rsiqh Jha,t was, sug~~fl\I. [' aUy.:the. sall).i;, as At'$I <;:,'in J. Q91l aoC!- ~ence is referred to
as "ISO G90.'! ' • ' .

• ?J,is.~_arp.~ ?rg.anizaii'?n ~ponso~ed an uJ<lati?g of t~e.Ja~~uai;e,il' i.9~?, yjel<!i\l~ ·:rso C99." Among
o\Jier tl\in.gs,_this, vepjon in\n;>d!lced so~ new ,d~t.~ \YR'?S and p]qviped supl?ort for t.«xt sti;ing! requiring

! cl,Ja~~cJHS not,fqul\9,in 11\~Jli,ig)jsh !'l!IJ;µ~g~. ~IIJ}>r"<;Tcept sfaJl;O!'~~ was ,approyed in 2011, and hence
l i~ named !•rso Cl l," again adding In,ore data types anct·fea(ures'.)\1,ost of th,ese re~ent additions have

1 :been.bafkwar.d 7\'mPi{t,ib!e, mpa.oihg,t~~t pr,ogr,am~ wrjtten acco~.~i~g/? the ep.rlier standard (at least
.. l's.far back;"" ~Sp c~9),)'{1ll havl' ,the same li,?r~vmr wh~n compi.~e.d accc}rdingJo the newer standards.

, ~e,_GNlJ c.orripiler ~oV«ct\on,_(a~) can corp.pi!• P!'9.~~~sAC::d~di!1£t? the l'o'tveµtions of seyeral
, \li\!~rl'nt•ve•?,iqi:;~ p~ t~~ C)~ngu.~e,e;~tt~e;:, on dif\1<r1>nt Y.?P-\D);~:ic\-line opj~ons, as shown in Figure 2.1.

For exampl;, to cqm~Il.l,P{'?gram pro.g,,c acpo1dilfg~o'1S01$!).l, 'YI' ~S?uld g~ve,th.,.command line
~· ~ . ,

J.in~xx-gq,c -is.t~=.tq1,~_'<t'P~og. c~ ' .,,,. . , ~- ,,;• " ,t

• 'th~lo~~ons -..;,:sf Ji;ct -~'d.='cs9- ha;e 'ige~!ic~(eff'ect-tl!e'cod;; 1l SPl!'pil~dJccording to the ANSI
·or ISO C9o'.st:indatd.'(t90'is sBfuetim~'s referred fo as ''C89;' sirice'itsstanda!di~alion effort began iii
·1~s9f'h\~.opti~nn -~d=~99.,cau~es th~):8mpif~r t6Io)JO'{fth<; !S.9 C9\J cqt:v~n~dn. '

.:r .'.As of tlie wiitilig of this book; ~hen no oj:>tio~ is seecified,'the ~ro'ftram will tie compiled according
tQ a,: \ersibrt •tf1 c· Ilased,.on ISO '690; ,but'.jnclucllng ioine '.feaiur~s'\;fc99;°:some of Cll, some of
C++, and.bthers specific to _qcc,.Jlie GNU pr9ject.is developjng a·version that combines ISO Cll,
{?llJ.S,Other {~atures, tli'at c~.rl 1;>11.se1;cified wjtll the ~ommand-)iµj;pptioi:i. -~;g;'.:gnuJL (!=urrently, this
·imple11.1entatiol) is incpmplete.) Thjs will become the·default version.

C version

GNU89
ANSI, ISO C90
ISO C99
ISO Cll

li:. 4

occ command-line option

none,-std=gnu89
-ansi,-std=c89
-std=c99
-std=c11

Figure 2. 1 Specifying different versions of C to GCC.

f - - - -----·------

36 Chapter 2 ·Representing and Manipulating Information

f;e:..,)~ ~~;~~~o·l~;~;;rS'in~~:-~~,,~---~:~ -~---, :~--- ·~ ~.~~·~

l Pciintfas iii:<!' a central leature' of'C. They;provide the mechanism for referencing .elements ·of data
·~tru~tur~s, including' array;;, Just lik,;:a variabl~·a pointer.has two aspects: it; v~lu; andifslype. The.
vallle indicates 'the lo9ation of,,;ome obj;,,,t;•whileits.typeindic~tes wha'.\ klnd'()f object (e.g.,i\1tege'r or
fioatihg'ii~int numjler) is store'd.at t,hatlocation. ; "'

'fruly'understa\1ding pointers requires.examining their representation ancljmplementation a(the

l ;;;'..n~=~~-~'.~:~'.l :~.::~ f~~~s i~~-~~t:~ 3~~l~m:~'.n~ in ~n.~~:t::es~:=i~.~~~ect~~ j

·'

2.'i .1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 000000002
to 111111112. When viewed as a decimal integer, its value ranges from 010 to25510.

N~ither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation it is tedious to convert to and from
bit patterµs. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadecimal (or simply "hex") uses digits 'O' through '9' along with characters
'A' through 'F' to represent 16 possible values. Figure 2.2 shows the decimal and
blliary values associated with the i'6 hexadecimal digits. Written in hexadecimal,
the value of a single byte can range from 0016 to FF16·

In C, numeric constants starting with Ox or OX are interpreted as being in
hexadecinlal. The characters 'A' through 'F' may be written in either upper- or
lowercase. For example, we could write the number FA1D37B16 as OxFA1D37B, as
Oxfald37b, or even /nixing upper- and lowercase (e.g., OxFalD37b). We will use
the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually con­
vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that show,nin·Fi/lure 2.2. One simple trick fqr dojng the conver­
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.

Hex digit 0 1 2 3 4 5 6 7

Decimal value 0 1 2 3 4 5 6 7

Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B c D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1~11

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.

•.

'

·:
'

Section 2.1 lnformatioh·Storage 37

The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three. '

For example, suppose you are given the number Ox173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follqws:

Hexadecimal

Binary
1 7

0001 0111
3

0011
A

1010
4

0100
c

l)OO

This gives the binary representation 000101110011101001001100.
Conversely, given a binary number 1111001010110110110011, you convert it

to hexadecimal by first~plittingH into groups of 4 bits each. Note; Mwever, t!'J.at if
the total number bf bits is not a multiple of 4, you'should make the /eftmosi group
be the one with fewe1 than 4 bits, effectively padding the number with leading
zeros. Then you translate each group of bits into t'I!e corresponding hexadecimal
digit: I

Binary
Hexadecimal

11
3

1100
c

1010 1101
A D

1011
B

0011
3

1.e'mii?e;erame~~~~~,,NM~;~5!i:!lr~
Perform the following number conversions:

A. Ox39A 7F8 to binary

B. 'liiµary 110010010llll011 to hexadecimal

c':. OxD5E4C to binaFy
;.

D. binary 1001101110011110110101 to hexadecimal

When a val~e xis a power of 2, thahs, x = 2n for some ljonnegative integer
h, we can readily ~ite' x in hexadecimal f6rrn by rememb'erihg that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal tligit o
represents 4 binary zeros. So, fo{ n written in th~ form i + 4j, where 0::; i ::; 3,

' ,.. ' ~ I
we can write x with a leading hex digit of 1 "(i = 0), 2 (i = 1), 4 (i = 2), or 8
(i = 3), followed by j hexadecimal Os. As an example, for x = 2,048 = 211 , we
haven'= 11 = 3 + 4 · 2, giving hexadecimal representation OxSOO.

!m'l$tis~Bf®~l.li'llillil~'ii:'.i>liiBfi~B"m~:'1;w~
Fill in the blank entries in the following table, giving the decini'ai and hexadecimal
representations of different powers of 2:

n 2" (decimal) 2" (hexadecimal)

9 512 Ox200

19 ---
16,384

Ox10000

17
32

Ox80

Converting between decimal and hexadecimal rj'>presentations requires using
multiplication or division to handle the general case. To convert a decimal num­
ber x to hl'xadecimal, we can r~peatedly divide! by 16, giving a quotient q and a
remainder.r, such thatx = q ··16,l;r,. We then use the hexadecimal digit r\'present­
ing r as the least significant digit·and generate the remaining digits by repeating
the process on q. As an example, consider the conversion of decimal 314,156:

•314,156 = 19,634 · 16'+ 12 (<l)

19,634=1,227 · 16 + 2 (2)

1,227 = 76 · 16 + 11 (B)

76 = 4 · 16 + 12 (C)

4 = 0 . 16 + 4 (4)

From this we can read off the hexadecimal representation as Ox4CB2C.
Conversely, to convert a hexadecimal number to decimal,, we can multiply

each of the hexadecimal digits by the appropriate power of 16. For example, given
the number Ox7AF, we compute its decimal equivalent as·?· 162 + 10 · 115 + 15 =
7. 256 + 10. 16 + 15 = 1,792'"'t-160 + 15 = 1,967.

!m'.t1ke~ffimfem'~;liHB'itl;s~il!iii1~ :tar iif~Ctsi~
A.single.byte can,,pe represented by,2 hexadecimal digits.,Hll in the missing
entries in the follo}Ving table, giving the d~cimal, binary, ahd hexadecimal values
of.different byte, patterns:

Decimal Binary Hexadecirtlal
·~ 0 00000000 OxOO

167
62 ---

188
00110111
10001000
11110011

,

·1 ;
i
' r

'

i
'i
•

Section 2.1 lnformatidn Storage 39

Decimal Binary Hexadecimal

Ox52
~ ---- OxAC

--- OxE7

~'.#::&m6~l'!l!E'm1:aE~$Ji~B~~,~~
' •' '~ II

With'?lfl qom:e.rting the mµ,nb~rs. to decjmal oi l)inary, try to solve the following
arithmetic. f>roblems, giving .tl';e ~nsw~rs in hexadecim'IL Hint: Just modify t~e
methods you use for perf9~ming.decimal addition and subtraction to use b?se li5.

A. Ox503c + Ox8 = ___ _

B. oxso3c - 0>:40 = ___ _

C. Ox503c + 6,4 = ~_.,.,__

D. Ox50ea - Ox503c = ___ _

2. 1.2 Data Sizes

Every computer has a word size, indicatipg the nominal size of pointer data. Since
a virtual address is encoded by such a word, the most important system parameter
determined by the word size is the maximum size of the virtual address space. That
is, for a machine with a w-bit word size, the virtual addresses can range from 0 to
2w - 1, giving the program access to at most 2w bytes ..

In recent .years, there has been a widespread shift from machines with 32-
bit word sizes to those with word sizes of 64 bits. This occurred first for high-end
machines designed for large-scale scientific and database applications, followed
by desktop and laptop machines, and ll).Ost recently for the processors fouQ.,q _in
smartphones. A 32-bit word size limits the virtual address space to 4 gigabytes
(writteh 4 GBj, that is, just over 4 x ·109 bytes. Scaling up to a 6~bit word size
leads to a'virtual address space of 16 exabytes, <lrarourid 1.84 x 1019 bytes.

f---------

40 Chapter 2 Representing anct Manipulating Information

Most 64-bit machines can also run programs compiled for use on 32-bit ma­
chines, a form of backward compatibility. So, for example;i;hen a program prog. c
is compiled with the directive

linux> gee -m32 prog.c

then this program will run correctly on either a 32-bit or a 64-bit machine. On the
other hand, a program compiled with the directive

linux> gee -m64 prog.c

will only run on a 64-bit machine. We will therefore refer to programs as being
either "32-bit programs" or "64-bit programs," since the distinction lies in how a
program is compiled, rather than the type of machine on which it runs.

Computers and compilers support multiple data formats using different ways
to encode data, such as integers and floating point, as well as different lengths.
For example, many machines have instructions for manipulating single bytes, as
well as integers represented as 2-, 4-, and 8-byte quantities. They also support
floating-point numbers represented as 4° and 8-byte quantities.

The C language supports multiple data formats for both integer and floating­
point data. Figure 2.3 shows the number of bytes typically allocated for different C
data types. (We discuss the relation between what is guaranteed by the C standard
versus Jhat is typical in Section'2.2.) The exa~t numbers of bytes for some data
types ctepends on how the program is' comflilea. ·we show sizes for typical 32.-8it
and 64-bit progra'nis. Integer data can be either sig'neli, able to represent negative;
zero, and positive values, or unsigned, only allowing nonnegative values. Data
type char represents a single byte. Although the name char derives from the fact
that it is used to store a single character in a text string, it can also be used to st~re
integer values. Data types short, int, and long are intended-to provide a range of

C declaration Bytes

Signed Unsigned 32-bit 64-bit

[signed] char 1J.D.S igned char } 1
short . ~signed short 2 2
in~ vnsigned 4 4

long unsigned long 4 8
int32_t uint32_t 4 4

int64_t uint64_t 8 8

char'* 4 g.
float 4 4 "
double 8 8

Figure 2.3 Typical sizes (in bytes) of basic Cdata types. The number elf bytes allocated
varies with·how the program is compiled. This chart shows ihe values typiqil of 32-bit,
and 64-bit programs.

• ~ .,
' '
\

•
~
l

"

I
\
'

)

Section 2.1 Information Storage lll

~ ~-~',;, • ..,_.,,,.,9'0 ~ ·~'ff""'~----''t'"-'.~1''1'1!!"~~ ¥ ~--....~";'""_'_ ~

! '.Jl;lt:~. t~ <:_7 De,clarfnsipqinter~ , ..•
1 For any data type T, the declaration

''-!i,

indicates that pJs a·pointer variable, pointing to an object of type T. For example,
,!;, ' "'" "I I.~ ~! .,_ ~ .. :;,... ,p

chai; *P ;~~

is the declaration of a pointer Jo' an object of type char.
' -----·-----~--------~ '""'"''"""""""'"'"'''''i'"";o/l""--... ----,,...,.,.,,_.,.~,,.,. .• -,,,....,..,.....J--...."

sizes. Even when compiled for 64-bit systems, data type int is usually just 4 bytes.
Data type long commonly has 4 bytes in 32-bit programs and 8 bytes in 64-bit
programs.

To avoid the vagaries of relying on "typical" sizes and diffi:rent compiler set­
tings, ISO C99 introduced a class of data types where the data sizes are fixed
regardless of compiler and machine settings. Among these are data types int32_ t
and int64_ t, having exactly 4 and 8 bytes, respectively. Using fixed-size integer
types is the best way for programmers to have close control over data represen­
tations.

Most of the data types encode signed values, unless prefixed by the keyword
unsigned or using the specific unsigned declaration for fixed-size data types. The
exception to this is data type char. Although most compilers and machines treat
these as signed data, the Cstandard does not guarantee this. Instead, as indicated
by the square brackets, the programmer should use the declaration signed char
to guarantee a l'byte signed value. In many contexts,)lowever, the program's
behavior is insensitive to whether data type char is signed or unsigned.

The C language allows a variety of ways. to order .\he keywords and to include
or omit optional keywords. As· exa!"ples1 all· of the following declarations have
identical meaning:

unsigned long

unsigned long int

long unsigned

long unsigned int

We will consistently use the forms found in Figure 2.3.
Figure 2.3 also shows that a pointer (e.g., a variable declared as being of

type char •) uses the full word size of the program. Most machin~s also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double. These formats use 4 and 8 bytes,
respectively.

Programmers should strive to make their programs portable actoss different
machines and compilers. One aspect of portability is to make the-program insensi­
tive to the exact sizes of the different data types. The C standards set lower bounds

- ---~- ---- - -m"'~':..= ~- ~ -·---- --- •• ----------- • •

42 Chapter 2 Representing and Manipulating Information

on the numeric ranges of the different data types, as will be covered later, but there
are no upper bounds (except with the fixed-size types). With 32-bit machines and
32-bit programs being the dominant combination froJ!l aroun,d 1980 until around
2010, many programs have been written assuming the allocations listed for 32-
bit programs in Figure 2.3. With the transition to 64-bit machines, many hidden
word size dependencies have arisen as bugs in migrating these programs to new
machines. For example, many programmers historically assumed that an object
declared as type int could be used to store a pointer. This works fine for most
32-bit programs, but it leads to problems for 64-bit programs.

2.1.3 Addressing ·and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory.
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given \>y the smallest address of the bytes
used. For example;suppose a variable x of type int has address Ox100; that is; the
value of the address expression &xis Ox100. Then (assuming data type int has a
32°bit representation) the-4 bytes of x would be stored in memory locations Ox100,
Ox101, 011:102; and Ox103.

For ordering the bytes representing an object, there are two common conven­
tions. Consider aw-bit integer having a bit representation [xw-1• Xw-2• ... , x1.·xo].
where xw-l is the most significant bii and x0 is the least. Assumjng w is a multiple
of 8, these bits can be grouped as bytes, with the most"significant byte having bits
[xw-lo xw_2, ... , xw-s], the least significant byte having bits [x7, x6, ... , xo]. and
the other bytes having bits from the middle. Some machines choose to store the ob­
ject in memory ordered from least significant byte to most, while other machines
store them from most tb least. The former convention-where the least significant
byte comes first-is·referred to as litt/e:endian. The latter convention~where the
most significant byte comes first-is'\-eferred•to as big endian'.

Suppose the variable x of type int and at address Ox100 ha~ a hexadecimal
value of Ox01234567. The ordering of the bytes within the address range Ox100
through Ox103 depends on the type of machine:

Big endian
Ox100 Ox102 Ox103

Little endian
, Ox190 Ox~pl Ox102 .,Ox103

Note that in the word Ox01234567 the high-order byte has hexadecimal value
Ox01,while the-low-order byte has value Ox67.

Most Intel-compatible machines operate exclusively in little-endian mode. On
the other hand, most machines from IBM and O~acle (arising from their acquisi-

i
~
\
'

.,

Section 2.1 Information Storage 43

f" - --~ - .. .,,.,,,,.,,, --- "'l:

! A~ldti, Origin qi "endian" ,

t·Here is fiow Jonathan Swift, writing in 1726: described the history of the controversy between big and

I little endiahs: "
l' l.

_

1

1 ... Lilliput ap.d Blefuscu ... have, as I was going to tell you, been engaged in a most obstinate war
"· for six>and-thirty inoons.past. It began upon the following occasion. It is allowed on all hands, that

the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present

I
' majesty's grandfather, while he was a boy, going to eat an egg, and breaking.it according to the

nap,cient practice, happened to·cut one of his finger$. Whereupon the emp6ror his father published
!
1
• an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs .

• The people so highly resented this law,Jhat our histories tell us, there nave been six rebellions raised
f on that account; Wherein one emperor lost his life. and another his crown. These civil commotions

were constantly fomented by the monarchs of Blefuscu; and when they were.quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several

: times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
I •large volumes have be~n-ptlblished upon this controversy: but the books of the Big-endians have
I been long fOrbidden, ana the whole party rendered incapable by law of holping employments. ! (Jonathan Swift. Gulliver:S Travels, Benjamin Motte,'1726'.) ~

I In his day, Swift was satirizing the continued confli~ts,between Englap,d (Lilliput) ?ndFrance (Blefuscu).
Danny C?h,~n, an ,early pion.eer in networking protoc;,Ols, first applied, th~se te.rms to refer to byte

1
ordering [24], and the terminology has b.een.widely adopted.

' - ..

tion of Sun Microsystems in 2010) operate in big-endian mode. Note that we said
"most." The conventions do not split precisely along corporate boundaries. For
example, both IBM and Oracle manufacture machines that use Intel-compatible
processors and hence are little endian. Many recent microprocessor chips are
bi-endian, meaning that they can be configured to operate as either little- or
big-endian machines. In practice, however, byte ordering becomes fixed once a
particular operating system is chosen. For example, ARM microprocessors, used
in many cell phones, have hardware that can operate in either little- or big-endian
mode, but the two most common operating systems for these chips-Android
(from Google) and IOS (from Apple)---0perate only in little-endian mode.

People get surprisingly emotional about which byte ordering is the proper one.
In fact, the terms "little endian" and "big endian" come from the book Gulliver's
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened-by the little end or by the big. Just like the egg
issue, there is'no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about sociopolitical
issues. As long as one of the conventions is selected and adhered to consistently,
the choice is arbitrary.

For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identi­
cal results. At times, however, byte ordering becomes an issue. The first is when

44 Chapter 2 Representing and Manipulating Information

binary data are communicated over a network between different machines, A
common problem is for. data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being
in reverse order for the receiving program. To avoid such problems, code written
for networking applications must follow established conventions for byte order­
ing to make sure the sending machine converts its internal representation to the
network standard, while the receiving machine converts the network standard'to
its internal representation. We will see examples of these conversions in Chap-
ter 11. ~

A second case where byte .ordering becomes important •is when looking at
the byte sequences representing integer data. This.occurs often when inspecting
machine-level programs. As an example, the following line occurs in a. file that
gives a text representation of the machine-level code for an Intel x86-64 processor:

4004d3: 01 05 43 Ob 20 00 add %eax,Ox200b43(%rip)

This line was generated by a disassembler, a tool thaw:letermines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3.- For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 43 Ob
20 00 is the byte-level representation of an instruction that adds a word of data
to the value stored at an address computed by adding Ox200b43 to the current
value of the program counter, the address of the next instruction to be executed.
If we take the final 4 bytes of the sequence 43 Ob 20 00 and write them in reverse
order, we have 00 20 Ob 43. Dropping the leading 0, we have the value Ox200b43,
the numeric value written on the right. Having. bytes appear· {n, reverse order
is a common occurrence when reading machine-level program representations
generated for little-endian machines such as this one. The natural way to ,write a
byte sequence is to have the lowest-numbered byte on the left and the highest on
the right, but this is contrary to the normal way of writing numbers with the most
significant digit on the left and the least on the right.

A third case where byte ordering becomes ·visible is when· programs are
written that circumvent the normal type system. In the C language, this:can.be
done using a cast or a union to allow an object to be referenced according to
a different· data type lfrdm which it was created. Such• i:oding·tricks are strongly
discouraged for most application programming, but they can be quite useful and
everi necessary fop system-level programming.

Figure 2.4 shows C code •that uses casting to access and print the byte rep­
resentations of different program objects. We use typedef .to define data type
byte_pointer as.a pointer to an object of type unsigned char. Such a byte pointer
references a sequence of bytes where each byte is co,nsidered to be a nonnega­
tive integer. The first routine shw-'-bytes is given the address of a sequence of
bytes, indicated by a byte pointer, and a byte count. The byte count is specified as
having data type size_t, the preferred data type for.expressing the sizes of data
structures. It prints the individual.bytes in hexadecimal. The C formatting direc­
tive % . 2x indicates that an integer should be printed in hexadecimal with at least
2 digits.

#include <stdio.h>
2

3 typedef unsigned char *byte_pointer;
4

5 void show_bytes(byte_pointer start, size_t len) {
6 int i;
7 for (i = O; i < len; i++)
8 printf(" %.2x", start[i]);
9 printf(11 \n 11

);

10 }

11

12 void show_int(int .x), {
13 show_bytes((byte_pointer) &x, sizeof(int));
14 }

lS

16 void show_float(float x) {

17 show_bytes((byte_pointer) &x, sizeof(float)·);
18 }

19

20 void show_pointer(void •x) {
21 show_bytes((byte_pointet) &x, sizeof(void •));
22 }

Section 2.1 Information Storage 45

Figure 2.4 Code to print the byte representation of program objects. This code
uses casting to circumvent the type system. Similar functions are easily defined for other
data types.

Procedures show_int, show_float, and show_pointer demonstrate how to
use procedure show_bytes to print the byte representations of C'program objects
of type int, float, and void ~;·respectively. Obs~rve•that they simply pass sh6w_
bytes a pointer &x to their argument x, castiqg the_pointer to be of type unsigned
ch.:r •.This cast indicates to the. c"bmpiler thai tJil!·p~ogram sho.4Id consider the
pointer to be to asequence of bytes rather than to" an object ot'the original data
type. This pointer will then be to the lowest

0

\Jyte address occupied by the object.
These proce,dures use \he C s~zepf operator tq del,ermine the nµmber ofbY.tes

used by the object. In general, the expression s~zeof (T) returns the number ,of
bytes require~ t\) store an object of type ;r. \Ising si~e~f ;pther th31n a fixed xalue
is one st-;p t9w,ard 'Yfj!ip.g code that is.imrtable acrqss .~ifferynt z,nachine,\yp\'s.

We rai;i tJt~ cqde sh,9wn.in Fig\ire·2.5 oi;i.~e}\yral di.fferent m~chines, giving the
results sJ;lo"(n in.Figl\f,e i2.6. The following mi'l'Jlinefi were used:

Linux 3:i
Windqw~

Sun

Linux 64

l'. ' Intel IAJ2 processor runnillg Linux.
, It ,

Intel IA;32 processor i;u,nning Wind9wfi. , 1
Sun Microsystems SPARC processor running Solaris. (These machines

are now produced by Oracle.) ·'
Intel x86-64 processor running Linux.

n ----co ____ --=--~"·-··

46 Chapter 2 Representing and Manipulating Information

------------------------ code/data/show-bytes.c

void test_shoW_bytes(int val) {
2 int ival = val;
3 float fval = (float) ival;
4 int •pval = &ivaif
5 show_int(ival);
6 show_float(fval);
7

8 }

show_pointer(pval);
-,

------------------------ code/data/show-byte&c

Figure 2.5 Byte representation examples. This code prints the' byte represen(ations
of sample data objects.

'"
Machine Value ~pe Bytes (hex)

Linux32 12.345 iqt 39 30 00 00

Windows 12,345 int 39 ~o oo oo
Sun 12,345 .int 00 00 30 39

Linux 64 12,345 int 39 ;io oo oo

Linux32 12,345.0 float 00 e4 40 46
Windows '12,345.0, float '00 .e4·40 ,46 "
Sun 12,345.0· float 46 41Ye4 00
Linux64 12,345.0 float 00 e4 40 46

Linux.32 &ival int* e4 f9 ff bf

Win<jpws &ival int* ,b4 cc 22 00

Sun &iva~ int.* ef ff fa Oc

Livux64 &ival int~:t:~1 ·b8 11 e.5 ff ff 7f 00 00

Figure ~.6 Byte representatio[l~ of different data '!alues. Results for int and float
are id~ntical, except for byte ordering. Pqinter values are machine d~penCtent.

Our argument 12;345 has hexadecimal representation OxOOOb3039. For the int
data, we get identical results for all machilles, e'xcept for the byte ordering. In
partfoular, we'can see that the least significant byte value of Ox39 is·printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of th'e float data
are identical, except for the byte ortlering. On the other hand,"thep'binter values
are completely different. The different µiachine/operating system configurations
use different conventions for storage ~lloca:tion. One feature to note is that the
Linux 32, Windows, and Sun machines use 4-byte addresses, while the Linux 64
machine uses 8-byte addresses. 1

Section 2.1 Information Storage 47

! New to C? Naming data typeswith typedef

I The typedef declaration in ~ prqvides a way of giving a name to a dataJype. This can be a great help
i in improving code readability, since deeply nested type declarations can be difficult to decipher.,
l The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
i rather than a variable name. Thus, the declaration ofbyte_pointer in figure 2.4 has the sam,e.form as

the declaration of a variable.of type unsigned char_'>.
For example, the declaration

typedef int •int_pointer;
t int_pointer ipi

defines type int_pointer to be a pointer to an int, aJld declares a variable ip of this type. Altematfvely,
I we could declare this variable directly as '
I ,. ,
l int •ip;
~' ..- -·- -~ - '1M --- --- ~-··"'·.,...

- ..,...,..,. -------.... ~-""'l:;w··~~--~ 'fi',; -·-· /ff.

New to C? Formatted printing with printf

The priritf'function (along with its cousins t"printf and sprintf) provides a way to print information
with considerable control;over"the formatting details. The first argument is a Jormat string, while any
remaining arguments are values to be printed. Within the format string, each c)laracter sequence
starting with '%' indicates how to format" the next argument. Typical examples in~lude %d to print a
dec_imal integer, %f to print a floating-point numper, and %c to print a character having the character
code given by the argument.

Specifying the formatting, of fixed-size d~ta types, such as int_32t, is a•bit more involved, a~ i~
describectfu. the aside on page 67.

Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: Ox00003039
for the integer and Ox4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

0 0 0 0 3 0 3 9
00000000000000000011000000111001

4 6 4 0 E 4 0 0

01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating­
point formats.

r
I
f
I
!

i ,,

48 Chapter 2 Representing and Manipulating Information

New to <:7 Pointers.arid ?rrays

' Iµ'fimction'shOw~bJ!:tes tF!gure-214), "[e see•Jh<!,.close'cotlne9,tipµ betwe~1j'point1!rs ah<1array~' as,w[l!
be discussed in detail in Section·:J:8. We\S<!e'that•t!Jis functio11'1tas'an'argument's'tart of.type'bJ'te_
pointe>; (which' has been:defined,'to b~.:! poinfer.tb:dns.;l~e'd' chaf),'Qut''we·;ee'the acyay refer.ence
staI''t t~1"'0n line 8. lll'l=,'yle'!:Al],'depJferensef a p§ihter:,Yjth arrafnotation, and. we·eart reference'ai;ray
elements with pointer notailon. In this example; the•reference start [i] inafoates tharwe want to reaa
th~•byte that is· i posifions beyonct'!he lbcatfon 'pointe1itciJ>~'ital;t, • ,. r ~ " ·

r;.~;:, .;;·ti :po]i;"'~;·fre;tibn •anif ~;;~;eten.cih~~:-·--i' ·• ·:, -.. :· .. ,- · ;-: · "'· ·,, ~·-· ·;:w~ · !
., ~ ~ '¢'. ·~ ""1, ··~ "t .

In lines 13, 17, and 21 of Figure 2.4 we see.uses'Of two oper\lgons that.give C (and therefore Ci'+) its·1
~ distinctive character. The£ ·~ddress o~!' opera.tor·~· .crea!~s a P'?!fit~r.~If.ah.threellneS, t~e expf~ssion ·.

&x creates a pointer to: the locati.oh holding the. opject i\ldicateq tiyvarjably x. Tl).e type'of this.pointe(1
•depends on the tyPe of•x;and hen~ these thiee pointers'are"ofotype•int *',float~. and void"i<*', !

respectively, (Data type void • i~ 3' special kind olpoi~te~ will\ n~ ass~cfate)l type)nformation.) . l
The cast operator converts from, one data. type to:a:fiotll1't. Tiiils,• .the C"as!"Cllyte'_po'inter) ·&x 1

iad[c~,\e~ that. ~h. a~eye~,t,ype JIJ~·J?i'lint~i; &11 .ha~." b.efo. r~, tho;. pr1i,g. ra. m .vjll V°'Y, r.efere_nce '.'. po .. ins~r tp, j .. ·
~ data qftype,unsj.gned ch'4i. !h~ casts shown hen; dq.nof change,th,e 11ct~al pomter; th,'ii''Sp!PlY, d1rect j
t th~ ~~piler:,?~fe,~t~ ~::~~:.~~in~~poin~~~=~~c~:~d~:~~ ~~~:~Re~~~~~= ~~~,,~-·~~~~-:~~,~-J.J

~ "'" ~ .. ~""' "" .• ~ .,,.. '"' ~ ~ ~, >!' """''"""""· '"!o'-~ _.,,. .._,,,_""",..~J--ryr""'"f'"-~-~-~

Aside Generating anA;>Cli,table ,,, I
Yo.: ca~ a_isplay a ta~le~h~.wi~g ~h~ A~~U~.~~r.a~~,~~~:~; e:~~~~g~the :~~:~~~; ~~i~··· ..

l!'!<iUfi:'.'e;tlS!i'1ttttf'~~~~~,:t:zw;1k~l~t~~~.'ib~
Consider the following three· calls to show _bytes:

int val k Ox87654321;
byte_pointer valp = (byte_pointef) &val;
show_bytes(valp, 1); /•A. •/
show_bytes(valp, 2); /• B. •/
show_bytes(valp, 3); /• C. •! ..

Indicate the values that will be printed by each call on a little-endian machine
and on a big-endian machine:

A. Little endian: ___ _ Big endian: __ _

B. Little endian: ___ _ Big endian: ____ _

C. Little endian: ___ _ Big endian:

Section. 2.1 Information Storage 49

tttt~&te~liiJl1lltflrilli' i!lfifl~,mB
' Using show_int and show_float, we determine that theinteger 3510593 has hexa-

decimal representation Ox00359141, while the floating-point number 3510593.0
has hexadecimal representation Ox4A564S~.

A. Write the binary represen\ations of these two hexadecimal values.

B. Shift these two strings relative to one another. to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?
' ,

2.1.4 Representing Strings

A string in e is encoded by an array of characters terminated by the null (having
value O) character. Each character is represented by some standard encoding, with
the most common being the ASCII char,a~ter code. Thus, if we run our routine
show _bytes with arguments "12345" and 6 (to include the terminating character),
wegettheresult3132 33 34 35 00.0bservethattheASCIIcodefordecimaldigit
x happens to be Ox3x·, and that t(le terminating byte has the hex representation
OxOO. This same result would be obtained on any system using ASCII as its· '
character code, independent of the byte ordering and word size conventions. As
a consequence, text data are more platform independent than binary data.

What wiiild !)e prm't~d as a result of the ~<;>}lowing call to show_byt~s?

const char *S = 11 abcdef"i
show_bytes((byte_pointer) s, strlentsJ);

,
Note that letters 'a':through 'z' have ASCII codes Ox61 through Ox7A.

2. 1.5 Representing Code

Consider the following C function:

1 int sum(int x. int y) {

2 return x + Yi
3 }

"

When compiled on our s,ample machines, we generate machine code having
the following byte representations:

Linux32

\Yin~ows
Sun

Linux64

55 89 e5 8b 45 Oc 03 45"08 c9 c3 ,
55 89 e5, ?b 45 Oc 03 45 Q8 5d c3
81 .c;.3 eo 98 ~o 02 90 09
55 48 89 e5 89 7d fc 89 75 f8 03 45 fc c9 c3

" l

"

(-.
!
l
I

' I
I

I
I

---- --- .. ~~

50 Chapter 2 Representing and Manipulating Information

.,,,,,,,,,,,_._..,,,,,,,,. __ _,,,,.,_, W""":"'f!"''-'" ~ ·~"" f,., 'k
, Aside The UniC<;icje,stanc;lardJprte~t encpdin\1 . % •

4. 'The ASCII charac;e:.seiis.:suita)>1~'.for,eJt~o~ing'~~~f~~,JJ;i~ge .iio~dm~:!;,:qut.i\:do~ n.,~F hpv~, j
, inuch'in th~ way,6f sp~gal ch'ara9ter~ suc!J,_'",s•the 1're,?c~_(f·~~~s,,~h~~ly :li~l;ui~~ f0r encoding j
1

. documents m lan11uages such as Greek, •Russrnn;•and Ch1pese .• 0ver !he years; .• 'i\ vanety·'Of methods ·,
'have been cleveloped to encode texi'Mr .. d{ff~\'J\r !~µgua'ges~"{\i~~P»illba~;ccin~brtifun'h.~s ;{evis~d th~
most comprehensi{>e'and witlel:{acc'e~le<!:Standar,d•for,eneoding text.11Jie current·UnicOde ~tandard l

' '..(versiqn 7 .0) has ~ repert?ire of over 100:000· cM'ra~t~rs suppprliil,g.a,:wide raij'ge·of!angUltges, 'irlc,l,\uling, I
the ancient la~guages _of Egyp.t ancl B'ab~f(J~· 1:?Jh6ii; ~e~i~~.!1le,J.Jpi9;~cl.~l~~c~l. 9PC1ll'M!f r reject_';d
:i,proposa.l to msl];!de'astanpard wnt1ng fo~KhnJlon1 a1ict10pal cmhzalto!J;.fromJhe,telev1s1on senes

I' ,:,tar Trek.
0

• • ~ • *. -1,,, • • _ '""

1 . The b'lse enc0,cling, known as.~qe "Univ_ef%~l'Clt:"~~-ter:5i~t"'<if l(n\f;ll~~· JI}~·.~ 3,2-b.i! reJ'~esen,fa- J
!ton of characters. TJus :.vould seem.to i;.eq1!1re eve~y sttmg',of text to consist ofjfbytes,Jlei; chai;acte~« '
fl.owevpr, alternatiye codings.are possible where comhlo11 charac}l!rs.requ[re.just'1 qt 2;,by)es, while.,.
less common ones requirecmore.In]larticul~tl thb~~S"tepfe'lien,tation'encodes each'.chara1::ter as a
s:~uen!"' of.bytes, su~h that.th~.stlt~dard;Asqn fqa:act:~s:u!~ .. t.he s,.l~€ sfogle,byte encodings as th~tj
,have m; ASCII, implying that.al) ASC!j' liyte se51uences,h,ave,t,he same m<l'anmg m·U'IF"'S as:they>do m· ··.
ASCII. ' 't, ,.;;.~ ill,~ , '- t:~~ .-~· ""'"" .. ~--~ ~ .,,..., #tt· "" ~ J/I

:J:he J~vA p~bgiaITnt)i,~g langua'.ge)ises l:{nicod~ 41(its 'repies,entations ots'lfings.:Program libraries
ai;e also available for C to support Umoode. • , • .., • .1t' ... ~, ' •• •

~.,,,,.,,,,,,,,.,,. ~ ... ,.,,;... --,, ~J ~--·'-•-·-'""'--'-"""":.,....i;...~--.. 1·•·-'"'""-~~----·"'"'"-'

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encoding& Even identical proces­
sors running different operating systems have differences in their coding conven­
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simplfa sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.6 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, stpre, and manipu­
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815-
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate
an algebra that captures the basic principle~ of logical reasoning.

The simplest Boolean algebra is defined over the two-element set (0, 1).
Figure 2.7 defines several operations in tliis algebra. Our symbols for representing
these operations are chosen to match those 'used by the 'c' bit-level operations,

t l
'

0
1

1
0

&

0
1

0 1

0 0
0 1

0
1

0 1

0 1
1 1

0
1

0 1

0 1
1 0

Section 2.1 Information Storage 51

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
TRUE and FALSE, while operations-,&, I, and - encode logical operations NOT, AND, OR,

and EXCLUSIVE-OR, respectively.

as will be discussed later. The Boolean operation - corresponds to the logjcal
operation NOT, denoted by the symbol ~. That is, we say that ~P is true when
P is not true, and vice versa. Correspondingly, - p equals 1 when p equals 0, and

0

vice versa. Boolean operation & corresponds to the logical operation AND, denoted
by the symbol /\. We say that P /\ Q holds when both P is true and Q is true.
Correspondingly, p & q equals 1 only when p = 1 and q = 1. Boolean operation
I corresponds to the logical operation OR, denoted by the symbol v. We say that
P v Q holds when either P is true or Q is true. Correspondingly, p I q equals
1 when either p = 1 or q = 1. Boolean operation - corresponds to the logical
operation EXCLUSIVE-OR, denoted by the symbol$. We say that P $ Q holds when
either P is true or Q is true, but not both. Correspondingly, p - q equals 1 when
either p = 1 and q = 0, or p = 0 and q = 1.

Claude Shannon (1916--2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master's thesis, he showed that Boolean algebra could be applied t'o the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over bit
vectors according to their applications to the matching elements of the arguments.
Let a and b denote the bit vectors [aw-I> aw-2• ... , ao] and [bw-1> bw-2• ... , bo],
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals a, & b1, for 0::; i < w. The operations I,-, and - are extended to
bit vectors in a similar fashion.

As examples, consider the case where w = 4, and with arguments a = [0110]
and b = [1100]. Then the four operations a & b, a I b, a - b, and -b yield

0110

& 1100

-0100

0110

1100

1110

0110

- 1100

1010

- 1100

0011

fl>)'is.fis~:ero&ie.;'I 2.8 /solution pag~: lili: •'• ' ' ' ' ":; ;,,, : wrnn;·;J
Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.

,~

. ' I

- - -· - ------·-· - . - ----. --- -- - . ~

52 Chapter 2 Representing and Manipulating Information

·~

Web Aside DAT~:BC?Ol· More•dn, Bqolean algebra and Bo?lean rings I
The Boolean operations I, &:, and - operating OI\ bit vectors of length w form a •Boolean algebra, ,

' for any integer 'I!> 0. The,sj!"plest j.•;,;he cas~.::Vh~>r.e w .= 1 \ll'd.t~ere.are•jpst two elements, bµt for
1 the niore general qse th.ere are zw \Ji! vector's of length w. Boolean algebra has·m~ny of JJi; same

' properties as·aritlun'etic over integers.'Fo~ exampl~. ju~i as multiplication distributes ~ov,ei, additio!l. ~
written a· (b + c) =(a ··b) +(a 'c), Booleiinb{'eration& djstributes over I, written a & (b I cY= \a & bH J

• (a & c). ln addition, liowever. Boolean operation I distributes over&, and so we can write a I (b & c) = 1
, (a I b) & (a I c), wh .. reas we can11ot say that a .. + (b · c) =\a +·b). · (a+ c) holdsJ?'.r all integ~rs. ~

,When we cot\sj_der o'p-:rationef-, &, !')ld,:='oper~tin& on 'bit vecto.rs oflength •w, we get a differenf I
m~th~matical fprr:i: knO}"Q as a Boo(ean ring. Bocilean rings haye kanyiptpp~~tie~ in ~binmon with, 1
integer arithmetic. For exam'ple, qn~piopert~ o~ inte~er ~r1$;bmeiic i§~thit ev~IYvalue f~has 8.h ,additive 1
inver,re -x, such that x + -;:'= p. A_timil,ar prop<;r1y h,?lds f~r.J?oolean rin,gs,where - is the "~d,dition" J
operation, but in t~is c~se ~eacb ~e~em~~~!is its ~w? addit~ve, i:t1v~r~e; ~at _is, a - a = 0 f;~i any .~al~e a, : .

, where we use O.here. t'.' n;present a ~:t v. ector o .. f all.z.~rf!,S, \Y<;, can s. ee .this q9lds fo}•smgle bits, smce

1 0 - 0 = 1 - 1 = 0, ancj it e)\tends to b1,t vecior~ a~ we!\. This property hold,s even when;we rearrange t~rms
and combine tl)em in a different order, ancr so (a ~ b J - a = b. ni\s property leads lo som"interestin& I
results and clever trick~, as ;We whl ~xpfort in Pro~lem 2)0. > 1

___ _.. __ ,,.. "'~~--·-"' ,,, ___ _.,_ -, ,,..,,_.,,.--~<I' ,., ----~

Operation Result

a [01101001]
b [01010101]

-a

-b

One useful application of bit vectors is to represent finite sets. We can encode
any subset A~ (0, 1, ... , w - 1) with a bit vector [aw-I• ... , a1, ao]: where a;= 1 if
and only ifi E A. For example, recalling that we write aw-I on the left and a0 on'the
right, bit vector a = [01101001] encodes the set A = (0, 3, 5, 6), while bit vector b =
[01010101]encodes the set B = (0, 2, 4, 6}. With this way of encoding sets, Boolean
operations I and & correspond to set union and intersection, respectively, and -
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector [01000001], while A n B = (0, 6].

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program.:We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 irl
bit position i indicates that signal i is enabled and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.

Section 2. 1 Information Storage 53

re!iid11Rfl!bleliii'ti9¥r4tlbli·Uli5li!il?1~·?a"'Jt:(iii~~arun
Computers ge\lerate color pictm;es on .a ';ideq screen or liqu\i;l crys,tal display
by i;nixing three different colors of ligh\: red, green, and b)ue. I~gin!' a siJP,J?le
scheme, with thre,e differe11t lights, each of which can be tµ,rned on or,off, project­
ing, onto a glass screen:

Light sources Glas~ screen

r

Observer

• l

We can.then create eight different colors basedpn the absence (0) onpresence
(1) of light sources R, G, and B:

R G B Color

0 0 0 Black
0 0 1 Blue
0 1 0 Green
0 1 1 Cyan
1 0 0 Red
'i 0 1 Magenta
1 1 a· Yellow
1 1 1 White

'
Each of these colors can be represented as a bit vector of length 3, andl we can
apply Boolean.operations·to.them.

A. The co\npiement of a color is forme1 by turning off the ligqts that a'.re cin,and
turning on the lights that are off. What would be the complement of each of
the eight colors listed above?

B. Describe the effect of applying Boolean operations on the following colors:

Blue I Green =
Yellow & Cyan - ___ _
Red - Magenta = __ _

I
F-==--=---=~-_:··-:.. --- - - ·--:- -
I I

I I

II

'

• '
54 Chapter 2 ·Representing and Manipulating Information

2.1.7 Bit-Level Operations in C

One useful feature of C is that it supports bitwise Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C:
I for OR, & for AND, - for NOT, and - for EXCLUSIVE-OR. These can be applied to
any "integral" data type, including all of those listed in Figure 2.3. Here are .some
examples of expression evaluation for data type char:

C expression Binary expression Binary result Hexadecimal result

-Ox41 -[0100 0001] [10111110] OxBE

-OxOO -[0000 0000] [11111111] OxFF

Ox69 & Ox55 [0110 1001] & [0101 0101] [0100 0001] Ox41

Ox69 I Ox55 [0110 1001] l [0101 0101] [01111101] Ox7D

As our examples show, the best way to determine the effect of a bit-level ex­
pression is to expand the hdadecimal arguments to their binary representations,
perform the operations in binary, and then convert back to hexadecimal.

lfiliiiiiffiesJ?£~il~tAA:;B>1<i1!tuirs.m~9'tiltttf,t;JA~?:.:r.:m
As an a!lplicatlon of the property tliat a• - a = 0 for an'y bit vector a, consider the
following program:

void inplace_swap(int •x, int •y) {

2 *Y = *X ""' *Yi /• Step 1 •I
3 •x •x - *Yi /• Step 2 •/
4 *Y = *X *Yi I• Step 3 •I
5 }

As the name implies, we claim that the effect of this procedure is to swap
the values stored at the locations denoted by pointer variables x and y. Note
that unlike the usual technique for swapping two values, we do not need a third
location to temporarily store one value while we are moving the other. There is
no performance advantage to this way of swapping; it is merely an intellectual
amusement.

Starting with values a and bin the locations pointed to by x and y, respectively,
fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of - to show that the desired effect is
achieved. Recall ,that every element is its own additive inverse (that i~, a - a= 0).

Step •x •y '\•

Inltially " b a

Step 1
Step2 ---
Step 3

-' .,

' ~
.,

Section 2.1 Information Storage SS

ljifJiflt'@co1)1¢iii%2*1 ffi'Oi\ttrfiliil\a\k~iif~f}-,.:lt'l•,~ij(!& '.!:>2'?;:;-i}J:.,.,N,ij
Armed with the function inp~ace_swap from Problem 2.10, you1d\icide to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

,1 void .rev~rse_artay(int a[] 1 ·int cn:t) {
2 int first, lastj
3 for (first;. ~ 0 1 last ·= cnt-1;

•4

5,

6

7 }

first <= last i
firs:~++ ,last--)
inplace_swap(&a[first], &a[1ast]);

When you apply your function to an array containiiig elements 1, 2, 3, dnd 4,
you find the array now b,as, as ex,11ecte~1• ~l~ments 4, ~;2, 'and i. When you try it
on an array with elements 1, 2

1
3, 4, ahd 5, however, you are surpriSed io see that

the arr~y riow has e'iem'ents S, 4, o; 2, an'd .1. In fact, you discover tliA'r tJ\e code
always works correctly on arrays of even length, but it sets the middle element to
0 whenever the array has odd length.

C1. •
A. For an array of odd length cnt = 2k + 1, what are the values of variables

first and last in the final iteration of function reverse_array?

B. Why does this call to function inplace_swap set the array element to O?

C. What simple modificaticln to the code for reverse_array would' eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within a word. As
an example, the mask OxFF (having ones for the least-significant 8 bits) indicates
the low-order byte of a word. The bit-level operation· x & OxFF yields a value
consisting of the least significant byte of x, but with all other bytes set to"O. For
example, with x = Ox89ABCDEF, the expression would yield OxOOOOOOEF. The
expression -0 will yield a mask of all ones, regardless of the size of the data
representation. The same mask can be written OxFFFFFFFF when data type int is
32 bits, but it would not be as portable.

fiiia@f,g~f[2h1filil:2i'i 2.ili@fi~l~D~~~!'!l:;r&~;;f<.:~'.!~~j
Write C expressions, in terms of variable x, for tile following values: Your code
should work for any word'!iize w :"'. 8. For-reference, we show the result of evalu­
ating the expressions for x = Ox87654321,-with w = 32.

A. The least significant byte of x, with all oth~r bits set to 0. [oxoooooo2ii

B. All but the least significant byte-of x complemented, wi~h.the least significant
byte left unchanged. [Ox789ABC21]

56 Chapter 2 Representing and Manipulating Information

C. The least significant byte set to ·all ones, and all other bytes of x left ,un­
changed. [Ox876543J;F]

The Digital Equipment VAX computer was a very popular machine from the late
1970s until the late 1980s. Rather than instructions for Boolean operations AND
and OR, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 aJ each bit position where mis 1. With bic, the modification involves setting
z to 0 at each bit position where mis 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bi~ and bic implementing the bit set and bit clear operations, and
\hat we want to use these to,iinplement'functions computing bitwise operatio/{8 I
and - , without using any other C operations. Fill in the missing code below. Hint:

1 • r•·" ~··1
Write c' expressions for the operations bis and bi"c. '

, ' L

I* Declarations of functions implementing operat~ons bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Comp~te xly using only calls to ~unctions bis and bic ,*/
int bool_or(int x, int y) {

int result = ___ _

return result;
}

l

/• Compute x-y using o,n1y c~lhs
int bool_xor(int ~x; in:t y)· {

:i,nt· result =

return result;

}. "

2.1.8 Logical Operations in C

"
" to functions bis and bic */

C also provides.a set of logical operators 11, &&, and ! , which correspond to the
OR, AND, and NO,T operations of logic. These can easily· be confused with the bit­
level operations, but their behavior is qui!e different. The logical operations tre~t
any nonzero argument as representing TRUE and argument 0 as representing FALSE.
They return eith'er 1 or 0, itl.didtillg 'a result of eitherTRUE oi' FALSE,' respectively.
Here are some examples of expression evaluation:

,Section 2.1 Information Storage 57

Expression Result

!Ox41 OxOO
!OxOO OxOl
! !Ox41 Ox01
Ox69 &II: Ox55 OxOl
Ox69 11 Ox55 OxOl

Observe that a pitwise operati0n will have behavior matching that of its logical
counterpart only in the special case in. which the arguments are restricted to 0
or 1.

A second important distinction between the logical operators '&II:' and '11'
versus their bit-level counterparts '&'and 'I' is that the logical operators do not
evaluate their second argument if t,he result of the expression can be determined
by evaluating the first argument. Thus, for example, the, expression a && 5/a will
never cause a division by zero, and the exNession p && *p++ will ,never cause the
dereferencing of a null pointer.

I '

fiffiatl'-'i'PoomllEftiiliWtliifltltflUti'.'J2tnt:W;sim.;m
Suppose that x and y have b~te 'values OxG6 and Ox39, resp~ctively. Fill in the
following table indicating the byte values of the different C expressions:

Expression Value Expression Value "
x&y J x&&y ---- ----
xly ---- x 11 y
·x I ·y ---,- !x 11 !y ---
x &.!y x && -y

f

rU.;J~ticmlliW!2'iSWBW1it~~milil1'i::4m;··~~;:J.&G
Using only bit-level and logical operations, write a C expression that is equivalent
to x ~~ y. In other words, it will return 1 when x and y are equal and 0 otherwise.

2, 1.9 .Shift>Operations in :.G:·
, , rt • I • .)

C al~o ,Provides a se~9f shift pp,eratjqn§ for shi~tjn_g bit patte~ns to the left and',\o
the right. For an operand x having bit representation [xw-1> xw_2 , .•• ,. xo], the C
expression x « k yiel\ls a value with bit representation [xw-k-1• Xw-k-2• ... , xo,
0, ... , 01 Tiiat is, x is shifte~ k bits to the left, dropping off the k most significant
bits and filling the right end with k zeros. The shift amount should be a value
betwei:n 0 an'd w - 1. Shift operations associate from left to righ_t, so :i<''<< j « k
is equival~nt to (x « j) « k.

There is a corresponding right shift operation, written in C as x » k, but it has
a slightly subtle behavior. Generally, machines support two forms of right shift:

' ' '

' ..

I
1.

I
I
'

--·· -- - -'

58 Chapter 2 Representing and Manipulating Information

Logical. A logical right shift fills the left end with k zeros, giving a result
(0, ... , 0, Xw-1' Xw-2• ... xd.

Arithmetic. An arithmetic right shift fills the left end with k repetitions of the
most significant bit, giving a result [xw-1' ... , Xw-1' Xw-1' Xw-2• ... xd.
This convention might seem peculiar,, but as we will see, it is useful fm
operating on signed integer data.

As-examples, the following. table shows·the effect of applying the. different
shift operations to two different values'.Of.an ll-bit argument x:

Operation Value} _ Value~ ..
Argument x [01100011] [10010101]
x << 4' [OOH.0000] [OlOlOOQO]
x » 4'(1ogical) [00000110] ;[06"0o'10011
x » 4 (arithmetic) [00000110] [11111001]

The italicized digits indicate the values that fill the right (left shift) or left (right
shift) ends. Observe that all but one entry involves filling with zero& The exception
is the case of si)ifting [10010101] rig)lt arithmetically, $ince its most significant bit
is 1, this will be used as tJw fill value. · :

The C standards do not precisely define which type of right shift should be
used with signed numbers~ither arithme\ic·or logical shifts may be used. Thi$
unfortunately means that any code assuming one form or the other will potentially
encounter portability problems. In practice; however, ahnost all compiler/machine
combinations use arithmetic right shifts for signed data, and many programmers
assume this to be the case. For unsigned data, on the other hand, right shifts must
be logical.

In contrast to C, Java has a precise definition of how right shifts should be
performed. The expression x » k spjfts x arithmetically by k positions, .while
x »> k shifts it logically. '

"
lPffi~j:j~£i61fSDQ':j'.i~~O~~~if·~~;:£S
Fill in the table below showing the effects of the different shift operations on single­
byte quantities. The best way to think about shift operations is to '}'Ork< with binar)'
representations. Convert the initial values to. binary, {'eFform the shifts, and then
7onvert back' to hexadecill,lal. pa'ch of the ariswers shoi.tld be 8 Binary digit~ or 2
hexadecimal digits. r

Hex

OxC3
Ox75
Ox87·
Ox66

x x << 3

Bjnary .Binary

Logi~al
x >> 2

Binary Hex

Ariihmetic
x >> f

Hex

''

Section 2.2 Integer Representations 59

ill~ "'"""'''""~-_,.,.,.,,,,.,._,,.._.,,,,,,""""'"°""''''''"-""" "' -~...,""""--..""'"~~ ~- <r ~" if:" "'~

I Aside Shifti11g Jiy k,,iox largeyalliJ,s,.of k J'I ,, '' J<""''

I For a dat~ type consisting of w bits, 'l'hilt shohld be, tfir effect ofs'.ftifii'ng by so~~ value k 2:: w? For

I exar:iple, what,spoulcj be,the effect of computing the fBll?wing expressions, assurhh!g dat>rtype int has
w = 32: • l

!. int> i.var ~ OxFEpcB~~' .~< :32~·-- ~· , , '' I int aval = OxFEDCBA98 » 36; ,,
I qnsigned uval = OxFEDCJlK~Su '.>> .40f

t The ·c stand'ards careriiny'avo'[ct'sfatlng'l\:hat shbuld b;e done ip su,li a case:D;i many machines, the
1 shift instructions consider only'the lower log2 w !lits of the shift ilmountwhen shifting a uJ'•bit value, aii<l
I so the)hif1"4mount is C<l,\llJ?Uletl as.k'fuod lb, for example,)Vith W•= J2, tli~ above thtee shifts would I be computed as if they .were bl(·amobnts'O, 4, and 8, respectively, giving results
~ , .;-,,. •. ~ ,,'il;j .<111-'·-!'.1$ ~« "'·-, .• ~ -'t'~• ~-·~ ' •.

I· Na1. OxI;E!iCBA9S "'"

lw.avar ,OxFFEDCBA,9' > <

uvaJ,' 9xQOFEDQBA, ~ ,, , "
-ill-

! This behavior.js nqtguaraptee'd{of C'1'1'rogr~ms: hpY/ever,,and s\)'shift £mounts should be keptles~ than
}thewortlsize.~~ ~ _ ·.- ... ~r ~··'_ 1~ .. _ "1. '·

l !a:a; ~n the oth'er ~aija, sl\~~!.~cally re~uii'e~.t~~t shift'amo,unts s~'ould be ppmputed)n the modular
fashion we 4ave sho'W!l· .. ·f"")fa - ··'-"'- ,.. ~- ···J 't;l'-"t ~

~'II"' " ~ "~ '• { h~~ 'Tu. '* ~ ii,., O!;"l'

·-~~ - . -·-· ,- ' ' ~ . , . '" '

Ide Operator preceaenc'e issues.with sbift op~rat[ons·

mighl'pc; te(llpfihg ~o ;,;t;1~'ihe e:"pre~sion'1«12',,. 's<~4': intendin~i\ t~ ~,;~~ \l«2/ + (3~<4). How­
l ever, in C.!he former expre~sioJ,1.:\s equivalei;} tq,1 «• (2.C3j << 4, !ince addition (and subtraction) have.

I·. hi~h.er prd:egence than. shifts. The left-to-ri.gh; associati':ity ru)e, t.hen C');uses this tp be p,areritl)esized
a((1 <'< (;l+S),) '« 4, g1vmg value 512, ratl)er than themtended:Sz,, •

{ . ~Qetting the preced~~~e JYr9ng ~· C. e1~re%si,bns . .Js ~ cd~mpn,s~urCe .of program errors, and ofteµ

L'th.ese',are' difJ'ic~~-t·.~o'spot•bJI. i,nsgect\9n::i"11§1t irrdoubt! pilt'in pai;en'th<;~esJ .
•• • •. ~ ~ "" ' " ,.,)• .._ "' 4' ~ ~ .•. ~ .,., ~ 41 $

2.2 Integer Representations

In this section, we describe two different ways bits can be used to encode integers-­
one that can only represent nonnegative numbers, and one that can represent
negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen­
tations. We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

Figure 2.8 lists the mathematical terminology we introduce to precisely de­
fine and characterize how computers encode and operate on integer data. This

I
I 60 Chapter 2 , Representing and Manipulating Information

)•

Symbol Type Meaning Page

B2Tw Function Binary to two's complement 64
"

B2Uw Function Binary to unsigned 62

U2Bw Function Unsigned to binary 64

U2Tw Function Unsigned to two's complement 71

T2Bw Function Two's complement to binary 65

T2Uw Function 'I\vo's complement to unsigned 71

TMinw <;onstant Minimum two's-complement value 65

TMaxw Constant Maxim1fID two's-complement value 65

UMaxw Constant Maximum unsigned value 63

+' Operation 1\vo's-complement addition 90
w

+" Operation Unsigned addition 85
w

•' Operation Two's-complement multiplication 97
w

*" Operation Unsigned multiplication 96
w

-' Operation Two's-complement negation 95
w

-" Operation Unsigned negation 89 ·'
w

Figure 2.8 Terminology for integer data and arithmetic operations. The subscript
w denotes the number of bits in the data representation. The "Page" column indicates
the page on which the term is defined.

terminology will be introduced over the course of the presentation. The figure is
included here as a reference.

2.2. 1 Integral Data Types
• 1'

C supports a variety of integral,da\a types-ones that represent finite ranges of
integers. These are shown in Figures 2.9 and 2.10, along with the ranges of values
they can have for "typical" 32- and 64-bit programs. Each type can specify a
size with keyword char, short, long, as well as an indication of whether the
repr.esented numbers are all nonnegative (declared as unsigned), or possibly
negative (the default.) As we saw in Figure 2.3, the number of bytes allocated for
the different sizes varies according to whether the prograifi' is compiled for 32 or
64 bits. Based on the byte allocations, the different sizes allow different ranges of
value's to,b~ represented. The onlfmachine-dependent rimge'i11dicatea is for size
d~~ignator long. Mo.~t 64-bi\ programs.use' an 8-byte representation, giving a much
Wider range of values than the 4-byte representation used with 32-bit programs.

One imp~;i'ant featur~"to il.o'(e in Fi~i\re's12.9 and 2.10 is that the ranges are not
symmeiric-the ran~~ lif7i~gati~e mlmbers,extends on~ further i)ian the range of
p9~itive numb<;rs. Vfe fill see why this happel)s' when we consider 'how negative
numbers are r¥pre~~nted.

"

Section 2.2 Integer Representations

C data type Minimum Maximum

[signed] char -128 127
unsigned char 0 255

short -32,768 32,767
unsigned short 0 65,535

int -2,147,483,648 2,147,483,647
unsigned 0 4,294,967 ,295

long -2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295

int32_t -2,147,483,648 2,147,483,647
uint32_t 0 4,294,967,295

int64_t -9,223,372,036,854,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C Integral data types for 32-bit programs.

C data type Minimum Maximum

[signe~J char -128 127
unsigped char 0 255

short -32,768 32,767
unsigned short 0 65,535

int -2,147,483,648 2,147,483,647
unsigned 0 4,294,967,295;'

• ,[J

long -9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long 0 18,446,744,073,709,551,615

int32_t -2,147,483,648 2,147,483,647
uint32_t 0 4,294,967 ,295

int64_t -9,223,372,036,854,775,808 9,223,372,0~6,854,775,f'.07
' uint64_t 0 18,446,744,073,709,551,615

Figure 2.·10 Typical ranges for C integral data types for 64-bit programs.

The C standards define minimum ranges of valueS' thal ~ach data type must
be able to represent! As shown in Figure 2.11, their ranges are the same or smaller
than the typical implementations shown in Figures 2.9 and 2.10. In particular,
with the exception of the fixed-size data types, we see that they require only a

61

. ----- --- - -
- ---- M

62 Chapter 2 Representing and Manipulating Information

,.~_.,....----~---~----w-.-.,,.-~-~ -- - -rR,..-r--
ew to C? "'Signed and)osigi\e~,j'llln:iQC(sJ~.<f" <;;'.~+;~l]J,Ja'\fl • ', . . _:_:· ~'l:r·~t-
oth C and C++ suppprt si~~d (the ~~ta ult) aiic{qnsfgne~,~~mb$:rs. Ja.~a ~upp~r!s o~ly ;ku~~J{u~l;.er~':-:
,,_,,.,,_,,-~,--~~,,,,,..,-~~~-... wtw,--- , -.,,~;.t;_.- ,_

C data type ~inimum Maximum

[signed]'char -127 127

unsigned char 0 255

short -32,767 32,767

unsign~p. short 0 65,535

int -32,767 32,767

unsigned 0 65,535

long -2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295

'
int32_t -2,147,483,648 2,147,483,647

uint32_t 0 4,294,967 ,295

int64_t -9,223,372,036,854,775,808 9,223,372,036,854,775,807

uint64_t 0 18,446,744,073,709,5,51,61_5

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require
that the data types have at least these ranges of values.

,

symmetric range of positive and negative numbers. We also see that data type int
could be implemented with 2-byte numbers, although this is mostly a throwback
to the days of.16-bit machines. We also see'that size long can be implemented
with 4-byte numbers, and it typically is for 32-bit programs. The fixed-size data
types guarantee that the ranges of values will be exactly those given by the typical
numbers of Figure 2.9, including the asymmetry between negative and positive.

2.2.2 Unsigned Encodings
' .

Let us consider an integer data type of w bits. We write a bit vector as either x, to
denote the entire vector, or as [xw-l• xw_2,. '·, x0] to denote the individual bits
within the vector. Treating x as a number written in binary notation, we obtain the
unsigned interpretation of x. In this encoding, each bit x, has value 0 or 1, with the
latter case indicating that value 2' should be included as part of the numeric Value.
We can express·this interpretation as ·a function B2 U w (for "binary to unsigned,"

length w):

Figure 2.12
°2'=8

' 22 = 4

2'=2•

2'=11.!t

SectiOn 2.2 Integer Representations 63

Unsigned number
examples for w = 4.
When bit i in the binary
representation has value 1,
it contributes 2i to the
value. 0 1 2 3 4 5 6 7 8 9 10 •11 12 13 14 15 16

[0001]' ,
'[0101]

[10j1]

[1111)

PRINCIPLE: Definition of unsigned encod,ing

For vector x = [xw-1• xw-2• ... , xo]:

w-1

B2Uw(x) = L x;i
i=D

(2.1)

I

In th\s eguation, the notation= m,e\ill,&{hat the left-hand side is defined to be
equal to the right-hand side. The function B2Uw maps strings of,zeros and.ones
of length w to nonnegativt;: integers. As examples, Figure 2.12 shows the mapping,
given by B2U, from bit vectbrs to integers for the following cases:

B2U4([0001]) = o . 23 + o . 22 + o . 21 + 1 . 2° = 0+0+0+1 = 1
B2U4([0101]) = o. 23 + 1. 22 + o. 21 +1. 2° = 0+4+0+1 = 5
B2U4([10ll]) = 1. 23 + o. 22 + i,. 21 +1. 2° = 8+0+2+1 = 11
B2U4([llll]) =· 1. 23 + 1. 22 + 1. 21 +1. 2° = 8+4+2+1 -· 15

(2.2)

In the figure, we represent each bit position i by a rightward'poihting blue bar of
length 2;. The numeric value associated with a bit ,vector then equal~,the sum qf
the lengths of the bars for which the corresponding bit values are 1.

Let us consider thd range of values tha't can be represented using w bits. The
feast ~alue is given by bit vecto~ [00 · · · OJ having integer value 0, and the greatest
value is given by bit vector [11 ·• · ·1] having integer value UMaxw = L:t=ci 2; =
zw -1. Using the 4-bit case as an example, we have UMax4 = B2U4([1111]) =
24 -1=15. Thus, thefunctionB2U w can bedefinedasamappingB2U w: (0, l)w-+
{O, ... , UMaxw}· '' .

The unsigned>binary representation has the imp6rtant p'rt>perty thaf'every
miml5er lietween O"and zw - 1 has a unique encoding as aw-bit value. For example;

II

,,,I

ii!
I
I

- ~ ---·---- -- .

64 Chapter 2 Representing and Manipulating Information

there is only one representation of decimal value 11 as an unsigned 4-bit number­
namely, [1011]. We highlight this as a mathematical principle, which we first state
and then explain.

PRINCIPLE: Uniqueness of unsigned encoding

Function B2 V w is a bijection. I

The mathematical term bijection refers to a function l that goes two ways:
it maps a value x to a value y where y = l(x), but it can also operate in reverse,
since for every y, there is a unique value x such'that l(x) = y. This is given by
the inverse function l-1, where, for our example, x = l-1(y). The functionB2U w

maps each bit vector of length w to a unique number between 0 and 2w - 1, and
it has an inverse, which we call U2Bw (for "unsigned to binary"), that maps each
number in the range 0 to 2w - 1 to a unique pattern of w bits.

2.2.3 Two's-Complement Encodings

For many applications, we wish to represent negative values as well. The most com­
mon computer representation of signed numbers is known as two's-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2T w (for "binary
to two's complement" length w):

PRINCIPLE:. Definition of two's-complement encoding

For vector x ='[xw-1' Xw-2> •.. , xo]:

w-2

B2T w(x) = -xw-12w-l + L x;i
i=O

(2.3)

I

The most significant bit xw-I is also called tlie sign bit'. It~ "weight" is -2w-l,
the negation of its weight in an unsigned representation. When the sign bit is set
to 1, the represented value is negative, and when set to 0, the value is nonnegative.
As examples, Figure 2.13 shows the mapping, given by B2T, from bit vectors to
integers for the ,fpllowing. sases:

B2T4([0b01]) = -0-23 +0'-22 +0·21 +1·'2o = . ~ " '
B2T4([0101]) = -0-23 +1·22 +0·21 +1·2o =
B2T4([1011]) .= -1·23 +0·22 +1 .. 21+1·20 =

0+0+0+1
,< I

0t1,t0+ 1
-8+0+2+1

= 1

=, 5
-5

B2T4([1111]) = -1·23 +L)2 +1·21 +1·2o ~ -8+4+2+1 = -1

(2,4)

In the figure, we indicate that the sign bit has .negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated wi.th ~)Jit·vector is
then given by the combination of the. possible leftward-pointing gray, bar and tl;Je
rightward-pointing blue bars.

------ ------------ --------- -

'

'
i
I
·I

I
j

Section 2.2 Integer Representations 65

Figure 2.13
Two's-complement
number examples for

<1.. ______ _.l-2' = -8

22=4-
2'=2•

2'= 1 ID
w = 4. Bit 3 serves as a
sign bit; when set to 1, it
contributes -23 = -8 to
the value. This weighting
is shown as a leftward­
pointing gray bar.

~~~~4~4-1012345678 

(0001] 

[0101] r---+---+­
[1011] 

[1111] 

We see that the bit patterns are identical for Figures 2.12 and 2.13 (as well as 
for Equations 2.2 and 2.4), but the values aiffer when the most significant bit is 1, 
since in one case i\ has weight +8, and in the other case it has weight -8. , 

Let us consider the range of values that can be represented as a w-bit two's­
complement number. The least representable value is given by bit vector [10 ... OJ 
(set the bit with negative weight but clear all others), having integer value 
TMinw = -2w-l. The greatest value is given by bit vector [01···1] (clear the bit 
with negative weight but set all others), having integer value TMaxw = L,~=02 2; = 
2w-l - 1. Using the 4-bit case as an example, we have TMin4 = B2T4([1000D = 
-23 = -8 and TMax4 = B2T4([0111]) =22 +21 +2°=4+2+1 =7. 

We can see that B2T w is a mappiµg of bit patterns of length w to numbers be­
tween TMinw and TMaxw, written as B2T w= (0, l}w--> [TMinw, ... , TMaxwl· As 
we saw with the unsigned representation, every number within the representable 
range has a unique encoding as a w-bit two's-complement number. This leads to 
a principle for two's-complement numbers similar to that for unsigned numbers: 

PRINCIPLE: Uniqueness of two's-complement encoding 

Function B2T w is a bijection. I 

We define function T2Bw (for "two's complement to binary") to be the inverse 
of B2T w· That is, for a number x, such that TMinw::; x::; TMaxw, T2Bw(x) is the 
(unique) w-bit pattern that encodes x. 

rr@fclc::~. ~r:QEir~ii! :2: 11 (i~1ut;o(]k~ ..... -- , .. , ., ____,~.::;;:: 
Assuming w = 4, we can assign a numeric value to each possible hexadecimal 
digit, assuming either an unsigned or a two's-complement interpretation. Fill in 
the following table according to these interpretations by writing out the nonzero 
powers of2 in the summations shown in Equations 2.1and2.3: 



r-~ 

I 
1 

I 
ii 

I 

j 

I 

I 
I 
II 

\ 

----~-~ ··--- - ··- . -- --·- -

66 Chapter 2s•Representing and Manipulating Information 

x 
Hexadecimal Binary B2U4(X) B2T<(x) 

OxE [1110] 23 + 22 + 21 =14 -23 + 22 + 21 = -2 
OxO ---
Oxq ----
OxB ·----
OxD ------ -----
OxF --- ~---

Figure 2.14 shows the bit patterns and numeric values for several important 
numbers for different word sizes. The first three give the ranges of representable 
integers in terms of the values of UMaxw, TMinw, and TMaxw. We will refer 
to these three special values often in the ensuing discussion. We will drop the 
subscript wand refer to the values UM ax, TM in, and TM ax when w can be in(erred 
from conte~i or i~ not central to the disc~s~ion. ' J'f 

' ~ ' ' '• ' ' .._ !' ·i 
A fe~ points are worth highlighting about these numbers. First, as oMerved 

in Figures 2.9 and 2.10, the two•s'.complem."nt range is, asyplmetric: \ Tfrtin\ = 
\TM ax\ + 1; th')t is, theie is no positive counterpart lb' TMin. As we shall see, this 
leads to some peculiar properFies,9f tw<;>'s-complement qrlthmetic and. can be th,e 
s9urce of subtle program bugs. 1bis aspnmetry arises because half the bit patterns 
(those wi!h thb sign 'l;>it,set to 1) represent negative numbers, while half (th4se 
with the sign blt set to 0) represent nonhegative numliers. Since 0 is nonnegative, 
this means that it can'represent one less positive number 

0

than negative. Second, 
the maximum unsigned value is just av.er twice the'maximum two's-complement 
value: UMax = 2TMax·+ 1. All ofthe10it pa.tterns'that denote negative nu!11bers in 
!~o's-complement notation J:iecom'e positive values in an unsigned representation. 

Word size w 

Value 8 16 32 64 

UMaxw Ox FF OxFFFF OxFFFFFFFF OxFF~FFFFFFFFFFFFF 

255 65,535 4,294,967 ,295 18,446,744,073,709,551,615 

Tftfi'lw Ox SO OxBOOO OxSOOOOOOO 0~~000000000000000 
P' • 

-128 -32,768 -2,147 ,483,648, -9,223,372,036,854,775,808 

TMaxw Ox7F Ox7FFF Ox7FFFFFFF Ox7FFFFFFFFFFFFFFF 
127 32,767 2,147,483,647 9,223,372,036,854,775,807 

-1 Ox FF OxFFFF OxFFFFFFFF OxFFFFFFFFFFFFFFFF 

0 OxOO OxOOOO OxOOOOOOOO OxOOOOOOOOOOOOOOOO 

Figure-2.14' Important numbers. Both" num~rit values and·hexadecimal representa-
tions are shown. 



Section 2.2 Integer Representations 67 

f .=.,•,--.. 

' Asld~ More on fixed-size integer type~, 

For some pro'grams, it is essential that data types be encoded using representatiohs with specific sizes. 
For e~ample, when ~iting prograni's to enable a macl;tine to communicate over the fflternet-according 
to a standard protocol, it is important to have.data t)'WS compatible with those specified Dy the protocol. 

' We have,, seen that some C data types, especially long, have different ranges on, different machines, 
' and in fact the G standards only specify the minimum ranges for any data type, not the exact rangeS, 

Althpugh we can choose data types t)lat will be COJ11patijl\e .with standard representations on most 
' machines, _there is no guarantee of portability. 
, . We h;ve already encountered the ,32- and 64-bit versions of fixed-size integer tyj>es (Figure 2.3); 
; they are part o'(i liirger.class of data /ype:j. Th~ IS<;J 'C99 sta'.ndard intrbduces this llas~. of integer types 

in the file· st dint, h, This file defines a set of data types with declarations of'the form :iritN _t;, and 
uintN _ t, specifying N-bit signed and.uqsigned integers, for pifferent values of N: The exact values of 
N are implementation dependent,but,most compilers allow value,s of 8, 16, 32, and 64. Thus, we ean 
unambiguously declare' an utfsignea 16-oit variable by giving it type uint16_t, and a signed varial;>le 

_ of 3Z. bits as int32 t. 
' A1cing wit\1 th~~e data typei'are !set of ljlicr9,s d,efining the minimum and maxim~m valv~'for 

eachyalpe of N,. The,se have hamesof-the, form 'INT N~MIN, I~T{V _MAX" and UINTfl _MAX.'_ , ' 
Formatteq printing with fixed-width tYpes require~ use of macros that eipj!n,~ into format-strings 

I In a system,-d~p~pdent map,ner._So, for ~xample, !he values of variables x andy of type int3?-t and 
••. ' - t ~ ,,,, - ' - ' ! ~int64_t can pe l!rinted by'tq!''follmyfog call to,prin1<f: 1, 

print~( 11X ><f--i'~~PR!d32~1i, y = %11 PRiu64"'·"'1\n 11
", x\ y),;~ 

When co~piled ~(~ 64;bit pfog~mh,"1)actb PRid~2 ex,Pands to the s1fing "ct", wfiife PR;iu64expiinds 
~ to the P~ir of strings 11 l 11 11 u 11

• !\'he~n the -c· preprocessor ~nc9unt"ers a seqlle'ii& of' String c6nstan{s 
separated only by spaces (o~ other whitespape characters), it concatenates them, together. Thus, the 

~ above call to pr intf becomes 

'printf ( 11 X 1'""/od, y·h& %iu\llfl,. x~, yYi·'· ;. ~ '· ~ ' ~ it~ 

t Using th1: f!Jacrps. e~~ures 'f!i~t a,\0;rf;tJg;£lla\'/!t~fug wlll be geqerated ,(egafd!ess,of how the code is 
~ compiled. ~ ~ ' ~~ *' 
, "~ ~: J:i• IM ~ A,t 

Figure 2.14 also shows the representations of constants -1 and 0. Note that -1 
has the same bit representation as UMax-a string of all ones. Numeric value 0 is 
represented as a string of all zeros in both representations. 

The C standards do not require signed integers to be represented in two's­
complement form, but nearly all machines do so. Programmers who are concerned 
with maximizing portability across all possible machines should not assume any 
particular range of representable values, beyond the ranges indicated in Figure 
2.11, nor should they assume any particular representation of signed numbers. 
On the other hand, many programs are written assuming a two's-complement 
representation of signed numbers, and the "typical" ranges shown in Figures 2.9 
and 2.10, and these programs are portable across a broad range of machines 
and compilers. The file <limits, h> in the C library defines a set of constants 



rr~---~-=-~-Jll ---'51". 

l 68 Chapter 2 Representing and Manipulating Information 

I 1, 

A~ide Alternati~e rep~°"s~.ntatjons of signed numbers ,. "'· :• 

Jhere are two other standarc[represerltl!tiqns for sign[!Ct11ulnbers:~ -r/ ....,,.,, *" 

~·~Q;i"s' CO"!f?J~~e~fr .Th;$ isJhe s~i<:a:"~'wo's CQWPlenj:ent, e~ce1;1\:thaLthe.m~stsig~fi~a~t bit has i 
.• , .w~jgqt,,-(2';';- 1 ,--, l)'.r11\h<;r tji\d). -2w-I;· ' ,,,. n , l 

l 
i 

·~ ,w-2 

B20 'x)"'= -'-X: •1(zw-i.,,,1_') +'"'\:' x'2'. W\:i, ,, W- ~I 

H i=O ~f . ' 
'Sign ma.z~ltude. J,ll<'l.!llO~.t sign\~caµth.it is a•<Ji!\!' bit that;;det~rmin~s wbeth,er~tb~ r~inain\)',g !)its 

&~oulp.. be.,giy~eft. p~~gativ~ or posi!ive ~eig~t: ,f ,,,~ ~ 

·' s2's ( ")" · ( ~)x -! • "' ' '2' • "I• (w-'2 j' 
' • ,w x = -1 w • £.:,xi'"'' 

~ ',f ' ,. 
111 

"'· i;gO "" ~ ' ' "iiS , 
"'· ·~ ~ ~ 

Bqth,o,f Fhese r~p~esel)tatiops ha~e tjle curious property tha,t tliere are two diffe'teni epcodings of the i 
nunitier 0. For oolh r~pre~<'ntations,JOO · ··OJ iSJntefriireted afj-0, TJ!e value -O·can be.repre~ented J 
in sign-magnitudeform'as !JO:-·.· O)Jl.!'d iii Ol)e~' co'mplement as [11 · · -1]. Although machines based 
0£,ones"-compleine'ht feprlsentations w'ere_built in th~ gast,,alrriosi all modern rriachines use two's _ 
.;,mplement. We win see'that sign,magnitucte encdding is used ;ith floating-point numbers. ! 

Note the different po~ition of apostrophe'\; tw~'s complement versu's ones' cmriplement. tlie tehn 1 
"t):"o's complement" ?:rises fro_m the factthatJor.~nonn~gative x we cofup~.111 a'w-bit repreftentation t 
of -x a_§ 2w - x \a ~ingle two.) The term, "on,es' complement" cgnies fr\lfll tile property. that we can 

• ~:'!~~:-.:~:!~is.'.::a~o~ a:ri~:.~~1~:-_:.~!'.£2~.~~: "' _,. '"-·' ··---···~· _ ._ J 

delimiting the ranges of the different integer data types for the particular machine 
on which the compiler is running. For example, it defines constants INT.MAX, INT_ 
MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a 
two's-complement machine in which data type int has w bits, these constants 
correspond to the values of TMaxw, TMinw, and UMaxw. 

The Java standard is quite specific about integer data type ranges and repre­
sentations. It requires a two's-complement representation with the exact ranges 
shown for the 64-bit case (Figufe 2.10). In Java, the single-byte data type is called 
byte instead of char. These detailed requirements are intended to enable Java 
programs to behave identically regardless of the machines or operating systems 
running them. 

To get a better understanding of the two's-compl~ment representation, con­
sider the following code example: · 

short x = 12345; 
2 short mx = -x; 
3 

4 show_bytes ((byte.pointer) &x; sizeof (short)); 
5 show_bytes((byte_pointer) &mx, sizeof(short)); 

i 
I 
' 
I 
l 

i 
I 
·I 

i 
j 

j 
I 



Section 2.2 Integer Representations 

12,345 -12,345 53,191 

Weight Bit Value Bit Value Bit Value 

1 1 1 1 1 1 1 
2 0 0 1 2 1 2 
4 0 0 1 4 1 4 
8 1 8 0 0 0 0 

16 1 16 0 0 0 0 
32 1 32 0 0 0 0 
64 0 0 1 64 1 64 

128 0 0 1 128 1 128 
256 0 0 1 256 1 256 
512 0 0 1 512 1 512 

1,024 0 0 1 1,024 1 1,024 
2,048 0 0 1 '2,048 1 2,048 
4,096 1 4,096 0 0 0 0 
8,192 1 8,192 0 0 0 0 

i6,384 0 0 1 16,384 1. 16,384 
±32,768 0 0 1 -32,768 1 32,768 

Total 12,345 -12,345 53,191 

Figure 2.15 Two's-complement representations of 12,345 and -12,345, and 
unsigned representation of 53, 191. Note that the latter two have identical bit 
representations. 

When run on a big-endian machine, this code prints 30 39 and cf c7, indi­
cating that x has hexadecimal representation Ox3039, while mx has hexadeci­
mal representation OxCFC7. Expanding these into binary, we get bit patterns 
[0011000000111001] for x and [1100111111000111] for mx. As Figure 2.15 shows, 
Equ~tion 2:3 yields values 12,345 and -12,345 for these two bit patterns. 

IP'i1mlse Pr9P1em'6.'1tf·1sri1iltioo j)a~e 142l · ', ., .... , • ,. , f,. .~! 
In Chapter 3, we will look at listings generated by a disassembler, a program that 
converts an elfecutable program file back to a more readable ASCII,,~oqn. ,These 
files coutain many hexadecimal numbers, typically representing values in two's­
complement form. Being able to recognize these numbers and understand their 
significance (for example, whether they are negative or positive) is an important 
skill. 

For the lines labeled A-I (on the right) in the following listing, convert the 
hexadecimal values (in 32-bit two's-complement form) shown to the right of the 
instruction names (sub, mov, and add) into their decimal equivalents: 

69 



I 
:! 

11 

I 

----.-· 

70 Ch~pter 2 Representing 'and Manipulating Information 

4004d0: 4S Sl ec eO 02 00 00 sub $6x2€0,%rsp A. 
4004d7: 4S Sb 44 24 aS mov -Ox5S(%rsp),%rax B. 

4004dc: 4S 03 47 2S add Ox28(%rdi) ,%rax c. 
4004e0: 4S S9 44 24 dO mov %rax,-Ox30(%rsp) D. 

4004e5: 4S Sb 44 24 7S mov Ox78(%rsp),%rax E. 

4004ea: 4S S9 S7 88 00 00 00 mov %rax,Ox88(%rdi) F. 

4004f1: 48 8b S4 24 f8 01 00 mov OxlfS C%rsp), %rax G. 

4004f8: 00 
4004f9: 48 03 44 24 OS add Ox8(%rsp),%rax 
4004fe: 48 89 84 24 co 00 00 mov %rax,Oxc0(%rsp) H. 

400505: 00 
400506: 4S 8b 44 d4 b8 mov -Ox48(%rsp,%rdx,8),%rax I. 

2.2.4 Conversions between Signed and Unsigned 

C allows casting between different' numeric data types. For example, suppose 
variable xis, declared as int and u as unsigned. The expression (unsigned) x 
converts the value of x to an unsigned value, and (int) u converts the value of u 
to a signed integer. What should be the effect of casting signed value to unsigned, 
or vice versa? From a mathematical perspective, one can imagine several different 
conventions. Clearly, we want to preserve any value that can be represented in 
both forms. On the other hand, converting a negative value to unsigned might yield 
zero. CoI!Verting an unsigned value that is too large to be represented in two's­
complement form might yield TMax. For most implementations of C, however, 
the answer to this question is based on a bit-level perspective, rather than on a 
numeric one. 

For example, consider the following code: 

~short int , v, = -12345 i 
2 unsigned short -)~V = (unsigned shor.t) y i 
3 p;rin~f("v = %d, uv = %u\I}",, v •. uy); 

When run on a two·~:cl)mplem!'nt machine, i
1
t d~ner,ates ihe follo~ng output: ' 

' ' 
V = -12345, UV = 53191 

What we see here is that the effect of casting is to keep the bit values identical 
but change how these bits are interpreted. We saw in Figure 2.15 that the 16-bit 
two's-complell\enhepresentation: of -12,345 is identical 'lo the lo-bit unsigned 
representatiQh 'o( 53,191. Castiµg froin short' to llisigned short changed the 
numeric value, but riot the bit·represe'ntation. ' 

Similarly, ctinsider 'the 'followihg code: ·· 

unsigned u = 4294967295u; /• UMax •/ 
2 ·int tu =•,(int) 'u; 

t • 

., 

j 

' .1 
' 



Section-:2.2 Integer Representations 71 

3 printf( 11 u = %u, tu= %d\n 11
, u, tu); 

When run on a two's-complement machine, it generates the following output: 

u = 4294967295, tu = -1 

We can see from Figure 2.14 that, for a 32-bit word size, the bit patterns represent­
ing 4,294;967,295 (UMax32 ) in unsigned form and -1 in two's-complement form 
are identical. In casting from unsigned to int, the underlying bit representation 
stays the same. 

This is a general rule for how most C implementations handle conversions 
between !signed and unsigned numbers with the same word size-the numeric 
values. might cha'nge, but the bit patterns do not. Let. us capture this idea in 
a more mathematical form. We defined functions U2Bw and T2Bw that map 
numbers to their bit representations in either unsigned or two's-complement form. 
That is, given an integer x in th,e range 0::; x <' UMaxw, the function U2B1n(x) 
gives the unique w·bit unsigned representat,iqn. of x. SimilarlY, when;< is. in the 
range TMinw::; x '::; TMaxw, the function T2Bw(x) gives the unique w-bit two's­
complement representation of.x. 

Now define the function T?U w as T2U w(x) = B2U w(T2Bw(x)).1bisfunction 
takes a number between TMinw and TMaxw and yields a number between O and 
UMaxw, where the two numbers have identical bit representations, except that 
the argument has a two's-complement representation while the result is unsigned. 
Similarly, for x between 0 and UMaxw, the function U2T w• defined as U2T w(x) = 
B2T w( U2Bw(x )+;yields the number having the same two's-complement represen­
tation as the unsigned representation of x. 

Pursuing our'earlier examples, we see from Figure 2.15 that T2U16(-12,345) 
= 53,191, and that U2T,16(53,191) = -12,34~. That is, the 16-bit pattern writtep. in 
he)\adecimal as 01<CFC7 is both tl\J: ·t~o's-conwlement representation of -12,345 
and the unsign~d representation of 53,19,1. Note also that 12,345:+ 53,191 = 
65,536 = 216. TQjs property generalizes to a relationship between the two nu­
meric values (two's complement and unsigned) represented by a given bit pat­
tern. Similarly, from Figure 2.14, we see that T2U32(-1) = 4,294,967,295, and 
U2T32(4,294,967,295) = -1. That is, UMax has the same Bit representation in un­
signed form as does -1 in two's-complement form. We can also see the relationship 
between these two numbers: 1+UMaxw=2w. ' 

We see, then, that function T'2 tJ tlescribes the 'conversion of a two's­
complement number to its unsigned counterpart, while U2T converts in the op­
posite direction. Th'ese Clescribe the effect of casting between these data types in 
most C implementations. 

' ' 
'tl ~,. 6 ···- WJ S"'I '• .":.,~ .:~·~~Jiim~!:'*:iJ 

Using the table you filletl in when solving Problem 2.17, fill in tlie following table 
describing the function T2 U 4: 



I 

72 Chapter 2 Representing and Manipulating Information 

x 12U,(x) 

-8 
-3 
-2 
-1 

0 
5 

- __ .., ... ~ -

The relationship we have seen, via several examples, between the two's­
complement and unsigned values for a given bit pattern can. be expressed as a 
property of the function T2U: 

PRINCIPLE: Conversion from two's complement to unsigned 

For x·such that TMin:,, :ox :o TMid'f: 

I I 
(2.5) 

I 

For example, we saw that T2U16(-12,345) = -12,345 + 216 = 53,191, and also 
that I2Uw(-1) = -1+2w = UMaxw. 

This property can be derived by comparing Equations 2.1 and 2.3. 

'" DERIVATION: Conversion from two's complement to unsigned 

Comparin}l Eqtlationsi.1 and 2.3, we can see that-for bit pattern x, if we compute 
the difference B2 U w(x) - B2:Z: w(x), lhe weight~d suins for bits from 0 fo w - 2 Will 
cancel each'dther, leaving a value B2U w<x) ~ B2'Fu,(x) = xw_1(2w-)._ -2w-ly"' 
xw_

1
2w. This gives a relationship B2U w(x) = B2T w(x) + xw_12w. We-therefore 

have 

(2.6) 

In a two's-complement representation of x, bit xw-l determines whether or not x 
is negative, giving theA:Wo cases of Equation 2.;,. I 

' ,. ' 
As examples, Figure 2.16 compares how functions B2 U and B2T·\ls¥gn values 

to bit patterns for w = 4. For the two's-complement case, the most significant bit 
serves as the sign bit, which we diagram as a leftward-pointing gray bar. For the 
unsigned case, this bit has positive weight, which we show as a rightward-pointing 
black bar. In going from two's complement tO unsigned, the most significant bit 
changes its weiglit frcim -8 to +8 .• As a consequence, the values that are nega­
tive in a two's-complementTepresentation increase by 24 = 16 with all' unsigned 
representation. Thus, -5 becomes +11, and -1 becomes +15. 



Section 2.2 Integer Representations 73 

Figure 2.16 
Comparing unsigned 

-23 = -8 

2'~a 

2'=4 

2'=2• 
2'=1 ~ 

and two's-complement 
representations for w = 4. 
The weight of the most 
significant bit is -8 for 
two's complement and +8 
for unsigned, yielding a net 
difference of 16. 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 2.17 
Conversion from two's 
complement to unsigned. 
Function 12 U converts 
negative numbers to large 
positive n~mbers. 

,, 

[1111] 

Two's 
complement 

2w-1 Unsigned 

0 0 

Figure2.l 7 illustrates the general behavior of function 12U. As it shows, when 
mapping a signed number to its unsigned counterpart, negative numbers are con­
verted to large positive numbers, wl'lile nonnegative.numbers remain unchanged. 

1Piact1~Brtil!1em;1fm;1s:~1Ul!'Q/fiiilil'~'.i12t&:~-·-:" '"' ·&':¥".'" '"'i ll1.~~ 
Explain how Equation 2.5 applies to the entries in the table you generated when 
§Qlving Pr9blem 2.19. 1 

Going in the other direction, we can state the relationship between an un­
signed number u and its signed counterpart U2T wCu): 

PRINCIPLE: Unsigned to two's,complement conversion 

For u such that 0 :S u :S UMaxw: 

{ 
u, 

U2T w(u) = u _ zw, 
u:::; TMaxw 1 

u > TMaxw 
(2.7) 

• 



• 
I 

. - --- . 

74 Chapter ..2 Representing and Manipulating Information 

Figure 2.18 
Conversion from 
unsigned to two's 
complement. Function 
U2T converts numbers 
greater than 2w-l - 1 to 
negative yalues. 

Unsigned 2w-1
' 

0 

+2W-1 

0 Two's 
complement 

-2w-1 

This principle can be justified as follows: 

DERIVATION: Unsigned to two's-complement conversion 

Let u = U2Bw(u ). This bit vector will also be the two's-complement representation 
of U2T w(u). Equations 2.1 and 2.3 can be combined to give 

U2T w(u) = -Uw-12w + U (2.8) 
'· 

In the unsigned representation of u, bit uw-l determines whether or not u "is greater 
than TMaxw = 2w-l - f, giving the two cases of Equation 2.7. '. I 

The behavior of func_tion 1U2T is illustrated in Figure 2.18. For small 
(:;; TMaxw) numbers, the conversion from wisigned to signed preserves the nu­
meric value. Large(> TMaxw) numbers are converted to negative values. 

To summarize, we considered the effects of converting in both directions 
between unsigned and two's-complement representations. For values x in the 
range 0:;; x:;; TMaxw, we have 12Uw(X! = x. and. U2T ,,;(x) =;.:t.'Il!at is, num­
bers in this range have identical unsigned and two's-complement representations. 
For values outside of this range, the conversions either add or subtract 2w. For 
example, we have 12U w(-1) = -1+2w = UMaxw-t\Je negative number clos­
est to zero maps to the largest unsigned numlier. At the other extreme, one 
can see 'tnat 12U wCTMiriw) =·-2w~I +' 2w '= 2w-l = TMdxw '+- l"'!the most neg­
ative number maps to an unsigned number just outside the range of·p6sitive 
two's-complement numbers. Using the example of Figure 2.15, we can see that 
T2U16 (-12,345) = 65,536 + -12,345 = 53,191. 

2.2.5 Signed versus Uns'igned in C 

As indicated in Figures 2.9 and 2.10, C'supports both signed and unsigned arith­
metic for all of its integer data types. Although the C standard does not spec­
ify a particular representation of signed numbers, almost all machines use two's 
complement. Generally, most numbers are signed by cjefault. For e,xample, when 
declaring a constant such as• 12345 or Ox1A2B, the value is considered signed. 
Adding character 'U' or 'u' as a suffix creates an unsigned constant; for example, 
12345U or Ox1A2Bu . 



Section 2.2 Integer Representations 75 

C allows conversion between unsigned and signed. Although the C standard 
does not specify precisely h9w this conversion should be made, most systems 
follow the rule that the underl}'ing bit representation does not change. This rule has 
the effect ofapplying the function U2T w when converting from unsigned to signed, 
and T2U w when converting from signed to unsigned, where w is the number of 
bits for the data type. 

Conversions can happen due to explicit casting, such as in the following code: 

int tx, ty; 
2 unsigned ux, uy; 
3 

4 tx = (int) ux; 
5 uy = (unsigned) ty; 

Alternatively, they can happen \mplicitly"when an expression of one type is as­
signed to a variable of another, as in the following code: 

int t~, ty; 
2 unsigned ux, uy; 
3 

4 tx = ux; I• Cast to signed""*/ 
5 uy = ty; I• Cast to unsigned */ 

~When printing numeric values with printf, the directives %d, %u, and %x 
are used to print a numbeF as a signed· decimal, an unsigned decimal, and in 
hexadecimal format, respectively. Note that printf does not make use of any 
type information, and so it is possible to print a value of type int with directive 
%u and a value of type unsigned with directive %d. For example, consider the 
following code: 

irlt x = -1; 

2 unsigned u 7,2147483648; /• 2 to the 31st•/ 
3 

4 printf( 11 x = %U = %d\n 11
, x, x); 

5 printf( 11 u = %u = %d\n 11 , u, u); 

When compiled as a 32-bit program, it prints the following: 

x = 4294967295 -1 
u = 2147483648 -2147483648 

In both cases, printf prints the word first as if it represented an unsigned number 
and second as if it represented a signed number. We can see the conversion 
routines in action: 72U32(-'-'l) = UMax32 = 232 -1 and U2T32 (z31)·= z31 - z32 = 
-231 = TMin32 . 

Some pos~ibly nonintuitive behavior ar~~es due to C's hai;tdling, of expres­
sipns containing, combin')tions of signed and unsigned quantit\es. When an op­
eratfon is perfcirini:d where one ,operand is signed and the 0th.er is unsigned, C 
implicitly casts the signed argumen{ to unsigned and performs the operations 



I 
I 

" 

I 

I 
I 

76 

-~------ --

Chapter 2 Representing and Manipulating Information 

Expression Typb EValltation 

0 OU Unsigned 1 
-1 < 0 Signed 1 
-1 < OU Unsigned .o• 

2147483647 > -2147483647-1 Signed 1 

2147483647U •> -2147483647-L .Unsigneil o• 
2147483647 > (int) 2147483648U Signed 1 * 

-1 > -2 Signed 1 
(unsigned) -1 > -2 Unsigned 1 

Figure 2.19 Effects of C promotion rules. Nonintuitive cases are marked by '*'. When 
either operand of a comparison is unsigned, the other operand is implicitly cast to 
unsigned. See Web Aside DATA:TMIN for why we write TMin32 as -2, 147 ,483,647-1. 

> • 

assuming the numbers are nonnegative. As we will see, this e<;>nvention makes 
little difference for standard arithmetic operations, but it leads to nonintuitive 
results for relational operators such as < and >. Figure 2.19 shows some sample 
relational expressions and their resulting evaluations, when data typy int has a 
32-bit two's-complement representation. Consider the comparison -1 < OU. Since 
the second operand is unsigned, the first one 'ls implicitly cast to unsigned, and 
hence the expression is equivalent to the comparison 4294967295U < OU ('recall 
that T2U ,c(-1) =,UMaxw), which of course is false. TJ:e other cases can be under-
stood by similaP analyses. ,. 

le'tAf'tftml$GJ§Uiftl:!i'fiil;oh:~'l!llfWifi?jAAiQj&Siij 
Assuming the expressions are evaluated when executing a 32-bit program on a ma­
chine that uses two's-complement arithmetic, fill in the following table describing 
the effect of casting arld relational operations, in.the style of Figure 2.19: 

Expression Type Evaluation 

-2147483647-1 == 2147483648U 

-2147483647-1 < 2147483647 

-2147483647-lU < 2147483647 

-2147483647-1 < -2147483647 

-2147483647-lU < -2147483647 

2.2.(;i Expanding the Bit ~epresentation:of a. Number 

One common operatioq ~~to conyert J:>etween integer~ having different word sizes 
while retainin'g'the same numeric value. Of course, this may:not be possible when 
the dbtination data type i~ too small to represent the desired value. Conve~ting 
from a smaller to a largei'data

1
type, however, should always be possible. " 

) !C l 1! I ' ' 



Section 2.2 Integer Representations 77 

~~,~~~,,,,,_,,_,,,.,IJl'lllf:"'-~- ~'l!f" .,,,~,,,,. ~ "' 'IP 

: Web "sld~ Q-1\t~:T}\'ll~l)!'Vltfpg' T'1{in~i'~· 't, 1.,, . , , , ·' "" 

I In Figur<>.;U9 an\l·in:Pro,)?l~m 2'191,·we,.carefll!ly ,;;r6t.e t!ie value'of'TM]h'Jz•'lts -7 1}'47 •. ~83 ,947~1. Why·' 
ngt sjml'lY ')'rite it as eith~r -'i, 147, 483, (i4S or,,Ox8pq9oqQni'tooking'at.the C ]\eader·file·limi ts~'h, 
we see that they;use·i!.'sill!ilar.jj'lelh9,d'as 'Ye have 'to.;write.'l:'J\(in3;.ai1df'l"M(U32: ,, r. 

'·:/' tb> "' /}} ii''.,.. ! ~; ,Jf.: ,,f'i't~~ .if!.· - ' Ii, '~~ i:' >'\·· ~ -ii' 
~ I• ~ini"inunP and maximuln ~yalue"s a .. J. ~+gnGd~'iD.t~1" .,earl. llold. ~: */, ., i. 

I• #define ·INT~MAX \2147483647. ; ;,.,, , > 4. • •. 

f 
'#de:r:°"iner INT,tM!N -,, (~tNi1JtAXft.4'i,·~"l) -!·'}.,,,,_ .,i1 " ,... ""; .~ _,,. 

"'· ' ·' <l: ilJ,. •• ~ "· ' ~ ,,, ,,. ~ - : ;.;,," - "'t;i<1% ':< - " ii' 

.· . :Uq(ortul)ately,'tcuri?tf~°iplel~~!jonJi;twe~n'tlle,AsYmmftt(Y o(¢h;.t\vo!s,~c;'mBl~Teh~·re'p~~sen.ta-. 
1 

I
~. t10uandthe,conyers10n rules of C forces us•to wr1je TMm32 1n \his unusual way. Although understandmg 

t~is, iSSu~J.~qU~~s~us,:toOe1ie.i4tu ope:'°ohth~ niprkief~~fll~fi'd{ the~G};ngu~g~ sthnctarciSz it will help;"· 

~,:~s·if&'i::~:lf2:~~'-~~~~!~~~J~~~E1~1le.~a~j;,!'£e~~'..atj,~y~:. , ", ..• · ,,. "· ..• •· 

To convert an unsigned number to a larger data type, we can simply add 
leading zeros to the representation; this operation is known as zero extewion, 
expressed by the following principle: ~ 

PRINCIPLE: Expansion of an unsigned number by zero extension 

Define bit vectors ii= [uw-1' uw_2, ... , u0] of width wand ii'= [O, ... , 0, uw-I• 
uw-2• ... , uo] of width w', where w' > w. Then B2U w(ii) = B2U w'(ii'). I 

This principle can be seen to follow directly from the definition of the unsigned 
encoding, given by Equation 2.L 

For converting a two's-complement number to a larger data type, the rule 
is to perform a sign extension, adding copies of the most significant bit to the 
representation, expressed by the following principle. We show the sign bit xw-I in 
blue to highlight its role in sign extension. 

PRINCIPLE: Expansion of a two's-complement number by sign extension 

Define bit vectors;= [xw-1' Xw-2• '' ', xo] of width wand x' = [xw-1' .. ', Xw-1' 
Xw-h xw-2• ... , xo] of width w', where w' > w. Then B2T w(x) = B2T w'(x'). I 

As an example, consider the following code: 

2 

3 

4 

5 

short sx = -12345; 
unsigned short usx 
int x = sx; 
unsigned ux usx; 

sx; 

6 printf("sx %d:\t", sx); 

!• -12345 
I• 53191 
I• -12345 
/• 53191 

•I 
•/ 
•I 
•I 

7 show_bytes((byte_pointer) &sx, sizeof(short)); 
B printf("usx = %u:\t 11

, usx); 

9 show_bytes((byte_pointer) &usx, sizeof(unsigned short)); 
10 printf( 11 x = %d:\t 11 , x); 



i 
I 

I , 

----------

78 Chapter 2 Representing and Manipulating Information 

Figure 2.20 

11 

12 

1.3 

show_bytes((byte_pointer) &~, sizeof(int)(.i 
printf ( 11 ux = %u: \ t 11 

, ux) j 

show_bytes((byte_pointer) &ux, sizeof(unsigned)); 

When run as a 3Z-bit program on a big-endian machine that uses a two's­
complement represent'!tion, this code prints the output 

sx = -12345: cf c7 
usx = 53191: cf c7 
x = -12345: ff ff cf c7 
ux = 53191: 00 00 cf c7 

We see that, although the two's-complement representation of -12,345 and the 
unsigned representation of 53,191 are identical for a 16-bit word size, they dif­
fer for a 32-bit word size. In particular, -12,345 has hexadecimal representation 
OxFFFFCFC7, while 53,191 has hexadecimal representation OxOOOOCFC7. The for­
mer ti&s been ~ign extended-16 copies of the most significimt bit 1, havin~ hexa, 
decil?ial representation OxFFFF, have been added as leading bits. The latter has 
been extended with 16 leadlng zeros, having hexadecimal representation oxoo'oo. 

As an illustration, Figure 2.20 shows the•result of expanding from word size 
w = 3to w =4 bysignextension.Bitvector [lOl]representsthevalue-4+1 = -3. 
Applying sign extension givesrbit vector [1101] representing the value -8 + 4 + 
1 = -3. We can see that, for w = 4, the combined value of the two most significant 
bits, -8 + 4 = -4, matches the valu!' of the sign bit for w = 3. Simil,arly, bit vectors 
[111] and [1111] both represent the value -1. 

With this as intuition, we can now show that sign extension preserves the value 
of a two's-complement number. 

JPli; ?fU *'"·") -2'"= -8 
Examples of sign 
extension from w =, 3 <Jznn't!:ta-22 =-4 

22=4-

21=2-

to w = 4. For w = 4, the 
combined weight of the 
upper 2 bits is -8 + 4 = -4, 
matching that of the sign 
bit for w = 3. 

2'=1 • t 

-8-7-6-5-4-3-2-f 0 1 2 3 4 5 "6 7 8 

[101] 

[111] 

[1111] 



,Section 2.z r~·lnteger Jlepresentations 79 

DERIVi\TIONc:Expan&ion qf a two's'comp)ei;nent,n_umber by sign extension 

Let w' '= w + Ii. What we want to prove-is that ,, 
" 

B2T w+k([xw-1• ... , Xw-1• Xw-1• Xw-2• ... , xoD = B2T wC[xw-h Xw-2• ...• xo]) 

k times 

The proof follows by induction on k. That is, if we can prove that sign extending 
by 1 bit preserv~s the numeric value, then this ,property wil~ hold when sign 
extending by an arbitrary number of bits. Thus, the task reduces to proving that 

Expanding the left-hand expression with Equation 2.3 gives the following: 
, 

w-1 

B2T w+iC[xw-1• Xw-1• Xw-2• ...• xoD = -xw-12w + L x;zi 
i=O 

w-2 
= -xw-12w + Xw-12w-1 + L xi2i 

,i=O 

w-2 
= :_xw-1 (2w -2w-I) + L x;zi 

i=O 

w-2 ' 

= -x 2w-I + """"'X·2i w-1 L-t I 

i=O 

= B2T wC[xw-1• Xw-2• ...• xo]) 

The key property we exploit is that 2w - 2w-l = 2w-1. Thus, the combined effect 
of aading'a bi{ of weight -'-2w and df c01Werting the'bit Jiaving weighl -2w-l' to be 
one with welg\it'-2.w-l is to preserve the briginal numeric value. 1 

• • ... 1 .. }•( 

W""i"""~...,.,fi""!:~""'ie..,..mn""']"""~~!PlmlF~~~V~I~~~~ 
Show that each of the follt.wing bil vectors is,a twtl's-complement representation 
of -5 by applying Equation 2.3: 

A.. [10111 

B. [11011) 

c. [111011) 

Observe that the second and third bit vectors can be derived from the first by sign 
extension. 



80 Chapter 2 Representing and Manipulating Information 

One point worth making 1s that tl\e relative order of conversion· from one 
data size to another and between upsigned ;md signed can affect the b~havior of 
a program. Consider the following code: 

1 

2 

3 

short sx = -12345; 
unsigned uy = sx; 

!• -12345 •/ 
I• Mystery! •/ 

4 pr~ntf( 11Uy = %u:\t 11
, uy); 

5 show_byte's ( (byte_pointer) &uy, sizeof (unsigned)); 

' When run on a big-endian machine, this code causes the following output to be 
printed: 

uy = 4294954951: ff ff cf c7 

This shows that, when converting from short to unsigned, the program first 
changes the size and then the type. That is, (unsigned) sx is equivalent to 
(unsigned) (int) sx, evaluating to 4,2~4,954,951, not (unsigned) (unsigned 
short) sx, which evaluates to 53,191. Indeed, this convention is required by the 
C standards. 

tP,FJW?llft 1 'tti~23·.<~o.1MtiB'.ft?ag§;J..io~:;r~, &;:;:i;5t::i 
Consider the following C functions: . 

int funl (wisigned word) { 
return (int) ((word<< 24) >> 24); 

} 

int fun2(unsigned word) { 
return ((int) word << 24) >> 24; 

} 

Assume these are ,e.xec!'ted as a 32-bit,program on a m,achiny th~t µses two's­
complement arithmt;tic. ,Assume ,a)so that right sh*s pf signed v~)l.!es are per, 
formed arithmetically, while right shifts of unsigned va1ues are performed logically. 

A. Fill in the following table showing the effect of these functions for several 
example arguments. You willfina.it more-convenient to work with a hexa­

'' dec.imal repre.senf~tion. ·Jw;! rewember that he.x digits 8 througJ;i F i)ave, their 
most significant bits equal to 1. 

w funl (w) fun2(w) 

Ox00000076 -----
Ox87654321 ---- ----
oxooooopc9 --- ---

' OxEDCBA987 ----
B. Describe in words the useful computation each of these functions performs. 

- - -- --- --_-- ----- ~___/." 



Section 2.2 Integer Representations 81 

2.2.7 Truncating Numbers 

Siippose that, rather than extending a value with extra bits, we reduC¢ tlte number 
of bits repr~senting a number. This occurs, for example, in the following code: 

int x = 53191; 
2 short sx = (short) :X:; /•'-12345 •I 
3 int " . ' ' '1•' -12345 •1 y = sx; 
" 

,, 
•! 

Casting x to be' short wiU truncate a 32-bit int 'to a 16-bit short. As we saw 
before, this 16-bit pattern· is the twb's-complement representation of -12,345. 
When casting this back to int, sign extension will set the high-order 16 bits to 
ones, yielding the 32-bit two's-comple,ment"representation of -12,345. 

When truncating a w".!iit number x = [xw_j",''iw_2, ... , .to] to a ·k-bit'number, 
we drop' the high.order w - k bits, giving a bit vector x' = [xk-1> xk_2, ... , xo]. 
Truncating a number can alter its value-a form of overflow. For an unsigned 
number, we can readily characteri2e the numeric vaiue that will result. 

PRI NCIPL~: Truncation of an unsigned number 

Le! x ,be th~ bit vecto~ [xw-1> xw_2, .. , , x0i, an~ l~t x' be the result of, truncating 
jt to k bits: x' = [xk-I> xk-2• ... , xo]. Let x = B2U w(x) and x' = B2Uk(x'). Then 
x'=xmod2k. • 

The intuition behind this principle is simply that all of the bits that were 
truncated have weights of the. form' 2;, where i =:: k, and therefore each of these 
weights reduces to zero under the modulus operation. This is formalized by the 
following derivation: 

bERIVATldN: nuncation of lln unsigned number 

Applying the modulus operation to Equation 2.1 yields 

) k . k 
B2Uw([xw-l• Xw-2• .... , xo]) mod 2 ;= L x;2' mod,2_ 

[

w-1 J 
t=O , 

= [I: x;2;] mod zk 
t=O 

k-1 

= Lxizi 
i=O 

In this derivation, we make use of the property that 2; mod 2k = O for any i =:: k . 

• 
" A similar property holds for truncating a two's-complement number, except 

that it then converts the most significant bit into a sign bit: 



I_<-____ -~- --

82 Chapter 2 Representing and Manipulating Information 

' I 
f 
' 

PRINCIPLE: Truncation of a two's-complement number 

Let x be t\le_,git v<;ctor [xw-l• xw-2• ... , xo), and let:~ be the result qifltJunca,t_ing 
it to k bits:¥'= [xk-l• 'xk_2, ... , x0]. Let x,= B2T w(x),i'!}d x' = B2I;k(x'). Th¥n 
x' = U2T k(x mod 2k). • 

In this formulation, x mod 2k will be a number bf>tween 0 ~nd 2k - 1. Ayplying 
function U2T, to it will have the effect of conyerting the most significant bit x,_1 
from having;weight 2k-l to having weight -2k-l. We can see this with the example 
of convertingv.alue x = 53,191from int to short. Si,n~e 216 = 65,536 2'.;c, we have 
x mod 216,= x .. But when we convert this number, to a 16-bit two's-complement 
number, we get x1="53,191- 65,536 =r -12,345. 

DE~IVATlpN: Truncation of a"two's-comp,lement number 

Using a similar argm:µent to the one we used for truncation of an unsigned number 
shows that 

~J ..... k' 
B2T w([xw-1• Xw-2• ... , xoD mod 2 = B2U,([xk-l• xk-2• · · ·, xo)) 

That is, x mod 2k can be represented ~y an unsigned numb~r having bit-level rep­
resentaticirl1[ik-l• x,_2 , ... , x0]._Converting this to a two's-comple!Jlent number 
gives x' = U2T ,(x mod 2'). • 

Summarizing, the effect of truncation for unsigned numbers is 

" 
B2U,([xk-l• xk-2• ... , xo)) = B2U wC[xw-1• xw-21 ' .. , xo)) mod 2k (2.9) 

1' ~'· 
while the effect for two's-complement numbers is 

~1a~!lceTift;®rew:Ji.2~~~JiiJil>~~:~.;:;i~iW:.~~;,. :~ 
Suppose we truncate a 4-bit value (represented by hex digits 0 through F) to a 3-
bit value (repres~nted as hex digits o throu'gh 7.) Fill in the table below showing 
the effect of this truncation for sbme cases, in terms of the unsigned and two's­
complement interpret~\ions of those bit patterns. 

•t I 

Hex 

Original Truncated 

0 0 

2 2 

9 1 

B 3 

F 7 

Unsigned 

Original Truncated 

0 ----
2 ----
9 ---

11 ----
II •( 

15 ---

1\vo's complement 

Original 

0 
2 

-7 
-5 
-1 

Truncated 

Explain how E9uations 2.9 and 2.10 apply to the,se cases. 
' ~ I ' ' ~ 

" 



Section 2.2 Integer Representations 83 

2.2.8 Advice on Signed :versus Unsigned 

As we have seen, the implicit casting of signed to unsigned leads to some non­
intuitive behavior. Nonintuitive features often lead to program bugs, and ones 
involving the nuances of implicit casting can be especially difficult to see. Since the 
casting takes place without any clear indication in the code, programmers often 
overlook its effects. 

The following two practice problems illustrate some of the subt/e errors that 
can arise due to implicit casting and the unsigned data type. 

fP&H;ceiRiOmerrnz;~-:1S01trticiffiiliili~'if1\ :·:. :· : :·§\ :'.: :<::: ¥ ;_ : : · ,-:; :J 
Consider the following code that attempts to sum the elements of an array a, where 
the number of elements is given by parameter length: 

/• WARNING: This is buggy code •/ 
2 float sum_elements(float a[], unsigned length) { 
3 int i; 
4 float·result = Oj 
5 

6 for (i = Oj i ;<::::1 length-.1; i++) 
7 result+= a[i]; 
B return resulti 
9 } 

When run with argument length equal to 0, this code should return 0.0. 
Instead, it encounters a memory error. Explain why this happens. Show how this 
code can be corrected. 

fi!ta¢tl&,e·P[(!61€ii.hli~~islir@Wi'eag~~Jbt11, ,J,. ~. ~% m·<>\- :,,. C~ ;; ; ~ : d 
You are given the assignment of writing a function that determines whether one 
string is longer than another. You decide to make use of the string library function 
strlen having the following declaration: 

I• Prototype for library function strlen •/ 
size_t strlen(const char •s); 

Here is your fifst. attempt at the ('unction: 

/* Determine whether string s is longer than string t */ 
I• WARNING: This function is buggy •/ 
int strlonger(char •s, char •t) { 

return strlen(s) - strlen(t) '> O; 
} 

When you test this on some sample data, things do·not seem to work quite 
right. You investigate further and determine that, when compiled as a 32-bit 



i' 

" I 

i . , 
l 

-- - --

84 Chapter 2 Representing 'and Manipulating Information 

program, data type size_t is defined (via t)'pedef) in header file stdio .h to-be 
unsigned. 

A. For what q&es will this function produce an incorrect rpsult? 

B. Explain how· this incorrect result eomes about. 

C.' Sho,\, how to fix the code so that it will work reliably. 

We have seen multiple ways in which the subtle features of unsigned arith­
metic, and especially the implicit conversion of signed to unsigned, can lead to 
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned 
numbers: In fact, few languages other thap C support unsigned integers. Appar­
ently, these othe!' language designers viewed, them as m6re trouble than they are 
worth. For example, Java supports only signed integers, and it requires that they 
be implemented with two's-complement arithmetic. The normal"right shift oper­
ator» is guaranteed to perform 'an arithmetic sliift. The special operator»> 'is 
defined to perform a logical right shift. 

Unsigned values are very useful when we want 't'o think 6'f words as just col­
le~tions of bits- with no numeric interpretation. This occurs, for example, when 
packing a word with flags describing various Booleliii conditions. Addresses are 
naturally unsigned, so systems programmers find unsigned·cypes to be helpful. 
Unsigned values are also useful when implementing mathematical packages for 
modular arithmetic and for multiprecision arithmetic, in which numbers are rep­
~esented by arrays of words. 

" 
2.3 Integer Arithmetic 

Many beginning programmers are surprised to find that adding two positive num­
bers can yield a negative result, and that the comparison x < y can yield a different 
result than the comparison,>;-y < O,,These properties are artifacts of the finite na­
ture of,computer arithmetic. Understanding the nual)ces of computer arithmetic 
can help programmers write more reliable code. 

2.3.1 Unsigned Addition • 

Consider two nonnegative integers x and y, .such that 0 :'.S x, y < 2w. Bl;lch of 
these values can be represented by aw-bit unsigned number. If we coinputelheir 
sum, however, we have a possible range 0 :'.S,x + y :'.S 2w+i __ 2. Representing this 
sum could require w + 1 bits. For example, F,igure 2.21 shows a; plot of the func­
tion x + y when x and y have 4-bit representations. The,a~guments (shown on 
the horizontal axes) range from 0 to ~Sjmt the.sum range~ fro!)l'O to 30, The 
shape of the function is a sloping plane (the function is linear in both dimel\­
sions). If we were to maintain the sum as a (w + 1)-bit number and add it to 
another<value, we may require w + 2 bits, and so on. This continued ''word size 

'·~· 



32 

28 

24 

20 

16 

12 

8 

4 

0 

Section 2.3 Integer Arithmetic 85 

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits. 

inflation" means we cannot place any bound on the word size required to fully rep­
resent the results of arithmetic operations. Some programming languages, such 
as Lisp, actually support arbitrary size arithmetic to allow integers of any size 
(within the memory limits of the computer, of course.) More commonly, pro­
gramming languages support fixed-size arithmetic, and hence operations such 
as "addition" and "multiplication" differ from their counterpart operations over 
integers. 

Let us define the operation+~ for arguments x and y, where 0 ::= x, y < 2w, 
as the result of truncating the integer sum x + y to be w bits long and then 
viewing the result as an unsigned number. This can be characterized as a form 
of modular arithmetic, computing the sum modulo 2w by simply discarding any 
bits with weight greater than 2w-l in the bit-level representation of x + y. For 
example, consider a 4-bit number representation with x = 9 and y = 12, having 
bit representations [1001 J and [1100], respectively. Their sum is 21, having a 5-bit 
representation [10101]. But if we discard the high-order bit, we get [0101 ], that is, 
decimal value 5. This matches the value 21mod16 = 5. 



1
-~-

'I ~. 

-.--. ---

86 Chapter 2 Representing and Manipulating Information 

Aside Security vulnerability in getpeername 

In 20ol, programmers involved-in the FreeBSD open-source operatlng•syStems project realized that 
their implementation ,Of th~ getpeernaiiie lib;ary function had a security vtllner{lbility. A simplified 
version of their code went something like this: 

1 /• 
2 * Illustration of code vulnerability similar to that found in 
3 * FreeBSD 1 s .implamentatiol\ of~ getpeername {) 

4 •/ -.' 

5 
~. 

6 /* Declaration of library functioii .memcpy:, */, 
~ void *memcpy(void *dest, void,*src, size_t n); 

8 "; 
9 /* Kernel memory ,region holding us8r-acCessibl~ ""data */ 

10. #define KSIZE '1024 
11 char'kbuf[KSIZE]; 
12 

13 

14 

15 

16 

17 

18 

19 

I* Copy at most maxlen D)rteS from kernel region 'to user buffer */ 
int copy_from~kernel(vOid *user_dest, int,. maxlen) { 

/* Byte co~~ len is m'inimum ,of buffer siZe "ap~ ~m~1eh *I 
int len = KsrzE'· < rrlaxleh ? KSIZE : maxlen; 
memcpy(us"er_de~t, kbuf, len); 
return len; 

} 
"' ;, ,, ~. ~lo 

In this cone, we show the prototype for library fun!'tion memcpy on line 7, V{hich is designed to copy 
a specified number"of bytes n from one region of memory to another .. 

Th~ function copy _from_kernel, starting at line 14, is designed to copy some of the data main­
tained by the operating system kernel to a· designated regi5n of memory accessible"to the user. Most "I 
of the data structures maintained by the' kernel ·sho!11d not be"readable by a'user, since they may co11-; 1 
tain sensitive information about other users and about other-jobs run"ning on th'e "system, but the region I 
shown as kbuf was fntended to be orieihat the user could tead. The' parameter maxlen i.S intended to be 
the length of the buffer allocated by the user and indicated by argument usei'-~desl;'. :rite computation 
at line 16 then makes s\lre that no more bytes are copied than'are available'in eithel'the so'\m;.e·or the 
destination buffer. •' 

Suppose, howe':er, that some malicious programmer writes code that calls copy _from_kernerwith ~ 
a negative value of maxlen. Then the rriinimum coffiputation~on line,J'6 will comPute'this value for len, 
which will then be passed a~ the parameter n fo memcpy. Note, h6weyer, that par11meter n is i:lecllire<fas 
having data type size_t. This data: type i~declaretl (via typedef) in the lillrary-file stdio th. Typically, if • ,,,,_ '- t 
is defined to be unsigned for 32-bit programs and unsigned long fo• 64-bit:progr~ms. Since argl)ment I 
n is·unsigned, memcpy will treatit as a very large positive nm)lber and attempt to' copy that ma)ly bytes I 
from the kernel region to the·bser's buffer. Copying that many bytes (at least z31) will not actually ' 
work, because the program will encounter invalid addresses in tb.e process, but:the program could read I 
regions of the kernel memoty for wl)iclt it:is rrot authorized. I •. 

i 
j 
1! 
I 
~ 
I 
1 
j 

1 



Section 2.3 Integer Arithmetic 87 

~~-'~?£>~ lf:l'tW,,,.., AA r. 'fl) •·"""" ~~-~ ""'°~ll<i .. '"o ~ 11flt't!!i.i'(Q/?';,-,,"1J/"""-' 'tit"'J,_- ''1< i~ 

Aside Security"iiulherability jri get'peername (continued)-
~ i' t ·'_ ~~ i ~ -,, f.1 ~ ~ 

'!:fe can see that this prpbleni qris_es due to the mismatch behy~en .. data t~pes: in one place the 
length parameie/ii.~igned; -in •anQtt\er place it·is·unsi~ned .. Such, mismatches can be ·a source pf bugs 
and, as this examplesllows, ~an ev~I\J~ad to security vulnerabilities. Fortunately, there were no reported 
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a security advisory . ~- ·'· ·~ ' . 
"FreeBSD-SA;92:38.s1gned-error'' .advising system administrators on how to apply a patch that would 
remove 't11e .v11!nerabl!ity. The,b,;g'c:arl be.fixecj by declaring parameter max). en to copy ~from_kernel 
to.be of type sizeJo, to'be consistent with paramete)" n of memcpy. We. should also qeclare local variable 

., 'f. ,,.,,. ~ f 
len'and the retum•value to be of tyPe size_ t. "' 7 i 

"· ' ~ t, ~ .,,, 
~,, o,.,.,_ -.._,._-._, --.--;;,,. - • .,,. ""' ·~ ,,. _, .,,. ''" •~ - ~-.$.,,,,. - "~ .,._,ii ,,.,,, 

We can characterize operation +~ as follows: 

PRINCIPLE: Unsigned addition 

For x and y such that 0::; x, y < 2w: 

" { x + y, x+ y= 
w x+y-2w, 

x + y < 2w Normal 

2w ::; x + y < 2w+1 Overflow (2.11) 

• 
The two cases of Equation 2.11 are illustrated in Figure 2.22, showing the 

sum x + y on the left mapping to the unsigned w-bit sum x +~ y on the right. The 
normal case preserves the value of x + y, while the overflow case has the effect of 
decrementing this sum by zw. 

DERIVATION: Unsigned addition 

In general, we can see that if x + y < zw, the leading bit in the ( w + 1)-bit represen­
tation of the sum will equal 0, and hence discarding it will not change the numeric 
v'jlue. On the other hand, if 2!" ::; x + y < zw+1, the leading bit in the ( w + 1)-bit 
representaiion of the sum will equal 1, and hence discarding it is equivalent to 
subtracting 2w from the sum. • 

An arithmetic operation is said to overflow when the full integer result cannot 
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow 

x+y, 
2Wt-1 Overflow 

2• 

0 

Figure 2.22 Relation between integer addition and unsigned addition. When x + y 
is greater than zw - 1, the sum overflows. 



r-1- -~ -- ~ 

! 

I 
I 
I 

l 
! 

88 

- - -- ~- ------

Chapter 2 Representing and Manipulating Information 

16 

14 

12 

10 

8 

6 

4 

2 

0 

10 
14 

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed 

modulo 16. 

--1. 

occurs when the two operands sum to 2w or more. Figure 2.23 ~hows a plot of the 
unsigned addition function for word size w = 4. The sum is computed modulo 
24 =16. When x + y < 16, there is no overflow, and x +:; y is simply x + y. This is 
shown as the region forming a sloping plane labeled "Normal." When x + y::: 16, 
the addition overflows, having the effect of decrementing the sum by16. This is 
shown as the region forming a sloping plane labeled "Overflow." 

When executing C programs, overflows are not signaled as errors. At times, 
however, we might wish to determine whether or not overflow has occurred. 

PRINCIPLE: Detecting overflow of unsigned addition 

For x and yin the range 0::: x, y::: UMaxw, lets= x +;',, y. Then the computation 
of s overflowed if and only ifs < x (or equivalently, s < y ). I 

As an illustration, in our earlier example, we saw that 9 +:; 12 = 5. We can see 
that overflow occurred, since 5 < 9. 



, SectioQ 2.3 Integer Arithmetic 89 

DERIVATION: Detecting overflow of unsigned addition 

Observe that x + y o:: x, and hence ifs did not overflo,w, we will surely haves o:: x. 
On the other hand, ifs did overflow, we have s ""x + y - 2w. Given that y < 2w, 
we have y - 2w "'." 0, and hences = x + (y - zw) < x. I 

~~am~:ai>:121zz;r&~,~~~~~a 
Write a function with the following prototype: 

I* Determine whether arguments can be added without overflow */ 
int uadd_ok(unsigned x, unsigned y); 

This _function should return 1 if arguments x and y can be added without 
causing overflow., J 

•' 
Modular additiorrforms a mathematical.sttucture known.as an.abelian group; 

named after the Norwegiall'mathematician Niels Henrik Abel (1802-1829~. That 
is, it is commutative (that's where· the "abelian" part coines in) and associative; 
it has an identity. element 0, and every element has an ·additive inverse. Let> us 
consider the set of w-bit unsigned numbers with addition operation+~. For every 
value x' there must be some value -~ x sue!\ th~t -~ x +~ x = 0. This additive 
inverse operation can be characteriZed as follows: 

PRINCIPLE: Unsigned negation 

for any number x such that 0 ::: x < 2w, its w-bit unsigned negation -~ x is given 
by the following: 

" {x, x=O 
-wx= 2w-x,, x>O 

This re,sult can ~yadily be derived by case analysis: 

DERIVATIO'N: Unsigned negation 

(2.12) 

I 

• 1 .... ~ ,, ~ • 
Whenx = 0, the additive inverse is clearly.O. For x > 0, consider, the value 2w - x. 

, ' • \ • • J •• , 

Obse'.ve that this µumber .if; in the rangl',,0 < 2w - x < 2w. yve ~an also see th~t 
(x + zw --!')mod 2w T 2~,mod 2w = 0. Hence it is the inyerse of x unaer +~. I 

" 
. ~f;lli!<f£r~Wc:Jl~~>i1 
.&,i,..,,.111~~ 

We can represent a bit pattern of length w =,4.with a single hex digit. Fpr an 
unsigned interpretation of these digits, us'e Equation 2.12 to fill in the following 
table giving the values and tliebil representations (in hex) of the uhsigned additive 
inverses of the digits shown. 



I 
I 

\ 

+--I 

• 
1 

I 

' 

I 
'! 
I 

---------- ............ - -· --- --- ---· -- . -------. - - --· 

90 Chapter 2 Representing and Manipulating Information 

Hex 

0 

5 

8 

D 

F 

x 

Decimal 
-· x 

Decimal Hex 

2.3.2 Two's-Complement Addition 

" 

With two's-complement addition, we must decide what to do when the result is 
either too large (positive) or too small (negative) to represent. Given integer 
values x and yin the range -2w-l s x, y s zw-l _ 1, their sum is in the range 
_zw s x + y s 2w - 2, potentially requiring ·w + 1 bits to represent exactly. As 
before, we avoid ever-expanding data sizes by truncating the representation.tow 
bits. The result is not as familiar mathematically as modular addition, however . 
Let us define x +~ y to be the result of truncating the integer sum x·+ y to be w 
bits long and then viewing the result as a two's-complement number. 

PRINCIPL~.: Two's-complement addition 

For integer values x and yin the range -zw-l :ox, y s 2w-l -1: 

{ 

x + y - zw, zw-l s x + y Positive overftow 1 
x +~ y =' x + y, -zw.-'l s x + y < zw-l Normal (2.13) 

· x + y + zw, x + y < -2w-l Negative overfiow 

• 
This principle is illustrated in Figure 2.24, where the sum x + y is shown on the 

left, having a value in the range -2w :ox+ y s zw -2, and the result of truncating 
the sum to a w-bit two's-complement number is sho\)'ll on the right. (The labels 
"Case l" to "Case 4" in this figure are fortlie case anaiysis of th~ formal derivation 
of the principle.) When the sumx + y exceeds T¥a:!fw (c;a,se4), we ~ay thatpQsitive 
overflow has occurred. In this case, the effect of truncation is to subtract 2w from 
ths sum. When.the ~um x + y is·u;;sthan"'i'Minw (case-1), V:e say th'at negatfye 
overflow has occurr'e'd. In thi~ case, thJ'effect of truncation is to add zw lo tlie sum. 
' Tile w-bit two's-complement sum of two number~ha~ the ex'acfsame bit: level 
representation as the unsigned sum. In fact, most computers use the same machine 
instruction to perform either unsigned or signed additiop. 

DERlv°ATIOl)I: Two's-fomplenient ~ddition 
Sinqe.. t}Vq's-complement addition has the exact saljle bit-leve~ representation as 
unsigned addition, we can characterize the operation +~ a,s one of convertil)g i~~ 
arguments to unsigned, performing unsigned addition, and then converting back 
to two's complement: 



Section 2.3 Integer Arithmetic 91 

Figure 2.24 x+y 
Relation between integer +2W 
an~ two's-complement 

Case4 addition. When x + y is 
less than -zw-l, there is a +2W-1 
negative overflow. When 

Case3 it is greater than or equal 
to zw-1, there is a positive 

0 overflow. 
Case2 

-2w--1 -2w--1 

Case 1 

(2.14) 

By Equation 2.6, we can write nu w(x) as Xw-12W + x and nu w(Y) as 
Yw-12w + y. Using the property that+;;, is simply addition modulo 2w, along with 
the properties of modular addition, we then have 

x +~ y ':" U2T w~nu w(x) +~nu w(Y)) 

= U2T w[Cxw-12w + X + Yw-12w + y) mod 2w] 

= U2;f w[(x + y) \IlOd 2w,l 

The terms xw-12w and Yw-i2w drop out sihce they equal 0 modulo 2w. 
To better understand this quantity, let us define z'as the integer sum z = x + y, 

z' as z' = z mod'zw, and z" as z 11
:::::: U2T w(z'). The value z" is equal to x +~ y. We 

cari divide the analysis into four cases as illustrated in Figure 2.24: ·· 

1. -2w ::5 z < -2w-l. Then we will have z' = z + 2w. :Ihis gives 0:::: z' < -2w-I + 
2w = 2w-1

. Examining Eqllation-2.71 we see that z/ is in ihe range such that 
z" = z'. This is the case of negative overflow. We have added two negative 
numbers x and y (that's the only-wafwe can have z < -2w-l) and obtained 
a nonnegative result z" = x + y + zw. 

2. -2w-l ::5 z < 0. Then we will again have z' = z + 2w, giving -2w-l + 2w = 
2w-l ::5 z' < 2w. Examining Equation 2,7, we see that z' is in such a range that 
z" = z' - zw, and therefore z" = z' - 2~·= z + zw - zw = z. That is, our two's­
complement sum z" equals the integer sum x + y. 

3. 0 ::5 z < 2w-
1
. Then we will have z' = z, giving 0 ::5 z' < 2w-l, and hence z" = 

z' = z. Again, the two's-complements.um z" equals the integer sum x + y. 

4. 2w-l :'.:: z < 2w. We will again hav6 z' = z, giving zw-l ::5 ,·, < 2w. But in this 
range we have z" = z' - 2w, giving z" = x + y' - zw. This is the case of positive 
overflow. We have added two positive numbers x and y (that's the only way 
we can have z:::: 2w-l) and obtained a negative result z" =x + y - 2w. I 



92 Chapter 2 

I 
I 

I 
\ 

:! 

I 
11-

I 

I 
'~; 

I 

Representing and Manipulating Information 

x y x+y x +~ y Case 

-8 -5 -13 3 1 
[1000] [1011] [10011] [0011] 

-8 -8 -16 0 1 -. 
[06001 [1000] [1000] [10000] 

-8 5 -3 "'T• _.3 2 
[1000] [0101] [11101] [1101]'., 

2 5 7 7 3 

[0010] [0101] [00111] [0111] 

5 5 10 -6 4 

[0101] [0101] [01010] [1010] 

figu~e 2.25 Two's-col"plemen,t addition examples. Thi' bit-level representation of 
the 4-bit two's-complement sum can be obtained by performing binary addition of the 
operands anp vuncating the result to 4,bits. 

As illustrations of two's-complement addition, Figure 2.25 shows some exam­
ples when w = 4. Each example is labeled by the case to which it corresponds in 
the derivation of Equation 2.13. Note that 24 = 161 and hence_ negative overflow 
yields a result 16 more than the integer sum, and positive overflow yields a result 16 
less. We include bit-level representations of the operands and the result. Observe 
that the result can be p,btained, by perfprmil)-g J1inary addition of the operal\d~ and 
truncating the result to 4 bits. 

l'.igure 2.26 iJ!µstrates two's-complement addition for word ~ize w = 4. 1he 
operands range between -8 and 7. 1\Yhen x + y < -8; two's-complement addition 
has a negative overflow, causing the sum to be incremented by 16. When -8::; 
x + y < 8, the addition yields x + y. When x + y :". 8,.the. addition has a positive 
overflow, causing the sum to be decremented by .16. Each of these three ranges 
forms a SlOj)ing plane_ in the figure. I 

Equation 2.13 also lets us identify the cases where overflow has occurred: 

PRINCIPLE: Detecting overflow in two's-complement addition 

For x and yin the range TMinw::; x, y::; TMaxw,let s == x +:,, y. Then the compu­
tation of s has had positive overflow if and only if'X. > 0 and y > 0 buts ::; 0. The 
computation has had negative overflow if and only if x < 0 and y < 0 buts :". 0. I 

Figure 2.25 shows several illustrations of this pJinciple for w =; 4. The.first 
en!FY shows a case of negative overflo"(, where two negative numbers sum to a 
positive one. The final,"\ltry shows a case of positive overflow, where two positive 
numbers sum to a negative Ol}e. 

- -------- -----~~-- --"~,,,:__, 



8 

6 

4 

2 

0 

22 

24 

26 

28 

Section 2.3 Integer Arithmetic 93 

Figure 2.26 Two's-complement addition. With a 4-bit word size
1 

addition can have a 
negative overflow when x + y < -8 and a positive overflow when x + y ::: 8. 

DERIVATION: Detecting overflow of two's-complement addition 

Let us first do the analysis for positive overflow. If both x > 0 and y > 0 buts s 0, 
then clearly positive overflow has occurred. Conversely, positive overflow requires 
(1) that x > 0 and y > 0 (otherwise, x + y < TMaxw) and (2) thats s 0 (from 
Equation 2.13). A similar set of arguments holds for negative overflow. I 

~'.~. ;.],p,'[ki]lfilU'>~>rnWl'~~-~l;i;;.'<;7,~.,.~~~~,7~~;!Et'i ~l ~~ ~~1SULB89£t' .. 'U-J,,,,,;rffJ;E,~~~J.,..;,,'>;'Affilf4.~.,,~nm.,.,,.~~·., 
Fill in the following table in the style of Figure 2.25. Give the integer values of 
the 5-bit arguments, the values of both their integer and two's-complement sums, 
the bit-level representation of the two's-complement sum, and the case from the 
derivation of Equation 2'.13. 

x y x+y x +~ y Case 

[10100] (10001] 



94 Chapter 2 

I 
' 

- -- --- - . - . ·- . 

Representing and.Manipulating Information 

x y x+y x +5 y Case 

---- --- --- -----
[11000] [11000] ----- ----

.j 

[10111]. [01000) ----- --- ----

----
[00010] [00101] 

---- --- ----
[01100] [00100] --- ---

Write a function with the following prototype: 

I* Determine whether arguments can be added without overflow */ 
int tadd_ok(int x, int y); 

' This function should return 1 if arguments x and y can be added without 
causing overflow. 

~i Ft<>o1em12.nt:!~iiii!il2rtlille,1$3l~*~"'~i"*'ll'ti.~~!11i~ 
Your cow6rker gets'impatient with your analysis of the overflowconditions for 
two's-complement audition and presents you with the following implementatiorl 
of tadd_ok: 

/* Determine whether arguments can b~ added without overflow */ 
/• WARN~NG: This code is buggy. •/ 
int tadd_ok(int x, int y) { 

'' ' { .. 
int sum = x+yi 
~eturn (sum-x == y) && (sum-y == x); 

} 

You look at the code and laugh. Explain why. 

•' 

mlliti1er&mm~2~~mf~~~1'&~1t::s 
You are assigned the task of wriiing code for a function tsub_ok, witJ:l,arguments 
x and y, that will return 1 if computing x-y does not cause overflow. Having just 
written the code for Problem 2.30, you write the foll9wing: 

/* Determine whether arguments can be subtracted without overflow */ 
/• WARNING: This code is buggy. •/ 
int tsub_ok(int x, int y) { 



Section 2.3 Integer Arithmetic 95 

return tadd_ok(x, -y); 
} 

For what values of x and y w\ll this fu)lction give incorrect results? Writing a 
corre9t -:ersion of this function.is left as an exercise (Problem 2.74). 

2.3.3 Two's-Complement Negation 

We can see that every number x in the range TMinw :'.': x ~.TMaxw has an additive 
inverse under+~, which we denote-~ x as follows: 

PRINCIPLE: 1\vo's-complement negation 

For x in the range TMinw::; x::; TMaxw, its two's-copiplement negation-~ x is 
given by the formula 

_, x = { TMinw, 
w -x. 

x= TMinw 

x > TMinw 
(2.15) 

I 

That is, for w-bit two's-complement addition, TMinw is its own additive in­
.verse, while any other value x has·-x as its additive inverse. 

DERIVATION:. Two's-complement negation 

Observe that TMinw + 'l'Minw = -2w-l + -2w-l = -2w. This would ca11se nega­
tive overflow, and hence TMini» +~ TMirzw = -2w + 2w = 0. For values of x such 
thatx >'TMinw, the value - x can also be represented as aw-bit two's-complement 
number, and their sum will be - x + x = 0. I 

w-~r~eYiif!ih'l@bl'fil:,;;z111~~~i!~~\. ~~'IJ. .. ~ 
We can represent a bit pattern of length w = 4 with a single hex digit. For a two's­
complement interpretation of these digits, fill in the following table to determine 
the additive inverses of the digits shown: 

x -4x 
Hex Decimal Decimal Hex 

0 ---- ----
5 ---- ------
8' ---- ----
D ----- ----·- -----
F ·, 

What do you observe 'about the' bit patterns generated by two's-complement 
and unsigned (Problem 2.28) negation? 



! ' 

lli11 

'I 

'~ 

·I ,I 
l 

"I 

96 Chapter 2 Representing and Manipulating Information 

~ '•<,, ' ' - ~ /;._ -$•·,,.,, 't;,, ,,.,,~· ~o 

Wli&,·Aslde DATA:TNEG ~it'l~vei ·repre~entation of t"'lo's-comp1eihe~t negation " , 
~ ,,- ~ 

There are·several clever ways to determine the two's-complement negation.of ava\ue represe~ted 
at the bit level. Thl> foii'Owihg 1wo·t~cJ\niqu~g:at~15i\th useful, stlchi~,f "'1ten 'onl<irl:'Counl~rs the 'value 
Oxfffffffa when d~b'!gging ~ progr~m-::~nd thl:J l;nd .i!is\gnt lnto'the nlil!!rl'ot'ti!e tWb'S-COTpleiti~1W' 
representation. ~ 

One technique for perfomiingtWo's-cqn;tpleµient pegatjoh at the b}tlev;i is to complement the bits ! 

'and tjien increment, the result. In C, weian st.ate that for any ihteger.vpli.ie x',\CO!flputin~theexpressfirns , 
~ "'•'< " ' 'I •. 

~x and -x +•l will give identical results, · 
~Here>aresome~eQtmPte§With}l4~&it\vqrd·Sit~: ~ '"~~ ot>l,-f•~~ "'~ ;t -> _ "1 i 

~ ",. ~ ... , ;>.- 11)- p t •h- i' ~- .. ,_ ' ~-· ~;" ' ~ 't 

x 
101011 
[0111) 
[1100] 
[0000] 
[1000] 

5 
7 

-4 
0 

-?' 

[1pioJ 
'[1000) 

, ,fOO!lJ 
'[1).111 

(ou~r 

" ,incr(-x) 

_:'6 (1.011r -5 
.-8 [1001J -1' 

~- [OloOJ 4 

':.{<''-ll 4~f ~( "'l'J "'" 
,. 

' 
• "'.\, "'II " ' i· "· 1 

' a A 

-;.1 {0000]' 0 . .q: I , ,., 1oop] . ~~? . 

For our earlier example, we kn~w that.the cornplemerit.of Oxf is Oxo. art'tl tlfe complement of Oxa 
is Ox5, andso Qxfd"fJla'.is.Jlle.two;$:F~lnni~l!1'e,hfi',<;presen\~tio9 oJt,.;P.l,. , • • • " , ', '', 

A secon,d,w,ay to perform two's-,complellJent .. negation of~ n,umper 'll: Js,twed on~sp(!\ting \hi' git, ·1 
vector into two pa~ts. iet k ge the position of the rightmost 1, so tqe bit-level representatiomifx has the I 
formlxw-1' xw_z, ... , xk+j, '1, 0, ... Q). (This is possible asJong•as x'i'o.);Ihenegatioil:'i!!Thedwritten l 
in binary foQil as [~.x,K.,,1' -.vMl,~·,,,, -·x;,.-t;kL~ ... -., O]. Tji[j,t is, we 9om~l~!l1.'\l'l'!'ac,JiJ:iit to, the l~ttpf,, J 
bit position k. t i, • ~,h' ~ J%1 ~ _ ~~'* ~ -1>- ~·~1' _ """~,~ ~ , ;-~ ht~ ( 
. . We illustrate this [dea wjtl1,sbfu~'\:\>i\Pn~bf;i~.,\Yl!,~r~5ye highL\!lhnP~righ~plOSt patt;111+1 ?•.· . ;' ,.o i 
t:(Llfahcs: , . •1 * - f.l . 

x 

[jlOO] -4 
[1000] -8 
[0101] 5 
[OlU] 7 

• . , - e;:t1 - t 

-x· ' ' j 
[0100] 

. .'ffe.~t ~ 4 ' 
.; "{lOOO]t• ~J3~ ' t f,t 11,J ~ (!;!!> L. .. " H. ~~~ .,.i . " 

'[10Ht "-5' t- .· h-l~ · l· .'h ;\_,;IJ "' ,,4 
" 

[loOlJc ..:.7 .~ 1"ffe l) , •.!" '.hf.~ 
" >I 

"''""' .,·~ ""' 

2.3.4 Unsigned Multiplication 

Integers x and y in the range 0 ~ x, y ~ 2w - 1 can be represented as w-bit un­
signed numbers, but their product x · y can range b,etween 0 and (2w - 1)

2 = 
22w - 2w+l + 1. This could require as many as 2w bits to represent. Instead, un­
signed multiplication in C is defined to yield thew-bit value given by the low-order 
w bits of the 2w-biqnteger product. Let us denote thi~ _yalue as f ·~ y. 

Truncating an unsigned number to w bits is equivalen,t ~o computing its value 
modulo 2w, giving the following: 

------ - -

' 



PR I N c I P,LE,; p,nsigned multiplication 

For,x,and y such that,0 ::$,->', y :s: UMax,w; 

x ·~ y = (x · y) mod 2w 

2.3.5 Two's-Complement Multiplication 

' 

Section 2.3 lhteger Arithmetic 97 

(2.16) 
I 

Integers x and yin the range -2w-l :s: x, y :s: 2w-l _ 1 can be represented as w-bit 
two's-complement numbers, but· their product.< . y can range betwe1'n -2w-1. 
(2w-l - J..) = -22w-Z +"2w-]. •and -2w-l, ~2w-l = 2?w-2• This.'could require as 
many as 2w bits to represent in two's-complement•form'. Instead, signed multi­
plication in C generally is performed by truncating the 2w-bit product to w bits. 
We dy,note t~~s raJue as -r •;,, ~,, Tryncating a two:~-complement number to U: bits 
is equivalent to first computmg its value modulo 2w and then converting from 
unsigned to two's complement, giving the following: 

PRINCIPLE: 1\vo's-complem'ent multiplication 

For x and y such that TMin;,, :S: x, y :S: TMaxw: 

x ·~ y = U2T w((x · y) mod2w) (2.17) 
I 

' We claim that the bit-leveJ representation bf.the product operation is id~ntical 
for both unsigned and two's-complement multiplicalion, as stated by the following 
principle: 

PRINCIPLE: Bit-level equivalence of unsigned and two's-complement multipli­
cation 

Let x and y be bit vectors·oflength w. Define integers x and y as the Values repre­
sented by these bits in two's-co)llplement form: x = B2T w(x) and y = B2T w(y). 
Define nonnegative integers x' and y' as the values represented by these bits in 
unsigned form: x' = B2Uw(x) and y' = B2Uw<.Yl. Then 

I 

As illustrations, Figure 2.27 shows the results of multiplying different 3-bit 
numbers. For· each pair of bit-lever operands, we perform both unsigned and 
two's-complement_ multiplication, yielding 6-bit products, and then truncate these 
to 3 bits. The unsigned truncated product always equals x · y mod 8. The bit­
level representations of both truncated products are identical for both unsigned 
and two's-complement multiplication, even though the full 6-bit representations 
differ. ' 



~----- - - --

98 Chapter 2 Representing and Manipulating Information 

Mode 

Unsigned 
1\vo's complement 

Unsigned 
1\vo's complement 

Mode '' Truncated x · y x y x·y 

Unsigned 5 [101] 3 [Ollf 15 [001111] 7 [111] 

Two's complement -3 [101] 3 [011] -9 [110111] -1 [111] 

Unsigned 4 [100] 7 [111] 28 [011100] 4 [100] 

Two's complement -4 [100] -1 [~11] 4 [000100] -4 [100] 

Unsigned 3 [011] 3 ,[ON] 9 ·[00100\} 1 [001] 

1\vo's complement 3 [011] 3 [011] 9 [001001] 1 [001] 

Figure 2.27 Three-bit unsigned and two'~-complement multiplication exampleS< 
Although the bit-level representations of the full products may differ, those of the 
truncated products are identical. 

DERIVATi'ON: Bit-level equivalence of unsigned and two's-complement multipli-
cation 

11 
) 

From Equation 2.6, wehavex' =x + Xw-12w and y' = y + Yw-lzw. Computing the 
product of these values modulo 2w gives the following: 

(x' · y') mod zw = [(x + Xw-12w) · (y + Yw-12w)] mod 2w 

= [x. y + (Xw-IY + Yw-1x)2w + Xw-!Yw-12
2

w] mod 2w 

= (x · y) mod 2w 

(2.18) 

The terms with weight 2w and 22w drpp out due to the modulus operator. By Equa­
tioq f..17, we hr;ve x ·~ y = U2T wC(x ·. y) mod 2w). We can apply the operation 
n U w to both sides to get ' 

nu wCx ·~ y) =nu wCU2T wCCx · y) mod 2w)) = (x · y) mod 2w 
' ' . 

Combining this result with Equations 2.16 and 2.18 shows that nu wCx ·~ y) = 
(x', y') mod 2w = :r:' •:'., y'. We can then apply U?Bw to both sides to get 

U2Bw(nU wCx ·~ y)) =' 'f2Bw(x *~ y) = U2Bw(x' ·~ y') 
I 

!fil2tifllr6J2mll1!;3y'ftitltlpn Ri§l:IS:l'S~:'l~i'.~i$~t:::t ~-i'.;J 
:fill in the following table showing the results of multiplying different 3-bit num­
bers, in the style of Figure 2.27: 

x y x·y Truncated x :: y 

[100] [101] ---1 

[100] [101] -----' ' -~ 

[010] [111] 
,, 

[010] [lll] 

I ,; --- - - --- ---~- --- ---------==-~~~----~-r<-1 



Section 2.3 Integer Arithmetic 99 

Mode x y x·y 

Unsigned [110] 
[110] 

[110] 
[110] Two's complement 

re·ea'°tittearem:mrutc4a:~3miil2i:!:t:rffi~~z~'tr~n 
You are given the assignment to develop code for a function tmult_ok that will 
determine whether two arguments can be multiplied without causing overflow. 
Here is your solution: 

/* Determine whether arguments can be multiplied without overflow */ 
int tmult_ok(int x, int y) { 

} 

int p = x*y; 
I* Either x is zero, or dividing p by x gives y */ 
return !x I J p/x == y; 

You test this code for a number of values of x and y, and it seems to work 
properly. Your coworker challenges you, -saying, "If I can't use subtraction to 
test whether addition has overflowed (see Problem 2.31), then how can you use 
division to test whether multiplication has overflowed?" 

Devise a mathematical justification of your approach, along the following 
lines. First, argue that the case x = 0 is handled correctly. Otherwise, consider 
w-bit numbers x (x f" 0), y, p, and q, where pis the result of performing two's­
complement multiplication on x and y, and q is the result of dividing p by x. 

,1. Show that x · y, the integer product of x and y, can be written in the form 
x · y = p + t2w, where t f" 0 if and only if the computation of p overflows. 

2. Show that p can be written in the form p = x · q + r, where Ir[< fx[. 

3. Show that q = y if and only if r = t = 0. 

mrcmmemf*sm1bllit1fifi~r~mt>i\:;!<¥£:.gt1Jit~tMii1<~-~ 
For the case where data type int has 32 bits, devise a version of tmul t_ok (Prob­
lem 2.35) that uses the 64-bit precision of data type int64_t, withc\ut using 
division. 

lit~~?k?/$alliii~~Q!rlW1%:f,,"1~~--""'l;P';,'if ,J;,;1~t~ 
You are given the task of patching the vulnerability in the XDR code shown in 
the aside on page 100 for the case where both data types int and size_t are 32 
bits. You decide to .eliminate the possibility of the multiplication overflowing by 
computing the number of bytes to allocate using data type uint64_ t. You replace 

Truncated x . y 



100 Chapter 2 Representing and Manipulating Information 

Aside Security vulnerability in the XDR library 

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, ;1 
widely used facility for sharing data structures between programs, had a security vulnerability arising 
from the fact that multiplication can overflow without any notice being given to the program. 

Code similar to that containing the vulnerability is shown below: 

1 /* Illustrat-ion of code,,.,,vul~.'.3rability similar to that found in 
2 * Sun's XDR library. 
3 •/ 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

void* copy_elements(void •ele_src[]. int ele_cnt, size_·t' ele_si~e) { 

} 

I• 
* Allocate buff~r for ele_cnt objects, each of ele_size bytes 
* and copy from locations designated by ele_src 

•/ 
void •reSult = malloc(ele_cnt * ele_size); 
if (result == NULL) 

I• malloc failed •/ 
retur~ NULL; 

void *nex~ = result; 
int i; ' 
for (i = O; 'i < e:ie_cnt; i++) { 

} 

/* Copy qbject i t9 d~stination */ 
memcpy(next, ele_s~c[i], ele_size); 
/* Move p6inter to ne~t memory reiion •/ 
next += e~e_size; 

' ' 

The function copy_elements is designed to c~py ele_cnt data structures, ea~h consisting of ele_ 
size bytes into a buffer allocated by the function on line 9. The number of bytes required is fOmputed 
as ele_cnt * ele_size. 

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577 
(220 + 1) and ele_size being 4,096 (212) with the program compiled for 32 bits. Then the multiplication 
on line 9 will overflow, causing only 4,096 bytes to be allocated, rather than the 4,294,971-,392 bytes 
required to hold that much data. Th~ loop starting at line 15 will attempt to copy all of those bytes, l 
overrunning the end of the allpcated buffer, and therefore corrupting other data structures. This could 1 
cause the program to crash or otherwise misbehave. 

The Sun code was used by almost every operating system ancLin such widely used programs as 
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team 
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security j 
vulnerabilities and breaches, issued advisory "CA-20Q2-25," and many companies rushed to patch their ! 

code. Fortunately, there were no reported security.breaches caused by this vulnerability. ! 
A similar vulnerability existed in many implementations of the library function callee. These j 

have since been patched. Unfortunately, many,programmers call allocation functions, such as malloc; 
usi,ng arithmetic expressions as arguments, without checking these expressions for overflow. Writing a 
reliable version of calloc is left as an exercise (Problem 2.76). 



Section 2.3 Integer Arithmetic 101 

the original call to rnalloc (line 9) as follows: 

uint64_t asize = 

ele_cnt * (uint64_t) ele_size; 
void *result = mallo"c(asize); 

'Recall that' the argument to malloc has type'size_t. 

A. Does your code provide any improvement over the original? 

B: How would you change the code to eliminate the vulnerability?' 

2.3.6 Multiplying by Constants 

Histori~ally, the integer 'multiply instruction ort many machines was fairly slcJw, 
i;equiting 10 or more clock cycles, whereas other integer operations-,suc!J.. as 
.i!ddition, subtraction, bit-level operations, and shifting-required only l 'cloc.k 
cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer 
multiply requires 3 clock cycles. As a consequence, on~ important optimization 
used by compilers is to attempt to replace multiplications by constant factors with 
combinations Of shift· and addition operation~: We will-first consider the case Gf 
multiplying by a power of 2, and then we will generalize this to arbitrary constants . 

• 
PRINCIPLE: Multiplic;ation by a power of2 

Let x be the unsigned integer represented by bit'pattem [x,i,_1, xw-2• ... , xoJ. 
Then for any k !:: 0, the· w +-k-bit unsigned' representatioh bf x2k is given by 
[xw-1> xw-2• ... , xo, 0, ... , OJ, where k zeros have been added to1tl1e right. I 

l , 

So, for example, 11 <;an be rer<l'"J'.J).ted for w = 4,ijs.[1011 ]._Shi{ting tl:).is left 
by k = 2 yields the 15-l;iit vector [101.lOOJ, which encodes the unsigned number 
11, 4 ='kl;. 

DERIVATION: Multiplication by a power of2 

This property can be derived using Equation 2.1: 

w-1 

" "+k B2U w+k(\xw-I>,Xw-2• ... , Xo, 0, ... , OJ)= L_, x12' 
i=O 

I 

When shifting left by kfor a fixed word size, the high-order k bits are discarded, 
yielding 

[xw-k-1• Xw-k-2• · · · • xo. 0, · · · , O] 



~~---· --~----~----::_-.---···· --- -
I - --~ -- . ··- - -

'i 

I 
I 
I 

I 
I 

102 Chapter 2 Representing and Manipulating Information 

but this is also the case when performing multiplication on fixed-size words. We 
can therefore see that shifting a value left is equivalent to performing unsigned 
multiplication by a power of 2: 

PRINCIPLE: Unsigned multiplication by a power of 2 

For C variables x and k with unsigned values x and k, such that 0:::: k < w, the C 
expression x « k yields the value x *~ 2k. I 

Since the bit-level operation of fixed-size two's-complement ~rithmetic is 
equivalent to that for unsigned arithmetic, we can make a similar statement about 
the relationship between left shifts and multiplication by a power of 2 for two's­
complement arithmetic: 

PR! NCI PLE: 1\vo's-complement multiplication by a power of 2 

For C variables x and k with two's-complement value x and unsigned value k, such 
that 0:::: k < w, the C expression x « k yields the value x ·~ 2'. I 

Note that multiplying by a power of 2 can cause overflow with either unsigned 
or two's-complement arithmetic. Our result shows that even then we will get the 
same effect by shifting. Returning to our earlier example, we shifted the 4-bit 
pattern [1011] (numeric value 11) left by two positions to get [101100] (numeric 
value 44). Truncating this to 4 bits gives [1100] (numeric value 12 = 44 mod 16). 

Given that integer multiplication is more costly than shifting and adding, many 
C compilers try to remove many cases where fill integer is being multiplied by a 
constant with combinations of shifting, adding, and subtracting. For example, sup­
pose a program contains the expression x•14. Recognizing that 14 = 23 + 22 + 21, 
the compiler can rewrite the multiplication as (x«3) + (x«2) + (x«1), replac­
ing oi\e multiplication with three shifts and two additions. The two computations 
will yield the same result, regardless of whether x is unsigned br two's comple­
ment, and even if the multiplication would cause an overflow. Even better, the 
compiler can also use the property 14 = 24 - 21 to rewrite the multiplication as 
(x«4) - (x«1), requiring only two shifts and a subtraction. 

ifr~ii~f!2Rl~tlv':Z3fal'!or~!(2~~~~i~8}1f~;::,f;i:IE!~~~ 
As we will see in Chapter 3, the LEA instruction can perform computations of 
the form (a«k) + b, where k is either 0, 1, 2, or 3, and b is .either 0 or some 
program value. The compiler often uses this instruction to perform multiplications 
by constant factors. For example, we can compute 3•a as (a«1) + a. 

Considering cases where bis either 0 or equal to a, and all possible values of k, 
what multiples of a can be computed with a single LEA instruction? 

Generalizing from our example, consider the task of generating code for 
the expression x • K, for some constant K. The compiler can express th\' binary 
representation of K as an alternating sequence of zeros and ones: 

------ --- - ---- - --- - - - ~:r 

- -- -



Section 2.3 Integer Arithmetic 103 

[(0 ... 0) (1. .. 1) (0 ... O).· · · (1. .. 1)] 

For example, 14 can be written as [(O ... 0)(111)(0)]. Consider a run of ones from 
bit position n down to bit position m (no:: m). (For the case of 14, we haven= 3 
and m = 1.) We can compute the effect of these bits on the product using either of 
two different forms: 

For)Il A: (x«n) + (x«(n -1)) + · · · + .(x<vn) 

Form B: (x<<(n +1)) - (x«m) 

By adding together the results for each run, we are able to compute x • K with­
out any multiplications. Of course, the trade-off between using combinations of 
shifting! adding, and sublractin'g versus a sjngle multiplication instruction depends 
on the relative speeds ofihese instructions, and these can be highly machine de­
pendent. Most compilers only perform this optimization when a small number of 
shifts, adds, ancj subtractions suffice, " .. 

!lff.•)WKllimJt~§!lt!~~il~ 
For each of the following values of K, find ways to express x • K using only the 
specified number of operations, where we ·con~i1:1er. both additions' and subtrac­
tioqs to have comRaraple co~t. You may need to l]Se s9me tricks beyond the simple 
form A and B rules we have considered so far. 

K • Shifts ,Add/Subs Expression 

6 2 1 
31 1 1 ---- t l 

-6 2 1 ---
55 2 2 

~~"m· ·~~~!~•.t&i'~&ff~R~f,,!!ll ,. - .........; •. '-~M. s - I : - " ~\.;-,:..1_)., .I'"!,;''~;~, .. .;~~-~:'· ·.~,,.,,..~! 

Fdr a run of one~ ~tarting at bit IJosttion /i·dbwn fo'bit position m (n o::_ m );we saw 
that we earl generate 'fwo forms of code, A and B. How should: the compiler decide 
,_;fui:!i' form'ta jise? 

2.3.7 Dividing by Powers of 2 

Integer division on most machines is even slower than integer multiplication­
requiring 30 or more clock cycles. Dividing by a power of 2 can also be performed 



1 
- - ..... -----· ·- -- ----- -- - ----

104 Chapter 2. Representing and Manipulating Information 

k » k (binary) Decimal 1'2,340/2k 

0 0011000000110100. 12,340 12,340.0 
1 0001100000011010 6,170 6,170.0 

4 00000011oooooo.i1 771 771.25 

8 0000000000110000 48 48.203125 

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustraie 
how performing a logical right shift by k has the same effect as·dividing by 2k and then 
rounding toward zero. 

using shift operations, but. we use a right shift rather than- a left shift. The two 
different right shifts-logical and arithmetic~serve this p.urpose for unsigned and 
two's-complement numbers, respectively: ,, 

Integer division always rounds 'toward zero. To .define this precisely, let. us 
introduce some notation. For any real number a, define [aj to be the unique 
integer a' such that a'::: a< a'+ 1. As examples, [3.14J = 3, L-3.14J = -4, and 
[3J = 3. Similarly, define [al to be the unique integer a' s,uch that a' -1 <a::: a'. 
As examples, [3'14j = 4, [-3'.t41 =·-3, and [3f=" 3. For x > O'and y > 0, integer 
division should yield Lx /y J, while for x < o and y > o, it sliduld yield r x / y 1. That 
is, it should round down a positive result but round up a negative one. 

The case for using shifts with unsigned arithmetic is straightforward, in part 
because rig!it shifting is guaranteed to be performecj logically for unsigned values. 

f•i,' 

PRINCIPLE: Unsigned division.P;y a power of 2 

For C variables x and·k with unsiglted values x and k, such that o·::; k'< w, the C 
expression x » k yields the value Lx /2k J. I 

As examples, Figure 2.28 shows the effect's of performing 'logical right shifts 
on a 16-bit representation of 12,340 to perform division by 1, 2, 16, and 256. The 
zeros shifted in from the left are shown in italics. We also show the result we would 
obtain if we did these divisions with real arithmetic. These examples show that the 
result of shifting consistently rounds toward zero, as is the convention for integer' 
division. 

DERIVATION: Unsigned division by a power 9f 2, 

Let x be t)l.e unsigned inte&er representefl.·ll:x«bitJ>attern [xw-1• xw-2• . ., . •• xo], and 
let k be in t)le rangs. 0::: k <; UJ. ;Let x' be ihe unsigrn;d n\lmber ~th w .- k;bit 
representation [xw-1> xw_2, ... , xd, and let x" be the unsigned nqJilber withk.-\Ht 
representation [xk-1> ... , x0]. We can therefore see that x = zkx' + x", and that 
o ::: x" < zk. It therefore follows that Lx /2k J = x'. 

Performing a logical right shift of bit vector [xw_1.,xur,2td .. ,,,,xol by k J(ields 
the bit vector ' 

~ ---- -- - -- -- - ---=--- -- - ~=-=---=-=-----=--=-=---=---==- =-- -=-=------=---=------=- _f'"" I 



Section 2.3 Integer Arithmetic 105 

k » k (binary) Decimal -12,340/2k 

0 1100111111001100 -12,340 -12,340.0 
1 1110011111100110 -6,170 -6,170.0 
4 1111110011111100 -772 -771.25 
8 1111111111001111 -49 -48.203125 

Figure i1.29, Applying arithmetio ri!Jht shift. Th~ examples illustrate "that arithmetic 
right shift is similar to division by· a powe• of 2? except that it rounds down rather than 
toward zero. 

This bit vectqr has numeric.value x',which we have seen is the value that would 
result by computing the expression x » k. I 

',Ihe Cf\Se for div,idil'g ):Jy !' i?.O'Y~r of ?- w;ith. two's-coll!plement arithmetic is 
slightly more complex. First, th.e shifting sh9uld be perfoqn~d using, an arithmetic 
right shift, to e11sure that neg~tive values ·remain negative. Let us investigate what 
value such a right shift would' produce. 

PRINCI ~L~; '1\vo's-complement division by a power of 2, rounding down ,, 
!,et C variables x and k have two's-complement: value x and unsigned value 
k, respectively, sucl\,t)lat 0,:0·k"< w. The C expression x » k, when the shift is 
performed arithmetically, yields the.xalue L</2kJ. I 

For x.o:: Q, variable x has,O as th~
0

most'signi.Jicant bit
1 

and so
0
the effect of an 

arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift 
by k is the same as division by 2k foi a nonnegalive nu~ber. A's ah ~xampfo of a 
negati~~ number,' Figure 2.29 si;:ows the effect ot'~pplying arithmetic right shift to 
a 161bit representation of -12;340 f~r different shift ~ounts. For the case when 
nb'rounding is required (k = 1), the res\llt will be x/2k. When rounding is required, 
shifting causes·the result to be rounded 'downward. For example, the shifting right 
by four ha~ the effec;t of rounding -171.25 down to - 772. We will need to adjust 
our strategy to handle qivision f,or negative values of x. 

DERIVATION: Two's-complement division by a power of 2, rounding down 

Let x be \he ~wo's-COplJ>l~ment iIJleger represe,nte!l by bit pattern [~w-l• xw_2 , 

... , x0], and let k be in· tne range 0 :o k < w. Let x' be the two's-complement 
numbe.r represented by the w - k bits [xw-I> Xw_2 , ... , xd, and let x" be the 
Jns'igned number rep~esen\edby th'e low-order k tilts.[xk-l•: .. , x0]. By a similar 
.analysis as 'the unsigned case, we have x = zk x' + x" and 0 :s x" < zk, giving x' = 
[x/2kJ. ·Furthermore, observe that shifting bit vector [xw-1> xw-2• ... , x0] right 
arithmetically by k yields the bit vector 

which is the sign extension from w - k bits tow bits of [xw-1> xw-Z• ... , xk]. Thus, 
this shifted bit vector is the two's-complement representation of [x /2k j. I 



rr 
' 

--

l 

I 
I 
J 

106 Chapter 2 

k 

0 
1 
4 
8 

_.., ______ - ... ·--

Representing and Manipulating Information 

Bias -12,340 +bias (binary) >'> k (binary) Decimal -12,340/2' 

0 1100111111001100 1100111111001100 -12,340 -12,340.0 
1 1100111111001101 1110011111100110 -6,170 -6,170.0 

15 1100111111011011 1111110011111101 -771 -771.25 
255 1101000011001011 1111111111010000 -48 -48.203125 

Figure 2.30 Dividing two's-complement numbers by powers of 2. By adding a bias 
before the right shift, the result is' roanded toward ~ero. 

We can correct for the improper rounding that occurs when a negative number 
is shifted right by "biasing" the value before shifting. 

PRINCIPLE: Two's-complement division by a power of2, rounding up 

Let C variables x and k have two's-complement value x"and 'unsigned value k, 
respectively,'such tharo ="' k ~ w. The C!exprd~onrt',/1- Ci «'1.<:J' - 1) >::; k, when 
the shiff"is perform ea arithmetically, yields the value. r x /2kl. I 

Figure 2.30 demonstrates how adding the appropriate bias before performing 
the arithmetic right shift causes the result to be correctly rounded. In the third 
column, we show the result of adding,the bia"s value to -12[:l40, with the lower k 
bits (those that will be shifted off to the tight) shown in italics. We can see that 
the bits to the left of these may or may not be incrementeCI. For the case where no 
rounding is ref!uir~~ (k = 1), addi,ng the bias only affeqts bits that are shifted off. 
For the cases w~ere rounding is required, adding the bias causes the .uP\'er bits to 
be incremenied, so that the result will be rounded toward zero. 

The bi'!sing te'chfii9ue e,xplolis·the property that r x / y l = Lex -1- y - 1) /y J for 
integers x and y such thaf~ >. 'o. As examples, wh'~n x = -30 and y = 4, we have 
x + y -1 = -27 and r-~0/41 = -7 =' L-,t714J. Whenx =; -32 and y,;,, 4, we'l}_ave 
x + y - 1 = -29 an}! r -32/41 = -8 = L-2,9/4J. '. 
DERIVATION: Two's-complement division by a power of 2, rounding up 

To see that rx/yl = l(x + y -1)/yJ, suppose that x = qy + r, where 0 :'Or< y, 
giving (x + i;-1)1,y =·q. + (r + y -1)/y, and so L(x +1x--1)/yJ = q + L(r -t y -
1)/y j. The latter t,erm will equal 0 when r =,0 and 1 wljen r > 0. That is, by adding 
a bias of y - 1 to x and then rounding the division do)Vhward, we wi)l get q when 
y divides x and q + 1 otherwise. 

~etuming to the case where y = 2k, the C e.'l'Pression ~ + (1 « kl '- 1 yielos 
the val'!e x +.2k - 1. Shifting this right arithrneti7all)'°by ~therefore yields r x /2kl 

' These analyses show that for a two's-complement machine 'using. arithmetic 
right shifts, the C expression 

(x<b ? x+(l<<k)-1 : x) >> k 

will compute the value x{2!f·. 



Section 2.3 Integer Arithmetic 107 

fi~dk~ :Bf1ib:@Jfl2m&i@iin l?D'iii'i Siii'"' :·raz; ! ·';;fa.:: :: ::: ,11 •·;::;:f· 'I 
Write a function div16 that returns the valne x/16 for integer argument x. Your 
function should not use division, modulus, multiplication, any condit,ionals (if or 
?:),any comparison operators (e.g.,<,>, or==), or any loops. You may assume 
that data type int is 32 bits long and uses a two's-complement representation, and 
that right shifts are performed arithmetically. 

We now S(\e that division by a power of 2 can be implemynted u~ing logici'-1 qr 
arithmetic right shifts. This is precisely the reason the two types of right shifts vare 
available 011 most m~cpines. Unfortunately, this approach does not generalize to 
division by arbitrary constapts. Unlike multiplication, we cannot express division 
by arbitrary constants K in terms of division by powers of 2. 

terS1ctice Probtiim:2ll ($olut19ii'.P\!l~llin; :;;;: ;:::~;~,; '. ?~>:?;;' :\!;J 
In the following code, we have omitted the definitions of constants M and N: 

#define M /• Mystery number 1 •/ 
#define N /• Mystery number 2 •/ 
int arith(int x, int y) { 

int result = O; 
result = x•M + y/N; /• M and N are mystery numbers. •/ 
return result; 

} 

We compiled this .code for particular Vjllues pf M and N. The compiler opti­
mized thy multiplic,ation and division using the methods we ha ye discussed. The 
following is a translation of the generated machine code back into C: 

I• Translation of assembly code for ari th •/ ' 
int optarith(int x, int y) { 

} 

int t = x; 
x <<= 5; 
x -= t; 
if (y < 0) y += 7; 

y >>= 3; /• Arithmetic shift •/ 
return x+y; 

I 
What are the values of M and N? 

2.3.8 Final Thou\jhts on Integer Arithmetic 

As we have seen, the "integer" arithmetic performed by computers is really 
a form of modular arithmetic. The finite word size used to represent numbers 



"""-~--

I 

-------m -- -- - ----- - -

'108 Chapter 2 Representing and Manipulating Information 

limits the range of possible values, and the resulting operations can overflow. 
We have qlso seen that \he two's-coinplel\1-ent repn;~entation provides a ~lever 
ivay to represent_both negative and posi\1"ve values, whike using the same bit-level 

J• J • , ' ' '~1 ' 1· 
impleme11tf1tign~ a~_are used t9 perform unsign~<;l arithmetic-operations such as 
addition, sJbtraptfon, m(,ltinhc,ation, and even division have either i\lentical or ,- ;r, },I i I '.l f-'~ 

very similar bit-level behaviors, whetji.er the operands ar\' in P.nsigneo qr two's-
complement form. 

We have seen that some of the conventions in the C language can yield some 
suwrising results, and these can be sources of bugs that are harp to recognize or 
llnoerstand. W'e'lfave especially seen that the unsigned data type, while conceptu­
ally"st:'raightforward, can lead lo behaviots that eyen experienced programmers "do 
not eii:pect. We have also seen tllat thl~ data type can arise in b~expecletl wJys-,-for 
example, when writing integer constants'and when invoking library routines. 

tiillWii~~f.1>E~m2·~mtliiiitM16:1>::tJl~.!!·\t$i!l 
Assume }lata type int is 32 bits long andl!ses a !wo:s-compl~l"~nt representati9,n 
for signed values. Right shifts are performed arithmetically for signed values and 
logically for unsigned values. The variables are declared and initialized as follows: 

int x = foo(); 
inty=bar(); 

unsigned ux = x; 
unsigned uy = Yi 

/* Arbitrary value */ 
/* Arbitrary value */ 

" 

For each of the following C expressians, either (1) argue that it is true'(evalu­
ates to 1) for all values of x arid y;Si (2) give values of le and y for which.it is false 
(evaluates to-0):' 

A. (x > 0) 11 (x-1 < O) 

B. (x & 7) != 7 11 (x«29 < 0) 

c. (x * x) >= 0 

D. x<O 11 -x <= o 
E. x>O 11-x>=O 

F. x+y == uy+ux 

G. X*-y + uy*ux == -x 

.-

2.4 Floating Point 
• ~ • j I 

A floating-point representation encodes rational numbers or the form V = x x 2Y. 
Iris useful for performing computations involving very large numbers {IV I » 0), 



Section 2.4 Floating Point 109 

r---~~"J!""'""-'"""~:-"'r 't---""-" ""'!-·'""·-, __ • ft' - ",;"" 

I Asi~~ TM'IEEE ' , 1 ,, .,::. , _.,, ~ , '< ., .,,. ,1 '" 

I Thi' ,{nst}tute <>.! E,1ectricahn~-'2l1'ctr9nics Engineer; (IEEE-pJOIJotmced "eye-triple-ee"fis~a' J5r,6l"', 
! fessiona1 ·societ¥- that encompasses a11: or electronic ana""computer'technology.lit'pnb1ishes'jotl'rrtais,·· 
~ sponi;fbr~ conf~r~qfes, an<{ sets UJ?~c;;ommiiteesJO dl!fine stfill9ard~5 on~topi~s ranging"'fr6tiir~O':ver &anS!. -fit 
i mission to softw.~re engineering. Another exampJe of) an· I.12?E;.stanpard is 1he '802.l(slilrltlari ·for' : 
r~ wireless,networking. 1"· /!} iii ~ ' 1" ~ "''' "'t $., •. ,, . ' if 
L--~-~ . .;t.,-~._.,,_"~"-".'"''""'·'(j;""' .,..,,_''JIM ~--~* ... -... 5 ~ .,._ ... , "'~"~ ~!.' .. ~•... '"' • ... 

numbers very close to 0 (/VI« 1), and more generally as an approximation to real 
arithmetic. 

Up until the 1980s, every computer manufacturer devised its own conventions 
for how floating-point numbers were represented and the details of the operations 
performed on them. In addition, they often did not worry too much about the 
~ccuracy of the operations, viewing speed and ease of implementation as being 
more critical than numerical precision. 

All of this changed around 1985 with the advent of IEEE Standard 754, a 
carefully.crafted standard for representing floating-point numbers and the oper­
ations performed on them. This effort started in 1976 under Intel's sponsorship 
with the design of the 8087, a chip that provided floating-point support for the 8086 
processor. Intel hired William Kahan, a professor at the University of California, 
Berkeley, as a consultant to help design a floating-point standard for its future 
processors. They allowed Kahan to join forces with a committee generating an 
industry-wide standard under the auspices of the Institute of Electrical and Elec­
tronics Engineers (IEEE). The committee ultimately adopted a standard close to 
the one Kahan had devised for Intel. Nowadays, virtually all computers support 
what has become known as IEEE floating point. This has greatly improved the 
portability of scientific application programs across different machines. 

In this section, we will see how numbers are represented in the IEEE floating­
point format. We will also explore issues of rounding, when a number cannot be 
represented exactly in the format and hence must be adjusted upward or down­
ward. We will then explore the mathematical properties of addition, multiplica­
tion, and relational operators. Many programmers consider floating point to be 
at best uninteresting and at worst arcane and incomprehensible. We will see that 
since the IEEE format is based on a small and consistent set of principles, it is 
rea'lly quite elegant and understandable. 

2.4.1 Fractional Binary Null)bers 

A first step in understanding floating-point numbers is to consider binary numbers 
having fractional values. Let us first examine the more familiar decimal notation. 
Decimal notation uses a representation of the form 



·- - ------ ___ ,, __ ... --- ·- ----- ------ -

·110 Chapter 2 nepresenting and Manipulating Information 

Figure 2.31 
Fractional binary 
representation. Digits 

~---------2m 
..--------- 2~1 

to the left of the binary 
point have weights of the 
form 2', while.those to the 
right have weights of the 
form 1/21• 

b, ,~~ _J~· b_, b_, b_. 

1/4__J 

1/8 

112n-1 ----~----' 

1/2' ----------' 

,, 

where each decimal digit d; ranges between 0 and 9. This notation represents a 
valued defined as1 • l ' • 

1 ' m 

d = L,°)01 x d1 

i=-n 

The weighting of' the digits is tlefined relative to' the' decimal· p'oint symbol (t:1
), 

meaning that digits to the left are weighted by nonnegative powers of 10, giving 
irttegral values, while' digits to the right are weighted by negative powers of -10, 
giving fFactional values. For example, 12.3410 represents the number 1 x 10

1 
+ 

2 x 10° +3 x io•1 +4x10-2 =12Mi. 
By arialof.y, consider a no~~tion of the form 

b;,i bm-1 ···bi ho> b_1'lr.!.2 · · · b!..n+{b-'n 
) 

where each ·binary digit, or bit, b1 ranges between 0 and 1, ~~ is illustrated in 
Figure 2.31. This notation represents a number.b define<\ as " 

(2.19) 

i=-n 

The symbol'.' now becomes a binary point, witi\.'6its on the leftbJing weikhted 
by rn;mnegative p_ower~ of i, and those on the right being weigh);d by negative 
pow\)rs,.of 2. For example, 101.112,repr~sents the nu.mber 1 x 2

2 
+ 0 x 21 

+ 1 x 
2°+1x2-1 +1x2-2 =4+0+1+ i +i =5i. 

One can readily see from Equation 2.19 that shifting the binary point one 
position to the left.has t\le1effect of dividing the number by 2. For example, while 
101.112 represents the number Si, 10.1112 represents the number 2 + 0 + i + 



Se~tion 2.4 Floating Point 111 

! + ~ =;2~. -Similarly; shifting· the binary point one position to the right has the 
effect of multiplying the number by 2. For example, 1011.12 represents the number 
8+0+2+1+~=11~. 

·Note that numbers of the form 0.11 · · .-12 represent numbers just below 1. For 
example, 0.1111112 represents ~-We will< use the shorthand-notation 1.0 - 'to 
represent"such values. 1 

Assuming we consider only fuiite-Iength encodings, decimal notation cannot 
represent numbers such as 1 and ~ exactly. Similarly,Jractional binary notation 
can only represent numbers.that can be written x x 2Y._ Other values can only be 
approximated. For example, the number ~ can be represented exactly as the frac­
tional decimal number 0.20. As a fractional.binary number, however, we cannot 
represent it exactly and instead must approximate it with increasing accuracy by 
lengthening the binary representation: 

Representation Value Decimal 

0.02 ~· 0.010 
0.012 I 

0.2~10 4 
0.0102 2 0.2510 8 
0.00112 3 0.187510 l6 
0.001102 6 0.18751Q 32 
0.0011012 13 0.20312510 64 
0.0011010z 26 0.203;12510 121! 
0.001100112 51 0.1992187510 230 

~fJiifii:~§,l•mmt~~~~~-"'r~m~~ 
Fill in tl;ie niissing'information'in the following table: 

Fractional value 
I 
8 
3 
4 
5 
l6 

Binary representation 

0.001 

10.1011 
1.001 

Decimal representation 

0.125 

5.875 
3.1875 

~ii§Hl~itru'!l!!!IJl~i)'j}/il~1~~ 
'I ~ ~I • l • ' 

The imprecision of floating-point arithmetic can have disastrous effects. On Febru-
ary 25, 1991, during the first Gulf War, an American Patriot Missile battery in 
Dhara'n, Sau'di Arabia, fail~d to 'intercept ah incoming Iraqi• Scud missile: The 
Scud struck an American Army barracks and kilfed·28-soldieis: The US General 



n 
' 

t 
r 
' 

I 

-· .. ,,. ------- --· -- ··-·- -

112 Chapter 2 Representing and Manipulating Information 

Accounting Office (GAO) conducted a detailed analysis of t~e failure [76] and de­
termined that the underlying cause.was an imprecision in a numeric calculation. 
In this exercise, you will reproduce part of the GAO's analysis. 

The Patriot system contains an internal clock, implemented .as a counter 
that is incremented every ,0.1 seconds. To determine the time in seco11cjsr t\le 
program would multiply the value of this counter by a 24-bit quantity that was 
a fractional binary approximation to fo· In particular,. the binary representation 
of i:\J is the nonterminating sequence 0.000110011[0011 J · · ·2, where the portion in 
brackets is repe'ated itidefinitely. The program apptoximated 0.1, as a value x, by 
considering just the first 23 bits.of.the sequence to the right·.of the binary.point: 
x = o.eoo1100110011oonoo1100 .. (See Problem 2.51 for a discussion of how ,they 
could have approximated 0.1 more.precisely.) 

A. What is the binary representation of 6.1- .f? 

B. What is the approximate decimal value of 0.1 - x? 

C. The clock starts at 0 when the system is first powered up and keeps counting 
up from there. In this case, the system had been running for around 100 hoµrs. 
What was the difference between the actual time and the time comput~d bY. 
the software? ' 

D. The system predicts where an incoming missile will appear based on it,s 
velocity and the time of the last radar detec!ibn. Given that a Scud travels 
at around 2,000 meters per second, how far off was its prediction? 

Normally, a slight error in the absolute time reported by a clock reading would 
not affect a tracking computation. Instead, it should depend on the relative time 
between two successive readings. The problem was that the Patriot software had 
been upgraded to use a more accurate function for re~ding time, .but not all of 
the function calls had been replaced by the new code. As a result, the tracking 
software used the accurate time for one reading ahd'th~ inaccurate time for the 
other [103]. 

2.4.2 IEEE Floating-Point Representation 

Positional notation such as considered in the previous section would not be ef­
ficient for representing very large numbers. For example, the representation of 
5 x 2100 would consist of the bit pattern 101 followed by 100 zero& Instead, we 
would like to represent ~umbers in a form x x 2Y by giving the values of x and y. 

The IEEE floating-point·standard represents a number in a form V = (-1)' x 
M x2E: 

• The sign s determines whether the number is negative (s = 1) or positive 
(s = 0), where \he interpretation of the si~n.bit for nµmeric value 0 is handled 

~ • f 9 h ,1f,t 
as ~ special.case. 

• T\l.e.signijjcan4, M is.a j\as!ic;mal binary number that ranges ei,ther between 1 
and 2 - E .or be!\yeen,0-al).d 1 ~ E. 

• The exponent E weights the value by a (possibly negative) power of 2. 



Section 2.4 floating Point 113 

" 0 
frac 

32 

frac (~1 :32) 

31 0 

frac (3l:O) 

figure 2.32 Standard floating-point formats. Floating-point numbers are represented 
by three fields. for the two most common formats, these are packed in 32-bit (single­
precision) or 64-bit (double-precision) words. 

The bit representation of a floating-point number is divided into three fields to 
encode these values: 

• The single sign bit s directly encodes the signs. 

•, 1J1« k-bit exponent. field exp= ek-I · · · e1e0 encodes the yxponent E. 

• Then-bit fraction field frac = fn-1 · · · fifo encodes the significand M, but 
the value encoded also depends on whether or not the exponent field equals 
0. 

Figure 2.32 shows, t)1e packing of these three. fields into words for the two 
most common formats. ·in the single-precision floating-point.format. (a float 
in C), fields s,• exp, and f):"ac are 1, k,= 8, and n = 23 bits each, yielding. a.32-
bit r~presentation.·In the double-precisiQ'n floating•point format (a double in C), 
fields' s, exp, and frac are 1, k = 11, ·and n = 52 bits each, yielding a 64-bit 
representation. 

The value encoded by a given bit representation can be divided into three 
different cases (the latter having two variants), depending on the value of exp. 
These are illustrated in Figure 2.33 for the single-precision format. 

Cas~ 1: Normalized Values 

This is the most .comll/on ,ca~e. I,t.occurs wl;li"n t,he bit pattern of ~xp is neither 
all zeros (nup:leric value 0) nor all ones (numeric value 25,5, for siµgle precision, 
2047 for double). In this case, the exponent field is .interpreted .as representing a 
signed integer in biased form. That is, the exponent value is E = e - Bias, where 
e is the unsigned number having bit representation ek- I · · · e1e0 and Bias is a bias 
value equal to 2k-l _ 1 (127 for single precision and 1023 for double). This yields 
exponent ranges from -126 to +127 for single precision and -1022,to +1023 for 
double precision. 

The fraction field frac is interpreted as representing the fractional value f, 
where 0::: f < 1, having binary representation 0./._1 · · · fif0, that is, with the 



' I 
114 Chapter 2 Representing and Manipulating Information 

"~~ "' ~ ~ ~ '* ¥ :" !' ,•,_ ~:{.;<· 'i. fr.:"', •' .. ~~'':" J'"'" 
Aside Why set the bias ~qjs "l'ay for deriqq11a!iz~d Y,~.J?e~? . ··' ,. _,., '"" ;1' ,, 

Having the expon.!i\tV:Uue b:~ 1,,-JJ!a§. ra~hyr,than3i1!1Ply -f3ia1 !1)jgh~,::~"m'~ou9'terintµith:e, We wJll I 
see shortly that it proviOes foMmooth transition-from tl~l\ormalizedio'normali~e1l yallle~ 

~% ~""'~ "'-'\.., - ... --... ,..,,_._. • ..,,,,,....&~-~~\..l;,f~-,,,J,,...:,t-,,.::...,.,..,~~~ "'" ~ .... -,,.,,.~ .., 
n 

1. Normalized 

( 

2. Denormalized 

3a. Infinity 

3b. NaN 

"";!O 

Figure 2.33 Cat~gories of single'-precision floating-point values. The v'alue of the 
exponent determines whether the number is ~lj normalizea, (2) denormalized, or (3) a 
special v31ue. ., 

binary point to the left of the" most significant bit. The significand is defined to be 
M = 1 + f. This4s'f:ometimes called an implied leading•J representation, because 
we caitview M to be.the number with binary representation l.fn-ifn-2 · ··· fo! T!Us 
representation is a trick for getting an atlditional1iit of precision for free, since we 
can always adjust the exponent E so that significand Mis in the range1. £'!vi< 2 
(assuming there is no overflow). We therefore do not need to explicitly· represent 
the leading bit, since it always equals 1. ' 

Case 2: Denormalized Values 

When the exponent field is all zeros, the represented.number i,s in,dezyo,r"la\i{e!} 
form. In this case, the exponent value is E = 1 - Bias, and the significand value is 
M = f, tharis, the value of the fraction fielcl'witb6ut an implied leadirlg·l. 

Denormalized numbers serve 'two purposes. First, tliey provide a way •to 
represent numeric valu'e 'O, since with a ri6ririalized number we must always have 
M ::: 1, and hence we cannot represent 0. in fact, the floating-point representation 
of +0.0 has a bit pattern of all zeros: the sign1bit•is 0, tlie exponent field is'all 
zeros (indicating a denormalizM value), and the fraction field is all ieros,·giving 
M1= f = 0. Curiously, when the sign bit is 1, but the other fields are all zeros, we 
get the value -0.0. With IEEE floating-point format, the values -o.o·and +O.O 
are considered different in some·ways and the salne in other~. 



Section 2.4 Floating Point 11 S 

A second function of denormalized numbers is to represent numbers that are 
very close to 0.0. They provide a property known as gradual underflow in which 
possible.numeric values are spaced evenly near 0.0. 

Case 3: Special Values 

A final category of values occurs when the exponent field is all ones. When the 
fraction field is all zeros, the resulting values represent infinity, either +oo when 
s = 0 or -oo whens = 1. Infinity can represent results that overflow, as when we 
multiply two very large numbers, or when we divide by zero. When the fraction 
field is nonzero, the resulting value is called a NaN, short for "not a number." Such 
values are returned as the result of an operation where the result cannot be given 
as a real number or as infinity, as when computing ,;=I or oo - oo. They can also 
be useful in some applications for representing uninitialized data. 

2.4.3 Example Numbers 

Figure 2.34 shows the set of values that can be represented in a hypothetical 6-bit 
format having k = 3 exponent bits and n = 2 fraction bits. The bias is 23- 1 - 1 = 3. 
Part (a) of the figure shows all representable values (other than NaN). The two 
infinities are at the extreme ends. The normalized numbers with maximum mag­
nitude are ±14. The denormalized numbers are clustered around 0. These can be 
seen more clearly in part (b) of the figure, where we show just the numbers be­
tween -1.0 and + 1.0. The two zeros are special cases of denormalized numbers. 
Observe that the representable numbers are not uniformly distributed-they are 
denser nearer the origin. 

Figure 2.35 shows some examples for a hypothetical 8-bit floating-point for­
mat having k = 4 exponent bits and n = 3 fraction bits. The bias is 24- 1 - 1=7. 
The figure is divided into three regions representing the three classes of numbers. 
The different columns show how the exponent field encodes the exponent E, 
while the fraction field encodes the significand M, and together they form the 

• 
-00 -10 

(a) Complete range 

-5 0 

I • Denormalized A Normalized 

-0 +0 
\/ 

+5 +10 

o Infinity I 

_, -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 

I • Denormalized 11. Normalized a Infinity I 
(b) Values between -1.0 and +1.0 

+1 

Figure 2.34 Representable values for 6-bit floating-point format. There are k = 3 
ex~nent bits and n = 2 fraction bits. The bias is 3. 



I 

,, __ ..,_ .. __ - .. ---- .. --- ...... --·- -

H6 Chapter 2 Representing and Manipulating Information 

Exponent Fraction Value 

Description Bit represen.tation e E 2E f M 2E xM v pecimal 

Zero 0 0000 000 0 -6 1 0 0 0 0 0.0 .. 8 8 ill 
Smallest positive 0 0000 001 0 -6 1 1 1 1 1 0.001953' .. 8 8 ill ill 

0 0000 010 0 ~6 1 2 2 2 1 0.003906 .. 8 8 ill :rn; 
0 0000 011 0 -6 1 3 I ~ ' 

3, 3 0.005859 .. 8 ill 512 

Largest denormalized 0 0,q\!9 , 111 0 -6 1 7 t 7 7 0.013672 .. " 8 " ill ill 

Smallest normalized 
''1, -6 1 0 8 8 1 0 0001 000 1 .. li 8 ;µ .. 0.015625 

0 0001 001 1 -R 1 1 9 9 9 O.Dl 757f>· .. 8 8 ill ill 

0 0110 110 6 -1 1 6 14 14 7 0.875 2 8 8 I6 8 
0 0,110 111 6 .,-1 1 7 15 15 15 0.937'.\ , 2' '8 '..8 I6 I6 

One 00111000 7 O·· 1 0 8 8. 1 .LO· 8 8 '8 " 
0 0111 Q01 ·7 0 1 1 ~ 9 9 1.125 8 8 li 
0 0).11 010 7 0 1 2 10 10 5 1.25 8 8 8 ;; 

0·~110 110 14 7 128 6 14 1792 224 224.0' 8 8 ,-
Largest normalized 0 1110 11i 14 7 128 7 15 •1920 240 240.0 8 8 -,-
Infinity 0 11111000 - 00 

,, 
Figure 2.35 Example nonnegative•values for B·bit floating.point format. There are k = 4 exponent bits 
and n = 3 fraction bits. The bias is 7. r 

" 

represented value V = zE x M. Closest to 0 are the denormalized numbers, start­
ing with 0 itself. Denormalized numbers in this fo;mat have E = J,- 7 = -6, giv­
ing a weight zE = '4· The fractions fan\! significanc;ls.M range over the values 
0 1 7 · · b V · th Q 1 7 7· , 8 , ... , 8 , g1vmg num ers m e range to"&! x 8 = m· 

The smallest normalized numbers in this format also have E = 1 - 7 = -6, 
and the fractions also range over the values 0, k, ... ~. However, the significands 

then range from 1 + 0 = 1 to 1 + ~ = Jt, giving n'l!'1bers V in the range sh = ~ 
15 ' tom. 
Observe the smooth transition befween the largest denormalized number ifz 

and the smallest normalized number sh. This smootjme~s·is due to .our definition 
of E for denormalized values. By making it 1- Bias rather than -Bias, we com­
pensate lof the fact that the significand of a denormalized num:Mr does not have 
an implied leading 1. 



Section 2.4 Floating.eoint 117 

As we increase the exponent, we get successively larger normalized values, 
passing through 1.0 and then to the largest normalized number. This number has 
exponent E_ = 7, giving a weight 2E = 128. The fraction equals i', giving a signifi­
cand M = Jt. Thus, the numeric value is V = 240. Going beyond this overflows to 
+oo. 

One interesting property of this representation is that if we interpret the bit 
representations of the values in Figure 2.35 as unsigned integers, they occur in 
ascending order, as do the values they represent as floating-point numbers. This is 
no accident-the IEEE format was designed so th)lt floating-point numbers could 
be sorted using an integer sorting routine. A minor difficulty occurs when dealing 
with negative numbers, since they have a leading 1 and occur in descending order, 
but this can be overcome without requiring floating-point operations to perform 
comparisons (see Problem 2.84). 

llfitifS~ift!Mlltil!lii'§~18\WWB~if.'1.19'B 
ConsjR~f a 5-bit floating-p,9j9t r~present(ltion bj,1s<;9 on the IEE;E ,floati9g-point 
format 1 with one sign bit,,two exponent bits (k = 2), )lnd two fraction bits (n = 2). 
The exponent bias is 2,~;:1 - l,=,l. 

The table that follows enumerates thy !"ntire nonµegative r?nge fo,r this 5-bit 
floating-point representation. Fill in the blank table entries using the following 
directions: 

e: The value represented by consjdering the exponent field to be ·an unsigned 
integer 

E: The value of the exponent ·after biasing 

}.E: The numeric weight of the exponent 

f: The value of the fraction 

"' M: The value of the signific~nd 

_2f x M: The (unreduced) fractional value of the number 

V: The reduced fractional value of the number 

Decimal: The decimal representation of the number 

Express the 'values of 2E, f, M, 2E x M, and v either as integers (when 
possible) 1or as fractions of the form ~·where y is a power of 2. You need not 
fill in entries marked -. 

!,lits 

0 00 00 

0 00 01 

0 00 10 

0 00 11 

0 01 00 

e E zE f M zE x M v Decimal 



. 

I 
I 

--- ------ ·--

118 Chapter 2 Representing and Manipulating Information 

Bits e 

0 0110 

0 0111 

0 10 00 

0 10 01 

0 10 10 

0 10 11 

0 11 00 

0 11 01 

0 1110 

0 1111 

Description 

Zero 

0 01 01 1 0 1 1 5 5. 5 
4 •. '4 4 

E, zE ., . f M 2~:x ¥ v Decimal 

--" --· ·~- ~ 

-- ---

-·-· 

Figure 2-36 shows the representatiorni'imd imnleric values of some importani 
single-- :and' d6iible'-precision floating-point numbers. As with the 8-bit .format 
shown in Figure 2.35, we can see some general properties for a floating-point 
rep~~s~ntadon with a k-l:iit exponent and an h-~it fraction: · 1 

• The value +O.O always has a bit representation of all zeros. 

, • The sma!l~st positive denormalized vallje has a git representation consisting of 
a 1 in the least significant bit position and otherwise all zeros. It has a fraction 
(and significand) value M = f = 2-n and an exponent value E = -2k-l + 2. 
The numeric value is therefore V ~ 2-n-2~•1 +2. 

• The largest denormalized value !fas a· ·bit feprese'Iitation consisting of an 
e_xponent field of all zeros ana a fraction fielq of all ones, It has a·fraction 
(and significand) value M = f = 1- 2-n (which we ha".e written 1- E) ~nd 
an exponent value E = -2k-l + 2. The numeric value is therefore V = (1 -

2-n) x 2-2'-'+z, which is just slightly smaller: than the smallest normalized 
value. 

S4tgle precision Double precision 

exp frac · Value Decimal Value Decimal 

QQ ... QO 0" -00 0 0.0 0 0.0 ' 
Smallest denormalized QQ ... QQ 0". 01 2-23 x 2-126 1-4 x 10-45 2-s2 x 2-1022 4_9 x 10-324 

Largest denormalized QQ ... QQ 1--.' l} Cl - E) X 2-126 1-2 x 10-38 (1- E) X 2-1022 2.2 x 10-'308 

Smallest normalized Q0 ... 01 Q- .. QO 1 x 2-126 1-2 x 10-38 1 x 2-1022 2-2 x 10~308 
One 01- - · 11 0 - - -00 1x2° LO 1x2° LO 
Largest normalized 11- - -10 1 .. -11 (2-E) X 2127 3.4 x 1038 (2 - E) X z1023 1-8 x 10308 

Figure 2.36 Examples of nonnegative floating-point numbers. 



Section 2.4 floating Point 119 

• The smallest positive non'nalized value has a bit representation with a 1 in 
the least significant bit of the exponent field and otherwise· all zeros. It has' a 
significand va)u~ M = 1 and ah,exponent value E = -2k-\ + 2. The numeric 

' • l • 

yalue is ther.efore V "'2-2'-
1+2 .• 

• The value 1.0 has a bit representation with all but the most significant bit of 
the exponent field equal to 1 and all other bits equal to 0. Its significand value 
is M =; 1 and its exi;onent value is E = 0. 

• The largest normalized value has a bit representation with a sign bit of 0, the 
least significant bit of the exponent equal to 0, and all other bits equal to 1. It 

1 has a fraction value off= 1- 2-•, givingasignificand M = 2 - 2-n (which we 
have written 2 - E.) It has an exponent value E = 2k-l - 1, giving a numeric 

2k-1 1 1 2k-l value V = (2 - 2-n) x 2 - = (1 - 2-n- ) x 2 . 

One useful exercise' for understanding floating-point representations is to con­
vert sample integer vaiues into floating-pointform. For e'xample, we saw in Figure 
2.15 thar12,345 has binary representation [11000000111001 ]. We create a' normal­
ized representation of this by shifting' 13 positions to the right of a binary point, 
giving 12,345 = 1.lOOOOOOllici012 x 213. To encode this in IEEE single-precision 
for'mat, we•construct the fraction field by dropping' the Ieadilig 1 and adding 10 
zeros to the end, giving binary representation [1000000U10010000000000]. Tu 
construct the' exponent field, we a'dd bias 127 to 13, giving 140, which has bi­
nary representation [10001100]. We combine this with a sign bit of 0 to get the 
floating-point representation•in binary of [01000110010000001110010000000000]. 
Recall from Secti6i> 2.1.3 that we "oBserved the following correlation in the bit­
Ievel representations of the integer value 12345 (Ox3039) and the single-precision 
floating-point value 12345. 0 (Ox4640E400): 

.o 0 0 "0 3 0 3 9 

00000000000000000011000000111001 

************* 
4 6 4 0 E 4 0 0 

01000110010000001110010000000000 

We. can now see that the region of correlation corresponds to the low-order 
bits of the integer, stopping just before the most significant bit equal to 1 (this bit 
forms the impJied leading 1), matching the high-order bits in the fraction part of 
the floating-point representation. 

iettd.~iezmr~latii~lis~~ 
As mentioned in 'Problem 2.6, the integer 3,510,593 h\is hexadecinlal represen­
tation Ox00359141, while the single-precision fioating-'point number 3(510,593.0 
has hexadecimal representation Ox4A564504. Derive thi~ fioating-poiht represen­
tation and explain the correlation between the bits of the integer and floating-point 
representations. 



------ ------ - -- .. ---.... - -.. - - ---~ -- ------

120 Chapter 2 Representing 1rnd Manipulating Information 

IAf.R'tlci!i®i!em'i:!M'fmmt=fliM'l:!'l!l'S!iWlilli!l.t§~ 
A. Pora floating'.poi~'t f9rmat with.an 'n-b_it fr!'ction,_glve,a formula for the 

s\nallesf positive integer thac'ciinnotoe represerited exactly (because it 
would require an (n + 1)-bit fraction to be exact). Assume the exponent 
field. size k is large enough that the range of representable exponents does 
not·provide a limitation for this problem. 

B. What is the numeric value of this integer for single-pretision format (n = 
23)? • 

2.4.4 Rounding 

Floating-point arithmetic can only approximate real arithmetic, since the repre­
sentation has limited range-and pr~cision. 'Thu§, for a val]Je;x,.,w<; generally want 
a systematic l)letho~ of finding,the. '/closest" )Ilatching value x'. that can be rep­
resented in the desired floating-point fo~mat. This is the 1task of the. rounding 
operation. One key probleIIJ is to define t,he direction to round a value that is 
halfw~y ~etVl(een two possibilities. For examp!e, if I have $1.50 and want to round 
jt tq the near.est doll..,, ~houlp the r,esult be $1 or $2? An alt"rnative,approacli is 
to maintain a lowen and an upper bound on.the actuiµ number. For eJ1ample, we 
could determine representable values x- and x+ such that t\J.e value x is guaran­
teed to lie between tl;le111: x- ~ x ~ x+. Th~ JJ;:EE flqating;pointJormat defines 
four different rounding·modes. 'The:defau!t:method finds~ closest match, whil~ 
the other three can be use.d,for computing upper and lower,, J;iounds. 

J::igure 2.3,7 i\lu~t~!l~es.-,tqe four roµnding modes applied. to the problem of 
rounding a monetary amount to the neares\ whole dollar. Roul)d-tq,even (also 
called round-to-nearest) is the default mode. It attempts to find a closest match. 
Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar 
values. The only design decision is to determine the effeccuf rounding values 
that are halfway between two possible results. Round-to-even mode adopts the 
convention that it rounds the number eithe~ upward or downward such that the 
least significant digit of the result is even1 Thus, it rounds both $1.50 and $2.50 
to $2. 

The other three modes' produce guaranteed bounds on the actual value. These 
can be useful' in some numerical apj:llications'.-Round-t'Oward-zero mode rounds 
positive numbers downward 'and negative numbers upward, giving a value x such 

I 

Mode $1.40 $1.60 $1.50 $2.50 $-1.50 

Round-to-eyen ~L, $2 $2 $2 $-2 
" 

Round-t~ward-zero $,1 $1 $1 $2 $-1 
Round-clow11 -1! $1 $1 $1 $2 ' $-2 
Round-up $2 $2 $2 $3 $-1 

Figure 2.37 Illustration of rounding modes for dollar rounding. The first rounds to 
a nearest value, while the other three bound the result above or below. 

r -... -- ------------ - -- -~------- - - -------- - --- - --
- -~------



Section 2.4 Floating Point 121 

that Ii I ::; Ix I· Round-down mode rounds both positive and negative numbers 
do)Vnward, giving a value x- sl}ch that x- ::; x. Round-up mode rounds both 
positive and negative numbers upward, giving a value x+ such that x ::; x+. 

' )lound-to-even at first seems like it hflS a riither arbitrary goal-why is there 
any reason to prefer even numbers? Why not consistently round values halfway 
between two representable values upward? The problem with such a convention 
is that one can easily imagine scenarios in which rounding a set of data values 
would then introduce a statistical bias into the computation of an average of the 
values. The average of a set of numbers that we rounded by this means would 
be slightly higher than' the average of the numbers themselves. Conversely, if we 
always rounded numbers halfway between downward, the average of a set of 
rounded numbers-would be slightly lower than the average of the numbers them­
selves. Rounding toward even numbers avoids this statistical bias in most real-life 
situations. It will round upward about 50% of the time and round downward about 
50% of the time. 

Round-to-even rounding can be applied even when we are not rounding to 
a whole number. We simply consider whether, the least significant digit is even 
or odd. For example, suppose we want to round decimal numbers to the nearest 
hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless 
of rounding mode, since they are not halfway between 1.23 and 1.24. On the other 
hand, we would round both 1.2350000 and 1.2450000 to 1.24, since 4 is even. 

Similarly, round-to-even rounding can be applied to binary fractional num­
bers. We consider least significant bit value O·td 1be even and I to be odd. In 
general, the rounding mode is only significant when we have a bit pattern of the 
form XX··· X.YY · · · YlOO ···,where X and Y denote arbitrary bit values with 
the rightmost Y being the position to which we wish to round. Only bit patterns 
of this form denote values that are halfway between two possible results. As ex­
ample's, consider the problem of rounding values to the nearest quarter (i.e., 2 bits 
to the right of the binary point.) We wo1!ld round 10.000112 (2/z) down to 10.00i 

(2), and 10.001102 (2rl;) up to 10.012 (2!). because these values are not halfway 
between two possible values. We would round 10.111002 (2D up to 11.00i (3) and 
10.10100i c2v down to 10.102 (2!). since these values are halfway between two 
possible results, and we prefer to have the least significant bit equal to zero. 

WlM'j)je'~Prollr~~~~9'ri\i~!i'@h~,.~:.iJ~,[,~·.:~~ 
Show how the following binary fractional values would be rounded to the nearest 
half (1 bit to the right of the binary point), according to the round-to-even rule. 
In each case, show the numeric values, both before and after rounding. 

A. 10.0lOi 

B. 10.0112 

c. 10.1102 

D. 11.0012 



n 
Ii 

1 
I 
i 

- - - ~- -- . - . -- .... --- - ~ --____ .,_ ... -- - . -- -__ ...... _ - ·-· ..... -

I 
I 
l 

.I 
l 
" 

I 
I 

122 G:haeter 2 Representing and Manipulating Information 

We saw in'PToblem 2'.46 that t)le Patriot missile software approximated 0.1 as x.'!: 
0.000110011001100110011002• Suppose instead that they had used IEEE ro,unll­
td-even nl.o&e to detefl\line ab' approximation x' to O.l'witli 23 bits to the'right of 
the binary' point~' 

A. What is the binary r.epresentation of x'? 

B. What is the approximate decimal value of x' - 0.1? 

C. How far ofr'would the computed clock have been after 100 hours of opera-
tion? ' · ' ' ' " 

D. How fan off would the program's prediction of the position of the Scud 
missile have been? 

-~-~ . .,,,~,-·.~~'01""""""'il:~~~"~~~~-·1: 'm1 
:P.tM1.ICE?rU1Re1IU...e~.Pm~vm.T::tiil'"'"1'~_£]i\~·,r:.£1 
Consider the following two 7-bit floating-point representations·based on the IEEE 
floating-point fan:nat.·Neither has a sign bit-they can onlyq-epresent nonnegative 
numbers. .t '-' 

1. Format A 
• There are k = 3 expo9,<;nt bits. The exponent bias is 3. 
• There are n = 4 fraction bits. ,,, 

2. FormatB 
• There are k = 4 exponent bits. The exponent bias is 7. I 

• There are n = 3 fraction bits. 
1.1 

Below, you are given some_ bit patt~rns inJorJ111lt A, and your task is to <;(\nvert 
them to the closest value in format B. If necessary, you should apply the rouQ.d~to-

·' •I• ' ' 
even rounding rule. In ad~t\o,n, give the values of nC\mbers given by th~ f onnat A 
and format B bit patterns. Give these as whole numbers (e.g., 17) or as fractions 
(e.g., 17/64). •" ' 

Format A FormatB 

Bits Value Bits Value 

011 0000 1 0111 000 1 
1011110 --,-,.- ----
010 1001 ---- ---- ---
110 1111 --- ·---- ----
000 0001 

2.4.5 Floating-Point Operations 

The IEEE standard specifies a simple rule for determining the result of an arith­
metic operation such as addition or inultiplication. Viewing floating-point values x 



Section 2.4 Floating Point 123 

and y as real numbers, and some operation 0 defined over real numbers, the com­
putation should yield Round(x 0 y), the result of applying rounding to the exact 
result of the real operation. In practice, there are clever tricks floating-point unit 
designers use to avoid performing this exact computation, since the computation 
need only be sufficiently precise to guarantee a correctly rounded result. When 
one of the arguments is a special value, such as -0, oo, or NaN, the standard.spec­
ifies conventions that attempt to be reasonable. 'For example, 1/-0 is defined to 
yield -oo, while l/+0 is defined to yield +oo. 

One strength of the IEEE standard's method of specifying the behavior of 
floating-point operations is that it is independent of any particular hardware or 
software realization. Thus, we can examine its abstract mathematical properties 
without considering how it is actually implemented. 

We saw earlier. that integer.addition, both unsigned and two's complement, 
forms an abelian group. Addition over real numbers also forms an abelian group, 
but we must consider what effect rounding has on these properties. Let us define 
x +' y to be Round(x + y). This operation is defined for all values of x and y, 
although it may yield infinity even when both x and y are real numbers due to 
overflow. The operation is commutative, with x +' y = y +' x for all values of x and 
y. On the other hand, the operation is not associative. For example, with single­
precision floating point the expression (3 .14+1e10)-1e10 evaluates too. 0-the 
value 3.14 is lost due to rounding. On the other hand, the expression 3. 14+(1e10-
1e10) evaluates to 3 .14. As with an abelian group, most values have inverses 
under floating-point•addition, that is, x +' -x = 0. The exceptions are infinities 
(since +oo - oo =NaN), and NaNs, since NaN +1 x =NaN for any x. 

The lack of associativity in floating-point addition is the most important group 
property that is lacking. It has important implications for scientific programmers 
and compiler writers. For example, suppose a compiler is given the following code 
fragment: 

x=a+b+c; 
y = b + c + d; 

The compiler might be tempted to save one floating-point addition by generating 
the following code: 

t = b + c; 

x = a + t; 
yi:::t+d; 

However, this computation might yield a different value for x than would the 
original, since it uses a different association of the addition operations. In most 
applications, the difference would be so small as to be inconsequential. Unfor­
tunately, compilers have no way of knowing what trade-offs the user is willing to 
make between efficiency and faithfulness to the exact behavior of the original pro­
gram. As a result, they tend to be very conservative, avoiding any optimizations 
that could have even the slightest effect on functionality. 



":' -..:.- :. ---=----:~--.------- ----~-- ....... -- .. 

lli 

I 
' I 

l 
I 

t24 Chapter 2 Representing and Manipulating Information 

On the other hand, floating-point addition satisfies the following monotonicity 
property: ifa :;: b, then x +1.a :;: x +' b for any values cifa, b, and x other than NaN, 
This property of real (and integer) addition is not 'Obeyed.by unsigned ort:,vo's· 
complel)lent addition. '? ' 

Flo1iting-point multiplica1!on also obeys many of th.e properties orie normally 
associates with multiplication', 1'.et us define x • 1 y to be Roi;nd(x'x y). This oper­
ation is closed under multiplicaiion ~although possibly yielding infinity or NaN), 
it is commutative, and it has 1.0 as ,a multiplicative ide'ntity. On the other hand, 
it is not associative, due to the ·possibility :Of overflow or< the loss of precision 
due to rountling. For 'example, with•single-precision floating.point;·the expression 
(le20•1e20)•1"e-20 evaluates to +oc; .while ·1e20•(1e20•1e-20) .evaluates'to 
1e20. In addition, floating-point multiplicatjpn does not 'distribute over <tddition. 
For«example, with single-precision floating point,.the•el<:pression 1e20• (1e20-
1e20) evaluates.to 0. 0, wliile 1e20•1e20-1e20•1e20 eval11ates to NaN. 

0JYthe other hand;•floating-point multiplication satisfies the following monoJ 
tonicity properties for any values of a, b, and c other than NaN: 

a :;: b. and 'C 2'.'0'~ a'*' c:;: b •i c 
J ' 

a-:;:b and csO=?a•'cSb•'c 

. " In addition, we are also guar~nteed that a *'a :;: O, as long as 'l #NaN. As w~ 
S<jW earlier, nqne, of, th~se monotonicity .properties h,o)d ~\)r unsigneq or two's­
complement multiplication. .., -· 1 

1bis lack of associativity and distributivity, is of serious concern to scientific 
programmers and to compiler writers. Even such a~eemingly simple t11Sk as writing 
code tQ M~l'rmine wl;letb.<;r two lin~~·intersect in three-dimensiop~l .sp11ce ,can ,be 
a major challenge. 

2.4.6 Floating Point in C 

All versiqps of C pror.jqi; two dif~erent floating-point da\a type&; floa~,and \lo'!; 
ble. On machines that support IEEE floating point, these data types COITyspon~ 
to single- and double-precision floating point. In addition, the machines use the 
round-to-even rounding mode. Unfortunately, since the C standards do not re­
quire the machine to use IEEE floating point, there are no standard methods to 
change the rounding mode or to get special values such as -0, +oc, -oc, or NaN. 
Most systems provide a combination of include (. h) files and procedure libraries 
to provide accl'ss to thesp features, but the, d~t!Jils vary from qne SY,Sle~ to an­
other. For example, thy GNU compiler ace pefiq.1<s program cons~ants INFIN,ITY 
(for +oc) aq.d nAN (for NaJ;l) wh~I) the followinfo se~~µce pp,;qrs in the progray;t 
file: <::,f <)JI 

' ' 
#define _GNU_SOURCE 1 
#include <math.h> 



Section 2.4 Floating Point 125 

r&t~~iSI:tm1~~r4li1l1<lt19o>llUMfif.fJ:~ 
Fill in the following macro definitions to generate the double-precision values +oo, 
-oo, and-0: 

#define POS_INFINITY 
#define NEG_INFINITY 
#define NEG_ZERO 

You cannot use any include files (~uch as math. h), but, you can \)lake use of the 
fact that the largest finite number that can be reprl'sented with double precision 
is around l.8.x-10308• 

Wlien casting values between int, float, aud double formats, the program 
changes the numeric values and the bit representations as follows (assuming data 
type int is 32 bits): 

' • From int to f,~oat, the number cannot overflow, but it may ,be rounded. 

• From int or float•to double, the exatt numeric value can be preserved be­
cause double has both greater range (i:e.;the range of representable values), 
as well as greaterprecision (i.e.; the number of ;ignificant bits). 

• From double to-float, the value can overflow to +oo or -oo, since the range 
is smaller. Otherwise, it may be rounded, because the' precision is smaller. 

• From float or double to int, 'the'value will be rounded'ioward zero. For 
example, 1.999 will be converted to 1, while -1.999 will be con;erted to 
-1. Furthermore, the value, may overflow. The C standards do not specify 
a fixed r~sult for this case. Intel-compatible microprocessors designate the 
bit pattern [10 · · · 00] (TMinw for word size w) as an integer indefinite value. 
Any conversion from floating point to'i~lege!, that cannot assign a reasonable 
inte~er appro~imati'on yieids this value." Th~s, the e'xpres;ion (int) +1e10 
'yields -2148364S, generating a negative, value from a p6;itive one. 

~lf~~t~~'iil~l'.:l:~·D;ii"~~ 
Assuine variables x, f, and dare of type int, float, and double, respectively. 
Their values are arbitrarY,•except tliat neither f nor ct.equals +oo, -oo, br NaN. 
For each of the following c expressions, either argue that it will ·always be true 
(i.e.;evaluate to 1) or give a value for the variables such that it is not true (i.e., 
evaluates to 0). 

,, 
fl. x == (int) (double) x 

B. x ==.·Hnt) (float) x 

C. d == (double) (float) d 

D. f == (float) (double) f 

E. f==-(-f) 



I 
I 
I 

.. ------.. -----.. ---...... -- .. -- -~---

126 

·- -

Chapter 2 Representing and Manipulating Information 

F. 1.0/2==1/2.0 

G. d*d >= o.o 
H. (f+d)-f == d 

2.5 Summary 

Computers encode information as bits, generally organized as sequences of bytes. 
Different encodings are used for representing integers, real numbers, and charac­
ter strings. Different models of computers use different conventions for encoding 
numbers and for ordering the bytes within multi-byte data. 

The C language is designed to accommodate a wide range of different imple­
mentations in·terms of word sizes and 'numeric encodings. Machines with -04-bit 
word sizes have become increasingly.common, replacing the 32-bit machines that 
dominated the market for around 30 years. Because 64-bit machines can aiso run 
programs compiled for 32-bit machines, we have focused on the distinction be­
tween 32- and 64-bit programs, rather than m~chines. The advantage of 64-bit pro­
grams is that they can go beyond.the 4 GB address limitation'of 62-bit programs. 

Most machines encode signed numbers using a two's-complement representa­
tion and encode floating-point numbers using IEEE Standard 754. Understanding 
th,ese encodings at the bit level, as well as understanding the mathematical char­
acteristics of the arithn;ietic operations, is im1Jortant for writing wograms that 
operate correctly over the full range 9f nu~eric values, 

When casting, between signed and unsigned iptegers, of the same size, most 
C ilI)plementations follow the convention that the underlying bit pattern does 
not change. On a two's-co1111Jlement machine, thjs behavior is characterized by 
functions T2 L! w and U2T W• for aw-bit value. The implicit casting of c gives results 
that many pr?11rammers do not,\);nticipate, often leading, t<;> p~ogram bugs, 

. bue to the finite l,engths of the enco,dings
1 
computer arithrnetic has P,rolJerties 

quite different from conventional integer and real arithmetic. The finite leng(\i can 
cause numbers to overflow, when they exceed the range of the representation. 
Floating-point values can also underflow, when they are so close to 0.0 that they 
are changed to zero. 

Th!' finite integer arithmetic impl<;.mented by C, as well as most other pro­
gramming languages, has some peculiar properties compared to true integer arith­
metic. For example, the expression x•x can evaluate to a negative number due 
to overflo)V. Noneth,eless, both t1nsignep and two's-complement arithmetic ~atisfy 
many of the other properties of integer arithmetic, including associativity, com­
mutativity, and distributivity. This allows compilers to do many optimizations. For 
example, in replacing the expression 7•x by (x«3)-x, we make use of the as­
sociative, commutative, and distributive properties, along with the relationship 
between shifting and multiplying by powers of 2. 

We have seen several clever ways to exploit combinations of bit-level opera­
tions and arithmetic operations. For example, we saw that with two's-complement 
arithmetic, -x+l is equivalent to -x. As another example, suppose we want a bit 



Bibliographic Notes 127 

Aside Ariane 5: The higl}cost of floating-p9int overtJQ\11 

Converting large floating~point numbers to integers is a common source of programming errors. Such 
an error haa disastrous consequence's for the maiden voyage of the Ariane 5 rocket, on June 4, 1996. Just 
37 seconds after liffoff,cthe mcket veered off its' flight path, broke up, an4 exploded. Communication 
satellites valued· at $500 million- were orl board the 'rocket. 

A later investigation (73, 33] showed that the'computer controlling the inertial navigation system 
had sent invalid data to the computer controlling the engine nozzles. Instead of sending flight control 
informatidn, it had sent a diagnostic bit pattern indicating that' an 6verflow had bccurred during the 
conversion of a 64-bit floating-point number to a 16-bit signed integer. 

The value that overflowed measured the horizol)tal velocity of the rocket, which could be more 
than five times higlier than that achieved by the earlier Ariane 4 rocket. In thl: deslgn of the Ariane 4 
software, they had' carefu!ly'analyzetl the numeric values and determined that the' horizontal velocity 
would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in 
the Ariane 5 without checking the assumptions on which it had been based. 

pattern of the form (0, , .. , 0, 1, ... , 1 ], consisting of w - k zeros followed by k 
ones. Such bit patterns are useful for masking operations. This pattern can be gen· 
erated by the C expression (l«k)-1, exploiting the property that the desired 
bit pattern has numeric value zk -1. For example, the expression (1«8)-1 will 
generate the bit pattern OxFF. 

Floating-point representations approximate real numbers by encoding num­
bers of the form x x 2Y. IEEE Standard 754 provides for several different preci­
sions, with the most common being single (32 bits) and double (64 bits). IEEE 
floating point also has representations for special values representing plus and 
minus infinity, as well as not-a-number. 

Floating-point arithmetic must be used very carefully, because it has only 
limited range and precision, and because it does not obey common mathematical 
properties such as associativity. 

Bibliographic Notes 

Reference books on C (45, 61 J discuss properties of the different data types and 
operations. Of these two, only Steele and Harbison (45] cover the newer features 
found in ISO C99. There do not yet seem to be any books that cover the features 
found in ISO C11. The Cstandards do not specify details such as precise word sizes 
or numeric encodings. Such details are intentionally omitted to make it possible 
to implement C on a wide range of different machines. Several books have been 
written giving advice to C programmers (59, 74] that warn about problems with 
overflow, implicit casting to unsigned, and some of the other pitfalls we have 
covered in this chapter. These books also provide helpful advice on variable 
naming, coding styles, and code testing. Seacord's book on security issues in C 
and C++ programs (97] combines information about C programs, how they are 
compiled and executed, and how vulnerabilities may arise. Books on Java (we 



·-.:: ---
·l ' 

-

---- ··---------- - . -- --~ .... 

128 Chapter 2 Representing and Manipulating Information 

recommend the one coauthored by James Gosling, the creator of the language [5]) 
describe the data formats and arithinetic operations supported by Java. ' 

Most books on logic design [58, 116] have a section oµ encodings and arith­
metic operations. Such books c\escribe different ways of implementing arithmetic 
circuits. Overton's book on IEEE floating point [82] provid<;s a detailed descrip­
tion of the format as well as the properties from ihe perspec,tive of a nwµerical 
applications progr11mmer. 

'• 
Homework Problems 

2.55. 
Compile and run the sample code that uses show_bytes (file show-bytes. c) on 
different machinys to which you have access. Determine the byte orderings used 
by these machines. 

2.56. " 
Try running the code for show_bytes for different sample values. 

2.57. 
Write procedures show_short, show_long, and show_doubie 'that print the byte 
representations of C objects of types short, long, and double, respectively. Try 
these' out on 'several machines. 

2.58 •• 
\'{rite a procedure is~li ttle_endian that 'Yill return 1 when compiled and run 
on a little-endian machine, and will return 0 when <;ompiled and run on a big­
endian machine. This program should run on any mac,I;iine, regardless of its word 

size. 

2.59 •• 
Write a C expression that will yield a word consisting of the )east significant byte of 
x and the temaining'bytes of y. Fordperands x = Ox89ABCDEF and y = Ox76543210, 

this would give Ox765432EF. 

2.60 •• 
Suppose we number the bytes in a w-bit word from 0 (least sig~ilicant) to w /8 - 1 
(m,ost significant). Writy cod~Jor the following C funct,ion, which will_p1twn ~}} 
unsigned value in which_ byte i 9f argµment x has been ~ep)aced by byte b: 

unsigned replace_byte~ (unsigned x, 'int i, unS'igne'd char b); 
j i' , 

-He~e are some examples showing how theiunctidn should work: 
J,, v 

replace_byte(Ox12345678, 2, OxAB) --> Ox12AB?678, 
replace_byte

0

(0xl23"!5q).~· O, O,xAB) --> Ox123456AB , 

E\it~Le'vel lnte.ger CqdirtiJ Rules 

In several of the followiJl-g problems, we will artificially restrict what prdgramming 
constructs you can use to help you gain .a better understanding of the bit-level, 

---------=-----------========-========-------===-===-=---=-----==-=-=---==---=-=--- --- - - - - -



Homework' Problems 129 

logic, and arithmetic operations.of C. In afiswering·these problems;your code 
must follow these rules: 

· • Assumptions .. 
• Integers are represented in two's-complement form'. 
• Right shifts of signed data are performed arithmetically. 
• Data type int is w bits long. For some of the problems, you will be given a 

specific value for .v:hut otherwise your code should work al1,h'i\g as w·is a 
njuhiple of 8. Yoµ can use ihe expression sizeof (int) «3'to'compute w. 

•Forbidden 

• Conditionals (if or?:), loops, switch statements, function calls, and macro 
invocations. 

• Division, modulus', and i;nultjplication. 
• Relative comp!lfison op~rnt.Qr~( <, >, <=, and ~= ). 

• Allowed operatioqs 
• l\ll bit-level and logic operations. 
• ·Left and right shifts, but only·wilh shift ammlnts between 0 and w -" 1. " 
• Addition and subtraction. 
• Equality ( ==) and inequality ( ! =) tests. (Some of the problems do not allow 

these.) · 
• Integer constants INT_MIN add INT_MAX. 

• Casting between data types int and unsigned, either explicitly or im­
plicitly. 

Even with these rules, you should try to make your code readable by choosing 
descriptive variable names and using comments to describe the logic behind.your 
solutions. As an example, the following code extracts the most significant byte 
from integer argument x: 

I* Get most significant byte from x *I 
int get_msb(int x) { 

} 

I• Shift by w-8 •/ 
int shift_val = (sizeof (int)-1)<<3; 
I* Arithmetic shift */ 
int xright = x >> shift_val; 
I• Zero all but LSB •/ 
return xright & OxFF; 

2.61 •• 

Write C expressions that evaluate to 1 when the following conditions are true and 
to 0 when they are false. Assume x is of type int. 

A. Any.bit of x equals 1. 

B. Any bit of x equals 0. 



~ -""~-- ... - --- ------ ---·--·-·-~ 

130 Chapter 2 Representing and Manipulating Information 

C. Any bit in the·least significant byte of x equals 1. 

D. Any bit in the most significant byte of x equals 0. 

Your code should follow the bit-level integer coding rules (page 128), with t)le 
additional restriction that you may n~t use equality ( ==) 9! \nequality (!=)'tests. 

2.62 ••• 
Write a function int_shifts_are_arithm~i;icO that yiel'c!s 1 wheri. 'run on a 
machine that uses arithmetic rigljt shifts for data typ~ int ~nd yields. 0 o\herwise. 
Your code should work on a machine with any word size. Test your code on several 
machines. 

2.63 ••• 
Fill in code for the following C functions. Function srl performs a logical right 
shift using an arithmetic right shift (given by·valtle xsra), followed oy other oper­
ations not including right shifts or division. Function sra>performs an arithmetic 
right shift using a logical right shift (given oy value xstl), :followed by other 
operations not including right shifts or division. You may use the computation 
S•sizeof (int) to determine w, the number of bits in data.type int. The shift 
ambunt k can range from 0 to w - 1. 

unsigned srl(unsigned x, int k) { 

} 

/* Perfopi1 shift arithmetically•*/ 
unsigned xsra = (int) x >> k; 

int sra(int x. int k) { 

} 

/* Perform shift logically */ 
int xsrl = (unsigned) x >> k; 

2.64. 
Write code to implement the following function: 

/* Return 1 when any odd bit of x equals 1; 0 otherwise. 
, Assume .w=32 *'/ ,• 

int any_odd_one(unsigned x); 

,, 

' \ 

"' 

Your function should follow the bit-level integer coding rules '(page 128), 
except that you may assume that data type int has w = 32 bits. 



. .Homework Problems 13] 

2.65 •••• 
Write code to impl~ll)e\lt the foll9wing function: 

J i 

I* Return 1 when x contains an odd number of ls; 0 otherwise. 
Assume w=32 */ 

int odd_ones(unsigned x)j 

Your function should follow the bit-level integer coding rules (page 128), 
except that you may assume !hat data.type iI\t.has w = 32:bits, 

Yqur code should contain a total of at most 12 arithmetic, bitwise, and logical 
operations. 

2.66 ••• 
Write code to,implement the following function: 

I• 
* Generate mask indicating leftmost 1 in x. AsSume w=32. 
*, For 1 example, OxFFpO -> Ox80(\0, .and Ox6600 --> Ox4000. ,, 
* If x = 0, then return 0. 
•I 

int leftmost_one(unsigned x); 

. " 
Your function should follow the bit-level integer coding rules (page 128), 

except that you may assume that data type int has w = 32 bits. 
Your code should contain a total of at most 15 arithmetic, bitwise, and logical 

operations. 

Hint: First transform x into.a bit vector of the form [O · · · 011 · . · 1]. 

2.67 •• 

You are given the task of writing a procedure int_size_is_32 () that yields 1 
when run on a machine for which an int> is 32.bits, ahd yields 0 otherwise. You are 
not allowed to use the sizeof operator. Here is a first attempt: 

I* The following code does not run properly on some machines */ 
2 int bad_int_size_~s_32() { 

3 I* Set most significant bit (msb) of 32-bit machine */ 
4 int set_msb = 1 << 31; 
5 /• Shift past msb of 32-bit word •/ 
6 int beyond_msb = 1 << 32; 
7 

B I* set_msb is nonzero when word size >= 32 
9 

10 

11 } 

beyond_msb is zero when word size <= 32 */ 
ret¥rn set_msb && !beyond_msb; 

' ' 

When compiled and run on a 32-~it SUN SPARC, however, this procedure 
returns 0. The following compiler mess'a$e gives us an'indication of the problem: 

'v ..,1 I< • 

warning: left shift count>= width.of type 



"":.~ --..... - ... ---~.~~------~--- -- - ... _ --·· 

l 
I 

132 Chapter 2 Representing and Manipulating Information 

A. In what way does our code fail to comply with the C standard? 

B. Modify the code to run properly on any machine for'which data type int is 
at least 32 bits, 

C. Modify the code to run properly on any machine for which data type int is 
at least 16 bits. 

2.68 ••:-1 
Write code for a function withtheifollowing prototype; 

/• 
* Mask with least signficant n bits set to 1 
*Examples: n = 6 --> Ox3F, n = 17 --> Ox1FFFF 
* Assume 1 <= n <= w t ' 

•I 
int lower_one_mask\int n); 

Your function should·follow the bit-levefinteger coding rules (page 128). Be 

careful of the case n = w. 

2.69 ••• 
Write code for a function with the following prototype: 

• J !I 

/• 
*Do rotating left shift. Assume 0 <= n < w 
• Examples when x = Ox12345678 and w = 32: 
• n=4 1-> Ox234567~r, n=20 -> Ox67812345 

•I 
unsigned ~otate_left(unsigned x, int n); 

l 

Your function should follow:tlie bit-level integer coding rules (page 128). Be 

careful of the case n = 0. 

2.70 •• 
Write code for the function with the following prototype: 

/• * Return 1 when x can be represented as an µ-bit, 2's-complement 

* number; 0 otherwise 
* Assume 1 <= n <= w 

•I 
int fits_bits(int x, int n.); '· 

Your function should follow the bit-level integer coding rules (page 128). 

2.71 • I.; • • ~ f 

you jus1,start~d working for a company that is i~plementing a s~t of procedures 
to operate on a data structure where 4 signed bytes are packed into a 32-bit 
unsigned. Bytes within the word ,are numbered from 0 (least significant) to 3 



Homework Problems 133 

(most significant). You have been assigned the task of implementing a function 
for a machine using two's-complement arithmetic and arithmetic right shifts with 
the following prototype: 

/* Declaration of data type where 4 bytes are packed 
into an unsigned */ 

typedef unsigned packed~t; 

/* Extract byte from word. Return as signed integer */ 
int xbYite(packed_t word, int bytenum),; 

That"is, the function will extract the designated byte and sign extend it to be 
a 32-bit int. 

Your predecessor (who was fired for incompetence) wrote the following code: 

I• Failed attempt at xbyte •/ 
int xbyte(packed_t word, int bytenum) 
{ 

} 
return (word>> (bytenum << 3)) & OxFF; 

A. What is wrong with this code? 

B. Give a correct implementation of the function that uses only left and right 
shifts, along with one subtraction. 

2.72 •• 

You are given the task of writing a function that will copy an"integer val into a 
buffer buf, but it should do so only if enough space is available in the buffer. 

Here is the code you write: 

/* Copy integer into buffer if spac'e' is available */ 
!• WARNING: The 'following code is buggy •/ 
void copy_int(int val; void *buf, int maxbytes) { 

if (maxbytes-sizeof(val) >= 0) 

} 
memcpy(buf, (void•) &val, sizeof(val)); 

This code makes use of the library function memcpy. Although its use is a bit 
artificial here, where we simply want to copy an int, it illustrates an approach 
commonly used to copy larger data structures. ' 

You carefuhy test the code and disc~vef that it always copies the value to the 
buffer, even when maxbytes is too small. ' 

A. Explain why the conditional test in the code always succeeds. Hint: 'The 
sizeof operatoi returns a value of type size_t. 

B. Show how you can rewrite-.the conditional test to make it work properly. 



·I 

.. - ....... 
---~ ~ .. 

' 

I 
i 

·--- --· ----··-- - ------

134 Chapter 2 Representing and Manipulating Information 

2.73 ••. 
Write fode·for a function with the following prototype: 

/* Addition that saturates to TMin or TMax */ 
int saturating_add(int x, int y]; 

Instead of overflowing the way normal two's-complement addition does, sat­
urating addition returns TMax when there would be positive overflow, and TMin 
when there would be negative overflow. Saturating arithmetic is commonly used 
in programs that perform digital signal processing. 

Your function should follow the bif-level integer coding rules (page 128). 

2.74 ~· " 
Write a function with the following prototype: 

/* Determine whether arguments can be sUbtracted without overflow *I 
int tsub_ok(int x, int y); 

This function should return 1 if th!' computation x-y does not overflow. 

2.75 ••• 
Suppose we want to compute the complete'2w-blt representation of x · y, where 
both x and y are unsigned, on a machine for which data type unsigned is w bits. 
The low-order w bits of the product can be computed with the expre~sion x*y, so 
we only re9uire a procedu~e with prototype 

unsigned unsigned_high_prod(unsigne·d x, unsigned y); 

that computes the high-order w bits of x · y for unsigned variables . 
."':f{e have acc.e

1
ss.io a library function with prototype 

int signed_high_prod(int x, 'int y) i .11 

that computes the high-order w bits of x · y for the case where x and y are in two's­
complement form. Write code ,calling this procedure to jmplement the function 
for unsigned arguments. Justify the correctness of your ~qlution. 

Hint: Look at the relationship between the signed product x · y and the un­
signed product x' · y' in the derivation of J;lquation 2.18, 

2.76 • 
The library function calloc has the following declaration: 

void *Calloc(size_t nmemb, size~t size); 

A'ccordilig to the library documentation, "The calloc function allocates, memory 
for an aqay of nmemp elem~nts of size oytes each. The m!'mory is set to zero. If 
nmemb or size is zero,'theri cai1oc returns NULL." 

Write an implementation of calloc that performs the allocation by a call to 
malloc •ahd sets the memory to zero via memset. Your code should not have ffily 
vulnerabilities due to arithmetic overflow, and it should work correctly regardless 
of the IlllJUber of bits l\sed to represent data of type s,ize_ t. 

As a reference, functions malloc and memset have the following declarations: 



Homework Problems 135 

vbid •malloc ('size_ t size); 
void *memset(void *s, int c, size_t n); 

2.77 •• 
Suppose we are given the task of generating code to multiply integer variable x 
by various different constant factors K. To be efficient, we want to use only the 
operations+,-, and«. For the following values of K, write C expressions to 
perform the multiplication using at most three operations per expression. 

A. K =17 

ff K=-7 

C,1 K=60 

D. K=-112 

2.78 •• 
Write code for a function with the following prototype: 

f* D·ivide by power of 2. Assume O <== 'k < w-1 */ 
int divide_power2(int x. int k); 

The function should compute x /2k with correct rounding, and it should follow 
the bit-level integer coding rules (page 128). 

2.79 •• 
Write code for a function mu13di v4 that, for integer argument x, computes 3 * 
x/4 but follows the bit-level integer coding rules (page 128). Your-code should 
replicate the fact that the computation 3•x can cause overflow. 

2.80 ··~ 
Write code for a function threefourths that, for integer argument x, computes 
the value of ~x, rounded toward zero. It should not overflow. Your function should 
follow the bit-level integer coding rules (page 128). 

2.81 •• 
Write C expressions to generate the bit patterns that follow, where ak represents 
k repetitions of symbol a. Assume a w-bit data type. Your code may cout!lin 
references to parameters j and k, representing the values of j and k, but uot a 
parameter representing w. 

A. 1w-k()k 

B. ow-k-ilkOi 

2.82 • 
We are running programs where values of type int are 32 bits. They are repre­
sented in two's complement, and they are right shifted arithmetically. Values of 
type unsigned are also 32 bits. 



136 <!hapter 2~ Representing and Manipulating Information 

We generate arbitrary values x and y, and convert them to unsigned values as 
follows: , 

I* Create some arbitrary values •/ 
in~ x = rando~(); 
int y .. = random(); 
I• Conv~rt to unsigned */ 
unsigned ux = (unsigned) Xi 
unsigned uy = (unsigned) y; 

For each of the following C expressions, you are to indicate whether ,or 
not the expression always yields 1. If it always yields 1, describe thp underlying 
mathematical principles. Otherwise, give an example of arguments 'that make it 
yield 0. ' 

A. (x<y) == (-x>-y) 

B. ((x+y)«4) + y-x =;';' l.7.*y+15•x 

C. -x+-y+1 == -(x+y) 

D. (ux-uy) ==-(unsigned) (y-x) 

E. ((x » 2) « 2) <= x 

2.83 •• '! 
Consider numbers having a binary representation consisting of an infinite string 
of the form O.y y y y y y · · · , where y is a k-bit sequence. For example, the binary 
representation of ~ is·0.01010101 · ·' (y "'01), while the representation of ! is 
O.OOiJOOllOOU· · · {y = 0011). 

A. Let Y = B2tl k(y), that is, the number having bmary' representation y. Give 
a formula in terms of Y and k for the value·represented by the infinite string. 
Hint: Consider the effect of shifting the binary point k positions to the right. 

:e,, .What is the numeric value pf the string for the following values of y? 

(a) 101 
(b) 0110 
(c) 010011 

2.84. 
Fin in the return value for the following proceaure, which tests whether its first 
argument is less than or equl!l to its second. Assume the function f2!1 returns an 
unsigned 32-bit number having the same bit representation, as its floating-point 
argument. You can assume that neither argument is NaN. The two flavors of zero, 
+0 and -0, are considered equal. 

int float_le(float x, float y) { 

unsigned ux = f2u(X)i 
unsigned uy = f2~(y); 



I• Get the sign bits •/ 
unsigned sx = ux >> 31; 
unsigned sy = uy >> 31; 

/* Give an expression using only ux, uy, sx, and sy •/ 
return 

} 

2.85. 

,,Homework Problems 137 

Given a floating-point format with a k-bit exponent and an n-~it fraction, w~ite 
formulas for the exponent E, the significan~ M, the fraction f, and the value V 
for the quantities that follow. In addition, describe the bit representation. 

A. The number 7.0 

B. The largest odd integer that can, be represented exactly 

C. The reciprocal of the smallest 'positive normalized value 

2.86. 
Intel-compatible processors also support an "extel\ded-precision" floating-point 
format with an 80-bit word divided into a sign bit, k = 15 exponent bits, a single 
integer bit, and n = 63 fraction bits. The integer bit is an explicit copy of the 
implied bit in the IEEE floating-point representation. That is, it equals 1 for 
normalized values and 0 for denormalized values. Ftll in the following table giving 
the approximate values of some "interesting" numbers in this format: 

Description 

Smallest positive denormalized 
Smallest positive nolll}alized 
Largest normalized 

Extended precision 

Value Decimal 

This format can be used in C programs compiled for Intel-compatible ma­
chines by declaring the data to be of type long double. However, it forces the 
compiler to generate code based on the legacy 8087 floatjng-poirit instructions. 
The resulting program will most likely run inuch slower than would be the case 

' for data type float or double. 

2.87. 
The 2008 version of .the IEEE floating-point standard, named IEEE ;7~4-2008, 
includes a 16-bit "half-precision" floating-point format, It WilS origiqally devised 
by computer, graphics companies for storing data in which a higher dynamic range 
is required than can be achieved with 16-bit integers. This format has ·1 sign 
bit, 5 exponent bits (k = 5), and 10 fraction bits (n = 10). The exponent oiaS:is 
25- 1 -1=15. 

Fill in the table that follows for each of the numbers given, with the following 
instructions for each column: 



---·· .. -- --------------------

138 Chapter 2 1 Representing and Manipulating Information 

Hex: The four hexadecimal digits describing the encoded form. 

M: The value of the significand. This should be a number of the form x or£, • ' y 
where x is an integer and y is an integral power of 2. Examples include 0, 
67 d I 04• an 30· 

E: The integer value of the exponent. 

V: The numeric value represented. Use the notation x or x x 2z, where x and 
z are integers. 

D: The (pos'sibly approximate) numerical value, as is' printed using the' %:i 
formatting specification of printf. 

.; 

As an example, to represent the number ~, we woul~ have s = 0, M ";' ~, 
and E = -1. Our number would therefore have an exponent field of 011102 

(decimal value 15 - 1=14) and a sigriifica1\a field of 11000000002, giving a hex 
representation 3BOO. The numerical value is 0.875. 

You need not fill in entries marked-. 

Description 

-0 ,p 
Smallest value 

1
> 2 

5]2 
Largest denormalized 

-00 

Number with hex 
representation 3BBO 

Hex M 

3BBO -·-

2.88 •• 
Consider the following two 9-bit floating-point representations tiased'on the IEEE 
floating-point format. 

1. Format A • • There is 1 sign bit. 
"·. There ar~ k = 5 exponeni bits. The eiiponeni bias is 15. 

• There are n = 3 fraction bi'ts. 
1 

'' 

2. FormatB 
• There is 1 sign bit. 
• There are k·= 4 exponent bits. The exponent bias is 7. 
•'There are n·= 4 fraction·bits. 

Ih the followihg taole, you are given some bit patterns in format A, and your 
task is to conyert them .to the ,closest value in format B. If rounding is necessary 
you should round toward +oo. In addition, give the values of numbers given by 
the format A and form~! B bit patterns. Give these as whole numbers (e.g., 17) or 
as fractions (e.g., 17 /64 or 17 /26). 



Format A 

Bits 

1 01111 001 

0 10110 011 

1 00111 010 

0 00000 111 

111100 000 

0 10111100 

2.89 • 

Value 
-9 
T 

.Format~ 

Bits 

1 0111 0010 

Value 
-9 
T 

Homework Problems 139 

>I 

\ J 

We are running programs on a machine where values of type int have a 32-
bit two's-complement representation. Values of type float use the 32-bit IEEE 
format, and values of type double use the 64-bit IEEE format. 

We generate arbitrary integer values x, y, and z, and convert them io values 
of type double as follows: 

I* Create some arbitrary values */ 
int x =random(); 
int y =random(); 
int z =random(); 
I* Convert to double */ 
double dx = (double) x; 
double dy = (double) y; 
double dz = (double) z; 

For each of the following C expressions, you are to indicate whether or 
not the expression always yields 1. If it always yields 1, describe the underlying 
mathematical principles. Otherwise, give an example ·of arguments that make 
it yield 0. Note that you cannot use an IA32 machine running ace to test your 
answers, since it woul,d use the 80-bit extended-precision representation for both 
float and double. 

A. (float) x == (float) dx 

B. dx - dy == (double) (x-y) 

C. (dx + dy) t dz=;.= dx + (dy +dz) 

D. (die* dy) *dz== dx * (dy *dz) 
trr ~ ~ ,1 

g. 9,x I dx == \lz (dz 

2.90 • 

You have be,en assigned the task of writing a C function to compute.a fioating­
po}nt,representatiqn,qf 2'. Xou. decide that the be~t1way to dq this is to, directly 
construct the IEEE single-precision represeritaiion of the result: When x is too 
small, your routine>Will return 0.0. Wherix'istoo large, it will return'+oo. Fill in the 
blank portions of the code that follows to compute the correct result. ·Assume the 



I 

140 Chapter 2 Representing and Manipulating Information 

function u2f returns a floating-point value having an identical bit representation 

as its unsigned argument. 

float fpwr2(int x) 
{ 

} 

/* Result exponent and fraction */ 
unsigned exp, frac; 
unsigned u; 

if (x < ) { 
/* Too small. R~turn 0.0 */ 
exp = 

frac = '~ 

} else if (x < ) { 
10 

/* Denormalized result */ 
exp = 
frac = ___ _ 

} else if (x < ____ ) { 
I* Normalized result. */ 
exp = 
frac = ___ _ 

} else { 

} 

/* Too big. Return +oo •/ 
exp = 
frac = ___ _ 

I , 

/*Pack e~p an~ frac into,32 biFs */~t 
u = exp << 23 I frac; 
I* R~turn as float */ 
return u2f(u); 

" 

'" 
,[ 

2.91 • 
Around 250 B.C., the Greek mathematician Archimedes proved that 

2lf < ii < '!if. 
Had he had access to a computer and the standard library <math. I\>, he would have 
been able to determine that the single-precision floating-point appfoximatioqpf 
:n: has the hexadecimal representation Ox40490FDB. Of course, all of ihese are just 
approximations, since :n: is not rational. 

A. What is the fractional binary number denoted by this floating-point value? 

B. What is the, fractional bina~ representation 6( 2f 'i Hint.', See Problem 2.83. 
' C. At what bit position.( relative to tl:J<; binary point) do these two approxima-

tions to :n: divergy? r , 



Homework Problems 141 

Bit-Level Floating-Point Coding Rules 

In
1
the following problems, y~u will write code t6 implement floahng:point'tunc­

tions, operating directly on bit,level representations of floating-point numbers. 
Your code should exactly replicate !he conventions for IEEE floatin,g-point oper­
ations, including using round-to-even mode when rounding is required. 

To this end, we define data type float_ bi ts to be equivalent to unsigned: 
.• I I I f• •' • 

I* Access bit-level representation floating-poNit number */ 
typedef unsignep. float_9iJ.ts; H 

Rather than using data typ~ fio'ai: in your code, you1will use flo~t_bits. 
You may use both int.and unsigned data types, including unsigned and intege'I' 
constants and operations. You may not use any unions, structs, or arrays. Most 
significantly, you may not use any floating-point data types, operations, or con­
stants. Instead, ybur code should perform the' bit manipulati~ns, that implement 
the specified floating-point operations. 

The following function illustr?tes the use of these coding rules. Fo_r argument 
f, it returns ±0 if f is denormalized (preserving the sign of f), and returns f 
otherwise. 

' ' 
I* If f is denorm, return 0. Otherwise, return f *I 
float_ bi ts flo,~t_de~qz;m_zero (floc~:~.rbi ts f) { 

/*,Deco~pose bit representation into parts*/ 
unsigned sign = f>>31; 

} 

unsigned exp·= f>>23 & OxFF; 
unsigned frac = f & Ox7FFFFF; 
if· (exp == 0) { 

/* Denormalized. Set fraction to 0 */ 
frac = O; 

} 

I* Reassemble bits */ 
return (s~gn << 31) I (exp << 23) I frac; 

" 

2.92 •• 

Following the l:Ht.Jevel floatiJ]g-poin\.coding.rules, implt>ment the- function with 
the following prototype: 

I• Compute -f. If f is NaN, then return f. •I 
float_bits float_negate(float_bits f); 

For floating-point number f, this function computes - f. If f is NaN, your 
function should simply return f. 

Test your function by evaluating it for all 232 values of argument f and-com­
paring the result to what would be obtained using your machine's floating-point 
operations. 



-· -· - ------~- ----- --~-

142 Chapter 2 Representing and Manipulating Information 

2.93 •• ,. 
Eoll~wing the bit-level floating-point qqding rules, implemept the function witji 
the following prototype: · 

' I• 

/• Compute If I'. If f is NaN, 'tllen rloturn ¥: •/ 
float_bits float_absval(fio~t_bits f); 

For floating-point number f, this function computes lfl. If f is NaN, your 
function shouid simply return f. '" 

Test your function by evaluating it for all 232 vahtes of argliment f 'and com­
p_aring .the result to what would be obtain1>c;l usil)9,;l'.ou!,machine's floating-point 

opera\1oqs. , 

2.94 ••• 
Following the bit-level floatillg-point coding rules, implement the furiction with ' ... ! 

the following prototype: 

/•Compute 2•f. If f is NaN, then return f. •/ 
float_bits float~twic9(float_bits~ f) i 

,, 

For floating-point number f, this function computes 2.0 · f. If f is NaN, your 
function should simply return f. 

Test your function by evaluating it for all 232 values~Bf argument f and com­
paring the result to what would be obtained using your machine's floating-point 

operations. 

2.95 ••• 
Following the bit-level floating-point coding rules, implement the function with 
the following prototype: ' -

/*Compute 0.5•f. If f is NaN, then return f. •/ 

float_bits float_half(float_bits f); 

For floating-point number f, this function computes 0.5 · f. If f is NaN, youf 
function should simply return f. 

Test your function by evaluating it for all 232 values of argument f anti com­
paring the.result to what would be obtained using your machine's floating-point 
operations. ·~ 

2.96 , ••• 
Following the bit-level floating-point coding rules, implement the function with 
the following prototype: 

I• .,, 
• Compute I Qint) ff. 
* If conversion causes overflow or ... f is NaN, return' Ox80000000 

•I 
int float_f2i(float_bits f); 



Solutions to Practice Problems 143 

For floating-point number f, this function computes '(int) f. Your function 
should round toward zero. If f cannot be represented as an integer (e.g., it is out 
of range, or it is NaN), then the function should return OxBOOOOOOO. 

Test your function by evaluating it for all 232 values of argument f and com­
paring the result to what would be obtained using your machine's floating-point 
operations. 

2.97 •••• 

Following the bit-level floating-point coding rules, implement the function with 
the following prototype: 

I• Compute \float) i •/ 

float_bits float_i2f(int i~i 

For argument i, this function computes the bit-level representation of 
(float) i. 

Test your function by evaluating it for all 232 yalues of argument f and com­
paring the result to what would be obtained using your machine's floating-point 
operations. 

Solutions to Practice Problems 

Solution to Problem 2.1 (page 37) 

Understanding the relation between hexadecimal and bi~ary formats will be im­
portant once we start looking at machine-level program~. The metl)pd for doing 
these conversions is in the text, but it takes a little practicd to become familiar. 

A. Ox39A7F8 to binary: 

Hexadecimal 3 9 A 7 F 8 
Binary 0011 1001 1010 0111 1111 1000 

B! Binary 1100100101111011 to hexadecimal: 

Binary· 1100 lOOl. 0111 1011 
Hexadecimal c 9 7 B 

c. OxD5E4C to binary: 

HeXadecirr\al D 5 E 4 c 
Binary 1101 0101 1110 0100 1100 

D. Binary 10011011100lp10110101 to hexadecimal: 

Binaty 10 0110 1110 0111 1011 0101 
Hexadecimal 2 6 E 7 B 5 

Solution to Problem 2.2 (page 37) 

This problem gives you a chance to think about powers of2 and their hexadecimal 
representations. 



~. ·+ ---- ---_:--·~:-_--- ... ·--

I 
l 
I 

I 
I 

144 Chapter 2 Representing and Manipulating Information 

n 2" (decimal) 2" (hexadecimal) 

9 512· Ox200 

19 524,288 Ox,80000 

14 16,384 6x4,000 .. 
16 65,536 OxlOOOO 

17 131,072 Ox20000 

5 32 Ox20 

7 '128 Ox80 

Solution to Problem 2.3 (page 38) 
This problem gives you a chance to try out conversions between hexadecimal and 
decimal representations for some smaller numbers. For larger ones, it becomes 
much, more ypnvenient a~d reliable to use; a calcul~tor.,or conversion program. 

Decimal 
• ' l 

0 
167=10·16+7 
62 = 3 · 16 + 14 
188 = 11 . 16 + 12 

3·16 + 7 =55 
8· 16+ 8= 136 
15·16+3=243 

I l ,( 

5·16+2 =?7 
10 · 16 + 12 = 172 
14. 16 + 7 = 231 

i'linary 

0000 0000 
1010 0111 
00111110 
10111100 
0011 0111 
10001000 
llil 0011 

, oib1 oo1o 
10101100 
1110 0111 

Hexadecimal, 
I •' 

OxOO 
OxA7 
Ox3E 
OxBC 
Ox37 
Ox88 
OxF3 
Ox52 

J, I I 

OxAC 
OxE7 

"' , 
. ' 

Solution to Problem 2.4 (page 39) 
When you begin debugging lnachine-level programs, you will find many cases 
where some simple hexadecimal.arith]}lytic would be us,eful. You can .alvyays 
convert numbers to decimal, perform the arithmetic, and convert them back, but 
being able to work directly in hei<adecin\.i\l is more efficient and informative. 

r 

A. Ox503c + Ox8 = Ox5044. Adding 8 to hex c gives 4 with a carry of 1. 

B. Ox503c - Ox40 = Ox4ff c. Subtracting 4 from 3 in the second digit position 
requires a borrow from the third. Since this digit is 0, we must also borrow . ' ' 
from the fourth position. 

C. Ox503c + 64 = Ox507 c. Decimal 64 (26) equals hexadecimal Ox40. 

D. Qx50ea - Ox503c = Oxae. To subtract hex c '(decimal 12) from hex a (decimal 
10), we borrow 16 from the second digit, giving hex e (decimal 14). In 
the second digit, we now subtract 3 from hex d (decimal 13), giving hex a 

(decimal 10). 

Solution to Prol51em 2.5· (page 48). • ,, , , 
This problem tests your understanding of the byte representation of data· and the 

two different byte orderings. 



Solutions to Practice Problems 145 

A. Little endian: 21 Big endian: 87 
B. Little endian: 21•43 ,Big endian: 87 65 
C. Little endian: 21 43 65 Big endian: 87 65 43 

Recall that show_bytes enumerates a series of bytes starting from the one with 
lowest address aricf working toward the one with nighest address. On a little­
endian machine, it will list tlie bytes from least sigriificant to most. On a big-endian 
machine, it will list bytes from the most significant byte to the least. 

Sqlution to Problem 2.6 (page 49) , 
This problem is another chance to pract~ce hexadeci)llal to binary conversion. It 
also gets you thinking about integer and floating-point representations. We will 
explore these representations in more detail later in this chapter. 

A. Using the notation bf the example in the text, we write the two strings as 
follows: 

0 0 3 5 9 1 4 1 
000000000011-01011001000101000001 

********************* 
4 A 5 6 4 5 0 4 

01001010010101100100010100000100 

B. With the second word shifted two positions to the right relative to the first, 
we find a sequence with 21 matching bits. 

C. We find all bits of the i11teger embedded in the floating-point number, except 
for the most significant bit having value 1. Such is the case for the example 
in the text as weJI. Ip addition, the floa\i!'g-point number has some nol)Zero 
high-order bits that do not match'lhose of the integer. 

Solution to Problem 2.7 (page 49) 
It prints 61 62 63 64 65 66. Recall also 'that the library routine strlen does not 
count the terminating null character, and so show _bytes printed only through the 
character 'f'. ., 
Solution to Problem 2.8 (page 51) 
This problem is a drill to help you become more' familiar with Boolean operations. 

Operation Result 

a [0110100i] 
b [01010101] 

-a [10010110] 
-b [10101010] 

a&b [01000001] 
a I b [01111101] 
a-b (00111100] 



146 

------ -- - ... -~-- . --- .. -- --- -- - ---

Chapter 2 Representing and Manipulating Information 

Solution to Problem 2.9 (page 53) 
This problem illustrates how Boolean algebra"can be used to describe and reason 
about real-world systems. We can see that this color algebra.is identical to the 
Boolean algebra over bit vectors of length 3. 

t~ J. ~ I 
A. Colqrs are complemented by,i;:on:iplementing tq~ ,v,alues of R,. G, and B. 

From this, 'Ye pm see that white is the COl,l)plement qf black, Y.ello:.v is the 
complement of blue, magenta is the comp~em~nt of green, ~n.d cyan is the 

complement of red. 
B. We perform Boolean operations based on a bit-vector representation cif the 

colors. From this vie 'g'et the following: ti ~ 

Blue (001) 
YellO'f,(110) 

Red (100) 

Green (010) 
& Cyan (011) 

Magenta (101) 

= Cyan (011) 

=;, Gree11 (O~Q) 
= Blue (001) 

Solution to Problem 2.10 (page 54) 
This procedure relies on the fact that EXCLUSIVE-OR is commutative arid associative, 
and that a - a = 0 for any a. • 

Step 

InitiallY. 
Step i'°' 
S_tep 2 
Step 3 

•x 
'l 
a 

a"b 
V (a - b) = 'rb ~ b) - a= a 

t}f h ' 

See Problem ill for a case where thisJulfotion will fail. 
l •Ul J 1 

Solution to Problem 2.11 (page 55) 
Jhis pr,oblem illustrat~~ a subtle.,and interesting_ feature of our jnplace swap 

routjne. 
A. Both first and last have value k, so we are attempting to swap the middle 

element with itself. 
' ' 

B. In this case, argmµents.x ai;td y .to inplace_swap both point to the .san,if 
location. When we' compute •x - •y, we get 0. We then store 0 as the middle 
element of the array, and the subsequent steps keep setting this e)ement to 
0. We can see that our reasoning in Problem 2.10 im,vlicitly assmned that x 
and y denote different locations. r. . 

C. Simply replace the test in line 4 of reverse_array to be first < last, since 
there is no need to swap the middle element with itself.' 

Solution to Problem 2.12 (page 55) 
Here are the expressions: 



Solutions to Practice Problems 147 

A. x & OxFF 

B. x - -OxFF 

C. x I OxFF 

These expressions are typical of the kind commonly f!Jund in performing low-level 
bit operations. The expression -OxFF creates a mask" where the 8 least-significant 
bits equal 0 and the rest equal 1. Observe that such a mask will be generated 
regardless of the word size. By contrast, the expression OxFFFFFFOO would only 
work when data type int is 32 bits. 

J 'I 

• • 
Solution to Problem 2.13 (page 56) 
These problems.help you think about the relation between Boolean operations 
and typical ways that programmers apply masking operations. Here is the code: 

/*Declarations of functions implementing operatio~s.bis and bic */ 
int bis(int x, int m); 
int bic(int x, int m); 

/* Compute xly using only calls to functions bis and bic */ 
int bool_or(int x, int yl { 

int result= bis(x,y); 
return result;' 

} 

/* Compute x-y using only calls' to functions bis and bic */ 
int bool_xor(i~t x, iµt y) { 

} 

int result= bis(bic(x,y), 
1

bic(y,x)); 
return result; 

The bis operation is equivalent to Boolean OR-a bit is set in 11,if either this 
bit is set in x or it is set µi m. On the other hand, bic (x, m) is equivalen~ to x It. -m; 
we want the result t~,equal 1 only when the corresponding bit. of x is 1 and of mis 
o. 

•I 1 y 

Given that, we can implement I with a single call to bis. To impfement - , we 
take advantage of the property 

x - y = (x I< -y) I (-x I< y) 
L 

Solution to Problem 2.14 (11age 57) 
This problem highlights the relation between bit-level Boolean operations and 
logical operations in C. A common programming error is to use a bit-level oper­
ation when a logical one is intended, or vice versa. 



148 

-------- ·- _ ... --· • ... • -·i" 

Chapter 2 

Bex 
OxC3 

Ox75 

Ox87 

Ox66 

,Representing and Manipulating Information 

x 

Expression Value Expression Value 

x&y Ox20 x && y Ox01 

xly Ox7F x 11 y Ox01 

-x I -y OxDF !x 11 !y OxOO 

XJ& fy 
)• 

OxOfl x && -y OxOl r.· 
I 
So(µtion ~o Problem.2.15 (page 57) 
The expression is ! (x • y). 

That is, x·y will be zero if and only if every bit of x matches the corresponding 
bit of y. We then exploit the ability of ! to determine whether a word contains any 
nonzero bit. 

There is no reAf reason to use this expressibn 'father' than simply writing x == 
y; but it demonstrates some"of the nuances'bf bit-level and logical operations. 

Solution to Problem· 2.16 (page 58) 
This problem is a drill to help you understand the different shift operations. 

Logical Arithmetic 

x << q x >> 2 x >> 2 

:Bin3.ry Binary Hex Binary Hex Binary Hex 

(11000011] (00011000] Ox18 [00110000] Ox30 [ 111.10000 l OxFO 

(01110101] (10101000] OxA8 (00011101] OxlD (00011101] OxlD 

[10000111] (00111000] Ox38 [OOlOOOOt) Ox21 [11100001] OxEl 

(01100110] [00110000] Ox30 (00011001] Ox19 . (Q0011001] Ox19 

Solution to Problem 2.17 (page 65) 
In general, working through examples for very small word sizes is a very good way 
to understand computer arithmetic. 

The unsigned values correspond to ihose in 'Figure 2.2. For the'two's­
complement values, hex digits O through 7 have a most significant bit of 0, yielding 
nonnegative values, while hex digits 8 through F ha~e' a most significant bit of 1, 
yielding a negative valtle. 

l " 

Hexadecimal Binary 

x B2U,(x) B2T4(x) 

OxE [1110] 2' +22 +21=14 -23 +22 +21 = -2 

OxO (0000] 0 0 

Ox5 [0101] 22 +2° =5 ·22 +z0-5 
" 

. , • 1 < I "J{ 

Ox~ [1000] 23 =8 -23 - -8 
1' r- • I J J .J • 

OxD [1101] z' + .z2 + 20""' 1~ -23 +22 +2° = -3 ' . 
OxF (1111] 23 +22 +21+zo=15 _z3 +22 +21 +z0 = -1 



Solutions to Practice Problems 149 

Solution to. Problem 2.18 (page. 69) ,. 
For a 32-bit word, any value consisting of 8 hexadecimal digits beginning with one 
of the digits 8 through f represents a negative number. It is quite common to see 
numbers beginning with a string of f's, since the leading bits of a negative nUl)lper 
are all ones. You mustlook carefully,,though. For examJ?le, the_ number Oxso4B337 
has only 7 digits. Filling this out wit!i'a leading zero gives Ox08048337, a positive 
number. 

I' 

4004d0: 48 81 ec eO 02 00 00 sub, $0x2eO,%rsp A. 736 

4004d7: 48 Sb 44 24 a8 mov f-Ox58(%rsp),%rax B. -BB 
4004dc: 4803 47 28 add Ox28(%rdi),%rax c. 40 

4004e0: 48 89 44 24 dO mov %rax,-Ox30(%rsp) D. -48 

4004e5: 48 8b 44 24 78 mov Ox78(%rsp),%ral<: E. 120 

4004ea: 48 89 87 88 00 00 00 mov %rax,Ox88(%rdi) F. 136 

4004f1: 48 Sb 84 24 f8 01 00 mov -Ox1f8(%rsp) .'%rax G. 504 

4004f8: 00 
4004f9: 48 03 44 24 08 add Ox8(j'.rsp). %rax 
4004fe: 48 89 84 24 co 00 00 mov %rax,Oxc0(%rsp) H. 192 

400505: 00 
400506: 48 Sb 4tl d4 b8 mov -Ox48(%rsp,%rdx,8),%rax I. -72 

Solution to Problem 2.19 (page 71) 
The functions 12 U aqd U2T are very peculiar from a mathematical perspective. 
It is important to understand how they behave. 

W,e &olv!'; this problem by reordering thernws in the solution of Problem 2.\7 
according.to tl}e two's,complement va\ue ~nd then li~ting the unsigqep value as 
the result, of, the function ,applic~tion. We show the, hexatlecimal values to make 
this process more concrete. 

x (hex) x T2U<(x) 

Ox8 -8 8 
OxD -3 13 
OxE -2 14 
OxF -1 15 
OxO 0 0 
Ox5 s 5 

~olution to ·~robien,i 2.?0 .(pag,e, 731 
This exercise tests your undep~anding,of _E\quation :p. . 

For the first four entries, the val'ues of x are negative and 12U4(x) = x + 24 • 

For the remaining two entries, the values of x are nonnegative and 12U4(x) = x. 

Solution tp Problem 4.~1 (page 76) 
This problem .reinforces your u(lderstanding. of the relation between two's­
complement and unsigned representations, as well as the effects of the C promo­
tion rules. Recall that TMin32 iS -2,147 ,483,648, and that when cast to unsigned it 



- .. --··--· ---- - ... - - ... - - ,,., 

·1 SO Chapter'2 Representing and Manipulating Information 

becomes 2,147,483,648. In addition, if either operand is unsigned, then the other 
operand will be cast to unsigned before comparing. 

I• 

Expressio!l l)pe Evalua'tion 
, 

., 
-2147483647-1.== 2147483648,U Unsigned,1 

1 " 
-2147483647-1 < 2147483647 Signed 1 

-2147483647-lU < 2147483647 Unsigned 0 

-214748,3647-1 < -2147483647 Signed 1 

-2147483647-lU < -2147483647 Unsigned 1 

Solu~ion to Problem 2.22 (page 79) 
This exercise provides JI concrete-demonstration of how sigh extension preserves 
the numeric value of·a two's-complement representation. 

A. 
B. 
c. 

[1011] 
[11011] 

[111011] 

-"23 + 21 + 20 
-24'+ 23 + 21 +2° 

-2s + 24 + 23 + 21 + 20 

= 
= 
= 

-8+2'+1 -5 

-16+8+2+1 '= -5 
-32 + 16 -t; 8 + 2 + 1 = -5 

Solution to Problem ~;23 (page 80) •' 
The expressions in'thb'se functions are common program "idioms" for extracting 
values from a word in which multiple bfr fields have been packed. They exploit 
the zero-filling and sign-extending properties of the different shift operations. 
Note careflllly the ordering of-the cast and shift operations. In 'funl, th'e shifts 
are ·performed on unsigned' variable word and hence are logical. In fun2, -shifts 
are performed after casting word to int and hence are arithmetic. 

A. w funl(w) fun2(w) 

Ox00000076 Ox00000076 Ox00000076 

Ox87654321 'oxoooooo21 Ox00000021 

OxOOOOOOC9 OxOOOOOOC9 OxFFFFFFC)l 

OxEDCBA987 Ox00000087 OxFFFFFF8_7 

B. Function fun! extracts a value from the low-order 8 bits of the argument, 
giving an integer ranging between 0 and 255. Function fun2, ex\racts a va)ue 
from the low-order 8 bits of the argumellt,'but it also performs sign extension. 
The result will be a J.lUmber betweefr-128 and 127. 

t 

Solution to Problem 2.24 (page 82) 
The effect of truncation is fairly intuitive for unsigned numbers, but not for two's­
complement numbers. This exercise lets you explore its properties using.very small 
word sizes. • r, ,, 



Solutions to Practice Problems 

Hex Unsigned Two's complement 

Original Truncated Original Truncated Original 'Truncated 

0 0 0 0 0 0 
2 2 2 2 2 2 
9 1 9 1 -7 1 
B 3 11 3 -5 3 
F 7 15 7 -1 • -1 

As Equation 2.9 states, the effect of this truncation on unsigned value's is to 
simply find their residue, modulo 8. The effect of the truncation on signed values 
is a bit more complex. According to Equation.Z.10, we first compute the modulo 8 
residue of the argument. This will give values Q through 7 for arguments 0 through 
7, and also fqr argument§.-;8 thro,ugh' -1. Then we apply function U2T 3 to these 
resi<;lues, giving two repetitions of tlje sequences 0 through 3 and -4 through -1. 

Solution to Problem 2.25 (page 83) 
This problem is designed to demonstrate how easily bugs can arise due to the 
implicit casting from signed to unsigned. It seems quite natural to pass parameter 
length as an unsigned, since one would never want to use a negative length. The 
stopping criterion i <= length-1 also seems quite natural. But combining these 
two yields an unexpected outcome! 

Since parameter length is unsigned, the computation 0 - 1 is performed using 
unsigned arithmetic, which is equivalent to modular addition. The result is then 
UMax. The :s comparison is also performed using an unsigned comparison, and 
since any number is less than or equal to UMax, the comparison always holds! 
Thus, the code attempts to access invalid elements of array a. 

The code can be fixed either by declaring length to be an int or by changing 
the test of the for loop to oe i < length. 

Solution to Problem 2.26 (page 83) 
This example demonstrates a subtle feature of unsigned arithmetic, and also the 
property that we sometimes perform unsigned arithmetic without realizing it. This 
can lead to very tricky bugs. 

A. For what cases will this function produce an incorrect result? The function 
will incorrectly return 1 whens is shorter than t. 

B. Explain how this incorrect result comes about. Since strlen is defined to 
yield an unsigned result, the difference' and the comparison are both com­
puted using unsigned arithmetic. When, s is shorter than t, the difference 
strlen(s) - strlen(t) should be negative, but instead becomes a large, 
unsigned number, which is greater than 0. 

C. Show how to fix the code so that it will work reliably. Replace the test with 
the following: " 

return strlen(s) > strlen(t); 

151 



--- - --·. - - ----- ·-- --· --·-

152 Chapter2 Representing and Manipulating Information 

Solution·to Problem 2.27 (page 89) 
This function is a direct implementation of the rules given to determine whether 
or not an unsigned addition overflpws. 

f* Determine whether arguments Can be added without overflow */ 
int uadd_ok(unsigned x, unsigned y) { 

unsigned sum = x+y; 
return sum >= x; 

} 

Solution ito Problem 2.28 (page 89) ' 
Thi~proolem is a'simple demonstration bf arithmetic modulo 16. The easiest \vay 
to solve it is to convert~lie hex pattern into its unsigned del:imal value. For nonzero 
values of x' we must have c-4 x) + x = 16. Then we convert the <:omp!emented 
value back to hex. . .. 

, 
x -" x ... 

Hex Decimal Decimal Hex 

0 0 0 0 
, ;> (;! 

5 5 11 B 

8 8 
, 

8 8 

D 13 3 3' 

15 '•. 1 F 1 

Solution to" Problem 2.29. (page 93) 

This problem is an exercise to make sure you understand two's-complement 
addition. 

' ,x. :5 y Case x y x+y 

-12 -15 -27 5 1 

(~0100] (10001] (100101] (00101] 

-8 -8 -16 -16 2 
[llOQO] [11090] [110000] [10000] 

-9 's 1• -J. -1 2' 

[10111] (01000] [111111f [11111] .. ' 
2 5 7 q 3 

(00010] (00101] [OQOllll (00111l 

12 4 16 -16 4 

[01100] (00100] [010000] (10000] 
" 

~ - ~ - ==--==-==---------=----------=-=---=-=-----==--------====-=----=~=====----- --===---==--=-- ---=--===--==-------==----- --



Solutions to Practice~Problems 153 

Solution to Problem 2.30 (page 94) 

This function is a direct implementation of the rules given to determine whether 
Of not a two's-compleme))t addition overflows. 

I* Determine whether, arguments can be added without overflow */ 
int tadd_ok(int x, int y) { 

int sum = x+y; 

int neg_over = x < 0 && y < 0 && sum >= O; 
int pos_over = x >= 0 && y >= 0 && sum < O; 

} 
return !neg_over && !pos_over; 

Solution to Problem 2.31 (page 94) 

Your coworker could'
1
have learned, by studying Section 2.3.2, that two's­

complement addition forms an abelian 'group, and so the expression (x+y )-x 
will evaluate to y regardless of whethet or not the addition overflows, and that 
(x+y )-y will always evaluate to x. 

Solution to Problem 2.32 (page 94) 

This function will give correct values, except when y is TMin. In this cas~" we 
will have -y also equal to TMin, and so theicall to function tadd_ok will indicate 
overflow when x is negative and no overflow when x is nonnegative. In fact, the 
opposite is true: tsub_ok(x ,' TMin) should yield 0 when xis negative·and 1 when 
it is nonnegative. 

One lesson to be learned from this exercise is that TMin should be included 
as one .of the cases in. any test procedure for a function. 

Solution to Problem 2.33 (page 95) 

This problem helps you understand two's-complement negation using a very small 
word size. , 

For w = 4, we have TMin4 = -8. So -8 is its own additive inverse, while other 
values are negated by integer negati'c;n. ' 

x -4x 
Hex Decimal Decimal Hex 

0 Q 0 0 
5 5 -5 B 
8 -8 -8 8 
D -3 3 3 
F -1 1 1 

The bit patt'erns are the same as for unsigned negation. 

Solution to Problem 2.34 (page 98) 

This problem is an exercise to make sure you understand two's-complement 
multiplication. 



--·· -

154 

- -- - . . - ... ... __ ... --... 

Chapter 2 Representing and Manipulating Information 

Mode x y x·y Truncated x · y 

Unsigned 4 [100) 5 [101) 20 (010100) 4 [100) 
Two's complement -4 [100) -3 [lOT] 12 "[0011001 -4 [100) 

Unsigned ' 2 [010) 7 [111) 14 [001110) 6 [110) 
Two's complement 2 [010) -1 [111) -2 [111110) -2 [110) 

Unsigned 6 [110) 6 [110) 36 [100100) 4 [100) 
1\vo's complement -2 [110) -2 [110) 4 [000100) -4 [100) 

Solution to Problem 2.35 (page 99) ,, 
It is not realistic to tes,t this function for all possible values of x apd y. Evel),if 
you could run 10,billion tesJs per seco1,1d, it wou,ld,require over 58 years to test all 
combinations when <;la,ta type inti~ :}2 l?its.,0!' the 9t)ler hand, it is feasiple tq test 
your code by writing the function with data type short or char and then testing 
it exhaustively. 

Here's a more principled approach, following the proposed set of arguments: 

1. We know that x , )'!Can be written as a 2w-bit two's-complement number. Let 
u denote the unsigned number represented by the lower w bits, and v denote 
the two's-complement number represented by the upper w bits: Then, based 
on Equation 2.3, we can see that x · y = v2w + u. 

•We also know that •U = 12U w(p), since they are unsigned and two's­
complement numbers arising from the same bit pattern, and so by. Equation 
2.6, we can write u = p + Pw-l2w, where Pw-l is the most significant bit of p. 
Letting t = v + Pw-1' we have x · y = p + t2w. 

When t = 0, we have x . y = p; the multiplication does not overflow. When 
t 'I 0, we have x · y 'I p; the multiplication does overflow. 

2. By l:tefinition of integer divisi<1in, dividing p by nonzero x gives a quoti1mt 
q and a remainder r such that p = x · q + r, and lrl < l~I. (We use absolute 
values here, because the signs of x and r may differ. For example, dividing - 7 
by 2 gives quotient -3 and remainder -1.) 

3. Suppose q = y. Then we have x · y = x · y + r + t2w. From this, we can see 
that r + t2w = 0. But lrl < lxl :::: 2w, anll so this identity can hold only if t = 0, 
in which case r = 0. 

Suppose r = t = 0. Then we will have x · y = x · q, implying that y = q. 

When x equals 0, multiplication does not overflow, and so we see that our code 
provides a reliable way to test whether or not two's-complement multiplication 
causes overflow. r 

Solution to Problem 12.36 (page.99) 
With 64 bits, we can perform the multiplication without overflowing. We then test 
whether casting the product to 32 bits changes the value: 

~--- --====-----=--- -- --- - - --- - - - - -- -
------------------------------_-__ -_-____ · ___ · -



I* Determine whe\her the arguments• can,be•multiplied 
2 without overflow ~/ 
3 int tmult_ok(int x, int y) { 

4 /* Compute product without overflow •/ 
5 int64_t pll = (int64_t) x•y; 
6 

7 

8 } 

/• See if casting to int preserves va~ue */ 
return pll == (int) pll; 

Solutions to Practice Problems 1 SS 

Note that the casting on the right-hand side of line 5 is critical. If we instead 
wrote the line as 

int64_t pll = x•y; 

the product would be computed as a 32-bit value (possibly overflowing) and then 
sign extended to 64 bits. 

Solution to Problem 2.37 (page 99) 

A. This change does not help at all. Even though the computation of asize will 
be accurate, the call to malloc will cause this value to be converted to a 32-bit 
unsigned number, and so the same overflow coqditions will occur. 

B .. With malloc having a 32-bit unsigned n11mber as its argument, it cannot 
possibly allocate a block of more than 232 bytes, and .so'there is no point 
attempting to allocate or copy this much memory. Instead, the function 
should abort and return NULL, as illustrated by the following replacement 
to the original call to malloc (line 9): 

Uint64_t required_Size = ele_cnt * (uint64_t) ele_size; 
size_t request_size = (size_t) required_size; 
if (required_size != request_size) 

I• Overflow must have occurred. Abort operation */ 
return NULL; 

void •result= malloc(request_size); 
if (result == NULL) 

I• malloc failed •/ 
return NULL; 

Solution to Problem 2.38 (page 102) 
In Chapter 3, we will see many examples of the LEA instruction in action. The 
instruction is provided to support pointer arithmetic, but the C compiler often 
uses it as a way to perform multiplication by small constants. 

For each value of k, we can compute two multiples: 2k (when bis 0) and 2k + 1 
(when bis a). Thus, we can compute multiples 1, 2, 3, 4, 5, 8, and 9. 



'156 Chapter 2 Repre.senting' and Manipulating Information 

Solution to Problem 2.39· (page·l 03) ~,. 
The expression simply becomes -.(x«~). To see this, let the word size be w so that 
n = w - 1. Form B states that we should compute (x«w) - ,(x«mil, but shifting 
x to the left by w will yield the value' o. " 

Solution to Problem 2.40 (page 103) 
This problem requires you to try out the optimizations already described and also 
to supply a bit of your own ingenuity. 

K Shifts Add/Subs Expression 

6 2 1 (x«2) + (x«l) 

31 1 1 (x«5) - x 

-6 2 1 (x«l) - (x«3) 

55, 2 2 (x«6) - (x«~) - x 

Observe that the fourth case uses a modified version of form B. We can view 
the bit pattern [110111] as having a run of 6 on~s wit!). a zero in the middle, and, so 
we apply the rule for form B, but then we subtract the term corresponding to the 
middle zero bit. 

Solution to Problem 2.41 (p'a'ge 103) '' 
Assllming that adtlitidn and subtraction ·have the same performance, the' rule is 
to 'choose form A when n = m, either :forrtl. when n = m + 1, and form B, when 
n > 'tfl + 1. "i.' l• 

The ·justification for this rule is as' follows. Assume first that m > 0. When 
n = m, form A requires only a single shift, while-form B req,uires two shifts 
and a subtraction. When n = m + 1, both forms require two shifts and either an 
addi~ion.or a S)lbtrac,tiog, When n ;> m + 1, form~ r"quires only_ tw9 shifts and one 
subtraction, while.form A requjres n - m + 1 > 2 shift~.,a,Q.q,ri - m > i aqditions. 
For the case of m = 0, y;e get one fewer shjft for both forms A arn;I B, and so the 
same rules apply for choosing between the twp., 

Solution to Problem 2.42 (page 107) " 
The only challenge here is to compute the bias without any testing or conditional 
operations. We use the trick that the expression x » ·31 generates a word with all 
ones if x is negative, and all zeros otherwise. By masking off the appropriate bits, 
we get the desired bias value. 

int div16(int.x~ { 
/* Compute bias to .be .either 0 (x >= ~o) or 15 f(x < 0) */ Of 

int bias = (x ~> 31) •& OxF; 
return (x +'bias) >> 4; 'r:-r 

} 



r 

Solutions to Practice Problems 157 

Solution to Problem 2.43 (page •107) 

We have found that people have difficulty with this exercise when working di­
rectly with assembly code. It becomes more clear when put in the form shown in 
optarith .. 

We can see that Mis 31; x•M is computed as (x«5)-x. 
We can see that N is 8; a bias value of 7 is added when y is negative, and the 

right shift is by 3. 

Solu~ion to Problem 2.44 (page 108) 

These "C puzzle" problems provide a clear demonstration that programmers must 
understand the properties of computer arithmetic: 

A. Cx > O) 11 (x-1 < 0) 

False. Let x be -2,l.47<,483,648 (TMin32 ). We will then have x-1 equal to 
2,147,483,647 (TMax3z). 

B. Cx & 7) ! = 7 11 (x«29 < O) 
True. If (x & 7) ! = 7 evaluates to 0, then we must have bit x2 equal to 1. 
When shifted left by 29, thfs will become the sign bit. 

C. (x • x) >= 0 

False. When xis 65,535 (OxFFFF), x•x is -131,071 (OxFFFEOOOl). 

D. x < o I I .~x ~= .o. 
True. If x i~ noµnegative, then -xis nonpositive. 

E. x>O 11-x>=O 

Fa/s~. Let x be -2,147,483,648 (TMin32 ). Then both x and -x are negative. 
F. x+y == uy+ux 

True. Two's-complement and unsigned addition have the same bit-level be­
havior, and they are commutative. 

G. x*-y + uy*ux == -x 
True. :y equals -y-1. uy•ux equals x•y. Thus, the left-hand side is equivalent 
to x*-Y-x+x*y. 

Solution to Problem 2.45 (page 111) 

Understanding fractional Binary representations is an important step to under­
standing floating-point encodings. This exercise lets you try out some simple ex­
amples. 

1 0.001 0.125 ' 3 0.11 0.75 4 
25 1.1001 1.5625 T6 
43 10.lQll 2.6875 l6 
9 1.001 1.125 8 

47 101.111 5.875 8 
51 11.0011 3.1875 Ii> 



-- - .. _'.""" ... ---- -- ·-.------ . - . 

158 Chapter 2 Representing and Manipulating Information 

One simple way to think about fractionat binary representations is to repre­
sent a.number as a fraction of the form f.'· We can write this in. binary using the 
binary representation of x, with the binary point inserted k positions from the 
right. As an example; for-ii, we have 2510 = 110012. We then put the binary point 
four positions from the right to get 1.10012• 

Solution to Problem 2.46 (page 111) 
In most cases, the limited precision of floating-point numbers is not a major 
problem, because the relative error of the computation is still fairly low.'tn this 
example, however, the system was sensitive to the absolute error. 

A. We can see that 0.1 - x has the binary representation 

0.000000000000000000000001100(1100]· .. 2 

B. Comparing this to the binary representation of fa, we can see that it is simply 

2-20 x fa· which is around 9.54 x 10-8
• 

( 

' c. 9.54 x 10-8 x 100 x 60 x 60 x 10 "'0.34;3 seconds. 

D. 0.343 x 2,000 "'687 meters. 

Solution to Problem 2.47 (page 117) 
Working through floating-poi!'! representations for very small word sizes helps 
clarify how IEEE floating point works. Note especially the transition between 
denormalized and normalized values. ' 

Bits e E zE f M 
'' ) zE x M v Decimal 

0 QO 00 0 0 1 0 0 0 0 0.0 
4 4 t• I 4 

0 00 01 0 0 1 I 1 1 1 0.25 
4 4 4 4 

0 00 10 0 0 1 2 2 2 1 0.5 
4 4 4 2 

0 00 11 0 0 1 3 3 3 3 ·o.75 
4 4 4 4 

0 01 00 1 0 1 0 4 1· 1 1.0 
4 4 

0 01 01 1 0 1 1 5 5 5 1.25 
4 4 4 4 

o 01 ~o. 1 Q 1 i 6 6 3 1.5 
4 4 4 2 

0 01 11 1 0 1 3 7 7 7 1.75 
4 4 4 4 

0 10 00 2 1 2 0 4 8 2 2.0 
4 4 4 

0 10 01 2 1 2 1 5 10 5 2.5 
4 4 4 2 

0 10 10 2 1 2 2 6 12 3 3.0 
4 4 4 

0 10 11 2 1 2 3 7 14 7 3.5 
4 4 4 2 

0 11 00 00 

0 11 01 NaN '' 
0 1110 Nai'f 

0 1111 NaN 



Solutions to Practice Problems 159 

Solution to Problem 2.48 (page 119) 

Hexadecimal Ox359141 is equivalent to binary (1101011001000101000001]. Shift­
ing this right 21 pla,ces gives 1.1010110010001010000012 x 271. We form the frac­
tion field by dropping the leading 1 and adding two zeros, giving 

(10101100100010100000100] 

The exponent is formed by adding bias 127 to 21, giving 148 (binary (10010100]). 
We combin~ this with a sign field of 0 to give a bin<1ry representation 

(01001010010101100100010100000100] 

We see that the matching bits in the two representations correspond to the low­
order bits of the integer, up to the most significant bit equal to 1 matching the 
high-order 21 bits of the fractioi;i: 

0 0 3 5 9 1 4 1 
00000000001101011001000101000001 

********************* 
4 A 5 6 4 5 0 4 

01001010010101100100010100000100 

Soluti~n to Problem 2.49 (page 120) 

This exercise helps you think about what numbers cannot be represented exactly 
in floaling point. 

'c 

A. The number has binary representation 1, followed, by n zeros, followed by 1, 
giving value 2n+l + 1. 

B. When n = 23, the value is 224 + 1=16,777,217. 

Solution to Problem 2.50 (page 121) 

Performing rounding by hand helps reinforce tbe idea of round-to-even with 
binary numbers. 

Driginal 
• ·1 

10.010, 24 

10.011, 2~ 

10.110, 

11.0012 

Rounded 

10.0 

10.1 

11.0 

11.0 

Solution to Problem 2.51 (page 122) 

A. Lookin9.at the nonterminating sequence for fci, we see that t_he 2 bits to the 
right of the rounding position are 1, so a better approximation to to would be 
obtained by incrementing x to get x' = O.OOoi'lOOllOOl10011001101

2
, which 

is larger than 0.1. 

B. We can see thi't x' - 0.1 has binary representation 
J 

0.0000000000000000000000000(1100] 



-~ - _ .. ...-----· 

160 Chapter 2 Representing and Manipulating Information 

Comparing this to the binary representation .of fo, we can see that it is 

2-22 x fo, which 'is around 2.38 x 10-&. 
C 238 x 10-8 x 100 x 60 x 60 x 10 "16.086 seconds, a factor of 4 less than the 

error in the Patriot system. 

D. 0.086 x 2,000"' 171 meters. 

Solution to Problem 2.52 (page 122) 
This problem tests a lot of coricepts about floating-point representations, including 
the encoding of nornrnlized and denormalized l\Wll,f\S, as well as rounding. 

Format A 

Bits 'value 

011 0000 1 

1011110 15 
2 

010 1001 25 
TI 

110 1111 31 
2 

000 0001 1 
;;< 

FormatB 

Bits Value 

0111 000 1 

1001 111 15 
2 

0110 100 3 
4 

1011 000 16, 

0001 000 1 
;;< 

Comments 

Round down 

Round up 

Denorm -+ norm 

Solytion to Problem 2.53 (page 1,25) 
In general, it is better to use a library macro rather than inventing your own code. 
This cbde seems to work on a variety of machines, however. 

We assume that the valne 1e400 'overflows to infinity. 

#define POS_INFINITY 1e400 
#define NEG_INFINITY (-POS_INFINITY) 
#define NEG_ZERO (-1.0/POS_INFINITY) 

Solution to Problem 2.54 (page 125) 
Exercises such as this one help you develop your ability to reason about floating­
point operations from a programmer's perspective. Make sure you understam;I 

each of the answers. 

A. x == (int) (double) x 
Yes, since double has greater precision and range than int. 

B. x == (int) (float) x 
No. For example, when xis TM ax. 

C d == (double) (floi}t) d 
No. For ~xample, ~hen'd is 1e40, we will get +oo on the ~ight. , t ,. 

D. f == Cpoat) (do,uble) ·f 
Yes, since double has greater precision and range than float. 

E. f == -(-f) 
Yes, since a floating-point number is negated by simply inverting its sign bit. 



Solutions to Practice Problems 161 

F. 1.0/2 == 1/2.0 

Yes, the numerators and denominators will both be converted to floating­
point representations before the division is performed. 

G. d•d>=O.O 
Yes, although it may overflow to +oo. 

H. (f+d)-f == d 

No. For example, when f is 1. Oe20 and dis 1.0, the expression f+d will be 
rounded to 1. Oe20, and so the expression on the left-hand side will evaluate 
to 0.0, while the right-hand side will be 1.0. 





" 
' 

Mac;hine-Level Representation 
of Programs 

" 
3.1 

3.2 

3.3 

3.4 

is 
3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

3.12 

A Historical Perspective 166 

Program Encodings 169 

data ~ormats 1 77 

Accessing Information 179 

Arithmetic and Logical Operations 191 

Control 200 

Procedures 238 

Array Allocation and Access 255 

Heterogeneous Data Structures 265 

Combining Control and Data in Machine-Leve/ Programs 276 

Floating-Point Code 293 

Summary 309 

'Bibliographic Notes 310 

lrlomework Pooblems 311 

~olutiOQS to,Practice Problems '325' 

163 



I 

I 
I' 

' 

I 
I 

164 

I 

- ...... " " ....... __ ....... - •H ·-

Chapter 3 Machine-Level Representation of Programs 

Computers execute machine code, sequences of bytes encoding the low-level 
operations that manipulate data, manage memory, read and write data on 

storage devices, and communicate over networks, A compiler generates machine 
code through a series of stages, based on the rules of the programming language, 
the instruction set of the target machine, and the conventions followed by the op­
erating system, The Gee C compiler generates its output in the form of assembly 
code, a textual representation of the machine code giving the individual instruc­
tions in the program, Gee then invokes both an assembler and a linker to generate 
the executable machine code from the assembly code, In this chapter, we will take 
a close look at machine code and its human-readable representation as assem­
bly code. 

When pro,gramming in a high-level language such as C, and even more so 
in Java, we are shielded from the detailed machine-level implementation of our 
program. In contrast, when writing programs in assembly code (as was done in the 
early days of computing) a programmer must specify the low-level instructions 
the program uses to carry out a computation, Most of the time, it is much more 
productive and reliable to work at the higher level of abstraction provided by a 
high-level language. The type checking provided by a compiler helps detect many 
program errors and makes sure we reference and manipulate data in consistent 
ways, With modern optimizing compilers, the generated code is usually at least as 
efficient as what a skilled assembly-language programmer would write by hand. 
Best of all, a program written in a high-level )anguage can be compiled and 
executed on a number of different machines, whereas assembly code is highly 
machine specific. 

So why should we spend our time learning machine code? Even though com­
pilers do most of the work in generating assembly code, being able to read and 
understand it is an important skill for serious programmers. By invoking the com­
piler with appropriate command-line parameters, the compiler will generate a file 
showing its output in assembly-code form. By reading this code, we can under­
stand the optimization capabilities of the compiler and analyze the underlying 
inefficiencies in the code, As we will experience in Chapter 5, programmers seek­
ing to maximize the performance of a critical section of code often try different 
variations of the source code, each time compiling and examining the generated 
assembly code to get a sense of how effici1mt1y the Rrogram will run. Furthermore, 
there are times when the layer of abstraction pro0ded by a high-level language 
hides information about the run-time behavior of a program that we need to under­
stand. For example, when writing concurrent programs using a thread package, as 
covered in Chapter 12, it is important to understand how program data are shared 
or kept private by the different threads and preciselyllow and where shared data 
are accessed, Such information is visible at the machine-code leveL As another 
example, many of the ways programs can be attacked, allowing malware to in­
fest a system, involve nuances of the way programs store their run-time control 
information. Many attacks involve exploiting weaknesses in system programs to 
overwrite information and thereby take control of the system. Understanding how 
these vulnerabilities arise and how to guard against them requires a knowledge of 
the machine-level representation of programs. The need for programmers to learn 



Chapter 3 Machine-Level Representation of Programs 165 

machine code has shifted over the years from one of being able to write programs 
directly in assembly code lo one of being able to read and understand the code 
generated by compilers. 

In this chapter, we will learn the details of one particular assembly language 
and see how C programs get compiled into this form of machine code. Reading 
the assembly code generated by a compiler involves a different set of skills than 
writing assembly code by hand. We must understand the transformations typical 
compilers make in converting the constructs of C into machine code. Relative to 
the computations expressed in the C code. optimizing compilers can rearrange 
execution order. eliminate unneeded con1putations, replace slow operations with 
faster ones, and even change recursive computations into iterative ones. Under­
standing the relation between source code and the generated assembly can often 
be a challenge-it's much like putting together a puzzle having a slightly differ­
ent design than the picture on the box. It is a form of reverse engineering-trying 
to understand the process by which a system was created by studying the system 
and working backward. l n this case. the system is a machine-generated assembly­
language program, rather than something designed by a human. This simplifies 
the task of reverse engineering because the generated code follows fairly regu­
lar patterns and we can run experiments, having the compiler generate code for 
many different programs. In our presentation, we give many examples and pro­
vide a number of exercises illustrating different aspects of assembly language and 
compilers. This is a subject where mastering the details is a prerequisite to under­
standing the deeper and more fundamental concepts. Those who say'"! understand 
the general principles, I don't want to bother learning the details" arc deluding 
themselves. It is critical for you to spend time studying the examples, working 
through the exercises, and checking your solutions with those provided. 

Our presentation is based on x86-64, the machine language for most of the 
processors found in today's laptop and desktop machines. as well as those that 
power very large data centers and supercomputers. This language has evolved 
over a long history, starting witl1 Intel Corporation's first 16-bit processor in 1978. 
through to the expansion to 32 bits. and most recently to 64 bits. Along the way, 
features have been added to make better use of the available semiconductor tech­
nology, and to satisfy the demands of the marketplace. Much of the development 
has been driven by Intel. but its rival Advanced Micro Devices (AMD) has also 
made important contributions. The result is a rather peculiar design with features 
that make sense only when viewed from a historical perspective. It is also laden 
with features providing backward compatibility that are not used by modern com­
pilers and operating systems. We will focus on the subset of the features used by 
ace and Linux. This allows us to avoid much of the complexity and many of the 
arcane features of x86-64. 

Our technical presentation starts with a quick tour to show the relation be­
tween C, assembly code, and machine code. We then proceed to the details of 
x86-64, starting with the representation and manipulation of data and the imple­
mentation of control. We see how control constructs in C, such as if, while, and 
switch statements, arc implemented. We then cover the implementation of pro­
cedures. including how the program maintains a run-time stack to support the 

l 

I 

I 
I 

I 
I 

• 



- .. 
r 

I 
' 

I 

I 

I 

! 

- ---

166 Chapter 3 Machine-Level Representation of Programs 

Web Aside ASM/lA.~21 ''1~32,programmir\9. ., , t " ,.,'.~, .'' ''.,, ·I' l 
IA32, the 32-bit predecessor to x86-q4, was·introduced by.Intel ·in.198S. It.8ei\led as;the' machme i 
language of choice'for•several 'decades?M'o~t x86·mlcroprocessors.5old today, "and most operatirtg. i 
systems installed on fiiese fu0:chfoes,.are ctesil;netl tO'rup x80-64:Il:o\",e'Ver, they ca'n:'also execute IA3Z:. ~ 
programsjn a backward compatibility mode. As,a:fesult1 m1m)< application P!O~atl}s'are'stiI1 based on • 
IA32. In addition, tnany exist~n~systems cannot eltecute'X86-64, due.t6'Iimltations 'Q.f their;Jrnrdware I 
or system software. IA32 con'.tinud to b't'iln'inl11ortant'mac~ine l;inguage! Ydu 'will find that hi\villg '\. 'I 
background in xSq'.64 Wiirenable you'to1earn the IA32 machine language 'luite·r'e'adiI)¢• • I 

.4 ~ ~ . .l,;·>.''\ ~-;,;:i.,l,..~>fi''. .. ~" ... ;i;~-''-'"""'""'"'""'M'''"""t,..'""•'~""'~""'·,.,;t',,f,,,,,,,,,~:!.lJ--u~.,,''b.,~,,,,,,,,..~~~ 

passing of data and control between procedures, as well as storage for local vari­
ables. Next, we consider how data structures such as arrays, structures, and unions 
are implemented at the machine level. With this background in machine-level pro­
gramming, we can examine the problems of out-of-bounds memory references and 
the vulnerability of systems to buffer overflow attacks. We finish this part of the 
presentation with some tips on using the GDB debugger for examining the run-time 
behavior of a machine-level program. The chapter concludes with a presentation 
on machine-program representations of code involving floating-point data and 
operations. 

The computer industry has recently made the transition from 32-bit to 64-
bit machines. A 32-bit machine can only make use of around 4 gigabytes (232 

bytes) of random access memory, With memory prices dropping at dramatic 
rates, and our computational demands and data sizes increasing, it has become 
both economically feasible and technically desirable to go beyond this limitation. 
Current 64-bit machines can use up to 256 terabytes (248 bytes) of memory, and 
could readily be extended to use up to 16 exabytes (264 bytes). Although it is 
hard to imagine having a machine with that much memory, keep in mind that 
4 gigabytes seemed like an extreme amount of memory when 3~-bit machines 
became commonplace in the 1970s and 1980s. 

Our presentation focuses on the types of machine-level programs generated 
when compiling C and similar programming languages targeting modern oper­
ating systems. As a c6nsequence, we make no attempt to describe many of the 
features of x86-64 that arise out of its legacy support for the styles of programs 
written in the early days of microprocessors, when much of the code was writ­
.ten manually and where programmers had to struggle with the limited range of 
addresses allowed by 16-bit machines. 

3.1 A Historical Perspective 

The Intel processor line, colloquially referred to as xl16, has followed a long evo­
lutionary development. It started with one of the first single-chip 16-bit micropro­
cessors, where many compromises had to be made due to the limited capabilities 
of integrated circuit technology at the time. Since then, it has grown to take ad-



Section 3.1 A Historical Perspective 167 

vantage of technology improvements as well as to satisfy the demands for higher 
performance and for supporting more advanced operating systems. 

The list that follows shows some models of Intel processors and some of their 
key features, especially those affecting machine-level programming. We use the 
number of transistors required to implement the processors as an indication of 
how they have evolved in complexity. In this table, "K" denotes 1,000 (103), "M" 
denotes 1,000,000 (106), and "G" denotes 1,000,000,000 (109). 

8086 (1978, 29 K transistors). One of the first single-chip, 16-bit microproces­
sors. The 8088, a variant of the 8086 with an 8-bit external bus, formed 
the heart of the original IBM personal computers. IBM contracted with 
then-tiny Microsoft to develop the MS-DOS operating system. The orig­
inal models came with 32,768 bytes of memory and two floppy drives (no 
hard drive). Architecturally, the machines were limited to a 655,360-byte 
address space-addresses were only 20 bits long (1,048,576 bytes address­
able), and the operating system reserved 393,216 bytes for its own use. 
In 1980, Intel introduced the 8087 floating-point coprocessor ( 45 K tran­
sistors) to operate alongside an 8086 or 8088 processor, executing the 
floating-point.instructions. The 8087 established the floating-point model 
for the x86 line, often referred to as "x87." 

80286 (1982, 134K transistors). Added more (and now obsolete) addressing 
modes. Formed the basis of the IBM PC-AT personal computer, the 
original platform for MS Windows. 

i386 (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the 
flat addressing model used by Linux and recent versions of the Windows 
operating system. This was the first machine in the series that could fully 
support a Unix operating system. 

i486 (1989, 1.2 M transistors). Improved performance and integrated the float­
ing-point unit onto the processor chip but did not significantly change the 
instruction set. 

Pentium (1993, 3.1 M transistors). Improved performance but only added mi­
nor extensions to the instruction set. 

PentiumPro, (1995,- 5.5 M transistors). Introduced a radically new processor 
design, internally kn9wn as the P6 microarchitecture. Added a class of 
"conditional move" instructions to the instruction set. 

Pentium/MMX (1997, 4.5 M transistors). Added new class of instructions to the 
Pentium processor for manipulating vectors of integers. Each datum can 
be 1, 2, or 4 bytes long. Each vector totals 64 bits. 

Pentium II (1997, 7 M transistors). Continuation of the P6 microarchitecture. 

Pentium III (1999, 8.2 M transistors). Introduced SSE, a class of instructions for 
manipulating vectors of integer or floating-point data. Each datum can be 
1, 2, or 4 bytes, packed into vectors of 128 bits. Later versions of this chip 



,;:---· -·--------·---
i 
j, 

168 Chapter 3 Machine-Level Representation of Programs 

went up to 24 M transistors, due to the incorporation of the level-2 cache 
on chip. 

Pentium 4 (2000, 42 M transistors). Extended SSE to SSE2, adding new data 
types (including double-precision floating point), along with 144 new in­
structions for these formats. With these extensions, compilers can use SSE 
instructions, rather than x87 instructions, to compile floating-point code. 

Pentium 4E (2004, 125 M transistors). Added hyperthreading, a method to run 
two programs simultaneously on a single processor, as well as EM64T, 
Intel's implementation of a 64-bit extension to IA32 developed by Ad­
vanced Micro Devices (AMD),whichwerefer to as x86-64. 

Core 2 (2006, 291 M transistors). Returned to a microarchitecture similar to 
P6. First multi-core Intel microprocessor, where multiple processors are 
implemented on a single chip. Did not support hyperthreading. 

Core i7, Nehalem (2008, 781 M transistors). Incorporated both hyperthreading 
and multi-core, with the initial version supporting two executing pro­
grams on each core and up to four cores on each chip. 

Core i7, Sandy Bridge (2011, 1.17 G transistors). Introduced AVX, an exten­
sion of the SSE to support data packed into 256-bit vectors. 

Core i7, Haswell (2013, 1.4 G transistors). Extended AVX to AVX2, adding 
more instructions and instruction formats. 

Each successive processor has been designed to be backward compatible­
able to run code compiled for any earlier version. As we will see, there are many 
strange artifacts in the instruction set due to this evolutionary heritag~. Intel has 
had several names for their processor line, including IA32, for "Intel Architecture 
32-bit" and most recently Inte/64, the 64-bit extension to IA32, which we will refer 
to as x86-64. We will refer to the overall line by the commonly used colloquial 
name "x86," reflecting the processor naming conventions up through the i486. 

Over the years, several companies have produced processors that are com­
patible with Intel processors, capable of running the exact same machine-level 
programs. Chief among these is Advanced Micro Devic~s (AMD). For years, 
AMD lagged just behind Intel in technology, forcing a marketing strategy where 
they produt:ed processors that were less expensive although somewhat lower in 
performance. They became more competitive around 2002, being the first to break 
the 1-gigahertz clock-speed barrier for a commercially available microprocessor, 
and introducing, x86-64, the widely adopted 64-bit extension to Intel's IA32. Al­
though we will talk about Intel processors, our presentation holds just as well for 
the compatible processors produced by Intel's rivals. 

Much of the complexity of x86 is not of concern to those interested.in programs 
for the Linux operating system as generated by the Gee compiler. The memory 
model provided in the original 8086 and its extensions in the 80286 became ob­
solete with the i386. The original x87 floating-point instructions became obsolete 



Section 3.2 Program Encodings 169 

Aside Mopre's Law 

" 
i'ntel mlCroprocessor Complexity 

1.0E+10 

1.q~ii9 

1.0E+08. 
!? 
il 

1.0E+07 ·~ 
c 
" i= 

1.0E+OS' 

1.0E+04 +---~--~--~_..,,-,'t-~--~--~-~~~--< 
1915 1980 1985 1990. 1995 2000 .2005 .2010 201s· 

Year 
•.. 

If we' plot the number of transistors in the different Intel processors versus the year of introduction, and 
1 use a logarithmic scale for the y-axis, we can see that the grow1h has been phenomenal. Fitting a line 

through the data, we see that the number of transistors.increases at an annual rate of approximately 
37%, meaningJhat the .. number'of transistors doubles about every 26 months. This grow1h has been 
sustain.ed oxer the multiple-dec~de history of x86 microprocessors. . 

In 1965, Gordon Moore, aJmlnder.of Intel Corporation, extrapolated from the chip technology of 
the day (by which they could fabricate circuits with around 64 transistors on a single chip) to predict 
that the number of transistors per chip would doubte ev.~ry year fpr,t!J~ 11.ext, lO·Y,e.ars. This prediction 
became known as. Moore:S Law. As it turns out, his prediction was just a little bit optimistic, but also too 
short-sighted. Qver more'than-so years, the semiconductor indll,"t.i:YJ1as l)een able to doubJe transistor 
counts on average 'every is m<;mtfis. • ,. • 

Similar expqrlential growth rates have occurred for other aspects of computer t~chnology, including 
the storage capacities of magneticC!isks and semiconductor mem9ries. Thes_cl remarkable grow1h rates 
have been the m&jor driving forces of Jhe computer revolution.• • 

with the introduction of SSE2. Although we see vestiges of the historical evolu­
tion of x86 in x86-64 programs, many of the most arcane features of x86 do not 
appear. 

3.2 Program Encodings 

Suppose we write a C program as two files p1 . c and p2. c. We can then compile 
this code using a Unix command line: 



I, 

.1 

! 
' 

I 
' 

I I 

I 

I 
I 

170 Chapter 3 Machine-Level Representation of Programs 

linux> gee -Og -op pt.e p2.e 

The command gee indicates the Gee C compiler. Since this is the default compiler 
on Linux, we could also invoke it as simply cc. The command-line option -Og1 

instructs the compiler to apply a level of optimization that yields machine code 
that follows the overall structure of the original C code. Invoking higher levels of 
optimization can generate code that is so heavily transformed that the relationship 
between the generated machine code and the original source code is difficult to 
understand. We will therefore use -Og optimization as a learning tool and then see 
what happens as we increase the level of optimization. In practice, higher levels 
of optimization (e.g., specified with the option -01 or-02) are considered a better 
choice in terms of the resulting program performance. 

The gee command invokes an entire sequence of programs to turn the source 
code into executable code. First, the C preprocessor expands the source code to 
include any files specified with #include commands and to expand any macros, 
specified with #define declarations. Second, the compiler generates assembly­
code versions of the two source files having names pi. s and p2. s. Next, the 
assembler converts the assembly code into binary object-code files pl. o and p2. o. 
Object code is one form of machine code-it contains binary representations of all 
of the instructions, but the addresses of global values are not yet filled in. Finally, 
the linker merges these two object-code files along with code implementing library 
functions (e.g., printf) and generates the final executable code file p (as specified 
by the command-line directive -op). Executable code is the second form of 
machine code we will consider-it is the exact form of code that is executed by 
the processor. The relation between these different forms of machine code and 
the linking process is described in more detail in Chapter 7. 

3.2.1 Machine-Level Code 

As described in Section 1.9.3, computer systems employ several different forms 
of abstraction, hiding details of an implementation through the use of a simpler 
abstrac\ model. Two of these are qpecially important for machine-level program­
.ming. First, the format and behavior of a machine-level program is defined by the 
instruction set architecture, or ISA, defining the processor state, the format of the 
instructions, and the effect each of these instructions will have on the state. Most 
ISAs, including x86-64, describe the behavior of a program as if each instruction is 
executed in sequence, with one instruction completing before the next one begins. 
The processor liardware is far more elaborate, executing many instructions con­
currently, but it employs safeguards to ensure that the overall behavior matches 
the sequential operation dictated by the ISA. Second, the memory addresses used 
by a machine-level program are virtual addresses, providing a memory model that 

L This optimizati9n level was introduced in occ version 4.8. Earlier versions of ace, as well as non­
GNU compilers, will not recognize this option. For these, using optimization level one (specified with 
the command-line flag -01) is probably the best choice for generating code that follows the original 
program structure. 

I 
•; 
• 

I 
I 
i 
I 

! 

I 
I 

! 
i 

l 
I 

I 
I 
i 
I • l 
' 

j 



Section 3.2 Program Encodings 171 

appears to be a very large byte array. The actual implementation of the mem­
ory sysiem involves a combination of multiple hardware memories and operating 
system software, as described in Chapter 9. 

The compiler does most of the work in the overall compilation sequence, 
transforming programs expressed in the relatively abstract execution model pro­
vided by C into the very elementary instructions that the processor executes. The 
assembly-code representation is very close to machine code. Its main feature is 
that it is in a more readable textual format, as compared to the binary format of 
machine code. Being able to understand assembly code and how it relates to the 
original C code is a key step in understanqing how computers execute programs. 

The machine code for x86-64 differs greatly from the original C code. Parts of 
the processor state are visible that normally are hidden from the C programmer: 

• The program counter (commonly referred to as the PC, and called %rip in x86-
64) indicates the address in memory of the next instruction to be executed. 

• The integer register file contains 16 name\! locations storing 64-bit values. 
These regi~ters can hold addresses (corresponding to C pointers) or integer 
data. ~ome registers are used to keep track of critical parts of the program 
state, while others are used to hold temporary data, such as the arguments 
and local variables of a procedure, as well as the value to be returned by a 
function. 

• The condition code registers hold status information about the most recently 
executed arithmetic or logical instruction. These are used to implement con­
ditional changes in the control or data flow, such as is required·to implement 
if and while statements. 

• A set of vector registers can each hold one or more integer or floating-point 
values. 

Whereas C provides a model in which objects of different data types can be 
declared and allocated in memory, machine code views the memory as simply 
a large byte-addressable array. Aggregate data types in C such as arrays and 
structures are represented in machine code as contiguous collections of bytes. 
Even°for scalar data types, assembfy code makes no distinctions between signed or 
unsigned integers, between different types of pointers, or even between pointers 
and integers. 

The program memory contains the executable machine code for the program, 
some information required by the operating system, a run-time stack for mqnaging 
procedure calls and returns, and blocks of memory allocated by the user (e.g., by 
using the malloc library function). As mentioned earlier, the program memory 
is addressed using virtual addresses. At any given time, only limited subranges of 
virtual addresses are considered valid. For example, x86-64 virtual addresses are 
represented by 64-bit words. In current implementations of these machines, the 
upper 16 bits must be set to zero, and so an address can potentially specify a byte 
over a range of248 , or 64 terabytes. More typical programs will only have access 
to a few megabytes, or perhaps several gigabytes. The operating system manages 



/, 

I 

I 
I 
i 

l' 
I 

! 
I 
I 

I 

! 
I 
I 

' 

... --·· . -·-- -- -· 

172 Chapter 3 Machine-Level Representation of Programs 

" ~ "~ , ~ "ii'' ~ ""-'"'",t' ~ "" I" ·" "4•>;.iw l 
Aside The eve(-c;.hangi~g forn;i?, of gen<;r,~ted cqd~ ,, , ,. , . ,, , · 

1 
·In our presentation, we'will'show th; co.de gener~ted by a' particular versfowof.oee with pllrticulat l 
settings of the ~q)llmand-line options. If you cor'hpile code.~~your own machine, ~liances art you Will be 
µsing a different compiler m.-a ditf~rent version.of qcc and ~ence will' generate different ccill~tfhe-Open' l. 
source community 'supporting bee R~eps changing the code generator,,at(empting toffgehl!rate' more 
efficient code accordingito~challging code guidelilleS·proVid.e'd by.the miCrol>rocessormanufacturers. 

Our goal in studying.tfie'examples sho\!ln'fa our fresehtation•is•to demonstrate how to e"xamine' 
assembly code and map'\t back(o the con~tructs fo,u'nd"in~igh-levei programbtil)&° llmguag~s. You will j 
need to adapt these'tecpni<;jues to the style o( code geM:fated by jlotlr patticul,af't:ompiler. ·> ~"' I 

~o _,,.,., ~'~~- .... ,,,_~~ '11iif:f~ -"~ ,.-,,,;./~·~,,.,,t •• ,, •• ,,.,~,..fl'.o{-~ .... ,.., ~~J;:;t,.J~~,,.,,W·~t"J 

this virtual address space, translating virtual addresses into the physical addresses 
of values i'n the actual processor memory. 

A single machine instruction performs only a very elementary operation. For 
example, it might add two numbers stored irl registers, transfer data between 
memory and a register, or conditionally branch to a new instruction address. The 
compiler must generate sequences of such instructions to implement program 
constructs such as arithmetic expression evaluation, !Oops, or procedure calls and 
returns. 

3.2.2 Code Examples 

Suppose we write a C code file mstore. c containing the following function defi­
nition: 

long mult2(long, long); 

void multstore(long x, long y, long *dest) { 
long t = mult2(x, y); 
*dest = t; 

} 

To see the assembly code generated by the C compiler, we can use the. -s 
option on the command line: 

linux> gee -Og -s mstore.c 

This will cause occ to run the compiler, generating an assembly file ms tore'. s, 
and go no further. (Normally it would then invoke the assembler to generate an 
object-code file.) 

The assembly-code file contains various declarations, including the following 
set oflines: ' 

multstore: 
pushq %rbx 



Section 3.2 Program Encodings 173 

·~ ~ - "'l;,•""" ~ -· ~,.,.~, "Y•P,,..,, ""'·"Ji~ 

A.side Ho;'( do I display "the byte r.eRcesen~~tio11, of a pr9graIT] ~. ' , 

Tqdisplaythe binary object code'for:;i program (say, mstore).-we use a disas~embler (descrifoq below) 
to determine that the code for the.procedure is 14 bytes long. Then·we.run.the·GNU debugging tool 
GDB on fiJe i:p.store. o and gi~e it the cbmmand }< 

(gdb) x/14xb Jl!Ul tsto:re ~ " , 
9 

foiling it to display ( abbreyiated 'xl) 1~ h'ex-formatted~(a\so:x') bytes{'!>'~ starting at the address where 
• function mul ts tor~ )ffe 109ated .. :Yoµ wil,l find that GQB h~~ many useful featules fqr,analyzing machine, 

level programs, as will be discussed. in Section 3.10.2. . 
~--.1~ . .,.,.J.,z,.,,._,:,;,;1.,,,,;,,,J;},..:.,,.,.....,J"""'.,, .,,,,..;J,J'J...,.'...,.,J-¥.... t "'~...:MH ~ '"'° ., ~" 

' movq %rdx, %rbx 
call mult2 
movq %rax, (%rbx) 
popq %rbx 
ret 

Each indented line in the code corresponds to a single machine instruction. For 
example, the pushq instruction indicates that the contents of register %rbx should 
be pushed onto the program stack. All information abouF local variable names or 
data types has been stripped away. 

If we use the -c command-line option, 'Gee will both compile and assemble 
the code 

linux> gee -Og -c mstore.c 

This will generate an object-code file.mstore. o that is in binary format and hence 
cannot be viewed directly. Embedded withinlhe:.!,368 bytes of the file mstore. o 
is a 14-byte sequence with the hexadecimal representation 

53 48 89 d3 e8 00 00 00 00 48 89 03 5b c3 

This is the object code corresponding to the assembly instructions listed previously. 
A key lesson to learn from this is that the program executed by the machine is 
simply a sequence of bytes encoding a seties of instructions. The machine has 
very little information about the source code from which these instructions were 
generated. 

To inspect the contents of machine-code files, a class of programs known as 
disassemblers can be invaluable. These programs generate a format similar to 
assembly code from the machine code. With Linux systems, the program OBJDUMP 

(for "object dump") can serve this role given the -d command-line flag: 

linux> objdump -d mstore.o 

The result (where we have added line numbers on the left and annotations in 
italicized text) is as follows: 



174 Ghapter 3 Machine-Level Representation of Programs 

2 

3 

4 

5 

6 

7 

Disassembly of function sum in binarr file mstore.o 

0000000000000000 <multstore>: 
Offset Bytes Equivalent assembly language 

0: 53 push %rbx 

1: 48 89 d3 mov %rdx,%rbx 

4: e8 00 00 00 00 callq 9 <multstore+Ox9> 

9: 48 89 03 mov %rax, (%rbx) 

c: Sb pop %rbx 

d: c3 retq 

On the left we see the 14 hexadecimal byte values, listed in the byte sequence 
shown earlier, partitioned into groups of 1 to 5 bytes each. Each of these groups 
is a single instruction, with the assembly-language equivalent shown on the right. 

Several features about machine code and its disassembled representation are 
worth noting: 

• x86-64 instructions can range in length from 1 to 15 bytes. The instruction 
encoding is designed so that commonly used instructions and those with fewer 
operands requixe a smaller number Rf bytes than do less common ones or ones 
wi,th more operands. , 

• The instruction format is designed in such a way that fro!)l a given starting 
position, there is a unique decoding of the bytes into machine instructions. 
For example, only the,instruction pushq %rbx can start with byte value 53. 

• The disassembler determines the assembly code based purely on the byte 
sequences in the machine-code file. It does not require access to the source or 
assembly-code versions of the program. ' 

• .The disassembler uses a: slightly different'Iiaming convention for the instruc­
tions than does the assembly code generated by aqc. In our example; it has 
omitted the suffix 'q' from many of the instructions. These suffixes are size 
designators and can be omitted in most cases. Conversely, the disassembler 
adds the suffix 'q' to the call and ret instructions. Again, these suffixes can 
safely be omitted. 

Generating .the actual executable code requires running a linker on the set 
of object-code files, one of which must contain a function m!'in. Suppose in file 
main. c we had the following function: 

#include <stdio.h> 

void multstore(long, long, 'long *); 
" 

int main() { 
long d; 

} 

multstore(2, 3, &d)'; 
printf("2 * 3 --> %ld\n", d); 
return O; 



long mult2(long a, long b) { 
long s = a * b; 
return Bi 

} 

Section 3.2 Program Encodings 175 

Then we could generate an executable program prog as follows: 

linux> gee -Og -o prog main.c mstore.c 

The file prog has grown to 8,655 bytes, since it contains not just the machine 
code for the procedures we provided but also code used to start and terminate 
the program as well as to interact with the operating system. 

We can disassemble the file prog: 

linux> objdump -d prog 

The disassembler will extract various code sequences, including the following: 

Disassembly of function sum in binary file prog 
1 0000000000400540 <multstore>: 
2 400540: 53 pusb %rbx 
3 400541: 48 89 d3 mov %rdx,%rbx 
4 400544: e8 42 00 00 00 callq 4005Sb <mult2> 
5 400549: 48 89 03 mov %rax, (%rbx) 
6 40054c: Sb pop %rbx 
7 40054d: c3 retq 
8 40054e: 90 nop 
9 40054f: 90 nop 

This code is almost identical to that generated by the disassembly ofmstore. c. 
One important difference is that the addresses listed along the left are different­
the linker has shifted the location of this code to a different range of addresses. A 
second difference is that the linker has filled in the address that the callq instruc­
tion should use in calling the function mul t2 (line 4 of the disassembly). One task 
for the linker is to match function calls with the locations of the executable code for 
those functions. A final difference is that we see two additional lines of code (lines 
8-9). These instructions will have no effect on the program, since they occur after 
the return instruction (line 7). They have been inserted to grow the code for the 
function to 16 bytes, enabling a better placement of the next block of code in terms 
of memory system performance. 

3.2.3 Notes on Formatting 

The assembly code generated by ace is difficult for a human to read. On one hand, 
it contains information with which we need not be concerned, while on the oilier 
hand, it ·does not provide any description of the program or how it works. For 
example, suppose we give the command 

linux> gee -Og -S mstore.c 



176 Chapter 3 Machine-Level Representation of Programs 

to generate the file mstore. s. The full content of the file is as follows: 

.file 

.text 

11 010-mstore.c 11 

.globl multstore 

.type mUltstore, @function 
multstore: 

pushq %rbx 
movq %rdx, %rbx 
call m-qlt2 
movq %rax, C%rbx) 
popq %rbx 
ret 
.size multstore, .-multstore 
. ident "GCC: (Ubuntu 4. 8 .1-2ubuntu1-12. 04) 4. 8 .1" 
. section . note. GNU-stack, 11

•
11 ,@progbi ts 

All of the lines beginning with '. ' are directives to guide the assembl'er and 
linker. We can generally ignore these. On the other hand, there are no explanatory 
remarks about what the instructions do or how they relate to the source code. 

To provide a clearer presentafion of assembly code, we will show it in a form 
that omits most of the directives, while including line numbers and explanatory 
annotations. For our example, an annotated version would appear as follows: 

2 

3 

4 

5 

6 

7 

void multstore(lo:ng x, long y, long *dest) 

x in %rdi, yin %rsi, dest in 1.rdx 

multstore: 
pushq %rbx 
movq %rdx, 
call mult2 
movq ,%fax. 
popq %rbx 
ret 

%rbx 

(%rbx) 

,, 

Save 1.rbx 

Copy desr to %~bx 
Call mult2(f, y) 

,Store result at •dest 

;Restore ~rbx ,.j ; 

Return 

We typically show only the lines of code relevapt to the point being discussed. 
Each line is numbered on the left for reference and annotated on the ri_ght by a 
brief description of the effect of the instruytion and how it relates to the computa­
tions of the original C code. This is a stylized version of the way assembly-language 
programmers format their code. 

We also provide Web asides to cover material intended for dedicated machine­
language enthusiasts. One Web aside describes IA32 machine code. 'ttaving'li 
background in x86-64 mak;es}earning IA32 fairly simple. Another Web aside give.s 
a brief presentation of ways to incorpoq1te assembly code into,Cprograms. For 
some applications, the programmer must drop down.to assembly code to access 
low-level features of the machine. One approach is to write entire functions in 
assembly code and combine them with C functions during the linking stage. A 



Section 3.3 Data Formats 177 

Aside ATfversus IQte). a~sE<ml;>ly-cope fo~(Tlats 

In our presentatlon, :;ve show assembly code.in ATI.foTjllat (named after AT&T,Jhe COJllpany.that 
operated Bell Laboratories for many years), the def&.nlt formatfor Gee, OBipVMP, and the other tools \'{e 
will consider. Other programming<tqols,jncludipg those fj'om Mjcrosoft as well,,as the documentation 
lrom•lntel, show assembly code in Intel format. ·The two formats differ in a nul"ber qt ways. As an 
example, GCi:; i;an generat~ cilde in Intel format for the sum function using the following command line: 

linu3f? gee ~bg ~S~-masm=intel mstor~.c 

This giv~s.tl\~ f<;Jllo\.ving ass~~ly cg,\fe: 

multstore: 
i' push rbx ,, 

mov 
~call 

mo\r~ 

pop 
ret 

rbx, rd.le 
' mult2 

QWQRD PTR· [rbx] , rax' 
:r;_bx 

• 

We see thi't·the'intef and ATI toi:pi'_at's dift~r in tl)e followil\&. ways: 

,, 

• The In~el c0de prriits the sjze designation suffixes, W.~ ~.ee instruction push an,d)!'OV instead olpus}iq 
and movq. 

~ ''% "'·· • •. ,, 

• The Intel code omits the'~' char~ct~.r tn frQnt 9f r~gisteui.a'!'es, using rbJOinstead of %;bx. 

•· The.Iniei code has ;i.oifferel\t way'qf:.describii\g locations·iwmem~ry-for exa,mpl~. Q\{DRD PTR 
'[rbx] ra\her than (%rbx)' ,, ' ' 

• Instructiohs With multiple ope~ands li~t'them in the reverse o;der. This car{ be very confusing when, 
sWitching between the·two formats. · " ,, 

i}lthough 'i(e.will not be'usingintel foFmat in our presentation,, you will encounier j,t in documentaqon 
from Intei an,p Microsoft: ·, 

•· 

second is to use ace's support for embedding assembly code directly within C 
programs. 

3.3 Data Formats 

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel 
uses the term "word" to refer to a 16-bit data type. Based on this, they refer to 32-
bit quantities as "double words," and 64-bit quantities as "quad words." Figure 3.1 
shows the x86-64 representations used for the primitive data types of C. Standard 
int values are stored as double words (32 bits). Pointers (shown here as char•) 
are stored as 8-byte quad words, as would be expected in a 64-bit machine. With 
x86-64, data type long is implemented with 64 bits, allowing a very wide range 
of values. Most of our code examples in this chapter use pointers and long data 



---

I 

I 
• • 

' I 
I 

l 

.... _ ·- - ---- . - -· .... 

178 Chapter 3 Machine-Level Representation of Programs 

Web Aside ASM:EASM Combining assembly cddeWlth Cprograms 

Although a C compiler does 'a good job of converting' the computations expressed in a program into 
machine code, there are some features of a machine that cannot be accessed'by'a.C program. For 
example, every lime an x86-64 processor executes an-atithmetic or logicat operation, it sets a 1-bit 
condition code flag, named PF (for""parity flag"), to 1 when the lower 8 bits in the resulting computation 
have an even number of ones and to 0 otherwise.~ Computing this information in C requires at least 
seven shifting, masking, and EXCLUSIVE-OR operations (s~e Prpblem 2,65)- Everfthough the hardware 
performs this computation as part of'every arithmetic or logical operation, there is no way for a 'c 
.program to determine the value of the PF condition code flag, This task can readily be performed by 
incorporating a small number of assembly-code instructions inl.o the program. 

There are two ways to iilcorporate assembly code into C programs. First, we can~write an~entire 
function as a separate'assembly-code file and let the assembler and.linker combine'tpis.with code we 
have written in C Second, we can use the inline assern.bly feature of ace, where brief seqi9ns of as,sembly 
code can be incorporated into rt C prograln using the aspt dii;ective, This approach has the advantage 
that it minimizes the amount of machine-specific code. ! 

Of course, including assembly code in a C program makes the code specific to a particular class of I 
~ac~ines (such as x86-64), and so it should only beysed when the d~ajred feature, can on!~ be accessed 1· 

m this way, 
l 

C declaration Intel data type Assembly-code suffix Size (bytes) 

char Byte b 1 
short Word " 2 
int Double word l 4 
long Quad word q 8 
char* Quad word q 8 

float Single precision s 4 

double Double precision l 8 

Figure 3, 1 Sizes of C data types in x86-64. With a 64-bit machine, pointers are 8 b}'\es 
long. 

types, and so they will operate on quad words. The x86-64 instruction set includes 
a full complement of instructions for bytes, words, and double words as well. 

Floating-point numbers come in two principal formats: single-precision ( 4-
byte) values, corresponding to C data type float, and double-precision (8-byte) 
values, corresponding to C data type double. Microprocessors in the x86•family 
historically implemented all floating-point operations with a special 80-bit (10-
byte) floating-point format (see Problem 2.86). This format can be specified in C 
programs using the declaration long double. We recommend against using this 
format, however. It is not portable to other classes of machines, and it is typically 



Section 3.4 Accessing Information 179 

not implemented with the same high-performance hardware as is the case for 
single- and double-precision arithmetic. 

As the table of Figure 3.1 indicates, most assembly-code instructions gener­
ated by Gee have a single-character suffix denoting the size of the operand. For 
example, the data movement instruction has four variants: movb (move byte), 
movw (move word), movl (move double word), and movq (move quad word). The 
suffix 'l' is used for double words, since 32-bit quantities are considered to be 
"long words,'' The assembly code uses the suffix 'l' to denote a 4-byte integer as 
well as an 8-byte double-precision floating-point number. This causes no ambigu­
ity, since floating-point code involves an entirely different set of instructions and 
registers. 

3.4 Accessing Information 

An x86-64 central processing unit (CPU) contains a set of 16 general-purpose 
registers storing 64-bit values. These registers are used to store integer data as well 
as pointers. Figure 3.2 diagrams the 16 registers. Their names all begin with %r, but 
otherwise follow multiple different naming conventions, owing to the historical 
evolution of the instruction set. The original 8086 had eight 16-bit registers, shown 
in Figure 3.2 as registers %ax through %bp. Each had a specific purpose, and hence 
they were given names that reflected how they were to be used. With the extension 
to IA32, these registers were expanded to 32-bit registers, labeled %eax through 
%ebp. In the extension to x86-64, the original eight registers were expanded to 64 
bits, labeled %rax through %rbp. In addition, eight new registers were added, and 
these were given labels according to a new naming convention: %r8 through %r15. 

As the nested boxes in Figure 3.2 indicate, instructions can operate on data 
of different sizes stored in the low-order bytes of the 16 registers. Byte-level 
operations can access the least significant byte, 16-bit operations can access the 
least significant 2 bytes, 32-bit operations can access the least significant 4 bytes, 
and 64-bit operations can access entire registers. 

In later sections, we will present a number of instructions for copying and 
generating 1-, 2-, 4-, and 8-byte values. When these instructions have registers as 
destinations, two conventions arise for what happens to the remaining bytes in 
the register for instructions that generate less than 8 bytes: Those that generate 1-
or 2-byte quantities leave the remaining bytes unchanged. Those that generate 4-
byte quantities set the upper 4 bytes of the register to zero. The latter convention 
was adopted as part of the expansion from IA32 to x86-64. 

As the annotations along the right-hand side of Figure 3.2 indicate, different 
registers serve different roles in typical programs. Most unique among them is the 
stack pointer, %rsp, used to indicate the end position in the run-time stack. Some 
instructions specifically read and write this register. The other 15 registers have 
more flexibility in their uses. A small number of instructions make specific use of 
certain registers. More importantly, a set of standard programming conventions 
governs how the registers are to be used for managing the stack, passing function 



I 
' • 

I 
' 

1 

c.1 

I 

---· -· -- -· - --- ·-· . - -- ~- - ------ -· 

180 Chapter 3 Machine-Level Representation of Programs 

63 31 15 7 0 

'#""'~~~ 
~·..y_ ,,, 

%rax~ ~..;; \%ax %al Return value 

04P" 

·i.·~ .. t,ro-x;, \ 7,bx %bl 111 
Callee saved 

- "i" 

J %ex %cl 111 
4th argument 

.. 
1.'' •• , 
·~rt.~ 

'' \ %dx Y,dl Ii 3rd argument 

\%si %sil 111 
2nd argument 

:~ ~'!! " ~~ 

%idi 
~ 'If'!-"' 

• . • .... -,?~·· ®,,,,,..,,f<if;;".I . 
·% ~ sp; '/,edi 

·,iif' Wf '" 
I %di %dil 111 

1st argument 

I %bp %bpl 111 
Callee saved 

I Y.•p %spl 
111 

Stack pointer 
,, 

j %r8w %r8b 111 
5th argument 

'" ,. 
~i:;;9~·., .ff'~"'·,!~ .:~··w"'1·• j %r9w %r9b 

111 
6th argument 

,;. ~ 

,, J 'l,r10w %r10b 111 
Caller saved 

il~1 %r11w %r11b Caller saved 

.J %r12w %r12b Callee saved 

J %r13,? 'l.r1ab Callee saved 

I %r14w %r14b Callee saved 
~" ~ 

:i· ~ J %r15w 'l,r15b Callee saved 

Figure 3.2 Integer registers. The low-order portions of all 16 registers can be accessed 
as byte, word (16-bit), double word (32-bit), and quad word (64-bit) quantities. 

arguments, returning values from functions, and storing local and temporary data. 
· We will cover these conventions in our presentation, especially in Section 3.7, 

where we describe the implementation of procedures. 

3.4.1 Operand Specifiers 

Most instructions have one or more operands specifying the source values to use 
in performing an operation and the destination location into which to place the 

' 



Section 3.4 Accessing Information 

rype Form Operand value Name 

Immediate $Imm Imm Immediate 

Register ra R(r0 ] Register 

Memory Imm M[ImmJ Absolute 
Memory (r

0
) M(R[ralJ Indirect 

Memory Imm(rb) M[Imm + R(rb]] Base + displacement 
Memory (rb,ri) M(R(rb] + R(r;]] Indexed 
Memory Imm(rb,ri) M[Imm + R(rb] + R[r;]] Indexed 
Memory ( ,ri ,s) M(R(r;] · s] Scaled indexed 
Memory Imm( ,ri ,s) M[Imm + R(r;] · s] Scaled indexed 
Memory (rb, r; ,s) M(R(rb] + R(r;] · s] Scaled indexed 
Memory Imm(rb,ri,s) M[Imm + R(rb] + R[r;] · s] Scaled indexed 

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register 
values, or values from memory. The scaling factors must be either 1, 2, 4, or 8. 

result. x86-64 supports a number of operand forms (see Figure 3.3). Source values 
can be given as constants or read from registers or memory. Results can be stored 
in either registers or memory. Thus, the different operand possibilities can be 
classified into three types. The first type, immediate, is for constant values. In A'IT­
format assembly code, these are written with a '$' followed by an integer using 
standard C notation-for example, $-577 or $0x1F. Different instructions allow 
different ranges of immediate values; the assembler will automatically select the 
most compact way of encoding a value. The second type, register, denotes the 
contents of a register, one of the sixteen 8-, 4-, 2-, or 1-byte low-order portions of 
the registers for operands having 64, 32, 16, pr 8 bits, respectively. In Figure 3.3, 
we use the notation ra to denote an arbitr~ry register a and indicate iis value with 
the reference R(r.], viewing the set of registers as an array R indexed by register 
identifiers. 

The third type of operand is a memory reference, in which we access some 
memory location according to a computed address, often called the effective ad­
dress. Since we view the memory as a large array of bytes, we use the notation 
Mb[Addr] to denote a reference to the b-byte value stored in memory starting at 
address Addr. To simplify things, we will generally drop the subscript b. 

As Figure 3.3 shows, there are many different addressing modes allowing dif­
ferent forms of memory references. The most general form is shown at the bottom 
of the table with syntax Imm (rb, r;, s). Such a reference has four components: an 
immediate offset Imm, a base· register rb, an index register ri, and a scale factm 
s, where s must be 1, 2, 4, or 8. Both the base and index must be 64-bit registers. 
The effective address is computed as Imm+ R(rb] + R[r;] · s. This general form is 
often seen when referencing elements of arrays. The other forms are >Simply spe­
cial cases of this general form where some of the components are omitted. As we 

181 



~--~--- -----· --- .. --- -· 

182 Chapter 3 Machine-Level Representation of Programs 

will see, the more complex addressing modes are useful when referencing array 
and structure elements. 

!f!('lltiic!ffl>r2f>Jem3~ffi•9Jati6iii?l1i2·iism;;um1:J.~®!i'.':!C1R~ 
Assume the following values are stored at the indicated memory addresses and 

registers: 

Address Value Register Value 

Ox100 OxFF %rax Ox100 

Ox104 OxAB %rcx Oxl 

Ox108 Ox13 %rdx Ox3 

OxlOC Ox11 

Fill in the following table showing the values for the indicated operands: 

Operand 

%rax 
Ox104 
$0x108 
(%rax) 
4(%rax) 
9(%rax,%rdx) 
260(%rcx,%rdx) 
OxFC(,%rcx,4) 
(%rax,%rdx,4) 

Value 

3.4.2 Data Movement Instructions 

Among the most heavily used instructions are those·that copy data from one lo­
cation to another. The generality of the operand-notation allows a simple data 
movement instruction to express a range of possibilities that in many machines 
would require a number of different instructions. We present a number of differ­
ent data movement instructions, differing in their source and destination types, 
what conversions they perform, and other side effects they may have. In our pre­
sentation, we group the many different instructions into instruction classes, where 
the instructions in a class perform the same operation but with different operand 

sizes. 
Figure 3.4 lists the simplest form of data movement instructions-MOY class. 

These instructions copy data from ·a source location to a destination location, 
without any transformation. The class consists of four instructions: movb, movw, 
movl, and movq . .All four of these 'instruations have similar effects; they differ 
primarily. in that they operate on data of different sizes: 1, 2, 4, and 8 bytes, 
respectively. 



Instruction 

MOV S,D 

mo vb 
mow 

movl 
movq 

movabsq I, R 

Effect 

D +-

R +-

s 

I 

Description 

Move 
Move byte 
'Move word 
Move double word 
Move quad word 

Move absolute quad word 

Section 3.4 Accessing Information 

Figure 3.4 Simple data movement instructions. 

The source operand designates a value that is immediate, stored in a register, 
or stored in memory. The destination operand designates a location that is either a 
register or a memory address. x86-64 imposes the restriction that a move instruc­
tion cannot have both operands refer to memory locations. Copying a value from 
one memory location to another requires two instructions-the first to load the 
source value into a register, and the second to write this register value to the des­
tination. Referring to Figure 3.2, register operands for these instructions can be 
the labeled portions of any of the 16 registers, where the size of the register must 
match the size designated by the last character of the instruction ('b', 'w', 'l ', or 
'q'). For most cases, the Mov instructions will only update the specific register bytes 
or memory locations indicated by the destination operand. The only exception is 
that when movl has a register as the destination, it will also set the high-order 4 
bytes of the register to 0, This exception arises from the convention, adopted in 
x86-64, that any instruction that generates a 32-bit value for a register also sets the 
high-order portion of the regis\er to 0. 

The following MOY instruction examples show the five possible combinations 
of source and destination types. Recall that the source operand comes first and 
the destination secon\I. 

1 

2 

3 

4 

5 

movl $0x4050,%eax 
movw %bp,%sp 
movb (Y.rdi.%rcx),%al 
movb $-17,(%esp) 
movq %rax,-12(%rbp) 

Immediate--Register, 4 bytes 

Register--Register, 2 bytes 

Memory--Register, 1 byte 

Immediate--Memory, 1 byte 

Register--Hemory, 8 bytes 

A final instruction documented in Figure 3.4 is for dealing with 64-bit imme­
diate data. The regular movq instruction can only have immediate source operands 
that can be represented as 32-bit two's-complement numbers. This value is then 
sign extended to produce the 64-bit value for the destination. The movabsq in­
struction can have an arbitrary 64-bit immediate value as its source operand and 
can only have a register as a destination. 

Figures 3.5 and 3.6 document two classes of data movement instructions for 
use when copying a smaller source value to a larger destination. All of these 
instructions copy data from a source, which can be either a register or stored 



1• 

I 
I 

' 

I 
I 
I • 

I 
I 

I 
I 
I 
i 
I 

"-·-- - .. 

184 Chapter 3 Machine-Level Representation of Programs 

" . -
Aside Understandjng how d~ta Jllciyemen,t changes a aestination register 

As described, there are two different convention~ regarding wJ!!'ther and how data movement 'instruc: 
lions mod{fy the upp~,r b'ytes .of a ?<;:;tination r~gister. This disdn~tion is illustrated by the fol!oWing 
code seqlJ.ence: 

'"' 4j i 
2 

3 

4 

s 

!(J:;ax•= OOJJ22~344556677 
%rax = Q0112233445566FF 

movabsq $0~0011223344556677, %r.X· 
movb $-i, %al 
movw $-1,h%ax :,Crax ~· 001122°:334455FFFF' ( 

movl $-1, %eax Zrax ; oooooooofFFFi'FFF j 
movq $_:'1, %rax %r~ ·i''FFFFFFFF'F"FFffrFF'F~ 'i• <; 

In the fol;ow1rig'!liscussion, we use hexaoecimal nota!i'?n. In the ~xample, the instruction on lihe 1 i 
initializes register %rax to the pattern 001•122334455667(. The re'malhing instructio11s have iipmediate. i 
value -1 as their source values. Req1ll,that the.hexadecimalrepresenWi.on elf.,-). is•of the form FF· · ,F,• J 
Where the numbet'oiF's iS1\l'iC~ t4e n4mber OJ bytes ll;the reP,resentatiop. The !)lOVb instruction{line,2) l 
therefore sets the low-order byte of-%rax to FF1 while the,mo~w ihsjructjon (l}n!' 3)..sets'tqe low-qrdvr "I 
2 by\es to FFFF, with the remaining b~tes unchanged. Tl)e may}> i,nstruc;ion (liqe 4) s.ets theJow-qrder 1 
4 bytes to FFFFFFFF, but it also sets the high,Qrder'4 bytes to 00000000. Fjnally, s\le moY,q il)stru9tion I 
(line S) sets the compl~te register to FFFFFFFFFFF1::ffFR ,, • , I 

Instruction 

MOVZ S,R 
movzbw 

movzbl 
movzwl 
movzbq 

movzwq 

Effect 

R +-- ZeroExtend(S) 

Description 

Move with zero extension 
Move zero-extended byte to word 

Move zero-extended byte to double word 
Move zero-extended word to double word 
Move zero-extended byte to quad word 
Move zero-ixtended word to quad word 

Figure 3.5 Zero-extending data movement instructions. These instructions have a 
register or memory location as the source and a register as the destination. 

in memory, to a register destination. Instructions in the Movz class fill out the 
remaining bytes of the destination with zeros, while those in the Movs class fill 
them out by sign extension, replicating copies of the most significant bit of the 
source operand. Observe that each instruction name has size designators as ·its 
final two characters-the first specifying the source size, and the second specifying 
the destination size. As can be seen, there are three instructions in each of these 
classes, covering all cases of 1- and 2-byte source sizes and 2- and 4-byte destination 
sizes, considering only cases where the destination is larger than the source, of 
course. 

' I 

I 
l 



Instruction 

MOVS S, R 

movsbw 
movsbl 
movswl 
movsbq 
movswq 
movslq 

cltq 

Effect 

R <-- SignExtend(S), 

%rax <-- SignExtend(%eax) 

Section 3.4 Accessing Information 185 

Description 

Move with sign extension 
Move sign-extended byte to word 
Move sign-extended byte to double word 
Move sign-extended word to double word 
Move sign-extended byte to quad word 
Move sign-extended word to quad word 
Move sign-extended double word to quad word 

Sign-extend %eax to %rax 

Figure 3.6 Sign-extending datil movement instructions. The MOVS instructions have 
a register or memory location as ihe source and a register as the destination. The cl tq 
instruction is specific to registers %eax and %rax. 

Note the absence of an explicit instruction to zero-extend a 4-byte source 
value to an 8-byte destination in Figure 3.5. Such an instruction would logically 
be named movzlq, but this instruction does not exist. Instead, this type of data 
movement can be implemented using a movl instruction having a register as the 
destination. This technique takes advantage of the property that an instruction 
generating a 4-byte value with a register as the destination will 'fill the upper 4 
bytes with zeros. Otherwise, for 64-bit destinations, moving'with sign extension is 
supported for all three source types, and moving with zero extension is supported 
for the two smaller source types. 

Figure 3.6 also documents the cl tq instruction. This instruction has no 
operands-it always uses register %eax as its source and %rax as the destination for 
the sign-extended result. It therefore has the exact same effect as the instruction 
movslq %eax, %rax, but it has a more compact encoding. 

~ ...... --.':l- ~---- -"'1 IPrj!S;t•H: l'[Oo.1emJ-.~-(~!?Jl!li20 ~geJiZSl& .. J , .. ,, " ·r- ~-11~ ... ;t;::i 
For each of the following lines of assembly language, determine the appropriate 
instruction suffix based on the operands. (For example, mov can be rewritten as 
movb, movw, movl, or movq.) 

mov_ %eax, (%rsp) 
mov_ C%rax), 7odx 
mov_ $0xFF, %bl 
mov_ C%rsp,%rdx,4), %dl 
mov_ (%rdx), %rax 
mov_ %dx, (%rax) 



'I 

j 
' 
I 
·i 
I 
I 

" • 
I 
I 
l 

186 Chapter 3 Machine~Level Representation of Programs 

Aside Comparing byte movement instcuctions· 

' The following example illustrates how different data movement instructions either do or do not change 
the high-order bytes of the destination. Observe th~t the three byte-movement ipstructions niovb, 
111ovsbq, and movzbq differ from 'each other in s'>btle ways. Here is an example: 

2 

3 

movabsq $0x0011223344556677, 7.ra~ 

movb $0xAA, %dl 
mpvb %d1 , %al 

Xrax = 0011223344556677 

%dl =AA 

Xrax-- = 00112233445S66AA 

• 

4 movsbq %dl, %rax Xrax = FFFFFFFFFFFFFFAA 

s movzbq 'Y,dl, %rax ~Xx:.ax "' ooooopooooooooAA 

In the following di§cUssion, we use hexadecimal. notation-for all pf tlle values The first two lines , 
of the code initialize registers %rax and %dl to 00112233~455667Y ~nd AA, respectively. The remainfog ' 
instructions all Copy the low-order byte Of %rdx to th~ low-order byte of i.rax. The 11/0Vb instructfon 
(line 3) does not change the other bytes. The movsbq instruction (linef 4) sets the other 7 bytes to 
either all ones or all zeros depending on the high-order bit of th!' source byte. Since hexadecimal A 

represents binary value 1010, sign extension causes the higher-order byte~ to each be set to FF. The 
movzbq instruction (line 5) always sets the other 7.bytes to zero. 

~·!!l~t·~~ero·Lr~ .;~~,, ...... , ·'~.~~·! ~·~~ll"· ...... ~l?""t .... ~"; .... ~..,, .,,., ... !' ..,.... •• ~.r ... -:J 
.P I .!l.!S!J...~~9.!J::P..!19~). :I. f i$, e> AA , ., • , < , • 

Each of the following lines of code generates an error message when we invoke 
the assembler. Explain what is wrong with each line. 

mo vb $OxF, (%ebx) 
movl %rax, (%rsp) 
movw (%rax),4(%rsp) 
mo vb %al,%sl 
movq %rax,$0x123 
movl %eax,%rdx 
movb %si, 8(%rbp) 

3.4.3 Data Movement Example 

As an example of code that uses data movement instructions, consider the data 
exchange routine shown in Figure 3.7, both as C code and as assembly code 
generated by acc. 

As Figure 3.7(b) shows, function exchange is implemented with just three 
instructions: two data movements (movq) plus an instruction to return back to 
the point from which the function was called (ret). We will cover the details of 
function call and return in Section 3.7. Until then, it suffices to say that arguments 
are passed to functions in registers. Our annotated assembly code documents 
these. A function returns a value by storing it in register %rax, or in one of the 
low-order portions of this register. 



(a) C code 

long exchange(long •xp, long y) 
{ 

} 

long x = *xp; 
*XP = y; 
return x; 

(b) Assembly code 

Section 3.4 Accessing Information 187 

long exchange(long >1<xp, long y) 

xp in %rdi, 

exchange: 
2 movq 
3 movq 
4 ret 

yin %rsi 

(%rdi), %rax 
%rsi, C%rdi) 

Get x at xp. Set as return value. 
Store y at xp. 
Return. 

Figure 3.7 C and assembly code for exchange routine. Registers %rdi and %rsi 
hold parameters xp and y, respectively. 

When the procedure begins execution, procedure parameters xp and y are 
stored in registers %rdi and %rsi, respectively. Instruction 2 then reads x from 
memory and stores the value in register %rax, a direct implementation of the 
operation x = •xp in the C program. Later, register %rax will be used to return 
a value from the function, and so the return value will be x. Instruction 3 writes y 
to the memory location designated by xp in register %rd'i, a direct implementation 
of the operation •xp ;, y. This example illustrates how the MOV instructions can be 
used to read from memory to a register (line 2), and to write from a register to 
memory (line 3). 

1\vo features about this assembly code are worth noting. First, we see that what 
we call "pointers" in C'are simply atldresses. Dereferencing a pointer involves 
copying that pointer into a register, and then using this register in a memory 
reference. Second, local variable's such as x are often kept in registers rather than 
stored in memory locations. Register access is much faster than memory access. 

~A!iiB1¢ilf3N%:ts6~:32§f1{~~S"~~'l'>~lii 
Assume variables sp and dp are d~clared with ty~es 

src_t *sp; 
dest_t *dp; 

where src_ t and de st_ t are data types declared with typedef. We wish to use 
the appropriate pair· of data movement instructions to implement the operation 

•dp = (dest_t) •sp; 



I 

I 
( 
I 

> 

188 Chapter 3 Machine-Level Representation of Programs 

' 
New to C? Some examples of pointers 

Function exchange (Figure 3.7(a)) provides a good illustration of the use of pointers in C. Argument 
xp is a pointer to a long integer, while y is a long integer itself. The statement 

long x = *xp; 

indicates that we sl\ould read the value stored in the location designated by xp and store it as a local 
variable named x. This'·read operation is known as pointer defeferencing. The C operator'*' performs 

pointer dereferencing. " 
The statement 

*XP = Yi 
does the reverse-,it writes the value of parameter y at the location designated by xp. This.is also a form 
of pointer dereferencing (and hence the operator * ), but it indicates a write operation since it is on the 

left-hand side of the assignment. 
The fpllowing is an yXample of ex<;hange in action: 

. long a = 4; 
long Ji. = exchange(&a, ·,3); 

printf( 11 a = %ld, b = %ld\verb@\@n 11
, a, b); 

This code will:print 

a = 3, b = 4 
~i: ).(Jt)t l. -:r 

The C operatqr 'i,<; (caljed-the "ijdcji:ess of'' oyerat9r) cr~ateS~ pointer, in.this c_ase to the l.oHt\on 
holding local varia,ble 'l-· Fundjpn;eJ<cllang~ oyerwr\tes the, value•stored)n,a}Vith ~ bµt rl't'!Pl~. th\' 
previous value, 4, a& \jle f\)nction value. Qbsei;ve hqw by,pas~i'lll. 'I R'l.in,t~r tp, e}'Ch,ange, it.could m,odify 
data held at some remote locati9n. ~. · 

Assume that the values of sp and dp ~re stored in_registers %rdi and %rsi, 
respectively. For each entry in the table, show the two inst~uc\ions that implement 
the specified data movement. The first instructiqn in the sequence should read 
from memory, do the appropriate conversion, and set the appropriate portion of 
register %rax. The second instruction should then write the appropriate portion 
of %rax to memory. In both cases, the portions may be %rax, %eax, %ax, or %al, 
and they may differ from one another. 

Recall that when performjng a cast that involves .both a size change and a 
change of "signedness" in C, the operation should change the size first (Section 
2.2.6). 

src_t 

long 

char 

dest_t 

long 

int 

Instruction 

movq (%rdi). %rax 

movq %rax, (%rsi) 



r 
Section 3.4 Accessing Information l89 

char unsigned 

unsigned char long 

int char 

unsigned unsigned char 

char short 

li!iictice.edii21MU~!:CM~em£:•~;!~N--~l?'.!.:W.:::r.:·~ ;~;,: ~ 
Yoii are giveq the following information. A function with prototype 

void decode1(long *xp, long •yp, long •zp); 

is compiled into assembly code, yielding the following: 

void decode1(1ong •xp, long •yp, long *zp) 

xp in %rdi, yp in %rsi, zp in %rdx 
decode!: 

movq (%rdi), %r8 
movq C%rsi) , r.rcx 
movq C%rdx), %rax 
movq %r8, (%rsi) 
movq %rcx, (%rdx) 
movq %rax, (%rdi) 
ret 

Parameters xp, yp, and zp are stored in registers %rdi, %i"Si, and %rdx, respec­
tively. 

Write C code for decodel that will have an effect equivalent to the assembly 
code shown. 

3.4.4 Pushing and Popping Stack Data 

The final two data movement operations are used to push data onto and pop data 
from'the program stack,as documented in Figure 3.8 .. As we will see, the stack 
plays a vital role in the handling of procedure calls. By way of backgroun,d,:a stack 
is a data structure where values can be added or deleted1 but-only according to 
a l'Jast-in, first-out" discipline. We add data to a stack via a push operation and 
remove it via a pop operation, with the property that the value popped wiII always 
be the value that was most recently pushed•and is still on.the stack. A staclacan be 
implemented as an array, where we· always insert and remove elements from one 



190 Chapter 3 Machine-Level Representation of Programs 

Instruction 

pushq S 

popq D 

Effect 

R[%rsp] +- R[%rsp]- 8; 

M[R[%rsp ]] +- S 
D +- M[R[%rsp]]; 

R[%rsp] +- R[%rsp] + 8 

Figure 3.8 Push and pop instructions. 

Initially 

%rax Ox123 

~.rdx 0 

%rsp Ox108 

Stack "bottom" 

1 
" 

' 
~ ,,,,..,,-.,,,, ~ 

~,,. 

Increasing :!'~ 1 
address \'.! ( '% 

'}' 

i .t/ ;,: 
;:j; ~ 

~~~:;~:i.,r 

Description

Push quad word

Pop quad word

pushq %rax popq %rdx

%rax Ox123 %rax Ox123

%rdx 0 %rdx Ox123

%rsp OxlOO %rsp Ox108

Stack "bottom" Stack "bottom"

~·· ., ~ "''""' ""'
'It/! '!(;'

·t f~ t~.,
<&, ~

~· ' .
' .~, ~ ~ V;:. ~·· ~-

Ox 108 , ~ "
Stack '1op"

,¥ l' ~
Ox108 µ...~-·~· ''-''-~-I Ox108 f--""""-'-'·'-· -,-:-,·,,_'-:~'--"'-\..._
OxlOO L__ __ o_x_12_a __ _, Ox123

Stack '1op" Stack '1op"

Figure 3.9 Illustration of stack operation. By convention, we draw stacks upside down,
so that the "top" of the stack is shown at the bottom. With x86-64, stacks grow toward
lower addresses, so pushing involves decrementing the stack pointer (register %rsp) and
storing to memory, while popping involves reading from memory and incrementing the

stack pointer.

end of the array. This end is called the top of the stack. With x86-64, the program
stack is stored in some region of memory. As illustrated in Figure 3.9, the stack
grows downward such that the top element of the stack has the lowest address of
all stack elements .. ~By convention, we draw stacks upside down, with the. stack
"top" shown at the bottom of the·figure.) The stack pointer %rsp holds the address
of the top stack element. 1 ,

The pushq instruction provides the ability to push data onto the stack, while
the popq instruction pops it. Each of these instructions takes a single operand-the
data source for pushing and the data destination for popping.

Pushing a quad word value onto the st.,ck involves first decrementing the
stack pointer ·by 8 and1then writing the value at the new top-of-stack address.

•

Section 3.5 Arithmetic and Logical Operations 191

Therefore, the behavior of the instruction pushq %rbp is equivalent to that of the
pair of instructions

subq $8,%rsp
movq %rbp,(%rsp)

Decrement stack pointer

Store %rbp on stack

except that the pushq instruction is encoded in the machine code as a single byte,
whereas the pair of instructions shown above requires a total of 8 bytes. The first
two columns in Figure 3.9 illustrate the effect of executing the instruction pushq
%rax when %rsp is Ox108 and %rax is Ox123. First %rsp is tlecremented by 8, giving
Ox100, and then Ox123 is stored at memory address Ox100.

Popping a quad word involves reading from the top-of-stack location and
then incrementing the stack pointer by 8. Therefore, the instruction popq %rax
is equivalent to the following pair of instructions:

movq (%rsp),%rax
addq $8,%rsp

Read %rax from stack

Increment stack pointer

The third column of Figure 3.9 illus,t.rates the effect of executing the instruction
popq %edx immediately after executing the pushq. Value Ox123 is read from
memory and written to register %rdx. Register %rsp is incremented back to Ox108.
As shown in the figure, the value Ox123 remains at memory location Ox104 until it
is overwritten (e.g., by another push operation). However, the stack top is always
considered to be the address indicated by %rsp.

Since the stack is contained in the same memory as the program code and
other forms of program data, programs can access arbitrary positions within the
stack using the standard memory addressing methods. For example, assuming the
topmost element of the stack is a quad word, the instruction movq 8 C%rsp) , %rdx
will copy the second quad word from the stack to register %rdx.

3.5 Arithmetic ·and Logical Operations

Figure 3.10 lists some of the x86-64 integer and logic operations. Most of the
operations are given as instruction classes, as they can hav.e different variants with
different operand sizes. (Only leaq has no other size variants.) For example, the
instruction class ADD consists of four addition instructions: addb, addw, addl, and
addq, adding bytes, words, double words, and quad words, respectively. Indeed,
each of the instruction classes shown has instructions for operating on these four
different sizes of data. The operations are divided into four groups: load effective
address, unary, binary, and shifts. Binary operations have two operands, while
unary operations have one operand. These operands are specified using the same
notation as described in Section 3.4.

3.5. l Load Effective Address

The load effective address instruction leaq is actually a variant of the movq in­
struction. It has the form of an instruction that reads from memory to a register,

192 Chapter 3 Machine-Level Representation of Programs

Instfuction Effect Description

leaq S,D D +- &S Load effective address

INC D D +- D+l Increment

DEC D D +- D-1 Decrement

NEG D D +- -D Negate

NOT D D +- -D 'Complement

ADD S,D D +- D+S Add

SUB S,D D +- D-S Subtract

IMUL S,D D +- D•S Multiply

XOR S,D D +- v- s Exclusive-or

OR S,D D +- DIS Or

AND S,D D +- D&S And

SAL k,D D +- D<<k Left shift

SHL k,D D +- D<<k Left shift (same as SAL)

SAR k,D D +- D>>Ak Arithmetic right shift

SHR k,D D +- D>>Lk Logical right shift

Figure 3.10 Integer arithmetic operations. The load effective address (leaq)
instruction is commonly used to perform simple arithmetic. The remaining ones a(e
more standard unary or binary operations. We use the notation >>A and > >L to denote
arithmetic 'and logical right shift, respectively. Note the nonintuitive ordering of the
operands with ATT-format assembly code.

but it does not reference memory at all. Its firs~ operand ~P.P~ars to be a mem­
ory referenc<;, but instead of reading from the designated location, the instruction
copies the effective address to the destination. We indicate this computation in
Figure 3.10 using the C address operator &S. 'This instruction can be used to gener­
ate pointers for later memory references. In addition, it can be used to compactly
describe common arithmetic operations. For example, if regist\'r %rcix contains
value x, then the instruction leaq 7 (%rdx, %rdx, 4) , %rax will set register %rax
to 5x + 7. Compilers often find clever uses of leaq that have nothing to do with
effective address computations. The destination operand must be a register.

!8tii<ID&:e&»11Wi'J?.~:1Mdtl?~e~i~~;gss~1 "':lti:ir~:&E
Suppose register %rax holds value x and %rcx holds value y. Fill in the table below
with formulas·indicating the value that will be storep in register %rdx for each of
the given assembly-code instructions:

Instruction

leaq 6 (%rax) , %rdx
leaq (%rax, %rcx) , %rdx

leaq (%rax,%rcx,4), %rdx

leaq 7(%rax, %rax,8), %rdx

Result
·'

leaq OxA (, %rcx. 4) , %rdx
leaq 9 (%rax, %rcx 1 2) .• %rdx

Section 3.5 Arithmetic and Logical Operations 193

As ¥\iJ,lustration of the use of leaq in compiled code, consider the following
Cprogram: -

long scale(lqng x', lon'g y, long z) {
'' ' ft•) long t = x + 4 * y + 12 * z;

' return t;

'•

When compiled, the arithmetic operations of the function are implemented
by a sequence of three leaq functions, as is documented· by the comments on the
right-hand side:

long scale(fong x, long y, long z)

x in i.rdi,, z i,n %rsi • z in %rdx
scale:

leaq (%rdi,%rsi,4), %rax
leaq
leaq
ret

(%rdx,%rdx,2), %rdx
C%rax': %rdx, 4) , %rax

x + 4*y

z + :i*z ;= 3*z

(x+4*y) + 4*(3*z) = x + 4*Y + 12*Z

The ability of the leaq instruction'to perform addition and limited forms of
multiplication proves useful when compiling simple arithmetic expressions such
as this example.

mtt?~'ih1ih1eiti~fii(;~1amra1ail§gij~§~i'M;:11t1k=:~
Consider the following code, in which we· have omitted the expression being
computed:

long scale2(long x, long y, long z) {

long t = -----~-­
return t;

}

Compiling the actual function with ace yields the following a5sembly code:

long scale2(long x, long y, long z)

x in %rdi , y in %rsi , z in %rdx
scale2:

leaq
leaq
leaq
iet

(%rdi,%rdi,4), %rax
(%rax,%rsi,2), %rax
(%rax,%rdx,8), %rax

Fill in the missing expression in the C code.

-- - - --- . ·-· - --·-

194 Chapter 3 Machine-Level Representation bf Programs

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the 'single operand
serving as both source and destination. This operand can be either a register or
a memory location. For example, the instruction incq (%rsp) causes the 8-byte
element on the top of the stack to be incremented. This syntax is ren'iib.iscent of
the C increment (++) and decrement (--) operators.

The third group consists of binary operations, where the second operand
is used as both a source and a destination. This syqtax is reminiscent of the ·c
assignment operators, such as x -~ y. Observe, however, that the source operand
is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subq %rax, %rdx decrements register
%rdx by the >1alue in %rax. (It helps to read the instruction as "Subtract %rax from
%rdx.") The first operand can be either an immediate value, a register, or a memory
location. The second can be either a register or a memory location. As:with·the
MOY instructions, the two operands cannot both be memory locations. Note that
when the second operand is a memory location, the processor must read the value
from memory, perform the operation, and then write the result back to memory.

rr'.f~g'.t!~~~l'['".(Soi'U~'"~i.·~'t'..oJ···~~
Assume the following values are stored at tlie indicated memory addresses, ~nd
registers:

Address Va,lue Register V~lue

OxlOO OxFF %rax OxlOO

Ox108 OxAB %rcx Oxl

OxllO Ox13 %rdx Ox3

Ox118 Oxll

Fill in the following table showing the effects of the following instructions,
in terms of both the register or memory location that will be updated and the

resulting value:

Instruction

addq %rcx, (%rax)

subq %rdx,8(%rax)
imulq $16, (%ra,x,%rd.x,8)

incq 16 (%rax)
decq %rcx
subq %rdx, %rax

3.5.3 Shift Operations

Destination Valiie

l

The final group consists of shift operations, where the shift amount is given first
and the value to shift is given second. Both arithmetic and logical right shifts are

F

Section·a,5 Arithmetic and•Logical Operations il95

possible. The different shift instructions can specify the shift amount either as
an immediate value or with the single-byte register %cl. (These instructions are
unusual in only allowing this specific register as the operand.) In principle, having
a 1-byte shift amount would make it possible to encode shift amounts ranging up
to 2

8
- 1 = 255. With x86-64, a shift instruction operating pn data values that are

w bits long determines the shift amount from the)ow-order m bits of register
%cl, where zm = w. The higher-order bits are ignored. So, for example, when
register %cl has hexadecimal value OxFF, then instruction salb would shift by
7, while salw would shift by 15, sall would shift by 31, and salq would shift
by63.

As Figure 3.10 indicates, there are two names for the left shift instruction: SAL
and SHL. Both have the same effect, filling from the right with zeros. The right
shift instructions differ in that SAR performs an arithmetic shift (fill with copies of
the sign bit), whereas SHR performs a logical shift (fill with zeros). The destination
operand of a shift operation can be either a register or a memory location. We
denote the two different right shift operations in Figure 3.10 as >>A (arithmetic)
and > >L (logical).

~mleiit~'.21'.Mr~™•~~1~t~.i¥~.$illll;;il't~~
Suppose we want to generate assembly code for the following C function:

long shift_left4_rightn(long x, long n)
{

}

x <<= 4;
x >>= n;
return x;

The code that follows is a portion of the assembly code that performs the
actual ~hifts and leaves the final value in register %rax. Two key instructions
have been omitt~d. Parameters x and n are stored in registers %rdi and %rsi,
respectively.

long shift_left4_rightn(long x, long n)

x in Xrdi, n in %rsi
shift_left4_rightn:

movq %rdi, %rax

movl %esi, %ecx

Get x

x <<= 4

Get n (4 bytes)

x >>= n

Fill in the missing instructions, following the annotations on the right. The
right shift should be performed arithmetically. '

196 Chapter 3 Machine-Level Representation of Programs

(a) C code

long arith(rong x, long y, long z)
{

}

long t1 = x - Yi
long t2 = z * 48;·
long t3 = ti & OxOFOFOFOF;
long t4 = t2 - t3;
return ttli

(b) Assembly code

2

3

4

s
6

7

lb'rig axith(long x, long y, long z)

x 'in %rdi , 1 y in Xrsi , z in Xrdx

arith: •

xorq %rSi, %rdi
leaq (%rdx,%rdxJ2~, %ra.1::
salq $4, %rax
andl $252645i35, %edi
subq %rdi, %rax
ret

,J

'·

tt = x - y

3•z
t2 = 16 * (3*z) = 48*z

t3 = t1 & OxOFOFOFOF

Return t2 - t3

Figure 3.11 C and assembly code'for arithmetic 'function.

3.5.4 Discussion

We see that most of the instructions shown in Figure 3.10 can be used for either
unsigned or two's-complement arithmetic. Only right shifting requires instructions
that differentiate between signed versus unsigned data. This is one of the features
that makes two's-complement arithmetic the preferred way to implement signed
integer arithmetic.

Figure _3.11 shows an·example of a'futtction that performs arithm«tic opera­
tions'and its translation into assembly code. Arguments x, y, arid z at!!•initially
stored in registers %rdi, %rsi, an'c! %rdxf~espectively.'The assembly!code instruC'­
tions correspond closely with the lines of C source code. Line 2 computes the value
of x-y. Lines 3 and 4 compute the expression z•48 by a combination of leaq and
shift instructions. Line 5 computes the AND of ti and OxOFOFOFOF. The final sub­
traction is computed by line 6. Since the destination of the subtraction is register
%rax, this will be the value returned by the function.

In the assembly code of Figure 3.11, the sequence of values in register %rax
corresponds to program values 3•z, z•48, and t4 (as the return value). In general,
compilers generate code that uses individual registers for multiple program values
and moves program values among the registers.

mmcitit'li11?rarmt&m1 <mW1!.i1®t1tiaa&tt.4~1"~~-:t'.!i
In the following variant otthe function of Figure 3.ll(a), the expressions have
been replaced by blanks:

Section 3.5 Arithmetic and L6gital Operations 197

long arith2(long x, long y, long z)
{

long t1 = ------i
longl t2 = __ _

19ng ~? = ~---
long t4 = ____ ;

return t4i
}

The portion of the generated assembly code implementing these expressions
is as follows:

long arith2(long x, long y, long z)

x in Xrdi , y in 'Zrsi , z in %:!'dx

arith2:
orq %rsi, %rdi
sarq $3, %rdi
not"q %tdi
movq %rdx, %rax

subq %rdi, %rai'
ret

Based on this>assembly code, fill in the missing portions of the C code.

I !Milldfi'Wtifil¥~t;.B1iD~§QlmMWB~
It is common to fuld assembly-code lines of the form

xorq, %rdx, %r'.dx

in code that was genei;at~d from C where no EXCLUSIVE-OR operat,ions were
1

present.

A. Explain the effect of this particular ElcCJ..us1VE-OR instruction and what useful
operation it implements.

B. What \voulct' be the more straightforward way to express this operation in
assembly code?

C Compare the number of bytes to encode these two different implementa­
tions of the same operation.

3.5.5 Special Arithmetic Operations

As we saw in Section 2.3, multiplying two 64-bit signed or unsigned integers can
yield .a product '!hat requires 128 bits to represent. 'The x86-64jns\ruction set
provides limited support for operations involving 128-bit (16-byte) numbers. Con­
tinuing :with the naming convention of word (2 bytes), double'word (4 bytes), and
quad word (8 bytes), Intel refers to a 16-byte quantity as an oct word. Figure 3.12

. -....:.-~--.. ---- ... - ~~-"':"."' - _____ .., ___ -.-- - -·------ -·- - -- . - -. ,.

198 Chapter 3 Machine-Level Representation of Programs

Instruction Effect Description

imulq s R[%rdx]:R[%rax] +- S x R[%rax] Signed full multiply

mulq s R[%rdx]:R[%rax] +- S x R[%rax] Unsigned fyll multiply

cqto R[%rdx]:R[%rax] +- SignExtend(R[%rax]) Convert to oct wofd

idivq s R[%rdx] +- R[%rdx]:R[%rax] mod S; Signed divide

R[%rax] +- R[%rdx]:R[%rax] + S

divq s R[%rdx] +- R[%rdx]:R[%rax] mod S; Unsigned divide

R[%rax] +- R[%rdx]:R[%rax] + S

Figure 3.12 Special arithmetic operations. These operations provide full 128-bit
multiplication and division, for both signed and unsigned numbers. The pair of registers
%rdx and %rax are viewed as forming a single 128-bit oct word.

describes instructions that support generating the full 128-bit product of two"6~-bit
numbers, as well as integer division.

The imulq instruction has two different forms One form, shown in Figure 3.10,
is as a member of the IMUL instruction class. In this form, it serves as a "two­
operand" multiply instruction, generating a 64-bit product from two 64-bit oper­
ands. It implements the operations •64 arid •6,i described in Sections 2.3.4 and 2.3.5.
(Recall that when truncating the product to 64 bits, both unsigned multiply and
two's-complement multiply have the same bit-level behavior.)

Additionally, the x86-64 instruction set includes two different "one-operand"
multiply instructions to compute th<; full 128-bit product of \}VO 64-bit values­
one for unsigned (mulq) and one for two's-complement (imulq) multiplication.
For both of these instructions, one argument must be in register %rax, and the
other is given as the instruction source operand. The product is then stored in
registers %\::dx'(high-order 64 bits) and %rax (low-order 64 bits). Although the
name imulq is used for two distinct multiplication operations, the assembler can
tell wji.ich one is intended by counting the number of operands.

As an example, the following C code demonstrates the generatio1,1 of !1128-bit
product of two unsigned 64-bit numbers x and y:

#include <inttypes.h>

typedef unsigned __ int128 ,uint128_t;

void store_uprod(uint128_t *dest, uint64_t x, uint64_t y) {

•dest = x • (uint128_t) y;
}

I

In this program, we explicitly declare x and y to be 64-bit numbers, using defi­
nitions declared in the file inttypes. h , as part of an extension of the C standard.
Unfortunately, this standard does not make provisions for 128-bit values. Instead,

Section 3.5 Arithmetic and Logical Operations 199

we rely on support provided by accfo'r'l28-bit integers, declared using the name
__ int128. Our code uses a typedef declaration to define data type uint128_t,
following the naming pattern for other data types found in inttypes. h. The code
specifies that the resulting product should be stored at the 16 bytes designated by
pointer dest.

2

3

4

5

6

The assembly code generated by ace for this function is as follows:

Void store_uprod(uint128_t *dest, uint64_t x, uint64_t y)

dest in Zrdi , x in Zrsi , y in %rdx
store_uprod:

movq %rsi, %rax Copy x to multiplicand

mulq %rdx Multiply by y

movq %rax, (%rdi) Store lower 8 bytes at dest

movq %rdx, a<r.rdif~ Store uRper 8 bytes at dest+B

ret

Observe that storing the product requires two rnovq i,nstructions: one for the
low-order 8 bytes (line 4), and one for the high-order S·bytes (lirie 5). Since the
code is generated for a little-endian machine, the high-order bytes are stored at
higher addresses, as indicated by the address specification 8 <r.rdi).

Our earlier table of arithmetic operations (Figure 3.10) does not list any
division or modulus operations. These operations are provided by the single­
operand divide instructions similar to the single-operand multiply instructions.
The signed division instruction idi vl takes as its dividend the 128-bit quantity
in registers %rdx (high-order 64 bits) and %rax (low-order 64 bits). The divisor is
given as the instruction operand. The instruction stores the quotient in register
%rax and the remainder in register %rdx.

For most applications of 64-bit addition, the dividend is given as a 64-bit value.
This value should be stored in register %rax. The bits of %rdx should then be set to
either all zeros (unsigned arithmetic) or the sign bit of %rax (signed arithmetic).
The latter operation can be performed using the instruction cqto.2 This instruction
takes no operands-it implicitly reads the sign bit from %rax and copies it across
all of %rdx.

As an illustration of the impfementation of division with x86-64, the following
C function computes the quotient and remainder of two 64-bit, signed numbers:

void remdiv(long x, long y,
long •qp, long •rp) {

long q = xiy; .
'long r = x%y;
*qp q;
*rp = r;

. This instruction is called cqo in the Intel documentation, one Of the few cases where the 1\ IT-format
ame fol' an instruction does not match the Intel name.

L_ _______ _

- .~---·· ------

.200 Chapter 3~ Machine-Level Representation of Programs

This compiles to the following assembly code:

void remdiv(long x, long y, long *qp, long *Ip)
X in %rdi , 'y in %rsi , qp ~in %rdx, •IP in %rcx ,

1 remdiv:
movq %;dx, %f8 c~l'! qp 1 2

3

4

5

6

7

8

movq %rdi, %rax Move x to lower 8 bytes of dividend

cqto Sign-extend to upper 8 bytes of dividend

idivq %rsi Divide by y

movq %rax, (%r8) Store quotient at qp

movq %rdx, (%rcx) Store remainder at rp

ret

In this code, argument rp must first he .,saved iµ a different register (line 2),
since argument register %rdx is required for the di~1sion operation. Line's 3-4 then
prepare the dividend hy copying and sign-extending x. Following the division, the
quotient in,<ygiji~er %rax gets stored at qp (lipe 6), whi\e the remainder in register
%rdx gets s,tored at rp (line 7).

ynsigni'd qi vision maJrns, use of the di vq instruc\ion. Typically, register %rdx
is set to zero beforehand. ,,

MPi&Drtlf!i!d1)2mlll!filmitlif~2§~£i'd'~:~&'Jl#G18
Consider the following function for computing the quotient and remainder of twd
unsigned 64-bit numbers:

void uremdiv(unsigned
unsigned
long q =

long x, unsigned long y,
long *qp, unsigned long *rp)•t
x/y; unsigned

unsigned
•qp =. q;
*rp = r;

long r = x%y;
,•

}

Modify the assemblr code shown for siwied divjsion to implement this function.
L • < ~ • ~ >

3.6 Control

So far, we have only considered the behavior of straight-line code, where instruc­
tions follow one another in sequence. Some constructs in C, such as conditionals,
loops, and switches, require conditional execution, where the sequence of oper­
ations that get performed depends on the outcomes of tests applied to the data.
Machine code provides two basic low-level mechanisms for implementing condi;
tional behavior: it tests data values and then alters either the control flow or the
data flow based on the results of these tests.

Datl)-dependent control flow is the more general and more common approach
for implementing conditional behavior, and so we will examine this first. Normally,

Section 3.6 Control

both statements in C and instructions in machine code are executed sequentially,
in the order they appear in the program. The execution order of a set of machine­
code instructions can be altered with a jump instruction, indicating that control
should pass to some other part of the program, possibly contingent on the result
of some test. The compiler must generate instruction sequences that build upon
this \ow-level mechanism to implement the control constructs of C.

In our presentation, we first cover the two ways of implementing conditional
operations. We then describe methods for presenting loops and s"i tch state­
ments.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition
code registers describing attribut~ of the most recent arithmetic or logical oper­
ation. These registers can then be tested to perform conditibnal branches. These
condition codes are the most useful:

CF: Carry flag. The most recent operation generated a carry out of the most
significant b/t. ljsed'to detect overflow for unsigned op~rations.

ZF: Zero flag. The most recent operation yielded zero.

SF: Sign flag. The most rec~nt operation yielded a negative value.

OF: Overflow flag. ·The most recent operation caused a two's-complement
overflow-either negative or positive.

•'
For example, suppose we used one of the ADD instructions to perform the

equivalent of the C assignment t = a+b, where variables a, b, and t are integers.
Then the condition codes would be set according to the following C expressions:.

CF
I ZF
1 SF
I OF

(unsigned) t < (unsigned) a

(t == 0)

(t < 0)

(a<O==b<O) && (t<O !=a<O)

Unsigned overflow

Zero
Negative
Signed overflow

The leaq instruction does not alter any condition codes, s1nce it is intended
1 to be used in address computations. ·Otherwise, all of the instructions listed in
1 Figure 3.10 cause the condition codes to be set. ·For the logical operations, such
1

1

as xoa, the carry and overflow flags are set to zero. For the shift operations, the
, carry flag is set to the last bit shifted out, while the overflow flag is set to zero. For
, reasons that we will not delve into, the INC and DEC instructions set the overflow
1 and zero flags, but they leave the carry flag unchanged.

In addition to the setting of condition.codes by the instructions of Figure 3.10,
'there are two instruction classes (having 8-, 16-, 32-, and 64-bit forms) that set
',condition codes without altering any other registers; these are listedfa Figure 3.13.
,The CMP instructions set the condition codes according to the differences of their
,two operands. They behave in the:same way as the suB instructions, except that
they set the condition codes without updating their destinations. With ATI format,

·--:....~-·-==-~.- - - ·--------

202 Chapter 3 Machine-Level Representation of Programs

Instruction

CMP

cmpb
cmpw

cm pl
cmpq

TEST

testb

testw

testl

testq

Based on

Sh S2

Sh S2

Description

Compare
Compare byte
Compare word
Compare double word
Compare quad word

Test
Test byte
Test word
Test double word
Test quad weird

Figure 3. 13 Comparison and test instructions. These instructfons set the condition

codes without updating any other registers.

the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can
be used to determine ordering relations between the two operands. The TEST

instructions behave in the same manner as the AND instructions, except that they
set the condition codes without·altering their destinations. Typically, the same
operand is repeated (e.g., testq %rax, %rax to see whether %rax is negative, zero,
or positive), or one of the operands is a mask indicating which bits should be tested.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly,.tJ.iere are three common ways
of using the condition codes: (1) we can set a single byte to 0 or 1 depending
on some combination of the .condition codes, (2) we can conditionally jump to
some other part of the r.rogram, or (3) we can c;onditionally transfer data. For the
first case, the instructions described in Figure 3.14 set a single byte to 0 or to 1
depending on some combination of the condition codes. We refer to this entire
class of instructions as the SET instructions; they differ from one· another based on
which combinations of condition codes they consider, as indicated by the different
suffixes for the instruction names. It is important to recognize that the suffixes for
these instructions denote different conditions and not different operand sizes. For
example, instructions setl and setb, denote "set less" and "set below," not "set
long word" or "set byte."

A SET instruction has eitlier cfue of the low-order single-byte register elements
(Figure 3.2) or a single-byte memory location as its destination, setting this byte to
either 0 or 1. To generate a 32-bit or 64-bit result, we must also clear the high,order
bits. A typical-instruction sequence to compute the C expression a ~ b, where a
and b are both of type long, proceeds as follows:

Section 3.6

Irlstructioq Synonym Effect' Set condition

sete p setz p +,- l;F Equal {zero
setne D ,setnz D +- -ZF l';lot equal I not zero

sets D D +- SF Negative
setns D '" D +- -SF Nqnnegative

setg D setnle D +- - (SF· OF)&-ZF Greater (signed>)
setge D •setnl D +- - (SF. OF) Greater'or equal'(signed>=)
set"l D setnge D +- SF"'OF Less (signed<)
setle D setng D +- (SF • OF) I ZF' Less or equal (signed <=) ,. j,

seta~' ''DJ , ,...setnbe D +- c CF& •ZF Al5ove•S.Unsigned >)
se'tae D· setnb D +--CF Above 6r equal (unsigned>=)
setb D sethae D +-"CF Below (unsigned'<)
setli4 D setna D +- CF•I ZF Belbw or equal.(unsigned<=) ,,
Figure,3.14 The SET instructions. Each instruction sets a single byte to 0 or-1 basep on
sorpe combination of the condition::<;:odes. Some instructions have ~'synonyms," that is,
alternate names for the same machine instruction.

1

2

3

4

5

int comp(data_t a, data_t b)

a in %rdi, b in %rsi

comp:
cmpq
setl
movzbl
ret

%rsi, %rdi
%al
%al, %eax

Compare a:b

Set low-order byte of %eax to 0 or 1

Clear rest of %eax (and rest of Xrax)

Note the comparison order of the cmpq instruction (line 2). Although the
arguments are listed in the order %rsi (b), then 7.rdi (a), the comparison is
really between a and b. Recall also, as discussed"ill 'sectibn "3.4.2, that the movzbl
instruction (line' 4) dears not just th'e high-order 3 bytes of %'eax, but tlib 'upper 4
bytes of the entire register, %rax, as well.

For some of the underlying machine instructions, there are multiple possible
naihes, which we:list as "synonyms." For example, both setg (for "'set greater")
and setnle (for "set not less or equal") refer to the same machine iiistruction.
Cbmpilers and disassemblers make Arbitrary choices of which nllfnes to use.

Although all arithmetic and logical operaHoii'~ set the condition codes, the de­
scriptions of the different SET instructions apply to the.case where a comparison
instruction has been executed, setting the condition codes according to. the com­
putation t = a-b. More specifically, let a, b, and t be the integers represented in
two's-complement form by variables a, b, and t, respectively, and so t =a -~ b,
where w depends on the sizes associated with a and b.

Control 203

I
' I
I'

204 Chapter 3 Machine-Level Representation of Programs

Consider the sete, or "set when equal/' instruction. When a = b, we will
have t = 0, and hence the zero flag indicates equality. Similarly, consider testing
for signed comparison with the setl, or uset when less," instruction. When no
overflow occurs (indicated by having OF set to 0), we will have a < b when a -~ b <'
0, indicated by having SF set to 1, and a ::: b when a-~ b::: 0, indicated by having
SF set to 0. On the other hand, when overflow occurs, we will have a < b when
a-~ b > 0 (negative overflow) and a > b when a-~ b < 0 (positive overflow). We
cannot have overflow when a = b. Thus, when OF is set to 1, we will have a < b if
and only iNlF is set to 0. Combining these cases, the EXCLUSIVE-OR of the overflow
and sign bits provides a test for whether a < b. The other signed comparison tests
are based on other combinations of SF - OF and ZF.

For the testi~g of unsigned comparisons, we now let a and b be the integers
represented in unsigned form by variables a and b. In performing the computation
t = a-b, the carry flag will be set by the CMP instruction when a - b < 0, and so the
unsigned comparisons use combinations of the carry and zero flags.

It is important to note how machine code does or does not distinguish be­
tween signed and unsigned values. Unlike in C, it does not associate a data type
with each program value. Instead, it mostly uses the same instructions for the two
cases, because many arithmetic operations have the same bit-level behavior for
unsigned and two's-complement arithmetic. Some circunfstan·ces require different
instructions to handle signed and unsigned operations, such as using differ­
ent versions of right shifts, division and multiplication instructions, and different
combinations of condition codes.

The Ccode

int comp(data_t a, data_t b) {
return a COMP b;

}

:.1

shows a general comparison between arguments a and b, where data_t, the aata
type of the arguments, is defined (via typedef) to be one of the integer data types
listed in Figure 3.1 and either signed or unsigned. The comparison COMP is defined
via #define.

Suppose a is in.some portion of 'l,rd~ while bis ill some portion of %rsi. For
each of the following instruction sequences,, ~etermine which data types data_t
and which comparisons COMP could cause ihe compiler to generate this qode.
(There can be mult~le correct answers; you should list them all.)

A. cmpl %esi. %edi
setl %al

B. cmpw %si, %di
setge %al

' Section 3.6

c. cmpb %sil, %dir.-
set be %al

D. cmpq %rsi, %r,di
setne %a

tmilii:eme0Wem!lm·~1@~ii:~3li~"~~1'1:rtr.t·"hi . .r;'''"~~
The Ccode

int test(data_t a) {

return a TEST O;
}

.,
shows a general comparison between argument a and 0, where we can set the
<fata type of the argument by declaring data_t with a typedef, and the nature
of the comparison by declaring TEST with a #define declaration. The following
instruction sequences implement the comparison, where ais held in some portioQ
ofregister %rdi. For each sequence, d~termine which dataJypes data_ t and which
comparisons TEST,c_ould cause the compiler to generate this code. (There can be
multiple correct answers; list all correct ones.)

I " A. testq %rdi, %rdi
e:etge %al

B. testw %di, %di
sete %al

c. 1;estb %dil:l.%dil ~('t'

set a %al " ,,

D. testl %edi, %edi
set le %al "

'·
3.6.3 ·Jump Instructions

l!'l"
'(.Jnder normal <;xecuti9q, instructions follow each ot\ler in the orp,er .t)le.Jl·i!re
listed. h ju(1lp instructi_on can CqlJSe the el(e,CJ!\ipn to. i;w~t9h to,.~ ccm1,lll~t\,'l};
new position in the program. These jump destinations are generally indicated in
issembly code by a label. Consider the following (very contrived) assembly-code
;equence:

movq $O,%rax
jmp .11
moYq (%rax),%r.s:lx

Lb

.popq •%rc!x

"
Set %rax to O
Goto .Lt

Null pointer dereference (skipped)

Jump ·target

,,,

Control 205

,,
I

I
I
I

206

":' . -· --- -·--- - -----·· ·-- - .

Chapter 3 Machine-Level Representation of Programs

Instruction Synonym Jump condition Description

jmp Label 1 Direct jump

jmp •Operand 1 Indirect jump

je Label jz ZF Equal I zero

jne Label jnz -ZF Not equal I not zero

js Label SF Negative

jns Label ·SF Nonnegative

jg Label jnle -(SF. OF) & -ZF Greater (signed >)

jge Label jnl -(SF - OF) Greater or equal (signed>=)

il, Label jnge SF" OF Less (signed<)

jle Label jng (SF - OF) I ZF Le~s or equal (signed<=)
c

Label jnbe ·CF & -ZF Above (unsigned >) ja
jae Label jnb ·CF Above or equal (unsigned>=)·

jb Label jnae CF Below (unsigned<)

jbe' 1 Label jna CF I ZF Below or equal (unsigned<=)
.,

Figure 3.15 The jump instructions. These instructions jump to a labeled destination
when the jump condition holds. Some instructions have "synonyms," alternate names
for the same machine instruction.

The instruction jmp .Ll will cause the program to skip over the movq instruc­
tion and instead resume execution with the popq instruction. In generating the
object-code file, the assembler determines the addresses of all labeled instruc­
tions and encodes the jump targets (the addresses of the destination instructions)
as part of the jump instructions.

Figure 3.15 shows the different jump instructions. The jmp instruction jumps
unconditionally. It can be either a direct jump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jump target is read from
a register or a memory location. Direct jumps are written in· assembly code by
giving a label as the jump target, for example, the label . Ll in the code shown.
Indited jumps'are written using '•' foflowed by an operand specifier using bne of
the memory operand formats described in Figure 3.3. As examples, theln~truction

• v
jmp *%rax

uses the value in register %rax as the jump target, and the instruction

jmp •(%rax)

reads the jump target from memory, using the value in %rax as the read address.
The remaining jump instructions in the table are conditidnal-they either

jump or continue executing at the next instruction in the code sequence, depending
on some combination of the condition codes. The names of these instructions

Section 3.6 Control 207

and the conditions under which they jump match those of the SET instructions
(see Figure 3.14). As with the SET instructions, some of the underlying machine
instructions have multiple naiµes. Conditional jumps can only be d\rect.

3.6.4 Jump Instruction Encodings

For the most part, we will not concern ourselves with the detailed forlI).at of ma­
chine code. On the other hand, understanding how the targets of jump instructions
are encoded will become important when we study linking in Chapter 7. In ad­
dition, it helps when interpreting the output of a disassembler. In assembly code,
jump targets are written using symbolic labels. 1,b.e assembler, andJater tjle linker,
generate the proper encodings of the jump targets. There are several different en­
codings for jumps, but some of the mqst commonly used ones are PC relative. That
is, they encode the differencl' between the address of the target instruction arn;I
the address of the instruction immediately following the jump. These offse~s can
be encoded using 1, 2, or 4 bytes. A second encoding method is to give an "abso­
lute" address, using 4 bytes to directly specify the target. The assembler and linker
select the appropriate encodings of the jump destinations.

As an example of PC-relative addressing, the following assembly code for a
function was generated by compiling a file branch. c. It contains two jumps: the
jrnp iristruction on line 2 jumps forward to a higher address, while the jg instruction
on line 7 jumps back to a lower one.

movq %rdi, %rax
2 jmp .12
3 .13:
4 sarq .%rax
5 .12:

6 testq %rax, %rax
7 jg •.13
8 rep; ret

The disassembled version of the . o format generated by the assembler is as
follows:

0: 48 89 f8 mov %rdi,%rax
2 3: eb 03 jmp 8 <loop,+Ox8>
3 5: 48 dl f8 sar %rax
4 8: 48 85 co test %rax,%rax.
5 b: 7f f8 jg 5 <loop+Ox5>
6 d: f3 c3 repz retq

In the annotations on the right generatetl.bythe disassembler, the jump targets
are indicated as Ox8· for the jump instruction. on line· 2 and Ox5 for the jump
instruction on line 5 (the disassembler lists all numbers in hexadecimal). C.Ooking
at the byte encodings of the instructions, however, we see that the target of the first
jump instruction is encoded (in the second byte) as Ox03. Adding this to Ox5, the

' I

I
•' •I

208 Chapter 3 Machine~Level Representation of Programs

Aside
• W' .. '\; ~ .:i ' \ ·~ ·/.!"' ~··· if '

What do the. ipsJt4cti9n.s,:r;ep ~ntj re,pz doZ

Line 8 of the assembly cod,e slto..m mi page 207 contains ijie' fostrnction 'co;nbinatiofrrep~ 'tet~·These l
are rendered·in the•disassembled code (line 6) as repz retq. One can infer that repz is a synonym
for rep, Just as :i'etq is a synonym for ret. Looking at the 'Intel arid AMD ·docunlentatjo'n•for the 1
rep instni.ctibn, we ~nq thaht. i~ \lO~mall>f us.ed to impfom~nt a repe.ating s\r~ng .or,er.at~on [\ 51 L It j
·seem~ ~ompleteJy i2appr?p:;1at~, her~. :"e. an.s_wer to th1~ ~uzzle, ca~ ,?e.seen. m ~Jl!D's' .~u;delmes. t?
compiler.wnters [l:]. The} recommend usmg'iliJ: combmat1bn 01' rep followed by ret to avmd makmg !
the ret~nstrnction~ilie de§tinati6ii ::,f i1 qp~qlii,;naJ jµmp \nstructidn.: Witliout'the rep instructiod,,the I
jg instruction (line 7 6f the a~'sembly code)'woUld ptoeeed to the re-C instruction when the lJrahth'i~not' l
.taken. {\ccorcfing to AiiID, tjl~rrirde\!~ors c!i.ititpf RJ:~per1'i:,predic{J:!l/, destind'tiori'of a r~t instr'uctibh !

when it .is rea~h~ ~r. oP:1 ajj~ti~p iil~!~.u.~ti~re. Th. ~e-:~e_p:f·n. ~~I.~~HOp. ~~e,r~.es~ as a~fo:m of n .. o;d~e.·.r~tisp- _per:~"' j
and so msertmg it as the iump \!estmauon:.does rtot cJwnge behav10r 9f t~e code, -excep,t'to.make' 1t j
faster on AMD prqcessoh. Weca4Hfely lgi'i0re any're~.orl;O'pz irisfructicl~Yi" see in t1ie resf9'fthe ,
ccide'})resented in this bcrok. j f' '

1 ~tv~'""" ·• Ht ..,, ~
' ' ..,, ~ ··~ '" :i, ~ ,,,,'·'t:..:~ "~,l~ ";i~ ~"'" ..,,, "" ..,._ ""'!.< ... ~ ~~ ... ~ ~ .,,.,,,,,,,.)

address of the following instruction, we get jump target address Ox8, the address
of the instruction on line 4.

Similarly, the target of the second jump instruction is encoded as Oxf8 (deci­
mal -8) using a single-byte two's-complement representation. Adding this to Oxd
(decimal 13), the address of the instruction on line 6, we get Ox5, the address of
the instruction on line 3.

As these examples illustrate, the value of the program counter when perform­
ing PC-relative addressing is the address of the instruction following the jump, not
that of the jump itself. This convention dates back'to early implementations, when
the processor would update the program counter as its first step in executing an
instruction.

The following shows the disassembled version of the program after linking:

4004d0: 48 89 f8 mov %rdi,%rax
2 4004d3: eb 03 jmp 4004d8 ~loop+Ox8>
3 4004d5: 48 dl f8 sar %rax
4 4004d8: 48 85 co test %rax, %rax
5 4004db: 7f f8 jg 4004d5 <loop+Ox5>
6 4004dd: f3 c3 repz retq

The instructions have been relocated to different addresses, but the encodings
of the jump targets in lines 2 and 5 remain unchanged. By using a PC-relative
encoding of the jump targets, the instructions-ca'n be compactly encoded (requiring
just 2 bytes), and the object code can be shifted.to different-positions in memory
without alteration.

Seotion 3.6 Control 209

In the following excerpts from a disassembled binary, some of the information has
been replaced by X's. Answer the following questions about these instructions.

' A. What is the target of the j e instruction below? (You do not need to know
anything about the callq instruction here.)

4003fa: 74 02
4003f c: ff dO

je XXXXXX
callq *%rax:

B. What is the target of the j e instruction below?

40042f: 74 f4
400431: 5d

je
pop

xxxxxx
%rbp

C. What is the address of the j a and pop instructions?

XXXXXX: 77 02
XXXXXX: 5d

ja
pop

400547
%rbp

D. In the code that follows, the jump target is encoded in PC-relative form as a 4-
byte two's-complement number. The bytes are listed from least significant to
most, 'reflecting the little-endian byte ordering of x86-64. What is the address
of the jump target?

4005e8: e9 73 ff ff ff
4005ed: 90

j mpq XXXXXXX
nop

The jump instructions provide.a means to implement conditional execution
(if), as well as several different loop constructs.

3.6.5 Implementing Conditional Branches with Conditional Control

The most general way to translate conditional expressions and statements from
C into machine code is to use combinations of conditional and unconditional
jumps. (As an alternative, we will see in Section 3.6.6 that some conditionals
can be implemented by conditional transfers of data rather than control.) For
example, Figure3.i6(a) shows the C code for a function that cbmputes the absolute
value of the difference of two numbers.3 The function also has a side effect of
incrementing one of two counters, encoded as global variables lt_cnt and ge_
cnt. Gee generates the assembly code shown as Figure 3.16(c). Our rendition of
the"machine code into C is shown as'the function gotodiff_se (Figure 3.16(b)).
It uses the goto statement in C, which is similar to the unconditional jump of

3. Actually, it can return a negative value if one of the subtractions overflows. Our interest.here is to
demonstrate machine code, not to implement robust code.

,I

210 Chapter 3 Machine-Level Representation of Programs

(b) Equivalent goto version (a) Original C code

long 1 t_cnt 0 ;·
long ge_cnt = O;

long gotodiff_se(long x, long y)

•
long absdiff_se(long x, long y)
{

}

long resultj
if (x < y) {

lt_cnt++;
result = y - x;

}

else {

}

ge_cnt++i
result = x - Yi

return result;

(c) Genera\ed assembly code

2

3

4

s
6

7

8

9

10 ,,
12

long 'l.bsdi:ff_Ae(1011g x. long y)

x in i.rdi, yin Xrsi
absdiff_se:

cmpq %rsi, %rdi
jge .L2
addq $1, 1t_cnt(%rip)'
movq %rsi, %rax
subq %rdi, %rax
ret

.L2:
addq $1, ge_cnt(%rip)
movq %rdi, %rax1
subq %rsi, %rax
ref' .u•

2 {

3 long res~lt;
4 if (x >= y)
s goto x_ge_y;
6 lt_cnt++;

7 result = y - x;
8 return result;
9 x_ge_y:

10 ge_cnt++;

11 result = x - Yi
12 return result;
13 }

Compare.x:y
If >== go'to x_ge_y
lt_cnt++

result =--Y - x . .
I Return

x_ge_y: I ,

gs_cnt++ . '
result = x - y

Return
f

Fig~re 3.16 Compilation of "<'!riditional statements. (a) C; proc~dure absdiff_se
contains an.if-else statement. The gen~rated assembly 1;qd!' is sho"(n (c), ~long ';"ith
(b) a C procedure gotpdiff_s~ that mimics th~ control flow oft~~ asselT]ply cpd~.

.. I

"I'

assemblycode:Using goto statements is generally considered a bad programming
style, since their use can make code very difficult to read and debug. We use.them
in our·presentation as a way·to construct C programs that describe the control
flow of machine code. We call this style of programming "goto code."

In the goto code (Figure 3.16(b)), the statement goto x_ge_y on line 5 causes
a jump to the label x~ge_y (since it occurs when x :::: y) op line 9. Continuing the

Section 3.6 Control 211

__ ,..,_ ·------~._....._..,.._~-.. ~---~,~"
Aside Describing rnac~ine \:.9,~e)1(ith C cqp~ ., '"" Q , '

Figure 3.16 shows an example 'of how ,we wilt demonstrafe~t)le trabsl,ation of,,C language 'Control I
constructs int9 machine code. The ~gure contains an example C function (a) and an annotated version
of the assembly ,code generated ,~Y qcc (c). It also contains a version in C that c!osely matches the
structure of the assembly code (b). Although these versions were generated in the sequence (a), (c),
and (b), werecominend that you read them in the order (a); (b), and then (c). That is, the C rendition
of the machine code will help you understand the key points, and this cap guide you in understanding

)'. ., ~ '{: f
the actual assembly code. '

execution from this point, it completes the computations specified by the else
portion of function absdiff_se and returns. On the other hand, if the test x >= y
fails, the program procedure will carry out the steps specified by the if portion of
absdiff_se and return.

The assembly-code implementation (Figure 3.16(c)) first compares the two
operands (line 2), setting the condition codes. If the comparison result indicates
that x is greater than or equal to y, it then jumps to a block of code starting at
line 8 that increments global variable ge_cnt, computes x-y as th~ return value,
and returns. Otherwise, it continues with the execution of code beginning at line
4 that increments global variable 1 t_cnt, computes y-x as the return value, and
returns. We can see, then, that the control flow of the assembly code generated for
absdiff_se closely follows the goto code of gotodiff_se.

The general form of an if-else statement in C is given by the template

if (test-expr)
then-statement

else
else-statement

where test-expr is an integer expression that evaluates either to.zero (interpreted
as meaning "false") or to a nonzero value (interpreted as meaning "true"). Only
one of the two branch statements (then-statement or else-statement) is executed.

For this general form, the assembly implementation typically adheres to the
following form, where we use C syntax to describe the control flow:

t = test-expr;
if (!t)

goto false;
then-statement
goto done;

false:
else~statement

done:

. -

212 Chapter 3 Machine-Level Representation of Programs

That is, the compiler generates separate blocks of code for then-statement and
else-statement. It inserts conditional and unconditional branches to make sure the
correct block is executed. ..

!rlttic.e;ei:o6ri'ffi'tdE'\llior@;m"!a!fljt"3W:~e"itt:~E S-a
When given the C code

void cond(long a, long •p)
{

}

if (p &;&; a > •p)

*P = a;

Gee generates the following assembly code:

void cond(long a, long •p)

a in Xrdi, pin Xrsi

cond:
te;>tq
; . \
3e
cmpq
jge'
movq

.Li:
rep; ret

Y.rsi. ~rsi
:Li .
%rdi, (%rsi)
.Li
%rdi, c%rsi) .,

A. Write a goto version in C that performs the same computation and mimics
the control flow of the assembly code, in the style shown in Figure 3.16(b).
You might find it helpful to first annotate the assembly code as we have done
in our examples.

B. Explain whi; the assembly,code contains two concjitional branches, even
though the C cof!o;..has qnly q_ne ~f statement. "

An alternate rule for translating if statements into goto code is as follows:

t = test-expr;
if (t)

goto true;
else-statement
goto done;

true:
then-statement

done:

Section 3.6 Control 213

A. Rewrite the goto version of absdiff_se based mi this alternate rule.

B. Can you think of any reasons for choosing one rule over the other?

fi!riitii~IDi!Mi'.3~'1!Hlmb&~ii~iMP1U~~~il
Starting with C code of the form

long test(long x, long y, long z) {
long ;val = ____ _

if ({
if (_)

val
else

val
} ,el~e if (__ _

val= ____ ;

return val;
}

Gee generates the following assembly code:

long test(long x, long y, long z)

x in %rdi, y in %rsi , z in %rdx

test:
leaq
addq
cmpq
jge
cmpq
jge
movq
imulq
ret

.13:
movq
imulq
ret

.L2:
cmpq
jle
movq
imulq

.14:
rep; ret

(%rdi,%rsi),
%rdx, %rax
$-3, %rdi
.L2
%rdx, %rsi
.13
%rdi, %rax
%rsi, %rax

%rsi, %rax
%rdx, %rax

$2, %rdi
.14
%rdi, %rax
%rdx, %rax

%rax

Fill in the missing expressions in the C code.

~a-.--·-

21'4 Chapter 3 Machine-Level Representation of Programs

3.6.6 Implementing' Gonditional Branches with Conditional Moves

The conventional way t6 implement conditional operations is through a condi­
tional transfer of control, where the program follows one execution path when
a condition holds and another when it does not. This mechanism is simple and
general, but it can be very inefficient on modern processors.

An alternate strategy is through a conditional transfer of data. This approach
computes both outcomes of a conditional operation and then selects one based on
whether or not the condition holds. This strategy makes sense only in restricted
cases, but it can then be implemented by a simple conditional move instruction
that is better matched to the performance characteristics of modern processors.
Here, we examine this strategy and its implementation with x86-64.

Figure 3.l 7(a) shows an example of code that can be compiled using a condi­
tional move. The function computes the absolute value of its arguments x and y,
as did our earlier example (Figure 3.16). Whereas the earlier example had side ef­
fects in the branches, modifying the value of either lt_cnt or ge_cnt, this'version
simply computes the value to be returned by the function.

(a) Original C code (b) Implementation using conditional assignment

long cmovdiff(long x, long y) long absdiff(long x, long y)

{

}

long result;
if (x < y)

result y - x;
else

result = x - y;
return result;

(c) Generated assembly code

long absdiff(long x, long y)

x in %rdi, yin %rsi

absdiff:
2 movq %rsi, %r;µ
3 subq %rdi, %rax

4 movq %rdi, %rdx
5 subq %rsi, %rdx
6 cmpq %rsi, %rdi

7 cmovge %rdx, %rax
8 ret

2

3

4

5

6

7

8

9

{

10 }

rval = y-x

eval = x-y

Compare x:y

long rval = y-x;
long eval = x-y;
lorig ntest =

4 x >= y;
/* Line below requires

single instruction: */
if (ntest) rval = eval;
return rval;

If >=, rval = eval

Return tval

Figure 3.17 Compilation of conditional statements using conditional assignment. (a) C function
absdiff contains a conditional expression. The generated assemqly code is shown (c), along witl) (b) a
C function cmovdiff that mimics the operation of the assembly code.

Section 3.6 Control 215

For this function, ace generates the assembly code shown in Figure 3.17(c),
having an approximate form shown by the C function crnovdiff shown in Figure
3.17(b). Studying the C version, we can see that it computes both y-x and x-y,
naming these rval and eval, respectively. It then tests whether x is greater than
or equal to y, and if so, copies eval to rval before returning rval. The assembly
code in Figure 3.17(c) follows the same logic. The key is that the single cmovge
instruction (line 7) of the assembly code implements the conditional assignment
(line 8) of cmovdiff. It will transfer the data from the source register to the
destination, only if the cmpq instruction of line 6 indicates that one value is greater
than or equal to the other (as indicated by the suffix ge).

;ro, understand why code based on conditional data transfers can outperform
code based on conditional COJ!trol transfers (as in Figure 3.16), we must understand
something about how modern processors operate. As we will see in Chapters 4
and 5, processors achieve high performance through pipelining, where an instruc­
tion is processed via a sequence of stages, each performing one small portion of
the required operations (e.g., fetching the instruction from memory, determining
the instruction type, reading from memory, performing an arithmetic operation,
writing to memory, and updating the program counter). 1bis approach achieves
high performance by overlapping the steps of the successive instructions, such
as fetching one instruction while performing the arithmetic operations for a pre­
vious instruction. To do this requires being able to determine the sequence of
instructions to be executed well ahead of time in order to keep the pipeline full of
instructions to be executed. When the machine encounters a conditional jump (re­
ferred to as a "branch"), it cannot determine which way the branch will go until it
has evaluated the branch condition. Processors employ sophisticated branch pre­
diction logic to try to guess whether or not each jump instruction will be followed.
As long as it can guess reliably (modern microprocessor designs try to achieve
success rates on the order of 90%), the instruction pipeline will be kept full of
instructions. Mispredicting a jump, on the other hand, requires that the processor
discard much of the work it has already done on future instructions and then begin
filling the pipeline with instructions starting at the correct location. As we will see,
such a misprediction can incur a serious penalty, say, 15-30 clock cycles of wasted
effort, causing a serious degradation of program performance.

As an example, we ran timings of the absdiff function on an Intel Haswell
processor using both methods of implementing the conditional operation. In a
typical application, the outcome of the test x < y is highly unpredictable, and
so even the most sophisticated branch prediction hardware will guess correctly
only around 50% of the time. In addition, the computations performed in each
of the two code sequences require only a single clock cycle. As a consequence,
the branch misprediction penalty dominates the performance of this function. For
x86-64 code with conditional jumps, we found that the function requires around 8
clock cycles per call when the branching pattern is easily predictable, and around
17.50 clock cycles per call when the branching pattern is random. From this, we can
infer that the branch misprediction penalty is around 19 clock cycles. That means
time required by the function ranges between around 8 and 27 cycles, depending
on whether or not the branch is predicted correctly.

I

l

I

I

I
I

I
I
I
I

1
I

-- -- __ ,,._ -- - -- _ .. ---- .. _

216 Chapter 3 Machine-Level Representation of Programs

.""' ~..., !!<',.,, I} .~ ,\.~ lot ~ .·II' 1· ~ ,, • ~" .. ·- ., .t ~ ""'<!' ~

Aside How dicf:ou d~!~rr:rii~~ }~l~ P.~riaity? . ., ·'· • ''. .' " ; ., •j
Assum~ the pr~bajili,ty:of m}~pred'.c~onis·g; the.'t~i; to .ex~t:\Jte the ·cq~~ ·~~h\l.ut rl'l},sjlrtldiction !~ 1

:TC?K• and the•m1spre?~~t10~ penalty-is !MP· tffett the a'Vetage ttpi.e t~ execut~the/od~.a.s a f~."ctio~ of I
.P ts Tavg(P) = (1- p)ToK -f pJ:foK t TMp) =-Tm{:,\'·PTMf>. We.ate g1verfToK,and Tran• tile average llme i
whe.n p "= b.5, and we'''1\(ant't~. d,eter,1?"1e.~M. i:· Su~~tlfoli~~into ihe e'.qll~~on, we ge!}ian = favg(0.5~,'.i.
ToK + 0.5TMP• and therefore '!'MP =7(7; •• ,-.ToK)."So, fp{,'.!'.'()K = 8 ~J\d Tran= 1'7.5, we get TMP ='19:

_ - ~ ""' 1v~z.,...t-:. . ..,.._.., , ~ •• ~., .. ~ ~""'*'~· <~-~ ... ~L .. ""1"...u •. ~ ~-.... ,,.... ~- ~

On the other hand, the code compiled using conditional moves. requires
around 8 clock cycles regardless of the data being tested. The flow of control
does not depend oh data, and this makes it easier for the processor to keep·its
pipeline full.

§~Ble~1!ii;i;VJ;R39~32>ZS,.~~;t,:ZU~t:3
Running on an older processor model, our code required around 16 cycles when
the branching.pattern was highly predictable, and around 31 cycles when.the
pattern was random.

A. What is the approximate miss penalty?

B. How many cycles would the function require when the branch is mispre­
dicted?,

Figure 3.18 illustrates some of the conditional move instructions available with
x86-64. Each of these instructions has two operands: a source register or memory
location S, and a destination register R. As with the different SET (Section 3.6.2)
and jump (Section 3.6.3) instructions, the outcome of these instructions depends
on the values of the condition codes. The source value is read from 'either memory
or the source register, but it is copied to the destination only if the specified
condition holds.

The source and destination values can be 16, 32, or 64 bits long. Single­
byte conditional moves are not supported. Unlike the unconditional instructions,
where the operand length is explicitly encoded in the instruction name (e.g., movw
and movl), the assembler can infer the operand length of a conditional move
instruction from the name of the destination·register, and so the same instruction
name canrbe used for all operand lengths.

Unlike conditional jumps, the processor can execute 'Conditional move in­
structions without having to predict the outcome of the test The processor simply
reads the source value (possibly from memory), checks the condition code, and
then either updates the-destination register or keeps it the same. We will explore
the implementation of'conditional moves in Chapter 4.

To understand how conditional operations can he implemented via .condi­
tional data transfers, consider the following general form of conditional expression
and assignment:

Section 3.6

Instruction Synonym Move condition Description
cmove S,R cmovz ZF Equal I zero
cmovne S,R cmovnz -ZF No! equal I not zero

cmovs S,R
,.

SF Negative
cmovns S,R -SF Nonnegative

cmovg S,R cmovnle -(SF - OF) & -ZF Greater (signed >)
cmovge S,R cmovnl -(SF - OF) Greater or equal (signed>=)
cmovl S,R cmovnge SF-OF Less (signed <)
cmovle S,R cmovng (SF - OF) I ZF Less or equal (signed<=)

cm ova S,R cmovnbe -CF&-ZF Above (unsigned >)
cmovae S,R cmovnb -CF Above or equal (Unsigned >=)
cmovb S,R· cmo'\fnae CF Below (unsigned<)
cmovbe S,R cmovna CF I ZF Below or equal (unsigned <=)·

Figure 3.18 The conditional move instructions. These instructions ~opy the source
value S to its destination R when the move condition holds. S~me instructions have
"synonyms," alternate names for the same machine instruction.

v = test-expr ? then-expr : else-expr;

The standard way to compile this expression using conditional control transfer
would have the following form:

·'

if (!test-expr)
goto false;,

v = the11-expr;
g9tO,dOI!~i

false:
v = else-expr;

done:

This code contains two code sequences--0ne evaluating then-expr and one evalu­
ating else-exp~. A combination of condhi<;mai and unconditional jumps is used to
ensure that just one of the sequences is evaluat~d.

For the code based
0

on a conditi~nal ip~vO: both the then-expr and the e/se­
expr are' evaluated, with tne final value ch?~~n based on the evaluation t~st-expr.
This cal\ be d,escribed by the following absJract code:

v· = then-expr;
ve = else-expr;
t = tist-expr;
if (!t) V = V0j

The final statement in this sequence is implemented. with a conditional move­
value ve is copied to v only if test condition t does not hold.

Control 217

218 Chapter 3 Machine-Level Representation of Programs

Not all conditional expressions can be compiled using conditional moves.
Most significantly, the abstract code we have shown evaluates both then-expr and
else-expr regardless of the test outcome. If one of those two expressions could
possibly generate an error condition or a side effect, this could lead to invalid
behavior. Such is the case for our earlier example (Figure 3.16). Indeed, we put the
side effects into this example.specifically to force _ace to implement this function
using conditional transfers.

As a second illustration, consider the following C function:

long cread(long •xp) {
return (xp? *XP O);

}

At first, this seems like·a good candidate to compile using a conditional move to
set the result to zero when the pointer is null, as shown in the following assembly

code:

long· crBad(long *Xp)
Invalid impleme11tatio11 of fUDctio11 cread

xp in register %rdi

1 cread:

2 movq
3 testq

4 movl
5 cmove
6 ret

..
(%rdi), %rax v = *XP

%rdi, %rdi Test x

$0, %edx Set ve = 0

%rdx, %rax If x==O, v = ve

Return v

This implementation is invalid, however, since the derefefencing of xp by the
movq instruction (line 2) occurs even when the test fails, causing a 'null pointer
dereferencing error. Instead, this code must be compiled using branching code.

Using conditional moves also does not always improve code efficiency. For
example, if either the then-expr or the e/se-expr 'evaluation requires a significant
computation, then this effort is wasted when the corresponding condition does
npt \lold. Compilers must take into account the relative P>'rformance of wasted
computation versus ti)!'' poteiitlal 'for performanb6 pei\aity due to branch mispre­
diction. In truth, they do not really have.enough information to make this decision
reliably; for example, they do l)Ot know how well the branches will follow pre­
dictable patterns. Our exreriments'with GCC indicate that it duly u~es conditional
moves when tJie two expres,siori~ c~n"be compute'cl very easlly, for ~x'ample, with
single add instructions. In our experience, ace uses conditional control transfers
even in many cases where the cost of branch misprediction would exceed even
more complex computations.

Overall, then, we see that conditional data transfers offer an alternative
strategy to conditional control transfers for implementing conditiopal ~perations.
They can only be used in restricted cases, but these cases are fairly common and
provide a much better match to the operation of modern processors.

Section 3.6'. Control 219

lflrct1si\iPio&kim~mt;~3iifi>'41V-8&at~lt&:£?fll
In the following C function, we have left the definition of operation OP incomplete:

#define OP ____ I• Unknown operator •/

long arith(long x) {
reiurn x OP 8;

}

When compiled, ace generates the following assembly code:

long arith(long x)

x in Xrdi
arith:

leaq 7(%rdi). %rax
testq %rdi, %rdi
cmovns %rdi, %rax
sarq $3, %rax
ret

A. What' operation is OP?

-·

,,

} !h '~
B. Annotate ~Jie code to explain hpw, jt, wor!q;.

1

Starting w}th C code of the form

1

long test(long x, long y) {
long val = ___ _

if () {

if ()

val
else

val
} else if ()

val= ___ _

ieturn val;
}

ace generates the following assembly code:

long test(long x, long y)

x in Zrdi , y in Xrsi

1

test:

1 leaq O(,%rdi,8), '!.rax.
testq •
jle

%rsi ,' %rsi
.L2

, - ----------- -- -- ------ - ... - --

220 Ch'apter 3 'Machine-Level Representation of Programs

movq %rsi, %rax

subq %rdi, %rax
'I

movq %rdi, %rdx
andq %rsi, %rdx
cmpq %rsi, %rdi
cmovge %rdx, %rax

ret
.L2:

addq %rsi, %rdi
cmpq $-2, %rsi
cmovle %rdi, %rax
ret

Fill in the missing expressions in the C code.

3.6.7 Loops

C provides several looping constructs-namely, do-while, while, and for. No
corresponding instructions exist in machine code. Instead, combina\ions of con­
ditional tests and jumps are used to im~lement the effect of loops. Gee and ot,l)er
compilers generate loop code based on ihe two basic ioop patterns. We' will study
the translation of loops as a progression, starting with do-while and then working
toward ones with more complex implementations, covering both patterns.

Do-While Loops

The general form of a do-while statement is as follows:

do
body-statement
while (test-expr);

The effect of the loop is to repeatedly execute body-statement, evaluate test-expr,
and continue the loop if the evaluation result is n,onzero. Observe that body­
statement is executed at least once.

This general form can be translated ihto conditionals and goto statements as

follows:

loop:
body-statement
t = test-expr;
if (t)

go'to loop;

That is, on each iteration the program evaluates the body statement 'and then the
test expression. If the test succeeds,Jhe program.goes back for another iteration.

r .
t f ·".

!
(a) C code

long fact_do(long n)
{ r

}

long result = 1;
do {

result *= n;
n = n-1;

} while (n'> 1);

return result;

(b) Equivalent goto version

long fact_do_goto(long n)
{

}

long result = 1 i
loop:

result *= n;
n = n-1;
if (n > 1)

goto loop;
return result;

(c) Corresponding assembly-language code

2

3

4

s
6

7

8

long fact_do(long n)

n in %rdi

fact_do:
movl $1, %eax

.12:
imulq %rdi, %rax
subq $1, %rdi
crnpq $1, %rdi '
jg .L2
rep; ret

Set result = 1

loop:

~ompute result *= n
Decrement n

Compare n:1

If>, goto loop
Return

Section 3.6 <!antral 221

Figure 3. 19 Code for do-while version of factorial program. A conditional jump
causes the program to loop.

As an example, Figure 3.19(a) shows an implementation of a routine to com­
pute the factorial of its argument, written n!, with a do-while loop. This function
only computes the proper value for n > 0. -

A. What is the maximum value of n for which we can represent n! with a 32-bit
int?

B. What about for a 64-bit long?

The goto code shown in Figure 3.19(b) shows how the loop gets turned into
a lower-level combination of tests and conditional jumps. Following the initial­
ization of result, the program begins looping. First it executes the body of the
loop, consisting here of updates to variables result and n. It then tests whether
n > 1, and, if so, it jumps back to the beginning of the loop. Figure 3.19(c) shows

222 Chapter 3 Machine-Level Representation of Programs

W" ' , "'5l' ·':): ~ ,). """'--- ·- ~ ~ J
)bide R~verse-enginE:1ering loops

A keyto•understanding how theJle~~rfited ~ssembly code relaJes to the original s;ur~~ ~od~is to firtd a'~
mapping betv,;eet\ program values:irtd ~egi~t~r~. This tjlsk was simple enough for V!e loop o\Figur~ 3.lj" j

' but it can be mucl} m?re challenging for more coniplelf programs. The C compiler will of~en re~qange 1

the computations, so that sonie:Variables tnP1e ·c; code have no cc;unierpart in th,e machiny.code, and !
new \falues are introduced into the machine code that,do not exist fn the source code.~Moreover, it will i
often try to minimize ,register usage by mapping jnnltiple.program v~lues ontq ~ s\ngl~ register. ,· l

The process we described t9t fac~.,'.do wor~~. as a general strategy for reverse etmineerin,g.loops. j
Look at how registers are initialized J:ii:fpre, !he loop, updated and tested "'.ithin the loop, and ,used ,;
after the loop. Each of these provides a clue that c,an be, combined to solve Jl puzzle. Be prepared for l
stirprislng transformations, sq!ll .• ~ Qf which ar.e clearly, cases wh~re the compile.r was·. able t. 9. •op .. timize.·

l t!"te code, andpthers where i\ js,IJard to explajn why the compiler cpose,that P.~i~ulj!r)itr(l,\l'gy"' ,
"""'" •,b·,,.,,.,,_"",., ,,.,.....-,, ""IN#, ""'""-' ,.. _,,,,, """""""'''"'~" """"'"""''"' -'''"" _t.,,,,,,,,,.;~•>'::.....-J.';.,. ..,_.._,.,_.,,_,, __ .._ ~--~,.

the assembly code from which the goto code was generated. The conditional jump
instruction jg (line 7) is the key instruction in implementing a loop. It determines
whether to continue iterating or to exit the loop.

Reverse engineering assembly code, such as that of Figure 3.19(c), requires
determining which registers are used for which program values. In this case, the
mapping is fairly simple to determine: We know that n will be passed to the
function in register %rdi. We can see register %rax gettiµg initialized to 1 (line
2). (Recall that, although the instruction has %eax as its destination, it will also
set the upper 4 bytes of %rax to 0.) We can see thaUhis register \s also updated
by multiplication on line 4. Furthermore, since %rax is used to return, the functjon
value, it is often chosen to hold program values that are returned. We therefore
conclude that %rax corresponds to program value result.

ftractic~ e[!ili•gtii12r21{cso?u1111iba9~34i!l'~:·r.tl. ~~tl~;~:: •. :t;J
For the C code

long dw_loop(long x) {
long y = x*x;

}

long *P = &x;
long n = 2*Xi
do {

x += y;
(*p)++j

n--;
} while (n > 0);

return x;

ace generates the following assembly code:

,

' ,,
.. ,
~'i

' ·'

1

2

3

4

5

6

8

9

10

11

long dw_loop(lon[I' x)

x initially in Xrdi

dw_loop:
movq
movq
imulq
leaq

.L2:
leaq
subq
testq
jg
repj ret

%rdi, %rax
%rdi, %rcx
%rdi, %rcx
(%rdi,%rdi), %rdx

1(%rcx,%rax), Y.rax
$1, %rdx
%rdx, %rdx
.L2

A. Which registers are used to hold program values x, y, and n?

Section 3.6 Control 223

B. How has the compiler eliminated the need for pointer variable p and the
pointer dereferencing implied by the expression (•p)++?

C. Add an.notations to tlie assembly code describing the operation of the pro­
gram, similar to those shown in Figure 3.19(c).

While Loops

The general form of a while statement is as follows:

while (/est-expr)
body-statement

It differs from do-while in that test-expr is evaluated and the loop is potentially
tenninated before the first execution of body-statement. There are a number of
ways to translate a while loop into machine code, two of which are used in code
generated by Gee. Both use the same loop structure as we saw for do-while loops
but differ in how to implement the initial test.

The first translation method, which we refer to as jump to middle, performs
the initial test by performing an unconditional jump to the test at the end of the
loop. It can be expressed by the following template for translating from the general
while loop form to goto code:

goto test;
loop:

body-statement
test:

t = test-expr;
if (t)

goto loop;

As an example, Figure 3.20(a) shows an implementation of the factorial func­
tion using a while loop. This function correctly computes O! = l. The adjacent

I

224 ~Chapter 3 Machine-Level Representation of Programs

(a) C code

long fact_while(long n)
{

}

long result = 1;
while (n > 1) {

result *= n;
n = n-1;

}

return result;

(c) Corresponding i'ssembly-lariguag)l,cod~

long fact_while(long n)

n .in %rdi

fact_ while:

(b) Equivalent goto version

long fact_while_jm_goto(long n)
{

long result = 1;
goto test;'

loop:
result *= n;
n = n-1;

test:

}

if (n > 1)
goto lo~p;

return result;

:I

movl $1 •. %eax Set result = 1

jmp .LS Goto test

.L6: loop:

imulq %rdi, %rax Compute result *"" n

subq $1, %rdi Decrement n'

.LS: test:

cmpq $1, %rdi Compare n:l

jg .L6 If>, goto loop

rE!t Retizrn rep;

Fig~re '3.20, C and assemblr, code for j'hile '~ersion ot' factorial H~ing jump-to­
middle translation. The C function fact_while_3m_goto illustrates the operation of
the assembly-code version.

function fact_while:_jm_goto (Figure 3.20(b)) is a C rendition of the assembly
code generated by dee when optimization is specified with the command-line op­
tion -Og. Comparing the goto code g<enerated for fact_while (Figure 3.20(b)) to
that for fact_do (Figure 3.19(b)), we see that they are very similar, except that
the statement goto test before the loop causes the program to first perfol11)-the
test of n before modifying the values of result or n. The bottom porti,op,,of the
figure (Figure 3.20(c)) shows the actual assembly code generated.

E@ZIJiGe:8mPl~~f!iiiffi!ttliti'"'tmfiB$\WrW'!~~?i!}fl~""'"Z'i:::l
For C code having the general form

long loop_while(long a, long b)
{

}

long result = -·~~-
while () {

}

result
a =

·----·

return result;

ace, run with command-line option -Dg, produces the following code:

long_1fpop_while(long a., long b)
a in %rdi ~ b J.p %rsji.

1 ,,loop_while;
2 movl $1, %eax
3 jmp .L2
4 .L3:
5 ,leaq (%rdi,%rsi)\ %rdx
6 imu!q %rdx, %raxi..
7 addq $1, %rdi .,
8 .L2:
9 cmpq %rsi, %rdi

10 jl .L3
11 repi ret

Section 3.6 Control 225

We can see that the compiler used a jump-to-mjddle translation, using the jmp
instruction on line 3 to jump to the test starting with label . L2. Fill in the missing
parts of the C code.

The second translation method, which we refer tci as guarded do, first trans­
forms the code into a do-while loop by using a conditional branch to skip over the
loop if the initial test fails. Gee follows this strategy when compiling with higher
levels of optimization, for example, with command-line option -01. This method
can be expressed by the following template for translating from the general while
loop form to a do-Yhile loop:

t = test-exp/;'
if (!t)

goto done;
do

body-statement
while (test-expr);

done:

, This, in tum, can be transformed into goto code as

t = test-expr;
if (! t)

goto done;

..226 Chapter 3 Macbine-Level Representation of Programs

loop:
body-statement
t = test-expr;
if (t)

goto loop;
done:

Using this implementation strategy, the compiler can often optimize the initial
test, for example, determining that the te.~t condition will always hold.·

As an example, Figure 3.21 shows the same C code for a factorial function
as in Figure 3.20, but demonstrates the compilation that occurs when ace is
given command-line option -01. Figure 3.21(c) shows the actual assembly code
generated, while Figure 3.2l(b) renders this assembly code in a mbre readable C
representation. Referring to this goto code, we see that the loop will be skipped
if n ::: 1, for the initial value of n. Tue loop itself has the same general structure
as that generated for the do-while version of the function (Figure 3.19). One
interesting feature, however, is that the loop 'test (line 9 of the assembly code)
has been changed from n > 1 in the original C code to n< ¥= l. Tue compiler has
determined that the loop can only be entered when n >"r, ~nd that cfe'crementing
n will result in either n > 1 or n = l. Therefore, the test n ¥= 1 will be equivalent to

the test n ::: l.

, ~~ >;;, solU"t~age~335;)~¢;0 ~ ; , - f'Je./¥.~!fJ,

Fo'r Geode having the general form ~. "
I fl i

long loop_while2(long a, long b)

{
long result = ____ _

while <-,-,-----) {
result= ___ _

b = ·-----ir/
}

return result;
}

ace, run with command-line option -01, produces the following code:

a in %rdi, bin Y.rsi

1 loop_while2:
2 testq %rsi, %rsi

3 jle .LS
4 movq %rsi. %rax

5 .L7:
6 imulq %rdi, %rax

" lJ

7 subq %rdi, %rsi

8 testq %rsi, %rsi

-le

(a) C code

long fact_while(long n)
{

}

long result = 1;
while (n > 1) {

result *= n;
n = n-1;

}

return result;

Section 3.6 Control 227

(b) Equivalent goto version

long fact_while_gd_goto(long n)
{

}

long result = 1;
if (n <= 1)

goto done;
loop:

result *= n;
no::: n-1;
if (n != 1)

goto loop;
done:

return result;

(c) Corresponding assembly-language code

2

4

5

6

7

8

9

10

11

12

13

long fact_while(long n)
n in Xrdi

fact_while:
cmpq $1, %rdi
jle .L7
movl $1, %eax

.L6:
imulq %rdi, %rax
subq $1, %rdi
cmpq $1, %rdi
jne .L6
rep; ret

.L7:
movl $1, %eax
ret

Compare n:l

If <•, goto done

Set result = 1
loop:

Compute result •• n
Decrement n

Compare n:l

If !•, goto loop
Return

done:

Compute result = l

Return

Figure 3.21 C and assembly code for while version of factorial using guarded­
do translation. The fact_while_gd_goto function illustrates the operation of the
assembly-code version .

9 jg . L7
10 rep; ret
11 .LB:
12 movq %rsi, %rax
13 ret

We can see that the compiler used a guarded-dp translation, usiµg the j le
instruction on line 3 to skip over the loop code when the initial test fails. Fill in
the missing parts of the C code. Note that the control structure in the assembly

Chapter 3' Machine-Level Representation of Programs

code does not exactly match what would be obtained by a direct translation of the
C code acco;ding to our ,translation rules. In particular, it has two c\ifferent ret
instructions (lines 10 and 13). However, you can fill out the missing portions of
the C code in a way that it will have equivalent behavior to th.e assembly code.

!gra~t.ice f{t§filifuj:i§'cs~\!filQ)i eaiiib'M;:: ~." ,;'f:f ·4;:;;if?.:~;;;;i;~ l
A function fun_a has the following overall structure:

long fun_a(unsigned long x) {
long val = O;
while (...) £

}

return ... '
}

The ace C compiler generates the following assembly code:

long fun._a(un.signed long x)

x in Xrdi
fun_a:

2 movl $0, %eax

3 jmp .L5
4 .L6:
5 xorq i'.rdi J %rax

6 shrq %rdi Shift right by 1

7 .L5:
8 testq %rdi, %rdi

9 jne .L6
10 andl $1, %eax

11 ret

Reverse engineer the operation of this code and then de;> the following:

A. Determine what loop translation method was used.

B. Use the assembly-code version to fill in the missing parts of the C code.

C. Describe in English what this function computes.

For Loops

The general form of a for loop is as follows:

for (init-expr; test-v:pr; update-expr)
body-statement

Section 3.6 Control 229

The C language standard states (with one exception, highlighted in Problem 3.29)
that the behavior of such a loop is identical to the following code using a while
loop:

init-expr;
while (test-exprJ -(

body-stateme{lt
1, update-expr;

}

The program first evaluates the initialization expression init-expr. It enters a
loop where it first evaluates the test condition te_st-expr, exiting if the test fails, then
executes the body of the loop body-statement, and finally evaluates the update
expression update-expr.

The code generated by ace for a for loop then follows one of our two trans­
lation strategies for while loops, depending on the optimization level. That is, the
jump-to-middle strategy yields the goto code

init-expr;
goto testj

loop:
body-statement
update-expr;

test:
t = test-expr;
if (t)

goto loop;

while the guarded-do strategy yields

init-expr;
t = test-expr;
if (! t)

goto done;
loop:

body-statement
update-expr;
t = test-expr;
if (t)

goto loop;
done:

As examples, consider a factorial function written with a for loop:

long fact_for(long n)
{

long i;
long result = 1;

230 E:hapter 3 Machine-Level Representation of Programs

}

for (i = 2;' i <= n; i++)

result *= i;
return result; >!

As shown, the natural way of writing a factorial function with a for loop is
to multiply factors from 2 up ton, and so this function is quite different from the
code we showed using either a while or a do-while loop.

We can identify the different components of the for loop in this code as
follows:

inil;expr
test-expr
updatf-,expr

body-statement

i=2
i <= n

i;t-+

.,

resul~ *= i;

f'

I(I j,

Substituting these components into the template we have shown to transform a
for loop into a while loop yields the following:

long fact_for_while(long n)
{

}

long i = 2;
long result = 1;
while (i <= n) {

}

result •= i;
i++;

return result;
,.

Applying the jump-to-middle transformation to the while loop then yie\ds the
following version in goto code:

long fact_for_jm_goto(long n)
{

long i :::: 2;
long result = 1;
goto test;

loop:
result *= i;
i++;

test:

}

if (i <= n)

goto loop;
return result;

,.,

Section 3.6 Control 231

Indeed, a close examination of the assembly code produced by ace with
command-line option -Dg closely follows this template:

long tact_for(long n)

n in Zrdi

fact_for:
movl $1,
movl $2,
jmp .LS

%eax
%edx

Set result = 1
Set i .,. 2

Goto test

.L9: loop:

imulq
addq

%rdx, %rax
$1, %rdx

Compute result •= i

Increment i

.LS: test:

cmpq
jle
rep; ret

%rdi, %rdx
.L9

Compare i:n

If <=, goto loop

Return

f~Pro6lern·3:27'·'Csoiuti0fi p'!.ge°'33~ .~' - --- · .,,..,..,,_,,,--1
Write goto code for fact_for based on first transforming it to a while loop and
then applying the guarded-do transformation.

We see from this presentation that all three forms of loops in C--do-while,
while, and for---<:an be translated by a simple strategy, generating code that con­
tains one or more conditional branches, Conditional transfer of control provides
the basic mechanism for translating loops into machine code.

long fun_b(unsigned long x) {
long val = O;

}

2

long i;
for (

}

return val;

...) {

The Gee C compiler generates the following assembly code:

long tun_b(u.nsigned long x)

x in Zrdi

fun_b:
movl $64, %edx

232 Chapter 3 Machine-Level Representation of Programs

3

4

5

6

7

8

9

10

11

12

movl $0·, %eax
.110:

movq %rdi, %rcx
andl $1, %ecx
addq %rax, %rax
orq %rcx, %rax
shrq %rdi Shift right by 1

subq $1, %rdx
jne' .LlO
rep; ret

Reverse engineer the operation of this code and then do the following:

A. Use the assembly-code version to fill in the missing parts of the.C code.
' ' t

B. Explain why there is neither an initial test before the loop nor an initial jump
to the test portion of the loop.

C. Describe in English what this function computes.

ml!ic1f~~;:m1w:a1~~3t'll?'ll'.~~~rfa.lt~
Executing a continue statement in C causes the program to jump to the end of
the current loop iteration. The stated rule for translating a for loop into a while
loop needs some refinemen~when dealing with continue st~tements. Fm:.example,
consider the following code: L,

•r l~

/* Example of for lo~p co:r;ir_fl~ning ~ 1CRntinue s~are!I\~nt •/
/* Sum even numbers between 0 and 9 *I
long sum = O;
long i;
for (i = O; i < 10; i++). {

if (i & 1)

continue;
sum += i;

}

) ~ f "

A. What would we get if we naively applied our rule for translating the for loop
into a while loop? What would be wrong with this code?

B. How could you replace the continue statement with a goto statement to
ensure that the while loop correctly duplicates the behavior of the for loop?

3.6.8 Switch Statements

A switch statement provides a multiway branching capability based on the value
of an integer index. They are particularly useful when dealing with tests where

Section 3.6 Control 233

there can be a large number of possible outcomes. Not only do they make the C
code more readable, but they also allow an efficient implementation using a data
structure called a jump table. A jump table is an array where entry i is the address of
a code segment implementing the action the program should take when the switch
index equals i. The code performs an array reference into the jump table using the
switch index to determine the target for a jump instruction. The advantage of using
a jump table over a long sequence of if-else statements is that the time taken to
perform the switch is independent of the number of switch cases. Gee selects the
method of translating a switch statement based on the number of cases and the
sparsity of the case values. Jump tables are used when there are a number of cases
(e.g., four or more) and they span a small range of values.

Figure 3.22(a) shows an example of a C switch statement. This example has a
number of interesting features, including case labels that do not span a contiguous
range (there are no labels for cases 101and105), cases with multiple labels (cases
104and106), and cases that fall through to other cases (case 102) because the code
for the case does not end with a break statement.

Figure 3.23 shows the assembly code generated when compiling swi tch_eg.
The behavior of this code is shown in C as the procedure swi tch_eg_impl in
Figure 3.22{b). This code makes use of support provided by aee for jump tables,
as an extension to the C language. The array jt contains seven entries, each of
which is the address of a block of code. These locations are defined by labels in
the code and indicated in the entries in jt by code pointers, consisting of the labels
prefixed by&&. (Recall that the operator'&' creates a pointer for a data value. In
making this extension, the authors of aee created a new operator && to create
a pointer for a code location.) We recommend that you study the C procedure
s11i tch_eg_impl and how it relates to the assembly-code version.

Our original Ccode has cases for values 100, 102-104, and 106, but the switch
variable n can be an arbitrary integer. The compiler first shifts the range to between
0 and 6 by subtracting 100 from n, creating a new program variable that we call
index in our C version. It further simplifies the branching possibilities by treating
index as an unsigned value, making use of the fact that negative numbers in a
two's-complement representation map to large positive numbers in an unsigned
representation. It can therefore test whether index is outside of the range 0--6
by testing whether it is greater than 6. In the C and assembly code, there are
five distinct locations to jump to, based on the value of index. These are loc_A
(identified in the assembly code as . L3), loc_B (.LS), loc_C (. L6), loc_D (. L7),
and loc_def (.LS), where the latter is the destination for the default case. Each
of these labels identifies a block of code implementing one of the case branches.
In both the Cand the assembly code, the program compares index to6 and jumps
to the code for the default case if it is greater.

The key step in executing a switch statement is to access a code location
through the jump table. This occurs in line 16 in the C code, with a goto statement
that references the jump table jt. This computed goto is supported by aec as an
extension to the C language. In our assembly-code version, a similar operation
occurs on line 5, where the jmp instruction's operand is prefixed with'*'. indicating

234 Chapter 3 Machine-Level Representation of Programs

(a) Switch statement (b) Translation into extended C

void~ switch_eg~impl(~ong x, long n,
2 long •dest)

void switch_eg(lollg x, long n,

{

}

long *dest)

long val = Xi

switch (n) {

case 100:
val. *= 13;
break;

case 102:
val += 10;
I• Fall through ~/

case 103:
val += 11;
break;

case 104:
case 106:

val *= val:
break;

default:
val

}

O;

*dest = val;

3 {

4

5

6

7

8

9

10

/* Table of code pointer~ */
static void •jt[7] = {
1 &&loc_A, &&loc_def,, &&loc_B,

k&loc_C, &&loc_D, &&!oc_def,
&&loc_D

};
unsigned' lo~g irldex = n ~ 100;

11 long val; 1

12

13

14

15

16

17

18

if (index: > 6)

goto loc_<ief;
/• Multiway branch •/
goto •jt[index];

' II

loc~A: I• Case 100 •/

19 val x * 13;
20

21

22

'i3
24

25

26

27

2a
29

30

31

3i'

34

goto done;
loc_B: /• Case 102 •i

x = x + 10;
I• Fall throu~h •/

I ' ' loc_C: /• Case 103 •/
val=x+11;
goto done;

loc_D: t* Cases 104, 106 •f
val = x * x·
goto aon~ j' ~·

l"'oC_def: /* DefaUit case */

}

• 1· val = O;
done:

I

·"

Figure 3.22 Example switc)l. statement and its translation into ext~n\led C. Th,e translation shows the
structure of jump table jt and how it is accessed. S~.ch.~ables are supported by Gee a;.an extension to th~ C

language.

an indirectiump, and the operand specifies a·memory lotation indexed by register
%eax, which holds the value of index. (We will see in Section 3.8 llow array
references are translated into machine code.)

Our C code declares the jump, table as ·an array of seven elements, each
of which is a pointer to a code location. These elements span values 0-6 of

Section 3.6 Control 235

void switch_eg(long x, long n, long *dest)

~in %rdi, n in %rsi, dest in %rdx

" , switch_eg:
2 subq $100, %rsi Compute index = n-100
3 cmpq $6, %rsi Compare index:6
4 j_a .LS If>, goto loc_def
5 jmp ·* .L4(, %rsi,8) Goto *jg[index]
6 .L3: loc_A:
7 leaq (%rdi, %rdi ,,.2) , %rax 3•x
8 leaq (%rdi,%rax,4), %rdi val == 13•x
9 jmp .L2 Goto done

10' .L5: loc_B:
11 addq $10, %rdi x = x + 10
12 .L6: loc_C:
13 addq $11, %rdi val = x + 11
14 jmp .L2 Goto done
15 .L7: loc_D:
16 imulq %rdi, %rdi val=x*x
17 jmp .L2 ·Goto done
18 .LS: loc_def:
19 movl $0, %edi val = 0
20 .L2: done:
21 movq %rdi, (%rclx) *dest = val
22 ret Return

Figure 3.23 Assembly code for switch statement example in Figure 3.22.

index, corresponding to values 100-106 of n. Observe that the jump table handles
duplicate cases by simply having the same code label (loc_D) for entries 4 and 6,
and it handles missing cases by using the label for the default case (loc_def) as
entries 1 and 5.

In the assembly code, the jump table is indicated by the following declarations,
to which we have added comments:

.section .rodata
2 .align s Align address to multiple of 8
3 .L4:
4 .quad .L3 Case 100: loc_A
5 .quad .LS Case 101: loc_def
6 .quad .L5 Case 102: loc_l3
7 .quad .L6 Case 103: loc_C
8 .quad .L7 Case 104: loc_D
9 .quad .LS Case 105: loc_def

10 .quad .L7 Case 106: loc_D

l
I
I

--~ -· - . - . -·. ---- --- -- ------- -~1

236 Chapter 3 Machine-Level Representation of Programs

These declarations staie that within the segment of the object-code file called
. rodata (for "read-only data"), there should be a sequence of seven "quad" (8-
byte) words, where the value of each word is given by the instruction address
associated with the indicated assembly-code labels (e.g., .L3). Label .L4 marks
the start of this allocation. The address associated with this label serves as the
base for the indirect jump (line 5).

The different code blocks (C labels loc_A through loc_D and loc_def) im­
plement the different branches of the switch statement. Most of them simply
compute a value for val and then go to the end of the function. Similarly, the
assembly-code blocks compute a value for register %rdi and jump to the'position
indicated by label . L2 at the end of the functfon. Only the code for case label 102
does not follow this pattern, to account for the way the code for this-case falls
through to the block with label 103 in the original C code. This is handled in the
assembly-code block starting with label . LS, by omitting the jmp instruction at
the end of the block, so that the code continues execution of the next bloc!<:. Simi­
larly, the C version swi tch_eg_impl has no goto statement at the end of the block
starting with label loc_B.

Examining all of this code requires careful study, but the key point -is to see
that the use of a jump table allows a very efficient way to implement a multiway
branch. In our case, the program could branch to five distinct locations with a
single jump table reference. Even if we had a switch statement with hundreds of
cases, they could be handled by a single jump table access.

~-'P[iilile%.~li,;1$'~niti'.lQ;ii~~t-1i8t'.!4il~~i!~f~W,!3!i
In the C function that follows, we have omitted the body of the switch statement.
In the C code, the case labels oid no't span a contigu!ius range, and sSine c~ses had
multiple labels.

void switch2(long x, long •~est) {
long val = O;
switch (x)1 {

Body of switch statement omitted

}

*dest = val;
}

In compiling the function, Gee generates the assembly code that follows for
the initial part of the procedure, with variable x in %rdi:

void switch2(long x, long *dest)

x in Zrdi

switch2:
2 addq $1, %rdi
3 cmpq $8, %rdi
4 ja .L2
5 jmp •.L4(,%rdi,8)

Section 3.6 Control 237

It generates the following code for the jump table:

.L4:
2 .quad .L9
3 .quad .LS
4 .quad .L6
5 .quad .L7
6 . qv.ad .L2
7 .quad .L7
8 .quad .LS
9 .quad .L2

10 .quad .LS

Based on this information, answer the following questions:

A. What were the values of the case labels in the switch statement?

B. What cas~s had multiple labels in the C code?

For a C function switcher with the general structure

void switcher(long a, long b, long c, long •dest)
{

}

long val;
switch(a) {
case ___ _

c = ----
!• Fall through •/

case ___ _
val= ___ _

break;
case _____ :
case ___ _

val= ___ _
break;

case ___ _
val= ___ _

break;
default:

val
}

•dest = val;

I• Case A •/

/• Case B •/

/• Case C •I
/• Case D •/

/• Case E •/

,_~* >N~t~-.,.,_4

....... ,..,_~----......i.

ace generates the assembly code and jump table shown in Figure 3.24.
Fill in the missing parts of the C code. Except for the ordering of case labels

C and D, there is only one way to fit the different cases into the template.

238 Chapter 3 Machine-Level Representation of Programs

(a) Code

void switcher(long a, long b, long c, long *dest)

a in %rsi, bin Y.rdi, c in %rdx, din %rcx

switcher:
2 cmpq $7, %rdi
3 ja .L2
4 jmp *.L4(,%rdi,8)
5 . section . rodata
6 .L7:
7

8

9

10

11

12

13

14

15

16

17

18

19

20

xorq
mo'vq

.L3:
leaq
jmp

.L5:
leaq
salq
jmp

.L2:
movq

.L6:
movq
ret

(b) Jump table

. L4:
2 .quad
3 .quad
4 .quad
5 .quad
6 .quad
7 .quad
8 .quad
9 .quad

$15, %rsi
%rsi, %rdx

112(%rdib, %rdi
.L6

(%rdx,%rsi), %rdi
$2, %rdi
.L6

%rsi, %rdi

%rdi, (%rcx)

.L3

.L2

.L5

.L2

.L6

.L7

.L2

.L5

Figure 3.24 Assembly code and jump table for Problem 3.31.

3.7 Procedures

••

Procedures are a key abstraction in software. They provide a way to package code
that implements some functionality with a designated set of arguments and an
optional return value. This function can then be invoked from different points in
a program. Well-designed software uses procedures as an abstraction mechanism,
hiding the qetailed implementation of some action wwe providing a clear and
concise interface definition .51f

1
;.vhat

1
values will J>e computed and what effects

the proced11re will have on the l?rogram state. Procedures, come in many g\liies

Section 3.7 Procedures 239

in different programming languages-functions, methods, subroutines, handlers,
and so on-but they all share a general set of features.

There are many different attributes that must be handled when providing
machine-level support for procedures. For discussion purposes, suppose proce­
dure P calls procedure Q, and Q then executes and returns back to P. These actions
involve one or more of the following mechanisms:

Passing control. The program counter must be set to the starting address of the
code for Q upon entry and then set to the instruction in P following the
call to Q upon return.

Passing data. P must be able to provide one or more parameters to Q, and Q must
be able to return a value back to P.

Allocating and deallocating memory. Q may need to allocate space for local
variables when it begins and then free that storage before it returns.

The x86-64 implementation of procedures involves a combination of special
instructions and a set of conventions on how to use the machine resources, such as
the registers and the program memory. Great effort has been made to minimize
the overhead involved in invoking a procedure. As a consequence, it follows what
can be seen as a minimalist strategy, implementing only as much of the above set
of mechanisms as is required for each particular procedure. In our presentation,
we build up the different mechanisms step by step, first describing control, then
data passing, and, finally, memory management.

3.7.1 The Run-Time Stack

A key feature of the procedure-calling mechanism of C, and of most other lan­
guages, is that it can make use of the last-in, first-out memory management disci­
pline provided by a stack data structure. Using our example of procedure P calling
procedure Q, we can see that while Q is executing, P, along with any of the proce­
dures in the chain of calls up to P, is temporarily suspended. While Q is running,
only it will need the ability to allocate new storage for its local variables or to set up
a call to another procedure. On the other hand, when Q returns, any local storage it
has allocated can be freed. Therefore, a program can manage the storage required
by its procedures using a stack, where the stack and the program registers store
the information required for passing control and data, and for allocating memory.
As P calls Q, control and data information are added to the end of the stack. This
information gets deallocated when P returns.

As described in Section 3.4.4, the x86-64 stack grows toward lower addresses
and the stack pointer %rsp points to the top element of the stack. Data can be
stored on and retrieved from the stack using the pushq and popq instructions.
Space for data with no specified initial value can be allocated on the stack by simply
decrementing the stack pointer by an appropriate amount. Similarly, space can be
deallocated by incrementing the stack pointer.

When an x86-64 procedure requires storage beyond what it can hold in reg­
isters, it allocates space on the stack. This region is referred to as the procedure's

1
l

240 Chapter 3 Machine-Level Representation of Programs

Figure 3.25
General stack frame
structure. The stack
can be used for passing
arguments, for storing
return information, for
saving registers, and for
local storage. Portions
may be omitted when not
needed.

Increasing
address

Stack "bottom"
•' .

t

• ,,
•
•

Argumentn

c_ :n!;~'*~" ;::·~·i. ,~ ~f.1~.
r; .?. '•" ef,,· . .,

-- ~ w•~'ll ~''W' ··g N. ~

11" '"""""'. ·~--' "
Argument 7

Retui;n, address

Saved registers

Local variables

Argument
build area

Stack poJtiter _..... /'.rsp . .,._ ______ __.

Stack '1op"

Earlier frames

Frame for calling
function P

><Frame for executing
• • funetion Q

I - t.

stack frame.figure 3.25 shows the overall structure of the run-time stack, includ­
ing its partitioning into stack frames, in its m©st gerre'ral form. The frame for the
currently executing procedure is always at'the top of the stack When procedure P
calls procedure Q, it will push 'the return address onto the·~tack, indicating where
within P the program should resume execution once Q returns. We consider the
return address to be part of P's stack.frame, 'since it holds state relevant to P. The
cqde for Q allocates the space required for its stack frame by extending the cur­
rent stack boundary. Within that space, it can save the values of registers, allocate

Section 3.7 Procedures 241

space for local variables, and set up arguments for the procedures it calls. The
stack frames for most procedures are of fixed size, allocated at the beginning of
the procedure. Some procedures, however, require variable-size frames. This issue
is discussed in Section 3.10.5. Procedure P can pass up to six integral values (i.e.,
pointers and integers) on the stack, but if Q requires more arguments, these can
be stored by P within its stack frame prior t~ the call.

In the interest of space and time efficiency, x86-64 procedures allocate only
the portions of stack frames they require. For example, many procedures have
six or fewer arguments, and so all of their parameters can be passed in registers.
Thus, parts of the stack frame diagrammed in Figure 3.25 may be omitted. Indeed,
many functions do not even require a stack frame. This occurs when all of the local
variables can be held in registers and the function does not call any other functions
(sometimes referred to as a leaf procedure, in reference to the tree structure of
procedure calls). For exampfo, none of the functions we have examined thus far
required stack frames.

3.7.2 Control Transfer

Passing control from function P to function Q involves simply setting the program
counter (PC) to the starting address of the code for Q. However, when it later
comes time for Q to return, the processor must have some record of the code
location where it should resume the execution of P. This information is recorded
in x86-64 machines by invoking procedure Q with the instruction call Q. This
instruction pushes an address A onto the stack and sets the PC to the beginning
of Q. The pushed address A is referred to as the return address and is computed
as the address of the instruction immediately following the call instruction. The
counterpart instruction ret pops an address A off the stack and sets the PC to A.

The general forms of the call and ret instructions are described as follows:

Instruction

call Label

call •Operand

ret,

Description

Procedure call

Procedure call

Return from call

(These instructions are referred to as callq and retq in the disassembly outputs
generated by the program OBJDUMP. The added suffix 'q' simply emphasizes that
these are x86-64 versions of call and return instructions, not IA32. In x86-64
asse!fibly code, both versions can be used interchangeably.)

The call instruction has a target jndicating the address of the instruction
where the called procedure starts. Like jumps, a call can be either direct or indirect.
In assembly code, the target of a direct call is given as a label, while the target of
an indirect call is given by '•' followed by an operand specifier using one of the
formats described in Figure 3.3.

242

.. --~---- - .. -----·-·- - --- -

Chapter 3 Machine-Level Representation of Programs

%rip Ox400563

7.rsp Ox7fffffffe840

,,
Vil·,.

' -~· '

' ' ..
' <'ft''

'-;(, .
..1 ~~ ,:t ' .

%rip 0~400540

7.rsp Ox7fffffffe838

q ~ ,,.,,,. f ''::·i:-• ·':?'!";,
t

Ox400568

%rip Ox400568

%rsp Ox7fffffffe840

~ ~ ./~"' ~ •' ~,-_. ·-

\: £: ,;. '* ~ ,,,j'f f

(a) Executing call (b) After call (c) After ret

Figure 3.26 Illustration of call and ret functions. The.call instruction transfers control to the start of a,
function, while the ret instruction returns back to the instruction following the call.

Figure 3.26 illustrates the execution of the call and ret instructions for the
mul tstore and main functions introduced in Section 3.2.2. The following are
excerpts of the disassembled code for the two functions:

Begi1l1ling of function multstore

1 0000000000400540 <multstore>:
2 400540: 53 push %rbx

3 400541: 48 89 d3 mov %rdx,%rbx

Return from function multstore

4 40054d: c3 retq

Call to multstore from main

5 400563: e8 d8 ,ff ff ff callq 400540 <multstore>

6 400568: 48 Sb 54 24 08 mov Ox8(%rsp),%rdx

In this code, we can see that the call instruction with address Ox400563 in
main calls function multstore. This status is shown in Figure 3.26(a), with the
indicated values for the stack pointer %rsp and the program counter %rip. The
effect of the call is to push the return address Ox400568 onto the stack and to jump
to the first instruction in function multstore, at address Ox0400540 (3.26(b)).
The execution of function mul tstore continues until it hits the ret instruction
at address Ox40054d. This instruction pops the value Ox400568 from the stack
and jumps to this address, resuming the execution of main just after the call
instruction (3.26(c)).

As a more detailed example of passing control to and from procedures, Figure
3.27(a) shows.the disassembled code for.two functions, top and leaf, as well as
the portion .of code in function main where top gets called. Each instruction is
identified by labels L1-L2 (in leaf), Tl-T4 (in top), and M1-M2 in main. Part (b)
of the figure shows a detailed trace of 1he code execution, in which main calls
top(lOO), causing top to call leaf(95). Function leaf retilrns 97 to top, which

I

Section 3.7 Procedures 243

(a) Disassembled code for demonstrating procedure calls and returns

Disassembly of leaf(long y)

yin Xrdi

0000000000400540 <leaf>:
2 400540: 48 Sd 47 02 lea Ox2 (%rdi), %rax L1' zr2

3 400544: c3 retq L2' Return

4 0000000000400545 <top>:
Disassembly of top(long x)

x in %rdi

5 400545: 48 83 ef 05 sub $0x5 • 'Y.rdi Tl: x-5

6 400549: es f2 ff H ff callq 400540 <leaf> T2' Call leaf (x-5)

7 40054e: 48 01 cO add %rax,%rax rs, Double result

8 400551: c3 retq T4: Return

Call to top from function main

9 40055b: e8 e5 ff ff ff callq 400545 <top> M1: Call top(100)

10 400560: 48 89 c2 mov %rax,%rdx M2: Resume

(b) Execution trace of example code

Instruction State values (at beginning)

Label PC Instruction %rdi %rax %rsp •7.rsp Description

Ml Ox40055b callq 100 Ox7fffffffe820 Call top(lOO)

Tl Ox400545 sub 100 Ox7fffffffe818 Ox400560 Entry of top
TZ Ox400549 callq 95 Ox7ff fffff e818 Ox400560 Call leaf (95)

LI Ox400540 lea 95 Ox7fffffffe810 Ox40054e Entry of leaf
L2 Ox400544 retq 97 Ox7fffffffe810 Ox40054e Return 97 from leaf

T3 Ox40054e add 97 Ox7fffffffe818 Ox400560 Resume top
T4 Ox400551 retq 194 Ox7fffffffe818 Ox400560 Return 194 from top

MZ Ox400560 mov 194 Ox7fffffffe820 Resume main

Figure 3.27 Detailed execution of program involving procedure calls and returns. Using the stack to
store return addresses makes it possible to return to the right point in the procedures.

then returns 194 to main. The first three columns describe the instruction being
executed, including the instruction label, the address, and the instruction type. The
next four columns show the state of the program before the instruction is executed,
including the contents of registers %rdi, %rax, and %rsp, as well as the value at
the top of the stack. The contents of this table should be studied carefully, as they

244 Chapter 3 Machine-Level Representation of Programs

2

3

4

5

6

7

8

9

10

11

demonstrate the important role of the run-time stack in managing the storage
needed to support procedure calls and returns.

Instruction Li of leaf sets %rax to 97, the value to be returned. Instruction L2
then returns. It pops Ox400054e from the stack. In setting the PC to this poppe.d
value, control transfe~s back to instruction T3 of top. The program has successfully
completed' ihe call to leaf and returned to top.

Instruction T3 sets %rax to 194, the value to be returned from top. Instruction
T4 then returns. It pops Ox4000560 from the stack, thereby setting the PC to
instruction M2 of main. The program has successfully completed the call to top
and returned to main. We see that the stack pointer has also been restored to
Ox7fffffffe820, the value it h~p before the call to top.

We can see that this simple mechanism of pushing the r~turn address onto
the stack makes it possible for the function to 'later retur,n tc_l the proper point
in the program. The standard ~all/return mechanism of C (ai;td of most program­
ming languages) convenientlyinatches the last-in, first-out memory management
discipline provided by a stack.

Dti:Utit~":RFOmrun:mmritn.~~r~~~~~· ~i·l'i~
The disassembled code for two functions first and last is shown below, along
with the code for a call off irst by function main:

Disassembly of last(long u, long v)

u iD. %rdi, v in Xrsi

0000000000400540 <last>:
400540: 48 89 f8
400543: 48 Of af c6
400547: c3

Disassembly of last (long x)

x in %rdi

0000000000400548 <first>:
400548'.: 48 8d 77 01
40054c: 48 83 er 01
400550: es eb ff ff ff
400555: f3 c3

400560: es e3 ff ff ff
400565: 48 89 c2

mov %rdi,%rax
imul %rsi,%rax
retq

lea Ox1(%rdi),'Y.f5i
sub $0xl,%rdi
callq. ,400540 <last>
repz retq

callq 400548 <first>
mov i'.rax , Y.rdx

L1: u

£2: U*V

L3: Return

F1: x+1

F2: x-1

F3: Call last(x-1,x+1)

F4: Return

Ml: Call first(10)

M2: Res1.1I11e

Each of these instructions is given a label, similar to those in Figure 3.27(a).
Starting with the calling offirst(10) by main, fill in the following table to trace
instruction execution thr'ough to the point where the program returns back to
main.

Section 3.7 Procedures 245

Instruction State values (at beginning)

Label PC Instruction %rdi %rsi %rax %rsp *%rsp Description

Ml

Fl
F2
F3

L1
L2
L3

F4

M2

Ox400560 callq

3.7.3 Data Transfer

10 Ox7fffffffe820

In addition to passing control to a procedure when called, and then back again
when the procedure returns, procedure calls may involve passing data as argu­
ments, and returning from a procedure may also involve returning a value. With
x86-64, most of. these data passing to and from procedures take place via regis­
ters. For example, we have.already seen numerous examples of functions where
arguments are passed in registers %rdi, %rsi, and others, and where values are re­
turned in register %rax. When procedure P calls procedure Q, the code for P must
first·copy the arguments into the proper registers. Similarly, when Q returns back
to P, the code for P can 'access the returned value in register %rax. In this section,
we explore these conventions in greater detail.

With x86-64, up to six integral (i.e., integer and pointer) arguments can be
passed via registers. The registers are used in a specified order, with the name
used for a register depending on the size of the data type being passed. These are
shown in Figure 3.28. Arguments are allocated to these registers according to their

Operand Argument number

size (bits) 1 2 3 4 5 6

64 %rdi %rsi %rdx %rcx %r8 %r9
32 %edi %esi %edx %ecx %r8d %r9d
16 %di %si %dx %ex %r8w %r9w
8 %dil %sil %dl %cl %r8b %r9b

Figure 3.28 Registers for passing function arguments. The registers are used in a
specified order and named according to the argument sizes.

Call first(10)

---~.~~--~--"".~ - -~- --- - ··-·· ... _

246 Chapter 3 Machine-Level Representation of Programs

ordering in the argument list. Arguments smaller than 64 bits can be accessed using
the appropriate subsection of the 64-bit register. For example, if the first argument
is .32 bits, it can be accessed as %edi.

When a function has more than six integral arguments, the other ones are
passed on the stack. Assume that procedure P calls procedure Q with n integral
arguments, such that n > 6. Then the code for P must allocate a stack frame with
enough storage for arguments 7 through n, as illustrated in Figure 3.25. It copies
arguments 1-6 into the appropriate registers, and it puts arguments 7 through n
onto the stack, with argument 7 at the top of the stack. When passing parameters
on the stack, all data sizes are rounded up to be multiples of eight. With the
arguments in place, the program can then execute a call instruction to transfer
control to procedure Q. Procedure Q can access its arguments via registers and
possibly from the stack. If Q, in turn, calls some function that has more than six
arguments, it can allocate space within its stack frame for these, as is illustrated
by the area labeled "Argument build area" in Figure 3.25.

As an example of argument passing, consider the C function proc shown in
Figure 3.29(a). This function has eight arguments, including integers with different
numbers of bytes (8, 4, 2, and 1), as well as different types of pointers, each of which
is 8 bytes.

The assembly code generated for proc is shown in Figure 3.29(b). The first
six arguments are passed in registers. The last two are passed on the stack, as
documented by the diagram of Figure 3.30. This diagram shows the state of the
stack during the execution of proc. We can see that the return address was pushed
onto the stack as part of the procedure call. The, two arguments, therefore, are
at positions 8 and ·16 relative to the stack pointer. Within the code, we can see
that different versions of the ADD instruction are used according to the sizes of the
operands: addqfor al (long), addl for a2 (int), addwfor a3 (short), and addbfor
a4 (char). Observe that the movl instruction of line 6Teads 4 bytes from memory;
the following addb instruction only makes use of the low-order byte.

r,.J:Wct$~rmm.~1~®f~~~m't~"f'.<::;¥J
AC function procprob !Jas four arguments u, a, v·, and b. Each is either a signed
number or a pointer to a signed number, where the numbers have different sizes.
The function has the following body:

2

3

4

*U += a;
*V += b;
return sizeof(a) + s~zeof(b);

It compiles to the following x86-64 code:

procprob:
movslq %edi, %rdi
addq %rdi, (%rdx)
addb %sil, (%rcx)

(a) C code

void proc(long a1, long >11a1p,
int a2, i!lt· 'a2p,
short a3, short •a3p.
char a4, char •a4p)

{

•alp += a1;
•a2p += a2;
•a3p += a3;
•a4p += a4;

}

(b) Generated assembly code

void proc(a1, a1p, a2, a2p, a3, a3p, a4, a4p)
Arguments passed as follovs:

at in %rdi (64 bits)
alp· in %;-si (64 bits)
a2 in %edx (3_2 bits)
a2p in Zrcx (64 bits)

a3 in %rBio! (16 bits)

a3p in %r9 (64 bits)
a4 at Xrsp+B (8 bits)
a4p at %rsp+16 (64 bits)

1 --proc:
2 movq 16(%rsp), %rax Fetch a4p (64 bits)
l 'addq 7.rdi, C%rsi) *alp += at (64 bits)
4 addl %ecbc, '<%rcx) *a2p += a2 (32 bits)
5 addw '%r8w, (%r9) *a3p += a3 (16 bits)
6 movl 8(%rsp), %edx Fetch a4 c 8 bitSJ
7 addb i',dl, (%rax) *a4p += a4 (8 bits)
8 ret Return

Section 3. 7 Procedures 247

"
Figure 3.29 E~ample of function with multiple arguments of different types.
Arguments 1-6 are passed in registers, while arguments 7-8 are passed on the stack.

Figure 3.30
Stack frame structure for
function proc. Argument!
a4 ~nd a4p" are passed on
the stack.

a4p 16

Return address

·-·.-·- .. -~--. -.-.. - .. - ~---- - - . ,,

248 Chapter 3 Machine-Level Representation of Programs

5 movl $6, %eax
6 ret

Determine a valid ordering and types of the four parameters. There are two

correct answers.

3.7.4 Local Storage on the Stack.

Most of the procedure examples we have seen so far did not require any local
storage beyond what could be held in registers. At times, however, local data must
be stored in memory. Common cases of this include these:

• There are not enough registers to hold all of the local data.

• The address operator '&' is applied to a local variable, and hence we must be
able to generate an address for it.

• Some of the local variables are arrays or structures and hence must be accessed
by array or structure references. We will ·discuss this possibilit)' 'when we
describe how arrays and structures are allocated.

Typically, a procedure allocates space on the stack frame by decrementing the
stack pointer. This results in the portion of the stack frame labeled "Local vari­
ables" in Figure 3.25.

As an example of the handling of the address operator, consider the two
functions shown in Figure 3.31(a). The function swap_add swaps the two values
designated by pointers xp and yp and also returns the sul)l of the two vajues. The
function caller creates pointers to local variables arg1 and arg2 and pa~se~ these
to swap_add. Figure 3.3l(b) shows how caller uses a stack frame to implement
these local variables. The code for caller starts by decrementing the stack pointer
by 16; this effectively allocates 16 bytes on the stack. Letting S denote the value of
the stack pointer, we can see that the code computes &arg2 as S + 8 (line 5), &arg1
as S (line 6). We can therefore infer that local variables arg1 and arg2 are stored
within the stack frame at offsets 0 and 8 relative to the stack pointer. When the call
to ~wap_;.dd completes, the code 'foi caller then retrieves the two values from
the stack (lines 8-9), computes their difference, and multiplies this by the value
returned by swap_add in register %rax (line 10). Finally, the function deallocates
its stack frame by incrementing the stack pointer by 16 (line 11.) We can ~ee with
this example that the run-time stack provides a simple mechanism for all,qcating
local storage when it is required and deallocating it when the function coi;npletes.

As a more complex example, the function call_proc, shown in Figur~ 3,.¥2,
illustrates many aspects of the x86-64 stack discipline. Despite the length 9f this
example, it is worth studying carefully. If"shows a function that must allocate
storage on the stack for local variables, as well as to pass values to the 8-argument
function proc (Figure 3.29). The function creates a stack frame, diagrammed in
Figure 3.33.

Looking at the assembly code for call_proc (Figure 3.32(b)), we can see
that a large portion of the code (lines 2-15) involves preparing to call function

(a) Code for swap_add and calling function

long swap_add(long •xp, long •yp)
{

long x = *Xpj
long y = *YPi
*xp = Yi
*YP = x;
return x + y;

:t

long caller()
{

}

long argl = 534;
long arg2 = 1057;
long sum= swap_add(&argl, &arg2);
long diff = argl - arg2;
return sum * diff;

(b) Generated assembly code for calling function

long caller()

1 caller:
2 subq $16, · %rsp Allocate 16 bytes for stack frame
3 movq $534, (%rsp) Store 534 in arg1
4 movq $1057, .8(%rsp) Store 1057 in arg2
s leaq 8(%rsp) J %rsi Compute &arg2 as second argument
6 movq %rsp, %rdi Compute &arg1 as first argument
7 call swap_add Call swap_add(&arg1, karg2)
8 movq (%rsp), %rdx Get arg1
9 subq 8(%rsp), %rdx Compute diff = arg1 - a.rg2

10 imulq %rdx, %rax Compute sum * diff
11 addq $16, %rsp Deallocate stack frame
12 ret Return

Section 3.7 Procedures 249

Figure 3.31 Example of procedure definition and call. The calling code must allocate
a stack frame due to the presence of address operators.

proc. This includes setting up the stack frame for the local variables and function
parameters, and for loading function arguments into registers. As Figure 3.33
shows, local variables xl-x4 are allocated·on ihe stm:k 'and have different sizes.
Expressing their locations as offsets relative to the stack pointer, they occupy bytes
24-31 (xl), 20-23 (x2), 18-19 (x3), and 17 (s3). Pointers to these locations are
generated by leaq instructions (lines 7, 10, 12, and 14). Arguments 7 (with value
4) and 8 (a pointer to the location of x4) are stored on the stack at offsets 0 and 8
relative to the stack pointer.

I',

I

-~. ,.. .. --·

250 Chapter 3 Machine-Level Representation of Programs

(a) C code for calling function

long call_proc()
{

long x1 = 1; int x2 = 2;
short x3 = 3; char x4 = 4;

·---~-~

proc(x1, &x1, x2, &x2, x3, &x3, x4, &x4);
return (xl+x2)•(x3-x4);

}

(b) Generated µssembly code

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

long call_proc()

call_proc:
Set up arguments to proc

subq $32, %rsp
movq $1, 24(%rsp)
movl $2, 20(%rsp)
movw $3, 18(%rsp)
mo vb $4, 17(%rsp)
leaq 17(%rsp), %rax
movq %rax, 8(%rsp)
movl $4, (%rsp)
leaq 18(%rsp), %r9
movl $3, %r8d
leaq 20(%rsp), %rcx

movl $2, %edx
leaq 24(%rsp), %rsi
movl $1, %edi
Call proc

call proc
Retrieve chaD.ges. to memory

movslq 20(%rsp), %rdx
addq 24(%rsp), %rdx
movswl 18(%rsp), %eax
mOvsbl 17 (%rsp)-, %ecx
subl %ecx, %eax
cltq
imulq %rdx, %rax
addq $32, %rsp .
r~t

Allocate 32-byte stack frame

Store 1 in &x1

Store 2 in &x2

Store 3 in &x3

Store 4 in &x4

Create &x4
' ' Store &x4 as argument 8

Store 4 as argument 7

Pass &x3 as argument 6

Pass 3 as argument 5

Pass &x2 as argument 4

Pas~s 2 as prgume"nt 3

Pass &x1 as argwD.ent 2

Pass 1 as argument 1

Get x2 aD.d _cpnvert to~ long

Compute x1+x2

Get x3 and convert to int

Get x4 and convert to int

Compute x3-x4

Convert to long

Compute (x1+x2) * (x3-x4)

Deallocate stack frame

Return

Figure 3.32 .Example of code to call function proc, defined in Figure 3.29. This code

creates a stack frame.

Figure 3.33
Stack frame for function
call_proc. The stack
frame contains local
variables, as well as two of
the arguments to pass to
function proc.

>i'f

Return address
32 xl
24 x2

2J x3 Jx~f 18 17 16

Argument 8 = &x4
8

..~ ' A4 •;
·-~

'L ,,.,
' . 0

J Argument 7

Section 3.7 Procedures

~Stack pointer
'l.rsp

When procedure proc is called, the program will begin executing the code
shown in Figure 3.29(b). As shown in Figure 3.30, arguments 7 and 8 are now
at offsets 8 and 16 relative to the stack pointer, because the return address was
pushed onto the stack.

When the program returns to call_proc, the code retrieves the values of the
four local variables (lines 17-20) and performs the final computations. It finishes
by incrementing the stack pointer by 32 to deallocate the stack frame.

3.7.5 Local Storage in Registers

The set of program registers acts as a single resource shared by all of the proce­
dures. Although only one procedure can be active at a given time, we must make
sure that when one procedure (the caller) calls another (the callee), the callee does
not overwrite some register value that the caller planned to use later. For this rea­
son, x86-64 adopts a uniform set of conventions for register usage that must be
respected by all procedures, including those in program libraries.

By convention, registers %rbx, %rbp, and Y.r12-%r15 are classified as callee­
saved registers. When procedure P calls procedure Q, Q must preserve the values
of these registers, ensuring that they have the same values when Q returns to P as
they did when Q was called. Procedure Q can preserve a register value by either not
changing it at all or by pushing the original value on the stack, altering it, and then
popping the old value from the stack before returning. The pushing of register
values has the effect of creating the portion of the stack frame labeled "Saved
registers" in Figure 3.25. With this convention, the code for P can safely store a
value in a callee-saved register (after saving the previous value on the stack, of
course), call Q, and then use the value in the register without risk of it having been
corrupted.

All other registers, except for the stack pointer %rsp, are classified as ca//er­
saved registers. This means that they can be modified by any function. The name
"caller saved" can be understood in the context of a procedure P having some local
data in such a register and calling procedure Q. Since Q is free to alter this register,
it is incumbent upon P (the caller) to first save the data before it makes the call.

As an example, consider the function P shown in Figure 3.34(a). It calls Q twice.
During the first call, it must retain the value of x for use later. Similarly, during
the second call, it must retain the value computed for Q (y). In Figure 3.34(b),

251

252 Chapter 3 Machine-Level Representation of Programs

(a) Calling function

long P(long x, long y)

{

}

long u = Q(y);

long v = Q(x);
return u + v;

- - - - - - = -- - - - - - - - ~

(b) Generated assembly codefor the c,alling function

2

3

4

5

6

7

8

9

10

11

12

13'

14

15

long P(long x, long y)

x in %rdi , y in %rsi

P:
pushq %rbp
pushq %rbx
subq $8, %rsp
movq %rdi, %rbp
movc:ft %rsi~ ·%tdl
call ·Q'

movq %rax, %rbx
movq %rbp, %rdi
call Q

addq %rbx, %rax
addq $8, %rsp
popq %rb"x
popq %rbp'
ret

Save %rbp •
Save %rbx
Align stack frame

,,
Save x
Move ~_v.>tO first argtfment' ~!

Call Q(y)

Save result
Move x to fitst argument~(

Call Q(x)

Add saved Q(y) 'to Q(x)

Deallocate last part of stack

Restore %rbx

Restore %rbp

,.

"fJ'

Hl
1

Figure 3.34 Code d<\i;non~trating use of callee-s,aved register~- Value x mus,t be
prperved durinll the first call, and value Q (y 5 must be preserved il4ring the iecond.,

, ~

we can see that·the code generated1by, Gee uses twp callee-saved' registers: %rbp
to hold x, a)1d .%rbx to hold -the computed value of Q (y). At the beginning of the
function, it saves the values of these t:.vo registers on the stack (Jines 2-3). It copies
argument x to %rbp before the first call-to Q (line 5). It copies the:result of this call
to %rbx before the second call to Q (line 8). At the end .of the function (Jines 13-
14), it restores the values of the.two callee-saved registers by p.opping them off.the
stack. Note how they are popped in the reverse order from how they were.pushed,
to account for the last-in,-1irst-out discipline of a stack. ,,, ,.

~i~elf9b1~ffi §~3'.i\i{>'ilit1~·~~&tia;:a:ttl~~!flb.~it5'.!Pll
Consider a function P, whicli generates local•values, named a0-a8. It then calls
function Q using these generated values as arguments. Gee produces the following

code for the first part of P:

\
I

'· i
I

\

2

3

4

5

6

7

8

9

10

11

12

B

14

15

16

17

18

19

20

Section 3.7

long P(long x)

x in Zrdi

P:
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbp
pushq %rbx
subq $24, %rsp
movq %rdi, %rbx
leaq 1(%rdi), %rl5
leaq 2(%rdi), %r14
leaq 3(%rdi), %rl3
leaq 4(%rdi), %r12
leaq s<r.rdil, %rbp
leaq 6(%rdi), %rax
movq %rax·, C%rsp)
leaq 7(%rdi), %rdx
movq %rdx, 8(%rsp)
movl $0, %eax
call Q

A. Identify which local values get stored in callee-saved registers.

B. Identify which local values get stored on the stack.

c Explain why the program could not store all of the local values in callee­
saved registers.

3.7.6 Recursive Procedures

l The conventions we have described for using the registers and the stack allow

\

~86-64 procedures to call themselves recursively. Each procedure call has its own

I
private space on the stack,: and· so the local variables-of the multiple outstanding
tails do not interfere with one another. Furthermore, the stack discipline naturally
provides the proper policy for allocating local storage when the procedure is called

1
1

and deallocatfug it before returning.
Figure 3.35 show!! both the C code and the 'generated assembly code for a

\ recursive factcirial function. We can see that the assembly code uses register %rbx
(to hold the parameter n, after first saving the existing value on the stack (line 2)
l and later restoring the value before returning (line 11). Due to the stack discipline,

and the register-saving conventions, we can be assured that when the tecursive call
to rf act (n-1) returns (line 9) that (1) the result of the call will be held in register

Procedures 253

......... - s ·- ·- .. --· .. ,...,

254 Chapter 3 Machine-Level Representation of Programs

(a) C code

long rfact(long n)
{

long result;
if (n <= 1)

result 1· •
else

result= n * rfact(n-1);
return result;

}

(b) Generated assembly code

1

2

3

4

5

6

7

8

9

10

11

12

long rfact (long n)

n in Xrdi

rfact:
pushq %rbx
movq %rdi, %rbx
movl $1, %eax
cmpq $1, %rdi
jle .L35
leaq -1(%rdi),
call rfact
imulq %rbx, %rax

.L35:
popq %rbx
ret

%rdi

Save %rbx
Store n in callee-saved registerr

Set return value = 1

Compare n:1

If <"", goto done

Compute n-1

Call rfact(n-1)

Multiply result by n

done:

Restore i.Tbx

Return 'J

Figure 3.35 Code for recursive factorial program. Tbe standa~d procedure handling
mechanisms suffice for implementing recursive functions.

%rax, and (2) the value of argument n will held in rpgister 'l,tJ<~· Multiplying,these
two values then computes the desired result.

We can see from this example that calling a function r.e~ursively proceeds just
like any other function.call. Our stack discipline prpvides a mechanism.wh,ere
each invocation of a function!.has 1ts:own private.sto.rage.for state·informatjon
(saved values;pf,th~return location and callee-saved registers) . .If need be, ii
carr also provide storage for·lc?cal variables. The stack discipline of.allocation and
deallocation naturally matches the call-return ordering of functions.: This m<;t\)od
of implementing function calls and returns even worhfpr more complex pattern~
including mutual.recursion (of;l.g., when procedure P calls Q, which in turn calls P).

m'~e~P,ti)e'.ifj!35l'{~~~~&:"i~;;;;.;of·~
For a C function havin)l the general structure

Section'-3:8 Array Allocation and Access 255

long rfun(unsigned long x) {
if(___)

ll'eturn ____ ._,_;

.unsigned long nx = ~·~· __ _

l°ong rv rfun (nx) ;
return ___ _

}

ace generates the following assembly code:

long r:fll11.(unsigned long x)

x in Xrdi

rfun:
2 pushq ~rbx
3 movq %rdi, %rbx
4 movl $0, %eax
5 testq %rdi, %rdi
6 je .L2
7 shrq $2, %rdi
8 call rfun
9 addq %rbx, %rax

10 .L2:
11 popq hr bx

12 ret

A. What value does rfun store in the callee-saveo register %rbx?

B. Fill in •the missing expfessions in the C code shown above:

,3.8 Array Allocation and Access
1u \ T

',Arrays in C are oqe, 11\eans of aggregating scalar data into largpr data types. C
uses a particularly simple implementation of arrays1 and hence the translatism
into machine code is fairly straightforivard. One unusual f~~ture of C is that we
'i:an generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into 'address computations in mn.chine code.

Optimizing compilers are pllrticularly good at simplifying the. address compu­
'iations used by array indexing. This can make the correspondence between the C
:Ode and its translation into machine code somewhat difficult to decipher.

;.8.1 Basic Principles ·"

:or data type T and integer constant N, consider a declaration of the form

; A[NJ;

,.
256 Chapter 3 Machine-Level Representation of Programs

Let us denote the starting location as x •. The declaration has two effects. First,
it allocates a contiguous region of L · N bytes in memory, where L is the size (in
bytes) of data type T. Second, it introduces an ide,ntifier A tha~ can be used as
a pointer to the beginning of the array. The value of this poiµter will be.x •. The
array elements can be accessed using an integer index ranging between 0 and N -1.
Array element i will be stored at address x• + L · i.

As examples, consider the following declarations:

char A [12] ;

char •B [8] ;

int C[6];

double •D [5] ;

These declarations will generate arrays with the following parameters:

Array Element size Total size Start address El~ment i

A 1 12 x. XA +i

B 8 64 Xs XB +Bi

c 4 24 Xe Xe +4i

D 8 40 Xo x0 '+ Si

Array A consists of 12 single-byte (char) elements. Array C consists of 6 integers,
each requiring 4 bytes. B and D are both arrays of pointers, and hence the array
elements are 8 bytes each. ·

The memory referencing instructions of x86-64 are designed tq simplify array
access. For example, suppose E'is an array of values of t'ype int and we wish'to
evaluate E [i], where the address of Eis stored in register %rdx and'i is stored in
register %rcx. Then the instruction

movl (%rdx,%rcx,4),%eax

will perform the address computation xE + 4i, read that memory lopation, and
copy the result t'o register %erui'. The allowed scaling factors 6r 1, 2, 4, and 8 cover
the sizes of the common primitive data types. •

Consider the' following declarations:

short S[7];

short •T [3] ;

short **U[6l;

int V[8];

double •W[4];

Fill in the following table describing the element size, the total size, and the
address of element i for each of these arrays.

Section 3.8 Array Allocation and Access

Array Element size Total size Start address Element i

s Xg

T _,
Xr' ----

u Xu

v ---- Xy ----
w ---- ---- Xw ---

3.8.2 Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is scaled according to
the size of the data type referenced by the pointer. That is, if pis a pointer to data
of type T, and the value of pis :x-P, then the expression p+i has value Xp + L · i,
where L is the size of data type T.

The unary operators '&' and '•' allow the generation and dereferencing of
pointers. That is, for an expression Expr denoting some object, &Expr is a pointer
giving ,the address of the object. For an expression AExpr denoting an address,
•AExpr gives ihe value at that address. The expressions Expr and •&Expr are
therefore equivalent. The array subscripting operation can be applied to both
arrays and pointers. The array reference A [i] is identical to the expression• (A+i).
It computes the address of the ith array element and then accesses this memory

1

location.
Expanding on our earlier example, suppose the starting address of integer

array E and integer index i are stored in registers %rdx and %rcx, respectively.
Tue following are some expressions involving E. We also show an assembly-code
implementation of each expression, with the result being stored in either register
%eax (for data) or register %rax (for pointers).

Expression Type Value Assembly code

" int* XE movl %rdx. %rax.
E[O] int M[x.J movl (%rdx),%eax
E[i] int M[xE + 4i] movl (%rdx,%rcx,4),%eax
&E[2] int* xE+8 leaq 8 (%rdx) , %rax
E+i-1 int* xE+4i-4 leaq -4(%rdx, %rcx, 4) , %rax
•(E+i-3) int M[xE + 4i -12] movl -12('%rdx,,orcx,4) ,Y.eax
&E(i]-E long movq %rcx, %rax

In these exa~ples, we see.that operations that return array values have type
int, and hence involve 4-byte operations (e.g.,. movl) and registers (e.g.~%eax).
Those that return pointers have type int •,and hence involve 8-byte operations
(e.g., leaq) and registers (e.g., %rax). The final example shows that one can
compute the difference of two pointers within the same data structure, with the
result being data having type long and value equal to the difference of the two
addresses divided by the size of the data type.

257

258 Chapter 3 Machine-Level Representation of Programs

l'.k'riiiil~Wf~i~~3:l7.~0l'.m~~Wi:~:l~1:2W'.$:·~""'~
Suppose xs, the address of short integer arrays, and long integer index i are stored
in registers %rdx and %rcx, respectivelr. For each of the following expressions, give
its type, a formula for its value, and an assembly-code implementation. The result
should be stored in register %rax if it is a pointer and register element %ax if it has

data type short.

Expression Type Value Assembly code

S+l ---- ---- ---
s [3] ---- --- ----
&S [i] ---- -.--
s [4~i+1] __ ___,_ --- ..t,-;----

S+i-5 --- ---.- ----

3.8.3 Nested Arrays

The general principles of array allocation and referencing hold even when we . ,
create arrays 9f arrays. J'.ot example, the declaration

int A [5] [3] ;

is equivalent to the declaration

typedef int row3_t[3];
row3_ t A [5] ;

Data type row3_ t is defined to be an array of three integers. Array A contains five
such elements, each requiring 12 bytes to store the tliree integers. The-total array

size is then 4 · 5 · 3 = 60 bytes.
Array A can also be viewed as a two-dimensional array with five rows and

three columns, referenced as A[OJ [OJ through i[4] [2J. The array elements are
ordered in memory in row-major order, meaning all 'elements ~f row 0, which
can be written A [OJ, followed by all elements ofrow 1 (A [1J), and so on. This is

illustrated in Figure 3.36.
This ordering is ir c6nsequence of our nested declaration. Viewing A as an

array of five elements, each of which is an array of three int's, we first have A [OJ,

followed by A [1J, at\d so on.
To access elements of multidimensional arrays, the compiler generates code to

compute the offset of the desired element and then uses one of the MOV instructions
with the start of the array as·the'base addr~ss'and the (possibly scaled) offset as
an index. In general, for an array declared as r.

T D [RJ [CJ;

array element D [iJ [j J is at memory address

&D[i](j] = x0 + L(C · i + j) (3.1)

Figure 3.36
Elements of array in
row-major order.

Row Element Address

A [OJ [OJ A[OJ x,

A [OJ [1J

A [OJ [2J

A[lJ A [lJ [OJ

A [lJ [lJ

A [1J [2J

A[2J A[2J [OJ

A[2][1J

A [2J [2J

i[3J A[3J [OJ

A [3J [lJ

A [4J [2J

A[4J A[4J [OJ

A[4][1J

.A[4J [2J

XA +4

XA +8

'

XA + 12

XA + 16

XA + 20

~A +24

XA +28

XA +32

XA +36

XA +40

XA + 44

XA +48

XA +52

XA + 56
<

Section 3.8 Array. Allocation and Access 259

where L ls the size of data type Tin bytes. As an example, consider the 5 x 3 integer
array A defined earlier. Suppose xA, i, and j are in registers %rdi, %rsi, and %rdx,
respectively. Then array element A [i] [j] can be copied to register %eax by the
following code:

A in Y.rdi, i in Y.rsi, and j in Y.~dx
leaq (%rsi,%rsi,2), %rax

2 leaq (%rdi,.%rax,4), %rax
1 movl (%r~x,%rdx,4), %ea.X

Compute 3i

Compute xA + 12i
Read' from M[xA + 12i + 4]

As can be seen, this code computes the element's address as x, + 12i + 4j = x, +
4(3i + j) using the scaling and addition capabilities of x86-64 address arithmetic.

1P1Sa~~s~S~~>?~'..~.~~~.~1· ~~~
Consider the follp;wing source ~ode, where M and N are constants declared with
#define:

long P [M] [N] ;
long Q [NJ [Ml ;

long sum~element(long i, long j) {
'return P[ij.[j] '+ Q[jfrl.J;

}

In compiling this program, ace generates the following assembly code:

I

l

260 Chapter 3 Machine~Level Representation of Programs

long SW1.!_alement(long i', long j)

i in %rdi, j in %rsi

sum_element:
2 leaq O(,%rdi,8), %rdx
3 subq %rdi, %rdx
4 addq %rsi, %rdx
5 leaq (%rsi,%rsi,4), %rax
6 addq %rax, %rdi
7 movq Q(,%rdi,8). %rax
8 addq P(,%rdx,8), %rax
9 ret

Use your reverse engineering skills to determine the values of Mand N based
on this assembly code.

3.8.4 Fixed-Size Arrays

The C compiler is able to make many optimizations for code operating on multi­
dimensional arrays of fixed size. Here we demonstrate some of the optimizations
made by ace when the optimization level is set with the flag -01. Suppose we
declare data type fix_matrix to be 16 x 16 arr~ys of integers as follows:

#define N 16
typedef int fix_matrix[N] [N];

(This example illustrates a good coding practice. Whenever a program uses some
constant as an array dimension. or buffer sjze, it is best to associate a name with
it via a #define declaration, and then use this name col)sist~ntly, rather than
the numeric value. That way, if an occasion ever arises to change the value, it
can be done by simply modifying the #define declaration.) The code in Figure
3.37(a) computes element i, k of the product of arrays A and B-that is, the,
inner product of,row i •from A ·and column k from B. This product is given by
the formula LO:oj <N a1,j · b j,k· Gee generates -code that we then recoded into
C, shown as function fix_prod_el,e_opt jn Figure 3.37(b). This code contains
a number of clever optimizations. It removes the integer index j and 9on".erts all
array references to pointer dereferences. Th1s involves (1) gerterating'a pointer,
which we have named Aptr, that points to successive elements in row i of A,
(2) generating a pointer, which we have named Bptr, that points to successive
elements in column k of B, and (3) generating a pointer, which we hav~ named
Bend, that equals the value Bptr will have when it is time to terminate the loop.
The initial value for Aptr is the address of the first element of row i of ,A, given
by the C expression &A [i) [O]. The initial value for Bptr is the ~ddress of the first
element of column k ofB, given by the Cexpression &:B [OJ [kl. The value for Bend
is the index of what would be the (n + l)st element in column j of B, given by the
C expression &B [NJ [k) .

Section 3.8 Array Allocation and Access 261

(a) Original C code

/* Compute i,k of fixed matrix product */.
int fix_prod_ele (fix_matrix A, fix_matrix B, long i, long k) {

long j;
int result = O;

for (j = 0; j < N; j++)

result += A [il [jl • B [jl [kl;

return result;
}

(b) Optimized C code

1

2

4

s
6

7

8

9

10

11

f* Compute i,k of fixed matrix product */
illt fix_pfod_el9_opt(fiX_matrix A, fix_matrix B, long i, long k) {

int *Aptr &A[i] [O]j f* Points to elements in row i of A */
int *Bptr &B[O] [k]; I* Point~ to elements in column k of B */
int •Bend &B[Nl [kl; /•Marks stopping point for Bptr •/
·int result = 0 i
do {

result += *Aptr * *Bptr;
Aptr ++;

Bptr += N;

} while (Bptr !=Bend);
12 return result;

/* No need for initial test */
f* Add next product to sum */
/* Move Aptr to next column */
I* Move Bptr to next row */
f* Test for stopping point */

13 }

Figure 3.37 Original and optimized code to compute element i, k of matrix product
for fixed-length arrays. The compiler performs these optimizations automatically.

The following is the actual assembly code generated by ace for function fix_
prod_ele. We see that four registers are used as follows: %eax holds result, %rdi
holds Aptr, %rcx holds Bptr, and %rsi holds Bend.

2

3

4

s
6

8

9

10

int fix_prod_ele_opt(fix_matrix A, fix_matrix B, long i, long k)

A in Xrdi , B in Xrsi , i in %rdx, k in %rcx
fix_prod_ele:

salq ~6, %~dx
~lldq %rdx, %rdi
leaq (%rsi,%rcx,4), %rcx
leaq 1024(%rcx), %rsi
movl $0, %eax

.17:
movl (%rdi), %edx
imull (%rcx), %edx
addl %edx, %eax

Compute 64 * i

Compute Aptr = xA + 64i = &A [i] [OJ

Compute Bptr = xa + 4k = &B[O] [kl

Compute Bend """ x8 + 4k + 1024 = &B [NJ [k]

Set result = 0

loop:

Read *Aptr

Multi ply bjr *Bpti

Add to result

262 Chapter 3 Machine-Level Representation of Programs

11 addq $4, %rdi
12 addq $64, %rcx
13 cmpq %rsi, %rcx
14 jne .Lt
15 repi ret

Increment Aptr ++

Incre~fnt Bptr += N
Compare Bp.tr/Bend

If !=, goto loop

Return

M?i~t!ei!.e:ioiili~5bli!t!~"$".@!f!~%.;·.ti~"?:1WJU§fa§#SiZ"
Use Equation 3.1 to explain how the computatfons of the 'initial values for Aptr,
Bptr, and Bend in the C code of Figure 3.37(b) (lines 3-5) correctly describe their
computations in the assembly code generated for fix_prod_ele (lines 3-5).

The following C code sets the diagonal elemel)tS of one Of our fixed-si2e arrays to

val:

I* Set all diagonal elements ib Val */
void fix_set_diag(fix_rnatrix A, int val) {

long i;

}

for (i = O; i < N; i+~)

A[i) [i) = val;

'•

When compiled with optimi2ation level -01, GCC generates the following

assembly code:

fix_set_diag:
vo,id fix_set_diag(fix_matrix A, int'~val)

A in %rdi, val in' Xrs<i

2 movl $0, %eax

3 .Li,3:
4

5

6

7

movl
addq
cmpq
jne

%esi, (%rdi,%rax)
$68, %rax
$1088, %rax
.L13

s rep; ret

"'
"

,.

Create a C code program fix_set_diag_opt that uses opiimi2aiions' similar
to those in the assembly code, in the same style as the code in Flgure3.37(b). Use
expressions involving the parameter N rather than integer constants, sci that your
code will work correctly if N is redefined. ' ·

3.8.5 Variable-Size Arrays

Historically, Conly supported multidimensional arra)'s where the sizes (with the
possible exception of the first dimension) qmld be determined at compile time.

Section 3.8 Array Allocation and Access 263

Programmers requiring variable-size arrays had to allocate storage for these arrays
using functions such as malloc or calloc, and they had to explicitly encode the
mapping of multidimensional arrays intQ single-dimension ones via row-major in­
dexing, as expressed in Equation 3.1. ISO C99 introduced the capability of having
array dimension expressions that are computed as the array is being allocated.

In the C version of variable-size arrays, we can declare an array

int A[exprlJ [expr2]

either as a local variable or as an argument to a function, and then the dimensions
of the array are determined by evaluating the expressions exprl and expr2 at the
time the declaration is encountered. So, for example, we can write a function to
access element i, j of an n x n array as follows:

int var_ele(long n, int A[n] [n], long i, long j) {
return A [i] [j] ;

}

The parameter n must precede the parameter A [n] [n] , so that the function can
compute the array dimensions as the parameter is encountered.

2

l

4

5

Gee generates code for this referencing function as

int var_ele(longn, int A[n][n], long i, long j)

n in %rdi,

var_ele:
imulq
leaq
movl
ret

A in %rsi, i in %rdx, j in %rcx

%rdx, %rdi
C%rsi,%rdi,4), %rax
C%rax,%rcx,4), %eax

Compute n

Compute xA + 4(n · i

Read from M[xA + 4(n · i) + 4j]

As She annotations show, this code computes the address of element i, j as x, +
4(n · i) + 4j = x, + 4(n · i + j). The address computation is similar to that of the
fixed-size array (Section 3.8.3), except that (1) the register usage changes due to
added parameter n, and (2) a multiply instruction is used (line 2) to compute n . i,
rather than an leaq instruction to compute 3i. We see therefore that referencing
variable-size arrays requires only a slight generalization over fixed-size ones. The
dynamic version must use a multiplication instruction to scale i by n, rather than
a series of shifts and adds. In some processors, this multiplication can incur a
significant performance penalty, but it is unavoidable in this case.

When variable-size arrays are referenced within a loop, the compiler can often
optimize the index computations by exploiting the regularity of the access patterns.
For example, Figure 3.38(a) shows C code to compute element i, k of the product
of two n x n arrays A and B. Gee generates assembly code, which we have recast
into C (Figure 3.38(b)). This code follows a different style from the optimized
code for the fixed-size array (Figure3.37), but that is more an artifact of the choices
made by the compiler, rather than a fundamental requirement for the two different
functions. The code of Figure 3.38(b) retains loop variable j, both to detect when

264 Chapter 3 Machine-Level Representation of Programs

(a) Original C code

2

3

4

5

/* Compute i,k of variatile matrix piOduct
int var _prod_eie Ciong n, int Aln]'[n] , :lnt

'{JiH { i•
long j;
int result = O;

6 for (j = 0; j < n; j++)
7 result += A[i] [j] • B[j] [k];

8
9 return re~ult;

10 }

(b) Optimized C code

•I
B (ni [!,] ,

'
iong · lon k)"'{' J.. jg ~ ;

,,.,..... -)

• '<

/* Compute' i,k of variable matrix product */
int var_prod_ele_opt(long n, int A[n] [n], int B[n] [n], long i, long k) {

int *Arow = A[i];
int •Bptr = &B[O] [k];

int result = O;
long j;
for (j = O; j < n; j++) {

result += Arow[j] * *Bptr;
Bptr += n;

}

return result;
}

Figure 3.38 Original and optimized code to compute element i, k of matrix pro"duct for variable-size
arrays. The compiler performs these optimizations automatically. ~' ' '

the loop has ferlninated and to lndex into an array consistii;ig' of the ylemen't~ of

rowiofA. 1.

2

3

4

5

'6

7

8

The following is the assembly code for the loop of var _p{od_ele:
"JI '

REigisters: 'n in %I-di, Arow in %rsi, Bptr·iii %rcx
f 4n in %r9, result in %'3ax, J ~in %~dx

.L24:
movl
imull

1addl
addq
addq
cmpq
jne It

(%rsi,%rdx,4), %r8d
(%rcx) , %tacf. ' rrr

%r8d, %eax
$1, %rdx
%r9, %rcx

r1%rd1, 1%rdx
.L24

,f '

looP:
Read Ar ow [j]

MUltiply by *Bptr

Add to result

j++
Bptr += n

' ' Compare j:n

'If !""', goto loop

"

rl

..

1• .b

We see that the program makes use of both a scaled value 4n (register%r9) for
incrementing Bp'tr as w'ell as the value of n (register %rdi) -to:check the loop

Section 3.9 Heterogeneous Data Structures 265

bounds. The need for two values does not show up in the C code, due to the scaling
of pointer arithmetic.

We hav~ seen that, with optimizations enabled, ace is able to recognize pat­
terns that arise when a program steps through the elements of a multidimensional
array. It can then generate code that avoids the multiplication that would result
from a direct applicatiOIJ of Equation 3.1. Whether it generates the pointer-based
code of Figure 3.37(b) or the array-based code of Figure 3.38(b), these optimiza­
tions will significantly improve program performance.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of dif­
ferent types: structures, declared using the keyword struct, aggregate multiple
objects into a single unit; unions, declared using the keyword union, allow an
object to be referenced using several different'types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly
different types into a single object. The different components of a structure are
referenced by names. The implementation of structures is similar to that of arrays
in that all of the components of a structure are stored in a contiguous, region of
memory and a pointer to a structure is the address of its first byte. The compiler
maintains information about each structure type indicating the byte offset of
each field. It generates references to structure elements using these offsets as
displacements in memory referencing instructions.

As an example, consider the following structure declaration:

struct rec {
int i;
int j;
int a[2];
int *p;

};

This structure contains four fields: two 4-byte values of type int, a two-element
array of type int, and an 8-byte integer pointer, giving a total of 24 bytes:

Offset o 4 8 16 24
Contents rl --1-. --,---i----,--a-[-O]---r-a-[_1_] -,-----p---~I

Observe that array a is embedded within the structure. The numbers along
the top of the diagram give the byte offsets of the fields from the beginning of the
structure.

To access the fields of a structure, the compiler generates code that adds the
appropriate offset to the address of the structure. For example, suppose variable r

266 Chapter 3 Machine-Level Representation of Programs

'
New to C? "Representing'a11object,as a stri,c"I;

:rhe struct data type constructor is the closesHhing C provid~s to the objects of C-t'+ and Ja~a. lf allows
the programmer to keep information abcluf'Some entity in·a"single data structure and to reference that
information with names. "~ ·• "

For example: ·a graphics program might r6present a rectangle as a stru~ttfre:
~ • , rr ,

struct rect {
long llx;
long lly;
unsign0d
unsigned
unsigned

}·

/* X coordi~ate of lower....:left corner~ */
/* Y coordinate of lower-left corner *I

long width; /• Width (in pixel~) ,
long height; /• Height (in pixels)
coloi; Y* 4Cotliri'g Of Colot;-

1

,.;

..
We can.declare a variable r cif }Jpe' struct re.ci:', .f'!~ ~et its,fielcj"values ~s ,fojlows;

struct rect r;
r.llx = r.lly = O;
r.co~or = O"FFOOFI;;
r.width = 10;
r.height ;;;,, 20; ~ (• t· J- ~ -·)

~ • p
where the expression r. llx selects field llx of structurer. .

Alternatively, we ~a~ both:cjeslare>he. fari~ble arid initializ~ fts fie)ds w}t~.a ~i~gJe,1tat~m\;n\:,
struct rect r ={;JO, p, OxFF99FF1 .10; 20,$;•

It is common to pass 'if6intefs._to structures {rom one pbice fo arlother rather'tharl copying'the)ll.
For example, the following function computes the area"of a rectangle:'where<a;poiriter t6 the rectangle
struct is passed to the functiOn: '

long area(struct rect *rp) {
return (*rp). width * (*rp).'"height;

}

,.

The expression (•rp) . width dereferences the pointer and'select_s the width.field of the resulting
structure.,Parentheses are required, because the compiler would interp;et the expression *rfl. width as
• (rp. width), which is not valid. -This combination of dereferencing and field selection is so common
that c provides an, alternative notation US~I}& ->. That iS, rp->width; is equival~nt tp the, expression 'l!

,(•rp) . width. For example, we ,can wrife a funi;ti,oll that rotates'~,rectangle ~pui;t~rclockwise by 90
degrees as

void rotate_left (St:i,::µi;;t ,t·ec~ *tP)~ {,,
I• Exchange width and height •/

' long t = rp->height;
rp->height = rp->width; '
rp->width = t'i ~. ~

I* Shift to new lower-left corner */
rp-> llx -=. ,t ;

} ~

'

Section 3.9 Heterogeneous Data Structures 267

, New to C? Representing an objecnis a'struct (continued)

The obj~cts of C++ an,d Java are more elaborate than structures in C. in that they also associate
a set of methods with an o\Jject that can be invoked' to perform computation .. In,G:, we would simply
wrife these as ordinary functions, such as the functions area and rotate_left shown previously.

of type struct rec • is in register %rdi. Then the following code copies element
r->i to element r->j:

1

2

Registers: r in %tdi

movl (%rdi), Y.eax
movl %eax, 4(%rdi)

Get r->i

Store in r-> j

Since the offset of field i is 0, the address of this field is simply the value of r. To
store into field j, the code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add tbe
field's offset to the structure address. For example, we can generate the pointer
&(r->a [1]) by adding offset 8 + 4 · 1=12. For pointer r in register %rdi and long
integer variable i in register Y.rsi, we can generate the pointer value & (r->a [i])
with the single instruction

Registers: r in Xrdi, i Xrsi

leaq 8(%rdi,%rsi,4), %rax Set %rax to &r->a[i]

As a final example, the following code implements the statement

r->p = &r->a[r->i + r->j];

starting with r in register %rdi:

2

3

4

5

Registers: r in %rdi

movl 4(%rdi), %eax
addl (%rdi), Y.eax
cltq
leaq
movq

8(%rdi,%rax,4), %rax
Y.rax, 16(Y.rdi)

Get r->j

Add r->i

Extend to 8 bytes

Compute &r->a[r->i + r->j]

Store in r->p

As these examples show, the selection of the different fields of a structure is
hanqled ~ompletely at CO!l}pile time. The machine code contains.no information
about the field declarations or the names of the fields.

268 Chapteri3 Machine-LeveLRepresentation of Programs

ia(tl?'ifgf61Im&lS.:~!1t!iui:t;iaiwil9;'~t!lli$tiiHl;;?S.j#~ll
Consider the following structure declaration:

struct prob {

int *Pi
struct {

int x;
int Yi

} s;
struct prob *n0X~i

};

...

This declaration illustrates that one structure can be embedded within another,
just as arrays can be embedded within structure~. an,d arrays can be embedded
withln•arrays. ,

The following procedure (with some expressions omitted) operates on this

structur<;:

void sp_~nit(struct prob *sp) {
sp-:/s.x =t' _____ ;r

}

s'p-::Sp _._, ----1 il·
1 ~ "\1 • \
sp->next . .,

A What are the offsets (in bytes) o.f the following fields?

p:
s.x:

s.y:

next:

B. How many total bytes does the structure require?

t t

"'

c. The compiler generates the following assembly code for sp_ini t:

void sp_init(struct prob *Sp)

sp i.n %rdi

1 sp_init:
2 movl 12(%rdi), %eax

3 movl '%eax, 8(%rdi) c,

4 leaq 8(%rdi), %rax

5 movq %rax, (%rdi)

6 movq %rdi, 16(%rdi)

7 ret e

'G'n'the basis of this information, fili in the missing expressions in 'the code
for sp_ini t. •' r". r(

Section 3.9 Heterogeneous Data Structures

®'.attrt'H®6Iiffii·m~~iiii'raii'.'iitii?14Bi:tJ(~".:~~E~
The following code shows the declaration of a structure of type ELE and the
prototype for a function fun:

struct ELE {
long v;
struct ELE *P;

};

lo~g fun(struct ELE •ptr);

When the code for fun is compiled, occ generates the following assembly
code:

long fU11(struct ELE •ptr)

ptr in Xrdi

fun:

2 movl
3 jmp
4 . !:3:

5 addq
6 movq
7' .L2:
8 testq
9 jne

10 rep; ret

$0, %eax
.12 ..

G7.rdi l , %rax
8(%rdi), %rdi

%rdi, %rdi
.L3

A. Use your reverse engineering skills to write C code for fun.

B. Describe the data structure that this structure implements and the operation
performed by fun.

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object
to be referenced according to multiple types. The syntax of a union declaration is
identical to that for structures, but its semantics are very different. Rather than
having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:

struct S3 {

char c;
int i[2];
double Vi

};

269

270 Chapter 3 Machine-Level Representation of Programs

union U3 {

char c;
int i[2];
double v;

};

When compiled on an x86-64 Linux machine, the offsets of the fields, as well as
the total size of data types 83 and U3, are as shown in the following table:

'fype

83

U3

c

0
0

i

4

0

v

16
0

Size

24
8

(We will see shortly why i has offset 4 in S3 rather than 1, and why v has offset 16,
rather than 9 or 12.) For pointer p of type union U3 *•references p->c, p->i [OJ,
and p->v would all reference the beginning of the data structure. Observe also
that the overall size of a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty
bugs, since they bypass the safety provided by the C type system. One 'application
is when we know in advance that the use of two different fields in a data structure
will be mutually exclusive. Then, declaring these two fields as part of a union rather
than a structure will reduce the total space allocated.

For example, suppose we want to implement a binary tree data· structure
where each leaf node has two double data values and each internal node has
pointers to two children but rio data. If we declare this as

struct node_s {

};

struct node_s *left;
struct .npde_~ *right;
double d;.ta [2]';

then every node requires 32 bytes, with half the bytes wasted for each type of node.
On the other hand, if we declare a node as • •

union node_u {
struct 1{

};

unioh node_u *left;
union Ilode_u *right;

} internal;
double data [2] ;

then every node will require just 16 bytes. If n is a pointer to a node <if type
union node_u *, we would reference the data of a leaf node as n->data[O]
and n->data [1], and the children of an internal node as n->internal. left and
n->internal.right.

Section 3.9 Heterogeneous Data Structures 271

With this encoding, however, there is no way to determine whether a given
node is a leaf or an internal node. A common method is to introduce an enumer­
ated type defining the different possible choices for the union, and then create a
structure containing a tag field and the union:

typedef enum { N_LEAF, N_INTERNAL } nodetype_t;

struct node_ t {

nodetype_t type;
union {

};

struct {

struct node_t *left;
struct node_t *right;

} internal;
double data[2];

} info;

This structure requires a total of 24 bytes: 4 for type, and either 8 each for
info. internal. left and info. internal. right or 16 for info. data. As we will
discuss shortly, an additional 4 bytes of padding is required between the field for
type and the union elements, bringing the total structure size to 4 + 4 + 16 = 24.
In this case, the savings gain of using a union is small relative to the awkwardness
of the resulting code. For data structures with more fields, the savings can be more
compelling. ·

Unions can also be used to access.the bit patterns of different data types. For
example, suppose we use a simple cast to convert a value d of type double to a
value u of type unsigned long:

unsigned long u ~ (unsigned long) d;

Value u will be an integer representation of d. Except for the case where dis 0.0,
the bit representation of u will be very different from that of d. Now consider the
following code to generate a value of type unsigned long from a double:

unsigned long double2bits(double d) {
union {

double d;
unsigned long u;

} temp;
temp.ct = d;

};
return temp.u;

In this code, we store the argument in the union using one data type and access it
using another. The result will be that u will have the same bit representation as d,
including fields for the sign bit, the exponent, and the significand, as described in

272 Chapter 3 Machine-Level Representation of Programs

Section 3.lr.·The numeric value of u will bear no relation to that of d, except for
the case when·d is 0.0. ·

When using unions- to. combine data types of different sizes, byte-ordering,
issues can become important. For example, suppose we write. a procedure that
will create an 8-byte double using the bit patterns given by two 4-byte unsigned
values:

double uu2double(unsigned wordO,. unsigned word1)
{

}

union {
double d;
unsigned u[2] ;

} temp;

temp.u[O] = wordO;
temp.u[l] = wordl;
return temp. d;

On,a little-endian machin,ry, such ~s an i,<86-64,processor, argument wordO Mil
becqffil' the low-order 4 bytes of ,d, while wor-<j.t Mil become the high-order ,4,
bytes. On a big-engi;m machine, the role of1tµe.two arguwents wi,11 be niversedr

e ' "
mraati'Mf§.§lWf3:.,?':i™f*DmiittiifEmi~
Sugpose you are ,giv!"!! the jqb of che7king that a C coll}piler generates the, proper
code'for structure ~Kd iininn ~~ess. You write the following structure declaration:

typedef union {
struct {'

long
short

u·
' v· •

,
1

char w;
} tl;
struct {

inta[2];
char *Pi

} t2;
} u_type;

t ' I ' ~' "tll ' '

You write a series of functions of the form

void get (u_type •up, type •dest) {
*<lest = expr;

}

I '

Mth different access expressions expr and with de'stination data type ·type• set
acc'ording to type associated ·Mth expr. You then examine the code generated
when compiling the functions to see if they match your expectations.

r
I
' '

I

Section 3.9 Heterogeneous Data Structures 273

Suppose in these functions that up and dest are loaded into registers %rdi and
%rsi, respectively. Fill in the following table with data type type and sequences of
one to three instructions to compute the expression and store the result at dest.

' expr

up->tl.u

up->tl. v

lrup->tl. w

up->t2.a

up->t2.a[up->tl.u]

•up->t2.p

type

long

Code

movq (%rdi), %rax
movq %rax, (%rsi)

3.9.3 Data Alignment

Many computer systems place restrictions on the allowable addresses for the
primitive data types, requiring that the address fpr some objects must be a multiple
of some value K (typically 2, 4, or 8). Such alignment restrictions simplify the design
of the hardware forming the interface between the processor and the memory
system. For example, suppose a processor always fetches '8 bytes from memory
with an address that must be a multiple of 8. If we can guarantee that any double
will be aligned to have its address be a multiple of 8, then the value can be read
or written with a single memory operation. Otherwise, we may need to perform
two memory accesses, since the object might b~ split across two 8-byte memory
blocks.

The x86-64 hardware will work correctly regardless of the alignment of data.
However, Intel recommends that data be aligned to improve memory system
performance. Their alignment rule is based on the principle that any primitive
object of K bytes must have an address that is a multiple of K. We can see that
this rule leads to the following alignments:

K Types

1 char
2 short
4 int, float
8 long, double, char *

274 Chapter 3 Machine·Level Representation of Programs

Alignment is enforced by making sure that every data•t)i'pe is organized and
allocated in such "'way that every object within the type satisfies its alignment
restrictions. The compiler places directives in.the assembly code indicating the
desired alignment for global data. For example;the assembly-code declaration of
the jump table on page 235 contains the following directive on line 2:

.align 8

This ensures that the data following it (in this case the start of the jump table) will
start with an address that is a multiple of 8. Since each table entry is 8 bytes long,
the successive elements will obey the 8-byte alignment restriction.

For code involving structures, the compiler may need to insert gaps in the
field allocation to ensure that each structure element satisfies its alignment re­
quirement. The structure will then have some required alignment for its starting
address.

For example, consider the structure declaration

struct Si {
int i;
char c;
int j;

};

Suppose the compiler used the minimal 9-byte allocation, diagrammed as follows:

Offset o 4 5 9
Contents r-\ --i--r\ c-(...-. --j---.\

"
, , JI I} > I

Then it would be impossible to satisfy the 4-byte alignment requiJ:emei;it for both
fields i (offset 0) and j (offset 5). Ins\ead, the ~oll\piler i,nserts a 3-byte gap (s!iown
here. as shaded in blue) between fields c ~nd j:

Offset 0 4 5 8. 12

Contents r1 --:;i-~\ c:-°i)!i~fi·iil· f"'-;j-l

As a result, j has offset 8, ~d the overall structure siz,e is fa bytes. Furthermore,
the compil,er must ensure that any pointer p of type struct Si• satisfies a 4-byte
alignment Using our earlier notation, let pointer p h~ve i"alue xP. Then xP mt!st
be a multiple of 4. This guarantees that both p->i (addresr'i,) and p->j (addrds
xP + 8) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure
so that each element in an array of structures will satisfy its alignment requirement.
For example, consider the following structure declaration: •· 1'

struct S2 {
int i;
int j;
char c;

};

Section 3.9 Heterogeneous Data Structures 275

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements
for fields i and j by making sure that the starting address of the structure satisfies
a 4-byte alignment requirement. Consider, however, the following declaration:

struct S2 d[4];

With the 9-byte allocation, it is not possible to satisfy the alignment requirement
for each element of d, because these elements will have addresses xd, xd + 9,
xd + 18, and xd + 27. Instead, the compiler allocates 12 bytes for structure S2,
with the final 3 bytes being wasted space:

Offset O 4 8 9 12

Contents!~ __ i_--1. _ _:j0--..JJ'-c-ft¥ll"''"'. '-"""'"~.,.·

That way, the elements of d will have addresses xd, xd + 12, xd + 24, and xd + 36.
As long as xd is a multiple of 4, all of the alignment restrictions will be satisfied.

IPri!cii'S11::PriJ1i1em«:~;;grc1'ofUii-0:&~119il!oo: ::::;J· '.\:'fR0 ... $ ·~ : : :'. :u
For each of the following structure declarations, determine the offset of each field,
the total size of the structure, and its alignment requirement for x86-64:

A. struct Pl { int ii char c; int j; char d; } ;

B. struct P2 {inti; char c; chard; long j; };

C. struct P3 { short w [3] ; char c (3] } ;

D. struct f4 { short w [5] ; char •c(3] } ;

E. struct PS { struct P3 a [2J; struct P2 t } ;

!Practice 'Problem 3.45 CsolYtlon page 3:15}•
Answer the following for the structure declaration

struct {

char •a;
short b;
double c;
char d· '
float e;
char f;'

I

I
l
I
1
j

J
'

--~-=----~-:"""'.'---:

276 Chapter 3 Machine-Leve/ Representation of Programs

Aside A case pf maJlp~tqry ,a[ignmi;11t. ,,

For most x86-64 instructions, keeping·l:!ata a.Jigned'iniproves eftl.,1ency, but it ttoes not affe(:{ program
behavior. On the ot~er hand, so?'e 'model§ pf Intel anp' AMD processo~'wlll not· war]{ correctly'<,
with unaligned data for' solne of the SSE instructions implementing multimedia operations. These· i
instructions operate,,ap,16-!?yte b\ocks of data,\'n~. tl<e ~y~tructioqs that ,t,r.an:,te.r.cJ.a,ta qetw,ee\l \he .S!'?· ;
unit and memory requir~ the, !Jlemqry ~d~resses, Ip qe m!1)tjpl~-~:0f16. t\ny JltlemptJp f~c,e'ss memory

1 with an address that dP,~.s ,not ~Wsfy)hi~ a)ignmenffill)eacfto an excepii,011, (see Section
1
S.'l.), with the ~

default behavior fa!' the program to terminate. ' ""• ' • ~
As a result, any compiler and rdll-time systelnforan'l/86-'64 pro.sessor must ensure t!iat any mempry .,

allocated to hold a''data structure that may be r~ad from Ol'Stare~into an SSE regisfer must satisfy a
16-gyte alignment. diiis requiremenllhas thefolloWing two cbnsequerlces: 1

<'' ' ~ ~ ~ ~~ ~i·h ., f ~ •f'

• The starting a,d?ress for.any block generateq1l;>Y1a Il)eJjlqry allof1!tipn f\l'!£ti9n,(aH2H.-ma.lloc,
calloc, or reall"Oc) must be a multiple,of 16. ~ 4 •• .-.1,..1 !1 s,. ,.

• The stack frame for mast functions must'be aligned on a 16-byte.f>oundary. (This requirement has
a nu!Jlber of exceptions.) '

! ~· '
.,More recent versfons of x86-64 processors implement the A VX'multilhedi'1instructitlrts. In addi-

tion to providing,\'-. S);lpers~t.pf t!>e SSE i!'strqction&, pro,ce.s~qrs.~µppqrting AVX, ~)so do npt,\lave a·'
maqdatbfy alignment reaµirenl.ent > l . .•

;J • 6 4 ;Jr "'>;,,,, ' ?' '.t

long
int

} rec;

g;
h;

A What are the byte offsets of all the fields in the structure?

B. What is the total size of the structure?

C. Rearrange the fields of the structure to minimize wasted space, and then
show the byte offsets and total size for the rearranged structure.

3.10 Combining Control and Data in
Machine-Level Programs

So far, we have looked separately at how machine-level code implements the
control aspects of a program and how it implements different data structures. In
this section, we look at ways in which data and control interact with each other.
We start by taking a deep look into pointers, one of the most important concepts
in the C programming language, but one for which many programmers only have
a shallow understanding. We review the use of the symbolic debugger GDB for
examining the detailed operation of machine-level programs. Next, we see how
understanding machine-level programs enables us to study buffer overflow, an
important security vulnerability in many real-world systems. Finally, we examine

i

!
j

l
j
J
1

Section 3.10 Combining Control and Data in Machine-Level Programs 277

how machine-level programs implement cases where the amount of stack storage
required by a function can vary from one execution to another.

3.10.1 Understanding Pointers

Pointers are a central feature of the C programming language. They serve as a
uniform way. to generate references to elements within different data structures.
Pointers are a source of confusion for novice programmers, but t)le underlying
concepts are fairly simple. Here we highlight some key principles of pointers and
their mapping into machine code.

• Every pointer has an associated type. This type indicates what kind of object
the pointer poil)ts to. Using the following pointer declarations as illustrations

int *ip;
char **cpp;

variable ip is a pointer to an object of type int, while cpp is a pointer to an
object that itself is a point«r to an object of type char. In general, if the object
has type T, then the pointer has type •T. The special void• type represents a
generic pointer. For example, the malloc function returns a generi~ pointer,
which is converted to a typed pointer via either an explicit cast or by the
implicit casting of the assignment operation. Pointer types are not part of
machine code; they are an abstraction provided by C to help programmers
avoid addressing errors.

• Every pointer has a value. This value is an address of some object of the
designated type. The special NULL (0) value indicates that the pointer does
not point anywhere.

• Pointers are created with the '&'operator. This operator can be applied to any
C expression that is categorized as an /value, meaning an expression that can
appear on the left side of an assignment. Examples include variables and the
elements of structures, unions, and arrays. We have seen that the machine­
code realization of the'&' operator often uses the leaq instruction to compute
the expression value, since this instruction is designed to compute the address
of a memory reference.

• Pointers are dereferenced with the '*'operator. The result is a value having the
type associated with the pointer. Dereferencing is implemented by a memory
reference, either storing to or retrieving from the specified address.

• Arrays and pointers are closely related. The name of an array can be referenced
(but not updated) as if it were a pointer variable. Array referencing (e.g.,
a [3]) has the exact same effect as pointer arithmetic and dereferencing (e.g.,
• (a+3/). Both array referencing and pointer arithmetic require scaling the
offsets by the object size. When we write ari'expression p+i for pointer p with
value p, the resulting address is computed as p + L · i, where L is the size of
the data type associated ;_;th p.

j t
I
I
I

1
I

I

278 Chapter 3 Machine-Level Representation of ProgramS

• Casting from one type of pointer to another changes its type but not its value.
One effect of casting is to change any scaling of pointer arithmetic. So, for
example, if pis a pointer of type char • having value p, then the expression
(int•) p+7 computes p + 28, while (int•) (p+7) computes p + 7. (Recall
that casting has higher precedence than addition.)

• Pointers can also point to functions. This provides a powerful capability for
storing and passing references to code, which can be invoked in some other
part of the program. For example, if we have a function defined by the proto­
type

int fun(int x, int *p);

then we can declare and assign a pointer fp to this function by the following
code sequence:

int (•fp)(int, int•);
fp = fun;

We can then invoke the function using this pointer:

inty=1;
int result= fp(3, &y);

The value of a function pointer is the address of the first instruction in the
machine-code representation of the function.

·New to C? Function pointers '' '' , •l'

J'he syntax for. ctec1a~iil$ £uli6tiRnp~oint~t~ i~ ~1JJffi.~ian~\,~l!~c~1t·f~:novi5: .. £!-:ogram~~rs Jo upa~rStanct.
For a declaration such as ·

int (•f) (int•); ' ~· ··~

it helps to read iJ stahlp{frofu the inside (starting' Witli •£ •)' ~n"d working pbfW'ard: Tfiils, we1see that f
is'\ poirtt~r,.as indfcatea'by r•:o:. IF.is a pointer to~ tu1l.cti9n'thaf-JJafasing1~·in:t • ·asan:ari;ument,
as indicated by (•f) (int•). Finally, we se~ that_ihs a,pointer 'to a lunction thaUakes an j'.nt • as' an
argument and returns~int. ~. ~ ---~ •l: ·--t I'< 1~

The parel)theses around, •f are r~qnired;]:>ecausi>otherwise tli,e decl~rlltip)i
"" 1- ;,{ .. ~ ,,r;i ~,.,~'?:.

int *f(int*); ,,. '
~-·

would be read as "~' ~'r ,~"'";- ,,,. ft

(int *),, f (int"!+:)';._ t· ""- ' -.;.i

That is, it would be:lnterpreteil.a~. a "fup.ctio~.Pr<t,t6type.,,d'ec,l~rfn-g·a [uristicin f 'tha,l'h~s ~n l.nt .~.a~ its
argument and returnS'3.a in,.t *· "f ' " ,. ., ""·· , ..

\(ernighan an\l 0R1tc,h,te J61, Sect.'5.l2f present a helpful tutorlal or\ reading C d~claration;
"" - """' • ""' ,:Ii; .,, - """""-~\,;f *''!,,~ ;;. ~ ,,,,, .. ~1: .. -~~~-~--'

Section 3.10 Combining Control and Data in Machine-Level Programs 279

3.10.2 Life in the Real World: Using the GDB Debugger

The GNU debugger GDB provides a number of useful features to support the
run-time evaluation and analysis of machine-level programs. With the examples
and exercises in this book, we attei.npt to infer the behavior of a program by
just looking at the code. Using GDB, it becomes po~sible to study the behavior
by watching the program in action while having considerable control over its
execution.

Figure 3.39 shows examples of some GDB commands that help when working
with machine-level x86-64 programs. It is very helpful to first run OBIDUMP to get
a disassembled version of the program. Our examples are based on running GDB

on the file prog, described and disassembled on page 175. We start GDB with the
following command line:

linux> gdb prog

The general scheme is to set breakpoiuts near points of interest in the pro­
gram. These can be set to just after the entry of a function or at a program address.
When one of the breakpoints is hit during program execution, the program will
halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the
program, running just a few instructions at a time, or we can proceed to the next
breakpoint.

As our examples'suggest, GDB has an obscure command syntax, but the online
help information (invoked within GDB with the help command) overcomes this
shortcoming. Rather than using the command-line interface to GDB, many pro­
grammers prefer using onn, an extension to GDB that provides a graphical user
interface.

3.10.3 Out-of-Bounds Memory References and Buffer Overflow

We have seen that C does not perform any bounds checking for array references,
and that local variables are stored on the stack along with state information such
as saved register values and return addresses. This combination can lead to serious
program errors, where the state stored on the stack gets corrupted by a write to an
out-of-bounds array element. When the program then tries to reload the register
or execute a ret insttuction with this corrupted state, things can go seriously
wrong.

A particularly common source of state corruption is known as buffer overflow.
Typically, some character array is allocated on the st'.'ck to hold a string, but the
size of the string exceeds the space allocated for the array. This is demonstrated
by the following program example:

I* Implementation of library function gets() •/
char •gets(char •s)

{

int Cj

char •dest s.
'

280 Chapter 3 Machine-Level Representation of Programs)',,

Command

Starting and stopping

quit
run
kill

Breakpoints

break mul tstore
break •Ox400540
delete 1
delete

Execution

stepi
stepi 4
nexti
continue
finish

Examining code

disas
disas mul ts tore
disas Ox400544
disas Ox400540, Ox40054d
print /x $rip

Examining data

print $rax
print /x $rax
print /t $rax
print Ox100
print /x 555
print /x ($rsp+8)
print •(long•) Ox7fffffffe818
print •(long•) ($rsp+8)
x/2g Ox7fffffffe818
x/20b multstore

Useful information

info frame
info registers

., t
Effect

Exit GDB
Run y'our prograln "(give command-line arguments here)

' ' ' Stop yourprogram
r

Set breakpoint at entry to funciion mul tstore
Set breakpoint at·address Ox400540
Delete.breakpoint 1
Delete all breakpoints

Execute one instruction
Execute four instructions
Like stepi, but·procee11<through function calls
Resume execution /

Run·until current.function retlirns

'· ''
D\sassemble current function
Disassemble function mul ts tore
Disassemble funcJion aroµnd addre~s Ox400544
Disassemble code;within specified addr~s,range
PrintJprogram counter in.hex

Print contents of %rax in decimal
Print contents of %rax in hex
0

Ptint contents of %rax ill binary
Print decimal representation of Ox100
Print hex representation of 555
Print contents of %rsp plus 8 in hex
j>rint. long integer at addry~s Ox7fffffffe818
Print long integer at address %rsp + 8
Examine two .(8-byte) words starting at addres.s Ox7fffffffe818
Examine first 20 bytes of function mul tstore

Information about current stack frame
Values of all the registers
Get information about GDB

Figure 3.39 Example GDB commands. These examples illustrate some of the ways GpB supports debugging

of machine-level programs. ·

help

Section 3.10 Combining Control and Data in Machiiie-Level Programs 281

Figure 3.40
Stack organization for
echo function. Character
array buf is just part of
the saved state. An out-of­
bounds write to buf ca,,..
corrupt the·program state.

Stack frame
for caller

Stack frame
for echo

.• "Ji;':':;"'

'" ·~ 'ii ·~.

while ((c = getchar()) != '\n' && c !=EDF)
*dest++ = Cj

if (c ==EDF && dest ==·s)
I* No characters read */
re.turn NULL;

*dest++ =
1 \0 1

; I* Terminate string*/
return s;

}

I* Read input line and write it back */
void echo()
{

}

char buf[S]; I• Way too small! •/ "
gets (buf);
puts(buf);

= Xrsp

The preceding code shows an implementation of the library function gets
to demonstrate a seriou~ problem with this funcFion. It reads a line from the
standard input, stopping)Vhen either a terminating newline character or some
error condition is encountered. It copies this string to the location designated by
argument s and terminates the string with a null character. We show .the use of
gets in tlje function echo, whicli simply reads a line from standard input and echos
it back to standard output.

The problem with gets is that it has no way to determine whether sufficient
space has been allocated to ,hold 'tµe ep\ire strin_g. In our echo example, we have
purposely made the buffer very small-~ust yight. characters long. Any string
longer than seven characters will cause an out-of-bounds write.

By examining the assembly code generated by ace for echo, we can infer how
the stack is organized:

void echo()
1 echo:
2 subq $24,. %rsp Allocate 24 bytes on stack

movq ,%rsp, %rdi Compute buf as %rsp
4 call gets Call gets
5 movq %rsp. %rdi Compute buf as %rsp

I
I
I

I
I
1

282 Chapter 3 Machine-Level Representation of Programs

6

7

8

call
addq

ret

puts
$24, %rsp

Call puts

Deallocate stack space

Return

Figure 3.40 illustrates the stack organization during the execution of echo. The
program allocates 24 bytes on the stack by subtracting 24 from the stack pointer
(line 2). Character buf is positioned at the top of the stack, as can be seen by the
fact that %rsp is copied to %rdi to be used as the argument to the calls to both
gets and puts. The 16 bytes between buf and the stored return pointer are not
used. As long as the user types at most seven characters, the string returned by
gets (including the terminating null) will fit within the space allocated for buf.
A longer string, however, will cause gets to overwrite some of the information
stored on the stack. As the string gets longer, the following information will get
corrupted:

Characters typed

0-7
9-23
24-31
32+

Additional corrupted state

None
Unused stack space

Return address
Saved state in caller

No serious consequence occurs for strings of up to 23 characters, but beyond
that, the value of the return pointer, and possibly additional saved state, will
be corrupted. If the stored value of the return address is corrupted, then the
ret instruction (line 8) will cause the program to jump to a totally unexpected
location. None of these behaviors would seem possible based on the C code. The
impact of out-of-bounds writing to memory by functions such as gets can only be
understood by studying the program at the machine-code level.

Our code for echo is simple but sloppy. A better version involves using the
function fgets, which includes as an argument a count on the maximum number
of bytes to read. Problem 3.71 asks you to write an echo function that can handle
an input string of arbitrary length. In general, using gets or any function that
can overflow storage is considered a bad programming practice. Unfortunately,
a number of commonly used library functions, including strcpy, strcat, and
sprintf, have the property that they can generate a byte sequence without being
given any indication of the size of the destination buffer [97]. Such conditions can
lead to vulnerabilities to' buffer overflow.

Figure 3.41 shows a (!ow-quality) implementation of a function that reads a line
from standard input, copies the string to newly allocated storage, and returns a
pointer to the result.

Consider the following scenario. Procedure get_line is called with the return
address equal to Ox400776 and register %rbx equal to Ox0123456789ABCDEF. You
type in the string

0123456789012345678901234

Section 3.10 Combining Control and Data in Machine-Level Programs i!83

(a) C code

I• This is very low-quality code.
It is intended to illustrate bad programming•.practiCes.
See Practice Problem 3.46. •/

char •get_line()
{

}

char buf [4) ;
char •result;
gets(buf); "
result,= malloc(s~rlen(buf));
strcpy(result, b)lf);
return result;

(b) Disassembly up through call tb" gets

char "get_line()

0000000000400720 <get_line>:
2 400(20: 53 push %rbx
3 "40072i,;. , 48. 83 ec 19 sub $0x10, %rsp

Diagram stac~ at thi.s poi'!~

·1 4907'.fS: 48 89 e7 '!'.ov %rsp, %rdi
5 4007fll: e8 \3 ff ff ff callq 4006a0 <gets>

Modify diagram to ~ow stack con;ents at this point

Figure 3.41 C and disassembled code for Practice Problem 3.46.

The program· terminates with a segmehtation fault. You run•GDB and determine
that the error occurs during the execution of the ret itlstruction of'get_line.

A1 Fill in the di~iµ,-am that follows, ~dicating as ~uch as Y.?P. can, about the stack
just after executing the instruction at line 3 in tlie disassem,bly. Label the
quantities stored on the stack (e.g., "Return aildress") ori the right, and their
hexadecimal values (if known) wit\rin the box. Each box represents 8 bytes.
Indicate the position of %rsp. R&:all that the ASCII c8deskor characters 0-9
are Ox30-0x39.

oo oo o'ci oo oo 40 oo 16 Return address .. ,

B. M"odify your diagram to show the eff~ct of the call to gets (line S).

C To what address does the program attempt to return?

' I

I'

I
I

284 Chapter 3 Machine-Level Representation of Programs

D. What register(s) have corrupted value(s) when get_line returns?,

E. Besides the potential for buffer overflow, what two other things are wrong
with the code for get_'line?

A more pernicious use of buffer overflow is to get a program to perform
a function that it would otherwise be unwilling to do. This is one of the most
common methods to attack the security of a system over a computer network.
Typically, the program is fed with a string that contains the byte encoding of some
executable code, called the exploit code, plus some extra bytes that overwrite the
return address with a pointer to the exploit code. The effect of executing.the ret
instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a
shell program, providing the attacker with a range of operating system functions.
In another form, the exploit code performs some otherwise unauthorized task,
repairs the damage to the stack, and then executes ret a second time, causing an
(apparently) normal return to the caller. '

As an example, the famou,,-Internet worm of November 1988 used four dif-
ferent ways to gain access to many of the computers acros~ the Internet. One was
a buffer overflow attack on the finger daemon fingerd, which serves requests by
the FINGER command. By invoking FINGER with an appropriate string, tne worl'n
could make the daemon at a remote site have a buffer overflow and 'execute code
that gave the worm access to the remote system. Once tl\.e worm gained access to a
system, it would replicate itself and consume virtually, all of the machine's comput­
ing resources. As a consequence, hundreds of machines were effectively paralyzed
until security experts could determine how to eliminate the worm. The author of
the worm was caught and prosecuted. He was sentenced to 3 years probation, 400
hours of community service, and a $10,500 fine. Even to this day, however, people
continue to find security leaks in systems that lea\'.e them vulnerable to buffer
overflow attacks. This highlights the need.for careful programming. Any interface
to the external environment should be made "bulletproof" so that no behaviofby
an external agent can cause the system to mi~behave.

' ' 1,_) J
3.10.4 Thwarting Buffer Ol(erflow At~acks

Buffer overflow attacks have become so pervasive and have caused so many
problems with computer systems that modern compilers and operating systems
have implemented mechanisms to make it more difficult to mqunt these-attacks
and to limit the ways by which an intruder can seize control of a system via a buffer
overflow attack. In this section, we will present mechanisms that are provided by

recent versions of Gee for Linux.

Stack Randomization
In order to insert exploit code into a system, the attacker needs to inj~c.t both
the code as well as a pointer to this code as pah of the attack string. Generating

}

Section 3.10 Combining Control and Data in Machine-Level Programs 285

'fK>f. "!' ""'· ~ ~"" '" ,.,. ~ "!!~~ ";' >... ·~ ~~ ~ ~~,::.t'· ~. i'•.. f'i'h ~

A,sid~ .Worf11s a,no vjr,use~

Both worms and vifus'es f{fe pieees.of coae' ihai 1ilfempt to spread them~elves ;imong computers. As
describetl by Spafford U.OSJ.'h' wcfrni is'ajlrogram that carrfitn by itsetfan'd d1h'propagate a fully working
version cifitself to other niachitles. A.'virU.> is·a piece of code tliai adtl§>llself to'o(lie'r ptograms, including
opetatiii)f};yi"te~s: It cannorruli inaepertdentit!rn the popular press,etne terrrt "'Vi~us" is used id refer"
to 8' varietY-tof~ifferellt sti-3teg1es;fbr Spreading·~attackink Ccfde 1fnlbng 'SySterliS; ahd so you will hear
people sa§i'!g :lvirus1' for ','Y_hat .~9~6properly sHo,iild be cjilllla a·•·worm." ·

t.-.,,,,.,..., ..,.,,.,_~ ~ ·~·~ ,/). ,Jilf !!" f "NS: t>•,, ~ - '~ '~ l'f •f.t '*

this pointer requires knowing the stack address where the string will be located.
Historically, the stack addresses for a program were highly predictable. For all
systems running the same combination of program and operating system version,
the stack locations were fairly .stable across many machines. So, for example, if
an ·attacket could determine the stack addresses used by a common Web server,
it coulc\ devise an attack that would work on many machines. Using infectious
disease as an analogy, many systems were vulnerable to the exact same strain of
a virus, a phenomenon often referred to as a security monoculture [96].

The idea of stack randomization is to make the position of the stack vary from
one run ofa program to another. Thus, even if many machines are running identical
code, they would all be using different stack addresses. This is implemented by
allocating a random amount of space between 0 and n bytes on the stack at the
start of a program, for example, by using the allocation function alloca, which
allocates space for a specified number of bytes on the stack. This allocated space is
not used by the program, but it causes all subsequent stack locations to ".ary from
one execution of a program to another. The allocation range n needs to be large
enough to get sufficient variations in the stack addresses, yet small enough that it
does not waste too much space in the program.

The following code shows a simple way to determine a "typical" stack address:

int main() {
long local;

}

printf(11 local at %p\n 11
, &local);

return O;

This code simply prints the address of a local variable in the main function.
Running t.he code 10,000 times on a Linux machine in 32-bit mode, the addresses
ranged from Oxff7fc59c to Oxffffd09c, a range of around 223. Running in 64-
bit mode on the newer machine, the addresses ranged from Ox7fff0001b698 to
Ox7ffffffaa4a8, a range of nearly 232 .

Stack randomization has become standard practice in Linux systems. It is
one of a larger class of techniques known as address-space layout randomization,
or ASLR (99]. With ASLR, \lifferent parts of the program, including program
code, library code, stack, global variables, and heap data, are loaded into different

I

I

l
I

I

286

~-- -----

Chapter 3 Machine-Level Representation of Programs

regions of memory each time a program is run. That means that a program running
on one machine will have very different address mappings than the same program
running on other machines. This can thwart some forms of attack.

Overall, however, a persistent attacker can overcome randomization by brute
force, repeatedly attempting attacks with different addresses. A common trick is
to inclu\)e a long sequence of nop (pronounced "no op," short for "n?. operation")
instructions before the actual exploit code. Executing this instruction has no ef­
fect, other than incrementing the program counter to the next instruction. As long
as the attacker can guess an address somewhere within this sequence, the program
will run through the sequence and then hit the exploit code. The common term for
this sequence is a "nap sled" [97], expressing the idea that the program "slides"
through the sequence. If we set up a 256-qyte nop sled, then the randomization
over n = 223 can be cracked by enumerating 215 = 32, 768 starting addresses, which
is entirely feasible for a determined attacker. For the 64-bit case, trying to enumer­
ate 224 = 16, 777,216 is a bit more daunting. We can see that stack randomization
and other aspects of ASLR can increase the effort r~quired to successfully attack a
system, and therefore greatly reduce the rate at which a virus or worm can spread,
but it cannot provide a complete safeguard.

Mfietrw]m'imn:.::l~tmrn~1~:b~:~"y4l:.;:·i ;,.1
Running our stack-checking code 10,000 times on a system r~ning Linux ver­
sion 2.6.16, we obtained addresses ranging,J'rom a minimum of Oxffffb794 to a
maximum of OxfJffd754.

A. What is the approximate range of addresses?

B. If we attempted a buffer overrun with a 128-byte nap sled, about how many
attempts would it take to test all starting addresses?

Stack Corruption Detection '
A second line of defense is to be able to detect when a stack has been corrupted.
We saw in the example of the echo function (Figure 3.40) that the corruption
typically occurs when the program overruns the bounds of a local buffer. In C, "
there is no reliable way to prevent writing beyond the bounds of an array. Instead,
the program can attempt to detect when such a write has occurred before it can
have any harmful effects.

Recent versions of Gee incorporate a mechanism'. known as a stack protector
into the generated code to detect buffer overruns. The idea is to store a special
canary value4 in the stack frame between any local buffer and the rest of the stack
state, as illustrated in Figure 3.42 [26, 97]. This canary value, also referred to as a
guard value, is generated randomly each time the program runs, and so there is no

4. The term "canary" refers to the historic use of these birds to detect the presence of dangerous gases
in coal mines.

Stack frame
for caller ,,.

Stack frame
for echo -

Section 3.10 Combining Control and Data in Machine-level Programs 287

' -P ' . ..
I I

{; <
,, ,. f ~

i/1 ~ , "" ':i 1 . ,. '
'•1 >:~ ~~! >t-f ' ~·l' ·f'~ .

" .
Return address .._%rsp+24

,-1, . ~ . ., ' •JI'
'

Canary

[7_lli B.l.[_rs .l.[_[4l]_[3_lli2ll_r 1 Tho J ~buf = %rsp

Figure 3.42 Stack organization for echo functiori with stack protector enabled. A
special "canary" value is positioned between ar~ay buf and the saved state. The code
checks the canary value to determine whether or not the stack state has been corrupted.

easy way for an attacker to determine what it is. Before restoring the register state
and returning from the function, the program checks if the canary has been altered
by some operation of this function or one that it has called. If so, the program
aborts with an error.

Recent versions of ace try to petermine whether a function is vulnerable to
a stack overflow and insert this type, of overflow detection automatically. In fact,
for our earlier demonstration of stack overflow, we had to give the command-line
option -fno-stack-protector to prevent Gee from inserting this code. Compiling
the function echo without this option, and hence with the stack protector enabled,
gives the following assembly code:

void echo()
1 echo:
2 subq $24, %rsp Allocate 24 bytes on stack

movq %fs:40, %rax Retrieve canary
4 movq %rax, 8(%rsp) Store on stack
5 xorl %eax, %eax Zero out register
6 movq %rsp, %rdi Compute buf as %rsp
7 call gets Call gets
8 movq %rsp, %rdi Compute buf as %rsp
9 call puts Call puts

10 movq 8(%rsp), %rax Retrieve canary
11 xorq %fs:40, %rax Compare to stored value
12 je .19 If=, goto ok
13 call __ stack_chk_fail Stack corrupted!
14 .19: ok:
15 addq $24, %rsp Deallocate stack space
16 ret

We see that this version of the function retrieves a value from memory (line 3)
and stores it on the stack at offset 8 from %rsp, just beyond the region allocated for
buf. The instruction argument %f s: 40 is an indication that the canary value is read

•. from memory using segmented addressing, an addressing mechanism that dates

H
f

.!

'•

288 Chapter 3 Machine-Level Representation of Programs

back to the 80286 and is seldom found in.programs running on modern systems.
By storing the canary in a special segment, it can be marked as "read only," so
that an attacker cannot overwrite the stored canary value. Before restoring the
register state and returning, the function compares the value stored at the stack
location with the canary value (via the xorq instruction on line 11). If the two are
identical, the xorq instruction will yield zero, and the function will complete in the
normal fashion. A nonzero value indicates that the canary on the staek has been
modified, and so the code will call an error routine.

Stack protection does a good job of preventing a buffer overllow attack from
corrupting state stored on the program stack. It incurs only a small performance
penalty, especially because GCC only inserts it when there is a local buffer of
type char in the function. Of course, there are other ways to corrupt the state
of an executing program, but reducing the vulnerability of the stack thwarts many
coml\lon attack strategies.

llrw«tcaMMl!filM!Mjj~1qfja!i'ii~I4~~MtAO~ltG?ii':t::~J?il
The functions intlen, len, and iptoa provide a very convoluted way to compute
the number of decimal digits required to represent an integer. We will use this as
a way to study some aspects of the ace stack-protector facility.

int len(char *•) {

return strlen(s);
}

void iptoa(char •s, long *p) {

long val = *P;
sprintf(s, 11 %ld 11

, val)j
}

int intlen(long x) {

long v;
char buf [12] ;

V = Xj

iptoa(buf, &v);
return len(buf)j

}

The following show portions of the code for intlen, compiled both with and
without stack protector:

(a) Without protector

2

3

int intlen(long x)

x in Xrdi

intlen:
subq.
mov.q

$40, %rsp ,1

%rdi, 24(%I'sp)

4

5

6

leaq
movq
call

(b) With protector

Section 3.10 Combining Control and Data in Machine-Level Programs 289

24(%rsp), %rsi
%rsp, %rdi
iptoa

int intlen(long x)

x in Xrdi

intlen:
2 subq $56, %rsp
3 movq %fs:40, %rax
4 movq %rax, 40(%rsp)
5 xorl %eax, %eax
6 movq %rdi, 8(%rsp)
7

8

9

leaq 8(%rsp), %rsi
leaq 16(%rsp), %rdi
call iptoa

A. For both versions: What are the positions in the stack frame for buf, v, and
(when present) the canary value?

B. How does the rearranged ordering of the local variables in the protected
code provide greater security against a buffer overrun attack?

Limiting Executable Code Regions

A final step is to eliminate the ability of an attacker to insert executable code into
a system. One method is to limit which memory regions hold executable code.
In typical programs, only the portion of memory holding the code generated by
the compiler need be executable. The other portions can be restricted to allow
just reading and writing. As we will see in Chapter 9, the virtual memory space
is logically divided into pages, typically with 2,048 or 4,096 bytes per page. The
hardware supports different forms of memory protection, indicating the forms of
access allowed by both user programs and the operating system kernel. Many sys­
tems allow control over three forms of access: read (reading data from memory),
write (storing data into memory), and execute (treating the memory contents as
machine-level code). Historically, the x86 architecture merged the read and exe­
cute access controls into a single 1-bit flag, so that any page marked as readable
was also executable. The stack had to be kept both readable and writable, and
therefore the bytes on the stack were also executable. Various schemes were im­
plemented to be able to limit some pages to being readable but not executable,
but these generally introduced significant inefficiencies.

More recently, AMD introduced an NX (for "no-execute") bit into the mem­
ory protection for its 64-bit processors, separating the read and execute access
modes, and Intel followed suit. With this feature, the stack can be marked as be­
ing readable and writable, but not executable, and the checking of whether a page
is executable is performed in hardware, with no penalty in efficiency.

·--~-- -

I
I
,,
I
I

!

290 Chapter 3 Machine-Level Representation of Programs

Some types of programs require the ability to dynamically generate and ex­
ecute code. For example, "just-in-time" compilation techniques dynamically gen­
erate code for programs written in interpreted languages, such as Java, to improve
execution performance. Whether or not the run-time system can restrict the ex­
ecutable code to just that part generated by the compiler in creating the original
program depends on the language and the operating system.

The techniques we have outlined-randomization, stack protection, and liin­
iting which portions of memory can hold executable code-are three of the most
common mechanisms used to miniinize the vulnerability of programs' to buffer
overflow attacks. They all have the properties that they require no special effort
on the part of the programmer and incur very little or no performance penalty.
Each separately reduces the level of vulnerability, and in combination they be­
come even more effective. Unfortunately, there are still ways to attack computers
[85, 97], and so worms and viruses continue to compromise the integrity of many
machines.

3.10.5 Supporting Variable-Size Stack Frames

We have examined the machine-level code for a variety of functions so far, but
they all have the property that the compiler can determine in advance the amount
of space that must be allocated for their stack frames. Some functions, however,
require a variable amount of local storage. This can occur, for example, when the
function calls alloca, a standard library function that can allocate an arbitrary
number of bytes of storage on the stack. It can also occur when the code declares
a local array of variable size.

Although the information presented in this section should rightfully be ~on­
sidered an aspect of how procedures are implemented, we have deferred tlie
presentation to this point, since it requires an understanding of arrays and align­
ment.

The code of Figure 3.43(a) gives an example of a function containing a
variable-size array. The function declares local array p of n pointers, where n is
given by the first argument. This requires allocating Sn bytes on the stack, where
the value of n may vary from one call of the function to another. The compiler
therefore cannot determine how much space it must allocate for the function's
stack frame. In addition, the program generates a reference to the address of local
variable i, and so this variable must also be stored on the stack. During execution,
the program must be able to access both local variable i and the elements of array
p. On returning, the function must deallocate the stack frame and set the stack
pointer to the position of the stored return address.

To manage a variable-size stack frame, x86-64 code uses register %rbp to serve
as a frame pointer (sometimes referred to as a base pointer, and hence the letters
bp in %rbp). When using a frame pointer, the stack frame is organized as shown
for the case of function vframe in Figure 3.44. We see that the code must save
the previous version of %rbp on the stack, since it is a callee-saved register. It then
keeps %rbp pointing to this position throughout the execution of the function, and
it references fixed-length local variables, such as i, at offsets relative to %rbp.

Section 3.10 Combining Control and Data in Machine-Level Programs 291

(a) C code

long vframe(long n, long idx, iong *q) {
long i;

}

long •p[n];
p[O] = &i;

for (i = 1; i < n; i++)

p[i] = q;

return *p[idx] i

(b) Portions of generated assembly code

long vframe(long n, long idx, long *q)

n in %rdi, idx in %rsi, q in %rdx
Only portions of code shown

vframe:
2 pushq %rbp

movq· %rsp, %rbp
4 subq $16, %rsp
5 leaq 22(,%rdi,8), %rax
6 andq $-16, %1-ax

subq %rax, %rsp
8 !eaq 7(%rsp), %rax
9 shrq $3, %rax

10 leaq O(,%rax~8), %r8
11 movq %r8, %icx

•Code for initializ~tion loop

i in %rail and on stack, n in %rdi, pin
12 .L3:
13 movq '%rdx, (%rcx·,%raX,8)
14 addq $1, %rax
15 movq %rax, -8(%rbp)
16 .L2:
17 m'ovq -8(%rbp), %rax
18 cmpq %rdi, %rax
19 jl .L3 ,,

Code for function exit
20 leave
21 ret

Save old %rbp

Set frame pointer

Allocate space for i (%rsp = s1)

Allocate space for array p (%rsp s2).

Set %r8 to &p[O]

Set %rcx•to &p[O] (7.rcx = p)

%rcx, q in %rdx
loop:

Set p[i] to q

Increment i

Store on stack

Retrieve i from stack
Compare i:n

If <, goto loop

Restore Xrbp and %rsp
Return

Figure 3.43 Function requiring the use of a frame pointer. The variable-size array implies that the size of
the stack frame cannot be determined at compile time.

'"

I
•I
I

292 Chapter 3 Machine-Level Representation of Programs

Figure 3.44 Return address

Stack frame structure
for function vframe.
The function uses register
%rbp as a frame pointer.
The annotations along
the right-hand side are

Frame pointer _
%rbp

8

0

-8

-1 6 - ~

Saved %rbp

i

(Unused)

' .,..J;, .!;; .:-"Yi;f i0r"l
,-s,
Je,

in reference to Practice
Problem 3.49.

an bytes

Stack pointer _
%rsp

*~: '\;.,

p

_; ;:- ,-P
Je' _.,

Figure 3.43(b) shows portions of the code ace generates for function vframe.
At the beginning of the function, we see code that sets UR the stack frame,an,d
allocat<;s space for array p. Uie code starts by pushing the current valu~ of %rbp
onto the stack and setting %rbp to point to this stack position (lines 2-3) .. Next, it
allocates 16 bytes on the stack, the first 8 of which are us_ed to store local variable
i, and the second 8 of which are unused. Then it allocates space for array p (lines
5-11). The details of ho"'. much space it allocates and where it posit\ops p within
this space are expJored in Practice Problem 3.49. Suffice it to say that by the time
the program reaches line 11, it has (1) allocated at least Bn bytes qn the stack and
(2) positioned array p within the allocated region such t)J.at at le,asi ~n bytes are

available for its use.
The code for the initialization loop shows .exaQ1ples .of h9w local,yariables

i and p are referenced. Line 13 shows array element p [i) being set to q. This
instruction uses the value in riigister %rcx as the ~ddress for the, start of p. We can
see instances where local variable i is updated (line 15) and read (line 17). The
address of i is given by reference -8 C%rbp)-that is, at-offse,t -8 relatiye to the

frame pointer.·
At the end of the function, -tjle frame pointer is restored to its previous value

using the leave instruction (line 20). This instruction takes no argvments. It is
equivalent to executing the following two instructions:

movq %rbp, %rsp
popq %rbp

Set stack pointer to beginning of frame

Restore saved Xrbp and set stack ptr

to end of caller's frame

That is, the stack pointer is first set to the position of the saved value of %rbp, and
then this value is popped from the stac;k into %rbp. This instruction combination
has the effect of deallocating the entire stack frame.

~!

Section 3.11 Floating-Point Code 293

In earlier versions of x86 code, the frame pointer was used with every function
call. With x86-64 code, it is used only in cases where the stack frame may be of
variable size, as is the case for function vframe. Historically, most compilers used
frame pointers when generating IA32 code. Recent versions of ace have dropped
this convention. Observe that it is acceptab,l,e tq mix code that uses frame pointers
with code that does not, as long as all functions treat %rbp as a callee-saved register.

ffiiSl!:Cm:4filim'.~!J~~~;:Ji;rJt~.:'.~K~~::;~,;
In this problem, we will explore the logic behind the code in lines 5-11 of Fig­
ure 3.43(b), where space is allocated for variable-size array p. As the annotations
of the code indicate, let us let SJ denote the address of the stack pointer after exe­
cuting the subq instruction of line 4. This instruction allocates the space for local
variable i. Let sz del\ote the value of the stack pointer after executing the subq
instructjon of line 7. This instruction allocates the storage for local array p. Finally,
let p denote the value assigned to registers %r8 and %rcx in the instructions of lines
10-11. Both of these registers are used to reference array p.

The right-hand side of F'lgure 3.44 diagrams the positions of the locations
indicated by SJ. s2, and p. It also shows that there may be an offset of e2 bytes
between the values of SJ and p. This space will not be used. There may also be an
offset of eJ bytes between the end of array p and the position indicated by SJ.

A. Explain, in mathematical terms, the logic in the computation of s2 on lines
5-7. Hint: Think about the bit-level representation of -16 and its effect in
the andq instruction of line 6.

B. Explain, in mathematical terms, the logic in the computation of p on lines
8-10. Hint: You may want to refer to the discussion on division by powers
of 2 in Section 2.3.7.

C. For the, following values of n and SJ. trace the execution of the code to
determine what the resulting values would be for s2, p, el> and e2.

n

5
6

2,065
2,064

p

D. What alignment properties does this code guarantee for the values of s2
and p?

3.11 F!oating-Point Code

The floating-point architecture for a processor consists of the different aspects
that affect h'ow programs operating on floating-point data are mapped onto the
machine, including ·

.. How floating-point values are stored and accessed. This is typically via some
form of registers.

I
I

I
11

I
·I
I

' !

,_. ! _,,..,. -------- -

294 Chapter 3 Machine-Level Representation of Programs

• The instructions that operate on floating-point data.

• The conventions used for passing floating-point values as arguments to func­
tions and for returning them as results.

• The conventions for how registers are preserved during function calls-for
example, with some registers designated as caller saved, and others as callee
saved.

To understand the x86-64 floating-point architecture, it is helpful to have a
brief historical perspective. Since the introduction of the Pentium/MMX in 1997,
both Intel and AMD have incorporated successive generations of media instruc­
tions to support graphics and image processing. These instructions originally fo­
cused on allowing multiple operations to be performed in a parallel mode known
as single instruction, multiple data, or SIMD (pronounced sim-dee). In this mode
the same operation is performed on a number of different data values in .P.arallel.
Over the years, there has been a progression of these extensions. The nanies have
changed through a series of major revisions from MMX to SSE (for "streaming
SIMD extensions") and most recently AVX (for "advanced vector extensions").
Within each generation, there have also been different versions. Each of these ex­
tensions manages data in sets of registers, referred to as "MM" registers for MMX,
"XMM" for SSE, and "YMM" for AVX, ranging from 64 bits for MM registers,
to 128 for XMM, to 256 for YMM. So, for example, each YMM register can hold
eight 32-bit values, or four 64-bit values, where these values can be either integer
or floating point.

Starting with SSE2, introduced with the Pentium 4 in 2000, the media in­
stn\ctions have included ones to operate on scalar floating-point data, using single
values in the low-order 32 or 64 bits of XMM or YMM registers. This scalar mode
provides a set of registers and instructions that are more typical of the way other
processors support' floating point. All processors capable of executing x86-64 code
support SSE2 or higher, and hence x86-64 floating point is based on SSE or AVX,
including conventions for passing procedure arguments and return values [77].

Our presentation is based on A VX2, the second version of A VX, introduced
with the Core i7 Haswell processor in 2013. Gee will generate AVX2 code when
given the command-line parameter -mavx2. Code based on the different versions
of SSE, as well as the first version of A VX, is conceptually similar, althongh they
differ in the instruction names and formats. We present only instructions ihat
arise in compiling floating-point programs with Gee. These are, for the most part,
the scalar A VX instructions, although we document occasions where instructions
intended for operating on entire data vectors arise. A more complete coverage
of how to exploit the SIMD capabilities of SSE-and AVX is presented irl Web
Aside OPT:SIMD ,on page 546. Readers may wish to refer to the AMD and Intel
documentation for the individual instructioµs [4, 51]. As with integer operations,
note that the ATT format we use in our presentation differs from the Intel format
used in these documents. In particular, the instruction operands are listed in a
different order in these two versions.

__ .__ _________ _

Section 3.11 Floating-Point Code 295

255 127 0

2nd FP argument

3rd FP argument

4th FP argument

5th FP argument

6th FP argument

7th FP argument

Bth FP argument

r Caller saved

~~~~~~~~~~ 
Caller saved 

Caller saved 

Caller saved 

Caller saved 

Caller saved 

Figure 3.45 Media registers. These registers are used to hold floating-point data. 
Each YMM register holds 32 bytes. The low-order 16 bytes can be accessed as an XMM 
register. 

As is illustrated in Figure 3.45, the AVX floating-point architecture allows 
data to be stored in 16 YMM registers, named %ymmO-%ymm15. Each YMM register 
is 256 bits (32 bytes) long. When operating on scalar data, these registers only 
hold floating-point data, and only the low-order 32 bits (for float) or 64 bits (for 
double) are used. The assembly code refers to the registers by their SSE XMM 
register names %xmmO-%xmm15, where each XMM register is the low-order 128 bits 
(16 bytes) of the corresponding YMM register. 



296 Chapter 3 Machine-Level Representation of Programs 

Instruction Source Destination Description 

vmovss M32 x Move single precision 
vmovss x M32 Move single precision 

vmovsd M64 x Move double precision 
vmovsd x M64 Move double precision 
vmovaps x x Move aligned, packed single precision 
vmovapd x x Move aligned, packed double precision 

Figure 3.46 Floating-point movement instructions. These operations transfer values 
between memory and registers, as well as between' pairs of registers. (X: XMM register 
(e.g., %xmm3); M32: 32-bit memory range; M64: 64-bit memory range) 

3.11.1 Floating-Point Movement and Conversion Operations 

Figure 3-46 shows a set of instructions for transferring floating-point data between 
memory and XMM registers, as well as from one XMM register to another without 
any conversions. Those that reference memory are scalar instructions, meaning 
that they operate on individual, rather than packed, data values. The data are 
held either in memory (indicated in the table as M32 and M64) or in XMM registers 
(shown in the table as X). These instructions will work correctly regardless of the 
alignment of data, although the code optimization guidelines recommend that 32-
bit memory data satisfy a 4-byte alignment and that 64-bit data satisfy an 8-byte 
alignment Memory references are specified in the same way as for the integer MOV 

instructions, with all of the different possible combinations of displacement, base 
register, index register, and scaling factor. 

Gee uses the scalar movement operations only to transfer data from memory 
to an XMM register or from an XMM register to. memory. For transferring data 
between two XMM registers, it uses one of two different instructions for copying 
the entire contents of one XMM register to another-namely, vmovaps for single­
precision and vmovapd for double-precision values. For these cases, whether the 
program copies the entire register or just the low-order value affects neither the 
program functionality nor the execution speed, and so using these instructions 
rather than ones specific to scalar data makes no real difference. The letter 'a' 
in these instruction names stands for "aligned." When used to read and write 
memory, they will cause an exception if the address does not satisfy a lo-byte 
alignment. For transferring between two registers, there is no possibility of an 
incorrect alignment. 

As an example of the different floating-point move operations, consider the 
Cfunction 

float float_mov(float vi, float *src, float *dst) { 
float v2 = *src; 
*dst = vi; 
return v2; 

} 

. , 

:1 I 



Instruction Source 

vcvttss2si X/M32 
vcvttsd2si ¥fM54 
vcvttss2siq X!M32 
vcvttsd2siq XIM64 

Destination 

R32 

R32 

R64 

R64 

Section 3.11 Floating-Point Code 297 

Description 

Convert with truncation single pr~cision to integer 

Convert with. truncation double precision to integer 

Convert with truncation single precision to quad word integer 

Convert with truncation double precision to quad word integer 

Figure 3.47 Two-operand floating-point conversion operations. These convert floating-point data to 
integers. (X: XMM register (e.g., %xmm3); R32: 32-bit general-purpose register (e.g., %eax); R64 : 64-bit 
general-purpose register (e.g., %rax); M32: 32-bit memory range; M64: 64-bit memory range) 

Instruction Source 1 Source 2 Destination Description 

vcvtsi2ss M,2IR32 x x Convert integer to single precision 

vcvtsi2sd M,2IR32 x x Convert integer to double precision 

vcvtsi2ssq M64/R64 K· x Convert quad word integer to single precision 

vcvtsi2sdq- M64/R64 x x Convert quad word integer to double precision 

Figure 3.48 Three-operand floating-point conversion operations. These instructions convert from the 
data type of the first source to the data type of the destination. Th~ second source value has no effect on the 
low-order bytes of the result. (X: XMM register (e.g., %xmm3); M32: 32-bit memory range; M64: 64-bit memory 
range) 

and its associated x86-64 assembly code 

2, 

3 

4 

5 

float float_mov(float v1, float *src, float *dst) 

v1 in %xmm,.O, src in %rdi', dst in %rsi 

flop.t_mov: 
vmovaps %xmm0, %xmm1 Copy vl 

vmovss (%rdi) , %xmm0 Read v2 from src 

vmovss %xmm1, (%rsi) Write vl t9 dst 

ret Return v2 in %xmm0 

We can'see in this example the use of the vmovaps instruction t9 copy data from 
one register to another and the use of the vrnovss instruction to copy data 
from memory to an XMM register and from an XMM register to memory. 

Figures 3.47 i)nd 3.48 show sets of instructions for converting between floating­
point and integer data types, as well as between different floating-point formats. 
These are all scalar instructions operating on individual data values. Those in 
Figure 3.47 convert ffclm a'lloating-point vaiue read from either an 'xMM register 
or memory and write the result to a general-purpose register (e.g., %rax, %ebx, 
etc.). When converting floating-point values to integers, they perform truncation, 
rounding values toward zero, as is required by C and most other programming 
languages. 

The instructions in Figure 3.48 convert from integer to floating point. They 
use an unusual three-operand format, with two sources and a destination. The 



I 
r 

! 
r 
I 
I 
I 

298 Chapter 3 Machine-Level Representation of Programs 

first operand is read from memory or from a general-purpose register. For our 
purposes, we can ignore the second operand, since its value only affects the upper 
bytes of the result'. The destination must be an XMM register. In common usage, 
both the second source and the destination operands are identical, as in the 

instruction 

vcvtsi2sdq %rax, %xmm1, %xmm1 

This instruction reads a long integer from register %rax, converts it to data type 
double, and stores the result in the lower bytes of XMM register %xmml. 

Finally, for converting between two different floating-point formats, current 
versions of aee generate code that requires separate documentation. Suppose 
the low-order 4 bytes of %xmm0 hold a single-precision value; then it would seem 
straightforward to use the instruction 

vcvtss2sd %xmm0, %xrnm0, %xmm0 

to convert this to a double-precision value and store the result in the lower 8 bytes 
of register %xmmO. Instead, we find the following code generated by Gee: 

Conversion from single to double precision 
vunpcklps %xrnm0, %xmm0, %xmm0 Replicate first vector element 

2 vcvtps2pd %xmm.0, %xmm0 Convert two vector elements to double 

The vunpcklps instruction is normally used to interleave the values in two 
XMM registers and store them in a third. That is, if one source register contains 
words [s

3
, s

2
, s

1
, s

0
] and the other contains words [d3, d2 , di. d0], then the value 

of the destination register will be [s1, d1, s0, d0].'In the code above, we see the 
same register being used for all three operands, and so if the original register 
held values [x

3
, x

2
, x

1
, x0], then the instruction will update the register to hold 

values [x
1

, x
1

, x
0

, x
0

]. The vcvtps2pd instruction expi'nds the two low-order single­
precision values in the source XMM re_gister to be the two double-precision values 
in the destination XMM register. Applying this to the result of the preceding 
vunpcklps instruction would give yalues [qx0 , dx0], where dx0 is the result of 
converting x to double precisiop. That is, the net effect of the two instructions is 
to conv<;rt the original single-precision value in the low-order 4 bytes, of %xmm0 to 
double precision and store two copies of it in %xmmO)t is unclear why aee generates 
this code. There is n,either benefit nor need to have the value duplicated within 

the XMM register. 
Gee generates similar code for converting from double precision to single 

precision: 

Conversion from double to single precision 
vmovddup %xmm0, %xmrn0 Replicate first vector element 

2 vcvtpd2psx %xmm0, %xrnm0 Conve-rt two vector elements to single 

.:; 
' ' j 

l 



Section 3.11 Floating-Point Code 299 

Suppose these instructions start with register %xmmo holding two double-precision 
values [x1. x0]. Then the vmovddupinstruction will set it to [x0, x0]. The vcvtpd2psx 
instruction will convert these values to singf~ 'precision, pack them into the 
low-order half of the register, and set the upper half to 0, yielding a result 
[0.0, 0.0, x0, x0] (recall that floating-point value 0.0 is represented by a bit pat­
tern of all zeros). Again, there is no clear value in computing the conversion from 
one precision to another this way, rather than by using the single instruction 

vcvtsd2ss %xmm0, %xinmO, %xmm0 

As an example of the different floating-point conversion operations, consider 
the C function 

double fcvt(int i, float *fp, double, *dp, long *lp) 
{ 

float f = *fp; double d *dp; long l *lp; 
•lp = (long) d; 
*fp = (float) i; 
•dp = (double) l; 
return (double) f; 

} 

and its associated x86-64 assembly code 

2 

3 

4 

5 

12 

double fcvt(int i, float *fp, double *dp, long *lp) 

i in %edi, fp in %rsi, dp in %rdx, lp in %rcx 
fcvt: 

vmovss (%rsi), %xmm0 
movq (%rcx), %rax 
vcvttsd2siq (%rdx), %r8 
movq %r8, (%rcx) 
vcvtsi2ss %edi, %xmm1, 
vmovss %xmm1, (%rsi) 
vcvtsi2sdq %rax, %xmm1, 
vmoVsd %xrnm1, (%rdx) 

ret 

%xmm1 

%xmm1 

Get f = *fp 

Get 1 "' *lp 

Get d = *dp and convert to long 
Store at lp 

Return f 

All of the arguments to fcvt are passed through the general-purpose registers, 
since they are either integers or pointers. The result is returned in register %xmm0. 
As is documented in Figure 3.45, this is the designatedireturn register for float 
or double values. In' this code, we see a number of the.movement and c;onversion 
instrµctions of Figures 3.46-3.48; as well as Gee's preferred method of converting 
from single to double precision. 



300 Chapter 3 Machine-Level Representation of Programs 

For the following C code, the expressions val1-val4 all map to the program values 
i, f, d, and 1: 

double fcvt2(int •ip, float •fp, double •dp, long 1) 
{ 

} 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

int i = *ip; float f ~ •fp; double d = •dp; 
•ip (int) val!; 
•fp (float) val2; 
•dp = (~ouble) val3; 
return (double) val4; 

Determine the mapping, based on the following x86-64 code for the function: 

double fcvt2(int *ip, float •fp, double •dp, long 1) 

ip in %rdi, fp in %rsi, dp in %rdx, 1 in %rcx 

Result returned in XxmmO 

fcvt2: 
movl C%rdi), %eax 
vmovss (%rsi), %xmm0 
vcvttsd2si (%rdx), %r8d 
movl %r8d, (%rdi) 
vcvtsi2ss %eax, %xmm1, %xmm1 
vm.ovss %xmm1, (%'.rsi) 
vcvtsi2sdq %rcx, %xmm1, %XIfim1 
vmovsd %xmm.1, (%rdx) 
vunpcklps %xmm0, %xmm0, %mmo 
vcvtps2pd %xmm0, %xmm.O 
ret 

I .. "'"' ' 
The following C function converts an argument of type src_ t to a return value of 
type dst_t, where these two types are defined using typedef: · 

dest_t cvt(src_t x) 
{ 

} 

dest_t y = (dest_t) x; 
return y; 

For execution on x86-64, ~ssume that argument x •is eitlJer in Y.xmmO or in 
the appropriately named portion· of register %rdi (i.e., %rdi or %edi ). One or 
two fastructions are •ta be 'llsed to perform the type conversion and to copy the 
value to the appropriately named portion of register %rax (integer result} or 



' 

Section 3.11 Floating-Point Code 301 

%xmm0 (floating-point result). Show the instruction(s), including the source and 
destination registers. 

TX Ty Instruction( s) 

long double vcvtsi2sdq %rdi, %xmm0 
double int 
double float 
long float 
float long 

3.11.2 Floating-Point Code in Procedures 

With x86-64, the XMM registers are used for passing floating-point arguments to 
functions and for returning floating-point values from them. As is illustrated in 
Figure 3.45, the following conventions are observed: 

• Up to eight floating-point arguments can be passed in XMM registers %xmm0-
%xmm7. These registers are used in the order the arguments are listed. Addi­
tional floating-point arguments can be passed on the stack. 

• A function that returns a floating-point value does so in register %xmm0. 

• All XMM registers are caller saved. The callee may overwrite any of these 
registers without first saving it. 

When a function contains a combination of pointer, integer, and floating­
point arguments, the pointers and integers are passed in general-purpose registers, 
while the floating-point values are passed in XMM registers. This means that the 
mapping of arguments to registers depends on both their types and their ordering. 
Here are several examples: 

double f1(int x. double y, long z); 

This function would have x in %edi, yin %xmm0, and z in %rsi. 

double f2(double y, int x, long z); 

This function would have the same register assignment as function f 1. 

double f1(float x, double *Y· long *z); 

This function would have x in %xmm0, yin %rdi, and z in %rsi. 

~t~:J?f9:1'11~~~~~~~~~~~~:;~~~~ 
For each of the following functiciri !lec!arati~ns, determine the register assignments 
for the arguments: 

A. double gl(double a, lbng b, float c, int d); 



• I ,, 

I 

302 <Ohapter 3 Machine-Level Representation of Programs 

B. double g2(int a, double *b, float *c, long d)j 

C. double g3(double *a, double b, int c, float d); 

D. double g4(float a, int *b, float c, double d); 

3.11.3 Floating-Point Arithmetic Operations 

Figure 3.49 documents a set of scalar A VX.2 floating-point instructions that. p~r­
form arithmetic operations. Each has either one (S1) or two (Sh S2) source oper­
ands and a destination operand D. The first source operand S1 can be either an 
XMM register or a memory location. lfhe seqond sourc!',pperand and th~ de~\i­
nation operands must be XMM registers. Each operation has an instruction for 
single precisioil and an instruction for double precision.cThe result is stored in the 

destination register. 
As an example, consider the following ftoating-point function: 

double funct.(double ai; float x, double b, int i) 

{ 

} 

return a*x - b/i; 

The x86-64 code is as f'ollows: 

double funct(double a, float x, double b, int i) 

a in'%xmm0, x in Xxmm1, bin %xmm2, i id %Sdi 
func:t: 

Th~following tWo instrUctions convert x to double 

2 vunpcklps %xmm1, %xmm1, %xmm1 · 
3 vcvtps2pd %xmm1, %xmm1 
4 vmulsd %xmmO, %xmm1, %xmm0 Multiply a bl x 

5 vcvtsi2sd %edi, %xmm1, %xmm1 Convert i to double 

6 vdi vsd %xmm1, %xmm2, %Xrnm2 Compute b/i 

Single Double Effect Despriptiqn , 

vaddss vaddsd D <-- S2 + S1 Floating-point add 

vsubss vsubsd D <-- S2 - 's1 Floating-poini subtract 

vmulss vmulsd D <-- S2 x S1 Floatiilg-point multiply I 

vdivss vdivsd D <-- S2/S1 Floating-point divide 

vmaxss vmaxsd D <-- max(S2, S1) Floating-point maximum 

vmins,s vminsd D <-- min(S2, S1) Floating-poin' minimum 

sqrtss sqrtsd D ..... ;s,' , Floating-point square root 

u 

Figure 3.49 Scalar floating-point ~rithmetic operations. These have either one or 
two source operands and a destination operand. 



Section 3.11 floating-Point Code 303 

7 

8 

vsubsd %xmm2, %xmm0, %xmm0 
ret 

Subtract from a*x 

Return 

The three floating-point arguments a, x, and b are passed in XMM registers 
%xmm0-%=2, while integer argument i is pa~sed in register %edi. The standard 
two-instruction sequence is used to convert argument x to double (lines 2-3). 
Another conversion instruction is required to convert argument i to double (line 
5). The function value is returned in register %xmm0. 

f~~tciir212lifill·~~~fil!l!~'ii9~ 
For the following C function, the types of the four arguments are defined by 
typedef: 

double funct1(arg1_t p, arg2_t q, arg3_t r, arg4_t s) 
{ 

return p/(q+r) - s; 
} 

When compiled, ace generates the following code: 

2 

l 

4 

5 

6 

7 

8 

9 

double funct1(arg1_t p, arg2_t q, ar~3_t r, arg4_t s) 
functl: 

vcvtsi2ssq %rsi, %xmm2, %xmm2 
vaddss %xmmO, %xmm2, %xmm0 
vcvtsi2ss %edi, %xmm2, %xmm2 
vdivss %xmmO, %xmrn2, %xmmO 
vunpcklps %xmm0, %xmm0, %xmm0 
vcvtps2pd %xmm0, %xmmO 
vsubsd %xmm1, %xmmO, %xmm0 
ret 

Determine the possible combinations of types of the four arguments (there 
may be more than one). 

double funct2(double w, int x, floaty, long z); 

Gee generates the following code for the function: 

double funct2(double w, int x, floaty, long z) 

w in %xmm0, x in %edi, y in %xmm1, z in %rsi 
funct2: 

vcvtsi2ss %edi, %xmm2, %xnun2 
vmulss %xmm1, %xmm2, %xmm1 



"I 
I 304 Chapter 3 Machine-Level Representation of Programs 

4 vunpcklps 'Y.xmml, %xmm1, %xmm1 
5 vcvtps2pd 'l~xmmt, %xmm2 
6 vcvtsi2sdq %rsi, %xmm1, %xmm1 
7 vdivsd" %xmm1, %xmm0, %xmm0 
8 vsubsd %xmm0, %xmm2, %'.xzruiiO 
9 rat 

Write a C version of funct2. 

3.11.4 Defining and Using Floating-Point Constants 

Unlike integer arithmetic operations, AVX tloating-point operations cannot have 
immediate values as operands. Instead, the compiler must allocate and initialize 
storage for any constant values. The code then reads the v"alues from memory. This 
is illustrated by the following Celsius to Fahrenheit conversion function: 

double cel2fahr(double temp) 
{ 

return 1.8 * tamp + 32.0; 
} 

The relevant parts of the x86-64 assembly code are as follows: 

double ce12fahr(double temp) 

temp in %xmm0 

1 cel2fahr: 
2 vmulsd .LC2(%rip), %xmm.O, %xmm0 Multiply by 1.8 

3 vaddsd .LC3(%rip), %xmm0, %xmm0 Add 32.0 

4 rat 
s .LC2: 
6 .long 3435973837 Low-order 4 bytes of 1.8 

7 !long 1073532108 High-order 4 bytes of 1 .8 

8 .LC3: 
9 .long 0 Low-order 4 bytes of 32.0 

10 .long 1077936128 High-order 4 bytes of 32.0 

We see that the function reads the value 1.8 from the memory location labeled 
. LC2 and the value 32.0 from the memory location JabeleO. :LC3. Looking at the 
values associated with these labels, we see that each is specified by a pair of . long 
declarations with the values'given in decimal. How should these' be interpreted 
as tloating-point values? Looking at th" d!Jl'laration labeled . LC2, we see ,that the 
two values are 3435973837 (Oxcccccccd) and 1073532108 (Ox3ffccccc.) Since 
the machine uses little-endian byte ordering, the first value gives the low-order 4 
bytes, while the second gives the high-order 4 bytes. From the high-order bytes, 
we can extract an exponent field of Ox3ff (1023), from which we subtract a bias of 
1023 to get an exponent of 0. Concatenating the fraction bits of the two values, we 
get a fraction field of Oxccccccccccccd, which can be shown to be the fractional 
binary representation of 0.8, to which we add the implied leading one to get 1.8. 



Single 

vxorps 
vandps 

Double 

xorpd 
and pd 

Effect Description 

Bitwise EXCLUSIVE-OR 

Bitwise AND 

Section 3.11 Floating-Point Code 305 

Figure 3.50 Bitwise operations on packed data. These instructions perform Boolean 
operations on all 128 bits in an XMM register. 

~@i!ffi'.)3%§5!(!S1Gii~~f,1ij\;!tlff;J:$~~~:::a 
Show how the numbers declared at label . LC3 encode the number 32.0. 

3.11.5 Using Bitwise Operations in Floating-Point Code 

At times, we find ace generating code that performs bitwise operations on XMM 
registers to implement useful floating-point results. Figure 3.50 shows some rele­
vant instructions, similar to their counterparts for operating on general-purpose 
registers. These operations alJ>act on packed data, meaning that they update the 
entire destination XMM register, applying the bitwise operation to all the data in 
the two source registers. Once again, our only' interest for scalar data is the effect 
these instructions have on the low-order 4 or 8 bytes of the destination. These op­
erations are often simple and convenient ways to manipulate floating-point values, 
as is explored in the following problem. 

~1c!!!8r'.261irnt%l'.e™lll™l~&t-~A!~ 
Consider the following C function, where EXPR is a macro defined with #define: 

I 

double simplefun(double x) { 
return EXPR(x); 

} 

Below, we show the AVX2 code generated for different definitions of EXPR, 
where value xis held in %xmm0. All of them correspond to some useful operation on 
floating-point values. Identify what the operations are. Your answers will require 
you to understand the bit patterns of the constant words being retrieved from 
memory. 

A. 1 vmovsd .LC1(%rip), %xmm1 
2 vandpd %xmm1, %xmm0, %xmm0 
3 .LCl: 
4 .long 4294967295 
5 '.long 2147483647 
6 .long 0 
7 .long 0 

B. vxorpd %xmm0, %xmm0, %xmm0 



306 Chapter 3 Machine-Level Representation of Programs 

c. , vmovsd .LC2(%rip), %xmm1 
2 vxorpd %xmm1t Y.xmmO 7 %xmm0 
3 .LC2: 
4 .long 0 

5 .long -2147483648 
6 .long 0 

7 .long 0 

3.11.6 Floating-Point C~mparison Operatiqns 

AVX2 provides two instructions for comparing floating-point values: 

Instruction 

ucomiss S1, Sz 
ucomisd S1, Sz 

Based on Description 

Compare single precision 
Compare double precision 

These instructions are similar to the CMP instructions (see Section 3.6), in that 
they compare operands S1 and S2 (but in the opposite order one might expect) and 
set the condition codes to indicate their relative values. As with cmpq, they follow 
the ATJLformat convention of listing•the•operands in reverse order. Argument 
S2 must Ile.in an XMM register, while s1 can be either in an XMM register or in 
memory. 

The floating-point comparison instructions·set three condition codes; the zero 
flag ZF, the carry flag CF, and the parity flag PF. We did not document the parity 
flag in Section 3.6.1, because it is not commonly found in Gee-generated x86 code. 
For integer operations, this flag is set when the most recent arithmetic or logical 
operation yielded a value 'where the least significant byte"has 'even parify (i.e., 
an even number of ones in the byte). For floating-point comparisons, however, 
the flag is set when either operand is NaN. By convention, any''comparison in C 
is consider~d to fail when one of the arguments is NaN, and this flag is used to 
detect such a condition. For example, even the co111parison x == x yields 0 when x 
is NaN. 

'rile condifion codes are set as follows: 

Ordering l52:s1 CF ZF PF 

Unordered 1 1 1 

S2 < S1 1 0 0 

S2=S1 0 1 0 

S2 > S1 0 0 0 

The unordered case occurs when either operand is NaN. This can be detected 
with the parity flag. Commonly, the jp (for "junip on parity") instnfction is used to 
conditionally jump when a floating-point comparison yields an unordered result 
Except for this case, the values of the carry and zero flags are the same as those 
for an unsigned comparison: ZF is set when the two operands are equal, and CF is 



Section 3.11 Floating-Point Code 307 

(a) C code 

typedef enum {NEG, ZERO, POS, OTHER} range_t; 

range_t find_range(float x) 
{ 

} 

int result; 
if (x < 0) 

result NEG; 
else if (x = o'i 

result ZERO; 
else if (x > 0) 

result POS; 
else 

result = OTHER; 
return result; 

(ti) Generated assembly cod~ 

range_t find_range(float x) 

x< ill X:rmmo 
1 find_range: 
2 vxorps %xmm1, %xmm1, 

' vucom±ss %:xmmO, 
4 j.a .L5 
5 vucomiss %xmm1, 
6 jp .L8 
7 movl $1, %eax 
8 je .L9 
9 .L8: 

' 

%xmm1 
%xmm1 

%xmrn0 

10 vucomiss .LCO(%rip), 7.xmmo 
11 set be %al 
12 movzbl %al, %eax 
1l addl $2, %eax 
14 ret 
15 .L5: 
16 movl $0, %eax 

.L3: 
rep; ret 

Set Xxmm1 = 0 

Compare O:x 

It >, goto neg 

Compare x:O 

If NaN, goto poeornan 

result - ZERO 

If ~. goto done 

posornan; 

Compare x:O 
Set result ~NaN ? 1 : 0 

Zero-extend 

result += 2 (POS for> 0, OTHER :for NaN) 

Return 

neg: 

result "' NEG 

done: 

Return 

Figure 3.51 Illustration of conditional branching in floating-point code. 



3,08 Chapter 3 Machine-Level Representation of Programs 

set when S2 < S1. Instructions such as j a and jb are used to conditionally jump otl 
various combinations of these flags. 

As an example of floating-point comparisons, the C function of Figure 3.Slt a) 
classifies argument x according to its relation to 0.0, returning an enumerated type 
as the result. Enumerated types in C are encoded as integers, and so the possible 
function values are: 0 (NEG), 1 (ZERO), 2 (POS), and 3 (OTHER). This final outcome 
occurs when the value of xis NaN. 

Gee generates the code shown in Figure 3.Sl(b) for find_range. The code 
is not very efficient-it compares x to 0.0 three times, eveµ though the required 
information could be obtained with a single comparison. It also generates floating­
point constant 0.0 twice-once using vxorps, and once by reading the valueJrom 
memory. Let us trace the flow of the function for the four possible comparison 
results: 

x < 0.0 The j a branch on line 4 will be taken, jumping to the end with a return 
value of 0. 

x = 0.0 The ja (line 4) and jp (line 6) branches will not be taken, but the je 
branch (line 8) will, returning with %eax equal to 1. 

x > 0.0 N.one of t)ie three branches will be taken. The set be (line 11) will yield 
IJ; and this will tie incremented by the addl instruction (line i3) to give a 
return value of 2. 

x =NaN The jp branch (line 6) will be taken. The third vucomiss instruction 
(line 10) will set both the carry and the zero flag, and so the setbe 
instruction (line 11) and the following instruction will s~t %eax to 1. This 
gets incremented by the addl instruction (line 13) to give a return value 
of3. 

In Homework Problems 3.73 and 3.74, you are challenged to hand-generate 
more efficient implementations of find_range. 

L!'1i!~(ii.~:f!r@iiim~tM~s§.LN&'.a fN(1g ~<!}<;~;:'!j1:i~1£!! :~:;r.: : 1 
Function funct3 has the following prototype: 

double funct3(int *ap, double b, long c, float *dp); 

For this function, ace generates the following code: 

2 

3 

4 

5 

6 

7 

double funct3(int *ap, double b, long c, float *dp) 

ap in %rdj, b in 7.xmmO, c in %r~i, dp,in %rdx 
funct3: l 

vmovss (%rdx), %xmm1 
vcvtsi2sd (%rdi), %xmm2, %xmm2 
vucomisd %xmm2, %xrnm0 
jbe .1<8 
vcvtsi2ssq %rsi, %xmmO, %xmmO 
vmulss %xmm1, %xmm0, %xmm1 



Section 3.12 Summary 309 

a. vunpcklps %xmm1, %xmm1, %xmm1 
9 VCY.tps2pd %xmm1, %xmmO 

10 ret 
11 .LS: 
12 vaddss %xmm1, r..xmm1, %xmm1 
13 vcvtsi2ssq i.rsi, %xmm0, %xmmO 
14 vaddss %xmm1, %xmmO, %xmmO 
15 vunpcklps %xmmo, %xmm0, %xmm0 
16 vcvtps2pd %xmmO, %xmmO 
17 ret. 

Write a C version of funct3. 

3. 11.7 Observations about F.loating-Point Code 

We see that the general style of macl)ine code generated for operating on fioating­
point data with A VX.2 is similar to what we have seen for operating on integer data. 
Both use a collection of registers to hold and operate on values, and they use these 
registern for passing function arguments. 

Of course, there are many complexities in dealing with the different data types 
and the ~ules for e'valuati11g expressions containing 'a mixture of data types, and 
AVX2 code involves many more different instru'ctions and formats than is usually 
seen with functiops that perform mtly jnteger arithmetic. 

AVx'2. .also h\15 the potedtial to make computaiions run faster by performing 
parallel operations on packed data. Compil~r developers are working on automat­
ing tlie conversion of scalar code to parallel cod~, but currently the most reliable 
way to achieve higher performance thiough parallelism is to use the extensions to 
the C language supported by ace for manipulating vectors of data. See Web Aside 
OPT:SIMD on page 546 to see how this can be done. 

3.12 Summary 

In this chapter, we have peered beneath the layer of abstraction provided by the 
C language to get a view of machine-level programming. By having the compiler 
generate an assembly-code representation of the machine-level program, we gain 
insights into both the compiler and its optimization capabilities, along with the ma• 
chine, its data types, and its instruction set. In Chapter 5, we will see that knowing 
the characteristics of a compiler can help when trying to write programs that have 
efficient mappings onto the machine. We have also gotten a more complete picture 
of how the program stores data in different memory regions. In Chapter 12, we 
will see many examples where application programmers need to know whether 
a program variable is on the run-time stack, in some dynamically allocated data 
structure, or part of the global program data. Understanding how programs map 
onto machines makes it easier to understand the differences between these kinds 
of storage. 



i' 

I 
' 

-- , .. 

310 Chapter 3 Machine-Level Representation of Programs 

Machine-level programs, and their representation by assembly code, differ 
in many ways from C programs. There is minimal distinction between different 
data types. The program is expressed as a sequence of instructions, each of which 
performs a single operation. Parts of the program state, such as registers and the 
run-time stack, are directly visible to the programmer. Only low-level operations 
are provided to support data manipulation and program control. The compiler 
must use multiple instructions to generate and operate on different data structures 
and to implement control constructs such as conditionals, loops, and procedures. 
We have covered many different aspects of C and how it gets compiled. We 
have seen that the lack of bounds checking in C makes many programs prone to 
buffer overflows. This has made many systems vulnerable to attacks by malicious 
intruders, although recent safeguards provided by the run-time system and the 
compiler help make programs more secure. 

We have only examined the mapping of C onto x86-64, but much of what we 
have covered is handled in a similar way for other'combinations of language and 
machine. For example, compiling C++ is very similar to compiling C. In fact, early 
implementations of C++ first performed a source-to-sourc~ conversion from, C++ 
to C and generated object code by running a C compiler on the result. C++ objects 
are represented by structures, similar to a C struct. Metho,ds !Ire repre,sented

0

by 
pointers to the code imple"1enting the methods. By contrast, Java is. implemented 
in an entirely different fashion. The object code of Java is a spec,ia) biµary repre­
sentation known as Java byte code. This code can be viewed as a'machipe-level 
program for a virtual machine. As its name suggests, this machine is not imple­
mented directly in hardware. Instead, software interpreters process the byte code, 
simulating the behavior of the virtual machine. Alternatively, an approach lfoown 
as just-in-time compilation dynamically translates byte code sequences into ma­
chine instructions. Thi~ approach provides faster execution when code is executed 
multiple times, such as in loops. The advantage of using byte code as the low-level 
representation of a program is that the same code can be "executed" on many 
different machines, whereas the machine code we have considered runs only on 
x86-64 machines. 

Bibliographic Notes 

Both Intel and AMD provide extensive documentation on their processors. This 
includes general descriptions'of an assembly-language programmer's view of the 
hardware [2, 50], as well as detailed references about the· individual instruc­
tions [3, 51]. Reading the instruction descriptions is complicated by the facts that 
(1) all documentation is based on the Intel assembly-code format, (2) there are 
many variations for each instruction due to the different addressing and execution 
modes, and (3) there are no illustrative examples. Still, these remain the authori­
tative references about the behavior of each instruction. 

The organization x86-64.org has been responsible for defining the application 
binary interface (ABI) for x86-64 code running on Linux systems [77]. This inter­
face describes details for procedure linkages;.binary code files, and a number·of 
other features that are required for machine-code programs to execute properly. 



Homework Problems 31'1 

As we have discussed, the ATI format used by ace is very different from the 
Intel format used in Intel documentation and by other compilers (including the 
Microsoft compilers). 

Muchnick's book on compiler design [80] is considered tbe most comprehen­
sive reference on code-optimization techniques. It covers many of the techniques 
we discuss here, such as register usage conventions. 

Much has been written about the use of buffer overflow to attack systems over 
the Internet. Detailed analyses of the 1988 Internet worm have been published 
by Spafford [105] as well as by members of the team at MIT who helped stop its 
spread [35]. Since then a number of papers and projects have generated ways both 
to create and to prevent buffer overflow attacks. Seacord's book [97] provides a 
wealth of information about btjffer overflow and other attacks on code generated 
by C compilers. 

Homework Prpblems 

3.51! • 
For a function with prototype 

long decode2(long x, long y, long z); 

ace generates the'tollowing assembly code: 

decode2: 
2 subq %rdx 1 %rsi 
3 imulq %rsi, %rdi 
4 movq %rsi, '/.rax 
5 salq $63, %rax 
6 sarq $63, %rax 
7 xorq %rdi, Y.rax 
8 ret 

Parameters x, y, and z are passed in registers %rdi, %rsi, and %rdx. The code 
stores the return value in register %rax. 

Write C code for decode2 that will have an effect equivalent to the assembly 
code shown. 

3.59 •• 
The following code computes the 128-bit product of two 64-bit signed values x and 
y and stores the result in memory: 

typedef __ int128 int12B_tj 
2 

3 void store_prod(int128_t •dest, int64_t x, int64_t y) { 

4 •dest = x • (int128_t) y; 
5 } 

Gee generates the following assembly code implementing the computation: 



312 Chapter 3 Machine-Level Representation of Rrograms 

stoi;e..!..prod: 

2 Jmbvq %rp.x, %rax 

3 cqto 
'4 movq %rSi, %rcx 

5 sarq $63, %rcx.._) 

6 imulq %rax, %rcx 

7 imulq %rsi, %rdl<: 

8 a1idq %rdx, •%rcx 

9 mulq %rsi 

10 addq %rcx, %rdx 

11 movq• %rax,i (%rdi) 

12 movq %rdx, 8 (%rdi) I 

13, ret 

This code uses three multiplications for the multiprecision.arithmetic required 
to implement 128-bit arithmetic on a 64-bit machine. Desdribe'the algorithm lised 
to compute the product, and annotate the assembly code to show how it realizes 
your algorithm. Hint' When extending arguments of x and y to 128 bits, they can 
be rewritten as x = 264 · xh + x1andy=264 · Yh + Yt> where xh, Xt> Yh• and y1are64-
bit values. Similarly, the 128-bit product call' be written as p = 2

64 
· Ph,+ p1; where 

Ph and p
1 

are 64-bit values. Show how the code computes the values of Ph and p1 

in terms of xh, x,, Yh• and YI· 

3.60 •• 
Consider the following assembly code:-

long loop(long x, int n) 

x in Xrdi, n in %esi 

loop: 

2 movl %esi, %ecx 

3 movl $1, %edx 

4 movl $0, %eq 

5 jmp .L2 ) 1 1 1 

6 .L3: .. 
7 movq %rdi, %r8 

8 andq %rdx, %r8 

9 orq %r8, %rax 

10 ,si'lq '1,cl, %:rdx 
" ' 

11 .L2: 
12 testq °!ordx, %rdx 

13 jne .L3 

14 rep; ret ,. 
The preceding code was generated by corµpiling C code that ·had the following 

overall form: 
,, 



1 long loop(long x, long n) 
2 { 

3 long result 
4 

5 

6 

long mask; 
for (mask = 

result I= 
7 } 

B return result; 
9 } 

mask 

-----' 

Homework Problems 313 

mask ___ ) { 

Your task is to fill in the missing parts of the C code to get a program equivalent 
to the generated assembly code. Recall that the result of the function is returned 
in register %rax. You will find it helpful to examine the assembly code before, 
during, and after the loop to form a consistent mapping between the registers and 
the program variables. 

A. Which registers hold program values x, n, result, and mask? 

B. What are the initial values of result and mask? 

C. What is the test condition for mask? 

D. How does mask get updated? 

E. How does result get updated? 

F. Fill in all the missing parts of the C code. 

3.61 •• 

In Section' 3.6.6, we examined the following code as a candidate for the use of 
conditional data transfer: 

long cread(long •xp) { 
return (xp? *xp : O)j 

} 

We sho"{~g a !rial implementation using a congitional move instruction but argued 
that it was not.valid, since it could attemnt to read from a null address. 

Write a C function cread_alt that has the same behavior as cread, except 
that it can be compiled to use conditional data transfer. When compiled, the 
generated code should use a conditional move instruction rather than one of the 
jump instructions. 

3.62 •• 

The code that follows shows an example of branching on an enumerated type 
value in a switch statement. Recall that enumerated types in C are simply a way 
to introduce a set of names having associated integer values. By default, the values 
assigned to the names count from zero upward. In our code, the actions associated 
with the different case labels have been omitted. 



I 
I 

I 

'31"4 Chapter 3 Machine-Level Representation of Programs 

f* Enumerated type creates set of constants numbered 0 and upward */ 
2 typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t; 

3 
4 long switch3(long *p1, long *p2, mode_t action) 

5 { 

6 long result = O; 
7 switch(action) { 
8 case MODE_A: 
9 

10 case MODE_B: 
11 

12 case MODE_C: 
13 
14 ·case MODE_D: 
15 

16 case MODE_E: 
17 

18 

19 

default: 

20 } 

21 return result; 
22 } 

" 

The part of the generated assembly code implementing the different actions is 
shown in Figure 3.52. The annotations indicate the argument locations, the register 
values, and the case labels for the different jump destinations. 

Fill in the missing parts of the C code. It contained one case that fell through 
to another-try to reconstruct this. " 

3.63 •• 
This problem will give you a chance' to reverge engineer a swi t:ch statement from 
disassembled machine code. In the following procedure, the'boCly of'the switch 
statement has been omitted:•·, 

'• 
I 

1 long switch_prob(long x, long n) { 

2 long result = x; 
3 switch(n) { 
4 I• Fill in code here */ 
5 1 ,. 
6 }, 

7 return result; 
8 } 



Homework Problems 

p1 in %rdi, p2 in Zrsi, action in Zedx 
.LB: MODE_E 

2 movl $27, %eax 
ret 

4 .L3: MODE_A 
5 movq (%rsi), %rax 
6 movq (%rdi), %rdx 
7 movq %rdx, (%rsi) 
8 ret 
9 .L5: MODE_B 

10 movq C%rdi), %rax 
11 addq (%rsi), %rax 
12 movq %rax, (%rdi) 
Tl ret 
14 .L6: MODE_C 
15 movq $59, (%rdi) 
16 movq (%rsi), %rax 
17 ret 
18 .L7: MODE_D 
19 movq (%rsi), %rax 
20 movq %rax, C%rdi) 
21 movl $27, %eax 
22 ret 
23 .L9: default 
24 movl $12, %eax 
25 ret 

Figure 3.52 Assembly code for Problem 3.62. This code implements the different 
branches of a switch statement. 

Figure 3.53 shows the disassembled machine code for the procedure. 
The jump table resides in a different area of memory. We can see from 

the indirect jump on line 5 that the jump table begins at address Ox4006f8. 
Using the GDB debugger, we can examine the six 8-byte words of memory compris­
ing the jump table with the command x/6gx Ox4006f8. Qns prints the following: 

(gdb) x/6gx Ox4006f8 

Ox4006f8: Ox00000000004005al 
Ox400708: 
Ox400718: 

Ox00000000004005al 
Ox00000000004005b2 

Ox00000000004005c3 
Ox00000000004005aa 
Ox00000000004005bf 

Fill in the body of the switch statement with C code that will have the same 
behavior as the machine code. 

315 



311> Chapter 3 Machirie-Level Representation of Programs 

long switch_prob(long x, long n) 

x in %rdi , n in %rsi 

1 0000000000400590 <switch_prob>: 

2 400590: 48 83 ee 3c sub $0x3c,%rsi 

3 400594: 48 83 fe 05 cmp $0x5.%rsi 

4 400598: 77 29 ja 4005c3 <switch_prob+Ox33> 

5 40059a: ff 24 f5 f8 06 40 00 jmpq '•Ox4006f8(,%rsi,~) 

6 4005a1: 48 8d 04 fd 00 00 00 lea Ox0(,%rdi,8),%rax 

7 4005a8: 00 
8 4005a9: c3 retq 

9 4005aa: 48 89 f 8 mov %rdi,%rax 

10 4005ad: 48 cl f8 03 sar $0x3,%rax 

11 4005b1: c3 retq 

12 4005b2: 48 89 f8 mov %rdi,%rax 

13 4005b5: 48 cl eO 04 shl $0x4,%rax 

14 4005b9: 48 29 f 8 sub %rdi,%rax 

15 4005bc: 48 89 c7 mov %rax,%rdi 

16 4005bf: 48 Of af ff imul %rdi,%rdi 

17 4005c3: 48 8d 47 4b lea Ox4b(%rdi),%rax ' 
18 4005c7: c3 retq 

Figure 3.53 Disassembled code for Problem 3.63. 

3.64 ••• 
Consider the following source code, where R, S, and Tare 'constants declared with 
#define: 

long A [R] [SJ [Tl\ 
,. 

1 
" 2 

3 long store_ele(long i, long j' long k, long *dest) 

4 { 
•'H ] 

5 •de st = A [iJ)j] [k ; 
. " ( ) " 6 ret~~ sizeof A ; 

7 } 
" 

In·corrlJ5iiifig this program, ace generates the"following assembly coder~· 

long store_ele(long i, long j, long k, long *dest) 

i in %rdi, j in %rs"'i>,' k in %rdx, dest in Y.rcx" 

store_ele: ~· 

leaq C%rsi, %rsi, 2) ... %rax ... ' 
leaq (%rsi,%rax,4), %rax 
movq %r'di',1 %rsi ' ' 
salq $6, %rsi 
addq %rsi, %rdi 
addq %rax, %rdi 

' ) 



8 

9 

10 

11 

addq 
movq 
movq 
movl 

12 ret 

%;tdi, %rdx 
1A(,%rdx,8), %rax 
%rax, (%rcx) 
$3640, %eax 

Homework Problems 317 

A. Extend Equation 3.1 from two dimensions to three to provide a formula for 
the location of array element A (i] [j J [k]. 

B. Use your reverse engineering skills to determine tlie"values of-R., S, and T 
based on the assembly code. 

3.65 • 
The following code transposes the elements of an M x M array, where M is a 
constant defined by #define: 

void transpose(long A[M] (M]) { 
2 long i, j; 
3 for (i = 0 i i < M; i ++) 

4 for (j = O; j < i; j++) { 
s long t = A [i] [j J ; 
6 A[i] [j] = A[j] [i]; 
7 A[j] [ij = t; 
8 } 

9 } 

When compiled with optimization level -01, ace generates the following code 
for the inner loop of the function: 

2 

3 

4 

5 

6 

7 

.L6: 
movq 
movq 
movq 
movq 
addq 
addq 

C%rdx), %rcx 
(%rax), %rsi 
%rsi, C%rdx) 
%rcx, (%rax) 
$8, %rdx 
$f20, %rax 

B cmpq %rdi, %rax 
9 jne .L6 

• ~ >f 

We can see that·act has converted the array indexing to pointer code. 

A. Which register hplds a pointer to array eie.n'ient ~bl [j J? 

B. Which register holds '!pointer t9 array element A [j] [i] ? 

C. What is the value of M? 

3.66 • 

Consider the following source code, where NR and NC are macro expressions de­
clared with #define that compute the dimensions of array A in terms otparame­
ter n. This code computes the sum of the elements of column j of the array. 



318 Chapter 3~ ,,Machirie-Level Representation of Programsr"' 

long sum_col(long n, long A[NR(n)) [NC(n))? long jA { 

2 long i; •\ 

3 long result = O; 

4 for (i = O; i < NR(n); i++) 

5 result += A[i)[j); 

6 return result; , 
7 '} 

In compiling ,thjs p,rpg,am, Gee generat~s the following a~~~J!lbly code: 
' ' " 

long sum_col(long n, long A[NR(n)] [NC(n)], long j) 

n i.n %rdi, A i.n %rsi, j in %rdx .. " 1 sum_cbl: 
2 leaq 1(,%rdi,4), %r8 

3 leaq (%rdi,%rdi,2), %rax 

4 movq %rax, %rdi 

5 testq %rax, %rax 

6 jle .L4 

7 salq $3, %r8 

8 leaq (%rsi,%rdx,8), %rcx 

9 movl $0, %eax 

10 movl $0, %edx 

11 .L3: 
12 addq (%rcx), %rax 

13 addq. $1, %rdx l, 

14 addq %r8, %rcx i•' 

15 cmpq %rdi, %rdx 

16 jne .L3 .,, 
17 repi ret 
18 .L4: 
19 movl $0, %eax 

J 

20 ret c 
Use your reverse engineering skills to determine th.e definitions of NR and NC. 

3.67 •• 
For this exercise, we will examine the code generated by GCC for'functions that have 
structures as arguments and return values, and from this see how th'ese language 

features are typicaµy in1Pll'me.l}t,ed. , , , , 1 
The following c code has a function'proc'ess having structure$ as argument 

and return values, ana a function eval that tails proces~: r . 

2 

3 

4 

5 

typedef struct { 
long a[2); 
long *Pi' 

} strAi ,, ' 
,. I, 

" 



6 typedef struct { 
7 long u[2]; 
8 long qi 
9 } strB; 

10 

11 strB process(strA s) { 
12 strB r; 

13 r.u[O] s.a11l; 
14 r.u[l] s.a[O]; 
15 r.q = *s.p; 
16 return r; 
17 } 

18 

19 long eval(long x, long y, long z) { 
20 strA s; 

~ s.a[O] = x; 
22 s.a[l] = y; 
23 s.p = &z; 

24 strB r = process(s); 

25 return r.u[O] + r.u[l] + r.q; 
26 } 

Gee generates the following code for these two functions: 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2 

3 

4 

strB process(strA s) 

process: 
movq %rdi, %rax 
tnovq 24(%rsp), %rdx 
movq (%rdx), %rdx 
movq 16(%rsp), %rcx 
movq %rcx, (%rdi) 
movq 8(%rsp), %rcx 
movq %rcx, 8(%rdi) 
movq %rdx, 16(%rdi) 
ret 

long eval (long x, long y, long z) 

x in %rdi, yin %rsi, z in %rdx 
eval: 

subq $104, %rsp 
movq %rdx, 24(%rsp) 
leaq 24(%rsp), %rax 
movq %rdi, (%rsp) 
movq %rsi, 8(%rsp) 
movq %rax, 16(%rsp) 
leaq 64(%rsp), %rdi 
call process 

Homework Problems 319 



320 Chapter 3 Machine-Level Representation of Programs 

10 

11 

12 

13 

14 

movq 
addq 
addq 
addq 
ret 

12<Y.rsp), %rax 
64(%rsp), %rax 
80(%rsp), %rax 
$104, %rsp 

A. We can see on line 2 of function eval that it allocates 104 bytes on the stack. 
Diagram the stack frame for eval, showing the; values that it stores on the 
stack prior to calling process. 

B. What value does eval pass in its call to process? 

C. How does the code for process access the elements of structure arguments? 

D. How does the code for process set the fields of result structurer? 

E. Complete your diagram of the stack frame for eval, showing how eval 
accesses the elements of structure r following the return from process. 

F. What general principles can you discern about how structure values are 
passed as function arguments and how they are returned as function results? 

3.68 ••• 
Jn the following code, A and B are constants defined with #define: 

1 typedef struct { 
2 int x[A] [BJ;/* Unknown constants A and B */ 
3 long y; 
4 } strl; 
5 

6 typedef struct { 
7 · char array [BJ ; 
B int t; 
9 short s[A]; 

10 long u; 
11 } str2; 
12 . 

13 void setVal(strl *P• str2 *q) { 
14 long v1 = q->ti 
15 long v2 = q->u; 
16 p->y = v1+v2j 
17 } 

Gee generates the following code for set Val: 

2 

3 

void setVal(str1 •p, str2 •q) 

pin %rdi, q in %rsi 

setVal: 
movslq 
addq 

8(Y.rsi), %rax 
32(%rsi), %rax 



Homework Problems 321 

4 rnovq %rax., 184(%rdi) 
5 ret 

What are the values of A and B? (The solution is unique.) 

3.69 ••• 

You are charged with maintaining a large C program, and you come across the 
following code: 

1 typedef struct { 

2 int first; 
a_struct a [CNT] ; 

4 int last; 
5 } b_struct; 
6 

7 'void test (long i, 
0

b_struct •bp) 
8 { 

9 int n = bp->first + bp->last; 
10 a_struct *ap = &bp->a[i]; 
11 ap->x[ap->idx] = n; 
12 } 

The declarations of the compile-time constant CNT and the structure a_struct 
are in a file for which you do not have the necessary access privilege. Fortunately, 
you have a copy of the . o version of code, which you are able to disassemble with 
the OBJDUMP program, yielding the following disassembly: 

void test(long i, b_struct *hp) 

i in %rdi, bp in %rsi 

0000000000000000 <test>: 
2 0: 8b Be 20 01 00 00 mov Ox120(%rsi),%ecx 

6: 03 Oe add (%rsi),%ecx 
4 8: 48 8d 04 bf lea (%rdi,%rdi,4),%rax 
5 c: 48 8d 04 c6 lea (%rsi,%rax,8),%rax 
6 10: 48 8b 50 08 mov Ox8(%rax),%rdx 
7 14: 48 63 c9 movslq %ecx,%rcx 
8 17: 48 89 4c dO 10 mov %rcx,Ox10(%rax,%rdx,8) 
9 le: c3 retq 

Using your reverse engineering skills, deduce the following: 

A. The value of CNT. 

B. A complete peclaration of structure a_struct. Assume that the only fields 
in tqis structure are idx and x, ai;id that both of these contain signed values. 



322 Chapter 3 ~Machine-Level Representation of Programs 

3.70 ••• 
Consider the following union declaration: 

union ele { 
2 struct { 

3 long *Pi 
4 loil;g y;. 
5 } e1; ., 
6 struct { 

7 long x· • 
8 union ele •next; 

9 } e2; 
10 }; 

This declaration illustrates that structures can be embedded within unions. 
The following function (with some expressions omitted) ope~ates on a linked 

list having these unions as list elements: ' 

1 

2 

void proc (union ele •up) { 
up-> = •( ____ ) - -----• 

3 } 

A. What are the pffsets, (in bytes) of th!' fo\lpy.;\ng fields: 

el;P 
el.y 

e2.x 
e2.next 

B. How many total bytes does the structure require? 

C The compiler generates the following assembly code for proc: 

void proc (unibn ele *Up) 

up in XI-di 

1 proc: 
2 movq 8(%rdi), %rax 

3 m6vqJ (%rax), %rdx 

4 movq (%rdx), %rdx 

5 subq 8(%rax), %rdx 

6 movq %rdx, (%rdi) " 
7 ret 

'·'i 

L 

On the basis of this infom!ation, fill 'in the mi§sing expfessions in the code 
for proc. Hint: Some union references can have ambiguous interpretations , 
These ambiguities get resolved as you see where the references lead, There 



Homework Problems 323 

is only one answer that does not perform any casting and does not violate 
any type constraints. 

3.71 • 

Write a function good_ echo that reads a line from standard input and writes it to 
standard output. Your implementation should work for an input line of arbitrary 
length. ·You may use the library function fgets, but you must make sure your 
function works correctly even when the input line requires more space than you 
have allocated for your buffer. Your code should also check for error conditions 
and return when one is encountered. Refer to the definitions of the standard I/O 
functions fo?documentatiou' [45, 61]. 

3.72 •• 

Figure 3.54(a) shows the code for a function that is similar to function vfunct 
(Figure 3.43(a)). We used vfunct to illustrate the use of a frame pointer in man­
aging variable-size stack frames. The new function aframe allocates space for local 

(a) C code 
t 

1 ~inclµde <alloca.h> 
2 

3 long aframe(long n, long idx, long •q) { 
4 long i; 

long **P = alloca(n * sizeof(long •)); 
6 pLOJ ,= &i; 
7 for (i = 1; i < n; i++) 
8 p [i] = q; 
9 ']:'~turn *p[idx]; 

10 } 

(b) Portions of generated assembly code 

long aframe(long n, long idx, long *q) 
n in %rdi, idx in %rsi, q in %rdx 
aframe: 

2 pushq %rbp 
movq %rsp. %rbp 

4 ,subq $16, %rsp Allocate space for i (%rsp = s1) 
leaq 30(,%rdi,8), %rax 

6 sndq $-16, %rax 
subq %rax, %rsp Allocate space for array p (%rsp = s2) 
leaq 15(%rsp), %r8 

9 sndq $-16, %r8 Set %r8 to !tp[O] 

Figure 3.54 Code for Problem 3.72. This function is similar to that of Figure 3.43. 



324 Chapter 3 Machine-Level Representation of Programs 

array p by calling library function alloca. This function is similar to the more com­
monly used function malloc, except that it allocates space on the rul),time stack. 
The space is automatically deallocated when the executing procedure returns. 

Figure 3.54(b) shows the part of the assembly code that sets up the•fra'tne 
pointer and1 alloc[\tes space for local variables i and p. It'is vecy similar. to the 
corresponding•tode·for"Vframe. Let us use·the same nqtation as in Problem 3.49: 
The stack pointer is set to_ values s1 at line 4 and s2 at line 7. The start·address·of 
array pis set to value p at line 9J•Extra space e2 may arise between s2 and p, and 
extra space e 1 may.arise between the enCI of array p and SJ· 

A. Explain, in mathematic~\ ter~s, the log\c \n fhe comr,':'tatio~'bf, si'. 1 

B. Explain, in mathematical terms, the logic in the computation of p. 

C. Find values of n and SJ that lead to minimum and maximum values of eJ· 

D. What al!gnffient properties does this code g)l~rantee for the yalues of s2 

d 
? l ' 1" 

an p. 

3.73 • 
Write a function in assembly code that matches the behavior of the function find_ 
range in Figure 3.51. Your code should contain only one floating-point comparison 
instruction, and then it should use conditional branches to generate the correct 
result. Test your code on all 232 possible argument values. Web Asid~ A§M:EASM 

on page 178 describes how to incorporate f1;1nctions Written in assembly sqde into 

Cprograms. 

3.74 •• 
Write a function in assembly code that matches the behavior of the function find_ 
range in Figure 3.51. Your code should contain only one floating-point comparison 
instruction, and then it should use conditional moves to generate the correct result. 
You might want to make use of the instruction cmovp (move'if even parity). Test 
your code on all 232 possible argument values. Web Aside ASM:EASM on page 178 
describes how to incorporate functions written in assembly code into C p~qgrams, 

3.75 • 
ISO C99 includes extensions to support complex numbers. Any floating-point type 
can be modified with the keyword complex. Here are some sample functions that 
work with complex data and that call some of the associatec:! library·func_tions: 

1 #include <complex.h> 

2 

3 double c_imag(double complex x) { 

4 return cimag(x); 

5 } 

6 

7 double c_real(double complex x) { 

8 return creal(x); 

9 } 

10 



Solutions to Practice Problems 325 

11 

12. 

13 

doublei complex c_sub(double complex x, double. complex y) { 
I' return x._ - y; ,,,,, 
} 

When compiled, Gee generates the following assembly code for these func­
tions: 

double c_imag(double complex x) 
c_imag: 

2 movapd %xmm1, %xmm0 
3 ret 

double c_real (double complex x) 

4 c_real: 
5 rep; re~ 

pouble complex c_sub(double complex x, double complex y) 

6 c_sub: 
7 subsd %xmm.2, %xmm0 
8 subsd %xmm3, %xmm1 
9 ret 

Based on these exam1>les, determine the following: 

A. How are complex arguments passed to a function? 

B. How are complex values returned from a function? 

Solutions to Practice Problems 

Solution to Pro~l.em 3.1 (page 182) 
This exercise gives you practice with th7 different operand forms. 

Operand Value Comment 

%rax Ox100 Register 
Ox104 Ox AB Absolute address 
$0x108 Ox108 Immediate 
(%rax) Ox FF Address Ox100 
4(%rax) O'xAB Address Ox104 
9(%rax,•%;rdx), Ox11 Address Ox10C 
260(%rcx,%rdx) Ox13 Address Ox108 
OxFC(, %rcx, 4) OxFF Address Ox100 
(%rax, %rdx, 4) Ox11 Address OxlOC 

Solution to Problem 3.2 (page 185) 

As we have seen; the assembly code generated by Gee inchldes suffixes on the 
instructions, while the disassembler does not. Being able to switch between these 



I 
I 
I 
I 
' I 

326 Chapter 3 Machine-Leve\ Representation of Programs 

mo vb 
movl 
movw 
mo vb 
movl 
movl 
mo vb 

two fort!ls is an• important skill to learn. One important feature is that memory 
references in x86-64 are always given with quad word registers,.such as %rax, even 
if the operand is a byte, single word, or double word. 

Here is the code written with suffixes: ,,, . ~,, 
movl %eax, CY.rsp) 
movw (%rax), %dx 
mo vb $0xFF, %bl 
mo vb (%rsp,%rdx,4), %dl 
movq (%rdx), %rax 
movw %dx, (%rax) 

Solution to Problem 3.3 (page 186) 
Since we will rely on ace to generate most of our assembly code, being able to 
write correct assembly code is not a critical skill. Nonetheless, this exercise will 
help you become more familiar with the different instruction and operand lypes. 

Here is the code with explanations of the errors: 

$OxF, (%ebx) 
%rax, (%rsp) 
(%rax),4(%rsp) 
%al,%sl 
%eax,$0x123 
%eax,%dx 
%si, 8(%rbp) 

Can!lot use Zebx as address register 

Mismatch between iDStructio11 suffix and register ID 

Cannot hayA,both s~urce and destinat!on be memory re/e{ences 

No register ~amed Zsl 
Cannot bJJe ihlmediate as des~ination 
Des!~nation operand•incorrect size 

•Mismatch between instruction suffix and register ID 

' 

' / 

Sqlution to Proble.m 3.4 (page 187) 
This exercise gives you more experience with.the different data movement iJ1-
structions and how they relate to the 'data types and convet~ion rules of c. The 
nuances of conversions of both signedness and size, as well as integral pron:iption, 
add challenge to this problem. 

src_t dest_t InstruCtion Comments 

long long movq (%rdi) 1 %rax Ryad 8 bytes 

movq 7-.r,~,~ Sfarsi) SJ.ory 8 bytes· 

char int movsb1 ()';f'di) , %e'ax Cbnvert char to int. "r.· 

rnovl %'eax, (%rsi) Store 4 bytes 

char unsigned movsbl (%rdi), %eax 
,I\ " 

Convert char to int 

movl %eax, (%rsi) Store 4 bytes 
unsigned char long movzbl (%rdi) , . %eax Read byte and zero-extend 

J mov..q %rax, C%rsi) JStore 8 bytes 

"' 



int 

unsigned 

char 

char movl (%rdi) , %eax 

movb %al, (%rsi) 

unsigned movl (%rdi), %eax 

char movb %al, (%rsi) 

short movsbw (%rdi), %ax 

movw %ax, (%rsi) 

Solution to Problem 3.S (page 189) 

Solutions to Practice Problems 327 

Read4 bytes 
Store low-order byte 

Read4 bytes 
Store low-order byte 

Read byte and sign-extend 
Store 2 bytes 

Reverse engineering is a good 'way to understand systems. In tltis case, we want 
to reverse the effect of the C compiler to determine what C code gave rise to this 
assembly code. The best way is to rutl a "simulation," starting with values x, y, and 
z at the locatidns designated by pointers xp, yp, and zp, respectively. We would 
then get the following behavior: 

void decodet (long *xp, long *yp, long •zp) 

xp in %rdi , yp in %rsi, zp in %rdx 
decode!: 

movq (%rdi), %r8 Get X = *xp 
movq (%rsi), %rcx Get y = *YP 
movq (%rdx), %rax Get z = *Zp 
movq %r8, (%rsi) Store x at yp 
movq %rcx, (%rdx) Store y at zp 
movq %rax, (%rdi) Store z at xp 
ret 

From this, we can generate the following C code: 

void decodel(long *xp, long *YP• long *zp) 
{ 

} 

long x = *xp; 
long y *YPi 
long z = *ZPi 

*YP = x; 
*zp = y; 
*Xp = Zj 

Solution to Problem 3.6 (page 192) 

This exercise demonstrates the versatility of the leaq instruction and gives you 
more practice in deciphering the different operand forms. Although the operand 
forms are classified as type "Memory" in Figure 3.3, no memory access occurs. 



328 Chapter. 3 Machine-Level Representation of Programs 

Instruction 

leaq 6 (%rax) , %rdx 

leaq (%rax, %rcx) , %rdx 

leaq (%rax, %rcx,4), %rdx 

leaq 7 (%rax, %rax, 8) , %rdx 

leaq OxA(,%rcx,4), %rdx 
leaq 9(%rax,%rcx,2), %rdx 

Result 

6+x 
x+y 
x +4y, 
7+9x 

10 + 4;Y 
9+x +2y 

Solution to Problem 3.7 (page 193) 
Again, xeyerse engineering proves to be a usefql way to learn tl}e relationship 
betwe~n C coqe and the gener11ted assembly s\lde. c 

The besf }Vay }P so)ve,eroblems of this type)~ ~9 'lnnotate,th<;,ljnes q~ass~mbly 
code with information aqqut the op~rations qeing performed. FJ~.re is a sample: 

long scale2(long x, long y, long z) 

x in %rdi , y in %rsi , z in %rdx 

scale2: 
leaq (%rdi,%rdi,4), %rax 

leaq 
leaq 
ret 

(%rax,%rsi,2), %rax 
(%rax,%rdx,8), %rax 

5 • x 

5 * x + 2 * y 
5 * x + 2 * y + 8 * z 

From this, it is easy to generate the missing expression: 

long t = 5 * x + 2 * y + 8 * z; 

Solution to Problem 3.8 (page 194) . 
This problem gives you a chance tp test your understanding of operands and th~ 
arithmetic instructions. The instruction'sequence is &signed so that the result'of 
each instruction does not affect the behavior of subsequent ones. 

Instruction Destination Value 

addq %rcx, (%rax) Ox100 Ox100 

subq %rdx,8(%rax) Ox108 Ox AS 

imulq $16, (%rax,%rdx,8) Ox118 Ox110 

in~q 16 (%rax) Ox110 Ox14 

decq %rcx %rcx OxO 

subq %rdx, %rax %rax OxFD 

Solution to Problem 3.9 (page 195) 
This exercise gives you a chance to generate a little bit of assembly code. The 
solution code was generated by occ. By loading parameter n in register %1lcx, it 
can then use byte register %cl to specify the. shift amount for the sarq instruction. 
It might seem odd to use a mbvl instruction, given that n is eight bytes.long, but 
keep in.mind that only·the least significant byte is required to specify the shift 

amount. 



Solutions to Practice Problems 329 

long shift_left4_rightn(long x, long n) J~ 

x in %rdi , n in %rsi 

shift_left4_rightn: 
movq %rdi, %rax Get x 
salq $4, %rax x <<= 4 
movl %esi, %ecx Get n (4 bytes) 

sarc;i %cl, %rax x >>= n 

Solution to 'Problem 3.10 (page 196) 

This problem is fairly straightfo_rward, since the assembly code follows the struc­
ture of the C code closely. 

long t1 = x I y; 
long t2 =,ti » 3; 
long t3 -t2j 
long t4 = z-t3j 

Solution to Problem 3.11 (page 197) 

A. This instruction is used to set register %rdx to zero, exploiting the property 
that x - x = 0 for any x. It corresponds to the c statement x = 0. 

B. A more direct way of setting register %rdx to zero is with the instruction movq 
$0', %rdx. 

C. Assembling and disassembling this code, however, we find tliat the version 
with xorq requires only 3 bytes, while the version with movq requires 7. Other 
ways to set %rdx to zero rely on the property that any instruction that updates 
the lower 4 bytes will cause the high-order bytes to be set to zero. Thus, we 
could \!Se either xorl %edx, %edx (2 bytes) or movl $0, %edx (5 bytes). 

Solution to Problem 3.12 (page 200) 

We can simply replace, t\le cqto instruction with one that sets register %rdx to 
zero, and use di vq rather than idi vq as our division instruction, yielding the 
following code: 

2 

4 

5 

6 

7 

8 

vo
1
id urt3mdiv(unsign.ed long x, unsign.ed long y, 

unsign.ed long *qp, unsigned long *rp) 
x in %rdi , y in %rsi , qp in %rdx, rp in %rcx 

uremdiv: 
movq 
movq 
movl 
divq 
movq 
movq 
ret 

%rdx, %r8 
%rdi, %rax 
$0, %edx 
%rsi 
%rax, (%r8) 
%rdx, (%rcx) 

Copy qp 

Move x to lo~er 8 bytes of dividend 

Set upper 8 bytes of dividend to 0 

Divide by y 

Store quotient at qp 

Store remainder at rp 



I 
' 

330 Chapter 3 Machine-Level Representation of Programs 

Solution to Problem 3.13 (page 204) 
It is important to understand that assembly code does not keep track of the type 
of a program value. Instead, the different instructions determine the operand 
sizes and whether they are signed or unsigned. When mapping from instruction 
sequences back to C code, we must do a bit of detective work to infer the data 
types of the program values. 

A. The suffix 'l' and the register identifiers indicate 32-bit operands, while the 
comparison is for a two's-complement<. We can infer that data_t must be 
int. 

B. The suffix 'w' and the register identifiers indicate 16-bit operand~, -vhile the 
comparison is for a two's-complement>=. We can infer that data_ t must be 
short. 

C. The suffix 'b' and the register identifiers indicate 8-bit operands, while 
the comparison is for an unsigned <=. We can infer that data_ t must be 
unsigned char. 

D. The suffix 'q' and the register identifiers indicate 64-bit operands, while 
the comparison is for ! =, which is the same whether the arguments are 
signed, unsigned, or pointers. We_ can infer that data_t could be either long, 
unsigned long, or some form of pointer. 

Solution to Problem 3.14 (page 205) 
This problem is similar to Problem 3.13, except that it involves TE~T instructions 
rather than CMP instructions. 

A. The suffix 'q' and the register identifiers indicate a 64-bit operand, while the 
comparison is for>=, which must be signed. We can infer that·dat~_t must 
be long. 

B. The suffix 'w' and the register identifier indicate a 16-bit operand, while the 
comparison is for==, which is the same for signed or unsigned. We can infer 
that data_t must be either short or unsigned short. 

C. The suffix 'b' and the register i4entifier indicate an 8-bit operand, while the 
comparison is for unsigned >. We can infer that data_ t must be unsigned 
char. 

D. The suffix 'l' and the register identifier indicate 32-bit operands, while the 
comparison is for<. We can infer that data_t must be int. 

Solution to Problem 3.15 (page 209) 
This exercise requires you to examine disassembled code in detail and reason 
about the encodings for jump targets. It also gives you practice in hexadecimal 
arithmetic. 

A. The je instruction has as its target Ox4003fc + Ox02. As the original disas­
sembled code shows, this is Ox4003fe: 

4003fa: 74 02 
4003fc: ff dO 

je 4003fe 
callq •%rax 



Solutions to Practice Problems 331 

B. The je instruction has as its target Ox0x400431 - 12 (since Oxf4 is the 1-
byte two's-complement representation of -12). As the original disassembled 
code shows, this is Ox400425: 

40042f: 74 f4 
400431: Sd 

je 
pop 

400425 
%rbp 

C. According to the annotation produced by the disassembler, the jump target 
is at absolute address Ox400547. According to the byte encoding, this must 
be at an address Ox2 bytes beyond that of the pop instruction. Subtracting 
these gives address Ox400545. Noting that the encoding of the j a instruction 
requires 2 bytes, it must be located at address Ox400543. These are confirmed 
by examining the original disassembly: 

40,0543 : 77. 02 
400545: 5d 

ja 
pop 

400547 
%rbp 

D. Reading the bytes in reverse order, we can see that the target offset is 
Oxffffff73, or decimal -141. Adding this to Ox0x4005ed (the address of 
the nop instruction) gives address Ox400560: 

4005e8: e9 73 ff ff ff 
4005ed: 90 

Solution to Problem 3.16 (page 212) 

jmpq 400560 
nop 

Annotating assembly code and writing C code that mimics its control flow are good 
first steps in understanding assembly-language programs. This problem gives you 
practice for an example with simple control flow. It also gives you a chance to 
examine the implementation of logical operations. 

' 1 

A, Here is the C code: 

void goto_cond(long a, lOng *p) { 
if (p == 0) 

goto done; 
if (•p >= a) 

goto done; 
*P = a; 

done: 
return; 

} 

B. The first conditional branch is part of the implementation of the && expres-
sion. If the test for p being non-null fails, the code will skip the test of a > •p. 

Solution to Problem 3.17 (page 212) 

This is an exercise to help you think about the idea of a general translation rule 
and how to apply it. 

A. Converting to this alternate form involves only switching arou11d a few lines 
of the code: 



332 Chapter 3 Ma€hine-LeveL Representation of Programs 

long gotodiff_se_alt(l'ohg x, long. y). { 

long result; 
if (x < y) 

goto x_lt_y; 
ge_cnt++; 
result = x - y; 
r,eturn result; 

•I 1, X...:lt_y: 

} 

1 t_f:nt+,+ ;, 
result = y - x; 
r .. eturn result; 

" 

,( •• ,, 
tr 

B. In most respects, the choice is arbitrary. But the origfo~!'rule·';"otks better 
for the.common casliwhere there is no else statement. For this'case, we can 
sjmii&,mo~ify thf!.translatio1vule to be.a~ follows: .J 

t = test-expr; 
if ( ! t) 

goto done; 
then-statement 

done: 

A translation based on the'altemate rule is more ct'iln:betsome. 
' \, ~. ' ,;; 11 

r,,f 

Solution to Problem 3.18 (~age ,2l3) " 
This problem requires that you work through a nested branch structure; where 
you will see how our rule for translating if statements ha's been· applied. 'G>n·the 
whole, the machine code is a straightforward translation of the C code. 

long test(long x, long y, long z) { 
long val = x+y+zj 

} 

if (l' < -3) { 

if (y < z) 
val x•y; 

else 
val y*z; 

} else if (x > 2) 

val1 = X*Z; ' 'Iff1 
return val; 

~. ,c ' '\V, 

,, 
Sblution to Problem 3.19 '(page 216) '

1 

This problem reinforces our method of fomputing the misprediction penalty. 

A'. We cat' apply our formula dlr'e'~t!y'\o gei'T'~,,,;, 2(3i'-'16) = ~p'. rt' 
1 



Solutions to Practice Problems 333 

B. When misprediction occurs, the function will require around 16 + 30 = 46 
cycles. 

Solution to Problem 3.20 (page 219) 

This problem provides a chance to study the use of conditional moves. 

A. The operator is '/'. We see this is an exampl~ of dividing by a power of 3 by 
right shifting (see Section 2.3.7). Before shifting by k = 3, we must add a bias 
of zk - 1 = 7 when the dividend is negative. 

B. Here is an annotated version of the assembly code: 

long arith(long x) 

x in %rdi 
arith: 

leaq 
testq 

7(%rdi), %rax 
%rdi, %rdi 

cmovns %rdi, %rax 
g;ft.rq • $3, %rax 
ret 

·' 

temp "' x+7 

Text x 

If x>= 0, temp= x 

result = temp >> 3 (= x/8) 

The progr~!ll creates a temp9rary value equal to x + 7, in anticipation of x 
being negative and ther~fore requiring biasing. The cmovns instruction con­
dit\<;mally changes this number to x when x ~ 0, and then it is shifted by 3 to 
generate x /8. 

Solution to Problem 3.21 (page 219) 

This problem is similar to Problem 3.18, except that some of the conditionals have 
been implemented by conditional data transfers. Although it might seem daunting 
to fit this code into the framework of the original C code, you will find that it follows 
the translation rules fairly closely. 

long,test(long x, long y) { 

long val = B*x; 
if (y > 0) { 

if (x < y) 

val = y-x; 
else 

val = x&y; 
'} else if (y <= -2) 

•val = x+y; 
return val; 

Solution to Problem 3.22 (page 221) 

A. If we build up a table of factorials computed with data type int, we get the 
following: 



We can see that the computation of 13! has overflowed. As we<learned in 
Problem 2.35, when we get value x while attempting to compute n !, we can 
test for overflow by computing x/n and seeing whether it equals (n -1)! 
(assuming that we have already ensured that the computa1ioil of (n - 1) ! did 
not overflow). In this case we get 1,932,053,504/13 = 161,004,458.667. As a 
second test, we can see that any factorial beYon'.d '101 must be a multiple of 
100 and therefore have zeros for thp last two digits. The correct value of 13! 
is 6,227,020,800. 

I, 
B. Doing the cqmputation r'th data type loi;g lets us ,go up to 20!,.yielding 

2,432,902,008,176,640,00U. 

Solution to Problem 3.23 (page 222) 
The code generated when compiling loops can be tricky to analyze, because the 
compiler can perform many different optimizations on loop code, and because it 
can be difficult to match program variables with registers. Tliis particular example 
demonstrates several places where the assembly code is not just a direct translation 
of the C code. 

A. Although parameter xis passed to the function in register %rdi, we can see 
that the register is never referenced once the loop, is entered. Instead, we 
can see that registers %rax, %rcx, and %rdx are initialized in lines 2-5: to x, 
x•x, and x+x. We can conclude, therefore, that these registers contain the 
program variables. 

B. The compiler determines that pointer p always points to x, and hence the 
expression (•p)++ simply increments x. It combines this incrementing by 1 
with the increment by y, via the leaq instruction of line 7. 

C The annotated code is as follows: 



Solutions to Practice Problems 335 

long dw_loop(long x) 

x initially in %rdi 

dw_loop: 
2 movq %rdi, %rax Copy x to %rax 
3 movq %rdi, %rcx 
4 imulq %rdi, %rcx Compute y = x*x 
5 leaq (%rdi, %rdi), %rdx Compute n = 2*X 
6 .12: loop: 
7 leaq 1(%rcx,%rax), %rax Compute x += y + 1 
8 subq $1, %rdx Decrement n 
9 testq %rdx, %rdx Test n 

10 jg .12 If > 0, goto loop 
11 rep; ret Return 

Solution to Problem 3.24 (page 224) 
This assembly code is a fairly straightforward translation of the loop using the 
jump-to-middle method. The full C code is as follows: 

long loop_while(long a, long b) 
{ 

} 

lon~ result = 1; 17? 
while (a < b) { 

} 

result= result* (a+b); 
a = a+l; 

return result; 

Solution to Problem 3.25 (page 226) 
While the generated code does not follow the exact pattern of the guarded-do 
translation, we can see that it is equivalent to the following C code: 

long loop_while2(long a, long b) 
{ 

} 

long result = b; 
while (b > 0) { 

} 

result = result * a; 
b = b-a; 

ret'll;rn result; 

We will often see cases, especially when compiling with higher levels of opti­
mization, where ace talces some liberties in the exact form of the code it generates, 
while preserving the required functionality. 



I 
I 

336 Chapter 3 Machine-Level Representation of Programs 

Solution to Problem 3.26 (page 228) 
Being able to work backward from assembly code to C code is a prime example 
of reverse engineering. 

A. We can see that the code uses the jump-lo-middle translation, using the jmp 
instruction on line 3. 

B. Here is the original C code: 

long fun_a(unsigned long x) { 
long val = O; 
while (x) { 

val ... = x; 
x >>= 1; 

} 

return val & Oxl; 
} 

C. This code computes the parity of argument x. That is, it returns 1 if tl0ere is 
an odd number of ones in x and 0 if there is an even number. 

Solution to Problem 3.27 (page 231) 
This exercise is intended to reinforce your understanding of how loops are'.imple­
mented. 

long fact_for_gd_goto(long n) 
{ 

} 

long i = 2; 
long result = 1; 
i! (n <= 1) 

goto done; 
loop: 

result •= i; 
i i-+j 

if (i <= n) 

goto loop; 
done: 

return result; 

Solution to Problem 328 (page 231) 
This problem is trickier than Problem 3.26, since the code within the loop is more 
complex and the overall operation is less familiar. 

A, fJ;ele is the original C code; 

long fun_b(unsigned long x) { 
long val = O; 
long i; 

,., 
,( . 

l •• 



Solutions to Practice Problems 337 

for (i = 64; i != O; i--) { 
val = .. (val « 1), I (oc .& .Oxl); , , ,, 

I X >>= 1; 
' } 

return val; 
·} 

B. The code ivas generated using the guarded-do trl\fisfo~mation, but .t~<; ~ogi­
., piler detecte~ Jhat, since i is initia,1,ifed to 64, it will satisfy the test i ;f 0, and 

therefore the initial test is not required. 

C. This ~qpe r~verses the l;iits ii;i x, <\'fl'atjng a mirror im~g~. It poes- ,this by 
~qifting,th~,bits of 15,from.left to righ\, and f]ten filling th~se bits in as it 
shifis val frq111 right to left. '" 

Solution to Problem 3.29· (page 232) 

Our stated rule' for translating a for loop' into a-wliile loop is· just a bit' too 
simplistic--this is the only aspect that requires special consideration. 

A. App!y{ng our translatirin.rule would yield the follo'\vi~g c6&: 
t-1 j 'fl 

/* Naive translation of for loop into while loop */ 
I* WARNING'f

1
Tuis is buggy code*/ 

long sum,'=s Oj 

long i = O; 
while (i < 10) { 

} 

if (i & 1) 

I* This will cause an ihfillite loop~*/ 
continue; 

sum += i; 
i++; 

h 

This code has an infinite loop, since the continue statement would prevent 
inde'x variable i from being updated. 

B. The general soluti'ln is to repl~~e the contin_ue s~atement with a 'goto 
statement that skips the rest of the'!oop body and goes directly to the update 

' ., \ portion: · 

/* Correct translation of for loop into while loop */ 
long sum = O; 
long i = O; 
while (i < 10) { 

if (i & 1) 

goto update; 
sum += i; 

update; 
i++; 

} 



I 

,! 
338 Chapter 3 Machine-Level Representation of Programs 

Solution to Problem 3.30 (page 236) 
This problem gives you a chance to reason about the control flow of a switch 
statement. Answering the questions requires you to combine information from 
several places in the assembly code. 

• Line 2 of the assembly code adds 1 to x to set the lower range of the cases to 
zero. That means that the minimum case label is -1. 

• Line's 3 and 4 cause the program to jump to the default case when the adjusted 
case value is greater than 8. This implies that the maximum case label is 
-1+8=7. 

• In the jump table, we see that the entry on lines 6 (case value 3) and 9 (case 
value 6) have the same destination (. L2) as the jump instruction /in line 4, 
indicating the default case behavior. Thus, case labels 3 and 5 are missing in 
the switch statement body. 

• In the jump table, we see that .the entries on lines 3 and 10 have the same 
destination. Tues~ correspond to cases 0 and 7. 

• In the jump ,table, we see that the entries, on lines 5 and 7 have the same 
destination. These correspond to cases 2 and 4. 

From this reasoning, we draw the following conclusions: 

A. The case labels in the switch statement body have values -1, 0, 1, 2, 4, 5, 
and 7. 

B. The case with destination . L5 has labels 0 and 7. 

C. The case with destination , L 7 has labels 2 and 4. 

Solution to Problem 3.31 (page 237) 
The key to reverse engineering compiled switch statements is to combine the 
information from the assembly code and the jump table to sort out the different 
cases. We can see from the j a instruction (line 3) that the code for the default case 
has label . L2. We can see that the only oth~r repeated label in the jump table is 
. L5, and so this must be the code for the cases C and D. We can see.that the code 
falls through at line 8, and so label . L 7 11}\ISt match cas!' A and label . L3 must 
match case B. That leaves only label . L6 to match case E. 

The original C code is as follows: 

void switcher(long a, long b, long c, long *dest) 
{ 

long val; 
B'1itch(a) { 
case 5: 

c = b • 15; 

I• Fall through •/ 
case 0: 

val = c + 112; 
break; 



r 
i 
I 
' 

Solutions to Practice Problems 339 

} 

case 2: 
case 7: 

val = (c + b) << 2; 
break; 

case 4: 
val = a; 
break; 

default: 
val = b; 

} 

*dest = val; 

Solution to Problem 3.32 (page.244) 

Tracing through the program execution at this level· of detail reinforces many 
aspects of procedure call and return. We can see clearly how control is passed to 
the function when it is called, and how the calling function resumes upon return. 
We can also see how arguments get passed through registers %rdi and %rsi, and 
how results are returned via register %rax. 

Instruction State values (at beginni~g) 
Label PC Instruction %rdi .- %rsi %rax %rsp *%rsp 
Ml Ox400560 callq 10 ·Ox7fffffffe820 

Fl -Ox400548 lea 10 Ox7fffffffe818 Ox400565 
F2 Ox40054c sub 10 11 Ox7fffffffe818 Ox400565 
F3. Ox400550 callq 9 11 Ox7fffffffe818 Ox400565 

L1 Ox400540 mov 9 11 Ox7fffffffe810 Ox400555 
L2 Ox400543 imul 9 11 9 Ox7fffffffe810 Ox400555 
L3 Ox400547 retq 9 11 99 Ox7fffffffe810 Ox400555 

F4 Ox4005S5 repz repq 9 11 99 Ox7fffffffe818 Ox400565 

M2 Ox400565 mov 9 11 99· Ox7fffffffe820 

Solution to Problem 3.33 (page 246) 
This problem is a bit tricky due to the mixing of different data sizes. 

Let us first describe one answer and then explain the second possibility. If 
we assume the first addition (line 3) implements •u += a, while th<>.second (line 4) 
implements v += b, then we can see that a was passed as the first argument in %edi 
and converted from 4 bytes to 8 before adding it to the 8 bytes pointed to by %rdx. 
This implies that a must be of type int and u must be of type long •. We can also 
see that the low-order byte of argument bis added to the byte pointed to by %rcx. 
This implies that v must be of type char •, but the type of bis ambiguous-it could 
be 1, 2, 4, or 8 bytes long. This ambiguity is resolved by noting the return value of 

Description 

Call first(lO) 

Entry of first 

Call last (9, 11) 

Entry of last 

Return 99 from last 

Return 99 from first 

Resume main 



I 
! 

! 
I 
I 
I 

340 Chapter 3 Machine-Level Representation of Programs 

6, computed as the sum of the sizes of a and b. Since we know a is 4 bytes long, 
we can deduce that b must be 2. 

2 

3 

4 

5 

6 

An annotated version of this function explains these details: 

int procprobl(int a, short b, long •u, char •v) 

a in Y.edi, bin Y.si, u in Y.rdx, v in Y.rcx 

procprob: 
movslq %edi, %rdi Convert a to long 

addq %rdi, (%rdx) Add to •u (long) 

addb Y.sil, (Y.rcx) Add low-order byte of b to *V 

movl $6, %eax Return 4+2 

ret 

Alternatively, we can see that the same assembly code would be valid if the 
two sums were computed in the assembly code in the opposite ordering as they are 
in the Ccode. This would result in interchanging argun:ients'a and band arguments 
u and v, yielding the following prototype: ' ·1 

" int procprob(int b, short a, lon$ *V, char *u); 

Solution to Problem 3.34 (page 252) 
This example demonstrates the use of callee-saved registers as well as the stack 
for holding local data. 

A. We can see that lines 9-14 save local values a0-a5 into callee-saved registers 
%rbx, %r15, %r14, %r13, %r12, and %rbp, respectively. 

B. Local values a6 an.cl a 7 are stored on the stack at offsets 0 and 8 Telative to 
the stack pointer (lines 16 and 18). 

C. "After storing six local variables, the program has used up the supply of callee­
saved registers. It. stores the remaining two local values on the ~tack. 

Solution to Prolllem 3.35 (page 254) 
This problem provides a chance to examine the code for a recursive function. An 
important lesson to learn is that recursive.code has the exact same structure as the 
other functions we have seen. The stack and register-saving disciplines suffice to 
make recursive functions operate correctly. 

A. Register %rbx holds the value of parameter x, so that it can be used to 
compute the result expression. 

B. The assembly code was generated from the following C code: 
' 

long rfun(unsigned long x) { 
if (x == 0) 

} 

return O; 
unsigned long nx = x>>2; 
lbng rv = rfun(nx); 
return1x + rv; 



.Solutions to Practice Problems 341 

Solution to Problem 3.36 (page 256) 
This exercise tests your understanding of data sizes and array indexing. Observe 
that a pointer of any kind is 8 bytes Jong. Data type short requires 2 bytes, while 
int requires 4. ..? 

Array Element size To!al siz,e . Start address Element i 
s 
T 

u 
v 
w 

2 
s 
s 
4 

s 

14 Xg Xg +2i 
xT+ Si 
xu+Si 
xv+4i 
xw +Si 

24 Xr 

4S Xu 
32 Xy 

32 Xw 
,, 

SolutiOI) to Problem 3.37 (page 2~8), 

This problem is a variant of the one shown for integer array E. It is important to 
understarig the (liff~renc~ b\ltween a poiqter and the object being pointed to. Since 
data type short requires 2 bytes, all of the array indices are scaled by-a factor of 
2. Rather than using movl, as before, we now use movw. 

Expression Type Value Assembly 
S+l short* xs+2 leaq 2 (%rdx) , %rax 
S[3] short M[xs + 6] movw 6 C%rdx) , %ax 
&S [i] short* Xg +2i leaq C%rdx, %rcx, 2) , %rax 
S[4•i+l] short M[xs +Si +2] movw 2(%rdx,%rcx,8) ,%ax 
S+i-5 short* Xs + 2i - lQ leaq -10(%rdx,%rc:i,2) ,%rax 

Solution to Problem 3.38 (page 259) 
This problem requires you to work through the scaling operations to determine 
the address computations, and to apply Equation 3.1 for row-major incjexing. The 
first step is to anhotlite the assembly code to determine how the address references 
are compu't'ed: 

'ilong sum_element(long i, long j) 

i in %rdi, j in %rsi 
sum_element ;J~ 

2• leaq• O(,%rdi,8), %rdx 
3 slibq %rdi, %rdx 
4' addq %rsi, %rdx 
5 leaq C%rsi,%rsi,4), %rax 
6 addq %rax, %rdi 
7 movq Q(,%rdi,8), %rax 
8 addq P(,%rdx,8), %rax 
9 ret 

Compute Si 

Compute 7i 
Compute Oi + j 
'Compute~.Sj 

Compute i + 5 j 

Retrieve M[x0 + 8 (Sj + i)] 

Add M[xp + 8 (7i + j)] 

We can see that the reference to matrix P is at byte offset 8. (7i + j), while 
the reference tQ matrix Q is at byte offset 8 · (Sj ;t- i). From this, we can determine 
that P has 7 columns, while Q has 5, giving M = 5 and N, = 7. 



; 

~ 
I, 

•, 
342 Chapter 3 Machine-Level Representation of Programs 

Solution to Problem 3.39 (page 262) 
These computations are direct applications nf Equation 3.1: 

• For L = 4, C = 16, and j = 0, pointer Aptr is computed as xA + 4 · (16i + 0) = 
XA+64i. 

• For L = 4, C = 16, i = 0, and j = k, Bptrjs computed as x8 + 4 · (16 · 0 + 'k) = 
xB+4k. 

• For L = 4, C = 16, i = 16, and j = k, Bend is computed as xB + 4 " 
(16 · 16 + k) = XB + 1,024 + 4k. 

Solution to Problem 3.40 (page 262) 
This exercise requires that you be able to study compiler-generated assembly code 
to understand what optimizations have been performed. In this case, the compiler 
was clefor in its optimizations. 

Let usftrst study the following C code, and then see how it is derivetl from the 
assembly code generated for the original function. 

I* Set all diagonal elements to val */ 
void fix_set_4iag_opt(fix_matrix A1 int val) { 

int •Abase = &A[O] [OJ; 

} 

long i = O; 
long iend = N•(N+l); 
do { 

Abase [i) = val i 
i += (N+l); 

} vhile (i != iend); 

This function introduces a variable,Ab,ase, of \YPe int ~. P,ointing to the s,tart 
of array A. This pointer designates a sequence of 4-byte integers COI)~isting of 
elements of A in row-major order. We introduce an integer variable index that 
steps through the diagonal elements of A, with the property that diagonal elements 
i and i + 1 are spaced N + 1 elements apart in the sequence, and that once we reach 
diagonal element N (index value N (N + 1) ), we have gone beyond the end. 

The actual assembly code follows this general form, but now ·the pointer 
increments must be scaled by a factor of 4. We label register %rax as holding a value 
index4equal to index in our C version but scaled by·a factor of 4. For N.= 16, we 
can see that our stopping point for index4 will be 4 · 16(16 + 1) = 1,088. 

fix_set_diag: 
void fix_set_diag(fix_matrix A, int val) 

A in Xrdi, val in %rsi 

2 movl $0, %sax Set ill.dex4 "" 0 

3 .L13: loop: 

4 movl %esi 1 (%rdi1%rax) Set Abase [index4/4J. to Val 

5 addq $68, 'Y.rax ? Increment index4 +== 4(N+1) 



6 

7 

B 

cmpq 
jne 
rep; ret 

$1088, Xrax 
.L13 

Solutions to Practice Problems 3.43 

Compare index4: 4N(N+1) 

If !=, goto loop 

Rat.urn 

Solution to Problem 3.41 (page 268) 

This problem gets you to think about structure layout and the code us~d to access 
structure fields. The structµre declaration is a variant of the exa!Ilple shown in 
the text. It shows that nested structures are allocated by embedding the inner 
structures within the outer ones. 

A. The layout of the structure is as follows: 

Offset ro'-------~'-,~8'--------,-1~2'-----r.16::_ ______ _,24 

Contents Lj ___ _,P ____ Lj _.:•.:· x:...__,_ _ _:•:.:·.;.Y_...L. __ c__•:::•::;x.:t<!.:' ' '-----' 

B. It uses 24 bytes. 

C. As always, we start by annotating the assembly code: 

void sp_init(struct prob •sp) 
sp in Xrdi 

sp_init: 
2 movl 12(%rdi), %eax Get, sp->s .y 
3 movl %eax, 8(%rdi) Save in sp->s .x 
4 leaq 8(%rdi), %rax Compute &(sp->s.x) 
5 movq %rax, (%rdi) Store in sp->p 
6 movq %rdi, 16(%rdi) Store sp in sp->next 
7 ret 

From this, we can generate C code as follows: 

void sp_init(struct prob •sp) 
{ 

} 

sp->s.x 
sp->p 
sp->next 

= sp->s.y; 
= &(sp.>s.x); 
= sp; 

Solution to Problem 3.42 (page 269) 
< 

This problem demonstrates how a very common data structure and operation on 
it is implemented in machine code. We solve the problem by first annotating the 
assembly code, recognizing that the two fields of the structure. are at offsets O 
(for v) and 8 (for p). 

2 

3 

' 
long fun(struct ELE *ptr) 

ptr in Xrdi 

fun: 
movl 
jmp 

$0, i.eax 
.L2 

result = 0 

Goto middle 



344 Chapter 3 Machine-Level Representation of Programs 

4 

5 

6 

7 

8 

9 

.L3: 
addq 
movq 

.L2: 
testq 
jne 

(%rdi), %rax 
8(%rdi), %rdi 

'/.rdi, %rdi 
.L3 

loop: 
result += ptr->v 

ptr = ptr->p 

middle: 

Te.st' ptr 
If fc NULL, goto loop 

10 rep; ret 

A. Based on the annotated code, we can generate a C version: 

long fun(struct ELE *ptr) { 
long val = O; 

} 

while (ptr) { 

} 

val -+= ptr->v; 
ptr = ptr->pi 

return val; 

B. We can see that each structure is an element in a singly linked list, with field 
v being the value of the element and p being a pointer to the next element. 
Function fun computes the sum of the element values in th'e list. 

Solution to Problem 3.43 (page 272) 
Structures and unions involve a simple set of concepts, but it takes practice to be 
comfortable with the different referencing patterns and their implementations. 

EXPR TYPE 

up->tl.u long 

up->tl .v short 

&up->tl.w char* 

up->t2.a int* 

up->t2. a[up->tl. uJ int 

•up->t2.p char 

Code 

movq (%rdi), %rax 

movq %rax, (%rsi) 

movw 8 CY.rdiJ ;'·;Cax "' 
movw %ax, (%rsi) 

addq $10, 7,rdi 

movq %rdi, (%rsi) 

movq %rdi, (%rsi) 

movq (%rdi) , l',rax 
movl (%rdi,%rax,4).'%eax 
movl %eax:, (%rsi) 

movq a (%rdi) • %rax 
movb (%rax) , %al 

movb Y.al, (%rsi) 



Solutions to Practice Problems .345 

Solution to Problem 3.44 (page 275) 

Understanding structure layout and alignment is very important for understand­
ing how much storage different data structures require and for understanding the 
code generated by the compiler for accessing structures. This problem lets you 
work out the details of some example structures. 

A. struct Pl { int i; char c; int j; chard; }; 

i c j d Total Alignment 

0 4 8 12 16 4 

B. struct P2 {inti; char c; chard; long j; }; 

i c d j Total Alignment 

0 4 5 8 16 8 

C. struct P3 { short "[3] ; char c [3] } ; 

w c Total Alignment 

0 6 10 2 

D. struct P4 { short "[5] ; char *c [3] } ; 

w c Total Alignment 

0 16 40 8 

E. struct PS { struct P3 a [2] ; struct P2 t } ; 

a t Total Alignment 

o· 24 40 8 

Solution to Problem 3.45 (page 275) 
This is an exercise in understanding structure layout and alignment. 

A. Here are the object sizes and byte offsets: 

Fleld 

Size 
Offset 

a 

8 
0 

b 

2 

8 

c 

8 
16 

d 

1 
24 

e 

4 
28 

f 

1 
32 

g 

8 

40 

h 

4 
48 

B. The structure is a total of 56 bytes long. The end of the structure must be 
padded by 4 bytes to satisfy the 8-byte alignment requirement. 

C. dne strategy that works, when ail data elements have a length equal to a 
power of 2, is to order the structure elements in descending order of size. 
This leads to a declaration " 



l 

I 
I 

' I 
I 

i 
I 
I 

I 
I 
I 

I 

I 

·1 

i 

346 Chapter 3 Machine-Level Representation of Programs 

struct { 
char *a; 
double c; 
long g; 
float e· • 
int h; 
short b· • 
char d; 

char f; 
} rec; 

with the following offsets: 

Size 
Offset 

a 

8 
0 

c 

8 
8 

g 

8 
16 

e 

4 

24 

Field 

h 

4 

28 

b 

2 
32 

d 

1 
34 

f 

1 
35 

The structure must be padded by 4 bytes to satisfy the 8-byte alignment 
requirement, giving a total of 40 bytes. 

Solution to Problem 3.46 (page 282) 
This problem covers a wide range of topics, such as stack frames, string represen· 
tations, ASCII code, and byte ordering. It demonstrates the ,dangers of out-of­
bounds memory references and the basic ideas behind buffer overflow. 

A. Stack after line 3: 

oo oo oo oo oo 40 oo 76 Return address 

01 23 45 67 89 AB CD EF Saved %rbx 

B. Stack after line 5: 

oo oo oo oo oo 40 oo 34 Return address 

33 32 31 30 39 38 37 36 Saved i.rbx 

35 34 33 32 31 30 39 38 

37 36 35 34 33 32 31 30 -+---- buf • %rsp 

C. The program is attempting to return to address Ox040034. The low-order 2 
bytes were overwritten by the code,fpr character '4' and the terminating null 
character, 

D. The saved value of register %rbx was set to Ox3332313039383736. This value 
will be loaded into the register before get_line returns. 



Solutions to Practice Problems 347 

E. The call:to malloc should have had strlen(buf)+l as its argument, and the 
code should also check that the returned value is not equal to NULL. 

Solution to Problem 3.47 (page 286) 

A. This corresp,i;mds to a range of around 213 addresses. 

B. A 128-byte nop sled would cover 27 addresses with each test, and so we would 
only.require around 29 = 64 attempts. 

This example clearly shows that the degree of randomization in this version 
of Linux would provide only minimal deterrence against an overflow attack. 

Solution to Problem 3.48 (page 288) 

This problem gives you another chance to see how x86-64 code manages the stack, 
and to also better understand how tb defend against buffer overflow attacks. 

A. For the unprotected code, we can see that lines 4 and 5 compute the positions 
of v and buf to be at offsets 24 and 0 relative to %rsp. In tl;ie protected code, 
the canary is stored at offset 40 (line 4), while v and buf are at offsets Sand 
16 (lines 7 and 8). 

B. In the protected code, local variable v is positioned closer to the top of the 
stack than buf, and so an overrun of buf will not corrupt the value of v. 

Solution to Problem 3.49 (page 293) 

This code combines many of the tricks we have seen for performing bit-level 
arithmetic. It requires careful study to make any

0
sense of it. 

A. The leaq,instruction of·· line 5 computes the ivalue Sn + 22, which is then 
rounded down to the nearest multiple of 16 by the andq instruction of line 6. 
The resulting value will be Sn+ 8 when n is odd and Sn + 16 when n is even, 
and this value is subtracted from SJ to give s2. 

B. The three instructions in this sequence round s2 up to the nearest multiple 
of 8. They make .use of ,the combination of biasing and shifting that we saw 
for dividing by a power of 2 in Section 2.3.7. 

C. These two examples can be seen as the cases that minimize and maximize 
the values of e1 and e2• 

n 

5 

6 

2,065 
2,064 

2,017 
2,000 

p 

2,024 
2,000 

1 
16 

7 
0 

D. We can see that s2 is computed in a way that preserves whatever offset SJ has 
with the nearest multiple of 16. We can also see that p wilt Bio'aligned on a 
multiple of 8, as is recommended for an array of S-byte elements. 

Solution to Problem 3.50 (page 300) 
This exercise requires that you step through the code, paying careful attention to 
which conversion and data movement instructions are used. We can see the values 
being retrieved and converted as follows: 



348 Chapter 3 Machine-Level Representation of Programs 

• The value at dp is retrieved, converted to an int, (line 4), and·then stored at 
ip. We can therefore infer that va11 is d. , 

• The value at ip is retrieved, converted to a float (line 6), and then stored at 

fp. We can therefore infer that val2 is i. 
• The value of 1 is converted to a double (line 8) and stored at dp. We 'i:an 

therefore infer that val.:3 is 1. 
• The value at fp is retrieved on line' 3. The two instntction~·at'lines ·10-11 

convert tJ;iis to double p~ecjsion as th~·".'11ue returned in register %xmjll0. We 
can therefore infer that val4 is f. " 

Solution to Problem 3.51 (page 300) 
These cases can be hcyndlt;d by, selecting the appropriate entries fn?m the tab.le~ in 
Figures ~.47 and, 3.48, or~using oqe of th,e i:ode sequep.ces (or convertingbe~ween 
floating-point formats. I 

Tx r, Instruction( s) 

long double vcvtsi2sdq %rdi, %xmm0, %xmm0 

double int vcvt,tsd2si %xmm0, %eax 

float double vunp'Cklpd %xrnm0, %xinmO, %xmm0 

vcvtj:id2ps %xrnm0, %xmm0 

long float vcvtsi2ssq %rdi, %XIl)?l0, %xmm0 

float long) vcvttss2sig_ %xmm0, %rax 

Solution to Problem 3.52 (page 301)' 
The basic rules for mapping arguments to registers are fairly simpl"'(alth01i'gh they 
become much more complex with more and other types of argume'nts.[77]). 

A. double gi(double a, long b, float c, int d); 

Registers: a in %xmm0, bin %rdi c in·%xmrn1, din %esi, 

B. double g2(int a, -double *b, float •c, long d)~ 
' 

Registers: a in %ed~, b in %r~i~ c in %,rdx, 4 tn {orcx 

C. double g3(double *a, double b, int c, float d); 

Registers: a in %rdi, bin %xmrn0, c in %esi, din %xmm1 

D. double g4(float a, int *b, float c, d6uble d); 

Registers: a in %xmm0, b in %rdi, c in %xTmm1, din %xmm2 

' S<?lutiol') to P·rP.~lem 3.53 (page 303) 
We can se" {rom tl)e assembly code that there are two integer arguments, passed 
in registers %rdi and %rsi. Let us name these il and i2. Similarly, thete are twp 
floating-point arguments, passed in registers %xmm0 and %xmm1, which we name fl 

and f2. " 
We can.then annotate the assemblrcode: 

,!. 



2 

3 

4 

5 

6 

7, 

8 

9 

Solutions to Practice Problems 349 

Refer to arguments as il (%rdi), i2 (%esi) 

fl (%xmm0), and f2 (%xmm1) . ,) 

double fUJJ.ctl(argl_t p, arg2_t q, arg3_t r, a.z.g4_t s) 
functl: 

vCvtsi2ssq %rsi, 
vaddss %xmmO, %xmm2, 
vcvtsi2ss %edi, 
vdivss %xmm0, %xmrn2, 
vunpcklps %xmm0, 
vcvtp,s2pd %,xmmo, 
vsubsd %xmm1, %xmm0, 
ret 

%xmm2, 
%xmm0 
%xmm2, 
%xmmO 

%xmm0, 
%xmm0 

%xmm0 

%xmm2' 

%xmm2 .. 
%xmm0 

Get i2 and convert from long to float 
Add fl (type float) 

Get il and convert from int to float 

Compute il I (i2 + fl) 

Convert to double 

Compute il I (i2 + fl) - f2 (double) 

From this we see that the code computes the value i1/(i2+f1)-f2. We•can also 
see that i1 has type int, i2 has type long, f1 has type float, and f2 has type 
double. The only ambiguity iq matc;hing arguments to the named values stems 
from the commutativity of multiplication-yielding two possible results: 

double functla(int p, float q, long r, double s)j 
double functib(int p, long q, float r, doubles); 

Solution to Problem 3.54 (page 303) 
This problem can readily be solved by stepping through the assembly code and 
determining what is computed on each step, as shown with the annotations below: 

double fUJJ.ct2(double w, int x, float y, long z) 

w in /.xmmO, x in %edi',+ y in %xmm1, z in %rsi 
funct2: 

vcvtsi2ss %edi, %Xmm2, %xmm2 
vmulss %xmm1, %xmm2, %xmm1 
vunpcklps %xmm1, %xmm1, %xmm1 
vcvtps2pd %xmm1, %xmm2 
vcvtsi2sdq %rsi, %xmm1, %xmm1 

Convert x to float 

Multiply by y 

Convert X*Y to double 

Convert z to double 

Compute w/z vdivsd %xmm1, %xmm0, %xmm0 
vsubsd %xmrn0, %xmm2, %xmm0 
ret 

Subtract from X*Y 
Return 

We can conclude from this analysis that the function computes y * x - w /z. 

Solution to Problem 3.55 (page 305) 

This problem involves the same reasoning as was required to see that numbers 
declared at label . LC2 encode 1.8, but with a simpler example. 

We see that the two values are 0 and 1077936128 (Ox40400000). From the 
high-order bytes, we can extract an exponent field of Ox404 (1028), from which 
we subtract a bias of 1023 to get an exponent of 5. Concatenating the fraction bits 
of the two values, we get a fraction field of 0, but with the implied leading value 
giving value 1.0. The constant is therefore 1.0 x 25 = 32.0. 



350 Chapter 3 Machine-Level Representation of Programs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Solution to Problem 3.56 (page 305) 

A. We see here that the 16 bytes startirig at address . LCl form a mask, where 
the low-order 8 bytes contain all ones, except for the most significant bit, 
which is the sign bit of a double-precision value. When we compute the AND 

of thi~ mask with %xmm0, it will clear th~ sig"! bit of x, yielding ti\~ absolu!e 
value. In fact, we generated this cod,e by defining E~~R\l') to be fabs (x), 
where fabs is defined in <math.h>. 

' 
B. We see that the vxorpd instruction sets the entire register to zero, and so this 

is a way to generate floating-point constant 0.0. 

C. We see that the 16 bytes starting at address . LC2 form a mask with a single 
1 bit, at the position of the sign bit for the low-order' '\alue in the XMM 
register. When we compute the EXCLUSIVE-OR of ~his mask with %xmm0, we 
change the sign of x, computing the expressipn -x. " 

' ' , 

Solution to Problem 3.57 (page 308) 
A'.ga'in, we annotale'tlie'code, includibg de!tling.wilh the conditional branch:' 

double funct3(int •ap, double b, long c, float •dp) 

ap in %rdi, bin %xmm0, c in %~si, dp in %rdx 

funct3: 
G~; ~ = •dp •' _, 1.., 
,Ge't a = •ap and con,vert, to double 

•• ».'I ) , 

vmovss (%rdx), %xmm1 
vcvtsi2sd <%rdi), %xrnrn2, %xmrn,2, 

vucop.~sd .rfoxmll!ft~ %xmrn0 
Compare 9: f f· 

jbe .LS 
vcvtsi2ssq %rsi, %xmrn0, %xmm0 
vmulss %xmm1, %xmm0, %xmm1 
vunpcklps %xmm1, %xmm1, %xmm1 
vcvtps2pd %xmm1, %xmm0 
ret 

.LS: 
vaddss %xmm1, 
vcvtsi2ssq 
vaddss %xmm1, 
vunpcklps 
vcvtps2pd 
ret 

%xmm1, 
%rsi, 

%xmm0, 
%xmm0, 
%xmm0, 

%xmm1 
%xmm0, 
%xmm0 

%xmm0, 
%xmm0 

%xmm0 

%xrnm0 

' 

If <=, goto lesseq 

Convert c to float 

Multiply by d 

Con~ert to double 

Return 

leaseq: 
Cbmpute d+d = 2.0 * d 

Convert c to float 

COmpute c +.2*d 

Convert to double 

R~turn 

From this, we can write the following code for funct3: 

double funct3(int, •apnidouble b, long c, ,float •dp) { 

} 

int a = *ap; •t 

float d = •dp; 
if (a < b) 

return c*d; 
else 

return c+2*d ;i. 

'• 

UJ O~ I 

" 



Processor Architecture 

4.1 Th_e Y86-64 Instruction Set Architecture 355 

4.2 Logic Design and the Hardware Control Language· HCL 372 

4.3 Sequential Y86-64 Implementations 384 

4.4 General Principles of Pipelining 412 

4.5 Pipelined
0

Y8,6-64 Implementations 421 

4.6 Summary 470 

BibliograP,hic Notes 473 

Homework Problems 473 

Solutions to Practice Problems 480 

.. 

" 

351 



352 Chapter 4 Processor Architecture 

Modern microprocessors are among the most complex systems ever created 
by humans. A single silicon chip, roughly the size of a fingernail, can con­

tain several high-performance processors, large cache memorie_s, and the logic 
required to interface them to external devices. In terms of performance, the pro­
cessors implemented on a single chip today dwarf the room-size supercomputers 
that cost over $10 million just 20 years ago. Even the embeddeil processors found 
in everyday appliances such as cell phones, navigation systems, and programmable 
thermostats are far more powerful than the early developers of computers could 
ever have envisioned. 

So far, we have only viewed computer systems down to the level of machine­
language programs. We have seen that a processor must execute a sequence of 
instructions, where eaFh instruction ·performs some primitive operation, such as 
adding two numbers. An instruction is encoded in binary form as a sequence of 
1 or more bytes. The instructions supported by a particular processor and their 
byte-level encodings are known as its instruction set architecture (ISA). Different 
"families" of processors, such as Intel IA32 and x86-64, IBM/Freescale Power, 
and the ARM processor family, have different ISAs. A program compiled for one 
type of machine will not run on another. On the other hand, there are many dif­
ferent models of processors within a single family. Each manufacturer produces 
processors of ever-growing performance and complexity, but the different models 
remain compatible at the ISA level. Popular families, such as x86-64, have pro­
cessors supplied by multiple manufacturers. Thus, the ISA provides a conceptual 
layer of abstraction between compiler writers, who need only know what instruc­
tions are permitted and how they are encoded, and processor designers, who must 
build machines that execute those instructions. 

In this chapter, we take a brief look at the design of processor hardware. We 
study the way a hardware system can execute the instructions of a particular ISA. 
This view will give you a better understanding of how computers work and the 
technological challenges faced by computer manufacturers. One important con­
cept is that the actual way a modern processor operates can be quite different 
from the model of computation implied by the I,SA. The ISA model would seem 
to imply sequential instruction execution, where each instruction is fetched and 
executed to completion before the next one begins. By executing different parts 
of multiple instructions simultaneously, the processor can achieve higher perfor­
mance than if it executed just one instruction at a time. Special mechanisms are 
used to make sure the processor computes the same results as it would with se­
quential execution. This idea of using clever tricks to improve performance while 
maintaining the functionality of a simpler and more abstract model is well known 
in computer science. Examples include the use of caching in Web browsers and 
information retrieval data structures such as balanced binary trees and hash tables. 

Chances are you will never design your own processor. This is a task for 
experts working at fewer than 100 companies worldwide. Why, then, should you 
learn about processor design? 

• It is intellectually interesting and important. There is an intrinsic value in learn- I 
ing how things work. It is especially interesting to learn the inner workings of 1 



Chapter 4 Processor Architecture 353 

Aside "'riie prpgress of ~qmputer tecttnology. 

To geh sense of h\)\v,!fiuch computer technology has improved over'lhe past four decades, consider 
the following two processors.· · ·' · 

Theflrst Cray huperc~mputer was delivered to Los Alamos National Laboratory in 1976. lt was 
the fastest computer in the world, abfe to perform as many•as 250 million arithmetic operations per 
second. It callle witl1 8 megallytes-of rand~m access niemory,·t)le maXimum configuration allowed by 
the hardware. The machine was also very large-it weighed 5,000 kg, consumectll5 kilowatts, and cost 
$9willion'. In total, around 80 of them·were manufactured. 

'' The Apple ARM A'7·mii:roP.rocessor chip, introduced iii'20B to power the 'iPhone SS, contains 
two CPUs, each of.which can pe'rform seve'ral billion arithmetic operations per secpnd, a11d 1 gigabyte 
of random access memory. :nle entire ph6ne weighs just 112 'grams,'cohsun\'es around 1 watt, and costs 
less than $800. Over'9 million units were' sold in tne first \Veek'end of its in'lroduction. In addition to 
being a powerful computer, it can be us'ed to 'take Pictures, ta" place phone calls, and to provide driving 
direCtidns, feRtures O.ever t:dnsidefed for th6 Cray 1. 

These two systems, spaced just 37 years apart, demonstrate the tremendous progress of semicon­
ductor fochnofogy. Whereas the Cray l's CPU was constructed using around 100,000 semiconductor 
chips,'each dlntaining less than 20't?al1sistofs, the Appl~ A7 Ms over 1 Billion transistors o~ its single 
chip. The ctay l's'B-megabjlte memory required 8,192phipS, whereas theiPhone's gigabyte memory is 
containea in a single chip. • 

'"'"""'' ~ '~, ··t • 

a system that is such a part of the daily lives of computer scientists and engi­
neers and yet remains a mystery to many. Processor design embodies many of 
the principles of good engineering practice. It requires creating a simple and 
regular structure to perform a complex task. 

• Understanding how the processor works aids in understanding how the overall 
computer system works. In Chapter 6, we will look at the memory system and 
the techniques used to create an image of a very large memory with a very 
fast access time. Seeing the processor side of the processor-memory interface 
will make this presentation more complete. 

• Although few people design processors, many design hardware systems that 
contain processors. This has become commonplace as processors are embed­
ded into real-world systems such as automobiles and appliances. Embedded­
system designers must understand how processors work, because these sys­
tems are generally designed and programmed at a lower level of abstraction 
than is the case for desktop and server-based systems. 

• You just might work on a processor design. Although the number of compa­
nies producing microprocessors is small, the design teams working on those 
processors are already large and growing. There can be over 1,000 people 
involved in the different aspects of a major processor design. 

In this Chapter, we start by defining a simple instruction set that we use as a 
running example for our processor implementations. We call this the "Y86-64" 

I 
I 
I 

I 

1; 

I 

t-
i 



I I 
I 

I 

I 
·1 

'i 
• 

• 1 

\ 

354 Chapter 4 Processor Architecture 

instruction set, because it was inspired by the x86-64 instruction set. Compared 
with x86-64, the Y86-64 instruction set has fewer data types, instructions, and 
addressing modes. It also has a simple byte-level encoding, making the machine 
code less compact than the comparable x86-64 code, but also much easier to design 
the CPU's decoding logic. Even though the Y86-64 instruction set is very simple, 
it is sufficiently complete to allow us to write programs manipulating integer data. 
Designing a processor to implement Y86-64 requires us to deal -.yith many of the 
challenges faced by processor designers. 

We then provide some background on digital hardware design. We describe 
the basic building blocks used in a processor and how they are connected together 
and operated. This presentation builds on our discussion of Boolean algebra and 
bit-level operations from Chapter 2. We also introduce a simple language, HCL 
(for "hardware control language"), to describe the control portions of hardware 
systems. We will later use this language to describe our processor designs. Even if 
you already have some background in logic design, read this section to understand 
our particular notation. 

As a first step in designing a processor, we present a functionally correct, 
but somewhat impractical, Y86-64 processor based on sequential operation. This 
processor executes a complete Y86-64 instruction on every clock cycle. The clock 
must run slowly enough to allow an entire series of actions to complete within one 
cycle. Such a processor could be implemented, but its performance would be well 
below what could be achieved for this much hardware. 

With the sequential design as a basis, we then apply a series of transforma­
tions to create a pipelined processor. This processor breaks the execution of each 
instruction into five steps, each of which is handled by a separate section or stage of 
the hardware. Instructions progress through the stages of the pipeline, with one in­
struction entering the pipeline on each clock cycle. As a result, the processor can 
be executing the different steps of up to five instructions simultaneously. Mak­
ing this processor preserve the sequential behavior of the Y86-64 ISA requires 
handling a variety of hazard conditions, where the location or operands of one 
instruction depend on those of other instructions that are still in the pipeline . 

We have devised a variety of tools for studying and experimenting with our 
processor designs. These include an assembler for Y86-64, a simulator for running 
Y86-64 programs on your machine, and simulators for two sequential and one 
pipelined processor design. The control logic for these designs is described by 
files in HCLnotation. By editing these files and recompiling the simulator, you can 
alter and extend the simulator's behavior. A number of exercises are provided that 
involve implementing new instructions and modifying how the machine processes 
instructions. Testing code is provided to help you evaluate the correctness of your 
modifications. These exercises will greatly aid your understanding of the material 
and will give you an appreciation for the many different design alternatives faced 
by processor designers. 

Web Aside ARCH:VLOG on page 467 presents a representation of our pipelined 
Y86-64 processor in the Verilog hardware description language. This involves 
creating modules for the basic hardware building blocks and for the overall pro­
cessor structure. We automatically translate the HCL description of the control 



Section 4.1 The Y86-64 Instruction Set Architecture 355 

logic into Verilog. By first debugging the HCL description with our simulators, we 
eliminate many of the tricky bugs that would otherwise show up in the hardware 
design. Given a Verilog description, there are commercial and open-source tools 
to support simulation and logic synthesis, generating actual circuit designs for the 
microprocessors. So, although much of the.effort we expend here is to create picto­
rial and textual descriptions of a system, much as one would when writing software, 
the fact that these designs can be automatically synthesized demonstrates that we 
are indeed creating a system that can be realized as hardware. 

4.1 The Y86-64 Instruction Set Architecture 

Defining an instruction set architecture, such as Y86-64, jncludes defining the 
different components of its state, the set of instructions and their encodjngs, a 
set of programming conventions, and the handling of exceptional events. 

4.1.1 Programmer-Visible State 

As Figu(e 4.1 illustrates, each instruction in a Y86-64 program can read and modify 
some part of the processor state. This is referred to as the programmer-visible 
state, where the "programmer" in this case is either someone writing programs 
in assembly code or a compiler generating machine-level code. We will see in our 
processor implementations that we do not need to represent and organize this • 
state in exactly the manner implied by the ISA, as long as we can make sure that 
machine-level programs appear to have access to the programmer-visible state. 
The state for Y86-64 is similar to that for x86-64. There are 15 program registers: 
%rax, %rcx, %rdx, %rbx, %rsp, %rbp, %rsi, %rdi, and %r8 through %r14. (We omit 
the x86-64 register %r15 to simplify the instruction encoding.) Each of these stores 
a 64-bit word. Register %rsp is used as a stack pointer by. the push, pop, call, and 
return instructions. Otherwise, the registers have no fixed meanings or values. 
There are three •single-bit condition codes, ZF, SF, and OF, storing information 

Figure 4.1 
¥86-64 programmer­
visible state. As with 
x86-64, programs for Y86-
64 access and modify 
the program registers, 
the condition codes, the 
program counter (PC), and 
the memory. The status 
code indicates whether 
the program is running 
normally or some special 
event has occurred. 

RF: Program registers 

%rax 

%rcx 

%rdx 

%rbx 

CC: 
Condition 

codes 

jzFlsFloFj 
PC 

%rsp 

%rbp 

%rsi 

%rdi 

%r8 %r12 

%r9 %r13 

%r10 %r14 

%r11 
-" 

Stat: Program status 

·I 
DMEM:Memory 

~ 



,, 

! 

.I 
' I 
I 

356 Chapter 4 Processor Architecture 

about the effect of the most recent arithmetic or logical instruction. The program 
counter (PC) holds the address of the instruction currently being executed. 

The memory is conceptually a large array of bytes, holding both program 
and data. Y86-64 programs reference memory locations using virtual addresses. 
A combination of hardware and operating system software translates these.into 
the actual, or physical, addresses indicating where the values are actually stored 
in memory. We will study virtual memory in more detail in Chapter 9. For now, 
we can think of the virtual memory system as providing Y86-64 programs with an 
image of a monolithic byte array. 

A final part of the program state is a status code Stat, indicating the overall 
state of program execution. It will indicate either normal operation or that sbme 
sort of exception has occurred, such as when an instruction attempts to read 
from an invalid memory address. The possible status codes and the handling of 
exceptions is described in Section 4.1.4. 

4.1.2 Y86-64 Instructions 

Figure 4.2 gives a concise description of the individual instructions in the Y86-64 
ISA. We use this instruction set as a target for our processor implementatfons. The 
set of Y86-64 instructions is largely a subset of the x86-64 instruction set. It includes 
only 8-byte integer operations, has fewer addressing modes, and includes a smaller 
set of operations. Since we only use 8-byte data, we can refer to these as "words" 
without any ambiguity. In this figure, we show the assembly-code representation 
of the instructions on the left and the byte encodings on the right. Figure 4.3 shows 
further details of some of the instructions. The assemlily-code format is simiiar to 
the ATI format for x86-64. 

Here are some details about the Y86-64 instructions. 

• The x86-64 movq instruction is split into four different instructisms: irmovq, 
rrmovq, mrmovq, and rmmovq, explicitly indicating the form of the source and 
destination. The source is either immediate (i), register (r), or memory (m). 
It is designated by the first character in the instruction name. The destination 
is either register (r) or memory (m). It is designated by the second character 
in the instruction name. Explicitly identifying the four types of data transfer 
will prove helpful when we decide how to implement them. 

The memory references for the two memory movement instructions 'have 
a simple base and displacement format. We do not support the seconc,I index 
register or any scaling of a register's value in the address computation. 

As with x86-64, we do not allow direct transfers from one memory loca­
tion to another. In addition, "'e do n<if allow a transfer of immediate data to 
memory. 

• There are four integer operation instructions, shown in Figure 4.2 as 'OPq. 
These are addq, subq, andq, and xorq. They operate only on register ilata, 

" whereas x86-64 also allows operations on memory data. These instructions 
set the three condition codes ZF, SF, and OF (zero, sign, and ov,erflow). 



Byte 

halt 

nop 

rrmovq rA, rB 
irm.ovq V, rB 

rmmovq rA, D(rB) 

cmovXX rA, rB 

call Dest 

ret 

pushq ~~ 

popq frA 

0 1 

G:OJ 
[1IOJ 
I 2 I O I rA I rB I 
131o1Flrej 
I 4 I o I rA I rB I 

I• 

I A I o I rA I F"I 
I B I o I rA I F I 

Section 4.1 The Y86-64 Instruction Set Architecture 357 

2 3 4 5 6 7 8 9 

v 

D 

D 

Figure 4.2 Y86-64 instructjon set. Instruction encodings range between 1 and 1 0 
by\~~- An instruction consists 01 a 1-byte instruction specifier, possibly a 1-byte register 
spedfier, and possib)y an 8-byte constant word. Field fn specifies a particular integer 
operation (OPq), data movement.condition (cmovXX), or branch condition (jXX). All 
num~ric values are shown in hexadecimal. 

• The seven jump instructions (shown in Figu,re 4.2 as.jXX) are jmp, jle, jl, je, 
jne, jge, and jg. Branches are taken according to the type of branch and the 
settings of the condition codes. The branch conditions are the same as with 
x86-64 (Figure 3.15). 

• There are six conditional move instructions (shown in Figure 4.2 as cmovXX): 
cmovle, cmovl, cmove, cmovne, cmovge, and cmovg. These have the same 
format as 'the register-register move instruction rrrnovq, but the destination 
register is updated only if the condition codes satisfy the required constraints. 

• The call instruction pushes the return address on the stack and jumps to the 
destination address. The ret instruction returns from such a call. 

• The pushq and popq instructions implement push and pop, just as they do in 
x86-64. 

• The halt instruction stops instruction execution. x86-64 ha~ a comparable 
instruction, called hlt. x86-64 application programs are not permitted to'use 



.r, 
358 Chapter 4 Processor Architecture 

this instruction, since it causes the entire system to suspend operation. For 
Y86-64, executing the halt instruction causes the processor to stop, with the 
status code set to HLT. (See Section 4.1.4.) 

4.1.3 Instruction Encoding 

Figure 4.2 also shows the byte-level encoding of the instructions. Each instruction 
requires between 1 and 10 bytes, depending on which fields are required. Every 
instruction has an initial byte identifying the instruttion tyl.'e· This byte is split 
into two 4-bit parts: the high-order, or code, part, and the low-order, or function, 
part. As can be seen in Figure 4.2, code values range from o to OxB. The function 
values are significant only for the cases where a group of related instructions share 
a common code. These are given in Figure 4.3, showing the specific encodings of 
the integer operation, branch, and conditional move instructions. Observe that 
rrmovq has the same instruction code as the conditional moves. It can be viewed 
as an "unconditional move" just as the jmp instruction is an unconditional jump, 
both having function code O. 

As shown in Figure 4.4, each of the 15 program registers has an associated 
register identifier (ID) ranging from Oto OxE. The numbering of registers in Y86-
64 matches what is used in x86-64. The program registers are stored within the 
CPU in a register file, a small random access memory where the register n:Js serve 
as addresses. ID value OxF is used in the instruction encodings and within ,our 
hardware designs when we need to indicate that no register should be accessed. 

Some instructions are just 1 byte long, but those tliat require operands have 
longer encodings. First, there can be an additional register specifier byte, specifying 
either one or two registers. These register fields are called rA and rB in' Fig\Jre 
4.2. As the assembly-code versions of the instructions show, they can specify the 
registers used for data sources and destinations, as well as the base register used in 
an address computation, depending on the instruction type. Instructions that have 
no register operands, such as branches and call, do not have a register specifier 
byte. Those that require just one .'.egister operand ( irmovq, pushq, and popq) have 

Operations Brapches Moves 

addq~ jmp~ jne~ rrmovq~ cmovne~ 

subq~ jle~ jge~ cmovle~ cmovga~ 

andq~ jl [ili] jg~ cmovl [2]2J cmovg ~ 

x.orq~ je ~ cmove [2"liJ 
Figure 4.3 ,Function codes for Y86-64 instruction set. The code specifies a particular 
integer ope1ation, branch condition, or data transfer condition. These instructions are 
shown as OPq, jXX, and cmovXX in Figure 4.2. 



Section 4.1 The Y86-64 Instruction Set Architecture 

Number Register name Number Register name 

0 %rax 8 %r8 
1 %rcx 9 %r9 
2 %rdx A %r10 
3 i'orbx B %r11 
4 %rsp c %r12 
5 %rbp D %r13 
6 %rsi E %r14 
7 %rdi F No register 

Figure 4.4 Y86-64 program register identifiers. Each of the 15 program registers 
has an associated identifier (ID) ranging from 0 to OxE. ID OxF in a register field of an 
instruction indicates the absence of a register operand. 

the other register specifier set to value OxF. This convention will prove useful in 
our processor implementation. 

Some instructions require an additional 8-byte constant word. This word can 
serve as the immediate data for irmovq, the displacement for rmmovq and mrmovq 
address specifiers, and the destination of branches and calls. Note that branch and 
call destinations are given as absolute addresses, rather than using the PC-relative 
addressing seen in x86-64. Processors use PC-relative addressing to give more 
compact encodings of branch instructions and to allow code to be shifted from 
one part of memory to another without the need to update all of the branch target 
addresses. Since we are more concerned with simplicity in our presentation, we 
use absolute addressing. As with x86-64, all integers have alittle-endian encoding. 
When the instruction is written in disassembled form, these bytes appear in reverse 
order. 

As an example, let us generate the byte encoding of the instruction rmmovq 
Y.rsp ,Ox123456789abcd(7,rdx) in hexadecimal. From Figure 4.2, we can see that 
rmmovq has initial byte 40. We can also see that source register %rsp should be 
encoded in the rA field, and base register %rdx should be encoded in the rB field. 
Using the register numbers in Figure 4.4, we get a register specifier byte of 42. 
Finally, the displacement is encoded in the 8-byte constant word. We first pad 
Ox123456789abcd with leading zeros to fill out 8 bytes, giving a byte sequence of 
00 0123 45 67 89 ab ed. We write this in byte-reversed order as cd ab 89 67 45 23 01 
00. Combining these, we get an instruction encoding of 4042cdab896745230100. 

One important property of any instruction set is that the byte encodings must 
have a unique interpretation. An arbitrary sequence of bytes either encodes a 
unique instruction sequence or is not a legal byte sequence. This property holds for 
Y86-64, because every instruction has a unique combination of code and function 
in its initial byte, and given this byte, we can determine the length and meaning of, 
any additional bytes. This property ensures that a processor can execute an object­
code program without any ambiguity about the meaning of the code. Even if the 
code is embedded within other bytes in the program, we can readily determine 

359 



! 
I 
l 

' .f 

360 Chapter 4 Processor Architecture 

""111. --~ 

Aside Comparing x'86-64'to Y86-6~ inst'ructiqn'encqcjjfig~ '~ ' 

,. Compared with the instruction erioodi,ngs used in ,x86~;·the encoding ofY86-64 is i\mch simpler. out I 
also less compact. The ~egister ti<:lds occur only 'in 'fixea positiohs in all Y86-64, in~truqtions, whereas 
they are packed into various positiqnS,,in,t!'x difierenex86!64 il\s\ructio!l'i- An x86~6'4 instlJlction can ! 
encode constant vah,es)n 1, 2, 4, or 8 bytes, wllereas Y86~64 alwayNequires 8 bytes.• ' · 

< ' t """"'""' ,,,_,.,., ""-"' ,.,.-.,. - .,.._..,.. - -· _ .. -"""""--~-~~-.--A>..,, ......... ~~~ 

the instruction sequence as long as we start from the first byte in the sequence. 
On the other hand, if we do not know the starting position of a code,sequence, we 
cannot reliably determine how to split the seqLI;ence into individual ii;,istructions. 
This causes problems for disassemblers and pther tools that attempt to extrjl.ct 
machine-level programs directly from object-code byte sequences. 

\f>'fa'Ctit?;Rr6i:if&r\Yl':"MMfcl!i'f9.0ot'.:~'l'!f !:"'i~§ ~ il 
Determine the byte encoding of the Y86-64 instruction sequence that follows. The 
line . pas Ox100 indicates that the starting address of the object code should be 
Ox100 . 

. pos Ox100 # Start code at address Ox100 
irmovq $15 'r.rbx 
rrmovq %rbx,%rcx 

loop: 
rmmovq %rcx,-3(%rbx) 
addq %rbx, %rcx 
jmp loop 

1eriCtrci1fAAT~!1J0ii!~~r;w,tc'=~W":"~.:"' · .-:,i· '.l'.·-:,.·1 
For each byte sequence !ist~q. determine the Y86-64 instruction sequence it en­
codes. If there is some invalid byte in the sequence, show the instruction sequence 
up to that P,Oint and indicate where the invalid value,occu,rs. For each seque1Jce, 
we show the starting address, then a colon, and then th~,byte sequence. 

A.. Ox100: 30f3fcffffffffffffff40630008000000000000 

B. Ox200: a06f800c020000000000000030f30a00000000000000 

c. Ox300: sos401qoooooqooooooo1ofobotf 

D. Ox400: 611373000400000000000000 

E. Ox500: 6362a0f0 



Section 4.1 The Y86-64 Instruction Set Architecture 361 

Aside RISC and CISC instruction sets 

x86-64 is sometil!'es labeled as· a "complex instruction set computer" (CISC-pronounced "sisk"), 
and is ,deemed to be th~ opposite o( ISAs that are classified as "reduced instruction set computers" 
(RISC-pronounced "risk"). Historically, CISC machines came first, having evolved from the earliest 
computers. By the early 1980si instruction sets for mainframe and minicomputers had grown quite large, 
as machine designers incorporated new instructions to support high'level tasks, such as manipulating 
circular buffers, performing decimal arithme~tic, and evaluating polynomials. The first microprocessors 
appeared in the early 1970s and had limited in~truction sets, because the integrated-circuit technology 
then pqsed sever~~constrai}lts on what could be implemented on a single chip, Mfr;roprocessors evolved 
quick!¥ and, bl', the early 1980s, were following the same path of increasing instruction set complexity 
that ha,d peen the case for mainframes and minicomputers. The x86 family took this path, evolving into 
IA32, and more recently into x86-64. Tue x86 line continues to evolve as new classes of instructions are 
added based on the needs of em'erging applications. 

The RISC design philosophy developed in the early 1980s as an alternative to these trends. A group 
of hardware and'.c<;>mpiler experts at IBM, strongly infiuenc,ed by the ideas of IBM researcher John 
Cocke, recognized that~they could generate efficient code for a much simpler form 01 instruction set. In 
fact, many of the hjgh-level instructions that were being added to instruction sets .. were very difficult to 
generate with a compiler and were seldom used. A simpler instruction set could be implemented with 
much less hardware and c9uld be organized in an efftcient pipeline structure, similar to those described 
later in this chapter. IBM did not commercialize this idea until many years later, when it developed the 
Power and PowerPC ISAs. 

The RISC concept was further developed by Professors David Patterson, of the University of 
Califorµia at Berkeley, and John Hennessy, of Stanford University. Patterson gave the name RISC to 
this new clasi pf machines, and CISC to the existing class, since there had previously Q,een no need to 
have a special deSignation for a nearly universal form of instruction set. 

When comparing CISC ,with the original RISC instruction sets, we find the following general 
characteristics: 

CISC 

A large number of instructions. The Intel 
document describing the complete set of 
instructions [51], is over 1,200 pages long. 

Some, instructions~with long 'execution times. 
These include instructions that copy an entire 
block from one part of memory to another and 
others that copy multiple registers to and from 
memory. 

Variable-size encodings. x86-64 instructions can 
range from 1 to 15 bytes. 

Early RISC 

Many fewer instructions-typically less than 100. 

No inst!uction with a long executidn time. Some 
early RISC machines did not even have an 
integer multiply inst~uction, requiring compilers 
to implement multiplication as a sequence of 
additions. 

Fixed-length encodings. Typically all instructions 
are encoded as 4 bytes. 

1 



.. 

" I I 
. I 362 Chapter 4 Processor Architecture 

Aside RISC and CISC instruction sets (continued) 

CISC Early RISC 

Multiple formats for specifying operands. In x86-
64, a memory operand specifier can have many 
different combinations of displacement, base 
and index registers, and scale factors. 

Arithmetic and logical operations can be applied 
to both memory and register operands. 

Implementation artifacts hidden from machine­
level programs. The ISA provides a clean 
abstraction between programs and how they 
get executed. 

Condition codes. Special flags are set as a 
side effect of instructions and the~'used for 
conditional branch testing. 

Stack-intensive procedure linkage. The stack 
is used for procedure arguments and return 
addresses. 

Simple addressing formats. Typically just base 
and displacement addressing. 

Arithmetic and logical operations only use 
register operands. Memory referencing is only 
allowed by load instructions, reading from 
memory into a register, and store instructions, 
writing from a register to memory. This 
convention is referred~to as a load/store 
architecture. 

Implementation artifacts exposed to machine­
level programs. Some RISC machines prohibit 
partic~lar instruction sequences and have 
jumps that do not take effect until the following 
instruction is executed. The compiler is given 
the task of optimizing performance within these 
constraints. 

No condition codes. Instead, explicit test 
instructions store the test results in nonnal 
registers for use in conditional evaluation. 

Register-intensive procedure linkage. Registers 
are used for procedure arguments and return 
addresses. Some procedures can thereby avoid 
any memory references. Typically, the processor 
has many more (up to 32) registers. 

The Y86-64 instruction set includes attributes of both CISC and RISC instruction sets. On the 
CISC side, it has condition codes and variable-length instructions, and it uses the stack to store return 
addresses. On the RISC side, it uses a load/store architecture and a regular instruction encoding, and it 
passes procedure arguments through registers. It can be viewed as taking a CISC instruction set (x86) 
and simplifying it by applying some of the principles of RISC. 



Section 4.1 The Y86-64 Instruction Set Architecture 363 

Aside Thi! RISC versus CISC contrpversy 

Th(pugh the 1980s, battles raged in the computer architecture community regarding the merits of RISC 
versu~ CISC instruction sets. Proporien'is of Risc'ciainled th~y coujd get more computing· power for 
a given amount of hardware through a conibirtcitioh'ofstre'affilined iilstruction set design, advanced 
compiler. technology, and pipelin!:<d ptdcessor iil)plelt1enta\icin.'CISC pr(Jponents C</untered that fewer 
S:ISC instrµctjon§ were requ(red Jo ferfor

1
11.1 a given tas~~·"~nd~ so their machines could achieve higher 

overall perforrpanq_e. 
Major companies introduced RISC processor lines, including Sun Microsystems (SPARC), IBM 

and Motorola (Powe'rPC), and Digit~! Equipment Corporation (Alpha). A British company, Acorn 
Computers Ltd., qev<tloped its own architecture, ARM ( or/ginally an acronym for "Acorn RISC 
machine")'. which hlls become widely used in eml;>edded ~pplications, sutli as cell £hones. 

Ih the 'early 1990s, the debate diminishe~· as it.becarl\e clear that neiilier'RISC nor CISC in their 
purest fornis were better than designs that'Jncorporated the best ideas ofbbth. RISC machines evolved 
and introdueed more iilsfructio~s, many of whiCh take 'multipie cycles to exec'ule. RISC machines 
today h:!ve1hundreds ofinliructions fn tlleir repertoire, hardly fittiilg the name "reduced instruction 
set machine:"· nie" ictea of expo&ing implementatipn artifacts io rha1'hine-level programs proved to be 
shor\~ighted. As"neW proceSsbr rriod~ls were devel~ped using rnore"adyan:tect'hardware structures, 
many of these artifacts became irrelevant, but they still ren'i'airied part of th'e instruction set. Still, the 
core of RISC design is an instructioii serthafis well 'suife1!'to execution on a pipelined machine. 

More r,~c;ent CISC machines als'o take aa".a.ht'ag,e ofhig_li-performlmce pi~eline structures. As we 
will discuss in·'sect!on 5.7, they'fetch the crsc instructions llnd dynamically translate them into a 
•segu~hce of simpler, R)SC-like,operat'ions. For example, ~n instruction that adds a register to memory 
is translated irlioJhree opf!rations: one to fe'ad the otigirihl mefuory value, one to perform the addition, 
and a third to wite the suni 19 memory. Since th~ 'dynamic trl!risfation can gener~lly be performed well 
in advance of the actual instruction execution, the processor can sustain a very high execution rate. 

Marketing issues, apart from technological ones, have ;ilso playell a majot_ro)e,in determining the 
success oMifferent instruction sets. By maintaining compatibility with its existing processors, Intel with 
x86 mad~ it:easy to•keep moving from >One generation of prdcessor to· the next,,As integrated-circuit 
technology improved, Intel and other x86 processor manufacturers could overcome the inefficiencies 
created by \he original 8086 instruction se\ design, using RISC technique~ to produce performance 
comparable to the best RISC machines. As we saw in Section 3.1, the evolution of IA32 into x86-64 
provid'ed an oppprtunity to incorporate several features of RISC il\to'the x86 family. In the areas of 
desktop, laptop, and server-based computing, x86 has achieved near total domination. 

RISC processors have done very well in the market for embedded processors, controlling such 
systems as cellulartelephones, automobile brakes, and Intern1't appliances. In these applications, saving 
on cost and power is more important than maigtaining backwafd Compatibility. In terms of the number 
of processors sold, this is a very large and growing market. 

4.1.4 Y86-64 Exceptions 

The programmer-visible state for Y86-64 (Figure 4.1) includes a status code Stat 
describing the overall state of the executing program. The possible values for this 
code are shown in Figure 4.5. Code value 1, named ADK, indicates that the program 

! 

l 

( 

I 



1 

364 Chapter 4 Processor Architecture 

Value Name Meaning 

1 AOK Normal operation 

2 HLT halt instruction encountered 

3 ,ADR Invalid address encountered 

4 ~NS .Invalid instruction encountered 

Figure 4.5 Y86-64 status codes. In our design, the processor halts for any code other 

than AOK. 

is executing normally ... while the otl\t<r codes indicate that some type of exception 
has occurred. Code 2, named HLT, indicates that the processor has executed a halt 
instruction. Co\le 3, named ADR, indica~,es that the processor attempted to read 
from or write to an invalid memory address, either while fetching an instruction 
oi while reading cir writing data. We limit the maxim;,m address (the exact limit 
varies by implementation), and any access to an address beyol)d this limit will 
trigger an ADR exception. Code 4, named INS, indicate,s that an invalid instruction 

code has been encountered. 
For Y86-64, we w'i!l simply liave the processor stop executing instructions 

when it encounters any of the exceptions listed. In a more complete design, the 
processor would typically invoke an exception handler, a procedure designated 
to handle the specific ,type of yxception encountered. As described in Chapter 8, 
exception handlers can be configured to have different effects, such as aborting 
the program or inv9king a user-defined signal handler. 

4.1.5· V86-64 Programs 

};'igure 4.6 shows x86-64 and Y86-64 assembly code for the following C function: 

"' 
long sum(long *Start, long count) 

2 { .. 
3 long sum = O; 

,4 while (count) { 

5 sum += *start; 

6 start++; 

7 count--; 

8 } 

9 return sum; 

10 } 

The x86-64 code was generated by the Gee compi/~f- The Y86-64 co\le is 
similar, but with the following differences: 

• The Y86-64 code loads constants into registers (lines 2-3), since it cannot use 
immediate data in arithmetic instructions. 



Section 4.1 The Y86-64, Instruction Set Architecture 365 

x86-64 code 

2 

4 

5 

6 

7 

8 

9 

10 

11 

long sum(long *start, long count) 

start in %rdi, count in %rsi 

sum: 

~m.ovl $0, %eax sum = 0 

jmp .12 Goto test 
.13: loop: 

addq C%rdi). %rax Add *start 
addq $8, %rdi start++ 

subq $1, %rsi count--
.12: test: 

testq %rsi, %rsi Test sum 

to sum 

'jne .13 If !=O, goto loop 
rep; ret Return 

Y86-64 code 

long'Siim(long *start, long count) 

st.:irt in %rdi, count in %rsi 
sum: 

2 irmovq $8,%r8 Constant 8 

irmovq $1,%r9 Constant 1 
4 xorq %rax,%rax sum = 0 

5 andq %rsi,%rsi Set cc 
6 jmp test Goto test 
7 loop: 

8 mrmovq (%rdi'.) , %r10 aet *start 
9 addq %r10,%rax Add to sum 

10 add9" %r8,%rdi start++ 

11 subq %r9,%rsi count--. Set CC 
12 test: 

13 jne loop Stop when 0 
14 ret Return 

figure 4.6 Comparison of Y86-64 and x86-64 assembly progra'ms. The <ium function 
computes the sum of an integer array. The Y86-64 code follows the same general pattern 
as the x86-64 code. 



..,____ii? ____ - -·~--

366 Chapter 4 Processor Architecture 

• The Y86-64 code requires two instructions (lines 8-9) to read a value from 
memory and add it to a register, whereas the x86-64 code can do this with a 
single addq instruction (line 5). 

• Our hand-coded Y86-64 implementation takes advantage of the property that 
the subq instruction (line 11) also sets the condition codes, and so the testq 
instruction of the Gee-generated code (line 9) is not required. For this to work, 
though, the Y86-64 code must set the condition codes prior to entering the 
loop with an andq instruction (line 5). 

Figure 4.7 shows an example of a complete program file written in Y86-
64 assembly code. The program contains both data and instructions. Directives 
indicate where to place code or data and how to align it. The program specifies 
issues such as stack placement, data initialization, program initialization, and 
program termination. 

In this program, words beginning with ' . ' are assembler directives telling the 
assembler to adjust the address at which it is generating code or to insert some 
words of data. The directive . pos 0 (line 2) indicates that the assembler should 
begin generating code starting at address o. This is the starting address for all 
Y86-64 programs. The next instruction (line 3) initializes the stack pointer. We 
can see that the label stack is declared at the end of the program (line 40), to 
indicate address Ox200 using a . pos directive (line 39). Our stack will therefore 
start at this address and grow toward lower addresses. We must ensure that the 
stack does not grow so large that it overwrites the code or other program data. 

Lines 8 to 13 of the program declare an array of four words, having the values 

OxOOOdOOOdOOOdOOOd, OxOOcOOOcOOOcOOOcO, 

OxObOOObOOObOOObOO,OxaOOOaOOOaOOOaOOO 

The label arr:ay denotes the start of this array, and is aligned on an 8-byte boundary 
(using the . align directive). Lines 16 to 19 show a "main" procedure that calls 
the function sum on the four-word array and then halts. 

As this example shows, since our only tool for creating Y86-64 code is an 
assembler, the programmer must perform tasks we ordinarily delegate to the 
compiler, linker, and run-time system. Fortunately, we only do this for small 
programs, for which simpl,e mechanisms suffice. 

Figure 4.8 shows the result of assembling the code shown in Figure 4.7 by an 
assembler we call YAS. The assembler output is in ASCII format to make it more 
readable. On lines of the assembly file that contain instructions or data, the object 
code contains an address, followed by the values of between 1 and 10 bytes. 

We have implemented an instruction set simulator we call YIS, the purpose 
of which is to model the execution of a Y86-64 machine-code program without 
attempting to model the behavior of any specific processor implementation. This 
form of simulation is useful for debugging programs before actual hardware is 
available, and for checking the result of either simulating the hardware or running 

'' 



Section 4.1 The Y86-64 Instruction Set Architecture 367 

# Execution begins at address 0 
2 . pos 0 
3 irmovq stack, %rsp # Set up stack pointer 
4 call main # Execute main program 
5 halt # Terminate program 
6 

7 # Array of 4 elements 
8 .align 8 
9 array: 

10 . quad OxOOOdOOOdOOOd 

11 .quad OxOOcOOOcOOOcO 

12 • quad OxObOOObOOObOO 

13 • quad OxaOOOaOOOaOOO 

14 

main: 15 

16 

17 

18 

19 

20 

irmovq array,%rdi 
irmovq $4,%rsi 
call sum # sum(array, 4) 
ret' 

21 # long sum(long *start, long count) 
22 # start in %rdi, count in %rsi 
23 sum: 

loop: 

test: 

irmovq $8,%r8 
irmovq $1,%r9 
xorq %rax,%rax 
andq %rsi,%rsi 
jmp test 

mrmovq (%rdi),%r10 
addq %r10,%rax 
addq %r8,%rdi 
subq %r9,%rsi 

jne loop 
ret 

# Constant 8 
# Constant 1 
# sum= 0 
# Set CC 
# Goto test 

# Get *start 
# Add to sum 

# start++ 
# count--. Set 

# Stop when 0 
# Return 

cc 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

# Stack starts here and grows to lower addresses 
.pos Ox200 

stack: 

Figure 4.7 ,Sample program written in Y86-64 assembly code. The sum function is 
called to compute the sum of a four-element array. 



I 
f 

! J 

~ 

368 Chapter 4 Processor Architecture 

OxOOO: 
OxOOO: 30£40002000000000000 

OxOOa: 803800000000000000 

Ox013: 00 

Ox018: 
Ox018: 
Ox018: OdOOOdOOOdOOOOOO 

Ox020: cOOOcOOOcOOOOOOO 

Ox028: OOObOOObOOObOOOO 

Ox030: OOaOOOaOOOaOOOOO 

Ox038: 
Ox038: 30f71800000000000000 

Ox042: 30f 60400000000000000 

Ox04c: 805600000000000000 

Ox055: 90 

Ox056: 
Ox056: 30f 80800000000000000 

Ox060: 30f90100000000000000 

Ox06a: 6300 
Ox06c: 6266 
Ox06e: 708700000000000000 

Ox077: 
Ox077: 50a70000000000000000 

Ox081: 60a0 
Ox083: 6087 
Ox085: 6196 
Ox087: 
Ox087: 747700000000000000 

Ox090: 90 

Ox200: 

# Execution begins at address 0 

.pos 0 
irmovq stack, %rsp 
call main 
halt 

# Array of 4 elements 
.align 8 

array: 
.quad OxOOOdOOOdOOOd 
.quad OxOOcOOOcOOOcO 
.quad OxObOOObOOObOO 
.quad OxaOOOaOOOaOOO 

main: 
irmovq array,Y.rdi 
irmovq $4,%rsi 
call sum 
ret 

# Set up stack pointer 
# Execute- main prbgram 
# Terminate progrtml 

# sum(array,· 4) 

# long sum(long *•tart, long count) 

# start in %rdi, count ill" %rsi 

sum: 
irmovq $8,%r8 # Constant 8 

irmovq $1,%r9 # Constant 1 

xorq %rax,%rax # sum = 0 

andq %rsi,%rsi # Set CC 

jmp test # Goto test 

loop: 
mrmovq C%l:di),%r10 # Get *Start 

addq %r10,%rax # Add to sum 

addq %rB,%rdi # start++ 

subq %r9,%rsi # count--. Set cc 
test: 

jne loop # Stop when 0 

ret # Return 

# Stack starts here and grows to lower addresses• 

.pos Ox200 
stack: Ox200: 

Figure 4.8 Output of YM assembler. Each line includes a hexadecimal address and between 1 'and 10 bytes 

of object code. 



c 

,, 

Section 4.1 The ¥86-64 Instruction Set Architecture 369 

the program on the hardware itself. Running on our sample object code, Yis 
generates the following output: 

Stopped in 34 steps at PC = Ox13. Status 'HLT', CC Z=l S=O O=O 
Changes to registers: 
%rax: OxOOOOOOOOOOOOOOOO OxOOOOabcdabcdabcd 
%rsp: OxOOOOOOOOOOOOOOOO Ox0000000000000200 
%rdi: OxOOOOOOOOOOOOOOOO Ox0000000000000038 
%r8: OxOOOOOOOOOOOOOOOO Ox0000000000000008 
%r9: OxOOOOOOOOOOOOOOOO Ox0000000000000001 
%r10: OxOOOOOOOOOOOOOOOO OxOOOOaOOOaOOOaOOO 

Changes to memory: 
OxOlfO: OxOOOOOOOOOOOOOOOO Ox0000000000000055 
Ox01f8: OxOOOOOOOOOOOOOOOO Ox0000000000000013 

The first line of the simulation output summarizes the execution and the 
resulting values of the PC and program status. In printing register and memory 
values, it only prints out words that change during simulation, either in registers 
or in memory. The original values (here they are all zero) are shown on the left, 
and the final values are shown on the right. We can see in this output that register 
%rax contains Oxabcdabcdabcdabcd, the sum of the 4-element array pass,ed to 
procedure sum. In addition, we can see that the stack, which starts at address Ox200 
and grows toward lower addresses, has been used, causing changes to words of 
memory at addresses Ox1fO-Ox1f8. The maximum address for executable code is 
Ox090, and so the pushing and popping of values on the stack did not corrupt the 
executable code. 

le!.ifwi~1a~fiil!'i;J:Tsq~~l?.~±~..:.~!!~~;~ 
One common pattern in machine-level programs is to add a constant value to a 
register. With the Y86-64 instructions presented thus far, this requires first using an 
irmovq instruction to set a register to the constant, and then an addq instruction to 
add this value to the destination register. Suppose we want to add a new instruction 
iaddq with the following format: 

Byte O 1 2 3 

iaddq V,rB / c Io/ F Ire/ 
4 5 6 

v 

This instruction adds the constant value V to register rB. 

7 8 9 

Rewrite the Y86-64 sum function of Figure 4.6 to make use of the iaddq 
instruction. In the original version, we dedicated registers %r8 and %r9 to hold 
constant values. Now, we can avoid using those registers altogether, 



370 Chapter 4 Processor Architecture 

Write Y86-64 code to implement a recursive sum function rsum, based on the 
following C code: 

long rsum(long *start, long count) 
{ 

} 

if (count <= 0) 
return O; 

return *Start+ rsum(start+l, count-1); 

Use the same argument passing and register saving conventions as x86-64 code 
does. You might find it helpful to compile the C code on an x86-64 machine and 
then translate the instructions to Y86-64. 

if?ilciRe· •ii'QQre!E'.4.S:!l'w1l\b!llt:ftil~'as~t:':">¥ii:¥,~:~"'f";'~~~-r:J 
Modify the Y86-64 code'for the sum function (Figure 4.6) to implement a function 
abs Sum that computes the sum of apsolute values of an array. Use a conditional 
jump instruction within your inner loop. 

!floe']lfZW'~~iiiii.bilZ'i t:~::.t. s:~~: ::~:::i 
Modify the Y86-64 code for the sum function (Figure 4.6) to implement a fµnction 
absSum that computes the sum of ab~olute values of an array. Use a conditional 
move instruction within your inner loop. 

4.1.6 Some Y86-64 Instruction Details 

Most Y86-64 instructions transform the program state in a straightforward man­
ner, and so defining the intended effect of each .instruction is not difficult. Two 
unusual instruction combinations, however, require special attention. 

The pushq instruction both· decrements the stack pointer by 8 and writes a 
register value to memory. It is therefore not totally clear what the processor should 
do when executing the instruction pushq %rsp, since the register being pushed is 
being changed by the same instruction. 1\vo different conventions are possible: 
(1) push the original value of %rsp, or (2) push the decremented value of %rsp. 

For the Y86-64 processor, let us adopt the same convention as is used with 
x86-64, as determined in the following problem. 

?~. :ii""'~~ii!m'IA'.'r"~®m!!l!Y':;;•,~f'- · , .• , '"<1' ~-·:r*<- 1 •Jf!C: ,e: r ... s~ .. ~-~- .. tl - ' ' ¥I •f $@'' '-~1'£0 't .-;:~ 
Let us determine the behavior of the instruction pushq %rsp for an J\86-6;4 pro· 
cessor. We could try reading the Intel documentation 0.11 this instruction, but a 



Section 4.1 The Y86-64 Instruction Set Architecture 371 

simpler approach is to conduct an experiment on an actual machine. The C com­
piler would not normally generate this instruction, so we must use hand-generated 
assembly code for this task. Here is a test function we have written (Web Aside 
ASM:EASM on page 178 describes how to write programs that combine C code with 
handwritten assembly code): 

.text 
2 .globl pushtest 
l pushtest: 
4 movq %rsp, %rax Copy stack pointer 
5 pushq %rsp Push stack pointer 
6 popq %rdx Pop it back 
7 subq %rdx, %rax Return 0 or 4 
8 ret 

In our experiments, we find that function pushtest always returns 0. What 
does this imply about the behavior of the instruction pushq %rsp under x86-64? 

A similar ambiguity occurs for the instruction popq %rsp. It could either set 
%rsp to the value read from memory or to the incremented stack pointer. As with 
Problem 4.7, let us run an experiment to determine how an x86-64 machine would 
handle this instruction, and then design our Y86-64 machine to follow the same 
convention. 

iera~i!tetr~!c~""'®iiM?i~?~~;!;&~~~~~il 
The following assembly-code function lets us determine the behavior of the in­
struction popq %rsp for x86-64: 

.text 

2 .globl poptest 
l poptest: 
4 movq %rsp, %rdi Save stack pointer 
5 pushq $0xabcd Push test value 
6 popq %rsp Pop to stack pointer 
'7 moVq %rsp, %rax Set popped value as return value 
8 movq %rdi, %rsp Restore stack pointer 
9 ret 

We find this function always returns Oxabcd. What does this imply about the 
behavior of popq %rsp? What other Y86-64 instruction would have the exact same 
behavior? 



I 

I 

l 

I 

372 Chapter 4 Processor Architecture 

:Aside Getting t~e details rigl;l~: lnconsjsten~ies,aq~ps~ x86,models, 

Practice Problems 4. 7 !md, 4.8'ar1l'd~signed td help us devise a consistent set of conventi6ns for instruc­
tions that push orp'oP, the'Stack pointer'.There seems to be little reason why one would wan"t to' perform 
either of these operations, and so·a natural question t,o ask is, "Why worry',about such 'picky-details?" ' 

Several useful lessons can be learned about the importance of consistency from the following 
exeerpt from the Intel documentation of the PUSH instruction [51 ]: 

For IA-32 processors from the Intel 286 on1the PUSH ESP instruction pushes the val\le of the ESP 
register as it existed before the instruction was executed. (This is~alsb true forJ:nteJ 64architecture, 
real-address and viitual-8086 modes of IA-32 a(~hitecture.)-.I;or the I~tei® .~OS6 processor, the 
PUSH SP instruction pushes th&new:valu_e of the SP register (that is the vaj\le,after it has been 
decremented by 2). (PUSH"ESP instruction. InteH:;:orpor~!iqn. 50.) "· 

Although the exact details of this note may be difficult to follow, we•can see that it states that, 
depending on what mo\l,e ~n J\8_6 pr9\'esso,r Plle~~t'\s un~er, if will c;lo di\ferent things'"'.hen)nst,ructed to 
i;ush the stack pointer register. Some modes push f!:e or;gin~! Value, while others push'th,e decreip~ted 
value. (Interestingly, there is no's_q:respqpding alnbig11ity abo\lt pop'pihg to the st?ck poJnter regi~ter.) 
Ther~~are two draw:_backs to this i~consist~ncy: 

• It decreases code pbrtlfbi\jty]fogr_ams li'\a~»~ve,~lff~rep~ behavior,~epend~g onJh'\ proce~_sor 
mode. Althoul;lh \!le particu!ar,instructio,n is not at all coml)lop, eve,n the P.9!entia]Jo( inclJ,l)lNti­
bility can have serious ,cpnsequence's. 

• It complicates the;l:lo~umen\ation.;As we see'here, a special noteis,requirpd to try t0<clarify-the 
differences. The tlbcu!I\entation forx86 is ~lreaay complex enouglf without 'special cases such as 
this one. 

We conclude, therefore, that working out"3etails fn advance anc.f.striving for cqmplete consistency can 
save a lot of trouble in the long, run., 

4.2 Logic Design and the Hardware Control Language HCL 

In hardware design, electronic circuits are used to compute functions on bits and 
to store bits in different kinds of memory elements. Most contemporary circuit 
technology represents different bit values as high or low voltages on signal wires. 
In current technology, logic value 1 is represented by a high voltage of around 1.0 
volt, while logic value 0 is represented by a low yoltage of around 0.0 volts. Three 
major components are required to implement a digital system: combinational logic 
to compute functions on the bits, memory elements to store bits, and clock signals 
to regulate the updating of the memory elements. 

In this section, we provide a brief description of these different component• 
We also introduce HCL (for "hardware control language"), the language that 
we use to describe the control logic of the different processor design& We only 
describe HCL informally here. A complete reference for HCL can be found in 
Web Aside ARCH:HCL on page 472. 



Section 4.2 Logic Design and the Hardware Control Language HCL 373 

A.side Mode(n logic design 

At one time, hardware ~signers created circuit designs by drawing schematic diagramS'Of 16g[c'circuits• • 
(first with paper and pencil, and later'"with'computer graphics:·terminals). Nowadays'.'nlti'sf1:1esjgns1 • 

are expressed'ln a hardware descrfption language (HDL), a textual notation"'lhadooks'siihhal'·t6''a 
programming languo"ge but that is usell !<>.describe h~rdwar~ sJructvr~s rather than program behaviclrs. 
The most commonly used languages are Verilog, having a synt,!!X similar to C, and VHDL, having 
a syntax. similar to the Ada programming language. These: languages were originally designed for 
creating simulation,.moqel;; of d\gitqLc_ircuits. ,In ihe mi.\!-1980s, researchers qev.elpped logic synt/;}esis 
programs \hat c9urn'g~n?rate'e'"fficieHt.circu!l'dJsfgn~:fr,bb:tHDL'l:!e'scrfptiobs.)'here are now a number 
Of CO)llme~cial untn;~si~programs, and this "'as become the d'?minanttechq\9l!e fpr generatipg digit,al 
circl!il'!. TJ;iis sl)if! fioJ11Ji,!l11d-,desipied .cir~U\ts .to ,synth(lsized, ones can be likeI,ied to the shift from 
writing programsin :a'ss~illbly, code to writing them"jii. a h!gh'.J~yel)~n11µage ;mp having a compiler 
generate the machjne coc(e. 

Our HCL,l~ngµage expiesses only.tlie conttpl pbrtlons bf a hardware design, with oniy a limited set 
1 of operations.and,with no modul~rity)~,s we ,will seeJ;liO\,,;ever;th€ control logic)s the most difficult part 

o'fdesigning a-mk~opro0ssor.,We~have ,de!.•eloped iools that can oirectly,transl11te HCL into Verilog, 
an.ct by corp?inipg this C(O\lr -,yith;.Ve,rV.o~· s,ode fo; \Ji.e ba~ic hargw;ir~ unifs:•we can generate HDL 
descriptisn,~,from,.iyh'i,h 1~cm~1 :-yprkii;g n?icror,ro_ses~orsprn, be,syn!hes~~P· By carefully separating 
out, ctesigning, a~n.:d testing,the cpnt~ql~ 1pgi~c1 t?:'e 9°:'" q~~_te,&-.f.O~k}n,.g~.ivi~.f PRrs>cessor with reasonable 
effort. Web Asiqe·ARcll:yL\?G bn'page,467 ~esc.ribe,s hof' w.e,can g'lnerafe Vei;i,log versions of a ¥86-64 
proces~·or. '· ·' :t, "" "' ~., ,.~ " _, • ' i 1 

V ~ ~ M 

Figure 4.9 
Logic gate types. Each 
gate generates output 
equal to some Boolean 
function of its inputs. 

4.2. 1 Logic Gates 

AND 

·~.·.·,. out b-L..W" 
out=a&&b 

DR NOT 

a -{)>o- out 

out= !a 

Logic gates arc the basic computing elements for digital circuits. They generate an 
output equal to some Boolean function of the bit values at their inputs. Figure 4.9 
shows the standard symbols used for Boolean functions AND, OR, and NOT. HC"[., 
expressions are shown below the gates for the operators in C (Section 2.1.8): && 
for AND, I I for OR, and ! for NOT. We use these instead of the bit-level C operators 
&, I, and - , because logic gates operate on single-bit quantities, not entire words. 
Although the figure illustrates only two-input versions of the AND and OR gates, it 
is common to see these being used as n-way operations for n > 2. We still write 
these in HCL using binary operators, though, so the operation of a three-input 
AND gate with inputs a, b, and c is described with the HCL expression a && b && c. 

Logic gates are always active. If some input to a gate changes, then within 
some small amount of time, the output will change accordingly. 



t 
I 

.. 
I 

I 
• 

374 Chapter 4 Processor Architecture 

Figure 4.10 
Combinational circuit to 
test for bit equality. The 
output will equal 1 when 
both inputs are 0 or both 
are 1. 

Bit equal 

eq 

4.2.2 Combinational Circuits and HCL Boolean Expressions 

By assembling a number of logic gates into a network, we can construct computa· 
tional blocks known as combinational circuits. Several restrictions are placed on 
how the networks are constructed: 

• Every logic gate input must be connected to exactly one of the following: 
(1) one of the system inputs (known as a primary input), (2) the output 
connection of some memory element, or (3) the output of some logic gate. 

• The outputs of two or more logic gates cannot be connected together. Oth­
erwise, the two could try to drive the wire toward different voltages, possibly 
causing an invalid voltage or a circuit malfunction. 

• The network must be acyclic. That is, there cannot be a path through a series 
of gates that forms a loop in the network. Such loops can cause ambiguity in 
the function computed by the network. 

Figure 4.10 shows an example of a simple combinational circuit that we will 
find useful. It has two inputs, a and b. It generates a single output eq, such that 
the output will equal 1 if either a and b are both 1 (detected by the upper AND 

gate) or are bothO (detected by the lower AND gate). We write the function of this 
network in HCL as 

bool eq = (a && b) I I (!a && !b); 

This code simply defines the bit-level (denoted by data type bool) signal eq as a 
function of inputs a and b. As this example shows, HCL uses C-style syntax, with 
'=' associating a signal name with an expression. Unlike C, however, we do not 
view this as performing a computation and assigning the result to some memory 
location. Instead, it is simply a way to give a name to an expression. 

~iiii~ifO>Bmif'ailiHiillit1M iilifil!W&:3tGl5i'fd;;~rt·~f2;''. , 
Write an HCL expression for a signal xor, equal to the EXCLUSIVE-OR of inputs a 
and b. What is the relation between the signals xor and eq defined above? 

Figure 4.11 shows another example of a simple but useful combinational 
circuit known as a multiplexor (commonly referred to as a "MUX"). A multiplexor 



Section 4.2 Logic Design and the Hardware Control Language HCL 375 

Figure 4.11 
Single-bit multiplexor 
circuit. The output will 
equal input a if the control 
signal s is 1 and will equal 
input b when s is 0. 

"' b --i'--!----1 / 
out 

selects a value from among a set of different data signals, depending on the value 
of a control input signal. In this single-bit multiplexor, the two data signals are the 
input bits a and b, while the control signal is the input bit s. The output will equal 
a whens is 1, and it will equal b whens is 0. In this circuit, we can see that the two 
AND gates determine whether to pass their respective data inputs to the OR gate. 
The upper AND gate passes signal b whens is 0 (since the other input to the gate 
is ! s), while the lower AND gate passes signal a whens isl. Again, we can write an 
HCL expression for the output signal, using the same operations as are present in 
the combinational circuit: 

bool out= (s && a) II (!s && b); 

Our HCL expressions demonstrate a clear parallel between combinational 
logic circuits and logical expressions in C. They both use Boolean operations to 
compute functions over their inputs. Several differences between these two ways 
of expressing computation are worth noting: 

• Since a combinational circuit consists of a series of logic gates, it has the 
property that the outputs continually respond to changes in the inputs. If 
some input to the circuit changes, then after some delay, the outputs will 
change accordingly. By contrast, a C expression is only evaluated when it is 
encountered during the execution of a program. 

• Logical expressions in Callow arguments to be arbitrary integers, interpreting 
0 as FALSE and anything else as TRUE. In contrast, our logic gates only operate 
over the bit values 0 and l. 

• Logical expressions in C have the property that they might only be partially 
evaluated. If the outcome of an AND or OR operation can be determined by just 
evaluating the first argument, then the second argument will not be evaluated. 
For example, with the C expression 

(a && !a) && func(b,c) 

the function func will not be called, because the expression (a && ! a) evalu­
ates to 0. In contrast, combinational logic does not have any partial evaluation 
rules. The gates simply respond to changing inputs. 



376 Chapter 4 Processor Architecture 

~~ ~ eq53 
Bit ~qua~ <---~ .. , 

!>.,, eq52 

a., 

a, 
bo 

~Bit ·equal ~1---~ 

• 4 
·fi.k, eqo 

•• f?itequal;. 

(a) B't~level implementation 

Eq 
B~ A_LJ···~==B 

J 

(b) Word-level abstraction 

Figure 4.12 Word-level equality test circuit. The output will equal 1 when each bit 
from word A equals its counterpart from word B. Word-level equality is one of the 
operations in HCL. 

4.2.3 Word-Level Combinational Circuits and HCL Integer Expressions 

By assembling larg'ft networks of logic gates, we can construct combinational 
circuits that compute much more complex functions. JYpically, we design circuits 
that operate on data words. These are groups of bit-level signals that represent an 
integer or some control pattern. For example, our processor designs will contain 
numerous words, with word sizes ranging between 4 and 64 bits, representing 
integers, addresses, instruction codes, and register identifiers. 

Combinational circuits that perform word-level computations are constructed 
using logic gates to compute the individual bits of the output word, based on the 
individual bits of the input words. For example, Figure 4.12 shows a combinational 
circuit that tests whether two 64-bit words A and· B are equal. niat'is, the output 
will equal 1 if and only if each bit of A equals the corresponding bit of B. This 
circuit is implemented using 64 of the single-bit equality circuits shown in Figure 
4.10. The outputs of these single-bit circuits are combined with an AND gate to 
form the circuit output.. 

In HCL, we will declare any word-level signal as an int, without specifying 
the word size. This is done for simplicity. In a full-featured hardware description 
language, every word can be declared to have a specific number of bits. HCL allows 
words to be compared for equality, and so the functionality of the circuit shown 
in Figure 4.12 can be expressed at the word level as 

bool Eq =(A== B); 

where arguments A and B are of type int. Note that we use the same syntax 
conventions as in C, where '=' denotes assignment and '==' denotes the equality 
operator. 

' I 

'• 



I 

I 

I 

Section 4.2 Logic Design and the Hardware Control Language HCL 377 

As is shown on the right side of Figure 4.121.we will draw word-level circuits 
using medium-thickness lines to represent the set of wires carrying the individual 
bits of the word, and we .will show a single-bit signal as a dashed line. 

~iq§Jifil>:filQilio1Pfm~i;f~~tZ!1!l~'!~~?l 
Suppose you want to implement a word-level equality circuit using the EXCLUSJVE­

OR circuits from Problem 4.9 rather than from bit-level equality circuits. Design 
such a circuit for a 64-bit word consisting of 64 bit-level EXCLUSIVE-OR circuits and 
two additional logic gates. 

Figure 4.13 shows the circuit for a word-level multiplexor. This circuit gener­
ates a 64-bit word Out equal to one of the two input words, A or B, depending on 
the control input bit s. The circuit consists of 64 identical subcircuits, each hav­
ing a structure similar to the bit-level multiplexor from Figure 4.11. Rather than 
replicating the bit-level multiplexor 64 times, the word-level version reduces the 
number of Inverters by generating ! s once and tensing it at each bit position. 

OU!a3 

s ............ ·········; 

B 

A 

.. , ... ~ ~~,:..,' 

.•. /N:l\)•· 
;-MUX., 
" """.:~~· ,l'). 

·~'·"_'I.'.,,;,. 

int Out = 
s A; 
l : B; 

l ; 

Out 

I bo -r--;-,---1Il-'-' 
Outo 

I 

l·-t:::==::::!~!::_~_:___J I o 

fa) Bit-level implementation (b) Word-level abstraction 

Oigure 4.13 Word-level multiplexor circuit. The output will equal input word A when 
lhe control signal s is 1, and it will equal B otherwise. Multiplexors are described in HCL 
11sing case expressions. 

I 

I 

I 



" ,I 

I 
I 

I 

l 

I 

378 Chapter 4 Processor Architecture 

We will use many forms of multiplexors in our processor designs. They allow 
us to select a word from a number of sources depending on some control condi­
tion. Multiplexing functions are described in HCL using case expressions. A case 
expression has the following general form: 

select1 expr1 ; 

select2 expr2 j 

selectk exprk; 
] 

The expression contains a series of cases, where each case i consists of a Boolean 
expression select;, indicating when this case should be selected, and an integer 
expression expr;, indicating tJ;ie.resulting value. 

lJnlike the switch statement of C, we do not require the different selection 
expressions to be mutually exclu~ive. Logically, the selection expressions are eval­
uated in sequence, and the case for the first one yielding 1 is selected. For example, 
the word-level multiplexor of Figure 4.13 can be described in HCL as 

word Out = [ 

s: A; 
1: B; 

] ; 

In this code, the second selection expression is simply 1, indicating that this 
case should be selected if no prior one has been. This is the way to specify a default 
case in HCL. Nearly all case expressions end in this manner. 

Allowing nonexclusive selection expressions makes the HCL code more read­
able. An actual hardware multiplexor must have mutually exclusive signals con­
trolling which input word should be passed to the output, such as the signals s and 
! sin Figure 4.13. To translate an HCL case expression into hardware, a logic syn­
thesis program would need to analyze the set of selection expressions and resolve 
any possible conflicts by making sure that only the first matching case would be 
selected. 

The selection expressions can be arbitrary Boolean expressions, and there can 
be an arbitrary number of cases. This allows case expressions to describe blocks 
where there are many choices of input signals with complex selection criteria. For 
example, consider the diagram of a 4-way multiplexor shown in Figure 4.14. This 
circuit selects from among the four input words A, B, C, and D based on the control 
signals sl and sO, treating the controls as a 2-bit binary number. We can express 
this in HCL using Boolean expressions to describe the different combinations of 
control bit patterns: 

word Out4 = [ 
!sl k& !sO Ai # 00 



Section 4.2 Logic Design and the Hardware Control Language HCL 379 

Figure 4.14 
Four-way multiplexor. 
The different combinations 
of control signals sl and 
sO determine which data 
input is transmitted to the 
output. 

s1 ............................. ! 
so ........................ ! ~ 

D 
c 
B 
A 

!s1 
!sO 
1 

B; # 01 
C; # 10 
D'f # 11 

]; 

Out4 

The comments on the right (any text starting with# and rnnning for the rest of 
the line is a comment) show which combination of sl and sO will cause the case to 
be selected. Observe that the selection expressions can sometimes be simplified, 
since only the first matching case is selected. For example, the second expression 
can be' written ! sl, rather than the more complete ! sl && sO, since the only other 
possibility having sl equal to 0 was given as the first selection expression. Similarly, 
the' third expression can be written as ! sO, while the fourth can simply be written 
as 1. 

As a fihal example, suppose we want to design a logic circuit that finds the 
minimum 'value among a set of words A, B, and C, diagrammed as follows: 

~<Ii ~fr~;: c 
'iliti~~~ B Min3 

A ~""; . z.~ 
""" 

We can expr~ss this using an HCL case expression as 

word Min3 = [ 

A<=B&&A<=C 
B<=A&&B<=C 
1 

l ; 

A· 
' B· ' 

C· ' 

!Praa~;:6Pi!mfttil·t'i£91idf!a5!6~·~fil;;J:&.,";¥~~f:.:..;;~~T~ 
The HCL code given for computing the minimum of three words contains four 
comparison expressions of the form X <= Y. Rewrite the code to compute the 
same result, but using only three comparisons. 



l 

I 
' 

380 Chapter 4 Processor Architecture 

0 2 3 

yjj}_.·. 
;. X +Y 

. u· 
X B • 

Y--.~ . t.. X&Y 
u• 

X-+B";, 

X-Y x-v 

Figure 4.15 Arithmetic/logic unit (ALU). Depending on the setting of the function 
input, the circuit will perform one of four different arithmetic and logical operations. 

'''~i'l'!:"'"-'>";'11'"l""""-·~ ... _ .. ~--~~·-·-,..,w,,.,....,.,.....-~,.,, """"""'''t:: < 
~fssJ>e .. Prom~m~~.12~cs!!l!!l•qi'J'J>'!'!te·41!4> oivw,,, -~ ""'"'*"" ": :,.:>.~ '$ 
Write HCL code describing a circuit that for word inputs A, B, and C selects the 
median of the three values. That is, the output equals the word lying between the 
minimum and maximum of the three inputs. 

Combinational logic circuits can be designed to perform many different types 
of operations on word-level data. The detailed design of these is beyond the 
scope of our presentation. One important comb4'-ational circuit, kno"'.n as an 
arithmetidlogic unit (ALU), is diagrammed at an abstract level in Figure 4.15. 
In our version, the circuit has three inputs: two data inputs labeled A and B ~nd 
a control input. Depending on the setting of the control input, the circuit will 
perform different arithn)etic or logical operations op the data inputs. Observe 
that the four operations diagrammed ,for this ALU correspond to the four different 
integer operations supported by the Y86-64 instruction set, and the control values 
match the function codes for these instructions (Figure 4.3). Note also the ordering 
of operands for subtraction, where the A input is subtracted from the B input. 
This ordering is chosen in anticipation of the ordering of arguments in the subq 
instruction. 

4.2.4 Set Membership 

In our processor designs, we will find many examples where we want to compare 
one signal against a number of possible matching signals, such as to test whether 
the code for some instruction being processed matches some category of instruc­
tion codes. As a· simple example, suppose we want to generate the signals sl and 
sO for the 4-way multiplexor of Figure 4.14 by selecting the high- and'low-order 
bits from a 2-bit signal code, as follows: 

-B
s1 

.,,,,,,-.............. ? 

code so j .................... 1 l 

D 
c 
B 

. ~"' 1: 
..... rl'¥:,· 

MUX4-' 
• • 

Out4 



Section 4.2 Logic Design and the Hardware Control Language HCL 381 

In this circuit, the 2-bit signal code would then control the selection among the 
four data words A, B, C, and D. We can express the generation of signals sl and sO 
using equality tests based on the possible values of code: 

bool s1 code 
bool sO code 

2 11 code 
1 11 code 

3· , 
3; 

A more concise expression can be written that expresses the property that sl 
is 1 when code is in the set {2, 3), ani:l sO is 1 when code is in the set {l, 3): 

bool s1 
bool sO 

code in { 2, 3 }; 
code in { 1, 3 }; 

The general form of a set membership test is 

iexpr in {iexpr1, iexprz, ... , iexprk} 

where the v~lue being tested (iexpr) and the candidate matches (iexpr1 through 
iexprk) are all integer expressions. 

4.2.5 Memory and Clocking 

Combinational circuits, by their very nature, do not store any information. Instead, 
they simply react to the signals at their inputs, generating outputs equal to some 
function of the inputs. To create sequential circuits-that is, systems that have state 
and perf9rm computations on that state-we must introduce devices that store 
information represented as bits. -Our storage devic~s are all controlled by a single 
clock, a periodic signal that determines wlien new values are to be loaded into the 
devices. We consider two classes of memory devices: 

Clocked registers (or simply registers) store individual bits or words. The clock 
signal controls the loading of the register with the value at its input. 

Random access memories (or simply memories) store multiple words, using 
an address to select which word should be read or written. Examples 
of random access memories include (1) the virtual memory system of 
a processor, where a combination of hardware and operating system 
software make it appear to a processor that it can access any word within 
a large address space; and (2) the register file, where register identifiers 
serve as the addresses. In a Y86-64 processor, the register file holds the 
15 program registers (%rax through %r14) ... 

As we can see, the word "register" means two slightly different things when 
speaking of hardware versus machine-language programming. In hardware, a 
register is directly connected to the rest of the circuit by its input and output 
wires. In machine-level programming, "the registers represent a small collection 
of addressable words in' the °CPV, where the addresses consist of register IDs. 
These words are generally stored in the register file, although we will see that the 
hardware can sometimes pass a word directly from one instruction to another to 



11. 

"' 

I 
' I 

382 Chapter 4 Processor Architecture 

State= x 

Input= y Output= x 
Rising 
clock 

State= y f ! 

Figure 4.16 Register operation. The register.o~tputs remain held at the current register 
state until the clock signal rises. When the clock rises, the values at the register inputs are 

captured to become the new register state. 

avoid the delay of first writing and then reading the register file. When necessary 
to avoid ambiguity, we will call the two classes of registers "hardware registt;rs" 

and "program registers," respectively. 
Figure 4.16 gives a more detailed view of a hardware register and how it 

operates. For most of the time, the register remains ill a fixed state (shown as , ~ ,1,... , 

x), generating an output equal to its current state. Signals propagatlithrough the 
combinational logic preceding the register, creating a new value for the register 
input (shown as y), but the register output remains fixed as long as the'clock is low. 
As the clock rises, the input signals are loaded into the register as its next state 
(y), an'd this becomes the new register output until t?« next'rising clock edge. A 
key point is that the registers serve as barriers between the combinational logic 
in different parts of the circuit. Values only propagate from a register input to its 
output once every clock cycle at the rising clock edge. Our Y86-64 processors will 
u~e clocked registers to hold the program counter (PC), the condition codes (CC), 

ahd the program status (Stat). ' · " 
The following diagram shows a typical register file: 

valA -
Read ports 

Write port 

valB -
clock 

This register file has two read ports, named A and B, and one wtite port, named 
W. Such a multiported random access memory allows multiple read and write 
operations to take place simultaneously. In the register file diagranuued, the circuit 
can read the values of two program registers arid update th<; state of a third. Each 
port has an address input

1 
inllicating which program register should be selected, . 

and a data output or input giving a valu~ for that prograip register. The addresses 
are register identifiers, using'the encoding shown in Figure' 4.4. The two read ports 
have address inputs srcA and 'Src:i~· (short for "source' A'' and "source B") and data . , 



Section 4.2 Logic Design and the Hardware Control Language HCL 383 

outputs valA and valB (short for "value A" and "value B"). The write port has 
address input dstW (short for "destination W") and data input valW (short for 
"value W"). 

The register file is not a combinational circuit, since it has internal storage. In 
our implementation, however, data can be read from the register file as if it were 
a block of combinational logic having addresses as inputs and the data as outputs. 
When either srcA or srcB is set to some register ID, then, after some delay, the 
value stored in the corresponding program register will appear on either valA or 
valB. For example, setting srcA to 3 will cause the value of program register %rbx 
to be read, and this value will appear on output valA. 

The writing of words to the register file is controlled by the clock signal in 
a manner similar to the loading of values into a clocked register. Every time the 
clock rises, the value on input valW is written to the program register indicated by 
the register ID on input dstW: When dstW is set to the special ID value OxF, no 
program register is written. Since the register file can be both read and written, 
a natural question to ask is, "What happens if the circuit attempts to read and 
write the same register simultaneously?" The answer is straightforward: if the 
same register ID is used for both a read port and the write port, then, as the clock 
rises, there will be a transition on the read port's data output from the old value to 
the new. When we incorporate the register file into our processor design, we will 
make sure that we take this property into consideration. 

Our processor has a random access memory for storing program data, as 
illustrated below: 

data out 
error~····· ....... 1~ 1 
read ......... . 

write··-....... 

t t 
address data in 

This memory has a single address input, a data input for writing, and a data output 
for reading. Like the register file, reading from our memory operates in a manner 
similar to combinational logic: If we provide an address on the address input and 
set the write control signal to 0, then after some delay, the value stored at that 
address will appear on data out. The error signal will be set to 1 if the address 
is out of range, and to 0 otherwise. Writing to the memory is controlled by the 
clock: We set address to the desired address, data in to the desired value, and 
write to 1. When we then operate the clock, the specified location in the memory 
will be updated, as long as the address is valid. As with the read operation, the 
error signal will be set to 1 if the address is invalid. This signal is generated by 
combinational logic, since the required bounds checking is purely a function of 
the address input and does not involve saving any state. 



I 
I~ 

·1 
' 
" 

r 
·I 

I 
\, 

" 

384 Chapter 4 Processor Architecture 

" ' .Aside Rea.I-life IJ1e(rlory de,sign 

The memory system fa a full-scale microprocessor is far more cmbplex than the simple bne we assume 
in our design. It cohsists Of se\reral forins of hardWare memories, including 'sever\ii ,random access 
memories, plus nonvolatile memory or maghe,tic 'disk, as well as a variet}' of hardwa~e 'anlf'j;Oftwaf& 
mechanisms for maliaging these· devices. The design and cnaracteristics M the memory sysi:em·ar.i 
described in Chapter'6. ., ' " "' I 

Nonetheless, our'simple mem6ry"design;:an be used for smaller sysieins, anc!irproviaes us' with 
an abstraction of the interface betwe~n the'proc'essor. and memory fqf ili?re complex sys fems. 

Our processor includes an additional read-only memory for reading instruc­
tions. In most actual systems, these memories are merged into a single memory 
with two ports: one for reading instructions, and the other for reading or writ­
ing data. 

4.3 Sequential Y86-64 Implementations 

Now we have the components required to implement a Y86-64 processor. As a first 
step, we describe a processor called SEQ (for "sequential" processor). On each 
clock cycle, SEQ performs all the steps required to process a complete instruction. 
This would require a very long cycle time, however, and so the clock rate would be 
unacceptably low. Our purpose in developing SEQ is to provide a first step toward 
our ultimate goal of implementing an efficient pipelined processor. 

4.3.1 Organizing Processing into Stages 

In general, processing an instruction involves a number of operations. We organize 
them in a particular sequence of stages, attempting to make all instructions follow 
a uniform sequence, even though the instructions differ greatly in their actions. 
The detailed processing at each step depends on the particular instruction being 
executed. Creating this framework will allow us to design a processor that makes 
best use of the hardware. The following is an informal description of the stages 
and the operations performed within them: 

Fetch. The fetch stage reads the bytes of an instruction from memory, using 
the program counter (PC) as the memory address. From the instruction 
it extracts the two 4-bit portions of the instruction specifier byte, referred 
to as icode (the instruction code) and ifun (the.instruction function). It 
possibly fetches a register specifier byte, giving one or both of the register 
operand specifiers rA and rB. It also possibly fetches an 8-byte constant 
word vale It computes valP to be the address of the instruction following 
the current one in sequential order. That is, valP equals the value of the 
PC plus the length of the fetched instruction. 



Section 4.3 Sequential Y86-64 Implementations 385 

Decode. The decode stage reads up to two operands from the register file, giving 
values valA and/or valB. 'I}'pically, it reads the registers designated by 
instruction fields rA and rB, but for some instructions it reads register %rsp. 

Execute. In the execute stage, the arithmetic/logic unit (ALU) either performs 
the operation specified by the instruction (according to the value of ifun), 
computes the effective address of a memory reference, or increments or 
decrements the stack pointer. We refer to the resulting value as valE. The 
condition codes are possibly set. For a conditional move instruction, the 
stage will evaluate the condition codes and move condition (given by ifun) 
and enable the updating of the destination register only if the condition 
holds. Similarly, for a jump instruction, it determines whether or not the 
branch should be taken. 

Memory. The memory stage may write data to memory, or it may read data 
from memory. We refer to the value read as valM. 

Write back. The write-back stage writes up to two results to the register file. 

PC update. The PC is set to the address of the next instruction. 

The processor loops indefinitely, performing these stages. In our simplified im­
plementation, the processor will stop when any exception occurs-that is, when it 
executes a halt or invalid instruction, or it attempts to read or write an invalid ad­
dress. In a more complete design, the processor would enter an exception-handling 
mode and begin executing special code determined by the type of exception. 

As can be seen by the preceding description, there is a surprising amount of 
processing required to execute a single instruction. Not only must we perform 
the stated operation of the instruction, we must also compute addresses, update 
stack pointers, and determine the next instruction address. Fortunately, the overall 
flow can be similar for every instruction. Using a very simple and uniform struc­
ture is important when designing hardware, since we want to minimize the total 
amount of hardware and we must ultimately map it onto the two-dimensional 
surface of an integrated-circuit chip. One way to minimize the complexity is to 
have the different instructions share as much of the hardware as possible. For 
example, each of our processor designs contains a single arithmetic/logic unit 
that is used in different ways depending on the. type of instruction being exe­
cuted. The cost of duplicating blocks of logic in hardware is much higher than 
the cost of having multiple copies of code in software. It is also more difficult to 
deal with many special cases and idiosyncrasies in a hardware system than with 
software. 

Our challenge is to arrange the computing required for each of the different 
instructions to fit within this general framework. We will use the code shown in 
Figure 4.17 to illustrate the processing of different Y86-64 instructions. Figures 
4.18 through 4.21 contain tables describing bow the different Y86-64 instructions 
proceed through the stages. It is worth the effort to study these tables carefully. 
They are in a form that enables a straightforward mapping into the hardware. 
Each line in these tables describes an assignment to some signal or stored state 



• 
l 
I 

.l 
I 

·I 

., 

386 Chapter 4 Processor Architecture 

OxOOO: 30f 20900000000000000 
2 OxOOa: 30f31500000000000000 
3 Ox014: 6123 
4 Ox016: 30f48000000000000000 
s Ox020: 40436400000000000000 
6 Ox02a: a02f 
7 Ox02c: bOOf 
8 Ox02e: 734000000000000000 
9 Ox037: 804100000000000000 

10 Ox040: 
11 Ox040: 00 
12 Ox041: 
13 Ox041: 90 
14 

irmovq $9, %rdx 
irmovq $21, %rbx 
subq %rdx, %rbx 
irmovq $128,%rsp 
rmmovq %rsp, 100(%rbx) 
pusbq %rdx 
popq %rax 
je done 
call proc 

done: 
halt 

proc: 
ret 

# subtract 
# Problem '4 .13 
# store 
# push 
# Problem 4 .14 

0

# Not taken 
# Problem 4.18 

# Return 

Figure 4.17 Sample Y86-64 instruction sequence. We will trace the processing of these instructions through 
the different stages. 

(indicated by the assignment operation'<-'). These should be read as if they were 
evaluated in sequence from top to bottom. When we later map the computations 
to hardware; we will find that we do· not need to perform these evaluations in strict 
sequential order. 

Figure 4.18 shows the processing required for instruction types OPq (integer 
and logical operations), rrmovq (register-register move), and irmovq (immediate­
register move). Let us first consider the integer operations. Examining Figure 4.2, 
we can see that we have carefully chosen an encoding of instructions so that the 
four integer operations ( addq, subq, andq, and xorq) all have the same value of 
icode. We can handle them all by an identical sequence of steps, except that the 
ALU computation must be set according to the. particular instruction operation, 
encoded in ifun. 

The processing of an integer-operation instruction follows the general pattern 
listed above. In the fetch stage, we do not require a constant word, and so va!P 
is computed as PC + 2. During the decode stage, we read both operands. These 
are supplied to the ALU in the execute stage, along with the function specifier 
ifun, so that va!E becomes the instruction result. This computation is shown as the 
expression va!B OP va!A, where OP indicates the operation specified by ifun. Note 
the ordering of the two arguments-this order is consistent with the conventions 
of Y86-64 (and x86-64). For example, the instruction subq %rax, %rdx is supposed 
to compute the value R[%rdx] - R[%rax]. Nothing happens in the memory stage 
for these instructions, but va!E is written to register rB in the write-back stage, and 
the PC is set to vaf P to complete the instruction execution. 

Executing an rrmovq instruction proceeds much like an arithmetic operation. 
We do not need to fetch t,he second register o~rand, however. Instead, we set the 
second ALU input to zero and add this to the first, giving va!E = va!A, which is . 



Stage 

Fetch 

Decode 

Execute 

Memory 

Write back 

PC update 

OPq rA, rB 

icode: ifun +- M1[PC] 
rA:rB +- M1(PC + 1] 

valP +- PC+2 

valA +- R(rA] 
valB +- R(rBJ 

valE +- valB OPvalA 
Set CC 

R(rBJ +- valE 

PC +- valP 

Section 4.3 Sequential Y86-64 Implementations 387 

rrmovq rA, rB 

icode:ifun +- M1[PC] 
rA:rB +- M1(PC+l] 

valP +- PC,+ 2 

valA +- R(rA] 

valE +- 0 + valA 

R(rB] +- valE 

PC +- valP 

irm,ovq V, \B 

icode: ifun +- M1[PC] 
rA: rB +- M1(PC + 1) 

' vale +- M8(PC + 2] 
valP +- ,PC + 10 

valE +- O +vale 

R[rB] +- valE 

PC +- valP 

Figure 4.18 Computations in sequential implementation of Y86-64 instructions OPq, rrmovq, and 
irmovq. These instructions compute a value and store the result in a register. The notation icode : ifun 
indicates the two components of the instruction byte, while rA: rB indicates the "two components of the 
register specifier byte. The notation M1[x] indicates accessing (either reading or writing) 1 byte at memory 
location x, while M8[x] indicates accessing 8 bytes. 

then written to the register file. Similar processing occurs for irmovq, except that 
we use constant value vale for the first ALU input. In addition, we must increment 
the program counter by 10 for irmovq due to the long instruction format. Neither 
of these instructions changes the condition codes. 

urut~fiC'e!JJlo1?1~®~21m;CiB~l!:1:Dl1!'faf.i'te~~~n 
Fill in the right-hand column of the following table to describe the processing of 
the irmovq instruction on line 4 of the object code in Figure 4.17: 

Stage 
Generic 
irmovq V, rB 

Fetch icode: ifun +- M1[PC] 
rA:rB +- M1(PC + 1] 
vale +- M8[PC + 2] 
valP +- PC+ JO 

Decode 

Execute valE +- o.+ vale 

Specific 
irmovq $128, %rsp 



' 
' ; 

388 Chapter 4 Processor Architecture 

Aside :.rracing'the .execution of a subq insfructiqn· ·' 
'" .~ ' .,.. 

As an-'exampie, le~ us follOW the proCe~siiig of the~subq inStructi!on on line 3 of the ~f,j~ct cdde shoWn 
in J;igur~f\.17,,Wr; cims~e that the previous two instructio'!-s initialize registers %rd\<, afi'ci ~r.)lx to 9 and 
21, respectively: We can also see that the mstructiori fs located at address Ox0.14 and consists of 2 bytes, 
having.values Ox61 and Ox23. The stages would proceed as shown in the follo:.Ving table, which lists the 
,generic rule fo~processing an OPq instruction(Figure 4.l8) on the left, ~jlc\,the computations for this 

.,specifi\: instruction on the right. '1e ~ ~ ' ' 

Stage 

Fetc~ 

Decode 

Execute. 

DPq rA, rB ' 
I ) • 

icode: ifun <-- M1[PC] 
rA:rB +- M1[PC+l] 

valP +- PC+2 

valA, ~ 'RlrAJ. 
valB +- R[rB] 

valE ;-; yalB. OP valA 

.set, gs;, 

SU1$q %rdX, %rbx 
" •. ., ~ • , ~ '''.f • 
icode: ifun +- M1[0x014] = 6: 1 
rA: rB +- M1[0x01p]: 2: 3 ,, 
valP +- Ox014•+ 2 = Ox016 

' 
yaJA +- R[%rdx] = 9 
valB +- R[%rbx] =21 

valE +- 21 - 9., 12 
ZF +- 0, SF +- Q1Df. <- 0, 

., 
A ,,_~ 

,Mem,o)"Y,., . ·c· 

Write back 

PC update 

valE 

PC +- vqlP 

R[%rbx] +-. ,vaIE = 12 

PC +- valP = Ox016 

As t\Jis trace shows, we achieve the desired effect of setting register %rbx'to 12, sbttin'g·hll-three 

condition codes to'zero,'.andfacremehting the PC by 2. ' • 
,., 1:- "'"'" M ~-

Stage 

Memory 

Write back 

PC update 

Generic 
irmovq V, rB 

R[rB] +- valE 

PC +- valP 

Specific 
irmovq $128, %rsp 

How does this instruction execution modify the registers and the PC? 

Figure 4.19 shows the processing required for the memory write and read in· 
structions rmmovq and mrmovq. We see the same basic flow as before, but using the 
ALU to add valC to valB, giving the effective address (the sum of the displacement 
and the base register value) for the memory operation. In the memory stage, we 
either write the register value valA to memory or read valM from memory. 



Stage rmmovq rA, D(rB) 

Fetch icode: ifun +- M1[PC] 
rA:rB +- M1[PC+l] 
vale +- M8[PC+ 2] 
valP +- PC+ 10 

Decode valA +- R[rA] 
valB +- R[rB] 

Execute valE +- valB +vale 

Memory M8[va1EJ +- valA 

Write back 

PC update PC +- valP 

Section 4.3 Sequential ¥86-64 Implementations 389 

mrmovq D (rB), rA 

icode:ifun +- M1[PC] 
rA:rB +- M1[PC+ 1] 
vale +- M8[PC + 2] 
valP +- PC+ 10 

valB +- R[rB] 

valE +- valB +vale 

valM +- M8[valE] 

R[rA] +- valM 

PC +- valP 

Figure 4.19 Computations in sequential implementation of Y86-64 instructions 
rmmovq and mrmovq. These instructions read or write memory. 

Figure 4.20 shows the steps required to process pushq and popq instructions. 
These are among the most difficult Y86-64 instructions to implement, because 
they involve both accessing memory and incrementing or decrementing the stack 
pointer. Although the two instructions have similar flows, they have important 
differences. · 

The pushq instruction starts much like our previous instructions, but in the 
decode stage we use %rsp as the identifier for the second register operand, giving 
the stack pointer as value valB. In the execute stage, we use the ALU to decrement 
the stack pointer by 8. This decremented value is used for the memory write 
address and is also stored back to %rsp in the write-back stage. By using valE 
as the address for the write operation, we adhere to the Y86-64 (and x86-64) 
convention that pushq should decrement the stack pointer before writing, even 
though the actual updating of the stack pointer does not occur until after the 
memory operation has completed. 

The popq instruction proceeds much like pushq, except that we read two 
copies of the stack pointer in the decode stage. This is clearly redundant, but we 
will see that having the stack pointer as both valA and valB makes the subsequent 
flow more similar to that of other instructions, enhancing the overall uniformity 
of the design. We use the ALU to increment the stack pointer by 8 in the execute 
stage, but use the unincremented v~lue as the address for the memory operation. 
In the write-back stage, we update both the stack pointer register with the incre­
mented stack pointer and register rA with the value read from memory. Using the 
unincremented stack pointer as the memory read address preserves the Y86-64 



I 
;r 

I 
I 

390 Chapter 4 Processor Architecture ·-
Aside Tracing'the el$ecution of an ~mmov"q'insfruction ' I 
!'eel us trace the processing of the rmmovq in~t+uction on lille•S of the object code show;Np. Fignre 4.17. , 
We can see that the previous instructi.on i!J.itiahzed register %rsp to 128, whjle %rbl(still holds 12, as l 
computed by the subq instruction (line 3). We can also see that the instruction is located at address I 

Ox020 and consists•of.10 bytes. The' first 2.J;>xtes',have va!nes Ox40 and Ox43,'while the final 8 byte~ are 
a byte;rev.ersed version of the nnmber Ox0000000000000064 (decimal 100)'. The stages "'.ould·pro£eed 

1 

as follows: ! , " ' ':\ 

Generic Specific 

Stage 

Fetch 

Decode 

Execute' 

Write bacl.< 

rmmovqJA, Q(rB) rmmovq %rsp, 100(%rbx) 

icode:ifun <- M 1[PC] icode:ifun <-,M1[0x020]=4:0 
rA:rB <- M

1
[PC+l] rA:rB <- M1[0x021]=4:3 

valC <- M
8
[PC + 2] valC <- tV1s[Ox022] = 100. 

valP <- px020 t 10 ='0x'02a valP <- PC+ 10 

valA r R[rA] 
val~ <- R[rB] 

valE <- ,valB f v~IC 
M8[va1E] <- valA 

PC ""- valP 

valA <-- R[%rsp J = 128 
va[B, <- R[%rbx] = 12 

valE <- 1.f..<\·.,100 = 112. 

M8[112J <- 128 

PCt ':.r Ox02a 

I 

I 

PC update 

As this trace sh9\vs, !he instruction has the .effect of 'writing .128' to ·+oemgrr address;,~12 ·and ' 

incrementing the PC by 10: ' • ' 

(and x86-64) convention that popq should first read memory and then increment 

the stack pointer. 

r;;~~·%:·~~m.;l!fffi!~1Tffor·1o~:p~,.,~~,~rll~ ~~f$:w77~·-::~~:~r~;: ::~ u:.uJ~A.19 . ut n ag M§)~~..: ,~ iM'"-:l!w-(lffe "'tiffl.re,. "" . - ~ 

Fill in the right-hand column of the following table to describe the processing of 
the popq instruction on line 7 of the object code in Figure 4.17. 

Stage 

Fetch 

Generic 
popq rA 

icode: ifun <- M1[PC] 
rA:rB <- M1[PC+l] 

valP <- PC+2 

Specific 
popq %rax 



Stage pushq rA 

Fetch icode: ifun +- M1[PC] 
rA:rB +- M1[PC+l] 

valP +- PC+2 

Decode valA +- R[rA] 
valB +- R[%rsp] 

Execute valE +- valB + (-8) 

Memory M8[va1E] +- valA 

Write back R[%rsp] +- valE 

PC update PC +- valP 

Section 4.3 Sequential Y86-64 Implementations 391 

popq rA 

icode:ifun +- M1[PC] 
rA:rB +- M1[PC+l] 

valP +- PC+2 

valA +- R[%rsp] 
valB +- R[%rsp] 

valE +- valB + 8 

valM +- M8[va1A] 

R[%rsp] +- valE 
R[rA] +- valM 

PC +- valP 

Figure 4.20 Computations in sequential implementation of Y86-64 instructions 
pushq and popq. These instructions push and pop the stack. 

Generic Specific 
Stage popq rA popq %rax 

Decode val A +- R[%rsp] 
valB +- R[%rsp] 

Execute valE +- valB+ 8 

Memory valM +- M8[valA] 

Write back R[%rsp] +- va IE 
R[rA] +- valM 

PC update PC +- valP 

What effect does this instruction execution have on the registers and the PC? 

rnr=~lUiiiiP . - .. , =·-·-;'!I"-.~ ... --~···=··-~ .. · rQC:~P,LO,'. e >14!1-Slm!!!nio'n'i)acje~~.l''~-~::'~:!:'.~1~~!'.:e!!:~..:l. 
What would be the·effect of the insiructiqn pushq %rsp according to the steps 
listed in Figure 4.20? Does this conform to the desired behavior for Y86-64, as 
determined in Problem 4.7? 



I 
·J 

I 

392 Chapter 4 Processor Architecture 

Aside Tracing the execution of a pushq instruction 

Let us trace the processing of the pushq instrucifon on line 6 of the·object code sho\Vn iu Figure 4'.17. 
1 

f ~ ~ ~ < 

At this point,""we have 9 in register %rdx and 128 in registef%rsp."We can al~O see that the instruction is 
located al address Ox02a and consists of 2 bytes having values OxaO and Ox2f. The stages would proceed ' 

as follows< 

Stage 

,Fetch 

Decode 

ExecuJe 

Memory' 

Write back 

PC update 

Generic 
pusl!q rA 

ico'de:ifun <- M1[PC] 
rA:rB +- Mi(Pc'+ 1] 

valP .<- PC+ 2 

valA <- R[rA] 
valB <- R[%rspJ 

valE +- valB + (-8) 

M8[~a1E] ,,.._. ,va\A 

,.ll ~ ·' 
R[%rsp J +- valE 

PC <- valP 

Specific 
Pushq %Z.dx 

~' 

icode:ifun <- M1[oxo2a]=i':o 
rA: fB. kc M1[0x02bj = 2: f 

valP <- Ox02a + 2 = Ox02c 

valA <- Rl%rdxJ= 9 
\-alB +- R[%rsp] = 128 

valE <- 128 + (-8), ='120 

lylg[120] ~ 'g 

R[%rsp] ;_ 120 

PC ~ ,Ox02c 

As this trace shows, the instruction has the effect of.setting %:i;sp to 120, writing ? Jo adpress 120, 

and incrementing the PC by 2. 

:Ei~~~i'JJ2~J1Jhi".i,JJ;-~\Tfu'.1?~9iA-~"::::~:: ;:-::-.;:::J 
Assume the two register writes in the write-back stage for popq occur in the order 
listed in Figure 4.20. What would be the effect of executing popq %rsp? Does this 
conform to the desired behavior for Y86-64, as determined in Problem 4.8? 

Figure 4.21 indicates the processing of our three control transfer instructions: 
the different jumps, call, and ret. We see that we can implement these instruc­
tions with the same overall flow as the preceding ones. 

As with integer operations, we can process all of the jumps in a uniform 
manner, since they differ only when determining whether or not to take the 
branch. A jump instruction proceeds through fetch and decode much like 
the previous instructions, except that it does not require a register specifier byte. 
In the execute stage, we check the condition codes and the jump condition to de­
termine whether or not to take the branch, yielding a 1-bit signal Cnd. During the 
PC update stage, we test this flag and set the PC to va\C (the jump target) if the 
flag is 1 and to valP (the address of the following instruction) if the flag is 0. Our 
notation x ? a : b is similar to the conditional expression iu C-it yields a when x 

is 1 and b when x is 0. 



Stage 

Fetch 

Decode 

Execute 

Memory 

Write back 

PC update 

jXX Dest 

icode: ifun +-- M1[PC] 

vale +- M8[PC + 1] 

valP <-- PC+9 

Cnd +- Cond(CC, ifun) 

PC +-- Cnd ? vale : valP 

Section 4.3 Sequential Y86-64 Implementations 393 

call Dest 

icode: ifun +- M1[PC] 

vale +-- M8[PC + 1] 

valP <-- PC+ 9 

valB <-- R[%rsp] 

valE +- valB + (-8) 

M8[va1E] <-- valP 

R[%rsp] +- valE 

PC +- vale 

ret 

icode: ifun +-- M1[PC] 

valP <-- PC+l 

valA +- R[%rsp] 
valB +- R[%rsp] 

valE +-- valB + 8 

valM +- M8[va1A] 

R[%rsp] +- valE 

PC +- valM 

Figure 4.21 Computations in sequential implementation of Y86-64 instructions jXX, call, and iet. 
These instructions cause control transfers. 

~· ~'jll:-:r]='7-r1:·'1''"} ··~·-.::;.·, ·>: .-_::;;;;~ -~-"-'-' • ' '-l"!Mi.-~''" u • 4'W·' •?"•'' tr.r.eWCelrr;oD t!!U:!!~~~~ ..Wile u;· i° K~we;J 
We can see by the instruction encodings (Figures 4.2 and 4.3) that the rrmovq 
instruction is the unconditional version of a more general class of instructions 
that include the conditional moves. Show how you would modify the steps for the 
rrmovq instruction below to also handle the six conditional move instructions. 
You may find it useful to see how the implementation of the jXX instructions 
(Figure 4.21) handles conditional behavior. 

Stage cmovXX rA, rB 

Fetch icode: ifun +- M1[PC] 
rA :rB <-- M1[PC + 1] 

valP <-- PC+2 

Decode valA +- R[rA] 

Execute valE <-- 0 + valA 

Memory 

Write back 
R[rB] <-- valE 

PC update PC <-- valP 



394 Chapter 4 Processor Architecture 

Aside Tracing the execution of a je instruction • 

Let us trace the processing of the j e instruction on line 8 of the object code shown ii'i Figure 4.17. The 

1 

condition codes were all set tq zero by the sll.bq instruction (line 3), and so the branch.will not be taken. 
The instruction is !Ocated af address Ox02e and consists of 9'\Jytes. The fi~st has value Ox73, while the 
remaining 8 bytes are a byte-reversed version of the number Ox0000000000000040, the jump target. 

The stages would proceetl asjollows: 

Stage 

Fetch 

Decode 

Execlite 

Memory 

Write back 

PC update 

Generic 
jXX Dest 

icode: ifun +- M1[PC] 

valC .1c- M8[PC + 1] 
valP +- PC+ 9 

Cnd ~ Cond(CC, ifun)' 

PC +- Cnd? valC: valP 

Specific 
je Ox040 

icode:ifun +- M1[0x02e]"=7:3 

v~I<;: +- M8[0x02f] = Ox040 

valP +- Ox02e + 9 = Ox037 

Cnd <-- G:ond((O, 0, Or, 3) = 0 

PC• +- 0? Ox040 : Ox037 = Ox037 

'As this trace shows, the instruction has the effect of incrementing the PC by 9. . , 

Instructions call and ret bear some similarity to instructions pushq and popq, 
except that we push and pop program counter values. With instruction call, we 
push valP, the address of the instruction that follows the call instruction. During 
the PC update stage, we set the PC to valC, the call destination. With instruction 
ret, we assign valM, the value popped from the stack, to the PC in the PC update 

stage. 

~Ce:Pr<?htfffi:,t)~:il-qt~tii>.ERi9~·is·zr.?i '?. -~,., • ··"':.::::.;.:_,. • . ~ ~ 
Fill in the right-hand column of the following table to describe the processing of 
the call instruction on line 9 of the object code in Figure 4.17: 

Stage 

Fetch 

Generic 
call Dest 

icode: ifun +- M1[PC] 

valC +- M8[PC + 1] 
valP +- PC +9 

Specific 
call Ox041 



Section 4.3 Sequential Y86-64 Implementations 395 

,._,. ~>" "'>.>. "'~ !f" •K~ '"" "·' ""'""' ~ '"' 41!' ,.~s),. -tr 

Aslile Tracing the exe~ution of a ret instructip~." • 
11· - ' . , ,.,, ,,_ " 

Let us trpce ,the.processing of ,tn,~,ret 'il),structiol\ on l(pcl' l~ of, tl_il',o&jei;t ~g\lefah1>,wn in figure 4.17. 
The instruc$i?~ ad?ress)~ oxp4i and:i~ encoded by ~~ing!e•byte),x90. :n1e r.r.e.-;\Pus call instruction 
set~rsR to 120 an<;! store.a the returl), addqoss pxQ40 at me,ino,ry add,n;ss {~O,,Jbe stJ\ges would proceed 
as, follows: · ' 

>-1' , ·'l •· II:• ,j;~. l ,f ' jj• ,, ' .. ~ 

··~ 

1 
SJage' 

'Feic4 · · 

"Execute 

' 
Memorir-

Write back· 

PC upllate 

4 l~ Specific ~·" "'" ..{,.4: ,, 
""" re~ '! ,, . . 

icod~ j i.fun -:.,._ ·t1.1 1J~Cf, , ;: [code: ifun. '.+- 1 f..-f1(9xo'41 l~ ~: o •· : . 

v~IA • +- R[7;!-'sp] ' 
v,alB. +-- Rt1.tsp] 

* if" ., 

·valE +'- valB +'s 

valM +,; ~8[va1A( 

R[%rsp] +- y'alE 
~:t ~ t- ~~ 

·;RC· '+-- valr,lf' 

' v_a\~ +- Ox041 i-'f =' oxo~2 
~·· ~ r ~ ~ Ai.h>li 

'valA +- "R[%rs'p]'= 1:10»':".J .,, 
\.-a18· +- R[%rs~J ~ 120, 

~' ' "'.",J4.f t~~. 

'val~. +- •120'-f'.$k·l28 
,• ,, ,< "~,. ~N .' 

ValM' '<--- M8[120] =..Ox040' 

R[%rspJ +- 128 
) 'P 'l 

~ 

. pc· +- OxO-J.O <!-' 

'i\s this trace shows, the instruction has tile eff<;ct of setting the PC to Ox040, the address of the 
'cltalt in'struetion. It al;o se'ls 1:1sp'tdlZS. • " '··> • . " , • 

~"' •·.t., t •. ' 

Generic Specific 
Stage call Dest call Ox041 

Decode 

valB +- R[%rsp] 

Execute valE +- valB + (-8) 

Memory M8[valE] +- valP 

Write back R[%rsp] +- valE 

PC update PC +- vale 

What effect would this instruction execution have on the registers, the PC, 
and the memory? 

We have created a uniform framework that handles all of the different types of 
Y86-64 instructions. Even though the instructions have widely varying behavior, 
we can organize the processing into six stages. Our task now is to create a hardware 
design that implements the stages and connects them together. 



! 

396 Chapter 4 Processor Architecture 

4.3.2 SEQ Hardware Structure 

The computations required to implement all of the Y86-64 instructions can be or­
ganized as a series of six basic stages: fetch, decode, execute, memory, write back, 
and PC update. Figure 4.22 shows an abstract view of a hardware structure that can 
perform these computations. The program counter is stored in a register, shown 
in the lower left-hand corner (labeled "PC"). Information then flows along wires 
(shown grouped together as a heavy gray line), first upward and then around to 
the right. Processing is performed by hardware units associated with the different 
stages. The feedback paths coming back down on the right-hand side contain the 
updated values to write to the register file and the updated program counter. In 
SEQ, all of the processing by the hardware units occurs within a single clock cycle, 
as is discussed in Section 4.3.3. This diagram omits some small blocks of combi­
national logic as well ~s all of the control logic npeded to operate the different 
hardware units and to route the appropriate values to the units. We will add this 
detail later. Our method of drawing processors with the f)ow going from bottom 
to top is unconventional. We will explain the reason for this convention when we 
start designing pipelined processors. 

The hardware units are associated with the different processing stages: 

Fetch. Using the program counter register as an address, the instruction mem­
ory reads the bytes of an instruction. The PC incrementer computes valP, 
the incremented program counter. 

Decode. The register file has two read ports, A and B, via which register values 
valA and valB are read simultaneously. 

Execute. The execute stage uses t11e arithmetic/logic (ALll.) unit for different 
purposes according to the instruction type. For integer operations, it per­
forms the specified operation. For other instructions, it serves as an adder 
to compute an incremented or decremented stack pointer, to compute 
an effective address, or simply to pass one of its inputs to its outputs by 
adding zero. 

The condition code register (CC) holds the three condition code bits. 
New values for the condition codes are computed by the ALU. When 
executing a conditional move instruction, the ·decision as to whether or 
not to update the destination register is computed based on the condition 
codes and move condition. Similarly, when executing a jump instruction, 
the branch signal Cnd is computed based on the condition codes and the 
jump type. 

Memory. The data memory reads or writes a word of memory when executing a 
memory instruction. The instruction and data memories access the same 
memory locations, but for different purposes. 

Write back. The register file has two write ports. Port Eis used to write values 
computed by the ALU, while port Mis used to write values read from the 
data memory. 



Section 4.3 Sequential Y86-64 Implementations 397 

PC update new PC 

I· ~alE0, valM 
. .,_ 

ack Write b 

vaJM 

iY . ' J 
Memory .. >-

\.; •· 
" :s El!9-ta'.',_., 
memo"':~ 

IAddr~ 
F=~ 

>; 
valE ~ !>-.._ 

r·······filj;i,~ Cnd ' ' A~U. ' 
~ ~ ''"· 

Execute 

aluA, aluB JI 
l • 

. 
valA, valB 

Decode srcA, srcB ] 
dstE, dstM AF ":~tB,?·~ 

"-..,.. l:J:f\.•.9!~~%. •' E !iJe, ;,, ~-

code, ifun 
. ~ 

valP 
rA, rB .... Jl vale 

r~ irtslty;!t~~ i~ ru -~, ~ ""~',;~ *\, 1~~ .J 
~~'l)O'I(,, • ncrElmeq,~ Fetch 

1f it 
r lf PC l 

' 

Figure 4.22 Abstract view of SEQ, a sequential implementatioh. The information 
processed during execution of an instruction follows a clockwise flow starting with an 
instruction fetch using the ·program counter (PC), shown in the lower left-hand corner 
of the figure. 



j 

I 

'I 

I 
I 
' 

398 Chapter 4 Processor Architectu~e 

PC update. The new value' of the program counter is selected to be either 
valP, the address of the next instruction, valC, the destination address 
specified by a call or jump instruction, or valM, the return address read 
from memory. 

Figure 4.23 gives a more detailed view of the hardware required to implement 
SEQ (although we will not see the complete details until we examine the individual 
stages). We see the same set of hardware units as earlier, but now the wires are 
shown explicitly. In this figure, as well as in our other hardware diagrams, we use 
the following drawing conventions: 

• Clocked registers are shown as white rectangles. The program counter PC is the 
only clocked register in SEQ. 

• Hardware units are shown as light blue boxes. These include the memories, 
the ALU, and so forth. We will use the same basic set of units for all of our 
processor implementations. We will treat these units as "black boxes" and not 
go into their detailed designs. 

• Control logic blocks are drawn as gray rounded rectangles. These blocks serve 
to select from among a set of signal sources or to compute some Boolean func­
tion. We will examine these blocks in complete detail, including developing 
HCL descriptions. 

• Wire names are indicated in white circles. These are simply labels on the wires, 
not any kind of hardware element. 

• Word-wide data connections are shown as medium lines. Each of these lines 
actually represents a bundle of 64 wires, connected in parallel, for transferring 
a word from one part of the hardware to another. 

• Byte and narrower data connections are shown as thin lines. Each of these lines 
actually represents a bundle of four or eight wires,. depending on what type of 
values must be carried on the wires. 

• Single-bit connections are shown as dotted lines. These represent control values 
passed between the units and blocks on the chip, 

All of the computations we have shown in Figures 4.18 through 4.21 have the 
property that each line represents either the computation of a specific value, such 
as valP, or the activation of some hardware unit, such as the memory. These com­
putations and actions are listed in the second column of Figure 4.24. In addition 
to the signals we have already described, this list includes four register ID signals: 
srcA, the source of valA; srcB, the source of valB; dstE, the register to which valE 
gets written; and dstM, the register to which valM gets written. 

The two right-hand, columns of this figure show the computations for the 
OPq and mrmoyq iljstructions to illustrate the values being computed. To map the 
computations into hardware, we want to implement control logic that will tra1,1sfer 
the data between the different hardware units and operate these units in such a way 
that the specified operations are performed for each of the different instruction 
types. That is the purpose of the control logic blocks, shown as gray rounded boxes 



~!f . 
. '$~ 
··;,: 

8 

Section 4.3 Sequential Y86-64 Implementations 399 

;;'-." 

ii' I "New Pc 
•;)! 
,,;-: 
::/: PC update 

~ 
j. 
.t:-• 

;.~ ., 
t. 

" \:; 

~ 
~ 

i 
~ !' 

. }. 
/ 
,, 
;'}! 
t~· 
;',;;. 

If 
~:_ 

I ~-

01 i~;. 
~-<' 
~.»( 

~ 

t 
f 
:0 
\~~-·· 

Memory 

Execute 

Decode 

Instr_ valid 

Jmem_error 

Fetch 

' L ....... ~~~-~~-~~!. ..... valM 

, ........• 

data out 

~
.!::~~. '\.,toaia 
.... ,.... 'ln~rnory 
wnte '-..--..-..J 

'E> 
t 

L .......................................... . 

,·,. ~A~~ ,;j!i -J:>~M 
,R,egister 
~i' .Jile,., Ek--------_. 

Write back 

PC 

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the 
control signals, as well as the register and control word connections, are not shown. 



400 Chapter 4 Processor Architecture 

Stage Computation OPq rA, rB mrmovq D(rB), rA 

Fetch icode, ifun icode: ifun +- M1[PC] icode: ifun +- M1[PC) 
rA, rB rA:rB +- M1[PC+l] rA:rB <- M1[PC+l] 
vale vale +- M8[PC + 2] 
valP valP +- PC+2 valP +- PC+ 10 

Decode valA, srcA valA +- R[rA) 
valB, srcB valB +- R[rBJ valB +- R[rB] 

Execute valE valE +- valBOPvalA valE +- valB+ vale 

Cond. codes Set CC 

Memory Read/write \'alM +- M8[va1E] 

Write back E port, dstE R[rB] +- valE 
Mport, dstM R[rA] +- valM 

PC update PC PC <- valP PC +- valP 

Figure 4.24 Identifying the different computation steps in the sequential imple­
mentation. The second column identifies the value being computed or the operation 
being performed in the stages of SEQ. The cqmputations for instructions OPq and mrmovq 
are shown as examples of the computations. 

in Figurl' 4.23. Our task is to proceed through the individual stages and create 
det~iled designs for these blocks. 

4-3.3 SEQ Timing 

In introduci,ng the tables of Figures 4.18 through 4.21, we stated that they should 
be read as if they were written in a programming notation, with the assignments 
performed in sequence from top t9 bottom. On the oth,er hand, the hardware 
structure of Figure 4.23 operates in' a fundamentally different way, with a single 
clock transition triggering a flow through combinational logic to execute an entire 
instruction. Let us see how the hardware can.implement the behavior listed in 
these tables. 

Our implementation of SEQ consists of combinational logic and two forms 
of memory devices: clocked registers (the program counter and condition code 
register) anq random access memories (the r,egister file, the iJ,Is,truction memory, 
and the data memory). Cqmbinational logic does not require ,any sequencing 
or control-values propagate through a network of logic gates whenever the 
inputs change. As we have described, we also assume that reading from a random 
access memory operates much like combinational logic, with the output word 
generated based on the address input. This is a reasonable assumption for smaller 



Section 4.3 Sequential Y86-64 Implementations 401 

memories (such as the register file), and we can mimic this effect for larger circuits 
using special clock circuits. Since our instruction memory is only used to read 
instructions, we can therefore treat this unit as if it were combinational logic. 

We are left with just four hardware units that require an explicit control 
over their sequencing-the program counter, the condition code register, the data 
memory, and the register file. These are controlled via a single clock signal that 
triggers the loading of new values into the registers and the writing of values to the 
random access memories. The program counter is loaded with a new instruction 
address every clock cycle. The condition code register is loaded only when an 
integer operation instruction is executed. The data memory is written only when 
an rmmovq,. pushq, or call instruction is executed. The two write ports of the 
register file allow two program registers to be updated on every cycle, but we can 
use the special register ID OxF as a port address to indicate that po write should 
be performed for this port. 

This clocking of the registers and memories is all that is required to control the 
sequencing of activities in our processor. Our hardware achieves the same effect as 
would a sequential execution of the assignments shown in the tables of Figures 4.18 
through 4.21, even though all of the state updates actually occur simultaneously 
and only as the clock rises to start the next cycle. This equivalence holds because 
of the nature of the Y86-64 instruction set, and because we have organized the 
computations in such a way that our design obeys the following principle: 

PRINCIPLE: No reading back 

The processor never needs to read back the state updated by an instruction in 
order to c~mplete the processing of this instruction. I 

This principle is crucial to the success of our implementation. As an illustra­
tion, suppose we implemented the pushq instruction by first decrementing %rsp 
by 8 and then using the updated value of %rsp as the address of a write operation. 
This approach would violate the principle stated above. It would require reading 
the updated stack pointer from the register file in order to perform the memory 
operation. Instead, our implementation (Figure 4.20) generates the decremented 
value of the stack pointer as the signal valE and then uses this signal both as the 
data for the register write and the address for the memory write. As a result, it 
can perform the register and memory writes simultaneously as the clock rises to 
begin the next clock cycle. 

As another illustration of this principle, we can see that some instructions (the 
integer operations) set the condition codes, and some instructions (the conditional 
move and jump instructions) read these condition codes, but no instruction must 
both set and then read the condition codes. Even though the condition codes are 
not set until the clock rises to begin the next clock cycle, they will be updated 
before any instruction attempts to read them. 

Figure 4.25 shows how the SEQ hardware would process the instructions at 
lines 3 and 4 in the following code sequence, shown in assembly code with the 
instruction addresses listed on the left: 



402 Chapter 4 Processor Architecture 

OxOOO: irmovq $0x100,%rbx # %rbx <-- Ox100 

2 OxOOa: irmovq $0x200,%rdx # %rdx <-- Ox200 

3 Ox014: addq %rdx,%rbx # %rbx <--' Ox300 CC <-- 000 

4 Ox016: je dest # Not taken 

5 Ox01f: rmmovq %rbx,0(%rdx) # M[Ox200] <-- Ox300 

6 Ox029: dest: halt 

Each of the diagrams labeled 1 through 4 shows the four state elements plus 
the combinational logic and the connections among the state elements:We show 
the combinational logic as being wrapped around the condition code register, 
because some of the combinational logic (such as the ALU) generates the input 
to the condition code register, while other parts (such as the branch computation 
and the PC selection logic) have the condition code register as input. We show the 
register file and the data memory as having separate connections for reading and 
writing, since the read operations propagate through these units as if they were 
combinational logic, while the write operations are controlled by the clock. 

The color coding in Figure 4.25 indicates how the circuit signals relate to the 
different instructions being executed. We assume the processing starts with 'the 
condition codes, listed in the order ZF, SF, and OF, set to 100. At the beginning of 
clock cycle 3 (point 1 ), the state elements hold the state as updated by the second 
irmovq instruction (line 2 of the listing), shown in light gray. The combinational 
logic is shown in white, indicating that it has not yet had .time to react to the 
changed state. The clock cycle begins with address Ox014 loaded into the program 
counter. This causes the addq instruction (line 3 of the listing), shown in blue, to 
be fetched and processed. Values flow through the combinational logic, including 
the reading of the random access memories. By the end of the cycle (point 2), 
the combinational logic has generated new values (ooo) for the condition codes, 
an update for program register %rbx, and a new value (Ox016) for the program 
counter. At this point, the combinational logic has been updated according to the 
addq instruction (shown in blue), but the state still holds the values set by the 
second irmovq instruction (shown in light gray). 

As the clock rises to begin cycle 4 (point 3), the• updates to.the program 
counter, the register file, and the condition code register occur, anll so we show 
these in blue, but the combination\11 logic has not yet reacted to these changes, and 
so we show this in white. In this cycle, the j e instruction (line 4 in the listing), shown 
in dark gray, is fetched and executed. Since condition code ZF is 0, the branch is not 
taken. By the end of the cycle (point 4), a new value of Oic01f has been generated 
for the program counter. The combinational logic has been updated according to 
the je instruction (shown in dark gray), but the state still holds the values set by 
the addq instruction (shown in blue) until the next cycle begins. 

As this example illustrates, the use of a clock to control the updating of the 
state elements, combined with the propagation of values through combinational 
logic, suffices to control the computations performed for each instruction in our 
implementation of SEQ. Every time the clock transitions from low to high, the 
processor begins executing a new instruction. 



Section 4.3 Sequential Y86-64 Implementations 403 

Clock 

Cycle 1: OxOOO: irmovq $0x100, Y,rbx # f.rbx <-- Ox100 

OxOOa: 

Cycle 4: Qx:0~6: je ''dest # Not taiten 

Cycle 5: Ox01f: rmmovq %rbx,O(%rdx) # M[Ox200] <-- Ox300 

CD Beginning of cycle 3 

Combinational l.:L::S----;· 
logic 

~ 

Pc··,,.._ ______ __, 
Ox.014 /"°--------~ 

® Beginning of cycle 4 

Combinational l/tJ:-;-:?"'T-::i'I 
logic 

~ 

"•PC ~=======~ • oxofe· r 

® End of cycle 3 

@ End of cycle 4 

Combinatfonal 

lolJic. 

~ 
lIJ 

%rbx 
..... 
Ox300 

Figure 4.25 Tracing two cycles of execution by SEQ. Each cycle begins with the state 
elements (program counter, condition code register, register file, and data memory) 
set according to the previous instruction. Signals propagate through the combinational 
logic, creating new values for the state elements. These values are loaded into the state 
elements to start the next cycle. 



404 Chapter .4 Processor Architecture 

4.3.4 SEQ Stage Implementations 

In this section, we devise HCL descriptions. for the control logic blocks required 
to implement SEQ. A complete HCL description for SEQ is given in Web Aside 
ARCH:HCL on page 472. We show some example blocks here, and others are given as 
practice problems. We recommend that you work these problems as a way to check 
your understanding of how the blocks relate to the computational requirements 
of the different instructions. 

Part of the HCL description of SE9 that we do not include here is a definition 
of the differe.!!t integer and Boolean signals that can be used as _arguments to the 
HCL operations. These include the names of the different hardware signals, as 
well as constant values for th~ different instruction codes, function c_odes, register 
names, ALU operations, and status codes. Only those that must be explicitly 

Name Value (hex) Meaning 

IHALT 0 Code for halt instruction 

INDP 1 Code for nop instruction 

IAAMDVQ 2 Code for rrmovq instruction 

IIRMDVQ 3 Code for irmovq instruction 

IRMMOVQ 4 Code for rmmovq instruction 

IMRMOVQ 5 Code for rnrmovq instruction 

IOPL 6 Code for integer operation instructions 

IJXX 7 Code for jump instructions 

I CALL 8 Code for call instruction 

IRET 9 Code for ret instruction 

IPUSHQ A Code for pushq instruction 

IPOPQ B Code for popq instruction 

FNONE 0 Default function code 

RESP 4 Register ID for %rsp 

RN ONE F Indicates no register file access 

ALUADD 0 Function for addition operation 

SAOK 1 Status code for normal operation 

SADR 2 Status code for address exception 

SINS 3 Status code for illegal instruction exception 

SHLT 4 Status code for ha/t 
,. 

Figure 4.26 Constant values used in HCL,descriptions: These values represent the 
encodings of the instructiorls; function codes; 'register IDs, ALU operaliOns, ~nd status 
w~. • 



Section 4.3 Sequential Y86-64 Implementations 405 

Figure 4.27 
SEQ fetch stage. Six 
bytes are read from the 
instruction memory using 
the PC as the starting 
address. From these bytes, 
we generate the different 
instruction fields. The PC 
increment block computes 
signal valP. 

,fcode ifun rft rB valC va/P 

PC 

referenced in the control logic are shown. The constants we use are documented 
in Figure 4.26. By convention, we use uppercase names for constant values. 

In addition to the instruciions shown in Figures 4.18 to 4.21, we include the 
processing for the nop and halt instructions. The nop instruction simply flows 
through stages without much processing, except to increment the PC by 1. The 
halt instruction causes the processor status to be set to HLT, causing it to halt 
operation. 

F"etch Stage 

As shown in Figure 4.27, the fetch stage includes the instruction memory hardware 
unit. This unit reads 10 bytes from memory at a time, using the PC as the address of 
the first byte (byte 0). This byte is interpreted as the instruction byte and is split (by 
the unit labeled "Split") into two 4-bit quantities. The control logic blocks labeled 
"icode" and "ifun" then compute the instruction and function codes as equaling 
either the values read from memory or, in the event that the instruction address 
is not valid (as indicated by the signal imem_error), the values corresponding to 
a nop instruction. 'Based on the value of icode, we can compute three 1-bit signals 
(shown as dashed lines): 

instr_ valid. Does this byte correspond to a legal Y86-64 instruction? This signal 
is used to detect an illegal instruction. 

need_regids. Does· this instruction include a register specifier byte? 

need_valC. Does this instruction include a constant word? 

The signals instr_ valid and imem_error (generated when the instruction address 
is out of bounds) are used to generate the status code in the memory stage. 



406 Chapter 4 Processor Architecture 

As an example, the HCL description for need_regids simply determines 
whether the value of icode is one of the instructions that has a register speci­
fier byte: 

bool need_regids 
icode in { IRRMOVQ, IOPQ, IPUSHQ, IPOPQ, 

IIRMOVQ, IRMMOVQ, IMRMOVQ }; 

Write HCL code for the signal need_ valC in the SEQ implementation. 

As Figure 4.27 shows, the remaining 9 bytes read from the instruction memory 
encode some combination of the register specifier byte and the constant word. 
These bytes are processed by the hardware unit labeled "Align" into the register 
fields and the constant word. Byte 1 is split into register specifiers rA and rB when 
the computed signal need_ reg ids isl. If need_regids is 0, both register specifiers 
are set to OxF (RNONE), indicating there are no registers specified by this instruction. 
Recall also (Figure 4.2) that for any instruction having onJy one register operand, 
the other field of the register specifier.byte will,be OxF (RNONE). Thus, we can 
assume that the .sigl\als rf:. and rB either encode registers we want to access or 
indicate that register .access is no\ required. The unit labeled "Align" also generates 
the constant word valC. This will either be bytes 1-8 or bytes 2-9, depending on 
the value of signal need_regids. 

The PC incrementer hardware unit generates the signal valP, based on the 
current value of the PC, and the two signals need_regids and need_valC. For PC 
value p, need_regids valuer, and need_valC value i, the incrementer generates 
the value p + 1 + r +Si. 

Decode and Write-Back Stages 
' Figure 4.28 provides a detailed view of logic that implements both the decode 

and write-back stages in SEQ. These two stages are combined because they both 
access the registe~ file. 

The register file has four ports. It supports up to two simultapeous reads (on 
ports A and B) and two ~imi'.iltaneous writes (on ports E and M). I)ach port has 
both an address connection and a data connection, where the address connection 
is a register ID, and the dat\I connection is a set of 64 wires serving as either an 
output word (for a read port) or an input word (for a write port) of the register 
file. The two read ports have address inputs srcA and srcB, while the two write 
ports have address inputs dstE and dstM. The speciafideniifier OxF (RNDNE) on an 
address port indicates that no register should be.accessed. 

The four blocks at the bottom of Figure 4.28 generate the four different . 
register IDs for the register file, based on·the instruction code icode, the register 
specifiers rAand rB, and possibly the condition signal Cnd computed in the execute 
stage. Register ID srcA indicates which register should be read to generate valA. · 



Section 4.3 Sequential ¥86-64 Implementations 407 

Figure 4.28 
SEQ decode and write-back 
stage. T)1e instruction fields are 
detoded to generate register 

• identifiers for four addresses (two 
read and two write) used by 
the register file. The values read 
from the register file become the 
signals valA and valB. The two 
write-back.valu~s valE an<;! valM 
serve as the data for the writes. 

" 

Cnd valA valB valM valE 

icode rA rB 

The desired value depends on the instruction type, as shown in the first row for the 
decode stage in Figures 4.18 to 4.21. Combining all of these entries into a single 
computation gives the following HCL description of srcA (recall that RESP is the 
register ID of %rsp): 

word srcA = [ 

l ; 

icode in { IRRMOVQ, IRMMOVQ, IDPQ, IPUSHQ } rA; 
icode in { IPOPQ, IRET } : RRSP; 
1 : RNONE; # Don 1 t need register 

t-"'""!l'.!".l"'n' ~1!['5':1W~""'~·~~"'""'"'_.,_~,- • 
tKras-.\1&~.~rvu tfil\"\~Yl~~~l~ ~~~4~~~~:· ~t 
The register signal srcB indicates which register should be read to generate the 
signal valB. ilhe desired value is shown as the second step in the decode stage in 
Figures 4.18 to 4.21. Write HCL code for srcB. 

Register ID dstE indicates the destination register for write port E, where the 
computed value valE is stored. This is shown in Figures 4.18 to 4.21 as the first 
step in the write-back stage. If we ignore for the moment the conditional move 
instructions, then we can combine the destination registers for all of the different 
instructions to give the following HCL description of dstE: 

# WARNING: Conditional move not implemented correctly here 
word dstE = [ 

icode in { IRRMOVQ } : rB; 
icode in { IIRMOVQ, IOPQ} rB; 
icode in { IPUSHQ, IPOPQ, !CALL, IRET } RRSP; 
1 : RNONE; # Don 1 t write any register 

l ; 

We will revisit this signal and how to implement conditional moves when we 
examine the execute stage. 



408 Chapter 4 Processor Architecture 

Figure 4.29 

···-~--~~---.,.~---~·~·-~--""'"""'·--·-···"""""'""'~ 'f[~!ifs; "P!!§ple· hx".4 ] ,{"·1 "t•• .. , • · ., .. ~·.,·~'}·' """"""'"¥' ,,,,,,:~ , 1 _ ,. _.-,I' sgy:1gr:r.P.=&w4' a·h~ll:~~tt'&&~,.*'s&:-se''':·- -. 

Register ID dstM indicates the de~tination register for w;ite port M, wheFe valM, 
the value read from memory, is stdred. This is shown in Figures 4.18 to 4.21 as the 
second step in the write-back stage. Write HCL code for dstM. 

&~!i~~film'S~§1.wis5~~!.~~~'fl$?~·~~r:3 
Only the popq instruction uses both register file write ports simultaneously. For 
the instruction popq %rsp, the same address will be used for botli. the E and M 
write ports, but with different data. To handle this confilct, we must establish a 
priority among the two write ports so tliat when both attempt to write the same 
register on the same cycle, only the write from the higher-priority port takes place. 
Which of the two ports should be given priority in order to implement the desired 
behavior, as determined in l,'ractice Problem 4.8? 

Execute Stage 

The execute stage includes the arithmeticllogic unit (ALU). This unit performs 
the operation ADD, SUBTRACT, AND, or EXCLUSIVE-OR on inputs aluA and aluB based 
on the setting of the alufun signal. These data and control signals are generated 
by three control blocks, as diagrammed in Figure 4.29. The ALU output becomes 
the signal valE. 

In Figures 4.18 to 4.21, the ALU computation for each instruction is shown as 
the first step in the execute stage. The operands are listed with aluB first, followed 
by aluA to make sure the subq instruction subtracts valA•from valB. We can see 
that the value of aluA can be valA, valC, or either -8 or +8, depending on the 
instruction type. We can therefore express' the behavior<of the control block that 
generates aluA as follows: 

word aluA = [ 
icode in { IRRMDVQ, IDPQ } : valA; 
icode in { IIRMDVQ, IRMMOVQ, IMRMOVQ } valC; 

Cnd valE 

SEQ execute stage. The 
ALU either performs the 
operation for an integer 
operation instruction or 
acts as an adder. The 
condition code registers 
are set according to the 
ALU value. The condition 
code values are tested 

ALU 
fun. 

to determine whether a 
branch should be taken. 

icode ifun valC valA valB 



l ; 

icode in { ICALL, IPUSHQ } : -8; 
icode in { IRET, IPOPQ } : 8; 
#Other instructions don 1t need ~LU 

Section 4.3 Sequential Y86-64 Implementations 409 

r.;".'.':;:; j'-::::::. ~~~~-::""'~ ;ZJi,f!''ll';'Ji{t.r-':"""",,,:;.fi:" 
u;.[!i~t kS fD>w!!~.;i, >~ll1Ytl!lllz~9e ) . " ; "'~-If, -'"~·'' •"-" ,,, 1 '' 

Based on the first operand of the first step of the execute stage in Figures 4.18 to 
4.21, write an HCL description for the signal aluB in SEQ. 

Looking at the operations performed by the ALU in the execute stage, we 
can see that it is mostly used as an adder. For the OPq instructions, however, we 
want it to use the operation encoded in the ifun field of the instruction. We can 
therefore write the HCL description for the ALU control as follows: 

word alufun = [ 

]; 

icode == IOPQ 
1 : ALUADD; 

ifun; 

The execute stage also includes the condition code register. Our ALU gen­
erates the three signals on which the condition codes are based-zero, sign, and 
overflow-every time it operates. However, we only want to set the condition 
codes when an OPq instruction is executed. We therefore generate a signal set_ cc 
that controls whether or not the condition code register should be updated: 

bool set_cc = icode in { IOPQ }; 

The hardware unit labeled "cond" uses a combination of the condition codes 
and the function code to determine whether a conditional branch or data transfer 
should take place (Figure 4.3). It generates the Cnd signal used both for the setting 
of dstE with conditional moves and in the next PC logic for conditional branches. 
For other instruction~, the Cnd signal may be set to either 1 or 0, depending on 
th,e,iqstruction's function code and the setting of the condition codes, but it will 
be ignored by the control logic. We omit the detailed design of this unit. 

The conditional move instructions, abbreviated cmovXX, have instruction code 
IRRMOVQ. As Figure 4.28 shows, we can implement these instructions by making 
use of the Cnd signal, generated in the execute stage. Modify the HCL code for 
dstE to implement these instructions. 

Memory Stage 

The memory stage has the task of either reading or writing program data. As 
shown in Figure 4.30, two control blocks generate the values for the memory 



• 

f 
I 

' i 

410 Chapter 4 Processor Architecture 

Figure 4.30 
SEQ memory stage. The 
data memory can either 
write or read memory 
values. The value read from 
memory forms the signal 
valM. 

: .............. ~.~~!!.':::~~~?.~ ..... , 
valM 

data oUI 

icode valE valA val? 

address and the memory input data (for write operations). Two other biocks 
generate the control signals indicating whether to perform a read or a write 
operation. When a read operation is performed, the data memory generates the 
value valM. 

The desired memory operation for each instruction type is shown in the 
memory stage of Figures 4.18 to 4.21. Ob~er~e that the address for memory reads 
and writes is always valE or valA. We cal) describ~ this block in HCL as follows: 

word mem_addr = [ 

l ; 

icode in { IRMMDVQ, IPUSHQ, ICALL, IMRMDVQ } valE; 
icode in { IPDPQ, IRET } : valA; 
#Other instructions don't need address 

ifr1iifclPioWW:~Il?i>-r~1 ... \ii~>~:~~ ·:€·if~ 
Looking at the memory operations for the different instructions shown in Fig­
ures 4.18 to 4.21, we can see that the daia for memory writes are always 8ither 
valA or valP. Write HCL code for the signal mem_data in SEQ. 

We want to set the control signal mem_read only for instructions that read 
data from memory, as expressed by the following HCL code: 

bool mem_read = icode in { IMRMOVQ, IPDPQ, IRET }; 

,-· - "'fT'"' -.....,..,.:;:: -;;!"I""':;;" < ' ' '""">T': • 'Bf'' ""•' -~ i ! Mm '¥ "' if1~!;!1c;e, Prcwte.w 71192.S'l!lution:Qi!'ll: :4§9!'.~'zl!;,. c . ..•• ,i..,; &'!: .,,, , .' 
We want to set the control signal mem_write only for instructions that write data 
to memory. Write HCL code for the signal mem_write in SEQ. 

' ' 



Section 4.3 Sequential Y86-64 Implementations 411 

Figure 4.31 ,. 
SEQ PC update stage. The next 
value of.the PC is selec;ted from 
among the signals va/C, valM, 
and valP, depe~\ling on the 
instruction code and the.branch 
flag. icode Cnd valC valM valP 

A final function for the memory stage is to compute the status code Stat 
resulting from tlie instruction execution according to the values of icode, imem_ ' .1, 

error, and instr_valid generated in the fetch stage and the signal dmem_error 
generated by the data memory. 

!i!mil!;'e:lii;&llJ~~D2m'f~1!~~~ 
Write HCL code for Stat, generating the four status codes SADK, SADR, SINS, and 
SHLT (see Figure 4.26). 

PC Update Stage 

The final stage in SE© generates the new value of the program counter (see Figure 
4.31). As the final steps in Figures 4.18 to 4.21 show, the new PC will be vale, valM, 
or valP, depending on the instruction type and whether or not a branch should be 
taken .. This selection can be described in HCL as follows: 

word new_pc = [ 

]; 

# Call. Use instruction constant 
icode == !CALL : valC; 
# Taken branch. Use instruction constant 
icode r= IJXX && Cnd : valC; 
# Completion of RET instruction. Use value from stack 
icode == IRET : valM; 
#Default: Use incremented PC 
1 : valP; 

Surv~ying SEQ 

We have now stepped through a complete design· for a Y86,64 processor. We 
have seen that by organizing the steps required to execute each of the different 
instructions into a uniform flow, we can implement the entire processor with a 
small number of different hardware units and with a single clock to control the 
sequencing of computations. The control logic must then route the signals between 
these units and generate the proper control signals based on the instruction types 
and the branch conditions. 



'i 

412 Chapter 4 Processor Architecture 

The only problem with SEQ is that it is too slow. The clock must run slowly 
enough so that signals can propagate through all of the stages within a single 
cycle. As an example, consider the processing of a ret instruction. Starting with 
an updated program counter at the beginning of the clock cycle, the instruction 
must be read from the instruction memory, the stack pointer must be read from 
the register file, the ALU must increment the stack pointer by 8, arid the return 
address must be read from the memory in order to determine the next value for 
the program counter. All of these must be completed by the end of the clock cycle. 

This style of implementation does not make very good use of our hardware 
units, since each unit is only active for a fraction of the total clo,ck cyc\e. We will 
see that we can achieve much better performance by introducing pipelining. 

4.4 General Principles of Pipelining 

Before attempting to design a pipelined Y86-64 processor, let us consider some 
general properties and principles of pipelined systems. Such systems are familiar 
to anyone who has been through the serving line at a cafeteria or run a car through 
an automated car wash. In a pipelined system, the task to be performed is divided 
into a series of discrete stages. In a cafeteria, this involves supplying salad, a 
main dish, dessert, and beverage. In a car wash, this involves spraying water and 
soap, scrubbing, applying wax, and drying. Rather than having one customer run 
through the entire sequence from beginning to end· before the next can begin, we 
allow multiple customers to proceed through the system at once. In a traditional 
cafeteria line, the customers maintain the same order in the pipeline and pass 
through all stages, even if they do not want some of the courses. In the case of 
the car wash, a new car is allowed to enter the spraying stage as the preceding 
car moves from the spraying stage to the scrubbing stage. In general, the cars 
must move through the system at the same rate to avoid having one car crash into 
the next. 

A key feature of pipelining is that it increases the throughput of the system 
(i.e., the number of customers served per unit time), but it may also slightly 
increase the latency (i.e., the time required to service an individual customer). For 
example, a customer in a cafeteria who only wants a dessert could pass through a 
nonpipelined system very quickly, stopping only at the dessert stage. A customer in 
a pipelined system who attempts to go directly to the dessert stage risks incurring 
the wrath of other customers. 

4.4.1 Computational Pipelines 

Shifting our focus to computational pipelines, the "customers" are· ins.tructions 
and the stages perform some portion of the instruction execution. Figure 4.32(a) 
shows an example of a simple nonpipelined hardware system. It consists of some 
logic that performs a computation, followed by a register to hold the results of this 
computation. A clock signal controls the loading of the register at some regular 
time interval. An example of such a system is the decoder in a compact disk (CD) 
player. The incoming signals are the bits read from the surface ohhe CD, and 



Figure 4.32 
Unpipelined computation 
hardware. On each 320 
ps cycle, the system 
spends 300 ps evaluating 
a combinational logic 
function and 20 ps storing 
the results in an output 
register. 

300 ps 

(a) Hardware: Unpipelined 

(b) Pipeline diagram 

Section 4.4 General Principles of Pipelining 413 

20 ps 

R 
e 
g 

Clock 

Delay = 320 ps 
Throughput= 3.12 GIPS 

the logic decodes these to generate audio signals. The compl)tational block in the 
figure is implemented as combinational logic, meaning that the signals will pass 
through a series of logic gates, with the outputs becoming some function of, the 
inputs after some time delay. 

In contemporary logic design, we measure circuit delays in units of picosec­
onds (abbreviated "ps"), or 10-12 seconds. In this example, we assume the com­
binational logic requires 300 ps, while the loading of the register requires 20 ps. 
Figure 4.32 shows a form of timing diagram known as a pipeline diagram. In this 
diagram, time flows from left to right. A series of instructions (here named I 1, I2, 
and I3) are written from top to bottom. The solid rectangles indicate the times 
during which these instructions are executed. In this implementation, we must 
complete one instruction before beginning the next. Hence, the boxes do not over­
lap one another vertically. The following formula gives the maximum rate at which 
we could operate the system: 

"'h h 1 instruction 1,000 picoseconds 
3 12 

GIPS 
.L, roug :put= · ~ . 

(20 + 300) picoseconds 1 nanosecond 

We express throughput in units of giga-instructions per second (abbreviated 
GIPS), or billions of instructions per second. The total time required to perform 
a single instruction from beginning to end is known as the latency. In this system, 
the latency is 320 ps, the reciprocal of the throughput. 

Suppose we could divide the computation performed by our system into three 
stages, A, B, and C, where each requires 100 ps, as illustrated in Figure 4.33. Then 
we 'could put pipeline registers between th,e stages so that each instruction moves 
through the system in three steps, requiring three complete clock cycles from 
beginning.to end. As the pipeline diagram in Figure 4.33 illustrates, we could allow 
I2 to enter stage A as soon -as I 1 moves from A to B, and so on. In steady state, all 
tiube stages would be active, with one· instruction leaving and a new one entering 
th,e ~ystem every clock cycle. We can see this during the third clock cycle in the 
piP.eline diagram where I1 is in stage C, I2 is in stage B, and I3 is in stage A. In 



I 

I 

I 

414 Chapter 4 Processor Architecture 

Figure 4.34 

100 ps 20 ps 100 ps 20ps 100 ps 20ps 

' 
. •q . '• . " ·comb'\ ·Como. R :coijib.; R Delay ~ 360 ps .. ¥1. 

'jl5gic"f logic logic~- .• 
;',f.· 'El G • 

Throughput ~ 8.33 GIPS 
,, ' ' "'" ~ ... . 

Clock 
(a) Hardware: Three-stage pipeline 

(b) Pipeline diagram 

Figure 4.33 Three-stage pipelined computation hardware. The computation is split 
into stages A, B, and C On each 120 ps cycle, each instruction progresses through one 
stage. 

Clock 
Three-stage pipeline 
timing. The rising edge of 
the clock signal controls the 
movement of instructions 
from one pipeline stage to 
the next 

-~~~c 
0 120 240 360 480 600 

Time 

this system, we could cycle the clocks every 100 + 20 = 120 picoseconds, giving 
a throughput of around 8.33 GIPS. Since processing a single instruction requires 
3 clock cycles, the latency of this pipeline is 3 x 120 = 360 ps. We have increased 
the throughput of the system by Ji factor of 8.33/3.12 = 2.67 at the expense of 
some added hardware and a sligh!' increase in the latenfY (360/320 = 1.12). The 
increased latency is due to the time overhead of, the added pipeline r,egisters. 

4.4.2 A Detailed Look at Pipeline Operation 

To better understand how pipelining works, let us look in some detail at the timing 
and operation of pipeline computations. Figure 4.34 shows the pipeli~e diagram . 
for the three-stage pipeline we have already looked at (Figure 4.33). The transfer 
of the instructions between pipeline stages is controlled by a clock sign~i, as shown 
above the pipeline diagram. Every 120 ps., this signal rises from 0 io 1, initiating 
the next set of pipeline stage evaluations. 

Figure 4.35 traces the cir'cuit activity \Jetween times 240 and 360, as instruc­
tion I1 (shown in dark gray) propagates through stage C, I2 (shown in bluej 



Clock 

I1 

12 
I3 

Time 120 

(j) Time ~ 239 

® 1ime~241 

100 ps 

Comb. 
logic 

A 

@Time~ 300 

@Time~ 359 

100 ps 

Comb. 
logic, 

A 

k4~ t Asa 
(j) ®@@ 

100'ps 

Comb. 
Jogic 

B 

100 ps 

Comb. 
logic 

B 

20 ps 

20 ps 

100 ps 

Comb. 
logic 
c 

100 ps 

Comb. 
logic 
c 

100 ps 

100 ps 

Comb. 
IO!Jlc 
y 

Section 4.4 General Principles of Pipelining 415 

20 ps 

R 
e 
g 

Clock 

20 ps 

R 
e 
g 

Clock 

20 ps 

Clock 

20 ps 

R 
e 
g 

Clock 

Figure 4.35 One clock cycle of pipeline operation. Just before the clock rises at 
time 240 (point 1 ), instructions I1 (shown in dark gray) and !2 (shown in blue) have 
completed stages B and A. After the clock rises, these instructions begin .rropagating 
through stages C and B, while instruction I3 (shown in light gray) begins propagating 
through stage A (points 2 and 3). Just before the clock rises again, the results for the 
instructions have propagated to the inputs of the pipeline registers (point 4). 



I 
l 

I 
" 

j 

I 

416 Chapter 4 Processor Architecture 

propagates through stage B, and !3 (shown in light gray) propagates through stage 
A. Just before the rising clock at time 240(point1), the values computed in stage A 
for instruction !2 have reached the input of the first pipeline register, but its state 
and output remain set to those computed during stage A for instruction I 1. The 
values computed in stage B for instruction I1 have reached the input of the sec­
ond pipeline register. As the clock rises, these inputs are loaded into the pipeline 
registers, becoming the register outputs (point 2). In addition, the input to stage 
A is set to initiate the computation of instruction !3. The signals then propagate 
through the combinational logic for the different stages (point 3). As the curved 
wave fronts in the diagram at point 3 suggest, signals can propagate through differ­
ent sections at different rates. Before time 360, the result values reach the inputs 
of the pipeline registers (point 4). When the clock rises at time 360, each of the 
instructions will have progressed through one pipeline stage. 

We can see from this detailed view of pipeline operation that slowing down 
the clock would not change the pipeline behavior. The signals propagate to the 
pipeline register inputs, but no change in the register states will occur until the 
clock rises. On the other hand, we could have disastrous effects if the clock 
were run too fast. The values would not have time to propagate through the 
combinational logic, and so the register inputs would not yet be valid when the 
clock rises. 

As with our discussion of the timing for the SEQ processor (Section 4.3.3), 
we see that the simple mechanism of having clocked registers between blocks of 
combinational logic suffices to control the fiow of instructions in the pipeline. As 
the clock rises and falls repeatedly, the different instructions flow through the 
stages of the pipeline without interfering with one another. 

4.4.3 Limitations of Pipelining 

The example of Figure 4.33 shows an ideal pipelined system in which we are able 
to divide the computation into three independent stages, each requiring one-third 
of the time required by the original logic. Unfortunately, other factors often arise 
that diminish the effectiveness of pipelining. 

Nonuniform Partitioning 

Figure 4.36 shows a system in which we divide the computation into three stages 
as before, but the delays through the stages range from 50 to 150 ps. The sum of 
the delays through all of the stages remains 300 ps. However, the rate at which we 
can operate the clock is limited by the delay of the slowest stage. As the pipeline 
diagram in this figure shows, stage A will be idle (shown as a white box) for 
100 ps every clock cycle, while stage C will be idle for 50 ps every clock cycle. Only 
stage B will be continuously active. We must set the clock cycle to 150 + 20 = 170 
picoseconds, giving a throughput of 5.88 GIPS. In addition, the latency would 
increase to 510 ps due to the slower clock rate. 

Devising a partitioning of the system computation into a series• of stages 
having uniform delays can be a major challenge for hardware designers. ·Often, 



50 ps 20 ps 20 ps 

:com~.· 
$ )8gic.. 
~,,.~ tG~t $. 

\!. '~'\;.- ,,~ 

(a) Hardware: Three-stage pipeline, nonuniform stage delays 

II IN; 
I2 
I3 

(b) Pipeline diagram 

Section 4.4 General Principles of Pipelining 417 

20 ps 

R Delay~510ps 
Throughput ~ 5.88 GIPS 

Clock 

Figure 4.36 Limitations of pipelining due to nonuniform stage delays. The system 
throughput is limited

0

by the speed of the slowest stage . . ,, 

some of the hardware units in· a processor, such as the ALU and the memories, 
cannot be subdivided into multiple units with shorter delay. This makes it difficult 
to create a set of balanced stages. We will not concern ourselves with this level of 
detail in designing our pipelined Y86-64 processor, but it is important to appreciate 
the importance of timing optimization in actual system design. 

IP" .. raftic!IBJtBJi:.mro·:..t:,;<r,'.(l,.rur. t'1~.··· . · .m' 'JTl~~~~~Al~~~ 
·- - · M ~~~i.9!1;,p~~~~~%~-.... ~~,~k 
Suppose we analyze the combinational logic of Figure 4.32 and determine that it 
can be sepa'rated into a sequence of six blocks, named A to F, having delays of 80, 
30, 60, 50, 70, and 10 ps, respectively, illustrated as follows: 

80 ps 30 ps 10 ps 20 ps 

Clock 

We can create pipelined versions of this design by inserting pipeline registers 
between pairs of these blocks. Different combinations of pipeline depth (how 
many stages) and maximum throughput arise, depending on where we insert the 
pipeline registers. Assume that a pipeline register has a delay of 20 ps. 

A. Inserting a single register gives a two-stage pipeline. Where should the 
register b'e inserted to maximize throughput? What would be the throughput 
and latency? ' 



I 

I 
' 

418 Chapter 4 Processor Architecture 

B. Where should two registers be inserted to maximize the throughput of a 
three-stage pipeline? What would be the throughput and latency? 

C. Where should three registers be inserted to maximize the 'throughput of ;i 
4-stage pipeline? What would be the throughput and latency? 

D. What is the minimum number of stages that would yield a design with the 
maximum achievable throughput? Describe this design, its throughput, and 

its latency. 

Diminishing Returns of Deep Pipelining 

Figure 4.37 illustrates another limitation of pipelining. In this example, we have 
divided the computation into six stages, each requiring 50 ps. Inserting a pipeline 
register between each pair of stages yields a six-stage pipeline. The minimum 
clock period for this system is 50 + 20 = 70 picoseconds, giving a throughput of 
14.29 GIPS. Thus, in doubling the number of pipeline stages, we improve the 
performance by a factor of 14.2,9/8.33=1.71. Even though we have.cut the time 
required for each computation block by a factor of 2, we do not get a doubling of 
the throughput, due to the delay through the pipeline registers. This delay becomes 
a limiting factor in the throughput of the pipeline. In our new design, this delay 
consumes 28.6% of the total clock period. 

Modern processors employ very deep pipelines (15 or more stages) in an 
attempt to maximize the processor clock rate. The processor architects divide the 
instruction execution into a large number of very simple steps so that each stage 
can have a very small delay. The circuit designers carefully design the pipeline 
registers to minimize their delay. The chip designers must also carefully design the 
clock distribution network to ensure that the clock changes at the exact same time 
across the entire chip. All of these factors contribute to the challenge of designing 

high-speed microprocessors. 

ii-'"""'~.-~·,; ... , 'C .:'¥~'11.;'~>~~.~,,,, $ ,~~:'i'"". !'"'lift~ ,''""":"~Qh•"'f-'--~-~':"1"'J;;B-- ;.,.~._'~ 1, ";"~; ~;,~)~ 
&l!~(.fl:QP.Ji.ii'.t.£ 9. !!!l!.2!!:PJ!~,.:·~-~'<;;.:)ii\l<.l.:~~··~. ' • 
Suppose we could take the system of Figure 4.32 and divide it into an arbitrary 
number of pipeline stages k, each having a delay of 300/ k, and with each pipeline 

register having a delay of 20 ps. 

50 ps 
20 ps 50 ps 20 ps 50 ps 20 ps 

Clock 
Delay= 420 ps, throughput= 14.29 GIPS 

Figure 4.37 Limitations of pipelining due to overl)ead. As ,the corpl{inational logic is 
split into shorter blocks, the delay due to register updating becomes a limiting factor. 



Section 4.4 General Principles of Pipelining 419 

A. What would be the latency and the tproughput of"thc! system, as functions 
ofk? 

B. What would be the ultimate limit on th~ throughput? 

4.4.4 Pipelining a System with Feedback 

Up to this point, we have considered only systems in which the objects passing 
through the pipeline-whether cars, people, or instructions-are completely in­
dependent of one another. For a system th~t executes machine programs such as 
x86-64 or Y86-64, however, there are potential dependencies between successive 
instructions. For example, consider the following Y86-64 instruction sequence: 

1 

2 

3 %rdx 

In this three-instruction.sequence,:tQ.ere is a data dependency between each 
successive pair of instructions, ~s indicated by the circled register names an~ the 
arrows between them. Th~ irmovq instruction (line 1) s!ore~ its result in %rax, 
which then must be read by the addq instruction (line 2); and this instruction stores 
its result in %rbx, which.must then be read by the mrmovq instruction (line 3). 

Another source of sequential dependencies' occurs due to the instruction 
control flow. Consider the following Y86-64 instruction sequence: 

loop: 
2 subq %rdx, %rbx 
3 jne targ 
4 irrnovq $10,%rdx 
5 jmp loop 
6 targ: 
7 halt 

The jne instruction (line 3) creates a control dependency since the outcome of 
the conditional test determines whether the next instruction to execute will be the 
irmovq instruction (line 4) or the halt instruction (line 7). In our design for SEQ, 
th~se dependencies were handled by the feedback paths shqwn on the right-hand 
side of Figure·4.22. This feedback brings the updated register values dowfl to the 
register file and the new PC value down.to the PC register. 

Figure 4.38.illustrates the perils of introducing pipelining into a system con­
taining feedback paths. In the original system (Figure 4.38(a)), the.result of each 



!' 
I 

>120 Chapter 4 Processor Architecture 

R 
e 
g 

Clock 

(a) Hardware: Unpipeli'ned with feedback 

(b) Pipeline diagram 

~ 'Ii' '!Uj ~ 

.Comb. 
'"fogic ·\ 

¢''*A 

"" 

R 
; 

,cOmbt 
lo9ic~ 

',..: B" 
.. }""-~~ 

R 

(c) Hardware: Three-stage pipeline with feedback 

I1 
12 
13 
14 

lime 

(d) Pipeline diagram 

R 

Clock 

Figure 4.38 Limitations of pipelining due to logical dependencies. In going from an 
unpipelined system with feedback (a) to a pipelined one (c), we change its computational 
behavior, as can be seen by the two pipeline diagrams (b and d). 

instruction is fed back aronnd to the next instruction. This is illustrated by the 
pipeline diagram (Figure 4.J8(b)), .where the fesult of I1 becomes·an input to 
I2, and so on. If.we attempt to convert this to a three-stage pipeline -in the most 
straightforward manner (Figure 4.38( c) ), .we change the behavior of the system. 
As Figure 4.38(c) shows, the result of I1 becomes an input to I4 .. In attempting to 
speed up the.system.via pipelining, we have changed the system behavior. • • 



Section 4.5 Pipelined Y86-64 Implementations 421 

When we introduce pipelining into a Y86-64 processor, we must deal with 
feedback effects properly. Clearly, it would be unacceptable to alter the system 
behavior as occurred in the example of Figure 4.38. Somehow we must deal 
with the data and control dependencies between instructions so that the resulting 
behavior matches the model defined by the ISA. 

4.5 Pipelined Y86-64 Implementations 

We are finally ready for the major task of this chapter-designing a pipelined Y86-
64 processor. We start by making a small adaptation of the sequential processor 
SEQ to shift the computation of the PC into the fetch stage. We then add pipeline 
registers between the stages. Our first attempt at this does not handle the different 
data and control dependencies properly. By making some modifications, however, 
we achieve our goal of an efficient pipelined processor that implements the Y86-
64 ISA. 

4.5.1 SEQ+: Rearranging the Computation Stages 

As a transitional step toward a pip,elined design, we must slightly rearrange the 
order of the five stages in SEQ so that the PC update stage comes at the beginning 
of the clock cycle, rather than at the end. This transformation requires only 
minimal change to the overall hardware structure, and it will work better with 
the sequencing of activities within the pipeline stages. We refer to this modified 
design as SEQ+. 

We can move the PC update stage so that its logic is active at the beginning of 
the clock cycle by making it compute the PC value for the current instruction. 
Figure 4.39 shows how SEQ and SEQ+ differ in their PC computation. With 
SEQ (Figure 4.39(a)), the PC computation takes place at the enfl of the clock 
cycle, computing the new value for the PC register based on the values of signals 
computed during the current clock cycle. With SEQ+ (Figure 4.39(b) ), we create 
state registers to hold the signals computed during an instruction. Then, as a 
new clock cycle begins, the values propagate through the exact same logic to 
compute the PC for the now-current instruction. We label the registers "plcode," 

PC 

New~ 
PC 

icode Cnd valC valM valP 

(a) SEQ new PC computation 

PC 

~PC 

plcode pCnd pValM pValC pValP 

(b) SEQ+ PC selection 

figure 4.39 Shifting the timing of the PC computation. With SEQ+, we compute 
the value of the program counter for the current state as the first step in instruction 
execution. 

r 
r 



.. 

l 
,I ,, 

·' 

422 Chapter 4 Processor Architecture 

Aside 
l, , t;i .;,, ~ti::'!~ 

Where is the P.C.i'1 SEC¥+ ?.1 
One curious (eature ofSEQ+ is tharthere is no hard'Yafb.r~gister'stofing the'progran:ilcOunt'er. Ins\ead, ' 
tJ,:ie PC is computed dyi\.ami'cally based ori som\\ state ih(~r!nation storea froih the-previo\1s instructior!, 
This is a small illustration of the facMhat we can lmpleijiept d pfocessor'in a wl!y thar"differS'from'the 
concep,tuaf model implied by the ISA, as long 'I~ the,;processor correctly executes arbitrary ipachine­
language programs. We need not encode the state in ~~e ~orm indicated.by the programmer-vjsiJ:>l\'state, 
as long as the processor can generate correct values forany part qf the programmer-visible state (such 
aSothe program counter): We will exploit .this 'principle,e.ven more·in creating a pipelined de'Sign. -Out­
of-order 'processingJechniques, as described in Section 5.7, take thi& idea to an extreme·by executing 
instructions in a comi;letely,different order_\han'they occurjn the machin1'-level program',<!" , 

"pCnd," and so on, to indicate that on any given cycle, they hold the control signals 
generated during the previous cycle. 

Figure 4.40 shows a more detailed view of the ~EQ+ hardware. We can see 
that it contains the exact same hardware units and control blocks that we had in 
SEQ (Figure 4.23), but with the PC logic shifted from the top. where it was active 
at the end of the clock cycle, to the bottom, where it is active at the beginning. 

The shift of state elements from SEQ to SEQ+ is an example of a general 
transformation known as circuit retiming [68]. Retiming changes the state repre­
sentation for a system withoui changing its logical behavior. It is often used to 
balance the delays between the different stages of a pipelined system. 

4.5.2 Inserting Pipeline Registers 

In our first attempt at creating a pipelined Y86-64 processor, we insert pipeline 
registers between the stages of SEQ+ and rearrange signals somewhat, yielding 
the PIPE- processor, where the"-" in the name signifies that this processor has 
somewhat less performance than our ultimate processor design. The structure of 
PIPE- is illustrated in Figure 4.41. The pipeline registers are shown in iliis figure 
as blue boxes, each containing different fields that are shown as white boxes. As 
indicated by the multiple fields, each pipeline register holds multiple bytes and 
words. Unlike the labels shown in rounded boxes in the hardware structure of the 
two sequential processors (Figures 4.23 and 4.40), these white boxes represent 
actual hardware components. 

Observe that PIPE- uses nearly the same set of hardware units as our sequen­
tial design SEQ (Figure 4.40), but with the pipeline registers separating the stages. 
The differences between the signals in the two systems is discussed in Section 4.5.3. 

The pipeline registers are labeled as follows: 

F holds a predicted value of the program counter, as will be discussed shortly. 

D sits between the fetch and decode stages. It holds information about the most 
recently fetched instruction for processing by the decode stage. 



Memory 

Decode 

Fetch 

PC 

dmem_error ........ _ ................. ~···_·-·_···_···_-· .. ~-···:~:~--~···~···1'-,-~~ 
Mem. .........• oatir 

["'""'".;. ............................ 1 

I lnstr_valld 

! lmem_error 

I 

control ........• memory 
write '-....---.-

........................................................................................ 
j 1 

Section 4.5 Pipelined Y86-64 Implementations 423 

Write back 

Figure 4.40 SEQ+ hardware structure. Shifting the PC computation from the end of 
the clock cycle to the beginning makes it more suitable for pipelining. 



i 

'.l 

I 
i 

I 
I 

,l 

424 Chapter 4 Processor Architecture 

valE valM 

stat icode ifun valC valB dstE dstM srcA srcB 

ds1E dstM srcA srcB 

W_valM 
Decode 

W_valE 

D_stat 

ifun rA rB valC 

lnstruction·' 
~merTiofi:J 

\ ..................... . 

Figure 4.41 Hardware structure of PIPE-, an initial pipelined implementation. By 
inserting pipeline registers info SEQ+ (Figure 4.40), we create a five-stage pipeline. There 
are several shortcomings of this version that we will deal with shortly. 



Section 4.5 Pipelined ¥86-64 Implementations 425 

E sits between the decode and execute stages. It holds information about the 
most recently decoded instruction and the values read from the register 
file for processing by the execute stage. / 

M sits between the execute and memory stages. It holds the resti'lts of the 
most recently executed instruction for processing by the pmory stage. 
It also holds information about branch conditions and branch targets for 
processing conditional jun;ps. 

W sits between the memory stage and the feedback paths that supply the 
computed results to the register file for writing and the return address 
to the PC selection logic when completing a ret instruction. 

Figure 4.42 shows how the following code sequence would flow through our 
five-stage pipeline, where the comments identify the instructions as Il to I5 for 
reference: 

irmovq $1,%rax # Il 
2 irmovq $2,%rbx # I2 
3 irmovq $3,%rcx # I3 
4 irmovq $4,%rdx # I4 
5 halt # rs 

2 3 4 5 6 7 8 9 
irmovq $1, %rax #Il 

irmovq $2,%rbx #I2 

iimovq $3,%rcx #I3 

irmovq $4,%rdx #I4 

halt #IS 

Figure 4.42 Example of instruction flow through pipeline. 



' I 
I 

·~ 

426 Chapter 4 Processor Architecture 

The right side of the figure shows a pipeline diagram for this instruction 
sequence. As with the pipeline diagrams for the simple pipelined computation 
units of Section 4.4, this diagram shows the progression of each instruction through 
the pipeline stages, with time increasing from left to right. The numbers along the 
top identify the clock cycles at which the different stages occur. For example, in 
cycle l, instruction I 1 is fetched, and it then proceeds through the pipeline stages, 
with its result being written to the register file after the end of cycle 5. Instruction 
12 is fetched in cycle 2, and its result is written back after the end of cycle 6, and 
so on. At the bottom, we show an expanded view of the pipeline for cycle 5. At 
this point, there is an instruction in each of the pipeline stages. 

From Figure 4.42, we can also justify our convention of drawing processors 
so that the instructions flow from bottom to top. The expanded view for cycle 5 
shows the pipeline stages with the fetch stage on the bottom and the write-back 
stage on the top, just as do our diagrams of the pipeline hardware (Figure 4.41). 
If we look at the ordering of instructions in the pipeline stages, we see that they 
appear in the same order as they do in the program listing. Since normal program 
flow goes from top to bottom of a listing, we preserve this ordering by having the 
pipeline flow go from bottom to top. This convention is particularly useful when 
working with the simulators that accompany this text. 

4.5.3 Rearranging and Relabeling Signals 

Our sequential implementations SEQ and SEQ+ only process one instruction at 
a time, and so there are unique values for signals such as valC, srcA, and valE. In 
our pipelined design, there will be multiple versions of these values associated 
with the different instructions flowing through the system. For example, in the 
detailed structure of PIPE-, there are four white boxes labeled "Stat" that hold 
the status codes for four different instructions (see Figure 4.41). We need to take 
great care to make sure we use the proper version of a signal, or else we could 
have serious errors, such as storing the result computed for one instruction at the 
destination register specified by another instruction. We adopt a naming scheme 
where a signal stored in a pipeline register can be uniquely identified by prefixing 
its name with that of the pipe register written in uppercase. For example, the four 
status codes are named D_stat, E_stat, M_stat, and W_stat. We also need to refer 
to some signals that have just been computed within a stage. These are labeled 
by prefixing the signal name with the first character of the stage name, written 
in lowercase. Using the status codes as examples, we can see control logic blocks 
labeled "Stat" in the fetch and memory stages. The outputs of these blocks are 
therefore named f_stat and m_stat. We can also see that the actual status of the 
overall processor Stat is computed by a block in the write-back stage, based on 
the status value in pipeline register W. 

The decode stages of SEQ+ and PIPE- both generate signals dstE and dstM 
indicating the destination register for values valE and valM. In SEQ+, we could 
connect these signals directly to the address inputs of the register file write port& 
With PIPE-, these signals are carried along in the pipeline through the execute 
and memory stages and are directed to the register file only once they reach 



Section 4.5 Pipelined Y86-64 Implementations 427 

Aside What is the differer;ice between signals M_stat an,d m:_sta"t? 

With"our naming system'; the upperCase prefixes '0', 'E';""M', and !W"'refer to pipeline registers, and so 
M_stat refers to the status code fi)'ld,of pipeline register M'. The lowercase prefixe,s 'f', 'd!, 'e', 'm', aftd· 
'vy' refer to the pipeline stages; and so'm_stat refers to the status:Sig"hal'generated in the memory stage 
by a control logic block. 

'Understanaing this naming conyention is critical to und«rstanding.tlje operation of our i;ipelin.ed 
pr,ocessors. 

the write-back stage (shown in the more detailed views of the stages). We do 
this to make sure the write port address and data inputs hold values from the 
same instruction. Otherwise, the write back would be writing the values for the 
instruction in the write-back stage, but with register IDs from the instruction in 
the decode stage. As a general principle, we want to keep all of the information 
about a particular instruction contained within a single pipeline stage. 

One block of PIPE- that is not present in SEQ+ in the exact same form is the 
block labeled "Select N' in the decode stage. We can see that this block generates 
the value valA for the pipeline register E by choosing either valP from pipeline 
register D or the value read from the A port of the register file. This block is 
included to reduce the amount of state that must be carried forward to pipeline 
registers E and M. Of all the different instructions, only the call requires valP 
in the memory stage. Only the jump instructions require the value of valP in the 
execute stage (in the event the jump is not taken). None of these instructions 
requires a value read from the register file. Therefore, we can reduce the amount 
of pipeline register state by merging these two signals and carrying them through 
the pipeline as a single signal valA. This eliminates the need for the block labeled 
"Data" in SEQ (Figure 4.23) and SEQ+ (Figure 4.40), which served a similar 
purpose. In hardware design, it is common to carefully identify how signals get 
used and then reduce the amount of register state and wiring by merging signals 
such as these. 

As shown in Figure 4.41, our pipeline registers include a field for the status 
code stat, initially computed during the fetch stage and possibly modified during 
the memory stage. We will discuss how to implement the processing of exceptional 
events in Section 4.5.6, after we have covered the implementation of normal in­
struction execution. Suffice it to say at this point that the most systematic approach 
is to associate a status code with each instruction as it passes through the pipeline, 
as we have indicated in the figure. 

4.5.4 Next PC Prediction 

We have taken some measures in the design of PIPE- to properly handle control 
dependencies. Our goal in the pipelined design is to issue a new instruction on 
every clock cycle, meaning that on each clock cycle, a new instruction proceeds 
into the execute stage and will ultimately be completed. Achieving this goal would 

'· 



' j 
428 Chapter 4 Processor Architecture 

Aside Other branch prediction strategies "• 

Our design uses an always taken branch prediction strategy. Studies show this strategy has around a 
60% success rate [44, 122]. Conversely, a never taken (NT) strategy has around a 40% success rate. A 
slightly more sophisticated strategy, known as backward taken, forward not taken (BTFNT), predicts 
that branches to lower addresses than the next instruction will be taken, while those to higher addresses 
will not be taken. This strategy has a success rate of around 65%. This improvement stems from the fact 
that loops are closed by backward branches and loops are generally executed multiple time& Forward 
branches are used for conditional operations, and these are less likely to be taken. In Problems 4.55 
and 4.56, you can modify the Y86-64 pipeline processor to implement the NT and BTFNT branch 
prediction strategies. · 

As we saw in Section 3.6.6, mispredicted branches can degrade the performance of a program 
considerably, thus motivating the use of condition'al data transfer rather than conditional control 
transfer when possible. 

yield a throughput of one instruction per cycle. To do this, we must determine 
the location of the next instruction right after fetching the current instruction. 
Unfortunately, if the fetched instruction is a conditional branch, we will not 
know whether or not the branch should be taken until several cycles later, after 
the instruction has passed through the execute stage. Similarly, if the fetched 
instruction is a ret, we cannot determine the return location until the instruction 
has passed through the memory stage. 

With the exception of conditional jump instructions and ret, we can deter­
mine the address of the next instruction based on information computed during 
the fetch stage. For call and j mp (unconditional jump), it will be vale, the con­
stant word in the instruction, while for all others it will be valP, the address of the 
next instruction. We can therefore achieve our goal of issuing a new instruction 
every clock cycle in most cases by predicting the next value of the PC. For most in­
struction types, our prediction will be completely reliable. For conditional jumps, 
we can predict either that a jump will be taken, so that the new PC value would be 
vale, or that it will not be taken, so that the new PC value would be valP. In either 
case, we must somehow deal with the case where our prediction was incorrect and 
therefore we have fetched and partially executed the wrong instructions. We will 
return to this matter in Section 4.5.8. 

This technique of guessing the branch direction and then initiating the fetching 
of instructions according to our guess is known as branch prediction. It is used in 
some form by virtually all processors. Extensive experiments have been conducted 
on effective strategies for predicting whether or not branches will be taken [46, 
Section 2.3]. Some systems devote large amounts of hardware to this task. In our 
design, we will use the simple strategy of predicting that conditional branches are 
always taken, and so we predict the new value of the PC to be valC. 

We are still left with predicting the new PC value resulting from a rat ,in· 
struction. Unlike conditional jumps, we have a nearly unbounded set of possible 



Section 4.5 Pipelined Y86-64 Implementations 429 

~ '0 

A~ide Return address prediction with a stack·· 'l 

With mqst progra,ms, it is very easy to predict return addreSs~S; since p~cedure calls fllld returns occur 
in matched pairs. Most of the tij!le that a procedure Is called, it re,1;t1i;iis to the instruction following the 
call. This property is exploited in )ligh-performance processors by including a l\,<}Tdware stack within 
the instruction fetch upit th~t holds the return address generated by pi:ocedure '11)1 instructions. Every 
time a P[O,cedure call instruction-is executed, it~ retvrn ac;I~dress is pushed onJo the s1ack. When a return 
irtstruction is fefched, the top value is popped from this stack ahd used as thep~edicted return addreis. 
Like branch.predictioq, a me~hapism must be provideQ to recover when-'lhe prediction was incorrect, 
since there are times when calls and re.turns do.not match. fn general, the prediction is highly reliable. 
This hardware stack is hot part of the programmer-visible state: 

'< t~' ~ ~ 'Ii-"" '"'; ~ ,.. ""' 

results, since the return address will be whatever word is on the top of the stack. 
In our design, we will not attempt to predict any value for the return address. 
Instead, we will simply hold off processing any more instructions until the ret 
instruction passes through the write-back stage. We will return to this part of the 
implementation in Section 4.5.8. 

The PIPE- fetch stage, diagrammed at the bottom of Figure 4.41, is respon­
sible for both predicting the next value of the PC and selecting the actual PC for 
the instruction fetch. We can see the block labeled "Predict PC" can choose either 
valP (as computed by the PC incrementer) or valC (from the fetched instruction). 
This value is stored in pipeline register F as the predicted value of the program 
counter. The block labeled "Select PC" is similar to the block labeled "PC" in the 
SEQ+ PC selection stage (Figure 4.40). It chooses one of three values to serve as 
the address for the instruction memory: the predicted PC, the value of valP for 
a not-taken branch instruction that reaches pipeline register M (stored in regis­
ter M_valA), or the value of the return address when a ret instruction reaches 
pipeline register W (stored in W_valM). 

4.5.5 Pipeline Hazards 

Our structure PIPE- is a good start at creating a pipelined Y86-64 processor. 
Recall from our discussion in Section 4.4.4, however, that introducing pipelining 
into a system with feedback can lead to problems when there are dependencies 
between successive instructions. We must resolve this issue before we can com­
plete our design. These dependencies can take two forms: (1) data dependencies, 
where the results computed by one instruction are used as the data for a.follow­
ing instruction, and (2) control dependencies, where one instruction determines 
the location of the following instruction, such as when executing a jump, call, or 
return. When such dependencies have the potential to cause an erroneous com­
putation by the pipeline, they are called hazards. Like dependencies, hazards can 
b<iclassified as either data hazards or control hazards. We first concern ourselves 
with data hazards and then consider control hazards. 



I 

l 

430 Chapter 4 Processor Architecture 

# progl 

OxOOO: irmovq $10,Y.rdx 

OxOOa: irmovq $3,J,rax 

Ox014: nop 

Ox015: nop 

Ox016: nop 

Ox017: addq Y.rdx,J,ra'x 

Ox019: halt 

F~" 

2 

'{l, . FJ'· 

3 4 5 

If .M 
Ir,. 
w 

~)o~r ~·i...~ M 

-.f; 'D E» 

·~ F~ .P .. 
l 'f•' 

Cyc!e6 

Ar!.raxJ+- 3 

6 

w 
M. 

E 

o· 
F 

7 6 9 10 

M' 

vaJA +- R[Xrdx] = 10 
valB;r Rr!.rax] = 3 

11 

w 

Figure 4.43 Pipelined execution of progl without special piP.eline control. In cycle 
6, the second irmovq writes its result to program register Y~ax. The addq instruction 
reads its source operands in cycle 7, so it gets correct values for both %rdx and %rax. 

Figure 4.43 illustrates the processing of a sequence of instructions we refer to 
as progl by the PIPE- processor. Let us assume in this example and successive 
ones that the program registers initially all have value 0. The code loads values 
10 and 3 into program registers %rdx and %rax, executes three nop instructions, 
and then adds register Y.rdx to %rax. We focus our attention on the potential data 
hazards resulting from the data dependencies between the two irmovqinstructions 
and the addq instruction. On the right-hand side of the figure, we show a pipeline 
diagram for the instruction sequence. The pipeline stages for cycles '6 and 7 are 
shown highlighted in the pipeline diagram. Below this, we show an expanded view 
of the write-back activity in cycle 6 and the decode activity during cycle 7. After 
the start of cycle 7 ,·both of the irmovq instructions have passed through the write­
back stage, and so the register file holds the updated values of %rdx and %rax. 
As the addq instruction passes through the decode stage during cycle 7, it will 
therefore read the correct values for its source operands. The data dependencies 
between the two irmovq instructions and the addq instruction have not created 
data hazards in this example. 

We saw that prog1 will flow through our pipeline and get the correct results, 
because the three nop instructions create a delay between instructions with data 



Section 4.5 Pipelined Y86-64 Implementations 

# prog2 2 3 4 5 6 7 8 9 10 
OxOOO: irmovq $10,f.rdx F. .o E M w· 
OxOOa: irmovq $3,%rax •· o, E "M· 
Ox014: nop p" Q E w "' Ox015: nop 

..F ·M w, 
Ox016: addq %rdx, %rax 

,,0-.~. E M' ·Vf· Ox018: halt 
D E M· •W -

Error 

Figure 4.44 Pipelined execution of prog2 without special pipeline control. The 
write to program register %rax does not occur until the start of cycle 7, and so the addq 
instruction gets the incorrect value for this register in the decode stage. 

dependencies. Let us see what happens as these nop instructions are removed. 
Figure 4.44 illustrates the pipeline flow of a program, named prog2, containing 
two nop instructions between the two irmovq instructions generating values for 
registers %rdx and %rax and. the addq instruction having these two registers as 
operands. In this case, the crucial step occurs in cycle 6, when the addq instruc­
tion reads its operands from the register file. An expanded view of the pipeline 
activities during this cycle is shown at the bottom of the figure. The first irmovq 
instruction has passed through the write-back stage, and so program register %rdx 
has been updated in the register file. The second irmovq instruction is in the write­
back.stage during this cycle, and so the write to program register %rax only occurs 
at the start of cycle 7 as the cloclj:.rises. As a result, the incorrect value zero would 
be read for register %rax (recall that we assume all registers are initially zero), 
since the pending write for this register has not yet occurred. Clearly, we will have 
to adapt our pipeline to handle this.hazard properly. 

Figure 4.45 shows what happens when we have only one nop instruction 
between the irmovq instructions and the addq instruction, yielding a program 
prog3. Now we must examine the behavior of the pipeline during cycle 5 as the 
addq instruction passes through the decode stage. Unfortunately, the pending 

431 



,j 
. 1 
l l 

I 

432 Chapter 4 Processor Architecture 

# prog3 

OxOOO: irmovq $10,%rdx 

OxOOa: irmovq $3,%rax 

Ox014: nop 

Ox015: addq %rdx,%rax 

Ox017: halt 

2 3 4 5 6 7 8 9 

Error 

Figure 4.45 Pipelined exec'ution of prog3 without special pipeline control. In cycle 
5, the addq instruction reads its source operands from the register file. The pending 
write to register %rdx is still in the write-back stage, and the pending write to register 
%rax is still in the memor,y stage. Both operands valA and valB get incorrect values. 

write to register %rdx is still in the write-back stage, and the pending write to 
%rax is still in the memory stage. Therefore, the addq instruction would get the 

incorrect values for both operands. 
Figure 4.46 shows what happens when we remove all of the nop instructions 

between the irmovq instructions and the addq instruction, yielding a program 
prog4. Now we must examine the behavior of the pipeline during cycle 4 as the 
addq instruction passes through the decode stage. Unfortunately, the pending 
write to register %rdx is still in the memory stage, and the new value for %rax 
is just being computed in the execute stage. Therefore; the addq instruction would 
get the incorrect values for both operands. 

These examples illustrate that a data hazard can arise for an Jnstruction 
when one of its operands is updated by any of the three preceding instructions. 
These hazards occur because our pipelined processor reads, the operands for an 
instruction from the register file in the decode stage but does not write the results 
for the instruction to the register file until three cycles later, after the instruction 
passes through the write-back stage. 



# prog4 

OxOOO: irmovq $10,%rdx 

OxOOa: irmovq $3,%rax 

Ox014: addq %rdx,%rax 

Ox016: halt 

2 3 4 

Section 4.5 Pipelined ¥86-64 Implementations 

5 8 

'w'. 

Error 

Figure 4.46 Pipelined execution of prog4 without special pipeline control. In cycle 
4, the addq instruction reads its source operands from the register file. The pending 
write to register %rdx is still in the memofy stage, and the new value for register %rax 
is just being computed in the execute stage. Both operands valA and valB get incorrect 
values. 

Avoiding Data Hazards by Stalling 

One very general technique for avoiding hazards involves stalling, where the 
processor holds back one or more instructions in the pipeline until the hazard 
condition no longer holds. Our processor can avoid data hazards by holding back 
an instruction in the decode stage until the instructions generating its source op­
erands have passed through the write-back stage. The details of this mechanism 
will be discussed in Section 4.5.8. It involves simple enhancements to the pipeline 
control logic. The effect of stalling is diagrammed in Figure 4.47 (prog2) and Fig­
ure 4.48 (prog4). (We omit prog3 from this discussion, since it operates similarly 
to the other two examples.) When the addq instruction is in the decode stage, 
the pipeline control logic detects that at least one of the instructions in the exe­
cute, memory, or write-back stage will update either register %rdx or register %rax. 
Rather than letting the addq instruction pass through the stage with the incorrect 
results, it stalls the instruction, holding it back in the decode stage for either one 
(for prog2) or three (for prog4) extra cycles. For all three programs, the addq in­
struction finally gets correct values for its two source operands in cycle 7 and then 
proceeds down the pipeline. 

433 



' I! 
I 

434 Chapter 4 Processor Architecture 

# prog2 

OxOOO: irmovq $10,%rdx 

OxOOa: irmovq $3,%rax 

Ox014: nop 

Ox015: nop 

bubble 

Ox016: addlq %rdx,%rax 

Ox018: halt 

2 3 4 5 6 7 a 9 10 11 

w 

r'" E M W 

D,.; ;E 

Figure 4.47 Pipelined exec.ution of prog2 using stalls. After decoding the addq 
instruction in cycle 6, the stall control logic detects a data hazard due to the pending 
write to register i'.rax in the write-back stage. It injects a bubble into the execute stage 
and repeats the decoding of the addq instruction in cycle 7. In effect, the machine has 
dynamically inserted a nop instruction, giving a flow similar to that shown for prog1 

(Figure 4.43). 

# prog4 2 3 4 5 6 7 a 9 10 11 

OxOOO: irmovq $10,/.rdx ~Ji)~-.;t:'.: ~:.,o: ,, """~it "M', ·Vi. 
OxOOa: irmovq $3,%rax ;f"" 

-,'b ., • "E' M ¥!. "" '· ,'• 

bubble E M w 

bubble E M w 
bubble E M w 

Ox014: addq Y.rdx, Y,rax :F .• ·o· .p • • P ~:E~i M: ,v-( 
/! ~ 

,, 

Ox016: halt . ~ f' ~f··~ ,p . E M. w 

Figure 4.48 Pipelined execution of prog4 using stalls. After decoding the addq 
instruction in cycle 4, the stall control logic detects data hazards for both source registers. 
It injects a bubble into the execute stage and repeats the decoding of the addq instruction 
on cycle 5. It again detects hazards for both source registers, injects a bubble into the 
execute stage, and repeats the decoding of the addq instruction on cycle 6. Still, it 
detects a hazard for source register %rax, injects a bubble into the execute stage, and 
repeats the decoding of the addq instruction on cycle 7. In effect, the machine has 
dynamically inserted three nop instructions, giving a flow similar to that shown for 

prog1 (Figure 4.43). 

In holding back the addq instruction in the de.code stage, we must also hold 
back the halt instruction following it in the fetch stage. We can do this by keeping 
tbe program counter at a fixed value, so that the halt instruction will be fetched 

repeatedly until tbe stall has completed. 
Stalling involves 'holding back one group of instructions in their stages while 

allowing other instructions to continue flowing through the pipeline. What then 
should we do in the stages that would normally be processing the aCldq instruction? 
We handle these by injecting a bubble into the execute stage each time we hold 
an instruction back in tbe decode stage. A bubble is like a dynamically generated 
nop instruction-it does not cause any changes to tbe registers, the memory, the 



Section 4.5 Pipelined Y86-64 Implementations 435 

Aside Enumerating classes of data hazards 

Hazaras fan poteniially oceur when one instruction upda(es part Of the piogram state that will be 
read By aJateridstruction. For Y86'64, the program state'inclu,aes the program registers, the program 
counter, the"memory, the ~onditi'on-cod&register, and the stqtus· register. Let us look afthe hazard 
possibilities iif our proposed·ctesigh for each of these forms of state. 

Program registers. These are the.hazards we have already identified. They arise because the register 
. file is tead in. one~stage afid written in another,..leading~to possible unintended interactions 

between different instructions. ~ .. 

Program counter. Conflicts between up_flating and reading the program co"unter give rise to control 
hazards. No hazard arises when our fetch-stage logic correctly predicts the new value of 
the program counter before fetching the,nexfinstruction. Misptedicted branches and ret 
instructipns ,ReqUife SP,eciaJ"handling, ~Swill-be discusse_d in ~ection 4.~.5. 

Memory. Writes and reads Of the data memory both occur in the memory o!tage. By the time an 
:oinstruction reading memory reaihes thisi stage, any preceding insttuctions writing memory 
wili'.have already done so. 0h the other hand: there can be interference between instructions 
writing data in the memory stage and tlie re'ading of instructions in the fetch stage, since the 
instruction •and data membries refe'rence~a single addre,~s space. This can only happen with 
programs containing self-modifying code, where instrU.ctions write to a portion of memory 
from which instructions are later fetched. Some systems have complex mechanisms to detect 
and avoid such h~zards, while others 'simply mandate that programs should not use self­
modifying code. We will assume for simplicity. that programs do not modify themselves, and 
therefore ,we do pot need to take special measures to update the instruction memory based 
on updates to the data memory during program e~ecution. 

Condition code register. These are written by integer operations in the execute stage. They are read by 
cqnditional moves 1n the ~xecute stage and by conditional jumps in the memory stage. By the 
time a conditioµal move or jump reaches the execute stage, any preceding integer oper3;tion 
will have already completed this stage. No hazards can arise. 

Status register. The program stat4,S can be affected by instructions as they flow through the pipeline. 
Our mechaniSm of associating a- status cqde with each instruction in the pipeline enables 
the proc_essor to come to an orderly halt when an exception occurs, as will be discussed in 
Section 4.s:6. 

'Fhis analysis shows thar we bnly· need to deal with register data hazards, control hazards, and 
making sure exc~ptions are hanqled pr9perly. A ~ystematic ,analysis of !his form is important when 
designing a complex system. It can identify the.potential difficulties in implementing the system, and it 
can guideJhe generation of test programs to be used in checking the correctness of the system. 

condition codes, or the program status. These are shown as white boxes in the 
pipeline diagrams of Figures 4.47 and 4.48. In these figures the arrow between 
the box labeled "D" for the addq instruction and the box labeled "E" for one of 
the pipeline bubbles indicates that a bubble was injected into the execute stage in 
place of the addq instruction that would normally have passed from the decode to 



I 
I 
I 
• 

l 
I 
' 
J 
II 

I 

I 
I 

I 
i 

436 Chapter 4 Processor Architecture 

the execute stage. We will look at the detailed mechanisms for making the pipeline 
stall and for injecting bubbles in Section 4.5.8. 

In using stalljng to handle data hazards, we effectively execute programs 
prog2 and prog4 by dynamically generating the pipeline flow seen for prog1 (Fig­
ure 4.43). Injecting one bubble for prog;l,and three for prog4 has the-same effect 
as having three nop instructions between the second irmovq instruction and the 
addq instruction. This mechanism can be implemented fairly easily (see Problem 
4.53), but the resulting performance is not very good. There are numerous cases 
in which one instruction updates a register and a closely following instruction uses 
the same register. This will cause the pipeline to stall for up to three cycles, reduc­
ing the overaij throughput significantly . 

Avoiding Data Hazards by Forwarding 

Our design for PIPE- reads source operands from the register file in the decode 
stage, but there can also be a pending write to one of these source registers in 
the write-back stage. Rather than stalling until the write has completed, it can 
simply pass the value that is about to be written to pipeline register E as the 
source operand. Figure 4.49 shows this strategy with an expanded view of the 
pipeline diagram for cycle 6 of pro112. The decode-stage logic detects that register 

# prog2 1 2 3 4 5 7 8 9 10 

OxOOO: irmovq $10,1.rdx !>F'.' - ·;r:t E, 
OxOOa: irmovq $3,i.rax F ,() . 
Ox014: nop . .F • D 
Ox015: nop F 'tJ . 
Ox016: addq i.rdx,i.rax M 'f'i, 
Ox018: halt e' M • w 

Figure 4.49 Pipelined execution of prog2 using forwarding. In cycle 6, the decode­
stage logic detects the presence of a pending write to register %rax in the write-back 
stage. It uses this value for source operand' valB rather than the value read from the 
register file. 



# prog3 

OxOOO: irmovq $10,%rdx 

OxOOa: irmovq $3,%rax 

Ox014: nap 

Ox005: addq %rdx,%rax 

Ox017: halt 

2 3 4 

Section 4.5 Pipelined Y86-64 Implementations 437 

5 6 7 8 

Figure 4.50 Pipelined execution of prog3 using forwarding. In cycle 5, the decode­
stage logic detects a pending write to register %rdx in the write-back stage and to 
register %rax in the memory stage. It uses these as the values for valA and valB rather 
than the values read from the register file. 

%rax is the source register for operand, valB, and that there is also a pentling 
write to %rax on write port E. It can therefore avoid stalling by simply using the 
data word supplied to port E (signal W_valE) as the value for operand valB. This 
technique of passing a result value directly from one pipeline stage to an earlier 
one is commonly known as data forwarding (or simply forwarding, and sometimes 
bypqssing). It allows the instructions of prog2 to proceed through the pipeline 
without any stalling. Data forwarding requires adding additional data connections 
and control logic to the basic hardware structure. 

As Figure "4.50 illustrates, data forwarding can also be used when there is 
a pending write to a register in the memory stage, avoiding the need to stall 
for program prog3. In cycle 5, the decode-stage logic detects a pending write to 
register %rdx on port E in the write-back stage, as well as a pending write to register 
%rax that is on its way to port E but is still in the /llemory stage. Rather than stalling 
until the writes have occurred, it can use the value in the write-back stage (signal 
W_valE) for operand valA and the value in the memory stage (signal M_valE) for 
operand valB. 



'l 

! 
I; I 

I i 
I I 

I 

I 
I , , 
Ii 
1 

I 

438 Chapter 4 Processor Architecture 

# prog4 

OxOOO: irmovq $10 1 %rd.x 

OxOOa: irmovq $3,%rax 

Ox014: addq %rdx.,%rax 

Ox016: halt 

F' 

2 . 
fl 

,, J~;f 

3 4 5 6 7 8 

Figure 4.51 Pipelined execution of prog4 using forwarding. In cycle 4, the decode· 
stage logic detects a pending write to regis.ter %rdx in the memory stage. It also detects 
that a new value is being computed for register %rax in the execute stage. It uses these 
as the values for valA and valB rather than the values read from the register file. 

To exploit data forwarding to its full extent, we can also pass newly computed 
values from the execute stage to the decode stage, avoiding the need to stall for 
program prog4, as illustrated in Figure 4.51. In cycle 4, the decode-stage logic 
detects a pending write to regi~ter %rdx in the memory stage, and also that the 
value being computed by the ALU in the execute stage will later be written to 
register %rax. ltcan use the value in the memory stage (signal M_valE) for operand 
valA. It can also use the ALU output (signal e_v~IE) for operand valB. Note that 
using the ALU output does not introduce any timing problems. The decode stage 
only needs. to generate signals valA and valB' by the end of tlje clock cycle so that 
pipeline register E can be loadGd with the results from the decode stage as the . 
clock rises to start the next cyC!e. The ALU output will be valid before this point. 

The uses of forwarding illustr~ted in programs prog2 to prog4 all involve 
the forwardin&. of values generated by the ALU and destined· for write port E. 
Forwarding can also be used with values read from the memory and destined for 
write port M. From the memory stage, we can forward the value that has just been 
read from the data memory (signal m_valM). From the write-back stage, we can 
forward the pending write to pod'M (signal W_valM). This gives-a total of five 
different forwarding sources le_valE, m_valM, M~valE, W_valM, and W_valE) and 
two ditferent forwarding destinations (valA and valB). 



Section 4.5 Pipelined Y86~64 Implementations 

The expanded diagrams of Figures 4.49 to 4.51 also show how the decode­
stage logic can determine whether to use a value from the register file or to use 
a forwarded value. Associated with every value that will be written back to the 
register file is the __ destination register ID. The logic can compare these IDs with 
the source register IDs srcA and srcB to detect a case for forwarding. It is possible 
to have multiple d<:_stination register IDs match one of the source IDs. We must 
establish a-priority among the different forwarding sources to handle such cases. 
'I)lis will be discussed when we look at the detailed design of the forwarding logic. 

Figure 4.52 shows the structure of PIPE, an extension of PIPE- that can 
handle data hazards by forwarding. Comparing this to the structure of PIPE­
(Figure 4.41), we can see that the values from the five forwarding sources are fed 
back to the two blocks labeled "Sel+Fwd A:' and "Fwd B" in the decode stage. 
The block labeled "Sel+Fwd A:' combines the role of the block labeled "Select A" 
in JllPE- with the forwarding logic. It allows valA for pipeline register E to be 
either the incremented program connter valP, the value read from the A port 
of the register file, or one of the forwarded values. The block labeled "Fwd B" 
implements the forwarding logic for source operand valB. 

Load/Use Data Hazards 

One class of data hazards cannot be handled purely by forwarding, because mem­
ory reads occur late in the pipeline. Figure 4.53 illustrates an example of a load/use 
hazard, where one instruction (the mrmovq at address Ox028) reads a value from 
memory for register %rax while the next instruction (the addq at address Ox032) 
needs this value as a source operand. Expanded views of cycles 7 and 8 are shown 
in the lower part of the figure, where we assume all program registers initially have 
value 0. The addq instruction requires the value of the register in cycle 7, but it is 
not generated by the mrmovq instruction until cycle 8. In order to "forward" from 
the Iiirinovq to the addq, the forwarding logic would have to make the value go 
backward in time! Since this is clearly impossible, we must find some other mech­
anism for handling this form of data hazard. (The data hazard for register %rbx, 
with the value being generated by the irmovq instruction at address Ox01e and 
used by the addq instruction at address Ox032, can be handled by forwarding.) 

As Figure 4.54 demonstrates, we can avoid a load/use data hazard with a 
combination of stalling and forwarding. This requires modifications of the con­
trok!ogic, but it can use existing bypass paths. As the mrmovq instruction passes 
through the execute stage, the pipeline ·control logic detects that the instruction 
in the decode stage (the addq) requires the result read from memory. It stalls the 
instruction in the decode stage for one cycle, causing a bubble to be injected into 
the execute stage. As the expanded view of cycle 8 shows, the value read from 
memory can then be forwarded from the memory stage to the addq instruction 
in the decode stage. The value for register %rbx is also forwarded from the write­
back to the memory stage. As indicated in the pipeline diagram by the arrow from 
the box labeled "D" in cycle 7 to the ~ox labeled "E" in cycle 8, the injected bub­
ble replaces the addq instruction that would normally continue flowing through 
the pipeline. 

439 



,1 

I 

I l 
I 
I 

I 
I 
I 

440 Chapter 4 Processor Architecture 

Execute 

~ stat icode ifun 

l'Wd 
El 

Decode W_valM 

W_valE 

ifun rA rB valC 

lmem_error ; -~1n~i'tUction ,. :ft:,_~ ~ •· Pe • 
lnstr_valid L. ...... \t-l • w~itiemoiy ·,!''' {i f"'·-' ·d 

nicre!Jlen~ 
; Fetch 

!_po 

Figure 4.52 Hardware structure of PIPE, our final pipelined implementation. The 
additional bypassing paths enable forwarding the results from the three preceding 
instructions. This allows us to handle most forms of data hazards without stalling the 
pipeline. 



# prog5 2 

OxOOO: irmovq $128,i.rdx ~ ,~F ,. ~ "-"'t.D 
OxOOa: irmovq $3,i.rcx 'F ' 
Ox014: rmmovq i.rcx, O(%rdx) 

Ox01e: irmovq $10,i.rbx 

Ox028: mrmovq O(i.rdx),i.rax #Load i.rax 

Ox032: addq i.ebx,%eax # Use /.rax 

Ox034: halt 

3 . 
E 

. iJ 

'· F'· 

Section 4,5 Pipelined Y86-64 Implementations 441 

4 s 6 

'M, 

•''E 

'o 
. ~-

Cycle 7 

M 

M_dstE = i.rbx 
M_valE = 10 

D 

valA+-M_valE=10 
valB +- R[i.raxJ = 0 

7 a 9 10 11 

Error 

Figure 4.53 Example of load/use data hazard. The addq instruction requires the value 
of register %rax during the decode stage in cycle 7. The preceding mrmovq reads a new 
value for this register during the memory stage in cycle 8, which is too late for the addq 
instruction. 

This use of a stall to handle a load/use hazard is called a load interlock. Load 
interlocks combined with forwarding suffice to handle all possible forms of data 
hazards. Since only load interlocks reduce the pipeline throughput, we can nearly 
achieve our throughput goal of issuing one new instruction on every clock cycle. 

Avoiding Control Hazards 

Control hazards arise when the processor cannot reliably determine the address 
of the next instruction based on the current instruction in the fetch stage. As 
was discussed in Section 4.5.4, control hazards can only occur in our pipelined 
processor for ret and jump instructions. Moreover, the latter case only causes dif­
ficulties when the direction of a conditional jump is mispredicted. In this section, 
we provide a high-level view of how these hazards can be handled. The detailed 
implementation will be presented in Section 4.5.8 as part of a more general dis­
cussion of the pipeliue control. 

For the ret instruction, consider the following example program. This pro­
gram is shown in assembly code, but with the addresses of the different instructions 
on the left for reference: 



I. 

I 
I 
·r 
l 

442 Chapter 4 Processor Architecture 

# prog5 2 3 4 5 

OxOOO: irmovq $128,%rdx , F D E Ill ' w 
OxOOa: irmovq $3,'/.rcx F D'- .E. ..-'l'M, 

Ox014: rmmovq %rcx, O(%rdx) .f D E• 

Ox01e: irmovq $10,%rbx F;. D • 

Ox028: mrmovq O(Y.rdx),%rax #Load %rax 

bubble 

Ox032: addq %rbx,%rax # Use %rax 

Ox034: halt 

6 7 8 9 

,w 
' ,t.1 • w 

·E ''M 

w. 
M 

o· 

valA<-W_valE ~ 10 
valB +-- m_valM:;:: 3 

10 11 12 

w 
• M'. 

. 
w,~ 

'""-' 'M :w • E.t' ~ 
' 

Figure 4.54 Handling a load/use hazard by stalling. By stalling the addq instruction for one cycle in the 
decode stage, the value for valB can be forwarded from the mrmovq instruction in the memoiy stage to the 
addq instruction in the decode stage. 

OxOOO: irmovq stack,%rsp # Initialize stack pointer 
OxOOa: call proc # Procedure call 
Ox013: irmovq $10,%rdx # Return point 
OxOld: halt 
Ox020: .pos Ox20 
Ox020: proc: # proc: 
Ox020: r•t # Return immediately 
Ox021: rrmovq %rdx,%rbx # Not executed 
Ox030: .pos Ox30 
Ox030: stack: # stack: stack pointer 

Figure 4.55 shows how we want the pipeline to process the rat instruction. 
As with our earlier pipeline diagrams, this figure shows the pipeline activity with 



Section 4.5 Pipelined Y86-64 Implementations 443 

# prog7 

OxOOO: irmovq Stack,Y.edx 

OxOOa: call proc 

Ox020: ret 

bubble 

bubble 

bubble 

2 

l 4'i'·• D 

if' 

Ox013: irmovq $10,%edx # Retur n point 

3 

E.•1 

.. D 

F 

4 5 

M• w< 
E 'M 

' 
o~" ,•E 

F D 

F 

6 7 B 9 10 11 

w 
M w -
E M w 
D E M w 
F D E M w 

, "F ~ D . E 'M· w] 

Figure 4.55 Simplified view of ret instruction processing. The pipeline should stall while the ret passes 
through the decode, execute, and memory stages, injecting three bubbles in the process. The PC selection 
logic will choose the return address as the instruction fetch address once the ret reaches the write-back stage 
(cycle 7). 

time growing to the right. Unlike before, the instructions are not listed in the 
same order they occur in the program, since this program involves a control flow 
where instructions are not executed in a linear sequence. It is useful to look at the 
instruction addresses to identify the different instructions in the program. 

As this diagram shows, the ret instruction is fetched during cycle 3 and 
proceeds down the pipeline, reaching the write-back stage in cycle 7. While it 
passes through the decode, execute, and memory stages, the pipeline cannot do 
any useful activity. Instead, we want to inject three bubbles into the pipeline. Once 
the ret instruction reaches the write-back stage, the PC selection logic will set the 
program counter to tqe return address, and therefore the fetch stage will fetch the 
irmovq instruction at the return point (address Ox013). 

To handle a mispredicted branch, consider the following program, shown in 
assembly code but with the instruction addresses shown on the left for reference: 

OxOOO: xorq %rax,%rax 
Ox002: jne target # Not taken 
OxOOb: irmovq $1, %rax # Fall through 
Ox015: halt 
Ox016: target: 
Ox016: irmovq $2, %rdx # Target 
Ox020: irmovq $3, %rbx # Target+! 
Ox02a: halt 

Figure 4.56 shows how these instructions are processed. As before, the instruc­
tions are listed in the order they enter the pipeline, rather than the order they occur 
in the program. Since the jump instruction is predicted as being taken, the instruc­
tion at the jump target will be fetched in cycle 3, and the instruction following this 
one will be fetched in cycle 4. By the time the branch logic detects that the jump 
should not be taken during cycle 4, two instructions have been fetched that should 
not continue being executed. Fortunately, neither of these instructions has caused 
a change in the programmer-visible state. That can only occur when an instruction 



.f 
11 

l 
' 
I 
I 

444 Chapter 4 Processor Architecture 

# prog7 

OxOOO: xorq %rax,%rax [ F 
Ox002: jne target #Not taken 

Ox016: irmovl $2,%rdx # Target 

bubble 

Ox020: irmovl $3,%rbx #Target 

bubble 

+1 

2 

'°" :$'' " ,f; 

OxOOb: irmovq $1,%rax #Fall t hrough 

Ox015: halt 

3 4 

''E M 

rJ E 

F D 

4 
F, 
4 

5 6 7 B 9 10 

w 
M w . 
E M w 

D E M w 
F D E M :NI 

< D ,£ M: w.J 
Figure 4.56 Processing mispredicted branch instructions. The pipeline predicts 
branches will be taken and so starts fetching instructions at the jump target. Two 
instructions are fetched before the misprediction is detected in cycle 4 when the jump 
instruction flows through the execute stage. In cycle 5, the pipeline cancels the two 
target instructions by injecting bubbles into the decode and execute stages, and it also 
fetches the instruction following the jump. · 

reaches the execute stage, where it can cause the condition codes to .c~ange. At 
this point, the pipeline can simply cancel (sometimes called instruction/quashing) 
the two misfetched instructions by injecting bubbles into the decode and execute 
stages on the following cycle while also fetching the instruction fol!bwing the jump 
instruction. The two misfetched instructions will then simply disappear from 'the 
pipeline and therefore not have any effect on the programmer-visible state. The 
only drawback is that two clock cycles' worth of instruction processing capability 
have been wasted. 

This discussion of control hazards. indicates that they can be hand)ed by 
careful consideration of the pipeline control logic. Techniques such as stalling 
and injecting bubbles into the pipeline dynamically adjust the pipeline fiow when 
special conditions arise. As we will discus~ in Section 4.5'.s, a simple extension to 
the basic clocked register design ivill enable us to stall stages and to inject bubbles 
into pipeline registers as part of the pipeline control logic. 

4.5.6 Exception Handling 

As we will discuss in Chapter 8, a variety of activities in a processor can lead 
to exceptional control flow, where the normal chain of program execution gets 
broken. Exceptions can be generated either internally, by the executing program, 
or externally, by some outside signal. Our instruction set architecture includes· 
three different internally generated exceptions, caused by (r) a hal 1> instruction, 
(2) an instruction with an invalid combination of instruction and function code, · 
and (3) an attempt to access an invalid address, either for instruction fetch or 
data read or write. A more complete processor design would also handle external. 
exceptions, such as when the processor receives a signal thatthe network interface 
has received a new packet·or the user'has clicked a mouse button. Handling 



Section 4.5 Pipelined Y86-64 Implementations 445 

exceptions ~orr.ectly is a challenging aspect of any microprocessor design. They can 
occur at unpredictable times, and they require creating a clean break in the flow 
of instructions through the processor pipeline. Our handling of the three internal 
exceptions gives just a glimpse of the true complexity of correctly detecting and 
handling exceptions. 

Let us refer tp the instruction causing the exception as the excepting instruc­
tion. In the case of an invalid instruction address, there is no actual excepting 
instruction, but.it is useful to think of there being a sort of "virtual instruction" 
at the invalid address. In our. simplified ISA model, we want the processor to halt 
when if reaches an exception and to set the appropriate status code, as listed in Fig­
ure 4.5. It should appear that all instructions up to the excepting instruction have 
completed, but none of the following instructions should have any effect on the 
programmer-visible state. In a 'more complete design, the processor would con­
tinue by invoking an exception handler, a pr.ocedure that is part of the operating 
system, but implementing tills part of exception handling is beyond the scope of 
our presentation. 

In a pipelined system; exception handling involves several subtleties. First, it is 
possible to have exceptions triggered by multiple instructions simultaneously. For 
example, during one cycle 6f pipeline operation, we could have a halt instruction 
in the fetch stage, and the data memory could report an out-of-bounds data 
addressior the instruction in the memory stage. Wemust determine which of these 
exceptions the processor should report to the operating system. The basic rule is to 
put priority on the exception triggered by the instruction that is furthest along the 
pipeline.'In the example above, this would be the out-of-bounds address attempted 
by the instruction in the memory stage. In terms of the macillne-language program, 
the instruction in the memory stage should appear to execute before one in the 
fetch stage, and therefore only tills exception should be reported to the operating 
system: 

A 'second subtlety occurs when an instruction is first fetched and begins 
execution, causes an exception, and later is canceled due to a mispredicted branch. 
The following is an example of such a program in its object-code form: 

OxOOO' 6300 xorq %rax,%rax 
Ox002: 741600000000000000 jne target # Not taken 
OxOOb: 30f00100000000000000 irrnovq $1, %rax # Fall through 
Ox015: 00 halt 
Ox016: target: 
Ox016: ff .byte,OxFF # Invalid instruction 

In this program, the pipeline will predict that the branch should be taken, 
and so it will fetch and attempt to use a byte with value OxFF as an instruction 
(generated in the assembly code using the .. byte directive). The decode stage will 
therefore detect an invalid instruction exception. Later, the pipeline will discover 
that the branch should not be taken, and so the instruction at address Ox016 
should never even have been fetched. The pipeline control logic will cancel this 
instruction, but we want to avoid raising an exception. 

code 



I 

i 

" 
I 

446 Chapter 4 Processor Architecture 

A third subtlety arises because a pipelined processor updates different parts 
of the system state in different stages. It is possible for an instruction following 
one causing an exception to alter some part of the state before the excepting 
instruction completes. For example, consider the following code sequence, in 
which we assume that user programs are not allowed to access addresses at the 
upper end of the 64-bit range: 

2 

3 

4 

irmovq $1, Yorax 
xorq %rsp,%rsp # Set stack pointer to 0 and CC to 100 
pushq %rax # Attempt to write to Oxfffffffffffffff8 
addq %rax,%rax # (Should not be executed) Would set CC to 000 

The pushq instruction causes an addn;ss exception, because decrementing the 
stack pointer causes it to wrap around to Oxfffffffffffffff8. This exception 
is detected in the memory stage. On the same cycle, the addq instruction is in 
the execute stage, and it will cause the condition codes to be set to new values. 
This would violate our requirement ·that none of the instructions following the 
excepting instruction should have had any effect on the-system state .• 

In general, we can both correctly choose among the different exceptions and 
avoid raising exceptions for instructions that are fetched due to mispredicted 
branches by merging the exception-handling logic into the pipeline structure. That 
is the motivation for us to include a status code stat in each of our pipeline registers 
(Figures 4.41 and 4.52). If an instruction generates an exception at some stage in 
its processing, the status field is set to indicate the nature of the exception. The 
exception status propagates through the pipeline with the rest bf the information 
for that instruction, until it reaches the write-back stage. At this point, the pipeline 
control logic detects the occurrence of the exception and stops execution. 

To avoid having any updating of the programmer-visible state by instructions 
beyond the excepting instruction, the pipeline control logic must disable any 
updating of the condition code register or the data memory when an instruction in 
the memory or write-back stages has caused an exception. In the example program 
above, the control logic will detect that the pushq in the memory stage has caused 
an exception, and therefore the updating of the condition code register :by the 
addq instruction in the execute stage will be disabled. 

Let us consider how this method of handling exceptions deals with the sub­
tleties we have mentioned. When an exception occurs in one or more stages of a 
pipeline, the information is simply stored in the status fields of the pipeline reg­
isters. The event has no effect on the flow of instructions in the pipeline until an 
excepting instruction reaches the final pipeline stage, except to disable any updat­
ing of the programmer-visible state (the condition code register and the memory) 
by later instructions in the pipeline. Since instructions reach the write-back stage 
in the same order as they would be executed in a.nonpipelined processor, we are 
guaranteed that the first instruction encountering an exception will arrive first in 
the ·write-back stage, at which point program execution can stop and the status 
code in pipeline register W can be recorded as the program status. If some in· 
struction is fetched but later canceled, any exception status information about the 



Section 4.5 Pipelined Y86-64 Implementations 447 

instruction gets canceled as well. No instruction following one that causes an ex­
ception can alter the programmer-visible state. The simple rule of carrying the 
exception status together with all other information about an instruction through 
the pipeline provides a simple and reliable mechanism for handling exceptions. 

4.S.7 PIPE Stage Implementations 

We have now created an overall structure for PIPE, our pipelined Y86-64 proces­
sor wit!) forwarding. It uses the same set of hardware units as the earlier sequential 
designs, with the addition of pipeline registers, some reconfigured logic blocks, and 
additional pipeline control logic. In this section, we go through the design of the 
differe1,1t logic blocks, deferring the design of the pipeline control logic to the next 
section: Many of the logic blocks are identical to their counterparts in SEQ and 
SEQ+, exc~pt that we must choose proper versions of the different signals from 
the pipeline registers (written with the pipeline register name, written in upper­
case, as a prefix) or from the stage computations (written with the first character 
of the stage name, written in lowercase, as a prefix). 

As an example, compare the HCL code for the logic that generates the srcA 
signal in SEQ to the corresponding code in PIPE: 

# Code from SEQ 

word srcA = [ 

J ; 

icode in { IRRMOVQ, IRMMOVQ, IOPQ, IPUSHQ } rA; 
icode in { IPDPQ, IRET } : RRSP; 
1 : RNONE; #Don't need register 

# Code from PIPE 

word d_srcA = [ 

J ; 

,D_icode in { IRRMOVQ, IRMMOVQ, IOPQ, IPUSHQ } D_rA; 
D_icode in { IPDPQ, IRET } : RRSP; 
1 : RNONE; #Don't need register 

' 

They differ only in the prefixes added to the PIPE signals: D_ for the source 
values, to indicate that the signals come from pipeline register D, and d:_ for the 
result value, to indicate that it is generated in the decode stage. To avoid repetition, 
we will not show the HCL code here for blocks that only differ from those in SEQ 
because of the prefixes on names. As a reference, the complete HCL code for 
PIPE is given in Web Aside"ARCH:HCL on page 472. 

PC Selection and Fetch Stage 

Figure 4.57 provides a detailed view of the PIPE fetch stage logic. As discussed 
earlier, this stage must also select a current value for the program counter and 
predict the next PC value. The hardware units for reading the instruction from 



448 Chapter 4 Processor Architecture 
',11 
i I 

I M_lcodo 

1 ' stat icode ifun rA rB valC 

Need 
valC ~ 

fnstr 4J:Pc~~ 

valid o+--o ~ Need ·•·· jqcr~~t 
. ----+--+--+--+--' rogids I . . .. , 
... i 

j '-',-..., .... ....._-,,-.~,,"'" -.-.. ~."'. .. .... . ....... i 
$'?.!P9 ~-t~ 

Predict 
PC 

M_Cnd 

M_va\A 

W_icoda 

W_valM 

8;~ct i.-.... _ .... _ .... _ .... _ .... _ ... _ .... _ .... _ .... _ .... _ .... _ ... _ .... _ .... _ .... _ .... _ .... _ ... _ .... _ .... _ .... _ .... _ .... _ ... _ .... _ .... .i.,_ .... _ .... _ ... ",,·.:.·;'_. 

Figure 4.57 PIPE PC selection and fetch logic. Within the one cycle time limit, the 
processor can only predict the address of the next instruction. 

memory and for extracting the different instruction fields are the same as those 
we considered for SEQ (see the fetch stage in Section 4.3.4). 

The PC selection logic chooses between three program counter sources. As a 
mispredicted branch enters the memory stage, the value of valP forthis instruction 
(indicating the address of the following instruction) is read from pipeline register 
M (signal M_valA). When a ret instruction enters the write-back stage, the return 
address is read from pipeline register W (signal W_valM). All other cases use the 
predicted value of the PC, stored in pipeline register F (signal F _predP,C): 

w_ord f_pc = [ 

l ; 

# Mispredicted branch. Fetch at incremented PC 
M_icode == IJXX && !M_Cnd : M_valA; 
# Completion of RET instruction 
W_icode == IRET : W_valM; 
# Default; Use predicted value of PC 
1 : F_predPC; 



Section 4.5 Pipelined Y86-64 Implementations 449 

The PC prediction logic chooses valC for the fetched instruction when it is 
either a call or a jump, and valP otherwise: 

word LpredPC = [ 

l ; 

f_icode in { IJXX, !CALL } f _valC; 
f : f_valP; 

The logic blocks labeled "Instr valid," "Need regids," and "Need va!C" are 
the same as for SEQ, with appropriately named source signals. 

Unlike in SEQ, we must split the computation of the instruction status into 
two paris. In the fetch stage, we can test for a memory error due to an out-of-range 
instruction address; and we can detect an illegal instruction or a halt instruction. 
Detecting an invalid data address must be deferred to the memory stage. 

~~1t2~~a~~~~~~~~ 
Wdte HCL code for the signal f_stat, providing the provisional status for the 
fetcljed instruction. 

Decode and Write-Back Stages 

Figure 4.58 gives a detailed view of the decode and write-back logic for PIPE. The 
blocks labeled dstE, dstM, srcA, and srcB are very similar to their counterparts 
in the implementation of SEQ. Observe that the register IDs supplied to the 
write ports come from the write-back stage (signals W_dstE and W_dstM), rather 
than from the decode stage. This is because we want the writes to occur to the 
destination registers specified by the instruction in the write-back stage. 

«' i 

The block labeled "dstEl' in the decode stage generates the register ID for the E 
port of the register file, based on fields from the fetched instruction in pipeline 
register D. The resulting signal is named d_dstE in the HCL description of PIPE. 
Write HCL code for this signal, based on the HCL description of the SEQ signal 
dstE. (See the decode stage for SEQ in Section 4.3.4.) Do not concern yourself 
with the logic to implement conditional moves yet. 

Most of the complexity of this stage is associated with the forwarding logic. 
As mentioned earlier, the block labeled "Se!+ Fwd A" serves two roles. It merges 
the valP signal into the valA signal for later stages in order to reduce the amount 
of state in the pipeline register. It also implements the forwarding logic for source 
operand valA. 

The merging of signals valA and valP exploits the fact that only the call and 
jump instructions need the value of valP in later stages, and these instructions 



450 Chapter 4 Processor Architecture 

I I e_dstE 
e_valE 

stat icode ifun valC valA 

Sel+Fwd 
A 

valB 

Fwd 
E> 

d_rva1A d_rvalB 

M_dstE 
M_valE 

M_dstM 
m_valM 

W_dstM 

W_valM 

W_dstE 

W_valE 

• ~=st=a~txi=co=d=eJ...::if=u=n.1....=rA;_i~r=B:....i.~=va=l=C:__.1....__:v=al~P~..ll!l!lll 
Figure 4.58 PIPE decode and write-back stage logic. No instruction requires both valP and the value read 
from register port A, and so these two can be merged to form the signal valA for later stages. The block labeled 
"Sel+Fwd K performs this task and also implements the forwarding logic for source operand valA. The block 
labeled "Fwd B" implements the forwarding logic for source operand valB. The register write locations are 
specified by the dstE and dstM signals from the write-back stage rather than from the qecode stage, since it 

is writing the results of the instruction currently in the write-back stage. 

do not need the value read from the A port of the register file. This selection is 
controlled by the icode signal for this stage. When signal D _icode matches the 
instruction code for either call or jXX, this block should select D_valP-as its 

output. 
As mentioned in Section 4.5.5, there are five different forwarding sources, 

each with a data word and a destination register ID: 



Data word 

e_valE 
m_valM 
M_valE 
W_valM 
W_valE 

Register ID 

e_dstE 
M_dstM 
M_dstE 
W_dstM 
W_dstE 

Source description 

ALU output 
Memory output 

Section 4.5 Pipelined Y86-64 Implementations 451 

Pending write to port E in memory stage 
Pending write to port Min write-back stage 
Pending write to port E in write-back stage 

If none of the forwarding conditions hold, the block should select d_rvalA, the 
value read from register port A, as its output. 

Putting all of this together, we.get the following HCL description for the new 
value of valA for pipeline register E: 

word 

l ; 

d_valA = [ 

D_icode in { ICALL, 
d_srcA == e_dstE 
d_srcA == M_dstM 
d_srcA M_dstE 
d_srcA == W_dstM 
d_srcA == W_dstE 

IJXX } 
e_valE; 
m_valM; 
M_valE; 
W_valM; 
W_valE; 

D_valP; # Use incremented PC 
# Forward valE from execute 
# Forward valM from memory 
# Forward valE from memory 
# Forward valM from write back 
# Forward valE from write back 

1 : d_rvalA; # Use value read from register file 

The priority giyen to the five forwarding sources in the above HCL code is 
very important. This priority is determined in the HCL code by the order in which 
the five destination register IDs are tested. If any order other than the one shown 
were chosen, the pipeline would behave incorrectly for some programs. Figure 4.?9 
shows an example of a program that requires a correct setting of priority among 
the forwatding sources in the ex<;.cute and memory stages. In this program, the 
first two'i11si~uctions write to register %rdx, while thethird uses 'this regist9r as its 
source operand. When the rrmovq instruction reaches the decode stage in cycle 
4, the forwarding logic must choose between two values destined for its source 
register. Which one should it choose? To set the priority, we must consider the 
behavior of the machine-language program when it is executed one instruction 
at a time. The first irmovq instruction would set register %rdx to 10, the second 
would set the register to 3, and then the rrmovq instruction would read 3 from 
%rdx. To imitate this behavior, our pipelined implementation should always give 
priority to the forwarding source in the earliest pipeline stage, since it holds the 
latest instruction in the program sequence setting the register. Thus, the logic in the 
HCL code above first tests the forwarding source in the execute stage, then those in 
the memory stage, and finally the sources in the write-back stage. The forwarding 
priority between the two sources in either the memory or the write-back stages 
is only ,a concern for the instruction popq %rsp, since only this instruction can 
attempt two simultaneous writes to the same register. 



., 
1J 

I ( 

I 

I 
' I 

! 

452 Chapter 4 Processor Architecture 

# prog8 2 3 4 5 6 7 8 

OxOOO: irmovq $10. Y,rdx ~~~ ~ E/l· 
OxOOa: irmovq $3, :t.rdx "l:/11, 

Ox014: rrmovq 'l.rdx.'l.rax E<> II!. •-JN~~ . 
"1 · w· Ox016: halt 

' 

Figure 4.59 Demonstration of forwarding priority. In cycle 4, values for %rdx are 
available from both the execute and memory stages. The forwarding logic should choose 
the one in the execute stage, since it represents the most recently generated value for 
this register. 

Mrfctrmr>t~s~:mli1Uli2ml~tiot.,.::r ~'I/.:.. '.":tI{"'.t,;~~:::~ili!1c.:J 
Suppose the order of the third and fourth cases (the two forwarding sources 
from the memo.fY stage) in the HCL code for d_valA were reversep. D~scribe the 
resulting behavior of t,he rrmovq instruction (line 5) for the following program: 

irmovq $5 1 %rdx 
2 irmovq $0x100,%rsp 
3 rmmovq %rdx,O(%rsp) 
4 popq %rsp 
5 rrmovq %rsp,%rax 

mrnr££H!b'Wm~c~~we:nw:tm~i'::~~ '·ii 
Suppose the order of the fifth and sixth cases (the two 'forwarding sources from 
the write-back stage) in the HCL code for d_valA were reversed. Write a Y86-64 
program that would be executed incorrectly. Describe how the error would occur 
and its effect on the program behavior. l 



Section 4.5 Pipelined Y86-64 Implementations 453 

mract1cg}1'~!2i.li;Ji1ii?3'.£:ii~~1:-..1::~*'m!J1,l.~~~ 
Write HCL code for the signal d_valB, giving the value for source operand valB 
supplied to pipeline register E. 

One small part of"the write-back stage remains: As shown in Figure 4.52, the 
overall_pr.ocessor status Stat is computed bl( a block based on the status value in 
pipeline register W. Recall from Section 4.1.l that the code should indicate either 
normal operation ( AOK) or one of the three exception conditions. Since pipeline 
register W holds the state of the most recently completed instruction, it is natural 
to use this value as an indication of the overall processor status. The only special 
case to consider is when there is a.bubble in the write-bacl{ stage. This is part of 
normal operation, and so we want the status code to be AOK for this case as well: 

word Stat = [ 

l ; 

W_stat == SBUB SAOK; 
1 : W_stat; 

Execute Stage 

Figure 4.60 shows the execute stage logic for PIPE. The qardware units and the 
logic blocks are identical to lhose in SEQ, with an appropriate renaming of signals. 
We can see the signals e_valE and e_dstE directed toward the decode stage as 
one of the forwarding sources. One difference is that the logic labeled "Set CC," 
which determines whether or not to update the condition codes, has signals m_stat 
and W _stat as inputs. These signals are used to detect cases whe_re an instruction 

W_stat---l--+-+I 
m_stat---i--+---+-1 

stat 1code ifun valC 

valE valA 

t----+------1--f------a_valE 

val A 

AUJ 
fun. 

vars 

...---i-------e_dstE 

dstE dstM srcA srcB 

Figure 4.60 PIPE execute stage logic. This part of the design is very similar to the logic 
in the SEQ implementation. 



I 
I 

,j 

454 Chapter 4 Processor Architecture 

.__ ___ __, Mem. 
re~d 

0------1 Mem. 
write 

valE 

----"------ M_dstE 
0----~ M_ds!M 

Figure 4.61 PIPE memory stage logic. Many of the signals from pipeline registers 
M and W are passed down to earlier stages to provide write-back results, instruction 
addresses, and forwarded results. 

causing an exception is passing through later pipeline stages, aud therefore any 
updating of the condition codes should be suppressed. This aspect of the design is 
discussed in Section 4.5.8. 

~~~~a~s~:;:421~;~::;:1:)1~ 
Our second case in the HCL code for d_valA uses signal e_dstE to see whether
to select the ALU,putput e_valE as the forward,ing s9

1
urce. Suppose instead that

we use signal E_dstE, the destination register, ID ih pipeline register E for this
selection. Write a Y86-64 program that would give an incorrect resuli with this
modified forwarding logic.

Memory Stage

Figure 4.61 shows the memory stage logic for PIPE. Comparing this to the memory
stage for SEQ (Figure 4.30), we see that, as noted before, the block labeled "Mem.
data" in SEQ is not present in PIPE. Thi,s block served to select between data
sources valP (for call instructions) 'Ind valA, buMhis selection is now performed
by the block labeled "Sel+Fwd N' in the decode stage. Most other blocks in this
stage are identical to their cc;mnterparts in SEQ, with an aperopriate renaming
of the signals. In this .figure, you can also see that many of the valµes ih·pipeline
registers and M arid W are supplied toother parts of the circuit"aspart of the
forwarding ahd pipeline control logic.

Section 4.5 Pipelined Y86-64 Implementations 455

In this stage, we can complete the computation of the status code Stat by detecting
the case of an invalid address for the d\lta memory. Write HCL code for the signal
m_stat.

4.5.8 Pipeline Control Logic

We are now ready to complete our design for PIPE by creating the pipeline control
logic. This logic must handle the following four control cases for which other
mechanisms, such as data forwarding and branch prediction, do not suffice:

Load/use hazards. The pipeline must stall for one cycle between an instruction
that reads a value from memory and an instruction that uses this value.

Processing ret. The pipeline must stall until the ret instruction reaches the
write-back stage.

Mispredicted branches. By the time the branch logic detects that a jump should
not have been taken, several instructions at the branch target will have
started down the pipeline. These instructions must be canceled,_ and fetch­
ing should begin at the instruction following the jump instruction.

Exceptions. Wben an instruction causes an exception, we want to disable the
updating of the programmer-visible state by later instructions and halt
execution once the excepting instruction reaches the write-back stage.

We will go through the desired actions for each of these cases and then develop
control logic to handle all of them.

Desired Handling of Special Control Cases

For a load/use hazard, we have described the desired pipeline operation in Section
4.5.5, as illustrated by the example of Figure 4.54. Only the mrmovq and popq
instructions read data from memory. When (1) either of these is in the execute
stage and (2) an instruction requiring the destination register is in the decode
stage, we want to hold back the second instruction in the decode stage and inject a
bubble into the execute stage on the next cycle. After this, the forwarding logic will
resolve the data hazard. The pipeline can hold back an instruction in the decode
stage by keeping pipeline register D in a fixed state. In doing so, it should also
keep pipeline register Fin a fixed state, so that the next instruction will be fetched
a second time. In summary, implementing this pipeline flow requires detecting the
hazard condition, keeping pipeline registers F and D fixed, and injecting a bubble
into the execute stage.

For the processing of a ret instruction, we have described the desired pipeline
operation in Section 4.5.5. The pipeline should stall for three cycles until the
return address is read as the ret instruction passes through the memory stage.

I!

I

I
1
1,

Ii

456 Chapter 4 Processor Architecture

This was illustrated by a simplified pipeline diagram in Figure 4.55 for processing
the followi~g program:

OxOOO: irmovq stack,%rsp # Initialize stack pointer

OxOOa: call proc # Procedure call
Ox013: irmovq $10,%rdx # Return point

OxOld: halt
Ox020: .pos Ox20
Ox020: proc: # proc:
Ox020: ret # Return immediately

Ox021: rrmovq %rdx,%rbx # Not executed

Ox030: .pos Ox30
Ox030: stack: # stack: Stack pointer

Figure 4.62 provides a detailed view of the processing of the ret instruction
for the example program. The key observation here is that there is no way to
inject a bubble into the fetch stage of our pipeline. On every cycle, the fetch stage
reads some instruction from the instruction memory. Looking at the HCL code
for implementing the PC prediction logic in Section 4.5.7; we can see that for the
ret instruction, the new value of the PC is predicted to be valP, the address of the
following instruction. In our example program, this would be Ox021, the address
of the rrm'ovq instruction following the re'i! This prediction is not correct for this
example, nor would it be for most cases, but we are not attempting to predict return
addresses correctly in our design. For three clock cycles, the fetch stage stalls,
causing the rrmovq instruction to be fetched but then replaced by a bubble in the
decode stage. This process is illustrated in Figure 4.62 by the three fetches, with an
arrow leading down to the bubbles passing through the remaining pipeline stages.
Finally, the irmovq instruction is fetched on cycle 7. Comparing Figure 4.62 with

• prog6 1 2 3 4 5 6 7 8 9 10 11

OxOOO: irmovq Stack,Y.rsp ~ ~p:'·~ ~ t'.> f '\E' . "M·· wff~~
' F\: o •' .s. :~1v1~ ,If}?, OxOOa: call proc .,

Ox020:
'• ·o~(t;'o ··o'· ,'{!' -~r ·w:·· ret ~Fa!, ~"' ' "

Ox021: rrmovq %rdx,%rbx • Not executed ··~.'F~
bubble D E M w

Ox021: rrpovq Y.rdx,Y,rbx • Not executed

bubble E· M w
Ox021: rrmovq %rdx,%rbx • Not executed

bubble D E M w
Ox013: irmovq $10,Y.rdx • Return point "J.·" t cf:·~ '& '" ~ "' ' .. ;}, ~ -~ . E: ,""'~"~ vi

Figure 4.62 Detailed processing of the ret instruction. The fetch stage repeatedly
fetches the rrrnovq instruction following the ret instruction, but then the pipeline
control logic injects a bubble into the decqde stage rather th,an allowing t,he rrmovq
instruction to proceed. The resulting behavior is equivalent to that shown in Figure 4.55.

Section 4.5 Pipelined Y86-64 Implementations 457

Figure 4.55, we see that our implementation achieves the desired effect, but with
a slightly peculiar fetching of an incorrect instruction for three consecutive cycles.

When a mispredicted branch occurs, we have described the desired pipeline
operation in Section 4.5.5 and illustrated it in Figure 4.56. The misprediction will
be detected as the j~p instruction reaches the execute stage. The control logic
then injects bubbles into the decode and execute stages on the next cycle, causing
the two incorrectly fetched instructions to be canceled. On the same cycle, the
pipeline reads the correct instruction into the fetch stage.

For an instruction that causes an exception, we must make the pipelined im­
plementation match the desired ISA behavior, with all prior instructions complet­
ing and with none of the following instructions having any effect on the program
state. Achieving these effects is complicated by the facts that (1) exceptions are
detected during two different stages (fetch and memory) of program execution,
and (2) the program state is updated in three different stages (execute, memory,
and write-back).

Our stage designs include a status code stat in each pipeline register to track
the status of each instruction as it passes through the pipeline stages. When an
exception occurs, we record that information as part of the instruction's status and
continue fetching, decoding, and executing instructions as if nothing were amiss.
As the excepting instruction reaches the memory stage, we take steps to prevent
later instructions from modifying the programmer-visible state by (1) disabling
the setting of condition codes by instructions in the execute stage, (2) injecting
bubbles into the memory stage to disable any writing to the data memory, and (3)
stalling the write-back stage when it has an excepting instruction, thus bringing
the pipeline to a halt.

The pipeline diagram in Figure 4.63 illustrates how our pipeline control han­
dles the situation where an instruction causing an exception is followed by one that
would change the condition codes. On cycle 6, the pushq instruction reaches the
memory stage and generates a memory error. On the same cycle, the addq instruc­
tion in the execute stage generates new values for the condition codes. We disable
the setting of condition codes when an excepting instruction is in the memory or
write-back stage (by examining the signals m_stat and W _stat and then setting the
signal set_cc to zero). We can also see the combination ofinjecting bubbles into the
memory stage and stalling the excepting instruction in the write-back stage in the
example of Figure 4.63-the pushq instruction remains stalled in the write-back
stage, and none of the subsequent instructions get past the execute stage.

By this· combination of pipelining the status signals, controlling the setting of
condition codes, and controlling the pipeline stages, we achieve the desired behav­
ior for exceptions: all instructions prior to the excepting instruction are completed,
while none of the following instructions has any effect on the programmer-visible
state.

Detecting Special Control Conditions

Figure 4.64 summarizes the conditions requiring special pipeline. control. It gives
expressions describing the conditions under which the three special cases arise.

;
!

l
tj

·I

•
I

458 Chapter4 Processor Architecture

I prog10 2 3 4 5 6 7 B 9 10

OxOOO: irmovq $1,Y.rax F o-' E M w
OxOOa: xorq i.rsp,i.rsp #CC = 100 F' • C> E M 'w_
OxOOc: pushq i.rax F D ~ M w w w ···GJ
OxOOe: addq %rax,Y.rax f D E

Ox010: irmovq $2,7.rax F D E

Figure 4.63 Processing invalid memory reference exception. On cycle 6, the invalid
memory reference by the pushq instruction causes the updating of the condition codes
to be disabled. The pipeline starts injecting bubbles into the memory stage and stalling
the excepting instruction in the write-back stage.

Condition

Processing rat
Load/use hazard
Mispredicted branch
Exception

Trigger

IRET E (D_icode, Licode, M_icode)

E..icode E {IMRMOVQ, IPOPQ) &:&: E..dstM E (d..srcA, d..srcB}

E_icode = IJXX &:&: ! e_Cnd

m..stat E (SADR, SINS, SHLT} 11 W ..stat E {SADR, SINS, SHLT)

Figure 4.64 Detection conditions for pipeline control logic. Four different conditions
require altering the pipeline flow by either stalling the pipeline or canceling partially
executed instructions.

These expressions are implemented by simple blocks of combinational logic that
must generate their results before the end of the clock cycle in order to control
the action of the pipeline registers as the clock rises to start the next cycle. During
a clock cycle, pipeline registers D, E, and M hold the states of the instructions
that are in the decode, execute, and memory pipeline stages, respectively. As
we approach the end of the clock cycle, signals d_srcA and d_srcB will be set to
the register IDs of the source operands for the instruction in the decode stage.
Detecting a ret instruction as it passes through the pipeline simply involves
checking the instruction codes of the instructions in the decode, execute, and
memory stages. Detecting a load/use hazard involves checking the instruction
type (rnrrnovq or popq) of the instruction in the execute stage and comparing its
destination register with the source registers of the instruction in the decode stage.
The pipeline control logic should detect a mispredicted branch while the jump

Section 4.5 P;pelined Y86-64 Implementations 459

instruction is in the execute stage, so that it can -set up the conditions required to
recover fropi the mispredictiori as the instruc.tion enters. the memory stage. When a
jump instruction is in the execute stage, the signal e_ Cnd indicates whether or not
the jump should be taken. We>detect an excepting ihstruction by examining the
instruction status values in the lnemory and write-back stages. For the memory
stage, we use the signal m_stat, computed within the stage, rather than M_stat
from the pipeline register. This internal signal incorporates the possibility of a
data inemory'address error.

Pipeline Control Mechanisms

Figure 4.65 shows-low-level mechanisms that allow the pipeline control logic to
hold back an instruction in a pipeline'register or to inject a bobble into the pipeline.
These mechanisms involve Small extehsions to th~ basic clocked register described

State= x

Input= y

stall
=0

(a) Normal

Output= x
<'

.state=~

, ' lnPut = y Output= x

stau
=1

(b) Stall

State= x

' Input =·y 6UlPut = x

st;>JI bubble
= 0 = 1

(c) Bubble

...

...

...

"

'Rising
t•Clock'

Rising
clock

Rising
clock

State:::;. y

...

State= x

...

State= nop

... ?··~

Figure 4:65 AdditionaLpipeline register operations. (a) Under normal conditions,
the state and output of the register are set to the value at the input when the clock rises.
(b),Whe~ opera.led in.stall mode, the state is)leld fixed•atjts previous value. (~l When
operated in bubble mode, the state js overwritten with that.of a nop operation.

460 Chapter 4 Processor Architecture

Pipeline register

Condition F D E M w
Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal
Mispredicted branch normal bubble bubble normal normal

Figure 4.66 Actions for pipeline control logic. The different conditions require altering
the pipeline flow by either stalling the pipeline or canceling partially executed instructions.

in Section 4.2.5. Suppose that each pipeline register has two control inputs stall
and bubble. Tue settings of these signals determP}i; how the pipeline register is
updated as the clock rises. Under normal operation (Figure 4.65(a)), both of these
inputs are set to 0, causing the register to load its input as its new state. When the
stall signal is set to 1 (Figure 4.65(b)), the updating of the state is disabled. Instead,
the register will remain in its previous state. This makes it possible to hold back
an instruction in some pipeline stage. When the bubble signal is set to 1 (Figure
4.65(c)), the state of the register '!l'ill be set to sqme fixed reset configuration, giving
a state equivalent to that of a nop instruction. Tue particular pattern of ones and
zeros for a pipeline register's reset configuration depends on the set of fields in
the pipeline register. For example, to inject a bubble into pipeline register D, 'f'le
want the icode field to be set to the constant value INOP (Figure 4.26). To inject
a bubble into pipeline register E, we want the icode field to be set to INOP and
the dstE, dstM, srcA, and srcB fields to be set to the constant RNONE. Determining
the reset configuration is one of the tasks for the hardware designer in designing
a pipeline register. We will not concern ourselves with the details here. ~e ;.vill
consider it an error to set both the bubble and the stall signals to 1. ,

The table in Figure 4.66 shows the actions the different pipeline stages should
take for each of the three special conditions. Each involves some combination of
normal, stall, and bubble operations for the pipeline registers. In terms of timing,
the stall and bubble control signals for the pipeline registers are generated by
blocks of combinational logic. These values must be valid as the clock rises, causing
each of the pipeline registers to either load, stall, or bubble as the next clock cycle
begins. With this small extension to the pipeline register designs, we can implement
a complete pipeline, including all of its control, using the basic building blocks of
combinational logic, clocked registers, and random access memorie~. '

Combinations of Control Conditions

In our discussion of the special pipeline control conditions so far, we assumed that
at most one special case could arise during any single clock cycle. A common bug in
designing a system is to fail to handle instances where multiple special conditions
arise simultaneously. Let us analyze such possibilities. We need not worry abqut
combinations involving program exceptions, since we have carefully designed
our exception-handling mechanism to'Consider other instructions in the pipeline.
Figure 4.67 diagrams the pipeline states1hat cause the other three special c'Or!trol

Section 4.5 Pipelined Y86-64•1mplementations 461

Figure '4.67 Mispredict ret 1 ret 2 ret 3
Pipeline states for special
control conditions. The
two pairs indicated can
arise simultaneously. ,~

,. M~ M~ M M ret_,,":.
E ,,,, xx i •. E ' ' E .r,Mt:.'.' E • bubole!i
D , D ~ ,1:e ~ ' D ',.bubble' D · bubble

t Combination A t
Combination B

conditions. These diagrams show blocks for the decodb, execute, and memory
stages. The shaded boxes represent particular constraints that must be satisfied
for the condition to arise. A load/use hazard requires that the instruction in the
execute stage reads a v_alµe from memory into a register, and that the instruction
in the decode stage has "this r,egi&tyr as a source~operand. A mispredicted branch
requires the instruction in the execute stage to have a jump instruction. There are
three possible cases for ret-the instruction can be in either the decode, execute,
or memory stage. A.s the,ret instruction moves through the pipeline, the earlier
pipeline stages will have bubbles.

We can see by these diagrams that most of the control conditions are mutually
exclusive. For example, it is not possible to have a load/use hazard and a mispre­
dicted bran.ch simultaneously, since one requires a load instruction (mrmovq or
popq) in the;execute stage, while the, other requires a jump. Similarly, the second
and third ret cqmbinations cannot occur at the same time as a load/use hazard or
a mispredicted branch. Only the two combinations indicated by arrows can arise
simultaneously. '

Combination A involy,es a not-taken jump instruction in the execute stage and
a ret instruction in the decode stage. Setting up this combination requires the ret
to.be at the target of a not-taken branch. The pipeline control logic should detect
that the branch was mispredicted and therefore cancel.the ret instruction.

IB?Ai;I!if'"&t."lim~~Imlii9"Bil~?!!~.;.;m.tt~7'i
Write a Y86-64 assembly-language program that causes combination A to arise
and determines whether the control logic handles it correctly.

Combining the control actions for the combination A conditions (Figure 4.66),
we get the following pipeline control actions (assuming that either a bubble or a
stall overrides the normal case):

Pipeline r.egister

Condition F D E M w
Processing ret stall bubble normal normal normal
Mispredicted branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal

I
"

'1

I'

. I
I

462 Chapter 4 Processor Architecture

That is, it would be handled like a mispredicted branch, but with a stall in the
fetch stage. Fortunately, on the next cycle, the PC selection logic will choose the
address of the in~truction following the jump, rather than the predicted program
counter, and so it does not matter what happens with the pipeline register F. We
conclude that the pipeline will correctly handle this combination.

Combination B involves a load/use hazard, where the loading instruction sets
register %rsp and the ret instruction then uses this register as a source operand,
since it must pop the return address from the stack. The pipeline control logic
should hold back the ret instruction in the decode stage.

~ln"lE·mli2l~PA~£17~:'.Ai~:·~i2:€iJ
Write a Y86-64 assembly-language•program that causes combination•B to arise
and completes with a halt instruction if the pipeline operates correctly.

Combining the control actions for the combination B conditions (Figure 4.66),
we get the following pipeline control actions:

Pipeline register

Condition F D E M w
Processing ret stall bubble normal normal normal
Loadluse hazard stall stall bubble normal normal

Combination stall bubble+stall bubble normal normal

Desired stall stall bubble normal normal

If both sets ofactions were triggered, the controllogic would try to stall the ret
instruction to avoid the load/use hazard but also inject a bubble into the decode
stage due to the ret instruction.• Clearly, we do not want the pipeline to perform
both sets of actions. Instead, we want it to just take the actions for the loadluse
hazard. The actions for processing the ret instruction should be delayed for one
cycle.

This analysis shows that combination B requires special handling. In fact, our
original implementation of the PIPE control logic did not handle this combination
correctly. Even though the design had passed many simulation tests, it had a subtle
bug that was uncovered only by the analysis we have just shown. When a program
having combination B was executed, the control logic would set both the bubble
and the stall signals for pipeline register D to 1. This example shows the importance
of systematic analysis. It would be unlikely to uncover this bug by just running
normal programs. If left undetected, the pipeline would not faithfully implement
the ISA behavior.

Control Logic Implementation

Figure 4.68 shows the overall structure of the pipeline control logic. Based on
signals from the pipeline registers and pipeline stages, the control logic generates

Section 4.5 Pipelined Y86-64 Implementations 463

valE valM

valE valA

e_Cnd !,
Pipefine .~~~~ ~~~·~~· ... +:;~~:=!
control Jt---~c--,------------------------~
logic

stat icode ifun , vale val A valB

d_srcA

D_lcode

D_bubble . ..rn""1,,---r-'--,-
P:~i~J:::::: 11 [I stat icode ifun , rA rB vaJC valP

Figure 4.68 PIPE pipeline control logic. This logic overrides the normal flow of instructions through the
pipeline to handle special conditions such as procedure returns, mispredicted branches, load/use hazards,
and program exceptions.

stall and bubble control signals for the pipeline registers and also determines
whether the condition code registers should be updated. We can combine the
detection conditions of Figure 4.64 with the actions of Figure 4.66 to create HCL
descriptions for the different pipeline control signals.

Pipeline register F must be stalled for either a load/use hazard or a ret
instruction:

bool F stall
Conditions for a load/use hazard
E_icode in { IMRMOVQ, IPOPQ } &&

E_dstM in { d_srcA, d_srcB } I I
Stalling at fetch while ret passes through pipeline
IRET in { D_icode, E_icode, M_icode };

Pipeline register D must be set to bubble for a mispredicted branch or a ret
instruction. As the analysis in the preceding section shows, however, it should

464 Chapter 4 Processor Architecture

not inject a bubble when there is a load/use hazard in combination with a ret
instruction:

bool D_bubble =
Mispredicted branch
(E_icode == IJXX && !e_Cnd) I I
Stalling at fetch while ret passes through pipeline
but not condition for a load/use hazard
! (E_icode in { IMRMOVQ, !POPQ } && E_dstM in { d_srcA, d_srcB }) &&

IRET in { D_icode, E_icode, M_icode };

rh'o.11 c;:;~·,-,,,,i 'b::l".: ··:4,f i! ""'". ~·~··~g~':.~""'" . .,,,,·" .-~~ "'1 ~"'I!'~~......., ~>U<.ticl".!l!'.!!il!l ""' ~'!ti§Jl!P,• ™""40~ ,~ •"<' " .. ~
Write HCL code for the signal set_ cc in the PIPE implementation. This should
only occur for OPq instructions, and should consider the effects of program excep­
tions.

~-,,·~-:--,,,·,~-:1!1~~~ ~~--,~,'*-'""fl~":"'f1•~-~;~ir~;··· ;:·1~........ W'!l..,;J:·~.,w~~. ~~·.:re:.:J.
!fll!li!i~.PrQ~~~~ 49 ''"• "".. •'•' ~;;,'" · .

" Write HCL code for the signals M_bubble and W_stall in the PIPE in}plemen-
tation. The latter signal requires modifying the exception condition listed in Fig­
ure 4.64.

This covers all of the special pipeline control signal values. In the complete
HCL code for PIPE, all other pipeline control signals are set to zero.

4.5.9 Performance Analysis

We can see that the conditions requiring spe~ial action by the pipeline control
logic all cause our pipeline to fall short of the goal of issuing a new instruction on
every clock cycle. We can measure this inefficiency by determining how often a
bubble gets injected into the pipeline, since these cause unused pipeline cycles. A
return instruction generates three bubbles, a load/use hazard geqerates one, and
a mispredicted branch generates two. We can quantify the effect these penalties
have on the overall performance by computing an estimate of the average number
of clock cycles PIPE would require per instruction it executes, a measure known
as the CPI (for "cycles per instruction"). This measure is the reciprocal of the
average throughput of the pipeline, but with time measured in clock cycles rather
than picoseconds. It is a useful measure of the architectural efficiency of a design.

If we ignore the performance implications of exceptions (which, by definition,
will only occur rarely), another way to think about CPI is to imagine we run the

Section 4.5 Pipelined Y86-64 Implementations 465

Aside Testing the design

As we have seen, there are many ways to introduce bugs into a design, even for a simple microprocessor.
With pipelining, there are many subtle interactions between the instructions at different pipeline stages.
We have seen that many of the design challenges involve unusual instructions (such as popping to the
stack pointer) or unusual instruction combinations (such as a not-taken jump followed by a ret). We
also see that exception handling adds an entirely new dimension to the possible pipeline behaviors.
How, t,hen, can we be sure that our design is correct? For hardware manufacturers, this is a dominant
concern, since they cannot simply report an error and have users download code patches over the
Internet. Even a simple logic design error can have serious consequences, especially as microprocessors
are increasingly used to operate systems that are critical to our lives and health, such as automotive
antilock braking systems, heart pacemakers, and aircraft control systems.

Simply simulating a design while running a number of "typical" programs is not a sufficient meims
of testing a system. Instead,Jhorough testing requires devising ways of systematically gene{ating many
tests that will exercise as many different instructions and instruction combinatiops as possible. In
creating our Y86-64 processor designs, we also devised a !)Umber· of testing scripts, each of which
generates many different tests, runs simulations of.the processor, and compares the resulting register
and memory values to those produced by our YIS instruction set simulator. Here is a brief description
of the scripts:

aptest. Runs 49 tests of different Y86-64 instructions with diff~rent source and destination registers

jtest. Runs 64 tests of the different jump ana call instructions, withdifferent combinations of whether
or not the branches are taken

cmtest. Runs 28 tests of the different conditional move ipstructions, with different control combi­
nations

htest. Runs 600 tests of different data hazard possibilities, with different combinations of source
and destination instructions, and with different numbers of nop instructions between the
instruction pairs

ctest. Tests 22 different control combinations, based on an analysis similar to what we did in Sec­
tion 4.5.8

etest. Tests 12 different combinations where an instruction causes an exception and the iru:i,tructio,ns
following ilcould alter the programmer-visible state

The key idea of this testing method is that we wanMo be as systematic as possible, generating tests that
create the pifferent conditions that are likely to cause pipeline errors.

processor on some benchmark program and observe the operation of the execute
stage. On each cycle, the execute stage either (1) processes an instruction and this
instruction continues through the remaining stages to completion, or (2) processes
a bubble injected due to one of the three special cases. If the stage processes a total
of C; instructions and Cb bubbles, then the processor has required around C; +Cb
total clock cycles to execute C; instructions. We say "around" because we ignore

f

•I

.I

' ' I

466 Chapter 4 Processor Architecture

Aside Formally verifying our design

Even wh'en a design passes an extensive set of tests, we Cannot be certain that if will operate correctly for
all possible programs. The'number of possible programs we could test is unimaginably large, even if we
clnly consider tests consisting of short code segments. Newer methods.offorma/ verification, however,
hold the promise that we can have tools that rigorously consider ~!I possible behaviors of a system and
determine whether or not there ·are any design errors.

We were able to apply formal.verification to an-earlier version of our Y86-64 processors [13].
We set up a framework to compare the -Oehavior qf th~ pipelined design PIPE to•the unpipelined
version SEQ. That is, it was.able to prove that'for an arbitrary•machine-language program, the two
processors would have identical effects on the programmer-visible state. Of cours.e, our verifier cannot
actually run all possible programs, since there afe an infinite mrmber of them. Instead, it uses a form
of proof· by induction, showihg'a consistency between· the two processors on ll cycle-by-cycle basis.
Carrying out this analysis requires reasoning about the hardware using symbolic methods in which we
consider all program values to be arbitrary integers, and.we abstract the ALU as a sort of "black box;!'
computing some unspecjfied function over its argujllents. We assume only that the ALUs for SEQ and
PIPE compute identical functions.

We used the H<;;L descriptions 6(the control logic to ·generate'the control logic.for our symbolic
processor models'"and so we could catch any bugs in the HCL code. Being able to show'that SEQ
and PIPE are identical does not guarantee that eith.er of them faithfully implements the instru<;tion set
~rchitecture. However, it would uncover any bug due to an incorrect pipeline design, aild this is the
major source of design errors.

In our experiments, we verified not only a version of PIPE similar to the one we have presented
in this chapter but also several variants that we &ive as homework problems, in "'.hich we add more
instructions, modify the hardware capabilities, or use different 15ranch prediction strategies. Interest­
ingly, we found only one bug in all of our designs, involving control combination B (described in Section
4'.5.8) for our solution to the variant described in"'Problem 4.58. This expbsed•a-weakness in our testing
regime that caused us to add additional 'Cases to tlieCtest testing script.

Formal verificatioq is still in an early stage of development. The tools are often difficult to use, and
they qo not have the capacity to verify large-scale designs, We we;re able to verify our processors in part
because of their relative simpli\;ity. Even then, it required several weeks of effort and multiple runs of
the tools, each requiring up to 8 hours of computer time. This is an a9tive area of research. with some
tools becoming commercially available and some in use at companies such as Intel, l'\MD, and IBM.

~

the cycles required to start the instructions flowing through the pipeline. We can
then compute the CPI for this benchmark as follows:

CPI= C; +Cb
C;

LO+ Cb
c,

That is, the CPI equals 1.0 plus a penalty term Cb/ c, indicating the average number
of bubbles injected per instruction executed. Since only three different instruction
types can cause a bubble to be injected, we can break this penalty term into three
components:

,,

Section 4.5 Pipelined Y86-64 Implementations 467

- .,,.._....,.,_ - ~.._.._._,.., -· """'" ~.,."' "":"1'""·- ~ ~~ ,,

Web ~slde)~RCH:VLOG yerilog_ imp,Jemencatioh, of a pipelined YB6-p4 processor

As we have men\ioned,'modern:Jo'gic design involves writing textual representations of hardware
designs in a hardware de~triptiofl la'nguage. The design elm the'n be' tested by·bbth simnlation and a
variety offdrmafVerificatioh.iools~ Once we have confidence iri'the design, we can'_ use logic srnthesis
tools to.trahsla(e'the-design into'~ctllal logiC circuits. '

We have developed models of'd'ur~.Y86-64 pro'cessor'designs in the Verilog hardware description
language. These designs combine modules, implementing the basic building blocks of the processor,
along with control logic generated directly from the HCL descriptions. We have been able to synthesize
some of these. designs, downlo~d· the Jogic circuit. description~ onto field-programmable gate array
(FPGA) hardwa(e~ and.run:th.; processors on actuafprograms'." '

·l l "I: •

CPI= LO + Ip + mp + rp

where Ip (for "load penalty") is the average frequency with which bubbles are in­
jected while stalling for load/use hazards, mp (for "111\spredicted branch penalty")
is the average frequency with which bubbles are injected when canceling instruc­
tions due to mispredicted branches, and rp (for "return penalty") is the average
frequency with which bubbles are injected while stalling for ret instructions. Each
of these penalties indicates the total number of bubbles injected for the stated
reason (some portion of Cb) divided by the total number of instructions that were
executed (C;.)

To estimate each of these penalties, we need to know how frequently the
relevant instructions (load, conditional branch, and return) occur, and for each of
these how frequently the particular condition arises. Let us pick the following set
of frequencies for our CPI computation (these are comparable to measurements
reported in (44] and (46]):

• Load instructions (mrmovq and popq) account for 25% of all instructions
executed. Of these, 20% cause load/use hazards.

• Conditional branches account for 20% of all instructions executed. Of these,
60% are taken and 40% are not taken.

• Return instructions account for 2 % of all instructions executed.

We can therefore estimate each of our penalties as the product of the fre­
quency of the instruction type, the frequency the condition arises, and the number
of bubbles that get injected when the condition occurs:

Instruction Condition
Cause Name frequency frequency Bubbles Product

Load!use Ip 0.25 0.20 1 0.05
Mispredict mp 0.20 0.40 2 0.16
Return rp 0.02 LOO 3 0.06

Total penalty 0.27

I I
j
I

j

468 Chapter 4 Processor Architecture

The sum of the three penalties is 0.27, giving a CPI of 1.27.
Our goal was to design a pipeline that cau issue one instruction per cycle,

giving a CPI of 1.0. We did not quite meet this goal, but the overall performance
is still quite good. We can also see that any effort to reduce the CPI further should
focus on mispredicted branches. They account for 0.16 of ouLtotal penalty of0.27,
because conditional branches are common, our prediction strategy often fails, and
we cancel two instructions for every misprediction.

~OSJ!ltrm':reislltU:iJbr\Ji;."[l!'4ijj·j.'.~5~-~Z:'!'.1!!-~:1
Suppose we use a branch prediction strategy that achieves a success rate of 65%,
such as backward taken, forward not taken (BTFNT), as described in Section
4.5.4. What would be the impact on CPI, assuming all of the other frequencies are
not affected?

~l?aiCitct~;&ft!iW'.~d!Utl$dW;.J2~~~~~£';iJ;; J
Let us analyze the relative performa,nce of using conditional data transfers versus
conditional control transf.ers for the)'rograms you wrote for Problems 4.5 and 4.6.
Assume that Ive are ~sirlg these programs to compute the sum of the absolute
values of a very long array, and so the overall performance is determined largely by
the number of cycles required by the inner loop. Assume that our jump instructions
are predicted as being taken, and that around 50% of the array values are positive.

A. On average, how many instructions are executed in the inner loops of the
two programs?

B. On average, how many bubbles would be injected into the inner loops of the
two programs?

C. What is the average number of clock cycles required per array element for
the two programs?

4.5.10 Unfinished Business

We have created a structure for the PIPE pipelined microprocessor, designed the
control logic blocks, and implemented pipeline control logic to handle special
cases where normal pipeline flow does not suffice. Still, PIPE lacks several key
features that would be required in an actual microprocessor design. We highlight
a few of these and discuss what would be required to add them.

Multicycle Instructions

All of the instructions in the Y86-64 instruction set involve simple operations such
as adding numbers. These can be processed in a single clock cycle within the exe­
cute stage. In a more complete instruction set, we would also need to implement
instructions requiring more complex operations such as integer multiplication and

Section 4.5 Pipelined Y86-64 Implementations 469

division and floating-point operations. In a medium-performance processor such
as PIPE, typical execution times for these operations range from 3 or 4 cycles for
floating-point addition up to 64 cycles for integer division. To implement these
instructions, we require both additional hardware to perform the computations
and a mechanism to coordinate the processing of these instructions with the rest
of the pipeline.

One simple approach to implementing multicycle instructions is to simply
expand the capabilities of the execute stage logic with integer and floating-point
arithmetic units. An instruction remains in the execute stage for as many clock
cycles as it requires, causing the fetch and decode stages to stall. This approach is
simple to implement, but the resulting performance is not very good.

Better performance can be achieved by handling the more complex opera­
tions with special hardware functional units that operate independently of the
main pipeline. JYpically, there is one functional unit for performing integer mul­
tiplication and division, and another for performing floating-point operations. As
an instruction enters the decode stage, it can be issued to the special unit. While the
unit performs the operation, the pipeline continues processing other instructions.
Typically, the floating-point unit is itself pipelined, and thus multiple operations
can execute concurrently in the main pipeline and in the different units.

The operations of the different units must be synchronized to avoid incorrect
behavior. For example, if there are data dependencies between the different
operations being handled by different units, the control logic may need to stall
one part of the system until the results from an operation handled by some other
part of the system have been completed. Often, different forms of forwarding are
used to convey results from one part of the system to other parts, just as we saw
between the different stages of PIPE. The overall design becomes more complex
than we have seen with PIPE, but the same techniques of stalling, forwarding, and
pipeline control can be used to make the overall behavior match the sequential
ISA model.

Interfacing with the ME;mory System

In our presentation of EIPE, we assumed that both the instruction fetch unit
and the data memory could read or write any memory location in one clock
cycle. We also ignored the possible hazards caused by self-modifying code where
one instruction writes to the region of memory from which later instructions are
fetched. Furthermore, we reference memory locations according to their virtual
addresses, and these require a translation into physical addresses before the actual
read or write operation can be performed. Clearly, it is unrealistic to do all of this
processing in a single clock cycle. Even worse, the memory values being accessed
may reside on disk, requiring millions of clock cycles to read into the processor
memory.

As will be discussed in Chapters 6 and 9, the memory system of a processor
uses a combination of multiple hardware memories and operating system soft­
ware to manage the virtual memory system. The memory system is organized as a
hierarchy, with faster but smaller memories holding a subset of the memory being

!
!I
I
f
I
I

I I
l
I

!
I
I

470 Chapter 4 Processor Architecture

backed up by slower and larger memories. At the level closest to the processor,
the cache memories provide fast access to the most heavily referenced memory
locations. A typical processor has two first-level caches-one for reading instruc­
tions and one for reading and writing data. Another type of cache memory, known
as a translation look-aside buffer, or TLB, provides a fast translation from virtual
to physical addresses. Using a combination of TLBs and caches, it is indeed pos­
sible to read instructions and read or write data in a single clock cycle most of
the time. Thus, our simplified view• of memory referencing by our processors is
actually quite reasonable.

Although the caches hold the most heavily referenced memory locations,
there will be times when a cache miss occurs, where some reference is made to
a location that is not held in the cache. In the best case, the missing data can be
retrieved from a higher-level cache or from the main memory of the processor,
requiring 3 to 20 clock cycles. Meanwhile, the pipeline simply stalls, holding the
instruction in the fetch or memory stage until the cache can perform the read
or write operation. In terms of our pipeline design, this can be implemented by
adding more stall conditions to the pipeline control logic. A cache miss and the
consequent synchronization with the pipeline is handled completely by hardware,
keeping the time required down to a small number of clock cycles.

In some cases, the memory location being referenced is actually stored in
the disk or nonvolatile memory. When this occurs, the hardware signals a page
fault exception. Like other exceptions, this will cause the processor to invoke the
operating system's exception handler code. This code will then set up a transfer
from the disk to the main memory. Once this completes, the operating system will
return to the original program, where the instruction causing the page fault will be
re-executed. This time, the memory reference will succeed, although it might cause
a cache miss. Having the hardware invoke an operating system routine, which then
returns control back to the hardware, allows the hardware and system software
to cooperate in the handling of page faults. Since accessing a disk can require
millions of clock cycles, the several thousand cycles of processing performed by
the OS page fault handler has little impact on performance.

From the perspective of the processor, the combination of stalling to han­
dle short-duration cache misses and exception handling to handle long-duration
page faults takes care of any unpredictability in memory access times due to the
structure of the memory hierarchy.

4.6 Summary

We have seen that the instruction set architecture, or ISA, provides a layer of
abstraction between the behavior of a processor-in terms of the set of instructions
and their encodings-and how the processor is implemented. The ISA provides
a very sequential view of program execution, with one instruction executed to
completion before the next one begins.

Section 4.6 Summary 471

Asid,e State-of-the-art microprocessor design

A five-stage pipeline, such as we lpve shown with th" PIPE prl:icessor, represented the state of the art in
processor design in the mid-1980& Thl: p{OtoJype RJSC processor developed.by Patterson's research
group at Berkeley formed,the basis for the first SPAR€ prOC(\SSor, developed by Sun Microsystems
in 1987. The proces~or,developed by tiemressy:S resea~ch.group at.Stanford was commercialized by
MIPS Technologies (a company foµnd<>d ,by H~nnessy) in 1986. Both of these .. used five-stage pipelines.
The Inter i486 processor also -uses

1
a live-stage pipeline, although with a different partitioning of

responsibilit,ies among'tpe stages! with, two' decode stages and a'combined·exec'!te/memory stage [27].
Thes'e pipelined'designs ar&li11rited .to a throu&hput of at' most one insfruction per clock cycle. The

CPI (for "cyCles per instruction;') ineasure descfibed_in ,')ection 4.5.9 can' never be less than 1.0. The
dif{ererlt stages ?ill Oilly prosess one inStruction afa "ttme.~More recerit pr0Cess9fs Support superscajar
operation, meaning 'that '!he)"' cap achieve a CPMe's~ th'aji 1.0 by feichihg, 'decoding, and executing
multiple inslructiorwin'JfaiaUe-1.1~; superscata'f•proce'ssors 'have become' wi'aespread, the accepted
pendrmance nleas'tfre has shifted'from~CPI to.'its reciprocal2the average number of instructions
executed per'cycle1 or IPC. If cah ei<ceea'fb for 'shpe'iscalar prcii:~ssors. The most advanced designs
use a.technique ki1(i.wn as o~'t-of-ol'der _execution· th ex?cute,multipl&'fostrU<~.tibns in parallel, possibly
in a tqtally,differe9t order th!n they occur in 'tli'_,e program, wliile preserving ilie overall qehavior implied
by the sequential ISA modeLThis fornrof"dec'Ui16ii. is described in Chap'ier 5 as pa~t of our discussion
of program opti;,,iz~tion. • • • · .. . ·

, .. Pipelined·pfocessqr~ are..!'ot just,historicaT ~rt~facts, how,ever: The majority of processors sold are
, used in el)lo}illded systems,,f_oyt(r9llmg _aut'?m,btive ,functio11s, con&µmlfr prdcjucts, and other devices
: whet\', the'processor'iinot qirectl~ vjs'ibl~- to.the system'pser.1n these a~plications, the simplicity of

a pipelined proces~or, s'uch'as the .one we have exploreU in this chapter, !'educes its cost and power
requirem~'pts co!pRared fu h'igher-P~nor:Uance Wodeis.

More recently,- as mUitiCOre p'focessors have gained"'a followirlg, Some hJt'Ve argued that we could
get more overall ypmputing'power 'by in!egrating•rhany·simple processors orl' a single chip rather
thah a snlauet·hhmber 6t mOre co'ffiplex~~nes. Tl.tis Stiategy is''·someiimes refefred to as "many-core"
processors NiJ. · '

We defined the Y86-64 instruction set by starting with the x86-64 instructions
and simplifying the data types, address modes, and instruction encoding consider­
ably. The resulting ISA has attributes of both RISC and CISC instruction sets. We
then organized the processing required for the different instructions into a series
of five stages, where the operations at each stage vary according to the instruction
being executed. From this, we constructed the SEQ processor, in which an entire
instruction is executed every clock cycle by having it flow through all five stages.

Pipelining improves the throughput performance of a system by letting the
different stages operate concurrently. At any given time, multiple operations are
being processed by the different stages. In introducing this concurrency, we must
be careful to provide the same program-level behavior as would a sequential
execution of the program. We introduced pipelining by reordering parts of SEQ
to get SEQ+ and then adding pipeline registers to create the PIPE- pipeline.

472 Chapter 4 Processor Architecture

Web Aside ARCH:HCL HCL descriptions of Y86-64 processors

In this chapter, we have looked at portions of the HCL code for several simple logic designs and for
the contro"1ogic for Y86-64 processors SEQ and PIPE.J'or reference, we provide documentation of
the HCL language and complete HCL descriptions for the control logic of the two processors. Each of
these descriptions requires only five to seven pages of HCL code, and it is worthwhile to study them in

their entirety.

We enhanced the pipeline performance by adding forwarding logic to speed the
sending of a result from one instruction to another. Several special cases require
additional pipeline control logic to stall or cancel some of the pipeline stages.

Our design included rudimentary mechanisms to handle exceptions, where
we make sure that only instructions up to the excepting instruction affect the
programmer-visible state. Implementing a complete handling of exceptions would
be significantly more challenging. Properly handling exceptions gets even more
complex in systems that employ greater degrees of pipelining and parallelism.

In this chapter, we have learned several important lessons about processor

design:

• Managing complexity is a top priority. We want to make optimum use of the
hardware resources to get maximum performance at minimum cost. We did
this by creating a very simple and uniform framework for processing all of the
different instruction types. With this framework, we could share the hardware
units among the logic for processing the different instruction types.

• We do not need to implement the ISA directly. A direct implementation of the •'
ISA would imply a very sequential design. To achieve higher performance,
we want to exploit the ability in hardware to perform many operations si­
multaneously. This led to the use of a pipelined design. By careful design and
analysis, we can handle the various pipeline hazards, so that the overall effect
of running a program exactly matches what would be obtained with the ISA

model.
• Hardware designers must be meticulous. Once a chip has been fabricated,

it is nearly impossible to correct any errors. It is very important to get the
design right on the first try. This means carefully analyzing different instruction
types and combinations, even ones that do not seem to make sense, such
as popping to the stack pointer. Designs must be thoroughly tested with
systematic simulation test programs. In developing the control logic for PIPE,
our design had a subtle bug that was uncovered only after a careful and
systematic analysis of control combinations.

4.6.1 Y86-64 Simulators

The lab materials for this chapter include simulators for the SEQ and PIPE
processors. Each simulator has two versions:

Homework Problems 473

• The GUI (graphic user interface) version displays the memory, program code,
and processor state in graphic windows .. This provides a way to readily see how
the instructions flow through the processors. The control panel also allows you
to reset, single-step, or run the simulator intera~tively.

• The text version runs the same simulator, but it only displays information by
printing to the terminal. This version is not as useful for debugging, but it
allows automated testing of the processor.

The control logic for the simulators is generated by translating the HCL
declarations of the logic blocks into C code. This code is then compiled and linked
with the rest of the simulation code. This combination makes it possible for you
to test out variants of the original designs using the simulators. Testing scripts are
also available that thoroughly exercise the different instructions and the different
hazard possibilities.

Bibliographic Notes

For those interested in learning more about logic design, the Katz and Borriello
logic design textbook [58] is a standard introductory text, emphasizing the use of
hardware description languages. Hennessy and Patterson's computer architecture
textbook [46] provides extensive coverage of processor design, including both
simple pipelines, such as the one we have presented here, and advanced processors
that execute more instructions in parallel. Shriver and Smith (101 J give a very
thorough presentation of an Intel-compatible x86-64 processor manufactured
byAMD.

Homework Problems

4.45 •

In Section 3.4.2, the x86-64 pushq instruction was described as decrementing the
stack pointer and then storing the register at the stack pointer location. So, if we
had an instruction of the form pushq REG, for some register REG, it would be
equivalent to the code sequence

subq $8, %rsp
movq REG, (%rsp)

Decrement stack pointer

Store REG on stack

A. In light of analy~is done in Practice Problem 4.7, does this code sequence
correctly describe the behavior of the instruction pushq %rsp? Explain.

B. How could you rewrite the code sequence so that it correctly describes both
the cases where REG is %rsp as well as any other register?

4.46 •1
In Section 3.4.2, the x86-64 popq instruction was described as copying the result
from the top of the stack to the destination register and then incrementing the
stack pointer. So, if we had an instruction of the form popq REG, it would be
equivalent to the code sequence

I I
'

I I

474 Chapter 4 Processor Architecture

movq C%rsp), REG
addq $8, %rsp

Read REG from stack

Increment stack pointer

A. In light of analysis done in Practice Problem 4.8, does this code sequence
correctly describe the behavior of the instruction popq %rsp? Explain.

B. How could you rewrite the code sequence so that it correctly describes both
the cases where REG is %rsp as well as any other register?

4.47 •••
Your assignment will be to write a Y86-64 program to perform bubblesort. For
reference, the· following C function implements bubblesort using array refer­
encing:

1 /• Bubble sort: Array version •/
2 void bubble_a(long *data, long count) {

3 long i, last;
4 for (last = count-1; last > Oi last--) {

5 for (i == O; i < last; i++)

6 if (data[i+1] < data[i]) {

7 /* Swap adjacent elements •I
s long t = data [i +1] ;

9 data[i+1] = data[i];

10 data[i] == tj

11 }

12 }

13 }

A. Write and test a C version that references the array elements with pointers,
rather than using array indexing.

B. Write and test a Y86-64 program consisting of the function and test code.
You may find it useful to pattern your implementation after x86-64 code
generated by compiling your C code. Although pointer comparisons 'are
normally done using unsigned arithmetic, you can use signed arithmetic for
this exercise.

4.48 ••
Modify the code you wrote for Problem 4.47 to implement the test and swap in
the bubblesort function (lines 6-11) using no jumps and at most three conditional
moves.

4.49 •••
Modify the code you wrote for Problem 4.47 to implement the test and swap in the
bubblesort function (lines 6-11) using no jumps and just one conditional move.

4.50 •••
In Section 3.6.8, we saw that a common way to implement S'1i tch statements is to
create a set of code blocks and then index those blocks using a jump table. Consider

;,

'

#inclu,!ie <stdio.~>
/* Example use of syitch statemen~ */

long switchv(long idx) {
long result = O;
switch(idx), {
case 0:

result == Oxaaa;
breakj

"case .2 :.
"scase' 5:

result == Oxbbb;
break.1'

.case 3 :1 ~

result == Oxccc;
breakj

default:
1 resuJ. t = ()xddd i

}

return result;
} ' \ l

/•'Testing Code•/
#define CNT 8
#define MINVAL -1

int main() {
long vals [CNT) ;
long i;

''

~ Homework Problems 475

for (i = O; i < CNT; i++) {

vals[i] = switchv(i + MINVAL);
" printf ("idx = %ld, val = Ox%lx\n", i + MINVAL, vals [ill;

}

return O;
}

"
Figure 4.69 Switch statem'ents cah be translated into Y86-64 co~e. This requires
implementation of a jump table.

the C code shQWI\ in Figure 4.69 for a function •'!~ 1;chv, along with associated
test code.

Implement svitchv in Y86-64 using a jump table. Although the Y86-64-in­
struction set does not include an indirect jump instruction,. you can get the same
effect by pushing !l computed addres~ onto.the stack and then executing the ret

I ,

•

f
I
j

476 Chapter 4 Processor Architecture

instruction. Implement test code similar to what is shown in C to demonstrate that
your implementation of swi tchv will handle both the cases handled explicitly as

well as those that trigger the default case .

4.51 •
Practice Problem 4.3 introduced the iaddq instruction to add immediate data to a
register. Describe the computations performed to implement this instruction. Use
the computations for irmovq and OPq (Figure 4.18) as a guide.

4.52 ••
The file seq-full. hcl contains the HCL description for SEQ, along with the
declaration of a constant IIADDQ having hexadecimal value C, the instruction code
for iaddq. Modify the HCL descriptions of the control logic blocks to implement
the iaddq instruction, as described in Practice Problem 4.3 and Problem 4.51. See
the lab material for directions on how to generate a simulator for your solution

and how to test it.

4.53 •••
Suppose we wanted to create a lower-cost pipelined processor based on the struc-
ture we devised for PIPE- (Figure 4.41), without any bypassing. This design would
handle all data dependencies by stalling until the instruction generating a needed

value has passed through the write-back stage.
The file pipe-stall .hcl contains a modified version of.the HCL code for

PIPE in which the bypassing logic has been disabled. That is, the signals e_ va\A

and e_va\B are simply declared as follows:

DO NOT MODIFY THE FOLLOWING CODE.
No forwarding. valA is either valP or value from register file

word d_ valA = [
D_icode in { !CALL, IJXX } : D_valP; # Use incremented PC
1 : d_rvalA; # Use value read from register file

J ;
No forwarding. valB is value from register file

word d_valB = d_rvalB;

Modify the pipeline control logic at the end of this file so that it correctly han­
dles all possible control and data hazards. As part of your design effort, you should
analyze the different combinations of coµtrol cases, as we did.in the design of the
pipeline control logic for PIPE. You will find that many different combinations
can occur, since many more conditions require the pipeline to stall. Make sure
your control logic handles each combination correctly. See the lab material for
directions on how to generate a simulator for your solution and how to test it.

4.54 ••
The file pipe-full .hcl contains a copy of the PIPE HCLdescription, along with a
declaration of the constant value IIADDQ. Modify this file to implement.the iaddq
instruction, as described in Practice Problem 4.3 and Problem 4.51. See the lab

•' i ..

Homework Problems 477

material for directions on how to generqte a simulator for your solution and how
to test it.

4.55 •••
The file pipe-nt . hcl contains a copy of the HCL code for PIPE, plus a declaration
of'the constant J _YES with value 0, the function code for an unconditional jump
instruction. Modify the branch prediction logic so that it predicts conditional
jumps as .being not taken while continuing to predict unconditional jumps and
call as being taken. You will need to devise a way to get valC, the jump target
address, to pipeline registei; M to r~over_fr6m mispredicted branches. See the lab
material for directions on how' to generate a simulator for your solution and how
to tesf it.

4.56 •••
The file pipe-btfnt .hcl contains a copy of the HCLcode for PIPE, plus a decla­
ration of the constant J _YES with value o, the function code for an unconditional
jump instruction. Modify the branch prediction logic so that it predicts condi­
tional jumps as being taken when :Vale< valP (backward branch) and as being
not taken when vale::: valP (forward branch}. (Since Y86-64 does not support
unsigned arithmetic, you should implement this test using a signed comparison.)
Continue to predict unconditional jumps and call as being taken. You will need
to devise a way to get both vale and valP to pipeline register M to recover from
mispredicted branches. See the lab iµaterial for directions on how to generate a
simulator for your solution and how to test it.

4.57·+••
In our design of PIPE, we generate- a stall whenever one instruction performs a
load, reading a value from memory into a register, and the next instruction has this
register a~ a source operandAVhen the source gets used in the execute stage, this
stalling is the only way to avoid a hazard. For-cases where the second instruction
stores the source operand to memory, such as with an rmmovq orpushq instruction,
this stalling is not necessary. Consider the following code examples:

mrmovq 0(%rcx),%rdx # Load 1
2 pushq %rdx # Store 1
3 nop
4 popq %rdx # Load 2
5 rmrnovq %rax,0(%rdx) # Store 2

In lines 1 and 2, the mrmovq instruction reads a value from memory into
%rdx, and the pushq instruction then pushes this value onto the stack. Our design
for PlPE would stall the pushq instruction to avoid a load/use-hazard. Observe,
hdwever, that the value of %rdx is not required by the pushq instruction until it
reaches the memory stage. We can attd an additional bypass patli, as diagrammed
in Figure 4.70, to forward the memory output (signal m_valM) to the valA field
in pipeline register M. On the nextt:l'ock·cycle, this forwarded value can then be
written to memory. This technique i's known as load forwarding.

Note that the second example (lines 4 and 5) in the code sequence above
cannot make use of load forwarding. The value loaded by the popq instruction is

' .

'·

I
t

I
I
(
I
!
j

478 Chapter 4 Processor Architecture

.. valE valM • < "" dstE dstM l$ ·'
···· -....... ~~-~-~=~-~~!. -....... , data out

~~----"'
m_valM

Mem:
read

.__ ___ ---+1 Mam.
write

{il;k , stat icode • '"· , Cnd

t
; E_lcode

W_s1a1-+--+---H
m_stat--t---t--T-'~~.J

~ stat icode ifun vale

....... --~~~

va!A

Data
{J1Srt)Ory

M_dstM

E_srcA

valB ~ dstE dstM srcA srcB

Figure 4.70 Execute and memory stages capable of load forwarding. By adding a
bypass path from the memory output to the source of valA in pipeline register M, we can
use forwarding rather than stalling for one form of load/use hazard. This is the subject
of Problem 4.57.

used as part of the address computation by the next instruction, and this value is
required in the execute stage rather than the memory stage.

A. Write a logic formula describing the detection condition for a load/use haz­
ard, similar to the one given in.Figure 4.64, except that it will not cause a
stall in cases where load forwarding can be used.

B. The file pipe-lf. hcl contains a modified version of the control logic for
PIPE. It contains the definition of a signal e_valA to implement the block
labeled "Fwd A" in Figure 4.70. It also has the conditions for a load/use haz­
ard in the pipeline control logic set to zero, and so the pipeline control logic
will not detect any forms of Joad/,use hazards. Modify this HCL description
to implement load forwarding. See the Jab material for directions on how to
generate a simulator for your solution and how to test it.

Homework Problems 479

4.58 , ••

Our pipelined design is a bit unrealistic in that we have two write ports for the
register file, but only the popq instruction requires two simultaneous writes to the
register file. The other instructions could therefore use a single write port, sharing
this for writing valE and valM. The following figure shows a.modified version
of the write-back logic, in which we merge the write-back register·IDs (W_dstE
and W_dstM) into a single, signal w_dstE arid the write-back values (W_valE and
W_valM) into a single signal w_valE:

Stat
.------:---------w_valE

~----- w_dstE

valE valM

1,'he logic for performing the merges is written in HCL as follows:

S9t E port register ID
word w_dstE = [

l ;

writing from valM
W_dstM != RNONE : W_dstM;
1: W_dstE;

Set E port value
word w_valE = [

l ;

W_dstM != RNONE W_valM;
1: W_valE;

The control for these multiplexors is determined by dstE-when it indicates
there is some register, then it selects the value for port E, and otherwise it selects
the xalue for port M.

In the simulation model, we can then disable register port M, as shown by the
following HCL code:

Disable register port M
Set M port register ID
word w_dstM = RNONE;

Set M port value
word w_valM = O;

The challenge then becomes to devise a way to handle popq. One method is
to use the control logic to dynamically process the instruction popq rA so that it
has the same effect as the two-instruction sequence

480 Chapter 4 Processor Architecture

iaddq $8, %rsp
mrmovq -8(%rsp), rA ,,

(See Practice Problem 4.3 for a description of the iaddq instruction.) Note.the
ordering of the two instructions to make sure popq %rsp works properly. You can
do this by having the logic in the decode stage treat popq the same as it would the
iaddq listed above, except that it predicts the next PC to be equal to the current
PC. On the next cycle, the popq instruction is refetched, but the instruc\ion code
is converted to a special value IPDP2. This is treated as a special instruction that
has the same behavior as the mrmovq instruction listed above.

The file pipe-1w .hcl contains the modified write port logic described above.
It contains a declaration of the constant IPOP2 having hexadecimal value E. It
also contains the definition of a signal f_icode that generates the icode field for
pipeline register D. This definition can be modified to insert the instruction code
IPOP2 the second time the popq instruction is fetched. The HCL file also contains
a declaration of the signal f_pc, the value of the program counter generated in the
fetch stage by the block labeled "Select PC" (Figure 4.57).

Modify the control logic in this file to process popq instructions in the manner
we have described. See the lab material for directions on how to generate a
simulator for your solution and how to test it.

4.59 ••
Compare the performance of the three versions of bubblesort (Problems 4.47,
4.48, and 4.49). Explain why one version performs better than the other.

Solutions to Practice Problems

Solution to Problem 4.1 (page 360)
Encoding instructions by hand is rather tedious, but it will solidify your under­
standing of the idea that assembly code gets turned into byte sequences by the
assembler. In the following output from our Y86-64 assembler, each line shows
an address and a byte sequence that starts at that address:

1 Ox100: .pos Ox100 # Start code at address

Ox100
2

3

4

5

6

7

Ox100: 30f30f00000000000000 irmovq $15,%rbx

Ox10a: 2031 rrmovq %rbx,%rcx

Ox10c: loop:

Ox10c: 4013fdffffffffffffff rmmovq %rcx,-3(%rbx)

Ox116: 6031 addq %rbx,%rcx
Ox118: 700c01000000000000 jmp loop

Several features of this encoding are worth noting:

• Decimal 15 (line 2) has hex representation OxOOOOOOOOOOOOOOOf. Writing the
bytes in reverse order gives Of 00 oo 00 00 00 00 00.

Solutions to Practice Problems 481

• Decimal -3 (line 5) has hex representation Oxfffffffffffffffd. Writing
the bytes in reverse order gives fd ff ff ff ff ff ff ff.

• The code starts at address OxlOO. The first instruction reqnires 10 bytes, while
the second requires 2. Thus, the loop targ~t will be OxOOOOOlOc. Writing these
bytes in reverse order gives Oc 01 00 00 00 00 00 00. ,,

Solution to Problem 4.2 (page 360)

Decoding a byte sequence' by 'hand helps you understand the task faced by a
processor. It must read byte sequences and determine what instructions are to
be executed. In the following, we show the assembly code used to generate each
of the byte sequences. To the left of the assembly code, you tan see the address
and byte'sequence for each instruction.

A. Some operations with immediate data and address displacements:

OxlOO: 30f3fcffffffffffffff
OxlOa: 40630008000000000000
Oxl14: 00

B. Code including a function call:

Ox200: a06f
Ox202: 800c02000000000000
Ox20b: 00
Ox20c:
Ox20c: 30f30aOOOOOOOOOOOOOO
Ox216: 90

irmovq $-4,%rbx
rmmovq %rsi,Ox800(%rbx)
halt

pushq %rsi
call proc
halt

proc:
irmovq $10,%rbx
ret

C. Code containing illegal instruction specifier byte OxfO:

Ox300: 5054070000000_0000000
Ox30a: 10
Ox30b: fO
Ox30c: bOlf

mrmovq 7(%rsp),%rbp
nop

.byte OxfO # Invalid instruction code
popq %rcx

D. Code containing a jump operation:

Ox400: loop:
Ox400: 6113 subq %rcx, %rbx
Ox402: 730004000000000000 je loo?'
Ox40b: 00 halt

E. Code containing an invalid second byte in a pushq instruction:

Ox500: 6362
Ox502: aO
code
Ox503: fO
specifier byte

xorq %rsi,%rdx
.byte OxaO # pushq instruction

.byte OxfO #Invalid register

482 Chapter 4 Processor Architecture

Solution to Problem 4.3 (page 369)
Using the iaddq instruction, we can rewrite the sum function as

' ,{

long sum(long *start, long ~aunt)
..1.aJ I >

start in %rdi, count in %rsi
sum:

sum = 0 xorq
andq
jmp

Y.rax, i'.rax
%rsi,%fsi

test

Set concf,ition codes

loop:

test:

mrmovq (%rdi),%r10
addq %r10,%rax
iaddq $8,%rdi
iaddq $-1,i.%:tsi

jne
ret

loop

Solution to Problem 4.4 (page 370)

Get •start
Add to sum
start++

count--

Stop Yhen 0

()'

·'·

"

'

Gee, running on an x86-64 machine, produces the following code for rsum:

long rsum(long •start, long count)·

start in %rdi, count in %rsi

rsum:
movl $0, %eax
testq %rsi, %rsi
jle .L9
pushq %rbx
movq (%rdi), %rbx
subq $1', %rsi
addq $8, %rdi
call rsum
addq %rbx, %rax
popq %rbx

.L9:
rep; ret

·'

This can easily be adapted to.produce Y86-64 code:,

long rsum(long •start, lollg count)
start in %rdi, yount in %rsi
rsum:

xorq %rax,%rax ' # Set return value to 0
andq %rsi,o/orsi # Set condition codes
je return # If count == 0, return

J

0
pushq 7.rbx # Save callee-saved register

return:

mrmovq (%rdi),%rbx
irmovq $-1,%r10
addq %r10,%rsi
irmovq $8,%r10
addq %r10,%rdi
call rsum
addq %rbx,%rax
popq %rbx

ret

Solution to Problem 4.s (page 370)

Solutions to Practice Problems 483

Get *start

count--

start++

Add *start to sum
Restore callee-saved ·register.

This pr9blem gives you a clJance ta try your ha11~· at writing assembJy code.

long absSum(long *start, long count)
2 # start in %rdi, count in %rsi
3

4

5
'6

absSum:
f

Constant 8
Constant 1
sum = 0

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

irmovq $8,%r8
irmovq $1,%r9
xo:r,:q %rax,%rax
andq %rSi,%rsi
jmp test

Set condition codes

loop:

J?OS:

test:

mrmovq (%rdi),%r10
xorq %r11,%r11
subq %r10,%r11
jle pos
rrmovq %r11,%r10

addq %r10,'%rax
addq %r8,%rdi
subq %r9,%rsi

jne
ret

loop

Solution to Problem 4.6 (page 370)

x = *start
Constant 0
-x
Skip if -x <= O
x = -x

Add to sum
start++
count--

Stop when O

This problem gives you a chance to try your hand at writing assembly code with
conditional moves. We show only the code for the loop. The rest is the same as for
Problem 4.5:

9 loop:
10 mi'movq (%rdi),%r10 # x = *start
11 xorq %r11, %r11 # Constant 0
!2 subq %r10,%r11 # -x
13 cmovg %r11,%r10 # If -x > O then x -x

484 Chapter 4 Processor Architecture

14

15

16

17 test:
18

addq %r10,%rax
addq %r8,%rdi
subq %r9,%rsi

jne loop

Solution to Problem 4.7 (page 370)

Add to sum
start++
count--

Stop when 0

Although it is hard to imagine any practical use for this particular instruction, it is
important when designing a system to avoid any ambiguities in the specification.
We want to determine a reasonable convention for the instruction's behavior and
to make sure each of our implementations adheres to this convention.

The subq instruction in this test compares the starting value of %rsp to the
value pushed'onto the stack. The fad that the result of this subtraction is zero
implies that the old value of %rsp gets pushed.

Solution to Problem 4.8 (page 371)
It is even more difficult to imagine why anyone would want to pop tb the stack
pointer. Still, we should decide on a convention and stick with it. This code
sequence pushes Oxabcd onto the stack, pops to Y.rsp, and retu'rns the popped
value. Since the result equals Oxabcd, we can deduce that popq'%rsp sets the stack
pointer to the value read from memory. It is therefore equjvalent to the instruction
mnnovq (%rsp) , %rsp.

Solution to Problem 4.9 (page 374)
The EXCLUSIVE-OR function requires that the 2 bits have opposite values:

' bool xor = (!a && b) I I (a && !b);

In general, the signals eq and xor will be complements 9f each other. Tuat is,
one will equal 1 whenever the other is 0. "

Solution to Problem 4.10 (page 377)
The outputs of the EXCLUSIVE-DI\ c)rcuits will be the corr,iplements of the bit equal­
ity values. Using DeMorgan's laws (Web Aside DATA:BOOL on page 52), we can
implement AND using OR and NOT, yielding the circuit shown in Figure 4.71.

Solut!on ~o Problem 4.11 (page 379)
We can st;e that the.second part of the case expression can \Je written as

B <= C : B;

Since the first line will detect the case where A is the minimum element, the second
line need only determine whether B or C is minimum.

Solution to Problem 4.12 (page 380)
This design is a variant of the one to find the minimum of the three inputs:

Solutions to Practice 'Problems

Figure 4.71
b53

Solutlorr .for Problem
4.10. a.,

b52

"62

b,

a,

bo

a,

word Med3 = [

A <= B && B <= C : 'B;

C <= B && B <= A : 'B;

J ;

B <= A && A <= C

C<=A&&A<=B
1

A;
A;
C;

Solution to Problem 4.13 (page 387)

I eq63

l'

I eqa2

Eq

p/,

I eq1

I eq0

'" J,

These exercises help make the stage computations more concrete. We can see from
the object code that this instruction is located at address Ox016. It consists of 10
bytes, with the first two being Ox30 and Oxf4. The last 8 bytes are a byte-reversed
version 9f Ox0000000000000080 (decimal 128). ' '

' ,

Stage

Fetch

Decode

Execute

Memory

Write back

PC update

Generic
irmovq V. rB

icode: ifun +- M1[PC]

rA :rB +- M1[PC + 1]
vale +- M8[~c;, + 2]
valP +- PC+ 10

valE +- O +vale

R[rB] +- valE

PC +- valP

1 Specific
.i1 irmovq $128, %rSp

itode:ifun +- M1[0x016]=3:0
rA:rB +- M1[0x017]=,f:4

vale +- M8[ox918] = F~ "
valP +- Ox016 + 10 = Ox020

valE +- 0 + 128 = 128

R[%rsp] 1
+- valE = 128

PC +- valP = Ox020

This instruction sets register %rsp to 128 and increments the PC by 10.

,.

485

'•

I
' I ..

" I
I
I

"!
I

486 Chaptef 4 Processor Architecture

Solution to Problem 4.14 (page 390)
We can see that the instruction is located at address Ox02c and consists bf Q..bytes {
with values OxbO and OxOOf. Register %rsp was set to 120 by the pushq instruction J
(line 6), which also stored 9 at this memory location. :·

Stage

Fetch

Decode

Execute

Memory

Write back

Generic
popq rA

icode: i!un +- M1[PC]
rA:rB +- M1[PC+l]

valP +- PC+2

valA +- R[%rsp]
valB +- R[%rsp]

valE +- valB + 8

valM +- M8[valA]

R[%rsp J +- valE
R[rA] +- valM

PC +- valP

Specific
popq %rax

icode:i!un +- M1[0x02c]=b:O

rA:rB +- M1[0x02d)=O:f

valP +- Ox02c + 2 = Ox02e

valA +- R[%rsp J = 120

valB +- R[%rsp] = 120

valE +- 120 + 8 = 128

valM +- M8[120] = 9

R[%rsp] +- 128

R[%rax] +- 9

PC +- Ox02e
PC update

Tue instruction sets %rax to 9, sets %rsp to 128, and increments the PC by 2.

Solution to Problem 4.15 (page 391)
Tracing the steps listed in Figure 4.20 with rA equal to 7,rsp, we can see that in
the memory, stage the instruction will store val~. the original value of the stack

pointe~. to memory, just as we found for x86-64.

Solution to Problem 4.16 (page 392)-
Thacing the steps listed in Figure 4.20 with rA equal to %rsp, we can see that both
of the write-back operations will update %rsp. Since the one writing valM would
occur last, the net effect of the instruction will be td write the value read from

memory to %rsp, just as we saw for x86-64.

Solution to Problem 4.17 (page 393)
Implementing conditional .;,oves requires only minor changes from register-to­
register moves. We simply condition the write-back step on the outcome of the

conditional test: l

Stage

Fetch

Decode

cmovXX rA, rB

icode: ifun +- M1[PC]
rA:rB +- M1[PC+1]
valP +- PC +2

valA +- R[rA]

Stage

Execute

Memory

Write back

PC update

cmovXX rA. rB

xa!E +- o + va/A
c;nd +- Cond(CC, ifun)

if CCnd) R[rB] +- va/E

PC +- va/P

Solution to Problem 4.18 (page 394)

Solutiohs to Practice-·Problems 487

' '

We can see that this instruction is located at address Ox037 and is 9 bytes long.
The first qyte has value Ox80, while

0

the last 8 bytes are'abyte;revetsed version of
Ox0000000000000041, the call target. Tfie stack poin'l"er'was set to 128 by the popq
instruction (line 7).

~tage

Fetch

Decode

Execute

Memory

Write back

PC update

G~11eric ti­

call Dest

icode: ifun +- M1(PC]

valC +- M8(PC + 1]
va/P +- PC+9

valB +- R[%rsp]
"

valE +- valB +-8

M8(va/E] +- valP

R(%rsp] +- valE

PC +- vale

Specific ,y •
call Ox041 , '

icode:ifun +- M1[0x037]=8:0

valC +- M8[0x038] = Ox041
,, v,alP +- 9,x037 + 9 = ox94o

valB +- R[%rsp J = 128 ,_

valE +- 128+-8= 120

Ms[120l +- iJx040

R[%rsp J +- 120

PC +- Ox041

The effect of this insttuction is to set %rsp to 120, to·store Ox040 (the return
address) at this memory•address, and to set the PC to Ox041 (the call target).

Solution to Problem 4.19 (page 406) "

All of the HCL code in this and other practice problems is straightforward, but
trying to generate it.ypurself, ~ill he'lt>;you tl;tink aqout the differe!'t instructions
and how they are processed. For this problem, we can simply loo)< at the set of
Y86-64 instructions (Figure 4.2) and determine which have a constant field.

bool need_valC =

icode in { IIRMOVQ, IRMMOVQ, IMRMOVQ;. 0IJXX, ICALL };

488 Chapter 4 Processor Architecture

Solution to Problem 4.20 (page 407)
This code is similar to the code for srcA.

word srcB = [
icode in { IOPQ, IRMMOVQ, IMRMOVQ } : rB;
icode in { IPUSHQ, IPOPQ, !CALL, IRET } : RRSP;
1 : RNONE; #Don't need register

J ;

Solution to Problem 4.21 (page 408)
This code is similar to the code for dstE.

word dstM = [
icode in {

1 : Jt!IONE;
l ;

IMRMOVQ,' IPOPQ } : rA;
I 'I ~ U

Don 1 t write anY" registe;

..,

·'

Solution to Problem 4.22 (pag~ 408)
As we found in Practice Probletn 4.16, we want the write via' tlle M port to take
priority over the write via the E port in order to store the vafue read from memory
into %rsp.

Solution to Problem 4.23 <page 409)
This code is siniilar to the code for aluA.

word aluB = [
icode in { !RMMOVQ, IMRMOVQ, IOPQ, !CALL,

IPUSHQ, IRET, !POPQ } : valB;
icode in { IRRMOVQ, IIRMOVQ } : O;
Other instructiohs don't need ALU

] ;

Solution to Problem 4.24 (page 409)
Implementing conditional moves is surprisingly simple: we disable writing to the
register,file by setting the destination register to RNONE when· the condition does

not hold.

word dstE = [
icode in {
icOde in {
icode in {
1 : 'RNONE;

l ;

IRRMOVQ } && Cnd : rB;
IIRMOVQ, IOPQ} : rB;
!PUSHQ, !PDPQ, !CALL, IRET }

Don 1 t write ahy reg{ster

Solution to Problem 4.25 (page 410)
This code is similar to the code fdr mem_addr.

word~mem_data = [

l ;

Value from register
icode in { IRMMOVQ, IPUSHQ } valA;
Return PC
icode == ICALL : valP;
#Default: Don 1 t write anything

Solution to Problem 4.26 (page 410)
This code is similar to the code for mem_read;

bool mem_write = icode in { IRMMOVQ, IPUSHQ, !CALL };
" '

Solution to Problem 4.27 (page 411)

Solutionslto Practice Problems 489

Computing.the Stat field requires collecting status information from several stages:

' ## Determine instruction status
word Stat = [

l ;

imem_error ! l dmem_error SADR;
!instr_valid: SINS;
icode == !HALT : SHLT;
l : SADK;

Solution to Problem 4.28 (page 417)
This problem is an interesting exercise in trying to find the optimal balance among
a set of partitions. It provides a number of opportunities to compute throughputs
and latencies in pipelines.

A. For a two-stage pipeline, the best partition would be to have blocks A, B,
and C in the first stage and D, E, and F in the second. The first stage has a
delay of 170 ps, giving a total cycle time of 170 + 20 = 190 ps. We therefore
have a throughput.of 5.26 GIPS and a latency of 380 ps.

B. For a three-stage pipeline, we should have blocks A and B in the first stage,
blocks C and D in the second, and blocks E and F in the third. The first
two stages have :i. d<;lay of 110 ps, giving a total ,cycle time of 130 ps and a
throughput of 7.69"GIPS. The latency is 390 ps.

C. For a four-stage pipeline, we should have block A in the first stage, blocks B
and C in the second, block D in the third, and blocks E and Fin the fourth.
The second stage requires 90 ps, giving a total cycle time of 110 ps and a
throughput of 9.09 GIPS. The latency is 440 ps.

D. The optifual design would be' a five-stage. pipeline, with each \Jiock in its
' { ' '

own stage, except that tne fifth stage has blocks E and E The cycle time is
80+-20=1.00 ps, for a throughput of around 10.00 GIPS and a latency of

!

490 Chapter 4 Processor Architecture

500 ps. Adding more stages would not help, since we cannot run the pipeline
any faster than one cycle every 100 ps.

Solution to Problem 4.29 (page 418)

Each stage would have combinational logic requiring 300/ k ps and a pipeline
register requiring 20 ps.

A. The total latency would be 300 + 20k ps, while the throughput (in GIPS)
would be

1,000 _ l,OOOk
300 + 20 - 300 + 20k
k

B. As we let k go to infinity, the throughput becomes 1,000/20 = 50 GIPS. Of
course, the latency would approach infinity as well. ,1

This exercise quantifies the diminishing returns of deep pipelining. As we try to
subdivide the logic into many stages, the latency of the pipeline registers becomes
a limiting factor.

Solution to Problem 4.30 (page 449)
This code is very similar to the corresponding code for SEQ, except that we cannot
yet determine whether the data memory will generate an error signal for this
instruction.

Determine status code for fetched instruction
word Lstat = (

imem_~rror: SADR;
!ins~r_valid : siNSi
f_icode == IHALT : SHLT;
1 : SAOK;

] ;

Solution to Problem 4.31 (page 449)
This code simply involves prefixing the signal names in the code for SEQ with d_
andD_.

word d_dstE = (

l ;

D_icoda in { IRRMOVQ, IIRMOVQ, IOPQ} : D_tB;
D_icoda in { IPUSHQ, IPOPQ, !CALL, IRET } : RRSP;
1 : RNONE; #Don't write any register•

Solution to Problem 4.32 (page 452)
The r:i;1noy,q instruction (line 5) would stall tor one cycle due to,a load/use hazard
caused by tlie popq instruction (line 4). As' it enters the decode sta&e, lhe popq
instruction would be in the memory stage, giving both M_dstE and M_dstil(1 equal
to %rsp. If the two cases were reversed, then the write back from M_valE would
take priority, causing the incremented stack pointer to be passed as the argument

Solutions to Practice Problems 491

to the rrmovq instructi01i.1This would not be consistent with the convention for
handling popq %rsp determined in Practice Problem 4.8.

Solution to ,Problem 4.33 (page 452)

This problem lets you experience one of the imp9rtant tasks in processor design­
devising test programs for a new processor. In°general, we should have test pro­
grams that will exercise all of the different hazard possibilities and will generate
incorrect results if some dependency is not handled properly.

For this example, we can use a slightly modified version of the program shown
in Practice Problem 4.32:

1 irmovq $5, %rdx
2 irmovq $0x100,%rsp
3 rmmovq %rdx,O(%rsp)
4 popq %rsp
5 nop
6 nop
7 rrmovq %rsp,%rax

The two nop instructions will cause the popq instruction to be in the write-back
stage when the rrmovq instruction is in the decode stage. If the two forwarding
sources in the write-back stage are given the wrong priority, then register %rax
will be set to the incremented program counter rather than the value read from
memory.

Solution to Problem 4.34 (page 453)

This logic only needs to check the five forwarding sources:

word d_ valB = [

d_srcB e_dstE e_valE; # Forward valE from execute
d_srcB == M_dstM m_valM; # Forward valM from memory
d_srcB == M_dstE M_valE; # Forward valE from memory
d_srcB == ll_dstM W_valM; # Forward valM from write back
d_srcB == W_dstE W_valE; # Forward valE from write back

];
1 : d_rvalB; # Use value read from register file

Solution to Problem 4.35 (page 454)

This Ghange would not handle the case where a conditional move fails to satisfy
the condition, and t\lerefore sets the dstE value to RNONE. Th~ resulting value could
get forwarded to the next instruction, even though the conditional transfer does
not occur.

1

2

4

5

6

irmovq $0x123,%rax
irmovq $0x321,%rdx
xorq %rcx,%rcx
cmovne %rax,%rdx
addq %rdx,%rcb::
halt

cc = 100
Not transferred
Should be Ox642

.J

492 Chapter 4 Processor Architecture

1bis code initializes register %rdx to Ox321. The conditional data transfer does
not take place, and so the final addq instruction should double the value in %rdx to
Ox642. With the altered design, however, the conditional move source value Ox321
gets forwarded into ALU input valA, while input valB correctly gets operand value
Ox123. These inputs get added to produce result Ox444. '

Solution to Problem 4.36 (page 4S5)
This code completes the computation of the status code for this instruction.

Update the status
word m_stat = [

dmem_error : SADR;
1 : M_stat;

l ;

" \

Solution to Problem 4.37 (page 461) I
The following test program is designed to set up control combination A (Figure
4.67) and detect whether something goes wrong:

1 # Code to generate a combination of not-taken branch and ret

2 irmovq Stack, %rsp
3 irmovq rtnp,%rax
4 pushq %rax # Set up return pointer
5 xorq %rax,%rax # Set Z condition code
6 jne target # Not taken (First part of combination)

7 irmovq $1,%rax # Should execute this
8 halt
9 target: ret # Second part of combination

10 irmovq $2,%rbx # Should not execute this
11 halt
12 rtnp: irmovq $3,%rdx # Should not execute this

13 halt
14 .pos Ox40
15 Stack:

This program is designed so that if something goes wrong (for example, if
the ret instruction is actually executed), then the program will execute one of.the
extra irmovq instructions and then halt. Thus, an error in the pipeline would cause
some register to be updated incorrectly. This code illustrates the care required to
implement a test program. It must set up a potential error' condition and then
detect whether or not an error occurs.

Solution to Problem 4.38 (page 462)
The following test program is designed to set up control combination B (Figure
4.67). The simulator will detect a case where the bubble and stall control signals
for a pipeline register are both set to zero, and so our test program need only set
up the combination for it to be detected. The biggest challenge is to make the
program do something sensible when handled correctly.

Test instruction that modifies %esp followed by ret
irmovq mem,%rbx

Solutions to Practice Problems 493

2

3

4

5

6

7

8

9

10

11

mrrnovq 0(%rbx),%rsp #Sets %rsp to point to return point
ret # Returns to return point
halt #

rtnpt: irmovq $5,%rsi
halt

.pos Ox40
mem: .quad stack
.pos Ox SO
stack: .quad rtnpt

Return point

Holds desired

Top of stack:

stack pointer

Holds return point

This program uses two initialized words in memory. The first word (mem) holds
the address of the second (stack-the desired stack pointer). The second word
holds the address of the desired return point for the ret instruction. The program
loads the stack pointer into %rsp and executes the ret instruction.

Solution to Problem 4.39 (page 463)
From Figure 4.66, we can see that pipeline register D must be stalled for a load/use
hazard:

•
bool D stall

Conditions for a load/use hazard
E_icode in { IMRMOVQ, IPOPQ } &&

E_dstM in { d_srcA, d_srcB };

Solution to Problem 4.40 (page 464)
From Figure 4.66, we can see that pipeline register E must be set to bubble for a
load/use hazard or for a mispredicted branch:

bool E_bubble =

Mispredicted branch
(E_icode == IJXX && !e_Cnd) 11
Conditions for a load/use hazard
E_ico~e in { IMRMOVQ, IPOPQ } &&

E_dstM in { d_srcA, d_srcB};

Solution to Problem 4.41 (page 464)
This control requires examining the code of the executing instruction and checking
for exceptions further down the pipeline.

Should the condition codes be updated?
bool set_cc = E_icode == IDPQ &&

State changes only during normal operation
!m_stat in { SADR, SINS, SHLT } && !W_stat in { SADR, SINS, SHLT };

Solution to Problem 4.42 (page 464)
Injecting a bubble into the memory stage on the next cycle involves checking for
an exception in either the memory or the write-back stage during the current cycle.

494 Chapter 4 Processor Architecture

Start injecting bubbles as soon as exception passes through memory stage
bool M_bubble = m_stat in { SADR, SINS, SHLT } I I W_stat in { SADR, SINS, SHLT };

For stalling the write-back stage, we check only the status of the instructiop
in this stage. If we also stalled when an excepting instruction was iu the memory
stage, then this instruction would not be able to enter the write-back stage.

bool W_stall = W_stat in { SADR, SINS, SHLT };

Solution to Problem 4.43 (page 468)
We would then have a misprediction frequency of 0.35, giving mp= 0.20 x 0.35 x
2 = 0.14, giving an overall CPI of 1.25. This seems like a fairly marginal gain, but
it would be worthwhile if the cost of implementing the new branch prediction

strategy were not too high.

Solution to Problem 4.44 (page 468)
This simplified analysis, where we focus on the inner loop, is a useful way to
estimate program performance. As long as the array is sufficiently large, the time
spent iu other parts of the code will be negligible.

A. The inner loop of the code using the conditional jump 9as 11 instructions, all
of which are executed when the array element is zero or negative, and 10 of
which are executed when the array element is positive. The average is 10.5.
The inner loop of the code using the conditional move has 10 instructions,
all of which are executed every time.

B. The loop-closing jump will be predicted correctly, except when the loop
terminates. For a very long array, this one misprediction will have a negligible
effect on the performance. The only other source of bubbles for the jump­
based code is the conditional jump, depending on whether or not the array
element is positive. This will cause two bubbles, but it only occurs 50% of
the time, so the average is 1.0. There are no bubbles in the conditional move

code.
C. Our conditional jump code requires an average of 10.5 + 1.0 = 11.5 cycles

per array element (11 cycles in the best case and 12 cycles in the worst),
while our conditional move code requires 10.0 cycles in all cases.

Our pipeline has a branch misprediction penalty of only two cycles-far better
than those for the deep pipelines of higher-performance processors. As a result,
using conditional moves does not affect program performance very much.

Optimizing Pr@gram
Performance

5.1 Capabilities and Limitations of Optimizing Compilers 498

5.2 Expressing Program Performance 502

5.3 Program Exafnple 504

5.4 Eliminating Loop Inefficiencies 508

5.5 Reducing Procedure Calls 512

5.6 Eliminating Unneeded Memory References 514

5.7 Unaerstand(ng Modern Processors 517

5.8 Loop Unrolling 531

5.9 Enhancing Parallelism 536

5.10 Summary of Results for Optimizing Combining Code 547

5.11 Some Limiting Factors 548

5.12 Understanding Memory Performance 553

5.13 Life in'the Real World: Performance lm
1
wovement Techniques 561

5.14 ·Identifying and Eliminating Performance Bottlenecks 562

5.15 Summary 568

Bibliographic Notes 569

Homework'Problems 570

Solutions to Practice Problems 573

495

496 Chapter 5 Optimizing Program Performance

The primary objective in writing a program must be to make it work correctly
under all possible conditions. A program that runs fast but gives incorrect

results serves no useful purpose. Programmers must write clear and concise code,
not only so that they can make sense of it, but also so that others can read and
understand the code during code reviews and when modifications are required
later.

On the other hand, there are many occasions when making a program run
fast is also an important consideration. If a program must process video frames or
network packets in real time, then a slow-running program will not provide the
needed functionality. When a computational task is so demanding that it requires
days or weeks to execute, then making it run just 20% faster can have significant
impact. In this chapter,, w~. will explore ho.w to make programs run faster via
several different types of program optimization.

Writing an efficient program requires several types of activities. First, we
must select an appropriate set of algorithms and data structures. Second, we
must write source code that the compiler can effectively optimize to turn into
efficient executable code. For this second part, it is important to understand the
capabilities and limitations of optimizing compilers. Seemingly minor changes in
how a program is writt,en can make large diff~rences in how well a compiler can
optimize it. Some programming languages are more easily optimized than others.
Some features of C, such as the ability to perform pointer arithmetic and casting,
make it challenging for a compiler to optimize. Programmers can often write their
programs in ways that make it easier for compilers to generate efficient code. A
third technique for dealing with especially demanding·computations is to divide
a task into portions that can be computed in parallel, on somJ' combination of
multiple cores and multiple processors. We will defer this aspect of performance
enhancement to Chapter 12. Even when exploiting parallelism, it is important that
each parallel thread execute with maximum performance, and so the material of
this chapter remains relevant in any case.

In approaching program development and optimization, we must consider
how the code will be used and what critical factors affect it. In general, program­
mers must make a trade-off between how easy a program is to implement and
maintain, and how fast it runs. At an algorithmic level, a simple insertion sort can
be programmed in a matter of minutes, whereas a highly yffi~ient sort routine
may take a day or more to implement and optimize. At the coding level, many
low-level optimizations tend to reduce code readability and modularity, making
the programs more susceptible to bugs and more difficult to modify or extend.
For code that will be executed repeatedly in a performance-critical environment,
extensive optimization may be app1opriate. One challenge is to maintain some
degree of elegance and readability in the code despite extensive transformations.

We describe a number of techniques for improving code performance, Ideally,
a compiler would be able to take whatever code we write and generate the most
efficient possible machine-level program having the specified behavior. Modern
compilers employ sophisticated forms of analysis and optimization, and they keep
getting better. Even the best compilers, however, can be thwarted by optimization
blockers-aspects of the program's behavior that depend strongly on the execu-

Chapter 5 Optimizing Program Performance 497

tion environment. Programmers must assist the compiler by writing code that can
be optimized readily.

The first step in optimizing.a program is t0 eliminate unnecessary work, mak­
ing the code perform its intended task .as efficiently as possible. This includes
eliminating unnecessary function calls, conditional tests, and memory references.
These optimizations do not depend on any specific properties of the target ma­
chine.

To maximize the performance of a program, both the programmer and the
compiler require a model of the target machine, specifying how instructions are
pro~essed and· the timing characteristics of the different operations. For example,
the compiler must know timing information to be able to decide whether it should
use a multiply instruction or some combination of shifts and adds. Modem com­
puters use sophisticated techniques to process a machine-level program, executing
many instructions in parallel and possibly in a different order than they appear in
the program. Programmers must understand how these processors work to be
able to tune their programs for maximum speed. We present a high-level model
of such a machine l)ased on recent designs of Intel and AMD processors. We also
devise a graphical data-flow nota!ion to visualize the execution of instructions by
the processor, with which we can predict program performance.

With this understanding of processor operation, we can take a second step in
program optimization, exploiting the capability of processors to provide instruc­
tion-level parallelism, executing multiple instructions simultaneously. We cover
several program transformations that reduce the data dependencies between dif­
ferent parts of a computation, increasing the degree of parallelism with which they
can be executed. '

We conclude the chapter by discussing issues related to optimizing large pro­
grams. We describe the use of code profilers-tools that measure the performance
of different parts of a program. This analysis can help find inefficiencies in the code
and identify the parts of the program on which we should focus our optimization
efforts. '

In this presentation, we make code optimization look like; a simple linear
process of applying a series of transformations to the code in a 'Particular order.
In fact, the task is not nearly so straightforward. A fair amount of trial-and­
error experimentation is required. This is especially true as we approach the later
optimization stages, where seemingly small changes can cause major changes
in performance and some very promising techniques prove ineffective. As we
will see in the examples that follow, it can be difficult to explain exactly why a
particular coae sequence has a particular execution time. Performance can depend
on many detailed features of the processor design for which we have relatively
little documentation or understanding. This is another reason to try a number of
different variations and combinations of techniques.

Studying the assembly-code representation of a program is one of the most
effective means for gaining an understanding of the compiler and how the gen­
erated code will run. A good strategy is to start by looking carefully at the code
for the inner loops, identifying performance-reducing attributes such as excessive
memory references and poor use ofregisters. Starting with the assembly code, we

l
I

498 Cha'pter 5 Optimizing Program Performance

can also predict what operations will be performed in parallel and how well they
will use the processor resources. As we will see, we can often determine the time
(or at least a lower bound on the-time) required to execute a loop by identifying
critical paths, chains of data dependencies that form during repeated executions
of ·a loop. We can then go back and modify the source code to try tel steer the
compiler toward more efficient implementations.

Most major compilers, including Gee, are continually being updated and im­
proved, especially in terms of their optimization abilities. One useful strategy is to
do only as much rewriting of a program as is required to get it to the point where
the compiler can then generate efficient code. By this means, we avoid compro­
mising the readability, modularity, and portability of the code as much as if we had
to work with a compiler of only minimal capabilities. Again, it helps"to iteratively
modify the code and analyze its performance both through measurements and by
examining the generated assembly code.

To novice programmers, it might seem strange to keep modifying the source
code in an attempt to coax the compiler into generating efficient code, but.this
is indeed how many high-performance programs are written: Compared to the
alternative of writing code in assembly language, this indirect approach has the
advantage that the resulting code will still run on other machines, although per­
haps not with peak performance.

5.1 Capabilities and Limitations of Optimizing Compilers .,
Modern compilers employ sophisticated algoritjnlls to determme what values are
computed in a program and how they are used. They can then exploit opportuni­
ties to simplify expressions, to use a single cqm'putation in several different places,
and to reduce the number of times a given computation must be performed. Most
compilers, including ace, provide users with some control over whicjJ. optimiza­
tions they apply. As discussed in Chapter 3, the simplest control is to specify the
optimization level. For example, invoking ace with the command-line option -Og
specifies that it should apply a ha.sic set of optimizations. ·

Invoking Gee with option -01 or higher (e.g., -02 or -03) will c;.ause.it to aJ?ply
more extensive optimizations. These can further improve program performance,
but they may expand the program size and they may make the program more
difficult to debug using standard debugging tools. For our presentation, we will
mostly consider code compiled with optimization level -01, even though level I
-02 has become the accepted standard for most software projects that use Gee. j
We purposely limit the level of optimization to demonstrate how ,different ways j
of writing a function in C can affect the effiqiency of the code generated by a
compiler. We will find that we can write C code that, when compiled just with j
option -01, v~stly outperforms a more naive version compil<;d with the highest
possible optimization levels. 1

Compilers must be careful to apply only safe optimizations to ~ program,
meaning that the resulting program will have the exact same behavior as would I
an unoptimized version for all po,ssible cases the program may encounter, up to
the limits of the guarantees provided by the C language standards. Const~aining J

Section 5.1 Capabilities and Limitations of Optimizing Compilers 499

the compiler to perform only safe optimizations eliminates possible sources of
undesired run-time behavior, but it also means that the programmer must make
more of an effort to write programs in a way that the compiler can then transform
into efficient machine-level ·code. To appreciate the challenges of deciding which
program transformations are safe or not, consider the following two procedures:

void twiddle1(long *Xp, long •yp)
2 {

3 •xp += *yp;
4 •xp += *YPi
5 }

6

7 void twiddle2(long *Xp, long •yp)
8 {

9 *XP += 2* *yp;
10 }

At first glance, both procedures seem to have identical behavior. They both
add twice the value stored at the location designated by pointer yp to that desig­
nated by pointer 'IP· On the other hand, function twiddle2 is more efficient. It
requires only three memory references '(read •xp, read •yp, write •xp), whereas
twiddle1 requires six (two reads of •xp, two reads of •yp, and two writes of •xp).
Hence, if a compiler is given procedure twiddle1 to compile, one might think
it could generate more efficient code based on the computations performed by
twiddle2.

Consider, however, the case in which xp and yp are equal. Then function
twiddle1 will perform the following computations:

3 *Xp += *xp; /* Double value at xp */
4 *xp += *Xp; I* Double value at xp */

The result will be that the value at xp will be increased by a factor of 4. On the
other hand, function twiddle2 will perform the following computation:

9 *XP += 2* *xp; I* Triple value at xp */

The result will be that the value at xp will.be increased by a factor of 3. The compiler
knows nothing about how twiddle 1 will be called, and so it must assume that
arguments xp and yp can be equal. It therefore cannot generate code in the style
of twiddle2 as an optimized version of twiddle1.

The case where two pointers may designate the same memory location is
known as memory aliasing. In performing only safe optimizations, the compiler
must assume that different pointers may be aliased. As another example, for a
program with pointer variables p and q, consider the following code sequence:

x = 1000; y = 3000;
*q = y; !• 3000 •I
•p x; I• 1000 •I
tl = •q; I• 1000 or 3000 •I

500 Chapter 5 Optimizing Program Performance

The value computed for t1 depends on whether or not pointers p and q are
aliased-if not, it will equal 3,000, but if so it will equal 1,000. This leads to one
of the major optimization blockers, aspects of programs that can·severely limit
the opportunities for a compiler to generate optimized code. If·a compiler cannot
determine whether.or not two pointers may be aliased, it must assume that either
case is possible, limiting the set of possible optimizations.

[15c1J.~Ji'.fil?f¢~&~.{.,B®'W~~~!r~5&1:l
The following problem illustrates the way memory aliasing can cause unexpected
program behavior. Consider the following procedure to swap two values:

/* Swap value x at xp with value y at yp •/

2 void swap(long *xp, long *yp)
3 {

4 •xp *XP + *YPi I• x+y •!
5 *YP *XP - *yp; !• x+y-y = x •I
6 •xp *Xp - *yp; I• x+y-x y •I
7 }

If this procedtite is called With xp equal to yp, what effect' will it have? . , .
A second optimization blocker is due to function calls. As an example", con­

sider the following two procedures:

long f();

2

3 long funcl() {
4 return f() + f() + f() + f();
5 }

6

7 long func2() {
8 return 4•f();
9 }

It might seem at first that both compute the same result, but with func2 calling
f only once, whereas func1 calls it four.times .. It is tempting to generate code in
the style of func2 when given func1 as the source.

Consider, however, the following code for f:

1 long counter = O;

2

3 long f() {
4 return counter++;
5 }

This function has a side effect-it modifies some part of the global program state.
Changing the number of times it gets called changes the program behavior. In

Section 5.1 Capabilities and Limitations of Optimizing Compilers 501

Aside -t' ~ ~~" 'h ~ -. • ;i,.'""'
1
" 'f·~ ·: ~.,,,,,,,,,,. "'~ ~~i ' ~· rJ. -· 6H· t· ~··'- •rt

"'<"' Qptimizing ftmct[on:calls by'inlipe sul:ls~[tl/.tl'?J:l' ,
~· ~ ,.,:'t '}

Co'lle involving functi<ln ·qiJWcan be optimized by 1l process'k'no'wn 'as 'itizlne ~u'bsti{ution (or' simp'iy
"inlining")i,where the funl;tioll'cal!'is fepl~ced by.the McfMot"the!bb'cfy of.tM fµn 0tion. J'or example,
we can expand .tne cotlS:for f'1i'hc'1 bYs11bstitutrhg?ot1: mst1u1tmdons pf turlction·f: · · •

1

2

3
4 <!·

5

6

"7

'8

/* Result of iqli}iing f
long funclin() { {-1,,,, fj; Cf

long t =~ com;tter++; .. I* +O '":(
't +'= Jcounter++ ;·· ... ti* ·+i.,,i;~

t += cou.rl.ter+'t'~' ~ '!/;''~/*~ +2~ *;·· ,., ' ' \ '

''°' += 'coilhtErf+"+; .. '· 1•· 't..3·:~1

} ' "-•·~~.-·

" This transformation both ~edilces the overheacj,pf the fu11ction calls and allows further optimization of
the ex~and~d cqd~1J;gr'el\~mP,l,e'. (~e com?h:lf.?a!i ~o,i;,S'D!iajl\~<'i~p ~p~ai~J ~f gl,obal variabl~ count'er
m funclin to gen~r~te an oi;~nl)JZ,Oj,I VJ','~.\~\\ o,f ttte fP,nft10n< , "

1 /* Optim~zatiqn,, of inJ.i:n,,ep"l~ode , .. *'/. ·•;., d,. ,{- ~ .;:,, t ..

2 . ,.long.. func1opt,{) { ""'~ ® ''t ..;; t ·v·· .,,..,
3 long,.'i, f' 4 *· counter-,t~. 6..i ~ ~ '-"'· ~ !/''/!

, ~ ~

4 CO~l(.Ilte:ri/i+=" 4 i , ~ ~~ l' ·.-' • •\-.,~ ,\.1'"1' ~">. ..~~
s '1'.;.eturn t";.,.... ·~, "'- t"'· :t· ,; •. u .. ·t'!:, "" ~.,.

··6 } ~~ '"' 1;/ ~»!" ~~l-i[," ·~"· ~ ~> If;·

This c0de taithi'UJly repro~uces tb.e·behavfc\t of'.f'Uli<;F¥6r,tttls par\i(uiafciefiiHtiorl of function t.
Rec'eni veqibns 'of cc'6"atterriptlthfs form of optimizatiob,, ~itner when ·directed to with the

.,, • • • ,,.~ 1 ~ ~·,,_,. '"' N •·· d ,
command-line option -finli\le or fot _optimization leveL-01/and higher. ·Unfortunately, ace only
attempts inlining 'for,functi<?nf ct'etineil"~i}h_in a:sipi)~'jile, Th~Lln"eans 'it ~JI.not pe applied in th!'
common case where a sefof librafy lunct1,ons !s•deffiied hi 6\le tile blitinvok'etl·6y functions in other
files. ..,, f •· '· '~~ . ,:#. i; ~ ~ f:'i'' ·r ' ~~ • •

There are times when it is bes.t ti' Pt~vent~a c~mpile;-Jronfpetfofming inli,ne"subslitution. One
is whed the c,ode wi!J"be evaluated usin& a sY,Pbol\c deBllgger; such as GDB, as descriped in ?ection
3.10.2. If a function•call ha~ been optimiz~? away'Via inline substitution, then any attempt to trace or
set a breakpoint for .\hat call v,;ill f~.iL Th"'.seco/id"iS"wheri ey~fuaiing tqe performance of'a program
~y profil\ng, a~ is discµssep iq ,S,ectiorl §)4.J, :.Cal!s; t~Jun91ions !h~t .~av~ J1e.en elimina\"d by inlin<;
sub~titution will J!Qt ~y., prgfi~.ed.~cOr(~ctf~:- if .~ "'t· ,,~~~, '11 ·i~ *- ":"' 11. /'.

particular, a call to funcl would return 0 + 1 + 2 + 3 = 6, whereas a call to func2
would return 4 · 0 = 0, assuming both started with global variable counter set to
zero.

Most compilers do not try to determine whether a function is free of side
effects and hence is a candidate for optimizations such as those attempted in
func2. Instead, the compiler assumes the worst case and leaves function calls
intact.

I
'

l
\
I

(
502 Chapter 5 Optimizing Program Performance

Among compilers, ace is considered adequate, but not exceptional, in terms
of its optimization capabilities. It performs basic optimizations, but it does not per­
form the radical transformations on programs that more "aggressive" compilers
do. As a consequence, programmers using ace must put more effort into writing
programs in a way that simplifies the compiler's task of generating efficient code.

5.2 Expressing Program Performance

We introduce the metric cycles per element, abbreviated CPE, to express program
performance in a way that can guide us in improving the code. CPE measure­
ments help us understand the loop performance of an iterative program at a
detailed level. It is appropriate for programs that perform a repetitive compu­
tation, such as processing the pixels in an image or computing the elements in a
matrix product.

The sequencing of activities by a processor is controlled by a clock providing
a regular signal of some frequency, usually expressed in gigahertz (GHz), billions
of cycles per second. For example, when product literature characterizes a system
as a "4 GHz" processor, it means that the processor clock runs at 4.0 x 109 cycles
per second. The time required for each clock cycle is given by the reciprocal of
the clock frequency. These typically are expressed in nanoseconds (1 nanosecond
is 10-9 seconds) or picoseconds (1 picosecond is 10-12 seconds). For example,
the period of a 4 GHz clock can be expressed as either 0.25 nanoseconds or 250
picoseconds. From a programmer's perspective, it is more instructive to express
measurements in clock cycles rather than nanoseconds or picoseconds. That way,
the measurements express how many instructions are being executed rather than
how fast the clock runs.

Many procedures contain a loop that iterates over a set of elements. For
example, functions psum1 and psum2 in Figure 5.1 both compute the prefix sum
of a vector of length n. For a vector a = (a0, a1, ... , a,,_1), the prefix sum ji =
(po, Pl• ... , Pn-1) is defined as

Po =ao

Pi=Pi-l +a;, l~i <n
(5.1)

Function psum1 computes one element of the result vector per iteration. Func­
tion psum2 uses a technique known as loop unrolling to compute two elements per
iteration. We will explore the benefits of loop unrolling later in this chapter. (See
Problems 5.11, 5.12, and 5.19 for more about analyzing and optimizing the prefix­
sum computation.)

The time required by such a procedure can be characterized as a constant plus
a factor proportional to the number of elements processed. For example, Figure 5.2
shows a plot of the number of clock cycles required by the two functions for a
range of values of n. Using a least squares fit, we find that the run times (in clock
cycles) for psum1 and psum2 can be approximated by the equations 368 + 9.0n and
368 + 6.0n, respectively. These equations indicate an overhead of 368 cycles due
to the timing code and to initiate the procedure, set up the loop, and complete the

I* Compute prefix sum of vector a */
2 void psuml (float a[] , float p [] , long n)
3 {

4 long :i;;
5 p[O]=a[O];
6 for (i = 1; i < n; i++)
7 p[i] = p[i-1] + a[i];
8 }

9

10 void psum2(float a[], float p[], long n)
11 {

12 long i;
13 p[O] = a[O];
14 for (i = 1; i < n-1; i+=2) {
15 float mid_val = p[f-1] + a[i];
16 p[i] = mid~val;
1l p[i+1] = mid_v'al + a[i+1];
18 }

Section 5.2 ExpressinQ ,Program Performance 503

19 1* Fbr even n, finish remaining element */
20 if (i <' n)

21 p'[i] = p[i-1] + a[i];
,; }

Figure 5. 1 Prefix·sum functions. These functions provide examples for how we express
program performance.

0 20 40 60 80 100 120 140 160 180 200

Elements

Figure 5."2 Performance of prefix-sum functions. The slope of the lines indicates the
number of clpcK cycles per element (CPE).

504 Chapter 5 Optimizing Program Performance

Aside What is a l~ast sqyares fit?

For a set of data points (x1, y1), c. .. '(x., y.), we:oftefrtry to &aw a'line tjrnt be~t'apptqxima\es the X­
y trend represented by these data.:with a least sq1faresfit, we loo](for a line of the form y '= mx + b
that minimizes the fbllowitlg emlrineasiire: • • · ., '.,

> .<;>" ' 1

E(m, b) ~ L (mx;.,+ b ~ y,~2

i='i,n ~
•· l"'

An algorithm for comp~ting m and b can be dert'C~d by.finding}l\e derivativ!'S,P(E(m, ~),,witjrrespect
tom and band setting thi!rh tq_O. ·" ' ·

procedure, plus a linear factor of 6.0 or 9.0 cycles per element. For large values
of n (say, greater than 200), the run times will be dominated by the linear factor&
We refer to the coefficients in these terms as the effective number of cycles per
element. We prefer measuring the number of cycles per element rather than the
number of cycles per iteration, because techniques such as loop unrolling allow us
to use fewer iterations to complete the computation, but our ultimate concern is
how fast the procedure will run for a given vector length. We focus our efforts on
minimizing the CPE for our computations. By this measure, psum2, with a CPE of
6.0, is superior to psum1, with a CPE of 9.0.

;:i;~ .. ~···..,. 'f' .,,.,., __ ;>.1'''' !.~-.;:.;"f.& :t:_'tl!t. , ,~.;'{;,. ";.':?.~ '*1'$'; ,-:"~'"J!,,Mf-W--;r~~
i£l:ii.~~.f.t~~J.l:ilJ;:~M!M?imi:~~).:t, '!, n...:E ~ ... s,,,;~ ·~ ·' · •
Later in this chapter we will start with a single function and generate many differ­
ent variants that preserve the function's behavior, but with different performance
characteristics. For three of these variants, we found that the run times (in clock
cycles) i;an be approximated by the following functions:

Version 1: 60 + 35n

Version 2: 136 + 4n

Version 3: 157 + L25n

For what values of n would each version be the fastest of the three? Remember
that n will always be an integer.

5.3 Program Example

To demonstrate how an abstract program can be systematically transformed into
more efficient code, we. will use a running example based on the vectpr data
structure shown in Figure 5.3. A vector is represented with two blocks of memory:
the header and the data array. The header is a structure declared as follows:

Section 5.3 Program Example 505

Figure 5.3 Vector abstract data type. A vector is represented by header information
plus an array of designated length.

---------------------------code/opVvech
1 /* Create abstract data type for Vector */
2 typedef struct {
3 long len;
4 data_t *data;
5 } vec_rec, *vec_ptr;

--------------------------- code/opvvec.h

The declaration uses data_ t to designate the data type of the underlying elements.
In our evaluation, we measured the performance of our code for integer (C int
and long), and floating-point (C float and double) data. We do this by compiling
and running the program separately for different type declarations, such as the
following for data type long:

typedef long data_t;

We allocate the data array block to store the vector elements as an array of len
objects of type data_t.

Figure 5.4 shows some basic procedures for generating vectors, accessing vec­
tor elements, and determining the length of a vector. An important feature to note
is that get_vec_element, the vector access routine, performs bounds checking for
every vector reference .. This cqde is similar to the array representations used in
many other languages, including Java. Bounds checking reduces the chances of
program error, but it can also slow down program execution.

As an optimization example, consider the code showl). in Figure 5.5, which
combines all of the elements in a vector into a sing[e value according to some
operation. By using different definitions of compile-time constants IDENT and
OP, the code can be recompiled to perform different operations on the data. In
particular, using the declarations

#define IDENT 0
#define OP +

it sums the elements of the vector. Using the declarations

#define IDENT 1

#define OP *

it computes the product of the vector elements.
In our presentation, we will proceed through a series of transformations of

the code, writing different versions of the combining function. To gauge progress,

I
I
I
I
I
l
I
'

506 Chapter 5 Optimizing Program Performance

--------------------------- code!optlvec.c

1 /* Create vector of specified length */
2 vec_ptr new_vec(long len)
3 {

4 /* Allocate header structure */
5 vec_ptr result= (vec_ptr) malloc(sizeof(vec_rec));

6 data_t *data = NULL;
7 if (!result)
B return NULLi /* Couldn 1 t allocate storage *f
9 result->len = len;

10 /* Allocate array */
11 if (len > 0) {
12 data= (data_t •)calloc(len, sizeof(data_t));

13 if (!data) {

14

15

16

17

18

19

20

21

22

}

free((void *)result);
return NULL; /* Couldn't allocate storage */

}

}
/* Data will either be NULL or allocated array */

result->data
return result;

data;

23 /•
vector element and store at dest.
(out of bounds) or 1 ~success~ul)

'

24

25

26

* Retrieve
* Return 0
•I

27 int get_vec_element(vec_ptr v, long index, data_t *<lest)

28 {
29 if (index < 0 I I index >= v->len)

30 return Oi
31 *dest = v->data[index];
32 return 1;

33

34

35

36

37

38

}

/* Return length of vector */
long vec_length(vec_ptr v)

{
return v->len;

J

r

39 }

--------------------------code!opt!wlc.c

Figure 5.4 Implementation of vector abstract data type. In the actual program, data
type data_ t is declared to be int, long, float, dr double.

Section 5.3 Program Example 507

1 /* Implementation with maximwn use of data abstraction */
2 void combine1(vec_ptr v, data_t *dest)

{

4 long i;
5

6 *<lest = !DENT;

7 for (i = O; i < vec_length(v); i++) {
8 data_t val;

9. get_vec_elernent(v, i, &val);
10 *dest = *dest OP val;
11 }

12 }

Figure 5.5 Initial implementation of combining operation. Using different decla­
rations of idfntity element !DENT and combining operation OP, we cah measure the
routine for different operations.

we measured the CPE performance of the functions on a machine with an Intel
Core i7 Haswell processor, which we refer to as our reference machine. Some
characteristifS of this processor were given in Section 3.1. These measurements
characterize performance in terms of how the programs run on just one particular
machine, and so there is no guarantee of comparable performance on other
combinations of machine and compiler. However, we have comp~red the results
with those for a number of different compiler/processor combinations, and we
have found them generally consistent with those presented here.

As we proceed through a set of transformations, we will find that many
lead to only minimal performance gains, while others have more dramatic ef­
fects. Determining which combinations of transformations to apply is indeed
part of the "black aft" of writing fast code. Some combinations that do not pro­
vide me'Asurable benefits are indeed ineffective, while others are important as
ways to ena~le further optimizations by the compiler. In our experience, the
best approach involves a combination of experimentation and analysis: repeat­
edly afreihpting different approaches, performing measurements, and examining
the assembly-code representations to identify underlying performance bottle­
necks.

As a starting point, the following table shows CPE measurements for
combine1 running on our reference machine, with different combinations of
operation (addition or multiplication) and data type (long integer and double­
precision floating point). Our experiments with many different programs showed
that operations on 32-bit and 64-bit integers have identical performance, with
the exception of code involving division operations. Similarly, we found identical
performance for programs operating on single- or double-precision floating-point
data. In our tables, we will therefore show only separate results for integer data
and for floating-point data. '

.

''

508 Chapter 5 Optimizing Program Performance

Integer Floating point

Function Page Method + • + •

combine! 507 Abstract unoptimized 22.68 20.02 19.98 20.18
combine! 507 Abstract -01 10.12 10.12 10.17 11.14

We can see that our measurements are somewhat imprecise. The more likely
CPE number for integer sum is 23.00, rather than 22.68, while the number for
integer product is likely 20.0 instead of 20.02. Rather than "fudging" our numbers
to make them look good, we will present the measurements we actually obtained.
There are many factors that complicate the task of reliably measuring the precise
number of clock cycles required by some code sequence. It helps when examining
these numbers to mentally round the results up or down by a few hundredths of
a clock cycle.

The unoptimized code provides a direct translation of the C code into machine
code, often with obvious inefficiencies. By simply giving the command~line option
-01, we enable a basic set of optimizations. As can be seen, this significantly
improves the program performance-more than a factor of 2-with no effort
on behalf of the programmer. In genera~ it is good to get into the habit of
enabling some 'level of optimization. (Similar performance results were obtained
with optimization level -Og.) For the remainder of our measurements, we use
optimization levels -01 and -02 when generating and measuring our programs.

5.4 Eliminating Loop Inefficiencies

Observe that procedure combine1, as shown in Figure 5.5, calls function vec_
length as the test condition of the for loop. Recall from our discussion of how
to translate code containing loops into machine-level programs (Section 3.6.7)
that the test condition must be evaluated on every iteration of the loop. On the
other hand, the length of the vector does not change as the loop proceeds. We
could therefore COII)pute the vector length only once and use this valu!'.in oµr test
condition. '

Figure 5.6 shows a modified version called combine2. It calls vec_length at
the beginning and assigns the result to a local variable length. This transfo~mation
has noticeable effect on the overall performance for some data types and oper­
ations, and minimal or even none for others. In any case, this transformation is
required to eliminate inefficiencies that would become bottlenecks as we attempt
further optimizations.

Integer Floating point

Function Page Method + • + •
combine! 507 Ab~tract -01 10.12 10.12 10.17 11.14
combine2 509 Move vec_l.ength 7.02 9.03 9.02 11.03

This optimization is an instance of a general class of optimizations known as
code motion. They involve identifying a computation that is performed multiple

.,
'~

'

I* Move call to vec_length out of loop */
2 void combine2(vec_ptr v, data_t *dest)
3 {

4 long i;
5 long length= vec_length(v);
6

7 *de st = !DENT;
s for (i = O; i < length; i++) {
9 data_t val;

10 get_vec_element(v, i, &val);
11

12

13 }

*dest = *dest OP val;
}

Section 5.4 Eliminating Loop Inefficiencies 509

Figure 5.6 Improving the efficiency of the loop test. By moving the call to vec_
length out of the loop test, we eliminate the need to execute it on every iteration.

times, (e.g., within a loop), but such that the result of the computation will not
change. We can therefore move the computation to an earlier section of the code
that does not get evaluate~ ~soften. In this case, we moved the call to v~c_length
from within the loop to just before the loop.

Optimizing compilers attempt to perform code motion. Unfortunately, as dis­
cussed previously, they are typically very cautious about making transformations
that change where or how many times a procedure is called. They cannot reliably
detect whether or not a function will have side effects, and 5o they assume that
it might. For example, if vec_length had some side effect, then combinel and
combine2 could have different behaviors. To improve the code, the programmer
must often help the compiler by explicitly performing code motion.

As an extreme example of the loop inefficiency seen in c_ombine 1, consider the
procedure lowerl shown in Figure 5. 7. This procedure is styled after routines sub­
mitted by several students.as part of a network programming project. Its purpose
is to convert·all of the uppercase letters in a1string-to lowercase. 'Phe procedure
steps through the string, converting each uppercase character to lowercase. The
case conversion involves shifting characters in the range 'A' to 'Z' to the range 'a'
to 'z'.

The library function strlen is called as part of the loop test of lower1. Al­
though strlen is typically iniple111ented'whh spe6ial xll6 .string-processing instruc­
tions, its qverall execution is s!milar to the siillple version th3.t is also' shown in
Figure·5.7. Sigce slrings in Care null-terminated charactersequences, strlen can
q;ily dytermi<lr the 17ngth of a string by stepping through 'the sequence until it
hi\s a null character'. For a string of leni>:th n, sJrlep takes time proportional ton.
Since strlen is called in each of then· iterations of lower1, the overall run time
of lo~erl is' quadratic in the string length, proporti;,nal to n2. •

l
~
'

510 Chapter 5 Optimizing Program Performance

/* Convert string to lowercase: slow •/
2 void lower1(char *S)
3 {

4 long i;

5

6

7

8

9

10

11

12

13

14

for (i O; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')
s[i] (1 A' - 'a');

}

/* Convert string to lowercase: faster •/
void lower2(char •s)
{

long i;
15 long len = strlen(s);
16

17 for (i O; i < len; i++)

18 if (s [i] >= 'A' &:&: s [i] <= 'Z')

19 s[i] ('A' - ia1);

20 }

21

22

23

24

25

26

27

28

29

30

31

32

/* Sample implementation of library function strlen •/
/* Compute length of string */
size_t strlen(const char •s)
{

long length = O;
while (•s != '\0') {

s++;
length++;

}

return length;
}

Figure 5.7 Lowercase conversion routines. The two procedures have radically different
performance. .J

This analysis is confirmed by actual measurements of the functions for differ­
ent length strings, as shown in Figure 5.8 (and using the library version of strlen).
The graph of the run time for lower1 rises steeply as the string length increases
(Figure 5.S(a)). Figure 5.S(b) shows the run times for seven different lengths (not
the same as shown in the graph), each of which is a power of 2. Observe that for
lower1 each doubling of the string length causes a quadrupling of the"run time.
This is a clear inaicator of a quadratic run time. For a string of length ~.048,576,
lower1 requires over 17 minutes of CPU time.

Section 5.4 Eliminating Loop Inefficiencies 511

250

200

0

" c 150
0
u
~
0

" 100 0.

"
50

0
0

(a)

Function

lower1
lower2

(b)

100,000

16,384

0.26

0.0000

32,768

1.03

0.0001

lower!

lower2

200,000 300,000 400,000 500,000

String length

String length

65,536 131,072 262,144 524,288 1,048,576

4.10 16.41 65.62 262.48 1,049.89
0.0001 0.0003 0.0005 0.0010 0.0020

Figure 5.8 Comparative performance of lowercase conversion routines. The original code lower! has a
quadratic run time due to an inefficient loop structure. The modified code lower2 has a linear run time.

Function lower2 shown in Figure 5.7 is identical to that of lower1, except
that we have moved the call to strlen out of the loop. The performance im­
proves dramatically. For a string length of 1,048,576, the function requires just 2.0
milliseconds-over 500,000 times faster than lower1. Each 'doubling of the string
length causes a doubling of the run time-a clear indicator of linear run time. For
longer strings, the run-time improvement will be even greater.

In an ideal world, a compiler would recognize that each call to strlen in
the loop test will return the same result, and thus the call could be moved out of
the loop. This would require a very sophisticated analysis, since strlen checks
the elements of the string and these values are changing as lower1 proceeds. The
compiler would need to detect that even though the characters within the string are
changing, none are being set from nonzero to zero, or vice versa. Such an analysis
is well beyond the ability of even the most sophisticated compilers, even if they
employ inlining, and so programmers must do such transformations themselves.

This example illustrates a common problem in writing programs, in which a
seemingly trivial piece of code has a hidden asymptotic inefficiency. One would
not eipect a lowercase conversion routine to be a limiting factor in a program's
performance. Typically, programs are tested and analyzed on small data sets, for
which the performance of lower1 is adequate. When the program is ultimately

·"

512 Chapter 5 Optimizing Program Performance

deployed, however, it is entirely possible that the procedure could be applied to
strings of over one million characters. All of a sudden this benign piece of code
has become a major performance bottleneck. By contrast, the performance of
lower2 will be adequate for strings of arbitrary length. Stories abound of major
programming projects in which problems of this sort occur. Part of the job of a
competent programmer is to avoid ever introducing such asymptotic inefficiency.

!PJ®wtro~iil!'.~!!Ii!~li;,~;.~'11 ><i:J
Consider the following functions:

long min(long x, long y) { return x < y ? x y; }
long max(long x, long y) { return x < y ? y x; }
void incr(long *xp, long v) { *XP += v; }
long square(long x) { return x•x; }

The following three code fragments call these functions:

A. for (i = min(x, y)'; i < max(x, y); incr(&i, 1))

t += square (i);

B. for (i = max(x, y) - 1; i >= min(x, y); incr(&i, -1))
t += square (i);

C. long low = min(x, y);
long high= max(x, y);

for (i = low; i < high; incr(&i, 1))
t += square(i);

Assume x equals 10 and y equals 100. Fill in the (ollowing table indicating the
number of times' each of the four' functions is called in code frigments A-C:

Code min max incr square

A. ---- ----
B. ---- ---- ----
c. ---

5.5 Reducing Procedure Calls

As we have seen, procedure calls can incur overhead and also block most forms of
program optimization. We can see in the code for combine2 (Figure 5.6) that get_
vec_element is called on every loop iteration to retrieve the next yector element.
This function checks the vector index i against the'Ioop bounds with every vector
reference, a clear source of inefficiency. Bounds checking might be a useful :feature
when dealing: with arbitrary array accesses, but a.simple analysis of the code for
combine2 shows that all references will be valid.

Section 5.5 Reducing Procedure Calls 513

--------------------------- code/optlvec.c

2

3

4

data_t *get_vec_start(vec_ptr v)
{

}

' return v->data;

--------------------------- code/optlvec.c

I* Direct access to vector data */
2 void combine3(vec_ptr v, data_t *<lest)
3 {

4 long i;

5 long length= vec_length(v);
6 data_t *data = get_vec_start(v);
7

8 •dest = IDENT;
9 for (i = O; i < length; i++) {

10 *dest = *dest OP data [i] ;
11 }

12 ~

"
Figure• 5.9 Eliminating function calls within the loop. The resulting code does not
s.how a performance gain, but it enables additional optimizations.

'Suppo'l\) iJls,tead that we add a fun9tion get_ vec_start to our abstract data
type. This,'runyt\on returns. the starting address of the data array, as shown in
Figure 5.9. 'we could then write the procedure shown as.combine3 in this figure,
having ro function call~ in the inner loop. Rather tlfan making a flliiction call to
retrieve eacn vector element, it accesses the array directly. A purist might say that
this transformation seriously impairs the program modularity. In principle, the
user of the vector abstract data type should not even need to know that ,the vector
contents are stored a~ an array, r,ather than as some other data structure such as a
linked list. A more pragmati9 programmer would argue that this transformation
is a necessary step tow~rd achieving high-performance results.

Function

combine2
combine3

Page

509

513

Method

Move vec_length

Direct data access

Integer
+

7.02

7.17

*
9.03

9.02

Floating point
+

9.02

9.02

•
11.03

11.03

Surprisingly, there is no apparent performance improvement. Indeed, the
performance for integer sum has gotten slightly worse. Evidently, other operations
in the inner loop are forming a bottleneck that limits the performance more
than the call to get_vec_element. We will return to this function later (Section
5.11.2) and see why the repeated bounds checking by ~ombine2 does not incur a
performance penalty. For now, we can view this transformation as one of a series
of steps that will ultimately lead to greatly improved performance.

11

I

I
:I

I
!
I

I

514 Chapter 5 Optimizing Program Performance

5.6 Eliminating Unneeded Memory References

The code for combine3 accumulates the value being computed by the combining
operation at the location designated by the pointer dest. This attribute can be seen
by examining the assembly code generated for the inner loop of the compiled
code. We show here the x86-64 code generated for data type double and with
multiplication as the combining operation:

2

3

4

s
6

7

Inner loop of combine3. data_t =double, OP= *
dest in %rbx, data+i in %rdx, data+length in %rax

.L17: loop:

vmovsd (%rbx), %xmm0 Read product from dest

vmulsd (%rdx), %xmm0, %xmm0 Multiply product by data[i]

vmovsd %xmm0, (%rbx) Store product at dest

addq $8, %rdx Increment data+i

cmpq %rax, %rdx Compare to data+length

jne .L17 If !=, goto loop

We see in this loop code that the address corresponding to pointer dest is held in
register %rbx. It has also transformed the code to maintain a pointer to the ith data
element in register %rdx, shown in the annotations as data+i/This pointer is in­
cremented by 8 on every iteration. The loop termination is detected by comparing
this pointer to one stored in register %rax. We can see that the accumulated value
is read from and written to memory on each iteration. This reading and writing is
wasfeful, since the valu'e read from dest at the beginning of each iteratic;m should
simply be the value written at the end of the previo4s iteration.

We can eliminate this needless reading and writiiig of memory by rewriting the
~ode in the style of combine4 in Figure 5.10. We introduce a temporary vatiable
ace that is used in the loop to accumulate the computed value. The result is stored
at dest only after the loop has been completed. ~B the assembly code that follows
shows, the compiler can now use regis.ter %xmmO'to hold the accumulated value.
Compared to the loop in combine3, we have reduced the memory operations per
iteration from two reads and one wtite to just a smgle read.

2

3

4

s

Inner loop·of combine4. data_t =double, OP=*
ace in %xmm0, data+i in Xrdx, data+length in i.rax

.L25: loop:
vmulsd C%rdx), %xmm0, %xmm0 Multiply ace by data[i]

addq $8, %rdx Increment data+i
Compare to data+length

If !==, goto loop
cmpq
jne

%rax, %rdx

.L25

We see a significant improvement in program performance, as shown in the

following table:

Section 5.6 Eliminating Unneeded Memory References S 1 S

1 /*'~Accumulate result in local variable */
2 1Void combine4(vec_ptr v, data_t *<lest)

{

4 long i;
5 long length= vec_length(v);
6 data_t *data = get_vec_start(v);
7 data_t ace = !DENT;
8

9 for (i = O; ~ < length; i++) {
10 ace = ace OP data[i];
11 }

12 *de st = ace;
13 }

Figure 5.10 Accumulating result in temporary. Holding the accumulated value in local
variable ace (short for "accumulator") eliminates' the need to retrieve it from memory
and write back the updated value on every loop iteration.

Integer Floating point
Function Page Method + • + •
combine3
combine4

513

515
Direct data access
Accumulate in tempqrary

7.17

1.27

9.02

3.01
9.02

3.01
11.03

5.01

All of our times improve by factors ranging from 2.2x to 5.7x, with the integer
addition case' dropping to just 1.27· clod~ cycles per element.

Again, one might think that a compiler should be able to" automatically trans­
form the combine3 code shown in Figure 5.9 to accumulate the value in a register,
as it does with the code for combine4 shown in Figure 5.10. In fact, however, the
two functions can have different behaviors due to memory aliasing. Consider, for
example, the case of integer data with multiplication as the operation and 1 as the
identity element. Let v = [2, 3, 5] be a vector of three elements and consider the
following two function calls:

combine3(v, get_vec_start(v) + 2);
combine4(v, get_vec_start(v) + 2);

That is, we create an alias between the last element of the vector and the destina­
tion for storing the result. The two functions would then execute as follows:

Function

combine3
combine4

Initial

[2, 3, 5]

[2, 3, 5]

Before loop

[2,3, 1]
[2, 3, 5]

i=O

[2, 3, 2]

[2, 3, 5]

i=l

[2, 3, 6]

(2, 3, 5]
[2, 3, 36]

[2, 3, 5]

Final

[2, 3, 36]

[2, 3, 30]

516 Chapter 5 Optimizing Program Performance

As shown previously, combine3 accumulates its result at the destination,
which in this case is the final vector element. This value is therefore set first to
1, then to 2 · 1 = 2, and then to 3 · 2 = 6. On the last iteration, this value is then
multiplied by itself to yield a final value of 36. For the case of combine4, the vector
remains unchanged until the end, when the final element is set to the computed

result 1 · 2 · 3 · 5 = 30.
Of course, our example showing the distinction between combine3 and

combine4 is highly contrived. One could argue that the behavior of combine4
more closely matches the intention of the function description. Unfortunately, a
compiler cannot make a judgment about the conditions under. which a function
might be used and what the programmer's intentions might be. Instead, when
given combine3 to compile, the conservative approach is to keep reading and
writing memory, even though this is less efficient.

When we use ace to compile combine3 with command-line option -02, we get
code with substantially better CPE performance than with -01:

Integer Floating point

Function Page Method + * + *

cornbine3 513 Compiled -01 7.17 9.02 9.02 11.03

combine3 513 Compiled -02 1.60 3.01 3.01 5.01

combine4 515 Accumulate in temporary 1.27 3.01 3.01 5.01

We achieve performance comparable to that for combine'?<, except.for the case
of integer sum, but even it improves significantly. On examining th<; assembly code
generated by the compiler, we find an interesting variant for the inner loop:

2

3

4

5

6

Inner loop of combine3. data_t =double, OP=*· Compiled -02

dest in Zrbx, data+i in %rdx, data+length in %rax

Accumulated product in %xmm0
.L22: loop:

Multiply product by data[i]
vmulsd
addq

cmpq
vmovsd
jne

(%rdx), %xmm0,
$8, %rclx
%rax, %rdx
%xmm0, (%rbx)
.L22

%xmm0
Increment data+i

Compare to data+length

Store product at dest

If !=, goto loop

We can compare this to the version created with optimization level 1:

2

3

4

Inner loop of combine3. data_t =double, OP=*· Compiled -01

dest in %rbx, data+i in %rdx, data+length in %rax

.L17:
vmovsd (%rbx). %xmm0
vmulsd (%rdx), %xmm0, %xmm0
vmovsd %xmm0, (%rbx)

loop:
Read product from dest
Multiply product by data[i]

Store product at dest

5

6

?

addq
cmpq
jne

$8, %rdx
%rax, %rdx
.L17

Section 5.7 Understanding Modern Processors 517

Increment data+i

Compare to data+length

If !==, goto loop

We see that, besides some reordering of instructions, the only difference is that
the more optimized version does not contain the vmovsd implementing the read
from the location designated by dest (line 2).

A. How does the role of register %xmm0 differ in these two loops?

B. Will the more optimized version faithfully implement the C code of com­
bine3, including when there is memory aliasing between dest and the vec­
tor data?

C. Either explain why this optimization preserves the desired behavior, or give
an example where it would produce different resuJts than the less optimized
code.

With this final transfor111ation, we reached a point where we require just 1.25-5
clock cycles for each element to be computed. This is a considerable improvement
over the original 9-11 cycles when we first enabled optimization. We would now
like to see just what factors are constraining the performance of our code and how
we can improve things even further.

5.7 Understanding Modern Processors

Up to this point, we have applied optimizations that did not rely on any features
of the target machine. They simply reduced the overhead of procedure calls and
eliminated some of the critical "optimization blockers" that cause difficulties
for optimizing compilers. As we seek to push the performance further, we must
consider optimizations that exploit the microarchitecture of the processor-that is,
the underlying system design by which a processor executes instructions. Getting
every last bit of performance requires a detailed analysis of the program as well as
code generation tuned for the target processor. Nonetheless, we can apply some
basic optimizations that will yield an overall performance improvement on a large
class of processors. The detailed performance results we report here may not hold
for other machines, but the general principles of operation and optimization apply
to a wide variety of machines.

To understand ways to improve performance, we require a basic understand­
ing of the microarchitectures of modem processors. Due to the large number of
transistors that can be integrated onto a single chip, modern microprocessors em­
ploy complex hardware that attempts to maximize program performance. One
result is that their actual operation is far different from the view that is perceived
by looking at machine-level programs. At the code level, it appears as if instruc­
tions are executed one at a time, where each instruction jnvolves fetching values
from registers or memory, performing an operation, and storing results .back to
a register or memory location. In the actual processor, a number of instructions

•' 518 Chapter 5 Optimizing Program Performance

are evaluated simultaneously, a phenomenon referred to as instruction-level paral­
lelism. In some designs, there can be 100 or more instructions "in flight." Elaborate
mechanisms are employed to make sure the behavior of this parallel execution
exactly captures the sequential semantic model required by the machine-level
program. This is one of the remarkable feats of modern microprocessors: they
employ complex and exotic microarchitectures, in which multiple instructions can
be executed in parallel, while presenting an operational view of simple sequential
instruction execution.

Although the detailed design of a modern microprocessor is well beyond
the scope of this book, having a general idea of the principles by which they
operate suffices to understand how they achieve instruction-level parallelism. We
will find that two different lower bounds characterize the maximum performance
of a program. The latency bound is encountered when a series of operations
must be performed in strict sequence, because the result of one operation is
required before the next one can begin. This bound can limit program performance
when the data dependencies in the code limit the ability of the processor to
exploit instruction-level parallelism. The throughput bound characterizes the raw
computing capacity of the processor's functional units. This bound becomes the
ultimate limit on program performance.

5.7.1 Overall Operation

Figure 5.11 shows a very simplified view of a modern microprocessor. Our hy- 1
pothetical processor design is based loosely on the structure of recent Intel pro­
cessors. These processors are described in the industry as being superscalar, which
means they can perform multiple operations on every clock cycle and out of order,
meaning that the order in which instructions execute need not correspond to their
ordering in the machine-level program. The overall design has two main parts:
the instruction control unit (ICU), w~ich is responsible for reading a sequence of
instructions from memory and generating from these a set of primitive operations
to perform on program data, and the execution unit (EU), which then executes
these operations. Compared to the simple in-order pipeline we studied in Chap-
ter 4, out-of-order processors require far greater and more complex hardware, but
they are better at achieving higher degrees of instruction-level parallelism.

The ICU reads the instructions from an instruction cache-a special high­
speed memory containing the most recently accessed instructions. In .general,
the ICU fetches well ahead of the currently executing instructions, so that it has
enough time to decode these and send operations down to the EU. One problem,
however, is that when a program hits a branch, 1 there are two possible directions
the program might go. The branch can be taken, with control passing to the branch
target. Alternatively, the branch can be not taken, with control passing to the next

1. We use the term "branch" specifically to refer to conditional jump instructions. Other instructions
that can transfer control to multiple destinations., such as procedure return and indirect jumps, provide
similar challenges for the processor.

Register
updates

'<

Section 5.7 Understanding Modern Processors 519

,;<. , lnstrupti9n, control unit

:---..'II.----~;----------------• Fetch Address

t ~ Retirement control . 'w.
~---- unit

'·· ~·"!-"'~"' Instructions
Re.g1sje(Instruction
~~,.fiJe"':·~P decode

<"1"'J~ "'if'•

Prediction
OK?

._ __ ,..... Ope~ation~

Addi.

Dita

Execution unit

Data
cache

.,

11nstruction
cache

• I
Functionql

Units

'oata

Figure 5.11 Block diagram of an out-of-order processor. The instruction control
unit is responsible for reading instructions from memory and generating a sequence
of primitive operations. The execution unit then performs the operations and indicates
whether the branches were correctly predicted.

instruction in the instruction sequence. Modern processors employ a technique
known as branch prediction, in which they guess whether or not a branch will be
taken and also predict the target address for the branch. Using a technique known
as speculative execution, the processor begins fetching and decoding instructions
at where it predicts the branch will go, and even begins executing these operations
before it has been determined whether or not the branch prediction was correct.
If it later determines that the branch was predicted incorrectly, it resets the state
to that at the branch point and begins fetching and executing instructions in the
other direction. The block labeled "Fetch control" incorporates branch prediction
to perform the task of determining which instructions to fetch.

The instruction decoding logic takes the actual program instructions and con­
verts them into a set of primitive ·operations (sometimes referred to as micro­
operations). Each of these operations performs some simple computational task
such as adding two numbers, reading data from memory, or writing data to mem­
ory. For machines with complex instructions, such as x86 processors, an instruction

I
'

I
I

I
,,1

'I

I

I ...

520 Chapter 5 Optimizing Program Performance

can be decoded into multiple operations. The details of how instructions are de­
coded into sequences of operations varies between machines, and this information
is considered highly proprietary. Fortunately, we can optimize our programs with­
out knowing the low-level details of a particular machine implementation.

In a typicalx86 implementation, an instruction that only operates on registers,
such as

addq %rax,%rdx

is converted into a single operation. On the other hand, an instruction involving
one or more memory references, such as

addq %rax,8(%rdx)

yields multiple operations, separating the memory references from the arithmetic
operations. This particular instruction would be decoded as three operations: one
to load a value from memory into the processor, one to add the loaded value to the
value in register %eax, and one to store the result back to memory. The decoding
splits instructions to allow a division of labor among a set of dedicated hardware
units. These units can then execute the different parts of multiple instructions in
parallel.

The EU receives operations from the instruction fetch unit. Typically, it can
receive a number of them on each clock cycle. These operations are dispatched to
a set of functional units that perform the actual operations. These functional units
are specialized to handle different types of operations.

Reading and writing memory is implemented by the load and store units. The
load unit handles operations that read data from the memory into the processor.
This unit has an adder to perform address computations. Similarly, the store unit
handles operations that write data from the processor to the memory. It also has
an adder to perform address computations. As shown in the figure, the load and
store units access memory via a data cache, a high-speed memory containing the
most recently accessed. data values.

With speculative execution_, the operations are evaluated, but the final results
are not stored in the program registers or data memory until the processor can
be certain that these instructions should actually have been executed. Branch
operations are sent to the EU, not to determine where the branch should go, but
rather to determine whether or not they were predicted correctly. If the prediction
was incorrect, the EU will discard the results that have been computed beyond the
branch point. It will also signal the branch unit that the prediction was incorrect
and indicate the correct branch destination. In this case, the branch unit begins
fetching at the new location. As we saw in Section 3.6.6, such a mis prediction incurn
a significant cost in performance. It takes a while before the new. instructions can
be fetched, decoded, and sent to the functional units.

Figure 5.11 indicates that the different functional units are designed to per­
form different operations. Those labeled as performing "arithmetic operations"
are typically specialized to perform different combinations of integer and floating­
point operations. As the number of transistors that can be integrated onto a single

Section 5.7 Understanding Modern Processors 521

microprocessor chip has grown over time, successive models of microprocessors
have increased the total number of functional units, the combinations of opera­
tions each unit can perform, and the performance of each of these units. The•arith­
metic units are intentionally designed to be able to perform a variety of different
operations, since the required '?perations vary widely across different programs.
For example, some programs might involve many integer operations, while, others
require many floating-point operations. If one functional unit 'Yere specialized to
perfoqn integer operations while another could only perform floating-point oper­
ations, then none of these programs would get the full benefit of having multiple
functional units.

For example, our Intel Core i7 Haswell r~ference machine has eight functional
units, numbered 0-7. Here is a partial list of each one's capabilities:

0. Integer arithmetic, floating-point multiplication, integer and floating-point
division, branches

1. Integer arithmetic, floating-point addition, integer multiplication, floating-
point multiplication

2. Load, address computation

3. Load, address computation

:i. Store

5. Integer arithmetic

6. Integer arithmetic, branches

7. Store address computation

In the above list, "integer arithmetic" refers to basic operations, such as addition,
bitwise operations, and shifting. Multiplication and division require more special­
ized resources. We see that a store operation requires two functional units--one
to compute the store address and one to actually store the data. We will discuss
the mechanics of store (and load) operations·in Section 5.12.

We can see that this ·combination of functional units has the potential to
perform multiple ?Perations of the sa\lle type simultaneously. It has four units
capable of performing integer operations, two that can perform load operations,
and two that can perform floating-point multiplication. We will later see the impact
these resources have on the maximum performance our programs can achieve.

Within the ICU, the retirement unit keeps track of the ongoing processing and
makes sure that it obeys the sequential semantics of the ·machine-level program.
Our figure shows a register file containing the integer, floating-point, and, more
recently, SSE and AVX- r~gisters as part of the•retirement unit, because this unit
controls the updating of these registers: As an instruction is decoded, information
about it is placed into a first-in, first-out queue. This information remains in
the queue until one of two outcomes occurs. First, once the operations for the
instruction have completed and any branch points leading to this instruction are
confirmed as having been correctly predicted, the instruction can be retired, with
any updates to the program, registers being made. If some branch point leading
to this instruction was mispredicted, on the other hand, the instruction will be

522 Chapter 5 Optimizing Program Performance

Aside The history of out-of-order processing

Out-of-order processing was·first implemented in th'e €ontrol Data Corporation '6600 processo, in
1964. Instructions were processed by 10 different furli:tional units, eacli of whic'h could·be operated
independently. In its day, this machine, with a clock rate of 10 MHz, was considered the premium
machine for scientific computing. '• '

IBM first implemented out-of'ori!er processing with the IBM 360/91 processor in 1966, but jUst to
execute the floating-poinfmstructions. For around 25\ears, out-of-order proce~sing was considered
an exotic technology, found only in machines striving'for the highest possible performance, until
IBM reintroduced it in the RS/6000 line of workstations in 1990. This design became the basis for
the IBM/Motorola 'PovierPC hne, with the model 601, intHiouced ln•1993, becoming tlie first single­
chip microprocessor to use out-of-order processirlg. Intel'introduced out-of-order processing' with its
PentiumPro model i!\ 1Q95, with an,, undl'rlying,microarch,it~cture si'l'ilar to th~t of our reference
machine.

flushed, discarding any results that may have been computed. By this means,
mispredictions will not alter the program state.

As we have described, any updates to the program registers occur only as
instructions are being retired, and this takes place only after the processor can be
certain that any branches leading to this instruction have been correctly predicted.
To expedite the communication of results from one instruction to another, much
of this information is exchanged among the execution units, shown in the figure as
"Operation results." As the arrows in the figure show, the execution units can send
results directly to each other. This is a more elaborate form of the data-forwarding
techniques we incorporated into our simple processor design in Section 4.5.5.

The most common mechanism for controlling the communication of operands
among the execution units is called register renaming. When an instruct\on that
updates register r is decoded, a tag t is generated giving a unique identifier to
the result of the operation. An entry (r, t) is added to a table maintaining the
association between program register r and tag t for an operation that will update
this register. When a subsequent instruction using register r as an operand is
decoded, the operation sent to the execution unit will contain t as the source
for the operand value. When some execution unit completes the first operation,
it generates a result (u, t), indicating that the operation with tag t produced
value v. Any operation waiting for t as a source will then use v as the source
value, a form of data forwarding. By this mechanism, values can be forwarded
directly from one operation to another, rather than being written to and read from
the register file, enabling the second operation to begin as soon as the first has
completed. The renaming table only contains entries for registers having pending
write operations. When a decoded instruction requires a register r, and there is no
tag associated with this register, the operand is retrieved directly from the register
file. With register renaming, an entire sequence of operations can be performed
speculatively, even though the registers are updated only after the processor.is
certain of the branch outcomes.

Integer
Operation Latency Issue

Addition 1 1
Multiplication 3 1
Division 3-30 3-30

Capacity

4

1
1

Section 5.7 Understanding Modern Processors 523

Floating point

Latency Issue Capacity

3
5

3-15

1
1

3-15

1
2
1

Figure 5.12 Latency, issue time, and capacity characteristics of reference machine
operations. Latency indicates the total number of clock cycles required to perform the
actual operations, while issue time indicates the minimum number of cycles between
two independent operations. The capacity indicates how many of these operations can
be issued simultaneously. The times for division depend on the data values.

5.7.2 Functional Unit Performance

Figure 5.12 documents the performance of some of the arithmetic operations for
our Intel Core i7 Haswell reference machine, determined by both measurements
and by reference to Intelliterature [49]. These timings are typical for other proces­
sors as well. Each operation is characterized by its latency, meaning the total time
required to perform the operation, the issue time, meaning the minimum num­
ber of clock cycles between two independent operations of the same type, and
the capacity, indicating the number of functional units capable of performing that
operation.

We see that the latencies increase in going from integer to floating-point
operations. We see also that the addition and multiplication operations all have
issue times of 1, meaning that on each clock cycle, the processor can start a
new one of these operations. This short issue time is achieved through the use
of pipelining. A pipelined function unit is implemented as a series of stages,
each of which performs part of the operation. For example, a typical floating­
point adder contains three stages (and hence the three-cycle latency): one to
process the exponent values, one to add the fractions, and one to round the result.
The arithmetic operations can proceed through the stages in close succession
rathei; than waiting for one operation to complete before the next begins. This
capability can be qploited only if there are successive, logically independent
operapons to be performed. Functional units with issne times Of 1 cycle are said
to be fully pipelined: they can start a new operation every clock cycle. Operations
with c~paciJ,Y greater than 1 arise due to the capabilities of the multiple functional
units, as was described earlier for the reference machine.

We see also that the divider (used for integer and floating-point division, as
well as floating-point square root) is not pipelined-its issue time equals its latency.
What this means is that the.divider must perform a complete division before it can
begin a new one. We also see that the latencies and issue times {or division are given
as ranges, because some combinations of dividend and divisor require more steps
than others. The long latency and issue times of division make it a comparatively
costly operation.

I

J

f
I

524 Chapter 5 Optimizing Program Performance

A more common way of expressing issue time is to specify the maximum
throughput of the unit, defined as the reciprocal of the issue time. A fully pipelined
functional unit has a maximum throughput of 1 operation per clock cycle, while
units with higher issue times have lower maximum throughput. Havi\Jg multiple
functional units can increase throughput even further. For an operation with
capacity C and issue time I, the processor can potentially achieve a throughput of
C /I operations per clock cycle. For example, our reference machine is capable of
performing floating-point multiplication operations at a rate of 2 per clock cycle.
We will see how this capability can be exploited to increase program performance.

Circuit designers can create functional units with wide ranges of performance
characteristics. Creating a unit with short latency or with pipelining requires
more hardware, especially for more complex functions -such as multiplication
and floating-point operations. Since there is only a limited amount of space for
these units on the microprocessor chip, CPU designers must carefully balance
the number of functional units and their individual performance to achieve op­
timal overall performance. They evaluate many different benchmark programs
and dedicate the most resources to the most critical operations. As Figure 5.12
indicates, integer multiplication and floating-point multiplication and addition
were considered important operations in the design of the Core i7 Haswell pro­
cessor, even though a ·significant amount of hardware is required to achieve the
low latencies and high degree of pipelining shown. On the other band, division
is relatively infrequent and difficult to implement with either short latency or full
pipelining.

The latencies, issue times, and capacities of these arithmetic operations can
affect the performance of our combining functions. We can express these effects
in terms of two fundamental bounds on the CPE values:

Integer Floating point

I1ound + • + *
Latency 1.00 3.00 3.00 5.00

Throughput 0.50 1.00 1.00 0.50

The latency bound gives a minimum value for the CPE for any function that must
perform the combining operation in a strict sequence.' The throughput bound
gives a minimum bound for the CPE based on the maximum rate' a\ which the
functional units can produce results. For example, since there is only ode integer
multiplier, and it bas an issue time of 1 clock cycle, the processor cannot possibly
sustain a rate of more than 1 multiplication per clock cycle. On the other hand,
with four functional units capable of performing integer addition, the processor
can potentially sustain a rate of 4 operations per cycle. Unfortunately, the need
to read elements from memory creates an additional throughput bound. The
two load units limi~ the processor to reading at most 2 data values per clock
cycle, yielding a ,throitghpul bound of 0.50. We will demonstrate the effect of
both the latency and throughput bounds with different versions of the combining
functions. •

Section 5.7 Understanding Modern Processors 525

5.7.3 An Abstract Model of Processor Operation

As a tool for analyzing the performance of a machine-level program executing on a
modern processor, we will use a data-flow representation of programs, a graphical
notation showing how the data depel)dencies between the different operations
constrain the order in which they are executed. These constraints then lead to
critical paths in the graph, putting a lower bound on the number of clock cycles
required to execute a set of machine instructions.

Before proceeding with the technical details, ir is instructive to examine the
CPE measurements obtained for function combine4, our fastest code up to this
point:

Integer Floating point
Function Page Method + • + •
combine4 515 Accumulate in temporary 1.27 3.01 3.01 5.01

Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50

We can see that these measurements match the latency bound for the proces­
sor, except for the case of integer addition. This is not a coincidence-it indicates
that the performance of these functions is dictated by the latency of the sum
or product computation being performed. Computing the product or sum of n
elements requires around L · n + K clock cycles, where L is the latency of the
combining operation and K represents the overhead of calling the function and
initiating and terminating the loop. The CPE is therefore equal to the latency
bound L.

From Machine-Level Code to Data-Flow Graphs

Our d~ta-flow representation of programs is informal. We use it as a way to
visualjze h<;>w the data dependencies in a program dictate its performance. We
present the data-flow notation ,by working with combine4 (Figure 5,10) as an
example. W,e fo~µs just on the computation.performed by the loop, since this is the
dominat,ing factor in performance for large vectors. We consider the 9ase of data
type double with multiplication as the combining operatjollo. Other,combinations
of data type and operation yield similar code. The compiled code for this loop
consists of four instructions, with registers %rdx holding a pointer to the ith
element of,array data, %rax holding a pointer to the end of the array, and %xmm0
holding the accumulated value acc.

·~nner loop of combine4. data_t = double, OP = *
ace in %xmm0, data+i in %rdx, data+length in %rax
.L25: loop:

2 vmulsd (%rdx), %xmmO, %xmm0 Multiply ace by data[i]

Increment data+i

Compare to data+length

If !=, goto loop

3 addq $8, %rdx
4 cmpq %rax, %rdx
5 jne .L25

526 Chapter 5 Optimizing Program Performance

[%rax 1 Y.rdx l %xmm0

%xmmO, %xmmO

addq $8,%rdx

cmpq %rax,%rdx

jne loop

~ Y.rax 1 %rdx 1 %xmm0

Figure S.13 Graphical representation of inner-loop code for combine4. lnstn'.tC:tions
are dynamically translated into one or two operations, each of which receives values
from other operations or from registers and produces values for other operations and for
registers. We show the target of the final instruction as the label loop. It jumps to the

first instruction shown.

As Figure 5.13 indicates, with our hypothetical processor design, the four in­
structions are expanded by the instruction decoder into a series of five operations,
with the initial multiplication instruction being expanded into a load operation
to read the source operand from memory, ·and a mul operation to perform the

multiplication.
As a step toward generating a data-fiow graph representation of the program,

the boxes and lines along the left-hand side of Figure 5.13 show how the registers
are used and updated by the different operations, with the boxes along the top
representing the register values at the beginning of the loop, and· those along the
bottom representing the values at the end. For example, register %rax is only used
as a source value by the cmp operation, and so the register has the same value at
the end of the loop as at the beginning. Register %rdx, on the other hand, is both
used and updated within the loop. Its initial value is used by the load and add
operations;' its new value is genera~ed by the add operation, which is then used
by the cmp operation. Register %xmm0 is also updated within the loop by the mul
operation, which first uses the initial value as a source value.

Some of the operations in Figure 5.13 produce values that do not correspond
to registers. We show these as arcs between operations on the right-hand side.
The load operation reads a value from memory and passes it directly to the
mul operation. Since these two operations arise from decoding a single v~ulsd
instruction, there is no register associated with the intermediate value passing
between them. The cmp operation updates the condition codes, and these are
then tested by the jne operation.

For a code segment forming a loop, we can classify the registers that are

accessed into four categories:

Figure 5.14
Abstracting combine4
operations as a data-flow
graph. _we rearrange the
operators 9~ Figure 5.13
to more clearly show the
data dependencies (a), and
th~n further show only
{hose operations that use
values from one iteration
to produce new values for
the ne,xt (b).

%xmm0

Section 5.7 Understanding Modern Processors 527

%l?a)c %rdx

jne

(a) (b)

Read-only. These are used as source values, either as data or to compute mem­
ory addresses, but they are not modified within the loop. The only read­
only register for the loop in combine4 is %rax.

Write-only. These are used as the destinations of data-movement operations.
There are no such registers in this loop.

Local. These are updated and used within the loop, but there is no dependency
from one iteration to another. The condition code registers are examples
for this loop: they are updated by the cmp operation and used by the jne
operation, but this dependency is contained within individual iterations.

Loop. These are used both as source values and as destinatfons for the loop,
with the value generated in one iteration being used in another. We can
see that %rdx and %xmm0 are loop registers for combine4, correspOnding
to program values data+i and acc.

As we will see, the chains of operations between loop registers determine the
performance-limiting data dependencies.

Figure 5.14 shows further refinements of the graphical representation of Fig­
ure 5.13, with a goal of showing only those operations and data dependencies that
affect the program execution time. We see in Figure 5.14(a) that we rearranged
the operators to show more clearly the fiow of data from the source registers at
the top (both read-only and loop registers) and to the destination registers at the
bottom (both write-only and loop registers).

In Figure 5.14(a), we also color operators white if they are not part of some
chain of dependencies between loop registers. For this example, the comparison
(cmp) and branch (jne) operations do not directly affect the fiow of data in the
program. We assume that the instruction control unit predicts that branch will be
taken, and hence the program will continue looping. The purpose of the compare
and branch operations is to test the branch condition and notify the ICU if it is

528 Chapter 5 Optimizing Program Performance

Figure 5.15

not taken. We assume this checking can be done quickly enough that it does not

slow down the processor.
In Figure 5.14(b), we have eliminated the operators that were colored white

on the left, and we have retained only the loop registers. What we have left is an
abstract template showing the data dependencies that form among loop registers
due to one iteration of the loop. We can see in this diagram that there are two
data dependencies from one iteration to the next. Along one side, we see the
dependencies between successive values of program value ace, stored in register
%xmm0. The loop computes a new value for ace by multiplying the old value by a
data element, generated by the load operation. Along the other side, we see the
dependencies between successive values of the pointer to the ith data element.
On each iteration, the old value is used as the address for the load operation, and
it is also incremented by the add operation to compute its new value.

Figure 5.15 shows the data-flow representation of n iterations by the inner loop
of function combine4. This graph was obtained by simply replicating the template
shown in Figure 5.l 4(b) n times. We can see that the program has two chains of data

Critical path

Data-flow representation
of computation by n
iterations of the inner
loop of cornbine4. The
sequence of multiplication
operations forms a critical
path that limits program
performance.

~

data[O]

data[l]

Section 5.7 Understanding Modern Processors 529

dependencies, corresponding to the updating of prpgram values ace and data+i
with operapim~ mu! and add, resp"ctively. ~iven that floating-point multiplication
has a la5ency of 5 cycles, while integer additic,m has a latency of 1 cycle, we can see
that the chain on the left will form a critical path, requiring Sn cycles to execute.
The chain on the right would require only n cycles to execute, and so it does not
limit the program performance.

Figure 5.15 demonstrates why we achieved a CPE equal to the latency bound
of 5 cycles for combine4, when performing floating-point multiplication. When ex­
ecuting the function, the floating-point multiplier becomes the limiting resource.
The other operations required during the loop-manipulating and testing pointer
value data+i and reading data from memory-proceed in parallel with the mul­
tiplication. As each successive value of ace is computed, it is fed back around to
compute the next value, but this will not occur until 5 cycles later.

The flow for other combinations of data type and operation are identical to
those shown in Figure 5.15, but with a different data operation forming the chain of
data dependencies shown on the left. For all of the cases where the operation has
a latency L greater than 1, we see that the measured CPE is simply L, indicating
that this chain forms the performance-limiting critical path.

Other Performance Factors

For the case of integer addition, on the other hand, our measurements of combine4
show a CPE of 1.27, slower than the CPE of 1.00 we would predict based on the
chains of dependencies formed along either the left- or the right-hand side of the
graph of Figure 5.15. This illustrates the principle that the critical paths in a data­
fiow representation provide only a lower bound on how many cycles a program
will require. Other factors cah also limit performance, including the total number
of functional units available and the number of data values that can be passed
among the functional units on any given step. For the case of integer addition as
the combining operation, the data operation is sufficiently fast that the rest of the
operations cannot supply data fast enough. Determining exactly why the program
requires 1.27 cycles per element would require a much more detailed knowledge
of the hardware design than is publicly available.

To summarize our performance analysis of combine4: our abstract data-flow
representation of program operation showed that combine4 has a critical path of
length L · n caused by the successive updating of program value ace, and this path
limits the CPE to at least L. This is indeed the CPE we measure for all cases except
integer addition, which has a measured CPE of 1.27 rather than the CPE of 1.00
we would expect from the critical path length.

It may seem that the latency bound forms a fundamental limit on how fast
ou~ combining operations can be performed. Our next task will be to restructure
the operations to enhance instruction-level parallelism. We want to transform the
program in such a way that our only limitation becomes the throughput bound,
yielding CPEs below or close to 1.00.

•

\
I

530 Chapter 5 Optimizing Program Performance

:fritt~~ci.11~a:c~~'.'Pru~~~~,7ll''~r:::1
Suppose we wish to write a function to evaluate a polynomial, where a polynomial
of ctegtee n is defined to have a set of coefficients a0, a1, a2, ... , a .. For a value x,
we evaluate the polynomial by computing

(5.2)

This evaluation can be implemented by the following function, having as argu­
ments an array of coefficients a, a value x, and the polynomial degree degree (the
value n in Equation 5.2). In this function, we compute both the successi.ve terms
of the equation and the successive powers of x within a single loop:

double poly(double a[), double x, long degree)

2 {

3 long i;
4 double result= a[O];
5 double xpwr = x; /* Equals x-~ at ~tar1t of loop *I
6 for (i = 1i i <=degree; i++) {
7 result += a[i] * xpwr;
8 xpwr = x * xpwr;
9 }

10 return result;

11 }

A. For degree n, how many additions and how many multiplications does this

code perform?
B. On our reference machine, with arithmetic operations having the latencies

shown in Figure 5.12, we measure the CPE for this function to be 5.00. Ex­
plain how this CPE arises based on the data dependencies formed between
iterations due to the operations implementing lines 7-8 of.the function .

.fttt~i.~t.o.l?J!ih ~.~~ 7sfs\QtlP1J'11fa9~~27~"j~~!-~.::.r1~'!;f,~; ,.
Let us continue exploring ways to evaluate polynomials, as described ill Practice
Problem 5.5. We can reduce the number of multiplications ill' evaluating a polyno­
mial by applying Homer's method, named after British mathematician William G.
Horner (1786-1837). The idea is to repeatedly factor out the powers oI x to get

the following evaluation:
'

ao + x(a1 + x(a2 + · · · + x(an-1 + xa.) · · ·)) (5.3)

Using Hornev,'s method, we can implement polynomial evaluatioq<Jlsing the

following code:

/* Apply Horner's method */
2 double polyh(double a[), double x, long degree)

3 {

Section 5.8 Loop Unrolling 531

4 long i;
5 double result= a[degree];
6 f.or (i = degree-1; i >= O; i--)
7 result = a [i] + x*resul t;
8 return resultj
9 }

A. For degree n, how many additions and how many multiplications does this
code perform?

B. On our reference machine, with the arithmetic operations having the laten­
cies shown in Figure 5.12, we measure the CPE for this function to be 8.00.
Explain how this CPE arises based on the data dependencies formed be­
tween iterations due to the operations implementing line 7 of the function.

C. Explain how the function shown in Practice Problem 5.5 can run faster, even
though it requires more operations.

5.8 Loop Unrolling

Loop unrolling is a program transformation that reduces the number of iterations
for a loop by increasing the number of elemen\s. COJI!puted on each iteration. We
saw an example of this with the function psum2 (Figure 5.1), where each iteration
computes two elements of the prefix sum, thereby halving the total number of
iterations required. Loop unrolling can improve performance in two ways. First,
it reduces the number of operations that do not contribute directly to the program
resti)t, such as loop indexing and conditional branching. Second, it exposes ways
in which we can further transform the code to reduce the number of operations
in the critical paths of the overall computation. In this section, we will examine
simple loop unrolling, without any further transformations.

Figure 5.16 shows a version of our combining code using what we will refer
to as "2 x 1 loop unrolling." The first loop steps through the array two elements
at a time. That is, the loop index i is incremented by 2 on each iteration, and the
combining operation is applied to array elements i and i + 1 in a single iteration.

In general, the vector length will not be a multiple of 2. We want our code
to work correctly for arbitrary vector lengths. We account for this requirement in
two ways. First;we make sure the first loop does not overrun the array bounds.
For a vector of length n, we set the loop limit to be n - 1. We are then assured that
the loop will only be executed when the loop index i satisfies i < n - 1, and hence
the maximum array index i + 1 will satisfy i + 1 < (n - 1) + 1 = n.

We can generalize this idea to unroll a loop by any factor k, yielding k x 1
loop unrolling. To do so, we set the upper limit to be n - k + 1 and within the
loop apply the combining operation to elements i through i + k - 1. Loop index i
is incremented by k in each iteration. The maximum array index i + k - 1 will
then be less than n. We include the second loop to step through the final few
elements of the vector one at a time. The body of this loop will be executed
between 0 and k - 1 times. Fork = 2, we could use a simple conditional statement

532 Chapter 5 Optimizing Program Performance

!• 2 x 1 loop unrolling •/
1 void combine5(vec_ptr v, data_t *dast)
3 {

4 long i;
5 long length= vec_length(v);
6 long limit = length-li
7 data_t *data= get_vec_start(v)i
B data_t ace IDENT;
9

10 f* Combine 2 elements at a time •/
11 for (i1 = O; i <'limit; i+=2) {
12 ace = (ace OP data[i]) OP data[i+l];
13 }

14

15 I* Finish any remaining elements *I
16 for (; i < length; i++) {
17 ace= ace OP data[i];
18 }

19 *dest = ace;

20 }

Figure 5.16 Applying 2 x 1 loop unrolling. This transformation can reduce the effect
of loop overhead.•

to optionally add a final iteration, as we did with the function psum2 (Figure 5.1).
For k > 2, the finishing cases are better expressed with a loop, and so we adopt
this programming convention fork = 2 as well: We refer to this transformation as
"k x 1 loop unrolling," since we unroll by a factor of k but accumulate values in a
single variable acc.

When we m.':asure.,the performance of unrolled code fo~ unrolling ~~ct9rs
k = 2 (combine5) and k = 3, we get the following results:

Integer Floating point

Function Page Method + • + •
combine4 515 No unrolling 1.27 3.01 3.01 5.01
combines 532 2 x 1 unrolling 1.01 3.01 3.01 5.01,

3 x 1 unrolling 1.01 3.01 3.01 5.01

Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 O.~O

Section 5.8 Loop Unrolling 533

Figure 5.17 6
CPE performance for

5 different degrees of
k x 1 loop unrolling. Only 4

integer addition improves w
0. 3

with this transformation. CJ

2

0

-...

~

x...

T ' 1 2 3
T
4

Unrolling factor k

-+

' 5 6

We see that the CPE for integer addition improves, achieving the latency
bound of 1.00. This result can be attributed to the benefits of reducing loop
overhead operations. By.reducing lhe number of overhead operations relative
to the number of additions required to compute the vector sum, we can reach
the point where the 1-cycle latency of integer addition becomes the performance­
limiting factor. On the other hand, none of the other cases improve-they are
already at their latency bounds. Figure 5.17 shows CPE measurements when
unrolling the loop by up to a factor of 10. We see that the trends we observed
for unrolling by 2 and 3 continue-none go below their latency bounds.

To understand why k x 1 unrolling cannot improve performance beyond
the latency boun'd, let us examine the machine-level code for the inner lodp of
combines, having k = 2. The following code gets generated when type data_ t is
double, and the operation is multiplication:

2

4

5

6

Inner loop of combines. data_t =double, OP=*

i in %rdx, data %rax, limit in %rbx, ace in %xmm0
.135:

vmulsd C%rax,%rdx,8),
vmulsd 8(%rax,%rdx,8),
addq $2, %rdx
cmpq %rdx, %rbp
jg .135

%xmm0, %xmm0
%xmmO, %xmm0

loop:

Multiply ace by data[i]

Multiply ace by data[i+1]

Increment i by 2

Compare to limit:i

If>, goto loop

We can see that Gee uses. a more direct translation of the array referencing
seen in the C code, compared to the pointer-based code generated for combine4.2

Loop index i is held in register %rdx, and the address of data is held in register
%rax. As bef9re, }he accumulated value ace is held in vector register %xmm0. The
loop unrolling leads to two vmulsd instructions-one to add data [i] to ace, and

'" 2. The occ optimizer operates by genera ting multiple variants of <t fup.ction and then choosing one that
it predicts will yield the best performance and smallest code size. As a consequence, small changes in
the source code can yi~ld widely varying forms of machine code. we~have found that the choice of
pointer-based or array-based code has no impact oh the performance of programs running on our
reference machine.

--+-- double *
-a- double+
~long*
~~Jong+

I
I
I
I

I
' I
I
r
I
f

l

534 Chapter 5 Optimizing Program Performance

orax Jl.rbp 1.tdx %xmm0

vmulsd (%rax,1,rdx,8), %xmm0, %xmibO

vmulsd 8(%rax,%rdx,8), %xmm0, %xmm0

addq $2,%rdx

cmpq %nix, '/.rbp

jg loop

~Y.ra.x Y,rbp • ,rci5c' %XIllltiO

Figure 5.18 Graphical representation of inner-loop code for combine5. Each
iteration has two vmulsd instructions, each of which is translated into a load and a

mul operation.

Figure 5.19
Abstracting combine5
operations as a data­
flow graph. We rearrange,
simplify, and abstract the
representation of Figure
5 .1 8 to show the data
dependencies between
successive iterations
(a). We see that each
iteration must perform
two multiplications in
sequence (b).

(a)

data[i]
it

(b)

the second to add data [i +1] to acc. Figure 5.18 shows a graphical representation ·
of this code. The vmulsd instructions each get translated into two operations:·
one to load an array element from memory and one to multiply this value by
the accumulated value. We see here that register %xmm0 gets read and written
twice in each execution of the loop. We can rearrange, simplify, and abstract
this graph, following the process shown in Figure 5.19(a), to obtain the template
shown in Figure 5.19(b). We then replicate this template,n/2 times to show the
computation for a vector of length n, obtaining the data-flow representation

Figure 5.20
Data-flow representation
of combines operating
on a vector of length
n. Even though the loop
has been unrolled by a
facto(of 2, there are still n
mul operations along the
critical path.

Critical path

~
• '""""' ""'"''~~··· ~--'""""''*
idata[oJ & :,~J'?!;r·
I
• I
! p

ldata[1]

I
J

I
v~oi--·

!data [2]

1 ·'
I

idata[3]

Section 5.8 Loop Unrolling 535

shown in Figure 5.20. We see here tjtat there is still a critical path of n mul
operations in this graph-there are half as many iterations, but each iteration has
two multiplication operations in sequence. Since the critical path was the limiting
factor for the performance of the code without loop umolling, it remains so with
k x 1 loop unrolling.

Aslile Gel:ting·ttie'cbinpiler to·u'n'foll loop{'
1;~--~ ~~,~· ~··~

.Loop unrolling can easily.be pef{<mn,ed bx a c<))ppi)er, Many .\'Pmpiler~.go,this ~s p~~t of their colJection
of optil)ljzatiops. <;i,GC.\Vill perf01;m SOmJ'<fpg;n~ ofloop.imrolljng when)1i,v,o;ik,ed with optimization l<:vel 3
or higher; "~ , ·~-~ . , Tf• . \.4'

536 Chapter 5 Optimizing Program Performance

5.9 Enhancing Parallelism
At this point, our functions have hit the bounds imposed by the latencies of the
arithmetic units. As we have noted, however, the functional units performing ad­
dition and multiplication are all fully pipelined, meaning that they can start new
operations every clock cycle, and some of the operations can be performed by
multiple functional units. The hardware has the potential to perform multiplica­
tions and additions at a much higher rate, but our code cannot take advantage of
this capability, even with loop unrolling, since we are accumulating the value as a
single variable acc. We cannot compute a new value for ace until the preceding
computation has completed. Even though the functional unit computing a new
value for ace can start a new operation every clock cycle, it will only start one
every L cycles, where L is the 'latency of the combining operation. We will now
investigate ways to break this sequential dependency and get performance better

than the latency bound.

5.9.1 Multiple Accumulators

For a combining operation that is associative and commutative, such as integer
addition or multiplication, we can improve performance by splitting the set of
combining operations into two or more parts and combining the results at the
end. For example, let Pn denote the product of elements a0, ai. ... , a._1:

n-1

Pn= fl ai
i=O

Assuming n is even, we can also write this as Pn =PE. x PO., where PEn is the
product of the elements with even indices, and POn is the product of the elements

with odd indices:
n/2-1

,PEn= TI a2i

i=D

n/2-1

POn = n a2i+l
i=O

Figure 5.21 shows code that uses this method. It uses both two-way loop
unrolling, to combine more elements per iteration, and two-way parallelism,
accumulating elements with even indices in variable accO and elements with odd
indices in variable acci. We therefore refer to this as "2 x 2 loop unrolling." As
before, we include a second loop to accumulate any remaining array elements for
the case where the vector length is not a multiple of 2. We then apply the combining
operation to accO and acc1 to compute the final result.

Comparing loop unrolling alone to loop unrolling with two-way parallelism,

we obtain the following performance:

1 /* 2 x 2 loop unrolling •/
2 void combine6(vec_ptr v, data_t *<lest)
3 {

4 long .. i;
5 long length= vec_length(v);
6 long limit = length-1;
7 data_t *data= get_vec_stqrt(v);
s -0.ata_'. t accO !DENT;
9 data_t acc1 = !DENT;

10 ~

11 /* Combine 2 elements at a time */
12 for (i = O; i < limit; i+=2) {

13 accO accO OP data [i] ;
14 acc1 = ace! OP data[i+1];
15 }

16

17

18

19

20

21

22 }

I* Finisb any remaining elements */
for (; i < length; i++) {

accO accO OP data[i];
}

*dest = accO OP ac,c1 i

Section 5.9 Enhancing Parallelism 537

Figure 5.21 Applying 2 x 2 loop unrolling. By maintaining multiple accumulators,
this approach can make better use of the multiple functional units and their pipelining
capabilities.

Integer Floating point
Function Page Method + • + •
combine4 515 Accumulate in temporary 1.27 3.01 3.01 5.01
combines 532 2 x 1 unrolling 1.01 3.01 3.01 5.01
combine6 537 2 x 2 unrolling 0.81 1.51 1.51 2.51

Latency bound 1.00 3.00 3.00 5.00
Throughput bound 0.50 1.00 1.00 0.50

We see that we have improved the performance for all cases, with integer
product, floating-point addition, and floating-point multiplication improving by
a factor of around 2, and integer addition improving somewhat as well. Most
significantly, we have broken through .the barrier imposed by the latency bound.
The processor no longer needs to delay the start of one·sum or product operation
until.the.previous ofie has completed. ·

To understand the performance ,of combineo, we start with the code and
operation sequence shown in Figure 5.22. We can derive a template showing the

l

538 Chapter 5 Optimizing Program Performance

r %rax 1 %rbp1 %rdxT'%=0 I %=1 J
ld'ad

'%<''• ~

mul '
vmulsd (%rax,i'.rdx,8), %xmm0, %xmm0

•' .
load p '·

Y~ mul
.---I

vmulsd 8(%rax,%rdx,8), %xmm1, %xmm1

a8d addq $2,'/.rdx

'
cmp p
)9 ' '

cmpq %rdx,%rbp

jg loop

• r irax l %rbp l %rdxT %=o l %=1

Figure 5.22 Graphical representation of Inner-loop code for combine6. Each iteration has two vmulsd
instructions, each of which is translated into a load and a mul operation.

data[i]

tnul

data[i+1]

jg

%xmmO

(a) (b)

Figure 5.23 Abstracting combine6 operations as a data-flow graph. We rearrange, simplify, and abstract
the representation of Figure 5.22 to show the data dependencies between successive iterations (a). We see
that there is no dependency between the two mul operations (b).

data dependencies between iterations through the process shown in Figure 5.23.
As with combines, the inner loop contains two vmulsd operations, but these
instructions translate into mul operations that read and write separate registers,
with no data dependency between them (Figure 5.23(b)). We then replicate this
template n/2 times (Figure 5.24), modeling the execution of the function on a
vector of length n. We see that we now have two critical paths, one corresponding
to computing the product of even-numbered elements (program value accO) and

Figure 5.24
Data-flow representation
of combine6 operating
on a vector of length n.
We now have two critical
paths, each containing n/2
operations.

data[1]

data(2]

,data[3]

Section 5.9 Enhancing Parallelism 539

I

one for the odd-numbered elements (program value acc1). Each of these critical
patliscontains only n/2 operations, thus leading to a CPE of around 5.00/2 = 2.50.
A similar analysis explains our observed CPE of around L/2 for operations with
latency L for the different combinations of data type and combining operation.
Operationally, the programs are exploiting the capabilities of the functional units
to increase their utilization by a factor of 2. The only exception is for integer
addition. We have reduced the CPE to below 1.0, but there is still too much loop
overhead to achieve the theoretical limit of 0.50.

'we can generalize the multiple accumulator transformation to unroll the loop
by a factor of k and accumulate k values in parallel, yielding k x k loop unrolling.
Figure 5.25 demonstrates the effect of applying this transformation for values

up to k = 10. We can see that, for sufficiently large values of k, the program can

l
I

.
' I

''

I
I

540 Chapter 5 Optimizing Program Performance

-+-double'
4f------'I,-~~~~~~~~~~~~~~~~~~

----- double +
&3f--ll-~.---~~~~~~~~~~~~~~~~~ ~long•

~long+ u

2 3 4 5 6 7 8 9 10

Unrolling factor k

' Figure 5.25 CPE performance of k x kJoop unrolling. All of the CPEs improve with
this transformation, achieving near or at their throughput bounds.

achieve nearly the throughput bounds for all cases. Integer addition achieves a
CPE of 0.54 with k = 7, close to the throughput bound of 0.50 caused by the two
load units. Integer multiplication and floating-point addition achieve CPEs of 1.01
when k 2: 3, approaching the throughput bound of 1.00 set by their functional units.
Floating-point multiplication achieves a CPE of 0.51 fork 2: 10, approaching the
throughput bound of 0.50 set by the two floating-point multipliers and the two
load units. It is worth noting that our code is able to achieve nearly twice the
throughput witli floating-point multiplication as it can with floating-point addition,
even though multiplication is a more complex operation.

In general, a program can achieve the throughput bound for an operation
only when it can keep the pipelines filled for all of the functional units capable of
performing that operation. For an operation with latency L and capacity C, this
requires an uurolling factor k ::: C . L. For example, floating-point multiplication
has C = 2 and L = 5, necessitating an unrolling factor of k 2: 10. Floating-point
addition has C = 1 and L = 3, achieving maximum throughput with k 2: 3.

In performing the k x k unrolling transformation, we must consider whether it
preserves the functionality of the original function. We have seen in Chapter 2 that
two's-complement arithmetic is COffiJllUlative and associat\ve, even when overflow
occurs. Hence, for an integer data. type, the result computed by combine6 will be
identical to that computed by combine5 under all possible conditio11s. Thus, an
optimizing compiler could potentially convert the code shown in combine4 first
to a two-way unrolled variant of combine5 by loop unrolling, and then to that
of combine6 by introducing parallelism. Some compilers do either this or similar
transformations to improve performance for integer data.

On, the other hand, floating-point multiplication and addition are not as­
sociative. Thus, combine5 and combine6 could produce different results due to
rounding or overflow. Imagine, for exa~ple, a product computation in which all
of the elements with even indices are numbers with very large absolute values,
while those with odd indices are very close to 0.0. In such a case, product P En
might overflow, or POn might underflow, even though computing product Pn pro-

Section 5.9 Enhancing Parallelism 541

ceeds normally. In most real-life applications, however, such patterns are unlikely.
Since most physical phenomena are continuous, numerical data tend to be reason­
ably smooth and well behaved. Even when there are discontinuities, they do not
generally cause periodic patterns that lead to a condition such as that sketched ear­
lier. It is unlikely that multiplying the elements in strict order gives fundamentally
better accuracy than does multiplying two groups independently and then mul­
tiplying those products together. For most applications, achieving a performance
gain of 2 x outweighs the risk of generating different results for strange data pat­
terns. Nevertheless, a program developer should check with potential users to see
if there are particular conditions that may cause the revised algorithm to be unac­
ceptable. Most compilers do not attempt such transformations with floating-point
code, since they have no way to judge the risks of introducing transformations that
can change the program behavior, no matter how small.

5.9.2 Reassociation Transformation

We now explore another way to break the sequential dependencies and thereby
improve performance beyond the latency bound. We saw that the k x l loop un­
rolling of combine5 did not change the set of operations performed in combining
the vector elements to form their sum or product. By a very small change in the
code, however, we can fundamentally change the way the combining is performed,
and also greatly increase the program performance.

Figure 5.26 shows a function combine 7 that differs from the unrolled code of
combine5 (Figure 5.16) only in the way the elements are combined in the inner
loop. In combine5, the combining is performed by the statement

12 ace = (ace OP data[i]) OP data[i+1];

while in combine? it is performed by the statement

12 ace = ace OP (data[i] OP data[i+l]);

differing only in how two parentheses are placed. We call this a reassociation trans­
formation, because the parentheses shift the order in which the vector elements
are combined with the accumulated value ace, yielding a form of loop unrolling
we refer to as "2 x la.''

To an untrained eye, the two statements may seem essentially the same, but
when we measure the CPE, we get a surprising result:

Integer Floating point

Function Page Method + • + •
combine4 515 Accumulate in temporary 1.27 3.01 3.01 5.01
combines 532 2 x 1 unrolling 1.01 3.01 3.01 5.01
combine6 537 2 x 2 unrolling 0.81 1.51 1.51 2.51
combine7 542 2 x la unrolling 1.01 1.51 1.51 2.51

Latency bound 1.00 3.00 3.00 5.00
0.50 1.00 1.00 0.50

I

I

'l
542

.!

Chapter 5 Optimizing Program Performance

/* 2 x la loop unrolling */
2 void combine7(vec_ptr v, data_t *dest)

3 {

4 long i;
5 long length= vec_length(v);

6 long limit = length-1;
7 data_t •data= get_vec_start(v);
8 data_t ace IDENT;

9
10 /* Combine 2 elements at a time */
11 for (i = O; i < limiti i+=2) {
12 ace= ace OP (data[i] OP data[i+l]);

13 }

14
15 /* Finish any remaining elements *f
16 for (; i < length; i++) {

17 ace = ace OP 'data[i];

18 }

19 *dest = ace;

20 }

Figure 5.26 Applying 2 x la unrolling. By reassociating the arithmetic, this approach
increases the number of operations that can be performed in parallel.

The integer addition case matches the performance of k x 1 unrolling
(combine5), while the other three cases match the performance of the versions
with parallel accumulators (combine6), doubling the performance relative to k x 1
unrolling. These cases have broken through the barrie~ imposed by the \atency

bound.
Figure 5.27 illustrates how the code for the inner loop of combine7 (for the

case of multiplication as the1combining operation and double as data type) gets
decoded into operations and the resulting data dependencies. We see tl;iat the load
operations resulting from the vmovsd and the first vmulsd instructions load vector
elements i and i + 1 from memory, and the first mul operation· multiplies them
together. The second mul operation then multiples this result by the accumulated
value acc. Figure 5.28(a) shows how we rearrange, refine, and abstract the op­
erations of'Figure 5.27 to get a template representing the data dependencies for
one iteration (Figure 5.28(b)). As with the templates for combine5 'Ind combine7,
we have two load and two mul operations, but only one of the mul op~rations
forms a d~ta-dep~ndency chain between loop registe:s. When we then replicate
this template n/2 times to show the computations performed in multiplying n vec­
tor eleme1Yts (Figure 5.29), we see that we only have n/,2" operations along the
critical path. The first multiplication within each iteration can be performed with­
out waiting for the accumulated value from the previous iteration. Thus, we reduce
the minimum possible CPE by a factor of around 2.

~.rax ~rbp %rdx %xmmO %xmm1

Zr ax ~ %rbp %rdx r.mo ID 1.xmm1

Section 5.9 Enhancing Parallelism 543

vmovsd C%rax,%rdx,8), %xmm0

} vmulsd 8(%rax,%rdx,8), %-o, Y.xmmO

vmulsd %xmm0, %xmm1, %xmm1

addq $2,%rdx

cmpq %rdx,%rbp

jg loop

Figure 5.27 Graphical representation of inner-loop code for combine?. Each
iteration gets decoded into similar operations as for combine5 or combine6, but with
different data dependencies.

%r<W

(a)

r " ~

'data[if'

~

!
~data[i+1] 1

(b)

Figure 5.28 Abstracting combine7 operations as a data-flow graph. We rearrange,
simplify,.,and abstract the representation of Figure 5.27 to show the data dependencies
between successive iterations. The upper mul operation multiplies two 2-vector elements
with each other, whiie the lower one multiplies the result by loop va,riable acc.

,.
I

"
I
I
I
·1

.I

'i

' ' ~

544 Chapter 5 Optimizing Program Performance

Figure 5.29
Critical path

Data-flow representation ~
of combine7 operating

data[b) on a vector of length n.
We have a single critical
path, but it contains only
n/2 operations.

data[1)

data[2)

.,
• data[3]

I data[n-2]
' I , I
ldata[n-1)

Figure 5.30 demonstrates the effect of applying the reassociation transforma­
tion to achieve what we refer to as k x la loop unrolling for values up to k = 10.
We can see that this transformation yields performance results similar to what is
achieved by maintaining k separate accumulators with k x k unrolling. In all cases,
we come close to the throughput bounds imposed by the functional units.

In performing the reassociation transformation, we once again change the
order in which the vector elements will be combined together. For integer addition
and multiplication, the fact that these operations are associative implies that
this reordering will have no effect on the result. For the floating-point cases, we
must once again assess whether this reassociation is likely to significantly affect

·'

Section 5.9 Enhancing Parallelism 545

--+-double •
--double+
-6-long•
-~long+

2 3 4 5 6 7 8 9 10
Unrolling factor k

Figure 5.30 CPE performance fork x la loop unrolling. All of the CPEs improve with
this transformation, nearly approaching their throughput bounds.

the outcome. We would argue that the difference would be immaterial for most
applications.

In summary, a reassociation transformation can redµce the num,ber of opera­
tions along the critical path in a COIJ1putation, resulting in better performanc!' by
better utilizing the multiple functional units and their pipelining capabilities. Most
compilers will not attempt any reassociatio'ns of floating-point operations, since
these operations are not guarilnteed to be associative. Current versions of GCc do
perform reassociations of integer operations, but not always with, good effects. In
general, we have found that unrolling a loop and accµmulating multiple values in
parallel is a .i,nore reliable way to achieve improved program performance.

1PAfiiID!l$lim'!f!Wi81mmltil9'1ia"~~"!~;<;t:~'Nf:h'1.~-7~
Consider the following function for computing the product of an array of n double­
precision numbers. We have unrolled the loop by a factor of 3.

double aprod(double a[) , long n)
{

}

long ii
double x, y, z;
double r = 1 i
for (i = O; i < n-2; i+= 3) {

x = a[i); y = a[i+l); z = a[i+2);
r = r * x * y * z; /• Product computation •/

}

for (; i < n; i++)
r •= a [i) ;

return r;

't
I

546 Chapter 5 Optimizing Program Performance

For the line labeled ''Product computation," we can use parentheses to cre­
ate five different associations of the computation, as follows:

r = ((r • x) * y) * z; I• Al •/
r = Cr • Cx * y)) * Zj I• A2 •/
r = r * C Cx * y) • z); I• A3 •/
r = r • Cx • (y * z)) ; I• A4 •I
r = Cr • x) • Cy • zl; /• AS •/

Assume we run these functions on a machine where floating-point multiplication
has a latency of 5 clock cycles. Determine the lower bound on the CPE set by
the data dependencies of the multiplication. (Hint: It helps to draw a data-flow
representation of how r is computed on every iteration.)

Web Aside OPT:SIMD Achieving greater parallelism with vector instructions

As described in SectionS.l, Intel introduced the SSE instructions in 1999, where SSE is the acronym for
"streaming SIMD dtensiilns" and, in turn, SIMD (pronounced "slm-dee") is the acronym for "single
instruction, multiple data." The SSE capability 'has gone through multiple generations, with'more
recent versions being named' advanced vector extehsiofis, or~ VX. The SIMD execution model inVolve"s
operating on entire vectors of data within single instructions. These vectors are held in a special set of
vector registers, name\! %ymm0-%ymm15. Current AVX vector registers are 32 bytes long, and therefore
each can hold eight 32-bit numbers or four 64-bit numbers, where the num6e,rs can be either integer
or floating-point values. AVX instructions can' then perform vector operations on these registers, such
as adding or multiplying eight or four sets of values in parallel. For example, if YMM register %ymmO
contains eight single-precision floating-point numbers, which we denote ao, ... , a7, and %rcx contains
the memory address of a sequence of eight single-precision floating-point numbers, which we denote
b0, ••. , b7, then the instruction

vmulps (%res), %ymmO, %ymm1

will read the eight values from memory and perform eig~t m4ltiplicatipns in parallel, computing
a; +--- a; · b;, for 0 ::s_ i ~ 7 and storing the resulting eight products in vector register %ymm1. We see
that a single instruction is able to generate a computation over multiple data values, hence the term
"SIMD."

ace supports extensions to the C language that let programmers express a program in ,terms of
vector operations that can be compiled into the vector instructions of AVX (as well as code based
on the earlier SSE instructions). This coding style is r,referable to writing code directly in assembly
language, since ace can also generate code for the vector instructions found on other processors.

Using a combination of ace instructions, loop unrolling, and multiple accumulators, we are able to
achieve the following performance for our combining functions:

Section 5.10 Summary of Results for Optimizing Combining Code 547

-,Web AsideiO,l?T:SIMD • •. /:;p. •, ~

Achieving.greater. l?arallelism ;.y.ith vE\ct?r instr\;'ctions (continued)
~h

" . ·-,,_., Integer Floatinw]loint ,. 'int lOng '" illt long
+ * + .. + • -1'+

*
M~thod

" 0.54 ' 1.01 o.s;; •1.00 1.01 ,,0,51 1.01 0.52
0.~0 0'.50 LOO. ·LOO •. 1.00 }.00 0.50 0.50

Scala! J9 x W.
Scalar lliroughput bound

0.05 0.24 b.13· ·i.5'(' 'o'.L~ ·o:os b.25 0.16
0.06' 0.12 0.12 .0.12 0.06 0.25 0.12

Vector 8 x 8

Ve~tor throughput bound

In this chart;the first set of numbers is for .tonventional, scalar code)Vriften in the style of combine6, ' .
unrolling by a factor of 10 and maintaining 10 accumulators. The second set, of numbers is for code
writienin·li"form thaf Gee can compile into A'\:'X·ve.ctor, c6cte. In addition to using vector operations,
this'version'utirqlls fue'!llain loop by

1
a factor of 8

1
and maintains ~lgljt st;p~rate v~ci6r accumulators. We

show results for both 32'bit and M-bit'numbers;since the ~ector lnstructions ai:hfoVe 8-way parallelism
in the first case, but<lnly 4-way p,;,allelism in' the second. ' " ' ·•'I

We c~n see that the vector code achieves almost an eightfo'fd irajlrovement on ihe four 32-bit cases,
and a fourfold impiovelbeiit on thre~ of li,e four' 64".bii cases. Only the 'lqng integer multiplication code
dbes ndt perform We1J' Wiien we at!empY'f'o exptess'i't in' "'ectdi c6de. Tue AVX fusttuction set does not
incluqe 'orte to"do.parallel multipli~ati6n"Of '64'.bif•intdgers,•ana:so ace cannot generate vector code
for1hl~ case. lfs,ing' vei:fbr'instnlbtions creatisa'rlew t'J\foughpllt·~ound for the combining operations.
These ar~seight 'tiffici~'~Iower~for 32-bit'oPeratiOns and four times 'Io{Ver ,for '6~-bit 6perations than the
scalar limits. Qur £Ode Comes close ~o achievin& ·these JJouilds for ~several c'ombirlations of data type
and operation.

5.10 Summary of Results for Optimizing Combining Code

Our efforts at maximizing the performance of a routine that adds or multiplies the
elem~nts of a vector have clearly paid off. The following summarizes the results
we obtain with scalar code, not making use of the vector parallelism provided by
AVX vector instructions:

Integer Floating point
Function Page Method + * + •
combine! 507 Abstract -01 10.12 10.12 10.17 11.14
combine6 537 2 x 2 unrolling 0.81 1.51 1.51 2.51

10 x 10 unrolling 0.55 1.00 1.01 0.52
Latency bound 1:00 3.00 3.00 5.00
Throughput bound 0.50 1.00 LOO 0.50

l
·I
I

I
I
l

.J
I•

"

I

548 Chapter 5 Optimizing Program Performance

By using multiple optimizations, we have been able to achieve CPEs close to
the throughput bounds of 0.50 and 1.00, limited only by the capacities of the func­
tional units. These represent 10-20x improvements on the original code. This has
all been done using ordinary C code and a standard compiler. Rewriting the code
to take advantage of the newer SIMD instructions yields additional performance
gains of nearly 4 x or 8 x. For example, for single-precision multiplication, the CPE
drops from the original value of 11.14 down to 0.06, an overall performance gain
of over 180x. This example demonstrates that modern processors have consid­
erable amounts of computing power, but we may need to coax this power out of
them by writing our programs in very stylized ways.

5.11 Some Limiting Factors

We have seen that the critical path in a data-flow graph represent~tion of a
program indicates a fundamental lower bound on the time required to execute a
P,r<;>gram. That is, if there is some chain of data depende11cies in a program where
the sum of all of the latencies along that chain equals T, then the program will
require at least T cycles to execute.

We have also seen that the throughput bounds of the functional units also
impose a lower bound ~n the execution time for a program. That is, assume
that a program requires a total of}v computations of some operation, that the
microprocessor has C functional units capable of performing that operation, and
that these units have an issue time of I. Then the program will require at least
N · I/ C cycles to execute.

In this section, we will consider some other factors that limit the performance
of programs on actual machines.

5.11.1 Register Spilling

The benefits of loop parallelism are limited by the ability to express the compu­
tation in assembly code. If a program has a degree of parallelism P that exceeds
the number of available registers, then the compiler will resort to spilling, stor­
ing some of the temporary values in memory, typically by allocating space on the
run-time stack. As an example, the following measurements cbmpare the result
of extending the multiple accumulator scheme of combines to the cases of k = 10
and k=20:

Integer Floating point

Function Page Method + • + •
combine6 537

10 x 10 unrolling 0.55 1.00 1.01 0.52
20 x 20 unrolling 0.83 1.03 1.02 0.68

Throughput bound 0.50 1.00 1.00 0.50

Section 5.11 Some Limiting Factors 549

We can see that none of the CPEs improve 'with this increased unrolling, and
some even get worse. Modem x86-64 processors have 16 integer registers and can
make use of the 16 YMM registers to store floating-point.data. Once•the number
of loop variables exceeds the number of available registers, the program must
allocate some on the stack.

As an example, the following snippet of code shows how accumulator accO is
updated in the inner loop of the code with 10 x 10 unrolling:

' Updating of accumulator accO in 10 x 10 urolling

vrnulsd (%rdx), %xmmO, %xmm.,O accO, *"' data.Ji]

We can see that the accumulator ls kept in register %xmmO, and so the program can
simply read data [i] from memory and multiply it· by this register.

The comparable part of'the code for 20 x 20 unrolling lias a much different
form:

Updating of accumulator accO in 20 x 20 unrolling

vmovsd 40(%rsp), ~l'jl!llllO •. ,
vmulscL C%rdx) , %xmm0, %xmm0
vmqvsd %xmm0, 40(%rsp)

The accumulator is kept as a local variable on the stack, at offset 40 from the
stack pointer. The program must read both its value and the value of data (i]
from memory, multiply them, and store the result back to memory.

Once a compiler mus\ resort to register spilling, any advantag<; of maintaining
multiple accumulators will most. jikely be .lost. Fortunately, x86-64 has enough
registers that most loops will become throughput limited before this occurs.

5.11.2 Branch Predi~tjon arid,Mispr~t,l!ction Penalties

we demonstrated via experiments' in Section 3.6.6 that a conditional branch can
incur a significant misprediction penalty when the branch prediction logic does
not correctly anticipate whether or not a branch will be taken. Now that we have
learned something about how processors operate, we can understand where this
penalty arises. ·

Modem processors work well ahead of the currently executing instructions,
reading new instructions from memory and decoding them to determine what
operations to perform on what operands. This instruction pipelining works well as
long as the instructions follow in a simple sequence. When a branch is encountered,
the processor must gues.s which way the branc;h ';';ill go. For the case of a conditional
jump, this means predicting whether or not the branch will be taken. For an
instruction such·as an indirect jump (as.we sawjn the code to jump to an address
specified by a jump table entry) or a procedure return, this means predicting the
target address. In this discussion, we focus.on 'Conditional branches.

In a. processor that employs speculative execution, the processor begins exe­
cuting the instructions at the predicted branch target. It does this in a way that
avoids modifying any actual register or memory locations. until the actual out­
come has been determined. If the prediction i,s correct, the' processor can then

550 Chapter 5 Optimizing Program Performance

"commit" the results of the speculatively executed instructions by storing them in
registers or memory. If the prediction is incorrect, the processor must discard all
of the speculatively executed results and restart the instruction fetch process at
the correct location. The misprediction penalty is incurred in doing this, because
the instruction pipeline must be refilled before useful results are generated.

We saw in Section 3.6.6 that recent versions of x86 processors, including all
processors capable of executing x86-64 programs, have conditional move instruc­
tions. ace can generate code that uses these instructions when compiling condi­
tional statements and expressions, rather than the more traditional realizations
based on conditional transfers of control. The basic idea for translating into con­
ditional m<;>ves is to compute the values along both branches of a conditional
expression or statement and then use conditional moves to select the desired value.
We saw in Section 4.5.7 that conditional move instructions can be implemented
as part of the pipelined processing of ordinary instructions. There is no need to
guess whether or not the condition will hold, and hence no penalty for guessing

incorrectly.
1 How, then, can a C programmer make sure that branch misprediction penal-
1 ties do not hamper a program's efficiency? Given the 19-cycle misprediction
~ penalty we measured for the reference machine, the stakes are very high. There

is no simple answer to this question, but the following general principles apply.

'.I Do Not Be Overly Concerned about Predictable Branches

We have seen that the effect of a mispredicted branch can be very high,"but that
does not mean that all program branches will slow a program down. In fact, the
branch prediction logic found in modern processors is very good at discerning
regular patterns and long-term trends for the different branch instructions. For
example, the loop-closing branches in our combining routines would typically be
predicted as being taken, and hence would only incur a misprediction penalty on

the last time around.

'

As another example, consider the results we observed when shifting from
combine2 to combine3, when we took the function get_vec_element out of the
inner loop of the function, as is reproduced below:

Function

combine2

combine3

Page

509
513

Method

Move vec_length

Direct data access

Integer

+

7.02
7.17

*
9.03
9.02

Floating point

+

9.02
9.02

*
11.03
11.03

The CPE did not improve, even though the transformation eliminated two condi·
tionals on each iteration that check whether the vector index is within bounds. For
this function, the checks always succeed, and hence they are highly predictable.

As a way to measure the performance impact of bounds checking, consider
the following combining code, where we have modified the inner loop of combine4
by replacing the access to the data element with the result of performing an
inline substitution of the code for get_ vec_element. We will call this new version

Section 5.11 Some limiting Factors 551

combine4b. This code performs bounds checking and also references the vector
elements through the vector data structure.

f* Include bounds check in loop •/
2 void combine4b(vec_ptr y, data_t *dest)
3 {

4 long i;
5 long length= vec_length(v);
6 ,data_t ace = !DENT;
7

B for (i = O; i < lengthi i++) {
9 if (i >= 0 && i < v->len) f

10 ace = ace OP v->data[i];
11 }

12 }

13 *de st ace;
14 }

We can then directly compare the CPE for the functions with and without bounds
checking:

Integer Floating point
Function Page Method + * + *
combln'e4 515 No bounds checking 1.27 3.01 3.01 5.01
combine4b 515 Bounds checking 2.02 3.01 3.01 5.01

The version with bounds checking is slightly slower for the case of integer addition,
but it achieves the same performance for the other three cases. The performance
of these cases is limited by the latencies of their respective combining operations.
The additional computation required to perform bounds checking can take place
in parallel with the combining operations. The processor is able to predict the
outcomes of these branches, and so none of this evaluation has much effect on
the fetching and processing of the instructions that form the critical path in the
program execution.

Write Code Suitable for Implementation with Conditional Moves

Branch prediction is only reliable for regular patterns. Many tests in a program
are completely unpredictable, dependent on arbitrary features of the data, such
as whether a number is negative or positive. For these, the branch prediction logic
will do very pobrly. For inherently unpredictable cases, program performance can
be greatly enhanced if the compiler is able to generate code using conditional
data transfers rather than conditional control transfers. This cannot be controlled
directly by the C.prngrammer, but some ways of expressing conditional behavior
can be more directly translated into conditional moves than others.

We have found that Gee is able to generate conditional moves for code written
in a more "functional" style, where we iuse conditional operations to compute

.I
I
I

I
I
I
I

. I

552 Chapter 5 Optimizing Program Performance

values and then update the program state with these values, as opposed to a more
"imperative" style, where we use conditionals to selectively update program state.

There are no strict rules for these two styles, and so we illustrate with an
example. Suppose we are given two arrays of integers a and b, and at each position
i, we want to set a[il to the minimum ofa[i] and b [i), and b[i] to the maximum.

An imperative style of implementing this function is to check at each position
i and swap the two elements if they are out of order:

1 /* Rearrange two vectors so that for each i, b[i] >= a[i] */
2 void minmax1 (long a[] , long b [] , long n) {

3

4

5

6

7

8

9

long i;
for (i = O; i < n; i++) {

if (a[i] > b[i]) {

long t = a[i];
a[i] = b[i];

b[i] = t;

}

10 }

11 }

Our measurements for this function show a CPE of around 13.5 for random data
and 2.5-3.5 for predictable data, an indication of a misprediction penalty of around

20 cycles .
A functional style of implementing this function is to compute the minimum

and maximum values at each position i and then assign these values to a [i] and

b [i], respectively:
'

1 /* Rearrange two vectors so that for each i, b[i] >= a[i] *'/
2 void minmax2(long a[], long b[], long n) {

3 long i;
4 for (i = O; i < n; i++) {
s long min= a[i] < b[i] ? a[i] b[i];
6 long max = a[i] < b[i] ? b[i] a[i];

7 a[i] = min;
8 b[i] =max;

9 }

10 }

Our measurements for this function show a CPE of around 4.0 regardless of
whether the data are arbitrary or predictable. {We also examined the generated
assembly code to make sure that it indeed uses conditional moves.)

As discussed in Section 3.6.6, not all conditional behavior can be implemented
with conditional data transfers, and so there are inevitablyrcases where program­
mers cannot avoid writing co,de that will lead to conditionaLl;>ranches for which
the processor will do poorly with its branch prediction. But, as we have shown, a
little cleverness on the part of the programmer can sometimes make cotle more ·
amenable to translation into.conditional data transfers. This requires some amount

Section S. 12 Understanding Memory Performance 553

of experimentation, writing different versions of the function and then examining
the generated assembly code an\! measuring performance.

~~211..-ium;s:m~:<fimA~1i:1itDJ!it:i1!itl
The traditional implementation of the merge step. of mergesort requires three
loops (98]:

void merge(long src1[), long src2[), long dest[], long n) {
2 longni1 ;= O;
r .. long i2 = 0;
4 long id = Oi
5 while (il .< n && i2 < n) {
6 if (srcl[il) < src2 [i2))
7 dest[id++) srcl[il++);
8

9

10 }

else..
dest [id++)

11 while (il < n)

src2 [i2++] ;

12 dest[id++) = srcl[il++);
13 Yhile (i2 < n)

14 dest[id++] = src2[i2++);
15 }

The bran~hes caused by comparing variables i1 and i2 ton have good prediction
performance-the only mispredictions occur when they first become false. The
comparison between value~ src1 [i1] and src2[i2) (line 6), on the ot)l.er hand,
i$ highly unpredictable for typical data. Tus comparison controls. il conditional
branch, yielding a CPE (where the nU111ber of elements is 2n) of around 15.0 when
run on random data.

·Rewrite the code so that the effect of the conditional statement in the first
loop (Jines 6-9) can be implemented with a conditional move.

5.12 Understanding Memory Performance

All of the code we have written thus far, and all the tests we have run, access
relatively small amounts of memory. For example, the combining routines were
measured over vectors of length less than 1,000 elements, requiring no more than
8,000 bytes of data. All modern processors contain one or more cache memories
to provide fast access to such small amounts of memory. In this section, we will
further investigate the performance of programs that involve load (reading from
memory into registers) and store (writing from registers to memory) operations,
considering only' the cases where all data are held in cache. In Chapter 6, we go
into much more detail about how caches work, their performance characteristics,
and how to write code that makes best use of caches.

·\

I '

'

"

I

1

I

554 Chapter 5 Optimizing Program Performance

As Figure 5.11 shows, modern processors have dedicated functional units to
perform load and store operations, and these units have internal buffers to hold
sets of outstanding requests for memory operations. For example, our reference "
machine has two load units, each of which can hold up to 72 pending read requests. "
It has a single store unit with a store buffer containing up to 42 write requests. Each
of these units can initiate 1 operation every clock cycle.

5.12.1 Load Performance

The performance of a program containing load.operations depends on both the
pipelining capability and the latency of the load unit. In our experiments with
combining operations using our reference machine, we saw that the CPE never
got below 0.50 for any combination of data type and combining operation, except
when using SIMD operations. One factor limiting the CPE for our examples is
that they all require reading one value from memory for each element computed.
With two load units, each able to initiate at most 1 load operation every clock
cycle, the CPE cannot be less than 0.50. For applications where we must load k
values for every element computed, we can never achieve a CPE lower than k/2

(see, for example, Problem 5.15).
In our examples so far, we have not seen any performance effects due to the

latency of load operations. The addresses for our load operations depended only
on the loop index i, and so the load operations did not form part of a performance-

limiting critical path.
To determine the latency of the load operation on a machine, we can set up

a computation with a sequence of load operations, where the outcome of one
determines the address for the next. As an example, consider the function list_
len in Figure 5.31, which computes the length of a linked list. In the loop of this
function, each successive value of variable ls depends on the value read by the
pointer reference ls->next. Our measurements show that function list_len has

typedef struct ELE {

2 struct ELE *next;

3 long data;

4 } list_ele, *list_ptr;

5

6 long list_len(list_ptr ls) {

7 long len = O;

B while (ls) {

9 len++j

10 ls = ls-);'next;

11 }

12 return len;

13 }

Figure 5.31 Linked .list function. Its performa.nce is limited by the latency of the load

operation.

Section 5.12 Understanding Memory Performance SSS

a CPE of 4.00, which we claim is a direct indication of the latency of the load
operation. To see this, consider the assembly code for the loop:

IIlD.er loop of list_len

ls in %rdi, len in Y.rax
.L3: loop:

2 addq $1, %rax Increment len

3 movq (%rdi), %rdi ls = ls->next

4 testq %rdi, %rdi Test ls

5 jne .L3 If nonnull, goto loop

The movq instruction on line 3 forms the critical bottleneck in this loop. Each
successive value of register %rdi depends on the result of a load operation having
the value in %rdi as its address. Thus, the load operation for one iteration cannot
begin until the one for the previous iteration has completed. The CPE of 4.00
for this function is determined by the latency of the load operation. Indeed, this
measurement matches the documented access time of 4 cycles for the reference
machine's Ll cache, as is discussed in Section 6.4.

5.12.2 Store Performance

In all of our examples thus far, we analyzed only functions that reference mem­
ory mostly with load operations, reading from a memory location into a register.
Its counterpart, the store operation, writes a register value to niemory. The per­
formance of this operation, particularly in relation to its interactions with load
operations, involves several subtle issues.

As with the load dperation, in most cases, the store operation can operate in a
fully pipelined mode, beginning a new store on every cycle. For example, consider
the function s~pwn in Figure 5.32 that sets the elements of an array dest of length
n to zero. Our measurements show a CPE of 1.0. This is the best we can achieve
on a machine with a single store functional unit.

Unlike the other operations we have considered so far, the store operation
does not affect any register values. Thus, by their very nature, a series of store
operations cannot create a data dependency. Only a load operation is affected by
the result of a store operation, since only a load can read back the memory value
that !)as been written by the store. The function wri te_read shown in Figure 5.33

2

4

5

6

/* Set elements of array to 0 *I
void clear_array(long •dest, long n) {

long ii

}

for (i = O; i < n; i++)
dest [i] 0;

Figure 5.32 Function to set array elements to 0. This code achieves a CPE of 1.0.

556 Chapter 5 Optimizing Program Performance

/* Write to dest, read from src */ "
2 void write_read(long *src, long *dst, long n)

3 {

4

s
6

long•cnt
long val

n·
' O;

7 while Cent) {
.s *dst = val i
9 val = (*src)+l;

10 cnt--i
11 }

12 }

Example 8: write_read(&a[O] ,&a[O] ,3)
~ ,_, '<(;IN ' }, :'""" ~ """"§ .,' ~...,-.---.,.,~.-.~=. ~."="_ ~~,,.,, . ., ... ~ --r:

•~.· h .n.i1J!!1,· ·· .. •.· 1ter.1 . ,:,, , >!tern. ; • ..,.,11er. "'. 1,, ,w ~ • •. .,, . 't W: ~ {,4-~., ·1$.;• ~~~ '111• ·!I> ~;. ~"'·t

cnt "· .. '·''ll '':, i<li.'"'°"'.. • ~ .,,. ~ 1 .~ k• .J ... ~.~-~ L>l ~. . •' .. . €<. ' ~"'"''~Ni ;j, " w1 '"2 .~ r ;:-· .J\.~ r ·~r ~",,O''~

a 1-:?.L,7) ! ~.J :: 1 L, J.;~ .l l .. ~ !. ;::.1 "
val , *t<; ,, *"9'~ ·•hi'"'t ~ » ~t{\-·""~ 1.~: "°.,4R~~~~tt- ~ ;r«>t0•$' .. ~

Figure 5.33. C.ode to wri~e and read memory locatipns, along wi~~ illustrative
executions. This function highlights the interactions between stores and loads when
arguments s!c and dest are equal.

illustrates the poteo.tial interactions between loads and stores. This figure also
shows two example executions of tliis function; when it is called for.a'two-~lement
irray a, with initial contents -lo" and 17;'lmct With argument cnt ;,'qudl to 3. These
executions illustrate some subtleties of the load and store operations.

In Exampl~ A ?f Figure 5.33, argument src is a pointer to array element
a [O], while dest is a pointer to array element a [1]. In this case, each load by the
pointer referef1Ce •src will yield the value -10. ~ence, after two iterations,
the array elements will remain fixed at -10 and -9, respectively. The result
of the read from src is not affected by the write to dest. Measuring this example
over a larger number of iterations gives a CPE of 1.3.

In Example B of Figure 5.33, both arguments src and dest are pointers to
array element a [O]. In this case, each load l;>y the pointer reference •src will
yield the value stored by the•previous execution of the pointer reference *de st.

Figure 5.34
Detail of load and store
units. The store unit
maintains a buffer of
pending writes. The load
unit must check its address
with those in the store
unit to detect a write/read
dependency.

····~bad'·unit .,.

~"'W<

' 3
i:t
~

Section 5.12 Understanding Memory Performance 557

As a consequence, a series of ascending values will be stored in this location. In
general, if function wri te_read is called with arguments src and de st pointing
to the &.ame memory location, and with argument cnt having some value n > 0, the
net effect is to set the location ton - 1. This example.illustrates a phenomenon we
will call a write/read dependency-the outcome of a memory read depends on a
recent memory write. Our performance measurements show that Example B has
a CPE bf 7.3. The write/read dependency causes a slowdown in the processing of
around 6 clock cycles ..

To see how the processor can distinguish between these two cases and why
one runs slower than the other, we must take a more detailed look at the load and
store execution units, as shown in Figure 5.34. The store unit includes a store buffer
containing the addresses and data of the store operations that have been issued
to the store unit, but have not yet been completed, where completion involves
updating the data cache. This buffer is provided so that a series of store operations
can be executed without having to wait for each one to update the cache. When
a load operation occurs, it must check the entries in the store buffer for matching
addresses. If it finds a match (meaning that any of the bytes being written have the
same address as any of the bytes being read), it retrieves the corresponding data
entry as the result of the load operation.

ace generates the following code for the inner loop of wri te_read:

Inner loop of- write_read

src in %rdi, dst in %rsi, val in %rax
.13:' loop:

movq
movq
addq
subq.
jne

%rax, (%rsi)
(%rdi), %rax
$1, %rax
$1, %rdx
.13

Write val to dst

t = •src

val = t+l

cnt--

If '"' 0, goto loop

558 Chapter 5 Optimizing Program Performance

Figure 5.35
Graphical representation
of inner-loop code
for wri te_read. The
first movl instruction is
decoded into separate
operations to compute the
store address and to store
the data to memory.

Y.rax Y.rdi %~si Y.rdx

movq (%rdi),%rax

addq $1,Y.rax

subq $1,Y.rdx

jne loop

Figure 5.35 shows a data-flow representation of this loop code. The instruction
movq %rax, (%rsi) is translated into two operations: The s_addr instruction com­
putes the address for the store operation, creates an entry in the store buffer, and
sets the address field for that entry. The s_data operation sets the data field for the
entry. As we will see, the fact that these two computations are performed inde­
pendently can be important to program performance. This motivates the separate
functional units for these operations in the reference machine.

In addition to the data dependencies between the operations caused by the
writing and reading of registers, the arcs on the right of the operators denote
a set of implicit dependencies for these operations. In particular, the address
computation of the s_addr operation must clearly precede the s_data operation. In
addition, the load operation generated by decoding the instruction movq (%rdi),
%rax must check the addresses of any pending store operations, creating a data
dependency between it and the s_addr operation. The figure shows a dashed arc
between the s_data and load operations. This dependency is conditional: if the
two addresses match, the load operation must wait until the s_data has deposited
its result into the store buffer, but if the two addresses differ, the two operations
can proceed independently.

Figure 5.36 illustrates the data dependencies between the operatio11s for the
inner loop of write_read. In Figure 5.36(a), we have rearranged the operations
to allow the dependencies to be seen more clearly. We have labeled the three
dependencies involving the load and store operations for special attention. The arc
labeled "1" represents the requirement that the store address must be computed
before the data can be stored. The arc labeled "2" represents the need for the
load operation to compare its address with that for any pending store operation&
Finally, the dashed arc labeled "3" represents the conditional data dependency
that arises when the load and store addresses match.

Figure 5.36(b) illustrates what happens when we take away those operations
that do not directly affect the flow of data from one iteration to the next. The
data-flow graph shows just two chains of dependencies: the one on the left, with
data values being stored, loaded, and incremented (only for the case of matching
addresses); and the one on the right, decrementing variable cnt.

Section 5.12 Understanding Memory Performance 559

Figure 5.36
Abstracting the
operations for write_
read. We first rearrange the
operators of Figure 5.35(a)
and then show only those
operations that use values
from one iteration to
produce new values for the
next (b).

(a)

We can now understand the performance characteristics of function write_
read. Figure 5.37 illustrates the data dependencies formed by multiple iterations of
its inner loop. For the case of Example A in Figure 5.33, with differing source and
destination addresses, the load and store operations can proceed independently,
and hence the only critical path is formed by the decrementing of variable cnt,
resulting in a CPE bound of 1.0. For the case of Example B with matching source
and destination addresses, the data dependency b<:tween the s_data and load
instructions causes a critical path to form involving data being stored, loaded, and
incremented. We found that these three operations in sequence require a total of
around 7 clock cycles.

As these two examples show, the implementation of memory operations in­
volves many subtleties. With operations on registers, the processor can determine
which instructions will affect which others as they are being decoded into opera­
tions. With memory operations, on the other hand, the processor cannot predict
which will affect which others until the load and store addresses have been com­
puted. Efficient handling of memory operations is critical to the performance of
many programs. The memory subsystem makes use of many optimizations, such
as the potential parallelism when operations can proceed independently.

~=~~""&~~"''''W'1i"ll!r4'?~~·:·•~"'""'""'1'1 ,.,.,,., ~:JlL.OJ2.•E;.n!~~1,!~9!M.ttqQ;WJ.9~~"1,L~l$.~:x~,1~{;;. -~_,,. .:.~.,,.,,_"'i,·"//f"~ ~"'," ~,;i,_,1~~,,,~i? -~-
As another example of code with potential load-store interactions, consider the
following function to copy the contents of one array to another:

~ void copy_array(long *src, long *dest, long n)
" 2 {

4

5

6 }

long i;
for (i : O;

dest [i]
i < n; i++)

src [i] ;

(b)

560 Chapter 5 Optimizing Program Performance

Figure 5.37
Data-flow representation
of fur;iction wri te_read.
When the two addresses
do not match, the only
critical path is formed by
the decrementing of cnt
(Example A). When they
do match, the chain of
data being stored, loaded,
and incremented forms the
critical path (Example B).

Critical path

~

Example A

Critical path

~

Example B

Suppose a is an array of length 1,000 initialized so that each element a [i]

equals i.
A. What would be the effect of the call copy_array(a+1,a, 999)?

B. What would be the effect of the call copy_array(a,a+1, 999)?

C. Our performance measurements indicate that the call of part A has a CPE
of 1.2 (which drops to 1.0 when the loop is unrolled by a factor of 4), while
the call of part B has a CPE of 5.0. To what factor do you attribute this

performance difference?
D. What performance would you expect for the call copy_array(a,a,999)?

Section 5.13 life in the Real World: Periormance lmpro.vement Techniques 561

!B~fj~'.fillWili'gm~1ittBm:~•~il:\tll'"~.rra~;~
We saw that our measurements. of the prefix-sum functionpsum1(Figure5.1) yield
a CPE of 9.00on11 machine where the basic operation to be performed, fioating­
point additib11, has a latency 01' just 3 clock cycles. Let us try to,µnderstand why
our function performs so poorly.

2

3

4

5

6

The following is the assembly code jar the inner loop of the function:

Inner loop of psW111

a in %rdi, i in %rax, cnt in %rdx

.LS:
vrnovss -4(%rsi,%fax,4), %xmmO
vaddss (%rdi,%rax,4). ioXIllillO.
vmovss %xmmo. (%rsi,%rax,4)
addq $1, %rax
cmpq %rdx, %rax

%xmm0

loop:
Get p[i-1]

Add a[i]

Store at p[i]

Increment i

Compare 'i: cnt
71'' jne .LS If !=', goto loop

, Perform an analysis simijar to those shown for combine3 {Figure~ .14) and for
wri te_read {Figure 5}j5) to diagram the data depenpe,ncies ,created by this loop,
and hence, the critical path that forms as the computatiqn proceeds. Explain why
th~ CPE is so high.

liil~<fi~·£r21Jfiffi~¥i§ltt~ilM;Jt.r<w5'?UR•;;;lfl&1f,,t~~~
j ~ . ·- -

Rewrite the code for psum1 (Figure 5.1) so that it does not need to repeatedly
retvieve the value of p [i] from memory. You do not need.to use loop unrolling.
We measured the resulting code to have a CPE of 3.00, limited by the latency of
floating-point addition.

5.13
k

Life in the Real World: Performance Improvement
Techniques

Although we have only considered a limited set of applications, we can draw
important lessons on how to write efficient code. We 'have described a number
of basic strategies for optimizing pr.ogram performance:

High-level design. Choose appropr1'1te algorithms and data structures for the
proolem at'nand.,Be esp~cially vjgilant to avoid algorithms or codiµ~
techniques that yield asymptotical~y poor ,l?erformance.

Basic coding principles. Avoid optimization blockers so that a compiler can
generate efficient code.
• Eliminate excessive function calls. Move computations out of loops

when possible. Consider selective compromises of program modularity
to gain greater efficiency.

562 Chapter 5 Optimizing Program Performance

• Eliminate unnecessary memory references. Introduce temporary vari­
ables to hold intermediate results. Store a result in an array or global
variable only when the final value has been computed.

Low-level optimizations. Structure code to take advantage of the hardware

capabilities.
• Unroll loops to reduce overhead and to enable further optimization&
• Find ways to increase instruction-level parallelism by techniques such

as multiple accumulators and reassociation.
• Rewrite conditional operations in a functional style to enable compi-

lation via conditional data transfers.

A final word of advice to the reader is to be vigilant to avoid introducing
errors as you rewrite programs in the interest of efficiency. It is very easy to make
mistakes when introducing new variables, changing loop bounds, and making the
code more complex overall. One useful technique is to• use checking code to test
each version of a function as it is being optimized, to ensure no bugs are introduced
during this process. Checking code applies a series of tests to the new versions of
a function and makes sure they yield the same results as the original. The set of
test cases must become more extensive with highly optimized code, since there
are more cases to consider. For example, checking code that uses loop unrolling
requires testing for many different loop bounds to make sure it handles all of the
different possible numbers of single-step iterations required at the end.

5.14 Identifying and Eliminating Performance Bottlene<;ks

Up to this point, we have only considered optimizing small programs, where there
is some clear place in the program that limits its performance and therefore should
be the focus of our optimization efforts. When working with large programs, even
knowing where to focus our optimization efforts can be difficult. In this section,
we describe how to use code profilers, analysis tools that collect performance
data about a program as it executes. We also discuss some general principles
of code optimization, including the implications of Amdahl's law, introduced in

Section 1.9.1.

5.14.1 Program Profiling

Program profiling involves running a version of a program in which instrumenta­
tion code has been iI)corporated to determine how much time the different parts
of the program require. It can be very useful, for identifying the parts of a program
we should focus on in our optimization efforts. One strength of profiling is that it
can be performed while running the actual program on realistic benchmark data.

Unix systems provide the profiling program GPROF. This program generates
two forms of information. First, it determines how much CPU time .was spent
for each of the functions in the program. Second, it computes a count of how
many times each function gets called, categorized by which function performs the
call. Both forms of information can be quite useful. The timings give a sense of

Section 5.14 Identifying and Eliminating Performance Bottlenecks 563

the relative importance of the differentfunctions in determining the overall run
time. The calling information allows us to understand the dynamic behavior of the
program.

Profiling with GPROF requires three step~, as shown for a C program prog. c,
which runs with command-line argument file. txt:

1. The program must be compiled and linked for profiling. With ace (and other
C compilers), this involves simply including the run-time flag -pg on the
command line. It is important to ensure that the compiler does not attempt to
perform any optimizations via inline substitution, or else the calls to functions
may not be tabulated accurately. We use optimization flag -Og, guaranteeing
that function calls will be tracked properly.

linux> gee -Og -pg prog.e -o prog

2. The program is then executed as usual:

linux> ./prog file.txt

It runs slightly (around a factor' of 2) slower than normal, but otherwise the
only difference is that it generates a file gmon. out.

3. GPROF is invoked to analyze the qata in gmon. out:

linux> gprof prog

The first part of the.profile report lists the times spent executing the different
functions, sorted in descending order. As an example, the following listing shows
this part of the report for the three most time-consuming functions in a program:

% cumulative self self total
time seconds seconds calls s/call s/call name
97.58 203.66 203.66 1 203.66 203.66 sort _words
2.32 208.50 4.85 965027 0.00 0.00 find_ele_rec
0. 14 208.81 0.30 12511031 o.oo 0.00 Strlen

Each row represents the time spent for a!l calls to some function. The first
column indicates the percentage of the overall time spent on the function. The
second shows the cumulative time spent by the functions up to and including
the one on this row. The third shows the time spent on this particular function,
and the fourth shows how many times il w~s called (not counting recursive calls).
In our example, the function sort_words was called only once, but this single
call required 203.66 seconds, while the function find_ele_rec was called 965,027
time's (not including recursive calls), requiring a total of 4.85 seconds. Function
Strlen computes the length of a< string by calling the library function strlen.
Library function calls are normally not shown in the results by GPROF. Their times
are usually reported as part of the function calling them. By creating the "wrapper
function" Strlen, we can reliably track the calls to strlen, showing that it was
called 12,511,031 times but only requiring a total of 0.30 seconds.

564 Chapter 5 Optimizing Program Performance

The second part of the profile report shows the calling history of the functions.
The following is the history for a recursive function find_ele_rec:

158655725 find_ele_rec [5]

4.85 0.10 965027/9"65027 insert_string [4]

[5] 2.4 4.85 0.10 965027+158655725 find_ele_rec [5]

0.08 0.01 363039/363039 save_string [8]

0.00 0.01 3p3039/363039 new_el
1
e [12]

158655725 find_ele_rec [5]

This history shows both the functions that called find_ele_rec, as well as
the functions that it called. The first two lines show the calls to the function:
158,655,725 calls by itselfrecursively, and 965,027 calls by function insert_string
(which is itself called 965,027 times). Function find_ele_rec, in turn, called two
other functions, save_string and new_,ele, each a total of 363,039 times.

From these call data, we can often infer useful information about the program
behavior. For example, the function find_ele_rec is a recursive procedure that
scans the linked list for a hash bucket looking for a particular string. ·For this
function, comparing the :number of repursive calls with the AuI\lJier of fop-level
c~lls 'prbvide8 stiltistic1tl iiiformaii0n about the lengt]l.s of the. traversals through
these lists. Given that their ratio is lM.4:1, we can infer that the program scanned
an average of around 164 elements each time.

Some properties of GPROF are worth noting:

• The timing is not very precise. It is based on a simple interval counting scheme
in which the compiled program maintains a counter for each function record­
ing the time spent executing that function. The operating system causes the
program to be interrupted at some regular time interval 8. Typical values of
8 range between 1.0 and 10.0 milliseconds. It then determines what function
the program was executing when the interrupt occurred and increments the
counter for that function by 8. Of course, it may happen that this function just
started executing and will shortly be completed, but it is assigned the full cost
of the execution sine<; th~ previous interrupt. Some other function may run
between two interrul'ts and t~erefore not be charged ~ny time at.,all.

Over a long duration, this scheme works reasonably well. Statistically,' ev­
ery function should be charged according 'to the relative time spent executing
it. for programs that run for fess than around 1 second, however, the numbers
should be viewed as only rougn estini~tes. '

' 1' ,.

• The calling informa,tion is quite reliable, assuming no inline •substitutio,ns
have been performed. The compiled program maintains a counter for each
combination of caller and callee. The appropriate counter is incremented
every time a procedure is cal)ed. ,•

• By default, the timings for library functions are not shown. Instead, these
times are incorporated into the times for the calling functions.

Section 5. 14 Identifying and Eliminating Performance Bottlenecks 565

5.14.2 Using a Profiler to Guide Optimization

As an example of using a profiler to guide program optimization, we created an ap­
plication that involves several different tasks and data structures. This application
analyzes the n-gram statistics of a text document, Whf1re an n-gram is a sequence
of n _:-vords occurring in a document. For n = 1, we collect statistics on individual
words, for n = 2 on pairs of words, and s~ on. For a given value of n, our program
reads a text file, creates a table of unique n-grams and how many times each one
occurs, then sorts then-grams in descending order of occurrence.

As a benchmark, we ran it on a file consisting of the complete work;s of William
Shakespeare, totaling 965,028 words, of which 23,706 are unique. We found that
for n = 1, even a poorly written analysis program can readily process the entire file
in under 1 second, and so we set n = 2 to make things more challenging. For the
case of n = 2, n-grams ar.e referred to as bigrams·(pronounced "bye-grams"). We
determined that Shakespeare's works contain 363,039 U\}ique bigrams. The most
common is "I am," occurring 1,892 times. Perhaps his most famous bigram, "to
be," occurs 1,020 times. Fully 266,018 of the bigrams occur only once.

Our program consists of the following parts. We creareg multiple versions,
starting with simple algorithms for the different parts and then replacing them
with more sophisticated ones:

1. Each word is read from the file and eonverted to lowercase. Our initial version
used the function lowerl (Figure 5.7), which we know to have quadratic run
time due to repeated calls to strlen.

2. A hash function is applied to the string to create a number between 0 and
s - 1, for a hash table withs buckets. Ourjnitial function simply summed the
ASCII cod~s fpr .the characters.modulo s.

3. Each hash bucket is organized as a linked list. The program scans down this
list looking for a.Jlla,tching entry. If one is found, the frequency for ,ti).j~ 1'-gram
is incremeriteO. Otherwi'se, a'new'Iist element is created. Our iniiial verSion
performed this operation recursively, inserting new elements at the ~;.,d of the
list.

4. Once the table has been generated, we sor,t all .of the elements according to
the frequencies. Our initial version used insertion sort.

Figure 5.38 shows the profile results for six different versions of our n-gram­
frequency analysis program. For each version, we divide the time into the follow­
ing categories:

Sort. Sorting n-grams by frequency

List. Scanning the linked list for a matching n-gram, inserting a new element if
necessary

Lowe~. Converting strings to lowercase

Strlen. Computing string lengths

I

566 Chapter 5 Optimizing Program Performance

250

200 +--
00 .,, i 150 t-

~ 100
()

+-

50 t--

0

6

5

00 4 .,,
c
§ 3 00

::>
a.

2 ()

Initial

Quicksort

Quicksort

lter first

o Sort
• List
!iiil Lower
El Strlen
Ill Hash
•Rest

- lter last Big table Better hash Linear lower
lter first

(a) All versions

" D Sort
• usr
til Lower
CJ Strlen
m Hash
JI Rest

lter last Big table Better hash Linear lower

(b) All but the slowest version

Figure 5.38 Profile results for ,different versions of bigram-frequency counting program. Time is divided

according to the different majo'r operations in the program.

Hash. Computing the hash function

Rest. The sum of all other functions

As part (a) of the figure shows, our initial version required 3.5 minutes, with most
of the time spent sorting. This is not surprising, since insertion sort has quadratic
run time and the program sorted 363,039 values.

In our next version, we performed sorting using the library function qsort,
which is based on the quicksort algorithm [98]. It has an expected run time of
O(n logn). This version is labeled "Quicksort" in the figure. The more efficient
sorting algorithm reduces the time spent sorting to become negligible, and the
overall run time to around 5.4 seconds. Part (b) of the figure shows the times for
the remaining version on a scale where we can'see them more clearly.

Section 5.14 Identifying and Eliminating Performance Bottlenecks. 567

With improved sorting, we now find that list scanning becomes the bottleneck.
Thinking that the inefficiency is dµe to the recursive structure of the function,
we replaced it by an iterative one, shown as "lter first." Surprisingly, the run
time incre~ses to around 7.5 seconds. On closer study, we find a subtle difference
between the two list functions. The recursive version inserted new elem<;nts at the
end of Jhe list, while the iterative one inserted them at the front. To maximize
performance, we want the most frequent n-grams to occur near the beginning of
the lists. That way, the function will quickly locate the common cases. Assuming
that n-grams are spread uniformly throughout ,the document, we would expect
the first occurrence of a frequent one to come before that of a less frequent
one. By inserting new n-grams at the end, the first function tended to order n­
grams in descending order of frequency, while the second function tended to do
just the opposite. We therefore created a third list-scanning function that uses
iteration but inserts new elements at the end of this list. With this version, shown
as "Iter last," the time dropped to around 5.3 seconds, slightly better than with the
recursive version. These measurements demonstrate the importance of running
experiments on a program as part of an optimization effort. We initially assumed
that converting recursive code to iterative code would improve its performance
and did not consider the distinction between adding to the end or to the beginning
of a list.

Next, we consider the hash table structure. The initial ,version had only 1,021
buckets (typically, {he number of bucket5 is chosen to be a prime number to
enhance the ability of the hash function to distribute keys uniformly among the
buckets), For a table with 363,039 entries, this would imply an average load of
363,039/1,021 = 355.6. That.explains why so much of the time is spent performing
list operations-the searches involve testing a significant number of candidate n­
gram~. It also explains why the performance is so sensitive to the list ordering.
We then increased the number of buckets to 199,999, reducing the average load
to 1.8. Oddly enough, however, our overall run time only drops to 5.1 seconds, a
difference of only 0.2 seconds.

On further inspection, we can see that the minimal performance gain with
a larger table was due to a poor choice of bash function. Simply summing the
character codes for a string does not produce a very wide range of values. In
particular, the maximum code value for a letter is 122, and so a string of n char­
acters will generate a sum of at most 122n. The longest bigram in our document,
"honorificabilitudinitatibus thou" sums to just 3,371, and so most of the buck­
ets in.our hash table will go unused. In addition, a commutative hash function,
such as addition, does not differentiate among the different possible orderings of
characters with a string. For example, the words "rat" and "tar" will generate the
same sums.

We switched to a hash function that uses shift and EXCLUSIVE-OR operations.
With this version, shown as "Better hash," the time drops to 0.6 seconds. A more
systematic approach would be to study the distribution of keys among the buckets
more carefully, making sure that it comes close to what one would expect if the
hash function had a uniform output distribution.

I

I
t
I

I
' I
'

568 Chapter 5 Optirffizing·Program Performance

Finally, we have reduced the run time to th~ point where most of the time is
spent in strlen, and most of the calls to strlen occur as part of the lowercase con­
version. We have already seen that function lwer1 has quadratic performance,
especially for long strings. The words in this document are short enough to avoid
the disastrous consequences of quadratic performance; the longest bigram is just
32 characters. Still, switching to lower2, shown as "Linear lower," yields a signif­
icant improvement, with the overall time dropping to around 0.2 seconds.

With this exercise, we have shown that code profiling can help drop the
time required for a simple application from 3.5 niinutes down to 0.2 seconds,
yielding a performance gain of around l,OOOx. The profiler helps us focus our
attention on the most time-eonsuming parts of the program and also provides
useful information about the procedure call structure. Some of the bottlenecks
in our code, such as using a quadratic sort routine, are easy to anticipate,1while
others, such as whether to append to the beginning or end of a list, emerge ~only
through a careful analysis.

We can see that profiling is a useful tool to have in the toolbox, but it should
not be the only one. The timing measurements are imperfect, especially for shorter
(less than 1 second) run times. More significantly, the results apply only to the
particular data tested. For ·example, if we had run the original function on data
consisting of a smaller number of longer strings, we would have found that the
lowercase ~onversion routine was the major performance bottleneck. Even worse,
if it only profiled documents with short words, we might never detect hidden
bottlenecks such as the quadratic performance of lower1. In general, profiling can
help us optimize for typical cases, assuming we run the program on representative
data, but we should also make sure the program will have respectable performance
for all possible cases. This mainly involves avoiding algorithms (such as insertion
sort) and bad programming practices (such as lower1) that yield poor asymptotic

performance.
Amdahl's law, described in Section 1.9.1, provides some additional insights

into the performance gains that can be obtained by targeted optimizations. For our
n-gram code, we saw the total execution time drop from 209.0 to 5.4 seconds when
we replaced insertion sort by quicksort. The initial version spent 203.7 of its 209.0
seconds performing insertion sort, giving a= 0.974, the fraction of time subject
to speedup. With quicksort, the time spent sorting becomes negligible, giving a
predicted speedup of 209/a = 39.0, close to the measured speedup of 38.5. We
were able to gain a large speedup because sorting constituted a very large fraction
of the overall execution time. However, when one bottleneckis eliminated; a new
one arises, and so gaining additional speedup required focusing on other parts of

the program.

S.1 S Summary

Although most presentations on code optimization describe how compilers can
generate efficient code, much can be done by an application programmer to assist
the compiler in this task. No compiler can replace an inefficient algorithm or data

Bibliographic Notes 569

structure by a good one, and so these aspects of program design should remain
a primary concern for programmers. We also have seen that optimization block­
ers, such as memory aliasing and procedure.calls, seriously restrict the ability of
compilers to perform extensive optimizations. Again, the programmer must take
primary responsibility for eliminating these. These should simply be considered
parts of good programming practice, since they serve to eliminate unneeded work.

Tuning performance beyond a basic level requires some understanding of the
processor's microilrchitecture, describing the underlying mechanisms by which
the processor ilnplements its instruction set architecture,.For the case of out­
of-order processors, just knowing something about 'the operations, capabilities,
latencies, and issue times of the functional units establishes a baseline for predict­
ing program performance.

We have studied a series of techniques-including loop unrolling, creating
multiple accumulators, and reassociation-that can exploit the instruction-level
parallelism provided by,modern_processors. As we get deeper into the optimiza­
tion, it becomes important to study the generated assembly code and to try to
understand how the computation is being performed by the machine. Much can
be gained, by identifying the critical paths determined by the data dependencies
in the program, especially between 'the different iterations of a loop. We can also
compute a throughput bound for a computation, based on the number of oper­
ations that must be computed and the number and issue times of the units that
perform those operations.

Programs that inl(olve conditional branches or complex interactions with
the,.l)lemory system are more difficult to aµali:ze and optimize than the simple
lqop programs we fu~tconsidered. The basic strategy is to try to make bfanche~
moi;e predictable or make them amenable to impfomentation using conditional
data transfers. We must also watch out for the interactions between store and
load operations. Keeping values in local variables, allowing them to be stored in
registers, can often be helpful.

When working with large programs, it becomes important to focus our op­
timization efforts on the parts that consume the most time. Code profilers and
related tools can help us systematically evaluate and improve program perfor­
mance. We described GPROF, a standard Unix pr.ofiling tool. More sophisticated
profilers are available, such as the VlUNE program development system from In­
tel, and VALGRIND, commonly available on Linux systems. These tools can break
down the execution time below the procedure level .to estimate the performance
of each basic block of the program. (A basic block is a sequence of instructions that
has no transfers of control out of its middle, and so the block is always executed
in its entirety.)

Bibliographic Notes

Our focus has been to describe code optimization from the programmer's perspec­
tive, demonstrating how to write code that will make it easier for compilers to gen­
erate efficient code. An extended paper by Chellappa,Franchetti, and Ptischel [19]

570 Chapter 5 Optimizing Program Performance

takes a similar approach but goes into more detail with respect to the processor's

characteristics.
Many publications describe code optimization from a compiler's perspective,

formulating ways that compilers can generate more efficient code. Muchnick's
book is considered the most comprehensive [80]. Wadleigh and Crawford's book
on software optimization [115] covers some of the material we have presented,
but it also describes the process of getting high performance on parallel machine~
An early paper by Mahlke et al. [75] describes how several techniques developed
for compilers that map programs onto parallel machines can be adapted to exploit
the instruction-level parallelism of modern processors. This paper covers the code
transformations we presented, including loop unrolling, multiple accumulators
(which they refer to as accumulator variable expansion), and reassociation (which

they refer to as tree height reduction).
Our presentation of the operation of an out-of-order processor is fairly brief

and abstract. More complete descriptions of the general principles can be found in
advanced computer architecture textbooks, such as the one by Hennessy and Pat­
terson (46, Ch. 2-3]. Shen and Lipasti's book [100] provides an in-depth treatment

of modern processor design.

Homework Problems

5.13 ••
Suppose we wish to write a procedure that computes the inner product of two
vectors u and v. An abstract version of the function has a CPE of 14-18 with x86-
64 for l:lifferent types of integer and floating-point data. By doing the same sort
of transformations we did to transform the abstract program combinel into the
more efficient combine4, we get the following code:

1 /* Inner product. Accumulate in temporary *I
2 void inner4(vec_ptr u, vec_ptr v, data_t *dest)

3 {

4 long i;
5 long length= vec_length(u);
6 data_t *udata = get_vec_start(u);
7 data_t *vdata = get_vec_start(v);
B data_t sum = (data_t) O;

9
10 for (i =. O; i < length; i++) {
11 sum = sum + udata[i) * vdata[i];

12 }

13 *dest = sum;
14 }

Our measurements show that this function has CPEs of 1.50 for integer data
and 3.00 for· floating-point data. For data type double, the x86-64 assembly code

for the inner loop is as follows:

2

3

4

5

6

7

Iiiner loop of inner4. data_t =double, OP=*

udata in %rbp, vdata in %rax, sum in %xmmO

i in %rcx, limit in %rbx
.115:

vmovsd
vmulsd
vaddsd
addq
cmpq
jne

loop:
0(%rbp,%rcx,8), %xmm1
(%rax,%rcx,8), %xmm1, %xmm1
%xmm1, %xmm0, %xnun0
$1, %rcx
%rbx, %rcx
.115

Get udata[i]

Multiply by vdata[i]

Add to• sum

Increment i

Compare i:limit

If !=, goto loop

Homework Problems 571

Assume that the functional units have the characteristics listed in Figure 5.12.

A. Diagram how this instruction sequence would be decoded, into operations
and show how the data dependencies between them would create a critical
path of operations, in the style of Figures 5.13 and 5.14.

B. For data type double, what lower bound on the CPE is determined by the
critical path?

C. Assuming similar instruction sequentes for the integer code as well, what
lower bound on the CPE is'C:le'termiried by the critical path for integer data?

"
p. Explain how the floating-point versions C"I) have CP,Es of 3.00, even though

the multiplication operatibn requires 5 clock cycles.

5.14 •

Write a version of the inner product procedure described in'Problem 5.13 that
uses 6 x 1 loop unrolling. For x86-64, our measurements of the unroll~d version
give a CPE of 1.07 for integer data.but ~till 3.01 for both floating-point data.

A. Explain why any ('scalar) version of an inner product procedure running on
an Intel Core i7 Haswell processor cannot achieve a CPE less than 1.00.

B. Explain why'the performance for fldating-point data did not improve with
loop unrolling.

5.15 •

Wri\e a version of the inner product pr6cedure described in Problem 5.13 that
uses 6 x 6 loop unrolling. Our measurements for this function with x86-64 give a
CPE of 1.06 for integer data and 1.01 for floating-point data'.

What factor limits the performance to a ·CPE of 1.00?

5.16 ..

Write a version of the inner product procedure described in Problem 5.13 that
uses 6 x la loop.unrolling to enable greater parallelism. Our measurements for
this function give a CPE of 1.10 for integer data and 1.05 for floating-point data.

5.17 ••

The.library function memset• has the following prototype:

void *memset(void *s, int c, size_t n);

' l

I
\

!
" I,

572 Chapter 5 Optimizing Program Performance

This function fills n bytes of the memory area starting at s with copies of the low­
order byte of c. For example, it can be used to zero out a region of memory by
giving argument 0 for c, but other values are possible.

The following is a straightforward implementation of memset:

1 /* Basic implementation of memset *I
2 void *basic_memset(void *s, int c, size_t n)

3 {
4 size_t cnt = O;
5 unsigned char *Behar= s;
6 while Cent < n) {

*schar++ = (unsigned char) c; 7
8 cnt++;

9 }

10 return s;
11 }

Implement a more efficient version of the function by using a word of data
type unsigned long t,o pack eight copies of c, and then step through the region
using word-level writes. You might find it helpful to do additional loop unrolling
as well. On our reference machine, we were able to reduce the CPE from 1.00 for
the straightforward im'plementation to 0.127. That is, the program is able to write

8 bytes every clock cycle.
Here are some additional guidelines. To ensure portability, let K denote the

value o~ size of (unsigned long) for the machine on which you run your program.

• You may not call any library functiof)S.
• Your code should work for arbitrary values of n, including when it is" not a
·multiple of K. You can do this in a manner similar to the way we finish the

last few iterations with loop unrolling.
• You should write your code ~o that it will compile and run correctly on any

machine regardless of the value of K. Make use of the operation sizeof to

do this.
• On some machines, unaligned write~ can be much ~lower than aligned ones.

(On some non-x86 machines, they can even cause segmentation faults.) Write
your code so that it starts with byte-level writes until the destination address
is a multiple of K, then do word-level write~; and then (if necessary) finish

with byte-level writes.
• Beware of the case where cnt is small enough that the upper bounds on

some of the loops become negative. With expressions involving the sizeof
operator, the testing may be performed with unsigned arithmetic. (See Sec-

tion 2.2.8 and Problem 2.72.)

5.18 •••
We considered the task of polynomial evaluation in Practice Problems 5.5 and 5.6,
with both a direct evaluation and an evaluation by Homer's method. Try to write

Solutions to Practice Problems 573

faster versions of the function using the optimization techniques we have explored,
including loop unrolling, parallel accumulation, and reassociatfon. You will find
many different ways of mixing together Hqrner's scheme and direct evaluation
with these optimization techniques.

Ideally, you should be able to reach a CPE close to the throughput limit of
your machine. Our best version achieves a CPE of 1.07 on our reference machine.

5.19 •••

In Problem 5.12, we were able to reduce the CPE for the prefix-sum computation
to 3.00, limited by the latency of floating-point addition on this machine. Simple
loop unrolling does not improve things.

Using a combination of loop unrolling and reassociation, write code for a
prefiX sum tl\at' achieves a CPE. less than the'latency of floating-point addition
on ydur machine. D~ing this reqhires actually increasing the number of additions
perfo;,,,ed. For example, our version with two'way unrolling require~ three ad­
ditions per iteration, while our version with four-way unrolling'requifes five. Our
best implementation achieves a CPE of 1.67 on our reference machine.

Determine how the throughput and latency limits of your machine limit the
minimum CPE'you can achieve for the prefix-sum operation.

Solutions to Practice Problems

Solution to Problem 5.1 (page 500)

This problem illustrates some of the subtle effects of memory aliasing.
As the following commented code shows, the effect will be to set the value at

xp to zero:

4 •xp •xp + *xp; I• 2x •/
5 •xp *xp - *xp; I• 2x-2x o •I
6 •xp •xp - *Xp; I• o-o = o •I

This example illustrates that our intuition about program behavior can often
be wrong. We naturally think of the case where xp and yp are distinct but overlook
the possibility that they mighi be equal. Bugs often arise due to conditions the
programmer does not anticipate.

Solution to Problem 5.2 (page 504)

This problem illustrates the relationship between CPE and absolute performance.
It can be solved using elementary algebra. We find that for n :s 2, version 1 is the
fastest. Versj\)n 2 is.fastest for 3 :s n :s 7, and version 3 is fastest for n 2:: 8.

Solution.to Problem 5.3 (page 512)

This is aNsimple exercise, but it is important to recognize that t,he four statements
of a for loop-initial, test, update,, and body-get executed different numbers of
times.

574 Chapter 5 Optimizing Program Performance

Code min ~max incr square

•
A. 1 91 90 90

B. 91 1 90 90

c. 1 1 90 90

Solution to Problem 5.4 (page 516)
This assembly code demonstrates a cle-.>er optimization opportunity detected by
GCC. ·It is worth studying this code carefully to better understand the subtleties of

code optimization.

A. In the less optimized code, register %pnm0 \~simply uses! a~ a temporary value,
both set and used on each loop iteration. In the more optimized co~e, it is
used more in the manner of variaQle aic in combine.q:,' ~c~umulati~g the
product of the vector elements. The difference with combine4, however,
is that location dest is updated on each iteration by the second vmovsd

instruction.
We can see that this optimized version operates much like the following

Ccode:

f* Make sure dest updated on each iteration */
2 void combine3w(vec_ptr v, data_t *dest)

3 {

4 long ii
5 long length= vec_length(v)j
6 data_t *data= get_vec_start(v);

7 data_t ace = !DENT;

8
9 /* Initialize in event length <= 0 *I

10 *dest = ace;

11
12 for (i = O; i < length; i++) {
13 ace = ace OP data [i] ;

14

15

16 }

*dest = ace;
}

B. The two versions of combine3 will have identical functionality, even with

memory aliasing.
C. This transformation can be made without changing the program behavior,

because, with the exception of the first iteration, the value read from dest at
the beginning of each iteration will be the same value written to this register

Solutions to Practice Problems 575

at the end of the previous iteration. Therefore: the combining instruction
can simply use the value already in %xmm0 at the beginning of the loop.

Solution to Problem 5.5 (pag'e•530)
Polynomial evaluation is a core technique for solvihg many problems. For example,
polynomial functions are commonly used to approximate trigonometric functions
in math libraries.

A. The function performs Zn multiplic<i;tions and n additions.

B. We can see that tjle performance-limiting computatiem here is the repeated
computation of the expression xpwr = x • xpwr. This requires a fioating­
point multiplication (5 clock cycles), and the computation for one iteration
cannot begin until the one for the previous iteration has completed. The
updating of result only requires a floating-point additjon (3 clock cycles)
between successive iterations.

s'olution to ,Proble111 5.6 (page 53Q)

This problell). demonstrates that minimiz,ing the number of operations in a com­
putati9n may not,improve it~ performance.

k. 'The function performs n multiplications' and n additions, half the number of
multiplications as the original function poly'.

B. We can see that the performance~limiting computation here is the.repeated
, computation of tpe expression r~sul t = a Cil '+ x•resul t,'Siarting from the
• J • i .. J

valu~ ,o(i;,~s!llt f~9m the previous iteration, we must first multip)y it by x (5
clock cycles) and then add it to a [i] (3 cycles) before we have the value for
this iteration. Thus, each iteration imposes a minimum latency of 8 cycles,
exactly our measured CPE.

C. Although each iteration in function poly requires two·multiplications rather
than one, only a single multiplication occurs along the critical path per
iteration.

Solution to Problem 5.7 (page 532)

The following code directly follows the rules we have stated for unrolling a loop
by some factor k:

void unroll5(vec_ptr v, data_t *dest)
2 {

3 long ii
4 long length= vec_length(v);
5 long limit = length-4;
6 data_t *data= get_vec_start(v);
7 data_t ace = !DENT;
8

.I

I
··1

I
I I

i
'

1
!

I
I

l
I
'I

576 Chapter 5 Optimizing Program Performance

9 /~ Combine & elements at a time */
for (i = O; i < limiti i+=5) {

10

11

12

13

14

15

16

17

18

}

ace ace OP data[i) OP data[i+il;
ace ace OP data[i+2] OP data[i+3];
ace ace OP d~ta[i+4];

/* Finish any remaining elements */
for (; i < length; i++) {

ace = ace OP data Gi] ;

19 }

20 *de st == ace;

p }

Solution to Problem 5.8 (page 545)
This problem demonstrates how small changes in a program can yield dramatic
performance differences, especially on a machine with out-of-order execnti,on.
Fignre 5.39 diagrams the three multiplication operations for a single iteraiion
of the function. In this figure, the operations shown as blue boxes are along the
critical path-they need to be computed in sequence to compute a new value for
loop variable r. The opyrations shown as light boxes can be computed in parallel
with the critical path operations. For a loop with P operations along ~he critical
path, each iteration will require a minimum of 5P clock cycles and will compute
the product for .three elements, 'giving a lower bound on the CPE of 5P /3. This
, , • • It,,
1mphes lower bounds of 5.00 for Al, 3.33 for A2 and A:5, ahd 1.67 for A3 and A4.
. ' We ran these functions on an Intel Core i7 Haswell processor'and found that it

could achieve these CPE values. '

Solution to Problem 5.9 (page 553)
This is another demonstration tJ:iat a slight change in coding style can make it mnch
easier for the compiler to detect opportunities to use conditional moves:

while (ii < n && i2 < n) {
long vi = srci[ii);

A3: r* ((x*y) o1iz)

L-;;-J....';--"-cJ-.i....;Z;_~ Y Z m

r

Figure 5.39 Data dependencies among multiplication operations for cases in Problem 5.8. The
operations shown as blue boxes form the critical paths for the iterations.

Solutions to Practice Problems 577

,_, long 1v2 = src2 [i2]1;,
" ,longl.take1 ~ vl < v2;•

<lest [id++] = take.1 ? vi v2;
il += takel;
i2 += (1-takel);

}

We measured a CPE of around 12.0 for this version of the code, a modest improve-
p:lent Qver the original CPE of 15.0. _,.

Solution to Problem 5.10 (page 559)

This problem requires you to analyzerthe potential load-.store inte~action's in a
program.

A. It will set each element a(i] to i + 1, for 0 < i < 998.
Jf '•..;i11t1,,,. ,,--1,

B. It will set ea,\:h e_e~ent a~i] to 0, fp~J :Si~ 999"

C. In the second case, the load ofone iteration depends on the result of the store
from the previous iteration. Thus, there is a write/read dependency between
successive iterations.

D. It will give a CPE of 1.2, the same as for Example A, since there are no
dependencies between stores and subsequent loads.

Solution to Problem 5.11 (page 561)

We can see that)his function has a write/read dependency between successive
iterations-the destination value p [i] on one iteration matches the source value
p [i -1] on the next. A critical path is therefore formed for each iteration consisting
of a store (from the previous iteration), a load, and a floating-point addition.
The CPE measurement of 9:o is consistent with our measurement of 7.3 for the
CPE of wri te_read when there is a data dependency, since wri te_read involves
an integer addition (1 clock-cycle latency), while psuml involves a floating-point
addition (3 clock-cycle latency).

Solution to Problem 5.12 (page 561)
Here is a revised version of the function:

void psumla(float a[], float p[], long n)
2 {

3 long i;

4 I• last_val holds p[i-1]; val holds p[i] •/
5 float last_val, val;
6 last_val = p[O] = a[O];
7 for (i = 1; i < n; i++) {

8 val = last_ val + a [i] ;
9 p[i] = val;

10 last val = valj
11 }

12 }

j'
I

I'

I
I

578 Chapter 5 Optimizing Program Performance

We introduce a local variable last_ val. At the start 'of iteration ;i,i it holds the
value of p [i-1]. We then compute val to be the value of p [i] and.to be the new
value for last_ val.

This version compiles to the following assembly code:

Inner loop of psum1a
a in Xrdi, i in Xrax, cnt in Xrdx, last_val in XxmmO

.116: loop:
vaddss (%rdi,%rax,4), %xmm0, %xmm0
vmovss %xmm0, (%rsi,%rax,4)
addq $1, %rax

last_val b val = last_val

Store val in p[i~
Increment i

cmpq %rdx, %rax Compare i :cni

jne .L16 If !=, goto loop

This code holds last_val in %xmm0, avoiding the need"fci're~d p[i-1]'
memory and thus eliminating the write/read dependency seen in psuml.

"

+ a[i]

from

"

'·

·,

The Memory HierarGhy

6. 1 Storage Technologies 581
' '

6.2 Locality 604

6.3 The fvlemory Hierarchy 609

6A Cache Memories 614

6.5 Writing Ca'che-Friendly Code 633
' ,

6.6 Putting It Together: The Impact of Caches on Program
Performance 639

6.7 Summarr 648

Bibliographic Notes 648

Hom~work Problems 649

Solutions to Practice Problems 660

"

579

·1
•

,,

I

,f

580 Chapter 6 The Memory Hierarchy

To this point in our study of systems, we have relied on a simple model of a
computer system as a CPU that executes instructions and a memory system

that holds instructions and data for the CPU. In our simple model, the memory
system is a linear array of bytes, and the CPU can access each memory location in
a constant amount of time. While this is an effective model up to a point, it does
not reflect the way that modern systems really work.

In practice, a memory system is a hierarchy of storage devices with different
capacities, costs, and access times. CPU registers hold the most frequently used
data. Small, fast cache memories nearby the CPU act as staging areas for a subset
of the data and instructions stored in the relatively slow main memory. The main
memory stages data stored on large, slow disks, which in turn often serve as
staging areas for data stored on the disks or tapes of other machines connected by
networks.

Memory hierarchies work because well-written programs tend to access the
storage at any particular level more frequently than they access the storage at the
next lower level. So the storage at the next level can be slower, and thus larger
and cheaper per bit. The overall effect is a large pool of memory that costs as
much as the cheap storage near the bottom of the hierarchy but that serves data
to programs at the rate of the fast storage near the top of the hierarchy.

As a programmer, you need to understand the memory hierarchy because it
has a big impact on the performance of your applications. If the data your program
needs are stored in a CPU register, then they can be accessed in 0 cycles during
the execution of the instruction. If stored in a cache, 4 to 75 cycles. If stored in
main memory, hundreds of cycles. And if stored in disk, tens of millions of cycles!

Here, then, is a fundamental and enduring idea in computer systems: if you
understand how the system moves data up and down the memory hierarchy, then
you can write your application programs so that their data items are stored higher
in the hierarchy, where the CPU can access them more quickly.

This idea centers around a fundamental property of computer programs
known as locality. Programs with good locality tend to access the same set of
data items over and over again, or they tend to access sets of nearby data items
Programs with good locality tend to access more data items from the upper levels
of the memory hierarchy than programs with poor locality, and thus run faster.
For example, on our Core i7 system, the running times of different matrix mul­
tiplication kernels that perform the same number of arithmetic operations, but
have different degrees of locality, can vary by a factor of almost 40!

In this chapter, we will look at the basic storage technologies-SRAM mem­
ory, DRAM memory, ROM memory, and rotating and solid state disks-and
describe how they are organized into hierarchies. In particular, we focus on the
cache memories that act as staging areas between the CPU and main memory, be­
cause they have the most impact on application program performance. We show
you how to analyze your C programs for locality, and we introduce techniques for
improving the locality in your programs. You will also learn an interesting way t
characterize the performance of the memory hierarchy on a particular machin
as a "memory mountain" that shows read access times as a function of locality.

Section 6.1 Storage Technologies 581

6.1 Storage Technologies

Much of the success of computer technology stems from the tremendous progress
in storage technology. Early computers had a few kilobytes of random access
memory. The earliest IBM PCs didn't even have a hard disk. That changed with
the introduction of the IBM PC-XTih 1982, with its 10-megabyte disk. By the year
2015, typical machines had 300,000 times as much disk storage, and the amount of
storage was increasing by a factor of 2 every couple of years.

6.1.1 Random Access Memory

Random access memory (RAM) comes' in two varieties-static and dynamic. Static
RAM (SRAM) is faster and significantly more expensive than dynamic RAM
(DRAM). SRAM is used for cache memories, both on and off the CPU chip.
DRAM i~ used for the main memory plus the frame buffer of a graphics system.
'fypically; a desktop system will have no more than a few tens of megabytes of
SR:AM, but hundreds or thousands of megabytes of DRAM.

Static RAM

SRAM siores each bit in a bistable memory cell. Each cell is implemented with
a six-tran~istor circuit. This circuit has the property that it can stay indefinitely
in either of two different voltage configurations, or states. Any other state will
be unstable-starting from there, the circuit will quickly move toward one of the
stable states. Such a memory cell is analogous to the inverted pendulum illustrated
in Figure 6.1.

The pendulum is stable when it is tilted either all the way to the left or alHhe
way to the right. From any otlier position, the' pendulum will fall to one side or the
other. In principle, the pendulum could also remain balanced in a verti~al position
indefinitely, but this state is metastable-the smallest disturbance would make it
start to fall, and once it fell it would never return to the vertical position.

Due to its bistable nature, an SRAM memory cell will retain its value indef­
initely, as long as it is kept powered. Even when a disturbance, such as electrical
noise, perturbs the voltages, the circuit will return to the stable value when the
disturbance is removed.

Figure 6.1
Inverted peQdulum.
Like an SRAM cell, the
pendulum ,!;las only two
stable configurations, or
states.

Stable left Unstable

t\

,I

I
I'

I
I
I
I
1

I
I
I

j

582 Chapter 6 The Memory Hierarchy

Transistors Relative Relative
per bit access time Persistent? Sensitive? cost Applications

SRAM 6 lx Yes No 1,000x Cache memory
DRAM 1 lOx No Yes 1 x Main memory, frame buffers

Figure 6.2 Characteristics of DRAM and SRAM memory.

Dynamic RAM

DRAM stores each bit as charge on a capacitor. This capacitor is very small­
typically around 30 femtofarads-that is, 30 x 10-15 farads. Recall, however,,that
a farad is a very large unit of measure. DRAM storage can be made very dense­
each cell consists of a capacitor and a single access transistor. Unlike ~RAM,
however, a DRAM memory cell is very sensitive to any disturbance. When the
capacitor voltage is disturbed, it will never recover. Exposure to light rays will
cause the capacitor voltages to change. In fact, the sensors in digital cameras and
camcorders are essentially arrays of DRAM cells.

Various sources of leakage current cause a DRAM cell to lose its charge
within a time period of around 10 to 100 milliseconds. Fortunately, for computers
opera tin& with clock cycle times measured in nanoseconds, this retention time is
quite long. The memory system must periodically refresh every bit of memory by
reading it out and then rewriting it. Some systems also use error-correcting codes,
where the computer words are encoded using a few more bits (e.g., a 64-bit word
might be encoded using 72 bits), such that circuitry can detect and correct any
single erroneous bit within a word.

Figure 6.2 summarizes the characteristics of SRAM and DRAM memory.
SRAM is persistent as long as power is applied. Unlike DRAM, no refresh is
necessary. SRAM can be accessed faster than DRAM. SRAM is not se,n~itive to
disturbances such as light and electrical noise. The trade-off is that SRAM cells
use more transistors than DRAM cells and thus have lower densities, are more
expensive, and consume more power.

Conventional DRAMs

The cells (bits) in a DRAM chip are partitioned into d supercells, each consisting
of w DRAM cells. Ad x w DRAM stores a total of dw bits of information. The
supercells are organized as a rectangular array with r rows and c columns, where
re= d. Each supercell has an address of the form (i, j), where•i denotes the row
and j denotes the column.

For example, Figure 6.3 shows the organization of a 16 x 8 DRAM chip with
d = 16 supercells, w = 8 bits per supercell, r = 4 rows, and c = 4 column& The
shaded box denotes the supercell at address (2, 1). Information flows in and out
of the chip via external connectors called pins. Each pin carries a 1-bit signal.
Figure 6.3 shows two of these sets of pins: eight data pins that can transfer 1 byte

Section 6.1 Storage Technologies 583

•. • ,.,, .,,,,,,,,,,,,_.,,,,_,. .• ..,. .,,,,. ,,.. "'\i"""z ,~,,,.. i.f''l'~,. -

,A'slc:I~. A note.on terminolog¥
,!

The sh?ra~e cciinmul\ity h~s never settlep,on a stand~rci name.for a J;?RAM array elemvnl. ~q)nputer
archit0:9ts .t~nd to ~efer td ii as a, :~~e1f;•:12verloading the·terrl_wjtl,'the D~M'storage.~ell.'!Circuit
designers t!(nd to refer to it as a "lvord,".ov'¢rloading the teriwwith a \fofd,of,main membry: 1p avoid

~· ··•. r ·~ f:. ' . '' ~ ·• -' confusiOn, wt!~have adopted·1:he unambiguous ter!l\''supettell." l :
""~"' :._, ' , ,,,,,:, ·~ .. ,._, ,.,., 31,c,,.- ~~ ·~·· ~ "' " ~.~ >l.">;JA..,,

Figure 6.3
High-level view of a
128-bit 16 x 8 DRAM
chip.

L

DRAM chip

r······················:···· ····;c~i;~······:········

l 0
~dr ! 11----+~-+-~+----+

i Row's ·"7'1
¢::::=:.=:~ Memory

controller
(to CPU)

2~-l'--~:u~·~t--.=::,,1=---Lj
3 C-- Supercell

(2,1)

i ~.~!:.~~.~L~~~.~.~~~~ J

l '

in or out of the chip, and two addr pins that carry two-bit row and column supercell
addresses. Other pins that carry control information are not shown.
' Ea,~Ji DRAM chip is connected to some circuitry, known as the memory

controller, that can transfer w bits at a time to and from each DRAM chip. To read
the contents of supercell (i, j), the memory controller sends the row address i to
the DRAM, followed by the column address j. The DRAM responds by sending
the contents of supercell (i, j) back to the controller. The row address i is called
a RAS (row access strobe) request. The column address j is called a CAS (column
access stro~e) requesf. Notice that the RAS and CAS requests share the same
DRAM address pins.

For example, to read supercell (2, 1) from the 16 x 8 DRAM in Figure 6.3, the
memory controller sends row a'ctdress 2, as shown in Figure 6.4(a). The DRAM
resp~nds by copying the entire contents of row 2 into an internal row buffer. Next,
the memory controller sends column address 1, as shown in Figure 6.4(b). The
DRAM responds by copying the 8 bits in supercell (2, 1) from the row buffer and
sending them to the memory controller.

One reason circuit designers organize DRAMs as two-dimensional arrays
instead of linear arrays is to reduce the number of address pins on the- chip: For
example, if our example 128-bit DRAM were organized.as a ·linear array of 16
supercells with addresses 0 to 15, then the chip would heed four address. pins
instead of two. ·The disadvantage of the two-dimensional array organization is
that addresses must be sent in two distinct steps, which increases the access time.

' rl

I
I'

584 Chapter 6 The Memory Hierarchy

Memory
controller

DRAM chip f" C~i; ~

RAS= 2 j 0 1 2 3

2

;ddr

B
.. ;' • i,

0

1
Rows

2

3

,, -'
' "" -

.. ~ ··""

..., I--'
' >-_)- " ~ < ~

rt: • 'lil'I

Pf.l~~~~;e
· Cols '

CAS = 1 i 0 1 2 3

L \ 0

~dr ! 1
[Rows

Memory Superceu! 2
controller (2,1)

i~ 3
B

~ta i
' ~ .,..,,
! J:Z:.' i

. _,_ tlfl~·;· .• ~ - "

data I
L !.~~~~~-~~.:.~~-~~~~~---··· .. J ; !.~~:~~~!.!~~ b~~~! !

(a) Select row 2 (RAS request). (b) Select column 1 (GAS request).

Figure 6.4 Reading the contents of a DRAM supercell.

Memory Modules

DRAM chips are packaged in memory modules that plug into expansion slots on
the main system board (motherboard). Core i7 systems use the 240-pin d,ual inline
memory module (DIMM), which transfers data to and from the memory controller
in 64-bit chunks.

Figure 6.5 shows the basic idea of a memory module. The example .module
stores a total of 64 MB (megabytes) using eight 64-Mbit 8M x 8 DRAM chips,
numbered 0 to 7. Each supercell stores 1 byte of main memory, and each 64-bit
word at byte address A in maio memory is represented by the eight supercells
whose corresponding supercell address is (i, j). ·rn the example in Figure 6.5,
DRAM 0 stores the first (lower-order) byte, DRAM 1 stores the next byte, and
soon.

To retrieve the word at memory address A, the memory controller converts
A to a supercell address (i, j) and sends it to the memory module, which then
broadcasts i and j to each DRAM. In response, each DRAM outputs the 8-bit
contents of its (i, j) supercell. Circuitry in the module collects these o"utputs and
forms them into a 64-bit word, which it returns to the memory controller.

Main memory can be aggregated by connecting multiple memory modules to
the memory controller. In this case, when the controller receives ao address A, the
controller selects the module k that'contains A, converts A to its (i, j) form, and
sends (i, j) to module k.

~]i:~tif!f'Re9,660~~$;;g:1
In the following, let r be the number of rows in a DRAM array, c the ·number of
columns, b, the number of bits needed to address the rows, and b, the number of
bits needed to address the columns. For each of the, following DRAMs, determine
the power-of-2 array dimensions that minimize max(b,, b,), the maximum number
of bits needed to address the rows 'Or columns of the array. •

I
i
!
I

i
I
!
I

Section 6. 1 Storage Technologies 585

Figure 6.5
Reading the contents of a
memory module.

Organization r

16 x"l

16 x 4. ----
128 x 8 ---
512 x 4

1,024 x-4 ----

Enhan~ed.DRAMs

c

,r---

addr (row = ~I col = j)

- l
DRAMO

'jl
DRAM7

ljl 'jl
}))-

)-t-

i-- 1--
}-

data
1-- i--

B!ts Bits Bits Blffi Bits Bits Blffi Blffi
56·63 48·55 40·47 32..S9 24-31 16-23 8-15 (J.7

63 56 55 48 47 40 39 32 31 24 23 16 15 B 7 0

I J
6~bit word.at main memorJ; adQ'ress A

J

' 64-bit word to CPU chip

v
b, b,

---- ----
--- ----

T)iere are many. kinds Of DRAM memdries, and new kinds appear on the market
with'regularity as manufacturers attempt to keep up with rapidly increasing pro­
cessor speeds. Each is based on the conventional DRAM cell, with optimizations
that improve the speed with which the basic DRAM cells can be 'accessed.

Fast page mode DRAM (FPM DRAM). A conventional DRAM copies an
entire row of supercells into its internal row buffer, uses one, and then
discards the rest. FPM DRAM improves on this by allowing consecutive
accesses to the same row to be served directly from-'the row buffer. For
example, to read fol\r supercells from row i of a conventional DRAM, the
memory controller must send four RAS/CAS :equests, "i~~n though the
row apdress i is idl!ntical in;e~ch case, To read sqpercelJM~om the same,
row of an FP,M DRAM, the memory controljer sei:cts ,an ~1;11tial RAS/CAS
request, followed by three CAS requests. The initial RAS/CAS request
copies row i into the row buffer and returns the supercell addressed by the

D: Supercell (i, j)

64MB
memory module
consisting of
eight SM x a DRAMs

Memory
controller

586 Chapter 6 The Memory Hierarchy

!
t" CAS. The next three supercells are served directly from the row buffer,

and thus are returned more quickly than the initial supercell.

Extended data out DRAM (EDO DRAM). An enhanced form of FPM
DRAM that allows the individual CAS signals to be spaced closer to­
gether in time.

Synchronous DRAM (SD RAM). Conventional, FPM, and EDO DRAMs are
asynchronous in the sense that they communicate with the memory con­
troller using a set of explicit control signals. SDRAM replaces many of
these control signals with the rising edges of the same external clock sig­
nal that drives the memory controller. Without going into detail, the net
effect is that an SDRAM can output the contents of its supercells at a
faster rate than its asynchronous counterparts.

Double Data-Rate Synchronous DRAM (DDR SD RAM). DDRSDRAMisan
enhancement of SD RAM that doubles the speed of the DRAM by using
both clock edges as control signals. Different types of DDR SDRAMs
are characterized by the size of a small prefetch buffer that increases the
effective bandwidth: DDR (2 bits), DDR2 (4 bits), and DDR3 (8 bits).

Video RAM (VRAM). Used in the frame buffers of graphics systems. VRAM
is similar in spirit to FPM DRAM. Two major differences are that (1)
VRAM output is produced by shifting the entire contents of the .internal
buffer in sequence and (2) VRAM allows concurrent reads and writes to
the memory. Thus, the system can be painting the screen with the pixel~
in the frame buffer (reads) while concurrently writing new values for the
next update (writes).

Nonvolatile Memory

DRAMs and SRAMs are volatile in the sense that they lose their information if th1
supply voltage is turned off. Nonvolatile memories, on the other hand, retain thei
information even when they are powered off. There are a variety of nonvolatil,
memories. For historical reasons, they are referred to collectively as read-on/
memories (ROMs), even though some types of ROMs can be written to as well a
read. ROMs are distinguished by the number of times they can be reprogramme
(written to) and by the mechanism for reprogramming them.

~ ' '~ ~ ¢\f' '1 !("'

Aside Historical·populqrity\qf'.DRAM techno10gies " ,,
·•""''

Until 1995, most PCs were builtwltnFP~{DRAMs'. Fiom 1996 to 1999;EDO DRAMs dominated the
market, while FPMDR'.A~ ~llbUt'dis'appeai'ed:'sDRAMs-first,ap11eared in \99,;>'in high-end'systems,
and by 2002 rr!ost P<'.:s;w,ere ~ul!t_~:~·~i>g~M~ a?d DDR S~A~.'.By 2019, lflo~t .s~p~~ abd ?esktop
systems were lfailt with DDR3 SDRAMs. In'fact,;heflntel Cor~,i7-supports only I?!:iR3 SD RAM.

,,., ·"""~...,,!~ ... ~·' "" h ., .• hl• ,,_ ,._ ""~ ,,..,,

Section 6.1 Storage Technologies 587

A programmable ROM (PROM) can be programmed exactly once. PROMs
include a sort of fuse with each memory cell !hat can be blown once by zapping it
with a high current.

An erasable programmable ROM (EPROM) has a transparent quartz window
that permits light to reach the storage cells. The EPROM cells are; cleared to zeros
by _shining ultraviolet light through the window. Programming an EPROM is done
by using a special device to write ones into the EPROM. An EPROM can be
erased and reprogrammed on the order of 1,000 times. An electrically erasable
PROM (EEPROM) is akin to an EPROM, but it does not require a physically
separate programming device, and thus can be reprogrammed in-place on printed
circuit cards. An EEPROM can be reprogrammed on the order of 105 times before
it wears out.

Flash memory is a type of nonvolatile memory, based on EEPROMs, that
has become an important storage technology. Flash memories are everywhere,
providing fast and durable nonvolatile storage for a slew of electronic devices,
including digital cameras, cell phones, and music players, as well as laptop, desktop,
and server computer systems. In Section 6.1.3", we will look in detail at a new form
of flash-based disk drive, known as a solid state disk (SSD), that provides a faster,
sturdier, and less power-hungry alternative to conventional rotating disks.

Programs stored in ROM devices are often referred to as firmware. When a
computer system is powered up, it runs firmware stored in a ROM. Some systems
provide a small set of primitive input and output functions in firmware-for
example, a PC's BIOS (basic input/output system) routines. Complicated devices
such as graphics cards and disk drive controllers also rely on firmware to translate
I/O (input/output) requests from the CPU.

Accessing Main Memory

Data flows back and forth between the processor and the DRAM main memory
over shared electrical conduits called buses. Each transfer of data between the
CPU and memory is accomplished with a series of steps called a bus transaction.
A read transaction transfers data from the main memory to the CPU. A write
transaction transfers data from the CPU to the main memory.

A bus is, 'I collectior:i of parallel wires that carry address, data, and control
signals. Depending on the part~cular bus design, data and address signals can share
\he same set of wires or can use different sets. Also, more than two devices can
share the same bus. The control wires carry signals that synchronize the transaction
and identify what kind of transaction is currently being performed. For example,
is this transact.ion of interest to the main memory, or to some other I/O device
such as a disk controller? Is the transaction a read or a write? Is the information
on the bus an address or a data item?

Figure 6.6 shows the t:anfiguration of an example computer system. The main
components are the CPU chip, a chipset that we will call an IIO bridge (which
includes the memory controller), ap.d the DRAM memory modules that make up
main memory. These components are connected by a pair of buses: a system bus
that connects the CPU to the I/O bridge, and a memory bus that connects the I/O

"

I

'

I

,,,

588 Chapter 6 The Memory Hierarchy

!

Aside A note oi;iJ~!Js,.designs,

Bus design is a complex ,anp rapid}y changing a~peft of ~~mputer systems. Diff~r~nf'vencjors,<!evelop
different bus architectures a&a'way to differentiate thelf prclducts. For'eirnmple: sofue1ntersysteri\s use
chipsets known as the'northbridge~i\d'the souih!Jriage.to 'connect the CPU to melnory and rio devices,
respectively. In older Peritii:m and1Core 2· systems;«a fr01;zf'side b(IS (FSB)' conrlects'the G~U ·tb the
northbridge. Systems from AMIT replacMheFSB with \~e.ffyperTransport interconnectfwhile newer
Intel Core i7 systems use the QuickPath lnterconhect: The details•orthese different bus architectures
are beyond the scope of this'tel<t:>Inste'ad,we-will use the'high-level bus architecture from Figure 6'.6
as a running example throughout. rt is a simpleout'usefui abstraction-that allows us'to•be'concrete. It
capture~ the main ide~s without 6ei;,g tied too c!OselY:to 'the detail of any'proprietary'designs1

*"'-· .,,.,}~~ .. ,,.

Figure 6.6 CPU chip

Example bus structure
that connects the CPU
and main memory.

Bus interface

System bus

1/0
bridge

bridge to the main memory. The UO bridge translates the electrical signals of the
system bus into the electrical signals of the memory bus. As we will see, the 1/0
bridge also connects the system bus and memory bus to an I/O bus that is shared
by I/O devices such as disks and graphics cards. For now, though, we will focus on
the memory bus.

Consider what.happens when the CPU performs a load operation such as

movq A,%rax

where the contents of address A are loaded into register %rax. Circuitry on the
CPU chip called the bus interface initiates a read transaction on tlie bus. The
read transaction consists of three steps. First, the CPU places the address A
on the system bus. The 1/0 bridge passes the signal along to the memory bus
(Figure 6.7(a)). Next, the main memory senses the address signal on the memory
bus, reads the address from the memory bus, fetches the data from the DRAM,
and writes the data to the memory bus. The I/O bridge translates the memory bus
signalinto a system bus signal and passes it along to the system bus (Figure 6.7(b)).
Finally, the CPU senses the data on the system bus, reads the data from the bus,
and copies the data to register %rax (Figure 6.7(c)).

Conversely, when the CPU performs a store operation such as

movq %rax,A

Section 6.1 Storage Technologies 589

Figure 6.7
Memory read transaction
for a load operation: movq
A,%rax.

Reglster file

Bus interface

(a) CPU places address A on the memory bus.

Bus interface

110
bridge

A

Main
memory

Main
memory

0

0

(b) Main memory reads A from the bus, retrieves word x, and places it on the bus,

Register file

Main
1/0

,__B_u_s_in-te_rt_a_ce _ _, ,,_ __ ..,,._br-id_g_e_,~---,~ me:ofy I:
(c) CPU reads word xfrom the bus, and copies it into register %rax.

where the contents of register 7,rax are written to address A, the CPU initiates
a write transaction. Again, there are three basic steps. First, the CPU places the
address on the system bus. The memory reads the address from the memory bus
and waits for the data to arrive (Figure 6.8(a)). Next, the CPU copies the data in
%rax to the sy~iem bus (Figure 6.8(b)). Finally., th~ main memory reads the data
frail) ihe memory bus and stores the bits in the DRAM (Figure 6.8(c)).

6.1.2 Disk Storage
1

Disks are workhorse storage devices that• hold enormous amounts of data, on
the.order of hundreds to thousands of gigabytes, as opposed to the hundreds or
thousands of megabytes in a RAM-based·memory. However, it takes on the order
of milliseconds to read information from a disk, a hundred thousand times longer
than from DRAM and a million times longer than from SRAM.

590 Chapter 6 The Memory Hierarchy

Register file

Bus interlace

Main
memory

0

(a) CPU places address A on the memory bus. Main memory reads it and waits for the data word.

Register file

ALU

1/0
bridge

(b) CPU places data word yon the bus.

Register file

Bus intertace

1/0
bridge

Main
memory

Main
memory

0

0

(c) Main memory reads data word yfrom the bus and stores it at address A.

Figure 6.8 Memory write transaction for a store operation: movq %rax, A.

Disk Geometry

~isks are constructed from platters. Each platter consists of two side~, or surfaces,
that are coated with magnetic recording material. A rotaiing spinille in the center
of the platter spins the platter at a"fixed rotational rate, typically between 5,400 and
15,000 revolutions per minute (RPM). A disk will typically contain one or more of
these platters encased in a sealed container.

Figure 6.9(a) shows the geometry of a typical disk surface. Each surface
consists of a collection of concentric ring~ called tracks. Each track is partitioned
into a collection of sectors. Each sector contains an equal number of data bits
(typically 512 bytes) encoded in the magnetic material on the sector. Sectors are
separated by gaps where no data bits >are stored. Gaps store formatting bits that
identify sectors.

Section 6., Storage Technologies 591

Cylinder k

Track k Gaps
Surface O //-----t(J

~~I J
Surface 1 ~.-l:::::C~:C::::L_..- Platter o
Surface 2 ---. o:....+--c;

(a) Single-platter view

Figure 6.9 Disk geometry.

\ I

"r-r/
Sectors

Surface 3 :;~~~~~!S Platter 1 Surface 4
Surface 5 Platter 2

~k
'

Spindle

(b) Multiple-platter view

A disk consists of one or more platters stacked on top of each other and
encased in a sealed package, as shown in Figure 6.9(b). The entire assembly is
often referred to as a disk drive, although we will usually refer to it as simply a
disk_ We.will sometimes refer to disks as rotating disks to distinguish them from
flash-based solid state disks (SSDs), which have no moving parts.

Disk manufacturers describe the geometry of multiple-platter drives in terms
of cylinders, where a cylinder is the collection of tracks on all the surfaces that are
equidistant from the center of the spindle. For example, if a drive has three platters
and six surfaces, and the tracks on each surface are numbered consistently, then
cylin~er k is the collection of the six instances of track k.

Disk Capacity

The maximum number of bits that can be recorded by a disk is known as its max­
imum capacity, or simply capacity. Disk capacity is determined by the following
technology factors:

Recording density (bits/in). The number of bits that can be squeezed into a 1-
inch segment of a track.

Track density (tracks/in). The number of tracks that can be squeezed into a
1-inch segment of the radius extending from the center of the platter.

Areal density (bits/in2
). The product of the recording density and the track

density.

Disk manufacturers work tirelessly to increase areal density (and thus capac­
ity), and this is doubling every couple of years. The original disks, designed in
an age of low areal density, partitioned every track into the same number of sec­
tors, which was determined by the number of sectors that could be recorded on
the innermost track. To maintain a fixed number of sectors per track, the sectors
were spaced farther apart on the, outer tracks. This was a reasonable approach

!
I

..
I

592 Chapter 6 The Memory Hierarchy

«

Aside Ho'1 much is a gigabyte?

Unfortqnately, the meanings of pr_;fixes such as 'kilo (KJ': mega \Nf), giga (G)l and te~a (T) depend
on the conte)<:t. For. measures thal'relate.to the capacity of DRAMs and SRAMs, typically K'= 219,
M = 220, G "':'~z".lo, a~d 'r .~ 240 • For' measures r;late\I to the capacity of I/0°devi~eft such as disks a~d
nptwork~ typically K =HP, M =J.D6, G = ld', and T = 1012 . Rates and throµghpµts usuali{use these
prefix values as well. "' ~' ,,_§+ '

Fortunateli;. for .the back-of-the-envelope estimates that.we typically rely on, either a~sumption
works fine in practice. Fo« exail)ple, the relative diff7rence between 2,3°-and J09 i§ not \IJ~t large:
(230 - lrf)/109 ""7%. SimjlBJly1:(2~9r 1012)/1012 "" 10%.

when areal densities were relatively low. However, as areal densities increased,
the gaps between sectors (where no data bits were stored) became unacceptably
large. Thus, modern high-capacity disks use a technique known as multiple zane
recording, where the set of cylinders is partitioned into disjoint subsets known as
recording zones. Each zone consists of a contiguous collection of cylinders. Each
track in each cylinder in a zone has the same number of sectors, which is deter­
mined by the number of sectors that can be packed into the innermost track of
the zone.

The capacity of a disk is given by the following formula:

C
. # bytes average # sectors # tracks # surfaces # platters

apac1ty = --- x x x x ->---
sector track surface platter disk

For example, suppose we have a disk with five platters, 512 bytes per sector, 20,000
tracks per surface, and an average of 300 sectors per track. Then the capacity of
the disk is

C
. 512 bytes 300 sectors 20,000 tracks 2 surfaces 5 platters

apaCity = x x x x ~--
sector track surface platter disk

= 30,720,000,000 bytes

=30.72GB

Notice that manufacturers express disk capacity in units of gigabytes (GB) or
terabytes (TB), where 1GB=109 bytes and 1TB=1012 bytes.

""•"">l'l'l.""'p""-"t:."i'll'l'"'it''i~-"-,""'!"~!.,~""1.1Y:'~;.:"~"",,,..~· . ,, !ti!:'""",:;:,_,_,.,. ·ttaGlt~:.,..J:.™-'~!:~Q!.Y!!ru!Ba ·'Cb. ,~W'4"'· ~ ~~~"'.,\~ "'

What is the capacity of a disk with 2 platters, 10,000 cylinders, an average of 400
sectors per track, and 512 bytes per sector?

Disk Operation

Disks read and write bits stored on the magnetic surface using a read/write head
connected to the end of an actuator arm, as shown in Figure 6.lO(a). By moving

Section 6.1 Storage Technologies 593

The disk surface
spins at a fixed ,,._,.,,
rotatiOna! rat0 . .1'" · , , ,

The read/write head
is attached to the end
of the ar.m and f/ies over
the disk suriace on
a thin cushion of air.

By moving radially, the arm

Read/write heads

Ann

Spindle

can position the read/write (b) Multiple-platter view
head over any track.

(a) Single-platter vieW

Figure 6.10 Disk dynamics.

the arm back'and forth along its radial axis, the drive can position the head over
any track on the surface. This mechanical motion is known as a seek. Once the
head is positioned over, the desired track, then, as each bit ori'the track passes
underneatli, the head'tan' either sense the value of the bit (read the bit) or alter
the value of tlie bit (write tlie bit). Disks with multiple platters have a separate
read/write head for each surface, as shown in Figure 6.lO(b). The heads are lined
up vertically and move in unison. At any point in time, all heads are positioned
on the same cylinder.

The read/write head at' the end of the arm flies (literally) on a thin cushion of
air over the disk surface at a height of about 0.1 microns and a speed of about 80
km/h. This is analogqus to placing a skyscraper on its side and flying it around the
world at a height of 2.5 cm (1 inch) abov~ the ground, with each orbit of the earth
taking only 8 seconds! At these tolerances, a tiny piece of dust on the surface is like
a huge boulder. If the head were to strike one of these boulders, the head would
cease flying ilnd crash into the surface (a so-called head crash). For this reason,
disks are always sealed in airtight packages.

Disks read and write data in sector-size blocks. The access time for a sector
has three main components: seek time, rotational latency, and transfer time:

Seek time. To read the contents of some target sector, the arm first positions the
head over the track that contains the target sector. The time required to
move the arm is called the seek time. The seek time, Tseek• depends on the
previous position of the head and the speed that the arm moves across the
surface. The average seek time in modern drives, Tavg seek• measured by
taking the mean of several thousand seeks to random sectors, is typically
on the order of 3 to 9 ms. The maximum time for a single seek, Tmaxseek•
can be as high as 20 ms.

594 Chapter 6 The Memory Hierarchy

Rotational latency. Once the head is in position over the track, the drive waits
for the first bit of the target sector to pass under the head. The perfor­
mance of this step depends on both the position of the surface when the
head arrives at the target track and the rotational speed of the disk. In the
worst case, the head just misses the target sector and waits for the disk to
make a full rotation. Thus, the maximum rotational latency, in seconds, is
given by

T. . __ 1_ x 60 secs
max rotation - RPM l min

The average rotational latency, Tavg rotation• is simply half of T max rotation·

Transfer time. When the first bit of the target sector is under the head, the drive
can begin to read or write the contents of the sector. The transfer time
for one sector depends on the rotational speed and the nl'mber of sei;tors
per track. Thus, we can roughly estimate the average transfer time for one
sector in seconds as

1 1
Tavg trnnsfer = RPM x (average# sectors/track)

60 secs x---
lmin

We can estimate the average time to access the contents of a disk sector as
the sum of the average seek time, the average rotational latency, and tli,e average
transfer time. For example, consider a disk with the.following paramete~s:

Parameter Value

Rotational rate 7,200RPM

Tavg seek 9 ms
Average number of sectors/track 400

For this disk, the average rotational latency (in ms) is

Tavg rotation = 1/2 X T max rotation

= 1/2 x (60 secs/7,200 RPM) x 1,000 ms/sec

~4ms

The average transfer time is

Tavg trnnsfer = 60/7,200 RPM x 1/400 sectors/track x 1,000 ms/sec

"-'0.02ms

Putting it all together, the total estimated access time is

Taccess = Tavg ~eek + Tavg rotation + Tavg transfer

= 9ms + 4ms + 0.02ms

= 13.02ms

Section 6.1 Storage Technologies 595

This example illustrates some important points:

• The time to access the 512 bytes in a disk sector is dominated by the seek time
and the rotational latency. Accessing the first byte in the sector takes a long
time, but the remaining bytes ar,e essentially free.

• Since the seek time and rotational latency are roughly the same, twice the
seek time is a simple and reasonable rule for estimating disk access time.

• The access time for a 64-bit word stored in SRAM is roughly 4 ns, and 60 ns
for DRAM. Thus, the time to read a,'512-byte sector-size block from memory
is roughly 256 ns for SRAM and 4,000 ns for DRAM. The disk access time,
roughly 10 ms, is about 40,000 times greater than SRAM, and about 2,500
times greater than DRAM.

ir;ractice P(oblem §.l_(~ohrtiiiiJe.~g£§ill....'.-_ .;,.~-:;:"-::-. .,- ~-· .. •· ····'
Estimate the average time (in ms) to access a sector on the following disk:

Parameter

Rotational rate

Tavgscek

Average number of sectors/track

Logical Disk Blocks

Value

15,000RPM
Sms
500

As we have seen, modern disks have complex geometries, with multiple surfaces
and different recording zones on those surfaces. To nide this complexity from
the operating system, modern disks present a simpler view of their geometry as
a sequence of B sector-size logical blocks, numbered 0, l, ... , B - 1. A small
hardware/firmware device in the disk package, called the disk controller, maintains
the mapping between logical block numbers and actual (physical) disk sectors.

When the operating system wants to perform an I/O operation such as reading
a disk sector into main memory, it sends a command to the disk controller asking
it to read a particular logical block number. Firmware on the controller performs
a fast table lookup that transiates the logical block number into a (surface, track,
sector) triple that uniquely identifies the corresponding physical sector. Hardware
on the controller interprets this triple to move the heads to the appropriate
cylinder, waits for the sector to pass under the head, gathers up the bits sensed
by the head into a small memory buffer on the controller, and copies them into

uppose that a 1 MB file consisting of 512-byte logical blocks is stored on a disk
rive with the following characteristics:

596 Chapter 6 The Memory Hierarchy

' Aside Formatted disk c;apacity.

Before a disk can be'used to sto'te'oata,'it must befor':natt~ft b~ the di'sk c~ntroqe):-j;Ibis involv~s.filling
irrthe gaps between'~ecfors with information·ihat identifies ihe sectors, identifying an~ cylinders'with
surface defects and taking them' out of action, and settinfaside a set of cylinders in each zone as spares
ihat can be called inti> action if one or more cylinders in·the zone goes bad·1lurihg the' lifetime of the
disk. The formatted cap~tity quoted by disk lnaii\Jfacturers is Jess than the maxiihuh! capaci\Y because
of the existence of these spare cyli!lderfl: , • ., , ,

,,,.,,,,,-.,~,..,- .,,,, .. _.~.,_w. ~-"'~L "*' ~-~~ +,.a.,,,.,.-~""""'""'"'"'"'""4·>s.--.~ .. ~,..,.,...,.._,,,..i/J. __ ,,_ '

Parameter

Rotational rate

Tavgseek

Average number of sectors/track

Surfaces
Sector size

Value

10,000RPM
5 ms
1,000
4
512 bytes

For each case below, suppose that a P,rogram reads the logical blocks of the
file sequentially, one after the oiher, and that the time to position the head oyer
the first block is Tavgseek + Tavgrotation·

A. Best case: Estimate the optimal time (in ms) required to read the file given
the best possible mapping of logical blocks to disk sectors (i.e., sequential).

B. Random case: Estimate the time (in ms) required to· read the file if blocks
are mapped randomly to disk sectors.

Connecting 1/0 Devii:es

Input/output (1/0) devices such as graphics cards, monitors, mice, keyboards, and
disks are. 9onnected to the CPlJ and main memory using an 110 bus. Unlik.e the
system bus and memory buses, which are CPU-specific, I/O buses are designed
to be independent of the underlying CPU. Figure 6.11 show&p representative I/O
bus structure that connects the CPU, main memory, and I/O devices.

Although the I/O bus is slower than the system and memory buses, ,it can
accommodate a wide variety of third-party I/O devices. For example, the ,bus,in
Figure 6.11 has three different types of devices attached to it.

• A Universal Serial Bus (USB) controller is a conduit for devices attached to
a USB bus, which is a wildly popular standard for connecting a variety of
peripheral I/O devices, including keyboards,'mice, modems, digital cameras,
game controllers, printers, external disk drives, and solid state disks. USB
3.0 buses have a maximum bandwidth of 625 MB/s. USB 3.1 buses have a
maximum bandwidth of 1,250 MB/s.

?ection 6.1 Storage Technologies 597

Figure 6.11
Example bus structure
that connects the CPU,
main memory, and 1/0
devices.

CPU

Register file

System~bus

Bus interfac'e

Memory bus

~Main
~memory

Mouse Solid
state
disk

Key- Monitor
board

"

Host bus
adapter

(SCSl/SATA)

~~c!-c--~·

'
'

,.

c.....;;;.:.;;;.=-1
j Disk drive

i
i

'------------- _____ _:

• A f{'aph{!:s card (or aqapter) contains hardware and software logic that is re­
sponsible for painting the pixels on the display monitor on behalf of the CPU.

• A host bus adapter that connects one or more disks to the I/O bus using
a communication protocol defined by a particular host bus interface. The
two most popular such interfaces for disks are SCSI (pronounced "scuzzy")
and SATA (pronounced "sat-uh"). SCSI disks are typically faster.and more
expensive than SATA drives. A SCSI host bus adapter (often called a SCSI
controller) can support multiple disk drives, as opposed to SATA adapters,
which can only support one drive ..

Additional devices ~uch as network adapters can be attached to the I/O bus by
plugging the adapter into empty expansion slots on the motherboard that.provide
a direct electrical connection to the bus:

Accessing Disks

While a dytailed description of. how I/O·devices work arid how they are pro­
grammed is outside our scope here; we can.give·you a general idea. For example,
Figure 6.12 summarizes the steps·that take place when a CPU reads data from a
disk.

, I

I

''

598 Chapter 6 The Memory Hierarchy

Aside Advances in 1/0 bus designs

The 1/0 bus in Figure 6.11 is a simple abstraction that allows us to be concrete, withollt being tied too
closely to the details of any specific system. Itjs bas~d cin the peripheral component i~t~rconnixt (PC/)
bus, which was popular unth atound 2010. In the P€I nf6del, each device in the system shares the bus,
and only one device at a time can ~ccess"these wires. In modem systems, the shared P.CI bus has been
replaced by a PC! express (PCie) bus, which is a set of high-spee.d serial, point-to-point links connected
by switches, akin to the switched Ethernets that you will learn about in Chapter 11. A

0

PCle bus, with a
maximuI\1 throughput of16 GB/s,is an orde~ofmagn'itudefastei:.than_a PC! bus, which has a maximum
throughput Of 533 MB/s. Except for,measur<!d l/O performance, the 11ifferences between the different
bus designs tare not· visible to application programs, so we will use the simple shared bus abstraction

' ' ' ' throughout ~he_ text.
~ i;f"

The CPU issues commands to 1/0 devices using a technique called memory.
mapped I!O (Figure 6.12(a)). In a system with memory-mapped 1/0, a block of
addresses in the address space is reserved for communicating with 1/0 devices
Each of these addresses is known as an I/O port. Each device is associated with
(or mapped to) one or more ports when it is attached to the bus.

As a simple example, suppose that the disk controller is mapped to port OxaO.
Then the CPU might initiate a disk read by executing three store instructions to
address OxaO: The first of these instructions sends a command word that tells the
disk to initiate a read, along with other parameters such as whether to interrupt
the CPU when the read is finished. (We will discuss interrupts in Section 8.1.) The
second instruction indicates the logical block number that should be read.
The third instruction indicates the main memory address where the contents of
the disk sector should be stored.

After it issues the request, the CPU will typically do other work while the
disk is performing the read. Recall that a 1 GHz processor with a 1 ns clock cycle
can potentially execute 16 million instructions in the 16 ms it takes to read the
disk. Simply waiting and doing nothing while the transfer is taking place would be
enormously wasteful.

After the disk controller receives the read command from the CPU, it trans­
lates the logical block number to a sector address, reads the contents of the secto_r,
and transfers the contents directly to main memory, without any intervention from
the CPU (Figure 6.12(b)). This process, whereby a device performs a read or write
bus transaction on its own, without any involvement of the CPU, is known as direct
memory access (DMA). The transfer of data is known as a DMA transfer.

After the DMA transfer is complete and the contents of the disk sector are
safely stored in main memory, the disk controller notifies the CPU by sending an
interrupt signal to the CPU (Figure 6.12(c)). The basic idea is that an interrupt
signals an external pin on the CPU chip. This causes the CPU to stop what it is
currently working on and jump to an operating system routine. The routine records
the fact that the 1/0 has finished and then returns control to the point where the
CPU was interrupted.

Figure 6.12
Reading a disk sector.

L

CPU chip

ALU .·

("'-' -""' ~ m~~~ry1
1/0 bus

Mouse Keyboard Monitor

(a) The CPU initiates a disk read by writing a command, logical block number, and'
destination memory address to the memory·mapped address associated wfth the disk.

CPU chip

ALU

Bus interface I/''-...,,_,"'

1/0 bus

Mouse Keyboard Monitor

~ '
(b) The disk controller reads the sector and performs a OMA transfer into main memory.

CPU~hli5

1~;::::;:~~ Main r memory

Mouse Keyboard Monitor

(c) When the OMA transfer is complete, the disk controller notifies the CPU with an interrupt.

I

I
\,
I

r

)
(!!

600 Chapter 6 The Memory Hierarchy

Aside
• ·l

Characteristics of·a commercial disk•drive . . '
Disk' manufacturers publish ii lot of useful high,Jevei techpical infonjiatioh on their Web sites. For
example, the Seagat~ Web *e contaic!lS the followi11g information (and much more!) about one of
their pqpular drives, t,he Barracuda 7400. ~Seag}te.coni)

Geqm,et,ry characteristic Value G~ometry characteriStiC

.,Surface diameter
Formatted•capacity
Platters
Surfaces
Logical blocks
Logica\,block, size ~

,,"{. ,.~ .,)'d:.,.

Figure 6.13

3.5 in
3TB
3
6
5,860!5'33)68

?12.\>yle~

Rotational Tate

,,Aver&ge rotatipnal latency

Ayer'1,!le.s<(~k ti!ne
Track-to-track se'ek"time

.... ,, "" ',,,
Average tran~fer rate
Maximum sustained transfer rate
' " ; ·~, < ' """ "• •.

':?,200 RPM.
4.16ms
8(5 ms
rn,ms
156 MB/s
210MB/s

Solid state disk (SSD).

1/0 bus

~~equ!ststoreadand
Solid state disk (SSD) __________ V write logical disk blocks
:--- --·:

l Flash '
j translation layer

\,,,· Fl:~:c~:mory Block B· 1

fj Page o I Pa;." 1 I -,-"'.~I Page P;~I \ · · · i';~l=P=_.=g•=,o'=;:I =P:::ag=•°''1=if~';-'. :;-;1=Pa::i:g=e=P·=;i·1 I\

!.·-----··------·····-------------·------·------·------------------------·-----------·------··-··-----·-·

6.1.3 Solid State Disks

A solid state disk (SSD) is a storage technology, based on flash memory (Sec­
tion 6.1.1), that in some situations is an attractive alternative to the conventional
rotating disk. Figure 6.13 shows the basic idea. An SSD package plugs into a stan·
dard disk slot on the I/O bus (typically USB or SATA) and behaves like any other
disk, processing requests from the CPU to read and write logical disk blocks. An
SSD package consists of one or more flash memory chips, which replace the me­
chanical drive in a conventional rotating disk, and a flash translation layer, which
is a hardware/firmware device that plays the same role as a disk controller, trans·
lating requests for logical blocks into accesses of the underlying physical device.

Figure 6.14 shows the performance characteristics of a typical SSD. Notice that
reading from SSDs is faster than writing. The difference between random reading
and writing performance is caused by a fundamental property of the underlying
flash memory. As shown in Figure 6.13, a flash memory consists of a sequence ofB
blocks, where each block consists of P pages. 'I)'pically, pages are 512 bytes to 4 KB
in size, and a block consists of 32-128 pages, with total block sizes ranging from 16

Section 6.1 Storage Technologies 601

Reads'

Sequential read throughput
Random read throughput (IOPS)
Random read throughput (MB!s!
Avg. sequential read access tinle

550MB/s
89,000 IOPS
365 MB/s
SOµs

Writes

Sequential write throughput
Random write throughput (IOPS)
Random write throughput (MB/s)
Avg. sequential write access time

470MB/s
74,000 IOPS
303 MB/s
60µs

Figure 6.14 ~~rformai;i~e characteri~tics of a commercial solid state disk. Source: Intel SSD 730 product
specification [53]. IQPS is 1/0 operations per second. Throughput numbers are based on reads and writes of
4 KB blocks. (1ntel1SSD 730 product specification. Intel Corporation. 52.)

KB to 512 KB. Data are read and written in units of pages. A page can be written
only after the entire block to which it belongs has been erased (typically, this means
that all bits in the block are set to 1). However, once a block is erased, each page
in the block can be written once with no further erasing. A block wears out after
roughly 100,000 repeated write§. Once a block wears out, it can no longer be used.

Random writes are slower for two reasons. First, erasing a block takes a
relatively long time, on the order of 1 ms, which is more than an order of magnitude
longer than it takes ·to access a page. Second, if a write operation attempts to
modify a page p that' contains existing data (i.e., not all ones), then any pages in
the same block with u~eful data must be copied to a new (erased) block before
the write to page p can occur. Manufacturers have developed sophisticated logic
in the flash translation layer that attempts to amortize the high cost of erasing
blocks and to minimize the number of internal copies.on writes, but it is unlikely
that random writing will ever perform as well as reading.

SSDs have a number of advantages over rotating disks. They are built of
semiconductor memory, with no moving parts, and thus have much faster random
access times than rotating disks, use less power, and are more rugged. However,
there are some disadvantages. First, because flash blocks wear out after repeated
writes, SSDs have the potential to'wear out as well. Wear-leveling logic in the flash
translation layer attempts to maximize the lifetime of each block by spreading
erasures evenly across all blocks. In practice, the wear-leveling logic is so good
that it'takes many years for SSDs to wear out (see Practice Problem 6.5). Second,
SSDs are about 30 times more expensive per byte than rotating disks, and thus the
typical'storage capacities are significantly less than rotating disks. However, SSD
prices are decreasing' rapidly as they become lnore popular, and the gap between
the two is decreasing.

SSDs have completely replaced rotating disks in portable music devices, are
popular as disk teplacements in laptops, and have even begun to appear in desk­
tops and servers. While rotating disks are'here to stay, it is clear that SSDs are an
important alternative.

~~t::'i~s''l~~,.,,., ..• ,.~_-1.; •<.·~·~.,'.'~il',f."1!:.,•.~1 •. ~~~~~~~·1~1

As we have seen, a potential drawback of SSDs is that the underlying flash mem<lry
can wear out. For example, for the SSD in Figure 6.14, Intel guarantees about

' 'I

I f
' j

·;
I

602 Chapter 6 The Memory Hierarchy

128 petabytes (128 x 1015 bytes) of writes before the drive wears out. Given
this assumption, estimate the lifetime (in years) of this SSD for the following
workloads:

A. Worst case for sequential writes: The SSD is written to continuously at a rate
of 470 MB/s (the average sequential write throughput of the device).

B. Worst case for random writes: The SSD is written to continuously at a rate
of 303 MB/s (the average random write throughput of the device).

C. Average case: The SSD is written to at a rate of 20 GB/day.(the average
daily write rate assumed by some computer manufacturers in their mobile
computer workload simulations).

6.1.4 Storage Technology Trends

There are several important concepts to take away from our discussion of storage
technologies.

Different storage technologies have different price and performance trade-off<
SRAM is somewhat faster than DRAM, and DRAM is much faster than disk. On
the other hand, fast storage is always more expensive than slower storage. SRAM
costs more per byte than DRAM. DRAM costs much more than disk. SSDs split
the difference between DRAM and rotating disk.

The price and performance properties of different storage technologies are
changing at dramatically different rates. Figure 6.15 summarizes the price and per­
formance properties of storage technologies since 1985, shortly after the first PCs
were introduced. The numbers were culled from back issues of trade magazines
and the Web. Although they were collected in an informal survey, the numbers
reveal some interesting trends.

Since 1985, both the cost and performance of SRAM technology have im­
proved at roughly the same rate. Access times and cost per megabyte have de­
creased by a factor of about 100 (Figure 6.15(a)). However, the trends for DRAM
and disk are much more dramatic and divergent. While the cost per megabyte of
DRAM has decreased by a factor of 44,000 (more than four orders of magnitucje!),
DRAM access times have decreased by only a factor of 10 (Figure 6.15(b)). Disk
technology has followed the same trend as DRAM and in even more dramatic
fashion. While the cost of a megabyte of disk storage has plummeted by a factor
of more than 3,000,000 (more than six orders of magnitude!) since 1980, access
times have improved much more slowly, by only a factor of 25 (Figure 6.15(c)).
These startling long-term trends highlight a basic truth of memory and disk tech­
nology: it is much easier to increase density (and thereby reduce cost) than to
decrease access time.

DRAM and disk performance are lagging behind CPU performance. As we see
in Figure 6.15(d), CPU cycle times improved by a factor of 500 between 1985 and
2010. If we look at the effective cycle time -which we define to be the cycle time
of an individual CPU (processor) divided by the number of its processor.cores­
then the improvement between 1985 and 2010 is even greater, a factor of 2,000.

I

I

I

I

I

I

I

I

I

I

I

Section 6.1 .Storage Technologies 603

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 25 116
Access (ns) 150 35 15 3 2 1.5 1.3 115

(a) SRAM trends

Metric 1985 1990 19~5 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000
Access (ns) zoo 100 70 60 50 40 20 10
fypical size (MB) 0.256 4 16 64 2,000 8,000 16,000 62,500

(b) DRAM trends

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333

Min. seek time (ms) 75 28 10 8 5 3 3 25
Typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

(c) Rotating disk trends

Metric 1985 1990 1995 2000 2003• 2005 2010 2015 2015:1985

Intel CPU 80286 80386 Pent. P-Ill Pent. 4 Core2 Core i7 (n) Core i7 (h)
Clock' rate (MHz) 6 20 150 600 3,300 2,000 2,500 3,000 500
Cycle time (ns) 166 50 6 1.6 0.3 0.5 0.4 0.33 500
Cores 1 1 1 1 1 2 4 4 4
Effective cycle 166 50 6 1.6 0.30 0.25 0.10 0.08 2,075

time (ns)
I

(d} CPU trends

I

Figure 6.15 Storage and processing technology trends. The Core i7 circa 2010 uses the Nehalem processor
core. The Core i7 circa 2015 uses the Haswell core.

I The split in the CPU performance curve around 2003 reflects the introduction

I

of multi-core processors (see;-aside ori page 605). After this split, cycle. times of
individual cores actually increased· a bit before starting to decrease again, albeit

I at a slower rate than byfore.
Note that while SRAM performance lags, it is rnugbly keeping up. However,

I the.gap between DRAM and disk performance rutd CPU performance is actually

I

widening. Until the advent of multi-core processors around 2003, this performance
gap was .a function of latency, with .DRAM' and disk access times decreasing

I

more slowly than the cycle time of an individual processor. Howewr, with the
introduction of multiple cores, this performance gap is increasingly a function of

I

I

604 Chapter 6 The Memory Hierarchy

100,000,000.0

10,000,000.0

1,000,000.0

100,000.0

~
" E ;:

10,000.0

1,000.0

100.0

10.0

1.0

0.1

0.0

--- -.

..

"-
~ ...
~

:8:::
:;::;

-u ~

"V ~

'
1985 1990 1995 2000 2003 2005 2010 2015

Vear

-+-Disk seek time
......SSD access time
..... DRAM access time
-+-SRAM access time
-o-CPU cycle tirile
-o-Effective C~U cycle time

Figure 6.16 The gap between disk, DRAM, and CPU speeds.

throughput, with multiple processor cores issuing requests to the DRAM and disk
in parallel.

The various trends are shown quite clearly in Figure 6.16, which plots the
access and cycle times from Figure 6.15 on a semi-log scale.

As we will see in Section 6.4, modern computers make heavy use of SRAM­
based caches to try to bridge the processor-memory gap. This approach works
because of a fundamental nroperty of application programs known as locality,
which we discuss next. ;

'l),..ff~7$i~ri!~7'ZW!'l6~r'3'~"-'"~:~i~Y"'":%i'"•':-<'!,'I;{ ~":!"' '¥'°""'.;t?'~. · fJ;:r,i!~Il!.!i.1'.!.Q~w.J,1,~IQll'l!~q~,,,,;l.,.,"""""'~---~~
Using the data from the years 2005 to 2015 in Figure 6.15(c), estimate the year
when you will be able to buy a petabyte (1015 bytes) of rotating disk storage for
$500. Assume actual dollars (no inflation). '

6.2 Locality

Well-written computer programs tend to exhibit good locality. That is, they tend
to reference data items that are near other recently referenced data items or
that were-recently refereqced themselves. This tendency, known as the principle
of locality, is an enduring concept that has enormous impact on the design and
performance of hardware· and software systems.

Locality is typically described as having two distinct forms: temporal locality
and spatial locality. In a program with good temporal li!>cality, a memory location
that is referenced once is likely to Be referenced again multiple times in the near
future. In a program with-good spatial locality1if a memocy location is referenced

Section 6.2 Locality 605

Aside When cycle time stood still: The advent of multi-core proce,ssors

The history of computers is marked by some singular events that caused profound changes in the
industry and the world. Interes!ingly, these intlectio'r\.' points tend to occur about once per decade: the
development of Fortran in the 1950s, the introduction of the IBM 360 in the early 1960s, the dawn of
the Internet (then called ARP-ANET) in the early 1970s, the introduction of the IBM PC in the early
1980s, and the creatfon of the World

0

Wide Web in the early 1990s. ' •·
The most recent such event occurred early in the 21st century, when computer rrianufacturers

ran headlong into the so-called power wall, discovering that they could no longer increase CPU clock
freqilencies as quickly because the chips would then consume too much power. The solution was to
improve performance by replaqing a single large processor with multiple small~r processor cores, each
a complete processor capable of executing'programs independently and in parallel with the other cores:
This mu'lti-core approach works in part because the power consumedby'a processor fs'proportional to
P = fCV 2, where f is the,clockfrequericy,'C is the capacitance, and Vis the voltage. The capacitance
C is roughly proportional to the area, so the power drawn by multiple cores can be held constant as long
as the total area of the cores is constapt. As long as feature sjzes,continue to shrink at the exponential
Moore's Law rate, the number of cores in each processor, and thus its effective performance, will
confinue~to'inCrease. ~ ~ ' 1

From thiS point forward, computer~ will get (aster nor because the clock f~equency increases but
because the number of cores in each processor increases, and because architectural iflnovations increase
the e!ficiency•of programs running' on those cbres. We can"s'ee tJ:ll~ frend·clearly in Figure 6.16. CPU
cycle time'.reaclied its lowest point in 2003·and then as:tually started' fo rise· befo'rdeveling off and
starting t'o decline again at a slower rate than before. However, because of the advent of multi-core
processors (dual-core in 2004' a\ld quad-core in 2007), the effe'ctive cycle time continues to decrease at
close~to its previous rate. '1

o •I

once, then the program is likely to reference a nearby memory location in the near
future.

Programmers should understand the principle of locality because, in general,
programs with good locality run faster than programs with poor locality. All levels
of modern computer systems, from the hardware, to the uperating system, to
application programs, are designed to exploit locality. At the hardware level, the
principle of locality allows computer designers to speed up main memory accesses
by introducing small fast memories known as cache memories that hold blocks of
the most recently referenced instructions and data items. At the operating system
level, the principle of locality allows the system to use the main memory as a cache
of the most recently referenced chunks of the virtual address space. Similarly, the
operating system uses main memory to cache the most recently used disk blocks in
the disk file system. The principle of locality also plays a crucial role in the design
of application programs. For example, Web browsers exploit temporal locality by
caching recently referenced documents on a local disk. High-volume Web servers
hold recently requested documents in front-end disk caches that satisfy requests
for these documents without requiring any intervention from the server.

~
'

t
I

"f
l
)
I

606 Chapter 6 The Memory Hierarchy

1 int sumvec(int v[N])
2 {

Address 0 4 8 12 16 20 24 28

3 int i' sum.= O; Contents VO v1 Vz V3 V4 V5 "6 V7

4 Access order 1 2 3 4 5 6 7 8
5 for (i = O; i < N; i++)

6 sum += v[i] i (b)

7 return sum;
8 }

(a)

Figure 6.17 (a) A function with good locality. (b) Reference pattern for vector v (N = 8). Notice how
the vector elements are accessed in the same order that they are stored in memory.

6.2.1 Locality of References to Program Data

Consider the simple function in Figure 6.17(a) that sums the elements of a vector.
Does this function have. good locality? To, answer this question, we look at the
reference pattern for each variabl~. In this ~xample, the sum variable is referenced
once in each loop iteration, and thus there is good temporal locality with respect
to sum. On the other hand, since sum is a scalar, there is no spatial locality with
respect to sum.

As we see in Figure 6.17(b), the elements of vector v are read sequentially, one
after the other, in the order they are stored in memory (we assume for convenience
that the array starts at address 0). Thus, with respect to variable v, the function
has good spatial locality but poor temporal locality since each vector element
is accessed exactly once. Since the function has either good spatial or temporal
locality with respect to each variable in the loop body, we can conclude that the
sumvec function enjoys good locality.

A function such as sumvec that visits each element of a vector sequentially
is said to have a stride-I reference pattern (with respect to the element size).
We will sometimes refer to stride-1 reference patterns as sequential reference
patterns. Visiting every kth element of a contiguous vector is called a stride-k
reference pattern. Stride-1 reference patterns are a common and important source
of spatial locality in programs. In general, as the stride increases, the spatiallocality
decreases.

Stride is also an important issue for programs that reference multidimensional
arrays. For example, consider the sumarrayrows function in Figure·6.18(a) that
sums the elements of a two-dimensional array.

The doubly nested loop reads the elements of the array in row-major order.
That is, the inner loop reads the elements of the first row, then the second row,
and so on. The sumarrayrows function enjoys good spatial locality because it
references the array in the same row-major order that the array is 'stored (Fig­
ure 6.18(b)). The result is a nice stride-1 reference pattern with excellent spatial
locality.

Section 6.Z Locality 607

'I

ipt sumarrayrows(ih~ a[M] [N}l
2 { Address 0 4 8 12 16 20
3 int••i, j' sum = O· Contents aoo ao1 a02 a10 a11 ' a12 4

5 for (i = O; i < M; i++) Access order 1 2 3 4 5 6
6 for (j = O; j < N; j++)

(b) 7 sum += a[i][j];
B return sum;
9 }

(a)

Figure 6.18 (a) Another function with good loc~lity. (b) Reference pattern for array a (M = 2, N = 3).
There is good spatial locality because the a'rray is accessed in ine same row-majo~ order in which it is stored
in memory.

,._
int sumarraycols(int a[M] [NJ)

2 { Address 0 4 ,8 12 16 20
' 3 inti, j' sum = O; Contents a00 , ao1 aw a10 au a12 ' 4

5 for (j = O; j < N; j++) Access order 1 ·3 5 2 4 6
,6 for (i = O; i < M; i++)

(b) , 1< • ~

7 sum +;; a[i] [j];
B return sum;,
~ }

(a)
-' '

Figure 6.19 (a) A function with poor spatial locality. (b) Reference pattern for array a (M = 2, N = 3).
The function has poor spatial locality because it scans memory with a stride-N reference pattern.

Seemingly trivial changes to a program can Jiave a big 'impact on its locality.
For example, the surnarraycols function in F/gii're 6.19(a) computes the same
result as the sumarrayrows function in Figure 6.l8(a). The only differ,ence is that
we have interchanged the i and j loops. What impact does interchanging the loops
have on its locality?

The sumarraycols function suffers from poor spatial locality because it scans
the array column-wise instead of row-wise. Since C arrays are laid out in memory
row-wise, the result is a stride-N reference pattern, as shown in Figure 6.19(b).

6.2.2 Locality of Instruction Fetches

Since program instructions are stored in memory and must be fetched (read)
by the CPU, we can also evaluate the localit¥ of a program with respect to its
instruction fetches. For example, in Figure 6.17 the instructions in the body of the

l~
I,

608 Chapter 6 The Memory Hierarchy

for loop are executed in sequential memory order, and thus the loop enjoys good
spatial locality. Since the loop body is executed multiple times, it also enjoys good
temporal locality.

An important property of code that distinguishes it from program data is
that it is rarely modified at run time. While a program is executing, the CPU
reads its instructions from memory. The CPU rarely overwrites or modifies these
instructions.

6.2.3 Summary of Locality

In this section, we have introduced the fundamental idea of locality and have
identified some simple rules for qualitatively evaluating the locality in a program:

• Programs that repeatedly reference the same variables enjoy good temppral

locality.
• For programs with stride-k reference patterns, the smaller the stride, the

better the spatial locality. Programs with stride-1 reference patterns have good
spatial locality. Programs that hop around memory with larg~ strides have
poor spatial locality.

• Loops have good temporal and spatial locality with respect to instruction
fetches. The smaller the loop body and the greater the number of loop it­
erations, the better the locality.

Later in this chapter, after we have learned about cache memories and how
they work, we will show you how to quantify the idea of locality in terms of cache
hits and misses. It will also become clear to you why programs with good locality
typically run faster than programs with poor locality. Nonetheless, knowing how to
glance at a source code and getting a high-level feel for the locality in the program
is a useful and important skill for a programmer to master.

Permute the loops in the following function so that it scans the three-dimensional
array a with ~ stride-1 reference pattern.

int sumarray3d(int a[NJ [NJ [NJ)

2 {

3 int i, j. k, sum ::: O;

4

5 for (i ::: O; i < N; i++) {

6 for (j 7 0; j < N; j++) {

7 for (k = O; k < N; k++) {

8 sum += a[kJ [iJ [jJ;

9 }

10 }

11 }

12 return sum;
13 }

I
i
i

(a) An array of structs

1 #define N 1000
2

3 typedef struct {
4 int vel[3] ;
5 int acc[3] ;

6 } point;
7

8 point p[N];

(c) The clear2 function
J

void clear2(point *P• int n)
2 {

3 int i, j;
4

5 for (i = O; i < Ilj i++) {

6 for (j = O; j < 3; j++)
7 p [i•) . vel[j) = O;

,8 p[i] .acc[j] '= o;
9• }

10 }

11 }

{

Section 6.3 ·The Memory Hierarchy 609

(b) The clear1 function

void clearl(point *p, int n)
2 {

3 inti, j;
'q

5 for (i = O; i < n; i++) {

6 for (j = 0; j < 3; j++)
7 p [i]. vel[j] = O;
8 for (j = O; j < 3; j++)•
9 p'[i].acc[j]=O;

10 }

11 }

(d) The clear3 function

1 void clear3(point *P• int n)
2 {

3 illt i, j;
4

5

6

7

8

9

10

11 }

for (j = O; j < 3; j++) {
for (i = O; i < n; i++)

p[i] .vel[j] = O;
for (i = O; i < n; i++)

p[i].acc[j) = O;
}

Fig!'re 6.20 Code examples for Practice Problem' 6.8.

aarpe~iUQmt~r!fil&'ffill:i!'a~!63M~~~~
The three.fu~ctions in Figure 6.20 perfbnh the same operation with varyirig de­
grees ofspatlaJ locality.'Rank-order the fuhctioti's'with respect to the1spatial local­
ity 'enjoyed by each. Expl'.!m how you ar~i~ed at your ranking.

6.3
,.

The Memory Hierarchy

Sections 6.1 and 6.2 described SOilje fundamental and enduring properties of
storage technolo.gy and computer software:

Storage technology: Different storage technologies have widely different access
times. Faster technologies cost more per byte than slowe; ones and !lave
l<!ss ca1facity. The ga~ between CPU and main memory speed is widening.

"
Computer software. Well-written programs tend to exhibit good locality.

1
I

l

,t
I
I

610 Chapter 6 The Memory Hierarchy

Smaller,
faster,

and
costlier

(per byte)
storage
devices

Larger,
slower,

and
cheaper
(per byte)
storage
devices

L6:

L2:

L3:

LO:
Regs

L1: L1 cache
(SAAM)

L2 cache
(SAAM)

L3 cache
(SAAM)

Main memory
(DRAM)

}
CPU registers hold words
retrieved from cache memory.

}
L 1 cache holds cache lines
retrieved from L2 cache.

}
L2 cache holds cache lines
retrieved from L3 cache.

}
L3 cache holds cache lines
retrieved from memory.

Local secondary storage
(local disks)

}
Main memory holds disk blocks
retrieved from local disks.

Remote secondary storage
(distributed file systems, Web servers)

}

Local disks hold files
retrieved from disks on,
remote network servers.

Figure 6.21 The memory hierarchy.

In one of the happier coincidences of computing, these fundamental properties of
hardware and software complement each other beautifully. Their complementary
nature suggests an approach for organizing memory systems, known as the mem­
ory hierarchy, that is used in all modem computer systems. Figure 6.21 shows a

typical memory hierarchy.
In general, the storage devices get slower, cheaper, and larger as w~ move

from higher to lower levels. At the highest level (LO) are a small number of fast
CPU registers that the CPU can access in a single clock cycle. Next are one or
more small to moderate-size SRAM-based cache memories that can be accessed
in a few CPU clock cycles. These are followed by a large DRAM-based main
memory that can be accessed in tens to hundreds of clock cycles. Next are slow
but enormous local disks. Finally, some' systems even include an additional level
of disks on remote servers that ban be accessed over a network. J;'o~ e.x~niple,
distributed file systems such as the Andrew File Sysfem (AFS) or the Network
File System (NFS) allow a program to access files that are stored on remote
network-connected servers. Similarly, the World Wide Web allows programs to
access remote files stored on Web servers anywhere in the world.

6-3.1 Caching in the Memory Hierarchy

In general, a cache (pronounced "cash") is a small, fast storage device that acts as
a staging area for the data objects stored in a larger, slower device. The process of
using a cache is known as caching (pronounced "cashing").

The central idea of a memory pierarchy is that for eachk, the faster and smaller
storage device at level k serves as a cache for the larger and slower storage device

i
'
I
I

I

I

I

I

I

Section 6.3 The Memory Hierarchy 611

r,.....r·'li :j<. ~· "'~~~,-~~::--.. ;;,-~..t,-..-<ll}1 -.1'• ·~ ,,~.. ..., ~-t:" •. t
, Aside. Q_ther"1Tlel)1ol')(hierarctiie~ rr "'' •· • ..

!~We ha'Qe §hbwn you one e~a-m.Ple of a~mimory~hi~rarchY, biit~Otl:i6r;comDlnati6ns are possible, and
I inde'ect'-comin~tl. For example: :mahy sites: includfJ\gCGoogle d~(Jitenters, •bac!c 'up 10'91! disks ontff

archiv'~rmagne"tic tapes. At some of thi!'se· sites; Iiuman ope~i>.l1fr~hianliany:mJ:mnt·ihe tapes onto tape
'·drivelfasneed~d. 'At other sites; llipe robots handle this task·au'toinat!cillly'. lfl<elthei case, the collection
i bf lapes;r\ipresen(s it level in th'e'iiteniorf hierarchy;·b'elow"the'local•ctisl:de~J1, and the same geperal
1 -princfPle@apply'.(fapes'are cheaper.f>et bYte t~an disks, which aildws<Sites t~ archf've.mu!tiple snaP,Shats

1 of.their rnc:ai djsks. "Th~ ~racte'off is that \iipes'ta~i:)onge'l:·1,8; access tli.an d!sks.· A~ anqther ~xample,
\. 'golid;stjite di'sks' are playing an increasingly important role in'\hememory hier1rchy,_ bridging the gulf
t betWeen' dRAM''and"?dtating c}isk. ·~ ~ ""·;tX 5 ~ ' -t '°'J· J!
l- .f -~ '.......,~ •/Jo' ',._""-' ' ·~· ~ •'- ~1 t'" "ir l'

Level k:
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k + 1.

Data ara copied between
levels in block-size transfer units.

.ff > "' " " ~;.,;-l < ,;., "·Ji '\,

''t.D:CIJ:o::J.1ITJ'>.~ '
. t r-..--'1:1"'-s-i'mr. 7,· :r~•',; Larger, slower, cheaper storage

Levelk+1 . . ,:>J"~~,~--- .,_,,.,,~ .. - _t deviceatlevelk+1 is partitioned
'3T:~ 9 " 10 t 11 ·• "-~ into blocks.

~··;; -~·)) ".~ -~ ··~ ".,~ .• , .. ';:

·,.i~OO;QD-~ :~;\''.
-~ "''" ~- ..

Figure 6.22 The basic principle of caching in a memory hierarchy.

at level k + 1. In other words, each level in the hierarchy caches data objects from
the next lower level. For example, the local disk serves as a cache for files (such
as Web pages) retrieved from remote disks over the' network, the main memory
serves as a cache for data on the local disks, and so on, until we get to the smallest
cache of all, the set of CPU registers. ·

Figure 6.22 shows the general concept of caching in a memory hierarchy. The
storage at level k + 1 is partitioned into contiguous chunks of data objects called
blocks. Each block has a unique address or name that distinguishes it from other
blocks. Blocks can be either fixed size (the usual case) or variable size (e.g., the
remote HTML files stored on Web servers). For example, the level k + 1 storage
in Figure 6.22 is partitioned into 16 fixed-size blocks, numbered 0 to 15.

Similarly, the storage at level k is partitioned into a smaller set of blocks that
are the same size as theblocks at level k + 1. At any point in time, the cache at
level k contains copies of a subset of the blocks from level k + 1. For example, in

612

I

I
.1

t

I

Chapter 6 The Memory Hierarchy

Figure 6.22, the cache at level k has room for four blocks and currently contains
copies of blocks 4, 9, 14, and 3.

Data are always copied back and forth between level k and level k + 1 in
block-size transfer units. It is important to realize that while the block size is fixed
between any particular pair of adjacent levels in the hierarchy, other pairs of levels
can have different block sizes. For example, in Figure 6.21, transfers between L1
and LO typically use word-size blocks. Transfers between L2 and L1 (and L3 and
L2, and L4 and L3) typically use blocks of tens of bytes. And transfers between LS
and L4 use blocks with hundreds or thousands of .bytes. In general, devices lower
in the hierarchy (further from the CPU) have longer access times, and thus tend
to use larger block sizes in order to amortize these longer access times.

Cache Hits

When a program needs a particular data object d from level k + 1, it first looks
ford in one of the blocks currently stored at level k. If d happens to be cached
at level k, then we have what is called a·cache hit. The program reads d directly
from level k, which by the nature of the memory hierarchy is faster than reading
d from level k + l. For example, a program with good temporal locality might read
a data object from block 14, resulting in a cache hit from level k.

Cache Misses

If, on the other hand, the data object dis not cached at level k, then we have what
is called a cache miss. When there is a miss, the cache at level k fetches the block
containing d from the cache at level k + 1, possibly overwriting an existing block
if the level k cache is already full.

This process of overwriting an existing block is known as replacing or evicting
the block. The block that is evicted is-sometimes referred to as a victim block.
The decision about which block to replace is governed by the cache's replacement
policy. For example, a cache with a random replacement policy would choose a
random victim block. A cache with a least recently used (LRU) replacement policy
would choose the block that was last accessed the furthest in the past.

After the cache at level k has fetched the block from level k + 1, the program
can read d from level k as before. For example, in Figure 6.22, reading a data object
from block 12 in the level k cache would resuli in a cache miss becaus~ block 12 is
not currently stored in the level k cache. Once it has been copied from level k + 1
to level k, block 12 will remain there in expectation of later accesses.

Kinds of Cache Misses

It is sometimes helpful to distinguish between different kinds of cache misses. If
the cache at level k is empty, then any access of any data object will miss. An
empty cache is sometimes referred to as a cold cache, and misses of this kind are
called compulsory misses or cold misses. Cold misses are important because they
are often transient events that might not occur in steady state, after the cache has
been warmed up by repeated memory accesses.

r ,

Section 6.3 The Memory Hierarchy 613

Whenever there is a miss, the cache at level k must implement some placement
policy that determines where to place the block it has retrieved from level k + 1.
The most flexible placement policy is to 'allow any block from level k + 1 to be
stored in any block at level k. For caches high in the memory hierarchy (close to
the CPU)' that are implemented in hardware and where speed is at a premium,
this policy is usually too expensive to implement because randomly placed blocks
are expensive to locate.

Thus, hardware caches typically implement a simpler placement policy that
restricts a particular block at level k + 1 to a small subset (sometimes a singleton)
of the blocks at level k. For example, in Figure 6.22, we might decide that a block
i at level k + 1 ip.ust be placed in block (i mod 4) at level k. For example, blocks
0, 4, 8, and 12 at level k + 1 would map to block 0 at level k; blocks 1, 5, 9, and
13 would map to block 1; and so 9n. Notice that our example cache in Figure 6.22
uses this po,licy.

Restrictive placemen! policies of th~ kind lead to a type of miss known as
a conflict miss, in which the.cache is large enough to hold the referepced data
objects, but because they map to the same cache block, the cache keeps missing.
For example, in Figure 6.22, if the program requests block 0, then block 8, then
block 0, then block 8, and so on, each of the references to these two blocks would
miss in the cache at level k, even though this cache can hold a total of four blocks.

Programs often run as a sequence of phas7s (e.g., foops) where each phase
accesses some reasonably constant set of cache blocks. For example; a nested loop
might qccess the elements of the same array over and over again. Thi~ set of blocks
is called the working set of the phase. When the size of the working set exceeds
the size of the cache, the cache will experience what are known as capacity misses.
ln other words, the cache iS,just too small to handle this particular working set.

Cache Management

As we have noted, the essence of the memory hierarchy is that the storage device
at each level is a cache for the next lower level. At each level, some fprm of logic
must manage the cache. By this we mean that something has to partition the cache
storage into blocks, transfer blocks between different levels, decide when there are
hits and misses, and then deal with them. The logic that manages the cache can be
hardware, software, or a combination of the two.

For exa!Ilple, the compiler manages the register. file, the highest level of
the cache hierarchy. It decides when to issue loads when there are misses, and
determines which register to store the dataiin. The caches at levels Ll, L2, and
L3 are managed entirely by hardware logic built into the caches. In a system
with virtual memory, the DRAM main memory serves as a cache for data blocks
stored on disk, and is managed by a combination of operating system software
and address translation hardware on the CPU. For a machine with a distributed
file system such as AFS, the Ioca(disk serves as a cache that is managed by the
AFS client process running on the local machine. In most cases, caches operate
automatically and do not require any specific or explicit actions from the program.

' I I
•

614 Chapter 6 The Memory Hierarchy

Type What cached Where cached Latency (cycles) Managed by

CPU registers 4-byte or 8-byte words On-chip CPU registers 0 Compiler

TLB Address translations On-chipTLB 0 Hardware MMU

Ll cache 64-byte blocks On-chip L1 cache 4 Hardware

L2 cache 64-byte blocks On-chip L2 cache 10 Hardware

L3 cache 64-byte blocks On-chip L3 cache 50 Hardware

Virtual memory 4-KB pages Main memory 200 Hardware + OS

Buffer cache Parts of files Main memory 200 OS

Disk cache Disk sectors Disk controller 100,000 Controller firmware

Network cache Parts of files Local disk 10,000,000 NFS client

Browser cache Web pages Local disk 10,000,000 Web browser

Web cache Web pages Remote server disks 1,000,000,000 Web proxy server

Figure 6.23 The ubiquity of caching in modern computer systems. Acronyms: TLB: translation lookaside
buffer; MMU: memory management unit; OS: operating system; NFS: network file system.

6.3.2 Summary of Memory Hierarchy Concepts

To summarize, memory hierarchies based on caching work because slower storage
is cheaper than faster storage and because programs tend to exhibit locality:

Exploiting temporal locality. Because of temporal locality, the same data objects
are likely to be reused multiple times. Once a data object has been copied
into the cache on the first miss, we can expect a number of subsequent
hits on that object. Since the cache is faster than the storage at the next
lower level, these subsequent hits can be served much faster than the
original miss.

Exploiting spatial locality. Blocks usually contain multiple data objects. Because
of spatial locality, we can expect that the cost of copying a block after a
miss will be amortized by subsequent references to other objects within
that block.

Caches are used everywhere in modern systems. As you can see from Fig­
ure 6.23, caches are used in CPU chips, operating systems, distributed file systems,
and on the World Wide Web. They are built from and managed by various com­
binations of hardware and software. Note that there are a number of terms and
acronyms in Figure 6.23 that •we haven't covered yet. We include them here to
demonstrate how common caches are.

6.4 Cache Memories

The memory hierarchies of early computer systems consisted of only three levels:
CPU registers, main memory, and disk storage. However, because of the increasing
gap between CPU and main memory, system designers were compelled to insert

Section 6.4 Cache Memories 615

Figure 6.24
Typical bus structure fo<
cache memories.

(:PU chip

Register file

Bus interlace

ALU

System bus Memory bus

1/0
bridge

a small SRAM cache memory, called an LI cache (level 1 cache) between the
CPU register file and main mempry, as shown in Figure 6.24. The Ll cache can be
accessed nearly as fast as the registers, typically in about 4 clock cycles.

As the performance gap between the CPU and main memory continued
to increase, system designers responded by inserting an additional larger cache,
called an L2 cache, between the Ll cache and main memory, that can be accessed
in about 10 clock cycles. Many modern systems include an even larger cache, called
an L3 cache, which sits between the L2 cache and main memory in the memory
hierarchy and can be accessed in about 50 cycles. While there is considerable
variety in the arrangements, the general principles are the same. For our discussion
in the next section, we will assume a simple memory hierarchy with a single Ll
cache between the CPU and main memory.

" I

6.4.1 Generic Cache Memory Organization

Con~ider a cmpputer system where each memory add~ess has m bits that form
M = 2m unique addresses. As illustrated in Figm;e 6.25(a), a cache for such a
machine is organized as an, array of S "'2' cache sets. Each set consists of~ cache
lines. Each line consists of a data block of B = 2b bytes, a valid bit that indicates
whether or not the line contains meaningful informa\ion, and t = m -,(b + s) tag
bit~ (a subset of the bits from the current block's memory addres~). that uniquely
identify the block stored in tjle cache line.

In general, a cache's organization can be characterized by the tuple (S, E,
B, m). The size (or capacity) of a cache, C, is stated in terms of the aggregate size
of all the blocks. The tag bits and valid bit are not included. Thus,'C = S x Ex B.

When.the CPU is instructed by a load instructiorrto read a word from address
A of main memory, it sends address A to the cache. If the cache is holding a copy
of the word at address A, it sends the word immediately back to the CPU. So how
does the cache know whether it contains a copy of the word at address A? The
cache is organized so that it can find the requested word by simply inspecting the
bits of the address, similar to a hash table with an extremely simple hash function.
Here is how it works:

The parameters S and B induce a partitioning of the m address bits into the
three fields shown in Figure 6.25(b). The s set index bits in A form an index into

Main
memory

616 Chapter 6 The Memory Hierarchy

Figure 6.25
General organization
of cache (S, E, B, m).

(a) A cache is an array
of sets. Each set contains
one or more lines. Each
line contains a valid bit,
some tag bits, and a block
of data. (b) The cache
organization induces a
partition of the m address
bits into t tag bits, s set
index bits, and b block
offset bits.

Address:
t bits

1 valid bit t tag bits
per line per line
,.....,__.., ,---'--,

8=2°bytes
pe'r cache block

Cache size: C = B x Ex S data bytes

(a)

s bits bbits

~· 0 '--v-----''--v-----'
Tag Set index Block offset

(b)

the array of S sets. The first set is set 0, the second set is set 1, and so on. ·When
interpreted as an unsigned integer, the set index bits tell us which set the word
must be stored in. Once we know which set the word must be contained in, the t
tag 6its in A tell us which line (if any) in the set contains the word. A' line in the
set contains the word if and only if t.he valid'oii is set atld the tag'bits in the line
ma'lch the tag bits in the address A. Oncewe have located the line identified by
the tag in the set identified by the set in'dex, then the b block offset bits give us the
offset of the word in 'the B-oyte daia block.

As you may have noticed, descriptionS'of caches use a lot of symbols:Fig-
ure 6.26 summarizes these symbols for your refererlce. '

' I

lf?m[!:g)~-iQili~Jiil!§iijii,IMfDlii':.:~~J\; J
The following table gives the parameters for a number of different' caches. For
each cache, determine the number of cache sets (S}, tag bits (1), set index bit~(s),
and block offset bits {b). •'

Cache m c B E s s b

1. 32 1,024 4 1

2. 32 1,024 8 4

3. 32 1,024 32 32

Parameter Description

Fundamental parameters~
·' S = 2s - .Number.of sets

E
B=2b

m =log2(M)

Derived quantities

M=2m

s = log2(S)

Number of lines per set
Block size (bytes)
Number of physical (main memory) address bits

Maximum number of unique memory addresses
Number of set index bits

Number of'block offset bits
Number of tag bits

Section 6.4 Cache Memories 617

b =log2(B)
t=m-(s+b)
C=BxExS Cache size (bytes), not in9\uding overhead such as the valid and tag bits

Figure 6.26 Summary of cache parameters.

Figure 6.27
Direct-mapped cache
(E = 1). There is exactly
one line per set.

6.4:2 Direct-Mapped Caches

Seto: JeJ : '.ag JJ°.,, 'cache bfo?k ~;j } E = 1 line per set

Set 1: t.~l Tag J:1 • .. Ca?h.~ blo;k, ' J~l

Caches are grouped into different classes based on E, the number of cache lines
per set. A cache with exactly one line per set (E = 1) is known as a direct-mqpped
cache (see Figure 6.27). Direct-mapped caches are the simplest both to implem~nt
and to understand, so we will use them to illustrate some general concepts about
how caches work.

Suppose we have a system with a CPU, a register file, an Ll cache, and a main
memory .. Whewthe CPU executes an instruction that reads a memory word w,
it requ~s.ts the -ulord from the L1 cache. If the ~1 cache has a cached copy of w,
then we have an Ll cache hit, and the cache quickly extracts w and returns it to
the GPU. Otherwise, we have a cache miss, 'and the c;;pu must wait while the L1
cache requests a copy of the block containing w from. the main memory. When
the requested block finally arrives from memory, the Ll cache stores the block in
one of its cache lines, extracts word w from the stored block, and returns it to the
CPU. The process that a cache'goes through of determiningiwhether a request is a
hit or a miss and then extracting the requested word consists of three steps: (1) set
selection, (2) line matdiing, and (3) word extraction.

• I

I

'

618 Chapter 6 The Memory Hierarchy

Figure 6.28 Set o: IJval'.d I I Tag l;I Cache block 11
Set selection in a direct­
mapped cache.

Selected set

~ bbits

Set 1: \ i~auci'f' I Tag 11
' IJ Cache block

'

tbits

~1

Tag

I 00001
0

Set index Block offset

Set S-1: \ lv~lidl 'I

= 1? (1) The valid bit must be set.

r1 I I Tag Cache block
'

Figure 6.29
Line matching and word
selection in a direct­
mapped cache. Within the
cache block, w0 denotes
the \ow-order byte of the
word w, w1 the next byte,
and so on.

(2) The tag bits in the
cache line must

match the tag bits
in the address.

0

I 0110 I

2 3 4

s bits b bits
100

6 7

(3) If (1) and (2), then
cache hit, and

block offset selects
starting byte.

~1

Tag

0

Set index Block offset

Set Selection in Direct-Mapped !=aches
In this step, the cache extracts the s set index bits from the middle of the address
for w. These bits are interpreted as an unsigned integer that corresponds to a set
number. In other words, if we think of the cache as a one-dimensional array of
sets, then the set index bits form an index into this array. Figure 6.~8 shows how
set selection works for a direct-mapped cache. In this example, the set index bits
00001

2
are interpreted as an integer index that selects set l.

Line Matching in Direct-Mapped Caches
Now that we have selected some set i in the previous step, the next step is to
determine if a copy of the word w is stored in one of the cache lines contained in
set i. In a direct-mapped cache, this is easy and fast because there is exactly one
line per set. A copy of w is contained in the.line if aild only if the valid;bit,is set
and the tag in the cache line m'atc!;tes the tag in the address of w.

Figure 6.29 shows how line matching works in a. direct-mapped cache'. In this
example, there. is exactly one cache line in the selected set. The valid bit for this
line is set, so we know that the bi\s in the tag and block are meaningful. Since the
tag bits in the cache line match the tag bits in the address, we know that a copy of
the word we want is indeed stored in the line. In other words, we have a cache hit.
On the other hand, if either the valid bit were not set or the tags did not match,

then we would have had a cache miss.

Section 6.4 Cache Memories 619

Word Selection in Direct-Mapped Caches·

Once we have a hit,. we know that w is somewhere in the block. This last step
determines where the desired word starts in the block. As shown in Figure 6.29,
the block offset bits provide us with the offset of the first byte in the desired word.
Similar to our view of a cache as an array of lines, we can think of a block as an
array of bytes, and the byte offset as an index into that array. In the example, the
block offset bits of lOOz indicate that the copy of w starts at byte 4 in the block.
(We are assuming that words are 4 bytes long.)

Line Replacement on Misses in Direct-Mapped Caches

If the cache misses, then it needs to retrieve the requested block from the next
level in the memory hierarchy and store the new block in one of the cache lines of
the set indicated by the set index bits. In general, if the set is full of valid cache lines,
then one of the existing lines must be evicted. For a direct-mapped cache, where
each set contains exactly one line, the replacement policy is trivial: the current line
is replaced by the newly fetched line.

Putting It Together: A Direct-Mapped Cache in Action

The mechanisms that a cache uses to select sets and identify lines are extremely
simple. They have to be, ~pcause th~ p.ardware must perform tbem in a few
nanoseconds. However, manipulating bits in this way can be confusing to us
humans. A concrete' example will help clarify the process. Suppose we have a
direct-mapp,ed cache described by

(S, E, B, m) = (4, 1, 2, 4)

In other words, the cache has four sets, Olly line per set, 2 bytes per block, and 4-
bit addresses. We will also.assume that,e~ch word is a single byte. Of course, these
assumptions are totally unrealistic, but they will help us keep the example simple.

When you are first learning about caches, it can be very instructive to enumer­
ate the entire address space and partition the bits, as we've done in Figure 6.30 for
our 4-bit example. There are some interesting things to notice about this enumer­
ated space:

• The concatenation of the tag and index bits uniquely identifies each block in
memory. For example, block 0 consists of addresses 0 and 1, block 1 consists
of'addresses 2 and 3, block 2 consi~ts of addresses 4 and 5, and so on.

• Since there are eight memory blocks but only four cache sets, multiple blocks
l!'ap to the same cache set (i.e., they haY,e the same set index). For exampl~,
blocks 0 and 4 both map to set 0, blocks 1 and 5 both map to set 1, and so on.

• Blocks that map to the same cache set are uniquely identified by the tag. For
example, block 0 has a tag bit of 0 while block 4 has a tag bit of 1, block 1 has
a tag bin of 0 while block 5 has a tag bit of 1, and so on.

620 Chapter 6

I
1,.
r

'!
I

• I

'! .. ,
1,

I

The Memory Hierarchy

Address bits

Address Tag bits Index bits Offset bits Block number
(decimal) (t = 1) (s =·2) (b = 1) (decimal)

0 0 00 0 0
'1 0 00 1 o"
2 0 01 0 1

3 0 01 1 1
4 0 10 0 2
5 0 10 1 2
6 0 11 0 3

7 0 11 1 3

8 1 00 0 4

9 1 00 1 4
10 1 01 0 5
11 1 01 1 5
12 1 10 0 6

13 1 10 1 6
14 1 11 0 7 "
15 1 11 1 7

Figure 6.30 4-bit address space for example direct-mapped cache.

Let us simulate the cache in action as the CPU performs a sequence of reads.
Remember that for this example we are assuming that the CPU reads 1-byte
words. While this kind of manual simulation 'is tedious and you may be tempted
to skip it, in our exper_ience students do not really understand how caches work
until they work their way through a 'few of them. "

Initially, the cache is empty (i.~., eal:J;i'Vafid bit is O)~ '
J, I '

Set Valid· Tag 'block[O] block[l]

0 0
1 0
2 0
3 0

Each row in the table represents a cache line. Thi\ first column indicates the set
that the line belongs to, but keep in mind that this is provided for conv<;nience and
is not really part of the cache. The next four columns represent the actual bits in
each cache line. Now, let's see what happens when the CPU perfprms a sequence
of reads: ''

1. Read word at address O. Since the valid bit for set 0 is 0, this is a c~che miss.
The cache fetches block 0 from memory (or a lower-level cache) and stores the

Section~6.4 Cache Memories 621

block in set 0. Then the cache returns m(OJ (the contents of memory location
0) from block(O] of the newly fetched cache line.

Set Valid Tfig " blo.c((O] block(l]

0 1 0 m(O] m(l]
1 0
2 0
3 0

2. Read word at address 1. This is a cache hit. The cache inunediately returns
m(l] from block(l] of the cache line. The state of the cache does not change.

3. Read word at address 13. Since the cache line'in set 2 is not valid, this is a
cache miss. The cache loads block 6 int,o set 2 and returns m(l3] from block(l]
of the new cache line.

' . " " ·.~loc~(OJ' Se\ Valid ~ag ,,block[l] .

0' 1 , 'O m[OJ m[l]
1 '0 ,,
2 1 1 m[12J m(13]
3 0 f

4. Read word at adi!fess 8. This is' a miss. The cache line in set 6 is indeed valid,
but the tags do not match. The cache loads bldck 4 into set O' (replacing tlfo
line that w~s there from the reqd of address 0) and returns m(8] from block(O]
of the new cache line.

Set viilid Tag block(OJ block[!]

0 1 I m[SJ m[9]
1 0
2 I 1 m[12] m(13]
3 0

5. Read word at address 0. This is another miss, due to the unfortunate fact
that we just replaced. block 0 during the previous reference to address 8. This
kind of miss, where we have plenty of room in the cache but keep alternating

1 references to blocks that map to the same set, is an exam):lle of a conflict miss.
,.

Set Valid 'fag block(OJ block[!]

o' 1 0 m[OJ m(l]
I 0

1' l ,•
2 I I m(12] m(13]
3 0

• I
' I

"

622 Chapter 6 The Memory Hierarchy

Conflict Misses in Direct-Mapped Caches

Conflict misses are common in real programs and can cause baffling performance
problems. Conflict misses in direct-mapped caches typically occur when programs
access arrays whose sizes are a power of 2. For example, consider a function that
computes the dot product of two vectors:

1 float dotprod(float x[SJ, float y[SJ)
2 {

3 float sum = 0.0;
4 int ij

5
6 for (i = O; i < 8; i++)

7 sum += x[iJ • y[iJ;
8 return sum;
9 }

This function has good spatial locality with resvect to x and y, and so we might ex­
pect it to enjoy a good number of cache hits. Unfortunately, this is not always true.

Suppose that floats are 4 bytes, that xis loaded into the 32 bytes of contiguous
memory starting at address 0, and that y starts immediately after x at address 32.
For simplicity, suppose that a block is,16 bytes (big enough to hold four floats)
and that the cache consists of two set~. for a total cache size of 32 bytes. We will
assume that the variable sum is actually stored in a CPU register and thus does not
require a memory reference. Given these assumptions, each x [i] and y [~] will

map to the identical cache set:

Element Address Set index Element Address Set index

x[OJ 0 0 y [OJ 32 0

x[1J 4 0 y[1J 36 ·R·
x[2J 8 0 y[2J 40 0

x[3J 12 0 y[3J 44 0

x[4J 16 1 y[4J 48 1

x[5J 20 1 y[5J 52 1

x[6] 24 1 y[6J 56 1

x[7J 28 1 y[7J 60 1

At run time, the first iteration of the loop references x [OJ, a miss that causes
the block containing x [O]-x [3J to be load~d into set 0. The next reference is to
y [OJ, another miss that causes the block containing y [0]-y [3] to be copied into
set 0, overwriting the values of x that were copied in by the previous reference.
During the next iteration, the reference to x [1] misses, which causes the x [0]­
x [3] block to be loaded back into set 0, overwriting they [0]-y [3] block. So now
we have a conflict miss, and in fact each subsequent reference to x and y will result
in a conflict miss as we thrash back al)d forth between blocks~of x and y. The tenn
thrashing describes any situation where a cache is repeatedly loading and evicting

the same sets of cache blocks.

Section 6.4 Cache Memories 623

Aside W~y index with the C(lidd.Je ,bits?

You may be wopdering why caches use the middle bits for the set index-instead of the high-order bits.
There is a good reason why,the middle bits are better. Figure 6.31 shows why. If t!J,e high-order bits are
used as an index, then some coptjguous memory bloc.Ks will maP. to the same cache set. For example, in
the'tigure, the first four blocks mapJo the first cache set, the second four blocks map to the second set,
anct'so on. If a program has good spatial locality and•scans the elements onu, qrray sequentially, then
the cache can only hold, a; block-size chµnk of the array at any point in time. This is an inefficient use of
the cache. Contrast this..with middle-bit indexing, where adjacent blocks always map to different cache
sets. In this pase, the cache can hold ;:.p"entire C-size chunk of'the array, where C is the cache size.

High-order Middle-order
bit indexing bit indexing

QQOO OOQQ

QQ01 OOQl

QQ10 001Q

QQ11 0011

Q100 01QQ
Four-set cache Q101 0101

00 Q110 011Q

01 Q111 0111

10 1Q00 10QQ

11 1Q01 1001 '
1Q10 1010 •

1Q11 1011

1100 11QQ

1101 11Q1

1110 111Q

Figure 6.31 Why caches index with the middle bits.

The bottom line is that even though the program has good spatial locality
and we have room in the cache to hold the blocks for both x [i] and y [i] , each
reference results in a conflict miss because the blocks map to the same cache set. It
is not unusual for this kind of thrashing to result in a slowdown by a factor of2 or 3.
Also, be aware that even though our example is extremely simple, the problem is
real for larger and more realistic direct-mapped caches.

Luckily, thrashing is easy for programmers to fix once they recognize what is
going on. One easy solution is to put B bytes of padding at the end of each array.

r

)

624 Chapter 6

I

I

The Memory Hierarchy

For example, instead of defining x to be float x [8], we define it to be float
x [12]. Assuming y starts immediately after x in memory, we have the following
mapping of array elements to sets:

Element Address Set index Element Address Set index

x[O] 0 0 y[O] 48 1
x(l] 4 0 y(l] 52 1
x(2] 8 0 y(2] 56 I
x[3] 12 0 y[3] 60 I
x[4] 16 1 y [4] 64 0
x[S) 20 1 y[SJ 68 0
x[6] 24 1 y[6] 72 0
x[7] 28 I y[7] 76 0

With the padding at the end of x, x [i] and y [i] now map to different sets, which
eliminates the thrashing conflict misses.

~ii:er2~ .. ~1TfK9~xrn::.1~" ~~-11 :'.ti;J.- •. ,: • :
In the previous dot prod example, what fraction of the total references to x and y
will be hits once we have padded array x?

Imagine a hypothetical cache that uses the high-orders bits of an address as the
set index. For such a cache, contiguous chunks of memory blocks are mapped to
the same cache set.

A. How many blocks are in each of these contiguous array chunks?

B. Consider the following code that runs on a system with a cache of the form
(S, E, B, m) = (512, 1, 32, 32):

int array[4096];

for (i = O; i < 4096; i++)
sum += array [i] ;

What is the maximum number of array blocks that are stored in the cache
at any point in time?

6.4.3 Set Associative Caches

The problem with conflict misses in direct-mapped caches stems from the con­
straint that each set has exactly one line (or in our terminology, E = 1). A •set
associative cache relaxes this constraint so that each set holds more than one cache
line. A cache with 1 < E < C/ Bis often called an E-way set associative cache. We

Section 6.4 Cache Memories 625

Figure 6.32
Set associative cache
(1 < E < C / B). In a set
associative cache, each
set contains more than
one line. This p~rticular
example_shows !' two-way
set associative cache.

', lvalid ~j Tag H Cache block f }
Set O: .- · .-"·#··~=======<· ·1•,.'. E=2 lines per set

'IVal:d l~l ,}ag 1.~ Cache block · ..

Figure 6.33
Set selection in a set
associative .cache.

,JV~I'.~ f~ Tag ·~ Cache block 1·;
Set S-1: ~··J·=====~·,·.r ..

"~.; I Tag I:' Cache block -
~ .,, " #' •$.,. -

'JValid I •j Tag I' I
•Seto:

'[~a1[d \~I_ .1-~9 JI

Selected set ;lvalid 1:.·I Tag 1.1 Set 1:
~Validl~J 1:;1 1Tag

tbits s bits bbits
11 l 00001 ,,,_, 'O

Tag Set index, Block offset

will discuss the special case, where E = C / B, in the next section. Figure 6.32 shows
the organization of a two-way set associative cache.

Set Selection in Set i\ssociative Caches

Set selection is id.eqtical to a direct-mapped ca~he, with the set index bits identi­
fying the set. Figure.6.33 summarizes this pripciple.

Line Matching and· Word Selection in Set Associative Caches ,
Line matching is more Involved in ~set, asspfiative cache than in a dfrect-mapped
cache because it must check; the.tags ana valid bits of multiple lines in order ,to
determine if die requested word is in the set. A conventional memory is an array of
values that takes an address as input and returns the value stored at that address.
An associative memory, on the other hand, is an array of (key, value) pairs that
takes as input the key and returns a value from one of the (key, value) pairs that
matches the input key. Thus, we can think of each set in a set associative cache as
a small associative memory where the keys are the concatenation of the tag and
valid bits, and the values are the contents of a block.

Cache block 1·
Cache block I

"~

Cache block k
'

Cache block I

Cache block I~

Cache block ~

I;

626 Chapter 6 The Memory Hierarchy

Figure 6.34 = 1? (1) The valid bit must be set.

Line matching and
word selection in a set
associative cache. Selected set (i):

0 2 3 4 5 6 7

1001 I I
0110 .,~~=~=:=~,="'=o~I =w=, i"'I w°',=:l=w=i, j •

(2) The tag bits in one
of the cache lines

must match the tag
bits In the address.

0110

Tag

sbits b bits
100 I

0
Set index Block offset

, '

(3) If (1) and (2), then
cache hit, and

block offset selects
starting byte.

Figure 6.34 shows the basic idea of line matching in an associative cache. An
important idea here is that any line in the set can contain any of the memory blocks
that map to that set. So the cache must search each line in the set for a valid line
whose tag matc,hes the tag in the address. If the cache finds such a line, then we
have a hit and the block offset selects a word from the block, as before.

Line Replacement on Misses in Set Associative Caches

If the word requested by the CPU is not stored in any of the lines in the set, then
we have a cache miss, and the cache must fetch the block that contains the word
from memory. However, once the cache has retrieved the block, which line should
it replace? Of course, if there is an empty line, then it would be a good candidate.
But if there are no empty lines in the set, then we must choose one of the nonempty
lines and hope that the CPU does not reference the replaced line anytime soon.

It is very difficult for programmers to exploit knowledge of the cache replace­
ment policy in their codes, so we will not go into much detail about it here. The
simplest replacement policy is to choose the line to replace at random. Other more
sophisticated policies draw on the principle of locality to try to minimize the prob­
ability that the replaced line will be referenced in the near future. For example, a
least frequently used (LFU) policy will replace the line that has been referenced
the fewest times over some past time window. A least recently used (LRU) policy
will replace the line that was last accessed the furthest in the past. All of these
policies require additional time and hardware. But as we move further down the
memory hierarchy, away 'from the CPU, the cost of a miss becomes more expen­
sive and it becomes more worthwhile to minimize misses with good replacement
policies.

6.4.4 Fully Associative Caches

A fully associative cache consists of a single set (i.e., E = C / B) that contains all of
the cache lines. Figure 6.35 shows the basic organization.

Section 6.4 Cache Memories 627

Figure 6.35
Fully associative cache
(E = C/B}. In a fully
associative cache, a single
set contains all of the lines.

E = GIB lines in
the one and only set

Cache block

Figure 6.36
Set selection in a fully
associative cache. Notice
that there are no set index
bits.

/Valid l,i Tag

;Jvalidl i ' Tag
1· Cache block

The entire cache is one set, so
by default set O is always selected. Seto: ~ •· """ '/I· ~·J \ JI Cache block ., ' ,, ~

i _•;~'Ill~ ~ >:If ·'"' rfl·,,'Ji

IV~lidl'.J Tag 1·1 Cache block
tbits bbits

Tag
0

Block offset

Figure 6.37
Line matching anti
word selection in a fully
associative cache.

=
1

17 (1) The valid bit must be set.

0 2 3 4 5

Entire cache

(2) The tag bits in one
of the cache fines

must match the tag
bits in the address.

Set Selection in Fully Associative Caches

I 0110

Tag

I

bbits
100 I

0
Block offset

Set selection in a fully associative cache is trivial because there is only one set,
summarized in Figure 6.36. Notice that there are no set index bits in the address,
which is partitioned into only a tag and a block offset.

Line Matching and Word Selection in Fully Associative Caches

Line matching and word selection in a fully associative cache work the same as
with a set associative cache, as we show in Figure 6.37. The difference is mainly a
question of scale.

Because the cache circuitry must search for many-matching tags in parallel, it
is difficult and expensive to build an associative cache that is both large and fast.
As a result, fully associative caches are only appropriate for small caches, such

6 7

(3) If (1) and (2). then
cache hit, and

block offset selects
starting byte.

1: !I

628 Chapter 6 The Memory Hierarchy

I , as the translation lookaside buffers (TLBs) in virtual memory systems that cache
page table entries (Section 9.6.2).

Set inpex Tag

0 09
1 45

2 EB
3 06
4 C7

5 71
6 91

7 46

I

mct1~1em;6miliiti?ri':iii9:.66»~·J:i'f't.:.~&;~.~:::::;:J
The problems that follow will help reinforce your understanding of how caches
work. Assume the following:

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not to 4-byte words).

• Addresses are 13 bits wide.

• The cache is two-way set associative (E = 2), with a 4-byte block size (B = 4)
and eight sets (S = 8).

The contents of the cache are as follows, with all numbers given in hexadecimal
notation.

2-way set associative cache

Linea Line 1

ya1ict ByteO Byte 1 Byt~2 Byte 3 Tag Valid ByteO Byte 1 Byte2 Byte3

1 86 30 3F 10 00 0

1 60 4F EO 23 38 1 00 BC OB 37

0 OB 0

0 32 1 12 08 7B AD
1 06 78 07 cs 05 1 40 67 C2 3B
1 OB DE 18 4B 6E 0

1 AO B7 26 2D FO 0

0 DE 1 12 co 88 37

The following figure shows the format of an address (1 bit per box). Indicate
(by labeling tlie diagram) the fields that would be used to determine the following:

CO. The cache block offset

CI. The cache set index

CT. The cache tag

12 11 10 9 8 7 6 5 4 3 2 0

r...,.."'l:-.~~ ... ,..--~\li$""""'1'W"·'~""'"'""""f'' ""~~·~~---1~·-
.Rras;tiqferoo,lfAm 6,'Udselution eage,664), J~ ;w ,,, ··•~ • ;;,,:;, • '-· . • .
Suppose a program running on the machine in Problem 6.12 references the 1-byte
word at address OxOE34. Indicate the cache entry accessed and the cache byte

.;. ,

:.;i

' ' .I

l
:·J
~

:;;'

Section 6.4. Cache Memories 629

value returned in hexadecimal notation. Indicate whether a cache miss occurs: If
there is a cache miss, enter"-" for "Gache byte returned."

A. Address format (1 bit per box):
,,,.

12 11 10 9 8 7 6 5 4 3 2 0

B. Memory reference:

.Parameter Value

Cache block offset (CO) Ox __

Cache set intlex (CI) Ox __

Cache tag (CT) Ox __ _

Cache hit? (YIN)
Cache byte retqrµed Ox __

W.ra~!lfillki6J~'.ilJEfilJfM~1ilfi~~~:~tiiil~M!ifS~'~
Repeat Problem 6:13 for memory address Ox0DD5.

A. Address format (fbit per'box):

12, 1J 10 9 8

' B. Memory reference:,

Par~meter

G;lche block offset (CO)<!'
'' Gache set·index,(CI)

Cache' tag (CT)
Ca'che mi? (YIN)
Cache byte returned

7 6

Value

Ox __

Ox __

Ox __

Ox ___ "

5

Repeat Problem 6.13 for memory address10x1FE4.

A. A,dcfress formal ('1 bit per box):

12 11 10 9 8 ,7' 6 5

4 3 2,1 0

,,

4 3 2 0

630 Chapter 6 The Memory Hierarchy

B. Memory reference:

Parameter

Cache block offset (CO)
Cache set index (CI)
Cache tag (CT)
Cache hit? (YIN)
Cache byte returned

Yalue

QJL__

t:r,'"'\{\l"',l· ·~>if- ""~~:~ °"""""""' •· !"h""''"'I!"~..,,.,, .,_,,,.k,~~-~0f'-'!:"'ff':£,!4;.... /J.1"'4.~"$'~4':;Jff'"*1;,,M.,~$!f;'·~ _ .
!~r~ §.]§'.Jsglytiplf[li!.91'.'2651 .t;(.; .··. · · · '' '

For the cache in Problem 6.12, list all of the hexadecimal memory addresses that
will hit in set 3.

6.4.5 lssues with Writes

As we have seen, the operation of a cache with respect to reads is straightforward.
First, look for a copy of the desired word w in the cache. If there is a hit, retnrn
w immediately. If there is a miss, fetch the block that contains w from the next
lower level of the memory hierarchy, store the ~lock in some cache line (possibly
evicting a valid line), and then return w.

The situation for writes is a little more complicated. Suppose we write a word
w that is already cached (a write hit). After the cache updates its copy of w, what
does it do about updating the copy of w in the next lower level of the hierarchy?
The simplest approach, known as write-through, is to immediately write w's cache
block to the next lower level. While simple, write-through has the "disadvantage
of causing bus traffic with every write. Another approach, known as write-back,
defers the update as long as possible by writing the updated block to the next lower
level only when it is evicted from the cache by the replacement algorithm. Because
of locality, write-back can significantly reduce the amount of bus traffic, but it has
the disadvantage of additional complexity. The cache must maintain an additional
dirty bit for each cache line that indicates whether or not the cache block has been
modified.

Another issue is how to deal with write misses. One approach, known as write­
allocate, loads the corresponding block from the next lower level into the cache
and then updates the cache block. Write-allocate tries to exploit spatial locality
of writes, but it has the disadvantage that every miss results in a block transfer
from the next lower level to the cache. The alternative, known as no-write-allocate,
bypasses the cache and writes the word directly to the next lower level. Wrjte­
through caches are typically no-write-allocate. Write-back caches are typically
write-allocate.

Optimizing caches for writes is a subtle and difficult issue, and we ~re only
scratching the surface here. The de"tails vary from system to system and are often
proprietary and poorly documented. To the programmer trying to write reason·

j
i

Section 6.4 Cache Memories 631

ably cache-friendly programs, we suggest adopting a mental model that assumes
write-back, write-allocate caches. There are several reasons for this suggestion: As , 1

a rule, caches at lower levels of the memory hierarchy are more likely to use write-
bask instead of write-through because of the larger transfer times. For example,
virtual memory systems (which use main memory as a cache for the blocks stored
on disk) use write-back exclusively. But as logic densities increase, the increased
complexity of write-back is becoming less of an impediment and we are seeing
write-back caches at 'all levels of modem systems. So this assumption matches cur-
rent trends: An?ther reason for assuming a write-back, write-allocate approach is
that it is symmetric to the way reads are handled, in that write-back write-allocate
tries to exploit locality. Thus, we can develop our programs at a high level to exhibit
good spalial and temporal locality rather than trying to optimize for a particular
memory system. .-.

6.4.6 Anatomy of a Real Cache Hierarchy

So far, we have assumed that.cacheSilold"Only program data. But, in fact, caches
can hold instructions as well as data. A cache that holds instructions only is called
an i-cache. A cache that holds program data only is called ad-cache. A cache that
holds both instructions and data is known as a unified cache. Modern processors
include·separate i-caches and·d-caches. There are a number-of reasons for this.
With two separate caches, the processor can read an instruction word and a data
word at the same time. I-caches-Bre typically read-only, and thus simpler. The
two caches are often optimized to different access patterns and can have different
block sizes, associativities, and capacities. Also, having separate caches ensures
that data accesse~ do not create confiict misses with instruction accesses, and vice
versa, at the cost of a potential increase in capacity misses.

Figure 6.38 shmys the cache hierarchy for the Intel Core i7 pro~essor. Each
CPU chip has four cores. Each core has its own private L1 i.cache, L1 d-cache, and
L2 unified cache. All of the c9res share an,9n-chip µ unifiJ'd c;ach,e, {\n interesting
feature of this hierarchy is that all of the SRAM cache memories are contained in
the CPU chip.

Figure 6.39 summarizes the basic characteristics of the Core i7 caches.
j

6.4.7 Performance Impact of Cache Parameters

Cache performahce is evaluated with a number of metrics:

Jl.fjss rate. The fra~tion. pf memory r~.(eren_ces dµ,rii;ig the e.x~,cution of a pro­
gram, or a part of a program, that miss. It is computed as #.misses/
references.

Hit rate. The fraction of memory references that hit. It is computed as
1 - miss rate.

••
Hit time. The time to deliver a word in the cache to the CPU, including the time

for set selection, line identification, and word selection. Hit time is on the
order of several clock cycles for Ll caches.

632 Chapter 6 The Memory Hierarchy

Figure 6.38
Intel Core i7 cache
hierarchy.

Cache type

L1 i-cache
L1 ct-cache
L2 unified cache
L3 unified cache

Processor package --1
Core O Core 3 1

---------~:
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

~\ i1 ;&~u~ied't~:b~e:.~ 1
,,, ;,_·/.;,~,'>ii·"':~ '·f "o.~, ""*. \1 V I

l.!:""::~· :·~· ~::~~:·-:· :":::·· ~ r
' ' ' ' ' ' ' '

!-----------------~-----~-- u_J ______________________ J

Access time (cycles) Cache size (C) Assoc. (E) Block size (B) Sets (S)

4 32KB 8 64B 64

4 32KB 8 64B 64

10 256KB 8 64B 512
'

40-75 SMB 16 64B 8,192

Figure 6.39 Characteristics of the Intel Core i7 cache hierarchy.

Miss penalty. Any additional time required because of a miss. The penalty for
L1 misses served from L2 is on the order of 10 cycles; from L3, 50 cycles;

and from main memory, 200 cycl~s.

Optimizing the cost and performance trade-offs of cac)le memories is a subtle
exercise that requires extensive simulation on realistic benchmark codes and thus
is beyond our scope. Ho\\le'ver, it is possible to identify some or'the qualitative

trade-offs.

Impact of Cache Size
On the one hand, a larger cache will tend to increase the hit rate. On the other
hand, it is always harder to make large memories run faster. As a result, farger
caches tend to increase the hit time. This expfains why an Ll cache is smaller than
an L2 cache, and an L2 cache is smaller than an L3 cache ..

Section 6.5 Writing Cache-Friendly Code 633

Impact of Block Size

Large blocks are a mixed blessing. On the one hand, larger blocks can help
increase the hit rate by exploiting any spatial locality that might exist in a program.
However, for a given cache size, larger blocks imply a smaller number of cache
lines, which can hurt the hit rate in programs with more temporal locality than
spatial locality. Larger blocks also have a negative impact 6n the miss penalty,
since larger blocks cause larger transfer times. Modern systems such as the Core
i7 compromise with cache blocks that contain 64 bytes.

Impact of Associativity

The issue here is the impact of the choice of the parameter E, the number of
cache lines per set. The advantage of higher associativity (i.e., larger values of E)
is that it decreases the vulnerability of the cache to thrashing due to conflict misses.
However, higher associativity'comes at a significant cost. Higher associativity is
expensive to implement and hard to make fast. It· requires more tag bits per
line, additional LRU state bits per line, and additional control logic. Higher
associativity can increase hit time, because of the increased complexity, and it can
also increase the miss penalty because of the increased complexity of choosing a
victim line.

The choice of associativity ultimately boils down to a trade-off between the
hit time and the miss penalty. Traditionally, high-performance systems that pushed
the clock rates would opt for smaller associativity for Lf caches (wliere the miss
penalty is only, a few cyples) aJ\d a higher degree of associativity fo_r the lower
lrYf']s,,whc;r~ th<; miss penalty is higher. For example, in Intel Core i7 systems, the
L1 'and L2 caches are 8-way associative, and the L3 cache is 16-way.

I

Impact of Write Strategy

Write-through caches are simpler to implement and can use a write buffer that
works independently of the cache to update memory. Furthermore, read misses
are less expensive because they do not trigger a memory write. On the other
hand, write-back caches result in fewer transfers, which allows more bandwidth
to memory for I/O devices that perform DMA. Further, reducing the number of
transfers becomes increasingly important as we move down the hierarchy and the
transfer times increase. In general, caches further down the hierarchy are more
likely to use write-back than write-through.

6.5 Writing Cache-Friendly Code

In Section 6.2, we introduced the idea of locality and talked in qualitative terms
about what constitutes good locality. Now that we understand how cache memo­
ries work, we can be more precise. Programs with better locality will tend to have
lower miss rates, and programs with lower miss rates will tend to run faster than
programs with higher miss rates. Thus, good programmers should always try to

'

634 Chapter 6 The Memory Hierarchy

Aside Cache lines, sets, and blocks: What's the difference?

It is easy to confuse tlje distinction between cacJ.ie lines, sets, and blocks. Let's.revjew these ideas and
make sure they are clear:

• A block is a fixed-size packet of inf6rmatiqn that moves back and forth'between a cache and main
memory (or a lower-level cache).

• A line is a container in a cache that stores a, block, as well as other information Sljch as th,e valid
bit and the tag bits.

• A set is a collection of one or more lines. Sets in direct-mapped caches consist of a single line/Sets
in set associative and fully associative caches consist of multiple lines.

In direct-mapped caches, sets and lines,are_indeed equivalent. However, in associalive caches, sets and
lines are very different things and the terms cannot be used interchangeably.

Since a line always stores a single block, the terms "line" and "blockl' are often used'interchange­
ably. For example, systems professionals usually refer to the "line size" of a cache, when what they
really mean is the block size. This usage is very common and shouldn't cause any confusion as long as
you understand the distinction between blocks and line~.

write code that is cache friendly, in the sense that it has good locality. Here is the
basic approach we use to try to ensure that our code is cache friendly.

1. Make the common case go fast. Programs often spend most of their time in a
few core functions. These functions often spend most of their time in a few
loops. So focus on the inner loops of the core functions and ignore the rest

2. Minimize the number of cache misses in each inner loop. All other things being
equal, such as the total number ofloads and stores, loops with better miss rates
will run faster.

To see how this works in practice, consider the sumvec function from Sec­
tion 6.2:

int sumvec (int v [ti))
2 {

3 int i, sum.= O;

4

5 for (i = O; i < N; i++)

6 sum += v[i];
7 return sum;
8 }

Is this function cache friendly? First, notice that there is good temporal locality in
the loop body with respect to the local variables i and sum. In fact, because these
are local variables, any reasonable optimizing compiler will cache. them in the
register file, the highest level of the memory hierarchy. Now consider the stride-
1 references to vector v. In general, if a cache has a block size of B bytes, then a

Section 6.5 Writing Cache-Friendly Code 635

stride-k reference patterµ (where k is expressed in words) results in an average of
min (1, (word size x k) / B) misses per loop iteration. This is minimized- for k = 1,
so the stride-1 references to v are indeed cache friendly. For example, suppose
that vis block aligned, words are 4 bytes, cache blocks are 4 words, and the cache
is initially empty (a cold cache). Then, regardless of the cache organization, the
references to v will result in the following pattern of hits and misses'.

v(i] i=l i=2 i=3 i=4

Access order, [h)it or [m)iss 1 [ml 2 [h) 3[h) 4[h] 5 [m] 6 [h)

In this example, the reference to v[O] misses and the corresponding block,
which contains v [O]-v [3], is loaded into the cache from memory. Thus, the next
three references are all hits. The reference to v [4] causes another miss as a new
block is loaded into the ca~he, the ne*t three references are hits, and so on. In
general; 'tfu'ee·out'of four references will hit, which is the'best we can do in this
case with a cold cache.

To summarize, our simple sumvec example illustrates two important points
1 about writing cache-friendly code:

• Repeated· references to local variables· are good biocause the compiler can
cache thel)l in the. regis.ter file (temporal locality).

~ Stride-l·reference patterns are good because caches at all levels of the memory
hierarchy store data as"contiguous blocks (spatial locality).

Spatial locality· is especially important in. programs that operate on multi­
dimensionalarrays. For example,· consider; the sumarrayrows function from Sec­

' tion 6.2, which sums the elements.o.f a two-dimensional array in row-major order:
I

I 1 int sumarrayrows(int a(M] (NJ)
2 {

3 int i, j' sum= O;
4

5 for (i = O; i < M; i++)

6 ·"- for (j = O; j < N; j++)

7 sum +~ a [i)[j];
8 return sum;
9 }

Since C stores arrays in row-major order, the inner loop of this function has
the same desirable stride-1 access pattern as sumvec. For example, suppose we
make the same assumption.s about the cache as for sumvec. Then the references
to the array a will result in the following pattern of hits and misses:

i=6

7 [h]

a[i] [j) j=O j=l j=2 j=3 j=4 j=S j=6 j=7

i=O 1 [m] 2 [h) 3 [h) 4 [h) 5 [m] 6 [h] 7 [h] 8 [h]
1; = 1 9 [m] 10 (h) 11 [h] 12 [h] 13 [m] 14 [h) 15 [h] 16 [h]
1
i=2 17 [m] 18 [h] 19 [h] 20 (h] 21 [m] 22 [h) 23 [h) 24 [h)
I

1i =3 25 [m] 26 [h) 27 [h) 28 [h) 29[m] 30 [h) 31 [h) 32 [h)

i=7

8 [h)

636 Chapter 6 The Memory Hierarchy

a[i] [j]

i=O

i=l
i=2
i=3

But consider what happens if we make the seemingly innocuous change of
permuting the loops:

ipt sumarraycols(int a [M] [N,l)

2 ~
3 int i, j. sum= O· •
4

5 for (j = O; j < N; j++)
6 for (i = O; i < M; i++)

7 sum+= a[i] [j];

8 return sum;
9 }

In this case, we are scanning the ,array column by column instead of rsw by row.
If we are lusky and the entire array fits in the cache, th~n we will ,e!'joy the same
miss rate of 1/4. However, if the array is larger than the cache (the more likely
case), then each and every access of a [i] [j] will miss!

j=O j=l j=2 j=3 j=4 j=5 j=6 j=7

1 [m] 5 [m] 9.[m] 13 [m] 17 [m] 21 [m] 25 [m] 29 [m]

2 [m] 6 [m] lO[m] 14 [m] 18 [m] 22 [m] 26 [m] 30 [m]

3 [m] 7 [m] 11 [m] 15 [m] 19 [m] 23 [m] 27'[m] 31 [m]
4 [m] 8 [m] 12 [m] 16 [m] 20 [m] 1 ·24 [m] 28 [m] 32 [m]

Higher miss rates can have a significant impact on running time. Foroexarhple,
on our desktop machine, sumarrayrc5ws runs)25 times faster than sumarraycols
for large array sizes. To summarize, programmers should be aware of locality in
their programs and try to write programs that exploit it.

rera1IIW7PW!!!lmi&J7FsBitl•!t"tm~~l£l'!iPJ.i:~ffj\'.~.iB:,;'''. I
Transposing the rows and columns of a matrix is an important problem in signal
processing and scientific computing applications. It is also interesting from a local­
ity point of view because its reference pattern is both row-wise and column-wise.
For example, consider the following transpose routine:

typedef int array[2] [2];
2

3 void transpose1(array dst. array src)
4 {

5 int i, j;
6

7 for (i = O; i < 2; i++) {

B for (j = 0; j < 2; j ++) {

9 dst [J] [i] = src [i] [j];
10 }

11 }

12 }

Section 6.5 Writing Cache-Friendly Code 637

Assume this code runs on a machine with the followihg properties:

• sizeof(int) = 4.

• The src array starts at address 0 and the dst array· starts at address 16
(decimal).

• There is a single Ll data cache that is direct-mapped, write-through, and write­
allocate, with a block size of 8 bytes.

• The cache has a total size of 16 data bytes and the cache is initially empty.

• Accesses to the src and dst arrays are the only sources of read and write
misses, respectively.

A. For each row and col, indicate whether the access to src [row] [col] and
dst [row] [coll is a hit (h) or a miss (m).For example, reading src [OJ [OJ
is a miss and writing dst [OJ [OJ is also '1 miss. '

RowO
Rawl

dst array

Col. 0

m

Col. 1

RowO
Rawl

src array

Col. 0

m

Col. 1

•(1 I

B. Repeat the problem for a cache with 32 data bytes.

jPric~if;eiP,[oblem :6'%1 [;csjjiiii\~tt dfn.!' 6¥5E:'.~1*,'>'f?":~; tt{i;•::;:' -$~ " .. 1 ;_~1
The heart of the recent hit game SimAquarium is a tight loop that calculates the
average position of 256 algae. You are evaluating its cache performance on a
machine with a 1,024-byte direct-mapped data cache with 16-byte blocks (B = 16).
You are given the following definitions:

struct algae_position {
2 int x;
3 int y;
4 };

5

6 struct algae_position grid[16] (16];
7 int total_x = 0, total_y = O;
8 int i, j;

You should also assume the following:

• sizeof(int) = 4.

• grid begins at memory address 0.

• The cache is initially empty.

• The only memory accesses are to the entries of the array grid. Variables i, j,
total_x, and total_y are stored in registers.

638 Chapter 6 The Memory Hierarchy

Determine the cache performance•for.the following code:

for (i = O; i < 16; i++) {

2 for (j = O; j < 16; j ++) {
3 total_x += grid(i] [j] .x;
4 }

5 }

6

7 for (i = 0; i < 16; i ++) '{

B for (j = O; j < 16; j++) {
9 total_y += grid[i] [j] .y;

10 }

11 }

A. What is the total number of reads?

B. What is the total number of reads that miss in the cache?

C. What is the miss rate?

IPildicti:Rr'O"Praijtif;:m;:r~~~·666)1J«#~~rg;•;::1
Given the assumptions of Practice Problem 6.18, determine the cache perfor­
mance of the following code:

for (i = O; i < 16; i++){
2 for(j=O;j<16;j++){

3· total_x += grid [j) (i'] . x;
·4 totaLy += grid(j] (ir.y;
5

6 }

} .,

A. What is the total number of reads?

B. What is the total number of reads that miss in the cache?

C. What is the miss rate?

D. What would the miss rate be if the cache were twice as big?

I'

ffuCii'S"Pt.Olii~m!k.tSiiitltrit/i%WnM-1lit:i'i@<l~t! .jJ
Given the assumptions of Practice Problem 6.18, determine the cache perfor­
mance of the following code:

for (i = O; i < 16; i++){

2 for (j = O; j < 16; j++) {
3 total_x += grid(i] [j] .x;

4 total_y += grid[i)[j] .y;
5 }

6 }

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 639

A. What is the total number of reads?

B. What is the total number of reads that miss in the cache?

C. What is the miss rate?

D. What would the miss rate be if the cache were twice as big?

6.6 Putting It Together: The Impact of Caches
on Program Performance

This section wraps up our discussion of the memory hierarchy by studying the im­
pact that caches have on the performance of programs running on real machines.

6.6.1 The Memory Mountain

The rate that a program reads data from the memory system is called the read
throughput, or sometimes the read bandwidth. If a program reads n bytes over a
period of s seconds, then the read throughput over that period is n/s, typically
expressed in units of megabytes per second (MB/s).

If we were to write a program that issued a sequence of read requests from
a tight program loop, then the measured read throughput would give us some
insight into the performance of the memory system for that particular sequence
of reads. Figure 6.40 shows a pair of functions that measure the read throughput
for a particular read sequence.

The test function generates the read sequence by scanning the first elems
elements of an array with a stride of stride. To increase the available parallelism
in the innerloop, it uses4 x 4 unrolling (Section 5.9). The run function is a wrapper
that calls the test function and returns the measured read throughput. The call
to the test function in line 37 warms the cache. The f cyc2 function inJine 38 calls
the test function with arguments eleros and estimates the running time of the
test function in CPU cycles. Notice that the size argument to the run function is
in units of bytes, while the corresponding elems argument to the test function is
in units of array elements. Also, notice that line 39 computes MB/s as 106 bytes/s,
as opposed to 220 bytes/s.

The size and stride arguments to the run function allow us to control the
degree of temporal and spatial locality in the resulting read sequence. Smaller
values of size result in a smaller working set size, and thus better temporal
locality. Smaller values of stride result in better spatial locality. If we call the run
function repeatedly with different values of size and stride, then we can recover
a fascinating two-dimensional function of read throughput versus temporal and
spatial locality. This function is called a memory mountain (112].

Every computer has a unique memory mountain that characterizes the ca­
pabilities of its memory system. For example, Figure 6.41 shows the memory
mountain for an Intel Core i7 Haswell system. In this example, the size varies
from 16 KB to 128 MB, and the stride varies from 1 to 12 elements, where each
element is an 8-byte long int.

I
I

640 Chapter 6 The Memory Hierarchy

------------------------------ code/memlmountainlmountain.c

1

2

long data(MAXELEMS); /• The global array w0 1ll be traversing •/

3 /• test - Iterate over first 11 elems 11 elements of array 11 data" with
4 • stride of "stride", using 4 x 4 loop unrolling.

5 •!
6 int test(int elems, int stride)
7 {

8 long i, sx2 = stride•2, sx3 = stride•3, sx4 = stride*4;
9 long accO = 0, acc1 = O, acc2 = 0, acc3 = O;

10 long length = elems;
11 long limit length - sx4;
12

I• Combine 4 elements at a time •/
for (i = O; i < limit; i += sx4) {

accO accO + data[i);

13

14
15

16

17

18

acc1 = accl + data[i+stride];
acc2 acc2 + data [i +sx2] ;

acc3 = acc3 + data[i+sx3];
19 }

20
21 /• Finish any remaining elements •/
22 for (; i < length; i++) {

23 accO = accO + data [i] ;
24 }

25 return ((accO + accl) + (acc2 + acc3));
26

27

}

28 /• run - Run test(elems, stride) and return i'ead throughput '(MB/s).
29 * "size" is in bytes, "siride" is in array elements, and Mhz is
30 * CPU clock frequency in Mhz.

31 •/

32 double run(int size, int stride, double Mhz)

33 {

34 double cycles;
35 int elems =size I sizeof(double);
36

37

38

39
40 }

test(elems, stride);
cycles = fcyc2(test, e'lems, stride,~ 0);
return (size I stride) I (cycles I Mhz);

/* Warm up the cache •/
/* Call test(elems,stride) •/
I• Convert cycles to MB/s •/

"

-------------------------~---~·~1 code/memlrhountainlmo~ntain.c .,
Figure 6.40 Functions that measure and compute read throughput. We can generate,a·m~rpo~ mountain
for a particular computer by calling tt]e, run function with different values of size (which correspon.ds to
temporal locality) and stride (whicb ,corresP,on<js to spatial locality).

,,
'

14,000
~

.!(!
Ill
5 12,000

s
ft 10,000

"' ~
2 8,000
:5
"
~

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 641

Stride (x8 bytes) Size (bytes)
s11

128 M

Figure 6.41 A memory mountain. Shows read throughput as a function of temporal and spatial locality.

The geography of the Core i7 mountain reveals a rich structure. Perpendicular
to the size axis are four ridges that correspond to the regions of temporal locality
where the working set fits entirely in the Ll cache, L2 cache, L3 cache, and
main memory, respectively. Notice that there is more than an order of magnitude
difference between the highest peak of the Ll ridge, where the CPU reads at a
rate of over 14 GB/s, and the lowest point of the main memory ridge, where the
CPU reads at a rate of 900 MB/s.

On each of the L2, L3, and main memory ridges, there is a slope of spatial
Iqcality that falls downhill as the stride increases and spatial locality decreases.
Notice that even when the working set is too large to fit in any of the caches, the
highest point on the main memory ridge is a factor of 8 higher than its lowest point.
So even when a program has poor temporal locality, spatial locality can still come
to the rescue and make a significant difference.

There is a particularly interesting flat ridge line that extends perpendicular
to the stride axis for a stride of 1, where the read throughput is a relatively flat
12 GB/s, even though the working set exceeds the capacities of L1 and L2. This
is apparently due to a hardware prefetching mechanism in the Core i7 memory
system that automatically identifies sequential stride-1 reference patterns and
attempts to fetch those blocks into the cache before they are accessed. While the

•.I

:·1
t l'I

'1
I

j
I

"'

642 Chapter 6 The Memory Hierarchy

Main memory
region

L3 cache
region

L2 cache L 1 cache
region region

~ 10,000+--------+----------+-------+-

e l e,ooo+--------+---------+------+
.c
Cl
~ e s,ooo+--------+-------'---+------+
£
'lil I. 4,000

0 " " " " " ::; ::; ::; ::; ::; ::; ::;

"' "' "' "' "' "' "' "' "' "' "' "'
~ "' "' "' ~ "' "' "' o. "' "'

Working set size (bytes)

" " "' "' "'

Figure 6.42 Ridges of temporal locality in the memory mountain. The graph shows
a slice through Figure 6.41 with stride= 8.

details of the particular pre fetching algorithm are not documented, it is clear from
the memorymountain that the algorithm works best for small strides-yet another
reason to favor sequential stride-1 accesses in your code.

If we take a slice through the mountain, holding the stride constant as in Fig­
ure 6.42, we can see the impact of cache size and temporal locality on performance.
For sizes up to 32 KB, the working set fits entirely in the L1 d-cache, and thus
reads are served from Ll at throughput of about 12 GB/s. For sizes up to 256 KB,
the working set fits entirely in the unified L2 cache, and for sizes up to 8 MB, the
working set fits entirely in the unified L3 cache. Larger working set sizes are served
primarily from main memory.

The dips in read throughputs at the leftmost edges of the L2 and L3 qache
regions-where the working set sizes of 256 KB and 8 MB are equal tq ;heir
respective cache sizes-are interesting. It is not entirely clear why these dips occur.
The only way to be sure is to perform a detailed cache simulation, but it is likely
that the drops are caused by confiicts with other co.de and data lines.

Slicing through the memory mountain in the ppposite direction, holding the
working set size constant, gives us some insight into the impact of spatial locality on
the read' throughput. F9r example, F/gure 6.43 shows the slice for a fixed working
set size of 4 MB. This slice cuts along the L3 ridge in Figure 6.41, where the working
set fits entirely in the L3 cache but is too large for the L2 cache.

Notice how the read throughput decreases steadily as the stride increases from
one to eight words. In this region· of the mountain, a read miss 1n L2 causes a
block to be transferred from L3 to L2. This is followed by some number of hits

12,000

~ 10,000

~ e 8,000
~ ,
a.
.c

6,000 Cl ,
e v
:5 4,000,
"C
~
~
a:

2,000

.o
s1 s2 s3

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 643

One access
per cache line

s5 s6 s7 sB s9

Stride (x8 iiyies)
s11

Figure 6.43 A slope of spatial locality. The graph shows a slice through Figure 6.41
with size= 4 MB.

on the block in LZ, depending on the stride. As the stride increases, the ratio of
LZ misses to LZ hits increases. Since misses are served more slowly than hits, the
read throughput decreases. Once the stride reaches eight ?-byte.)VOrds, which on
this system eq1,1als \he block size of 64 bytes, every read request misses in LZ and
must be served from L3. Thus, the read throughput for strides of at least eight is
a constant rate determined by the rate that cache blocks can be transferred from
L3 into LZ.

Tq summarize our discussion of the memorymquntain, the performance of the
memory system is not characterized by a single number. Instead, it is a mountain
of temporal and 'spatial locality whos,e elevations can vary by. over an order of
magnitude., Wise programmers try to structure their p~ograms so that they run in
the peaks jn~tead of the valleys. The aim is to exploit temporal locality so that
heavi\y used words are fetched from the Ll cache, and to exploit spatial locality
so that, as many words as possible are accessed from a single Ll cache line.

=a·_ .e'11~.A'''6' ?l'W<~. 1'~"m'11if9 4;,"2.·)'···~~!'""·~•X'"'I' ~·. ,~·.; ~·!:;~tjll~_u;,. __ ,,'iJ.:t~ ~M.'?2 ~'%2,i1Xa~&~~~-w~~,:,~iz.,*·:lf, j

Use the memory mountain in Figure 6.41 to estimate the time, in CPU cycles, to
read an 8-byte word from the Ll ct-cache.

"

6.6.2 Rearranging ~pops to Increase Spatial Locality

Consider the problem of multiplying a pair of n x n matrices: C = AB. For exam­
ple, if n = 2, then

[
cu c12 J = [au 'a12 J [bu b12 J
c21 c22 a21 azz b21 b22

,
I

644 Chapter 6 The Memory Hierarchy

where

c11 = au b11 + a12b21

c12 = a11b12 + a12h22

c21 = a11b11 + a22b21

c22 = a21b12 + a22h22

A matrix multiply function is usually implemented using three nested loops, whi~h
are identified by their indices i, j, and k. If we permute the loops and make some
other minor code changes, we can create the six functionally equivalent versions
of matrix multiply shown in Figure 6.44. Each version is uniquely identified by the
ordering of its loops.

At a high level, the six versions are quite similar. If addition is associative,
then each version computes an identical resu!t.1 Each version performs O (n3

) total
operations and an identical number of adds and multiplies. Each of the n2 elements
of A and B is read n times. Each of the n2 elements of C is computed by. summing
n values. However, if we analyze the behavior of the innermost loop iterations, we
find that there are differences in the number of accesses and the locality. For the
purposes of this analysis, we make the following assumptions:

• Each array is an n x n array of double, with'sizeof(double) = 8.

• There is a single cache with a 32-byte block size (B = 32).

• The array size n is so large that a sin&Je matrix row does not fit in the Ll cache.

• The compiler,stores local variables in registers, and thus references to local
variables inside loops do not require any load or store instructions.

Figure 6.45 summarizes the results of our inner-loop analysis. Notice that the
six versions pair up into three equivalence classes, which we denote by the pair of
matrices that are accessed in the inner loop. For example, versions ijk and jik are
members of Class AB because they' reference arrays A and B (but not C) in their
innermost loop. For each class, we have counted the number of loads (reads) and
stores (writes) in each in'ner-loop iteration, the number of references to A, B, and
C that will miss in the cache in ea'.ch loop iteration, and the total number ofdache
misses per iteration.

The inner loops of the class AB routines (Figure 6.44(a) and (b)) scan a row
of array A with a stride of 1. Since each cache block holds four 8-byte words, the
miss rate for A is 0.25 misses per iteration. On the other hand, the inner loop scans
a column of B with a stride of n. Since n is large, each access of array B results in
a miss, for a total of 1.25 misses per iteration.

The inner loops in the class AC routines (Figure 6.44(c) and (d)) have some
problems. Each iteration performs two loads and a store (as opposed to the

1. Al; we learned in Chapter 2, floating-point addition is commutative, but in general not associative.
In practice, if the matrices do not mix extremely large values with extremely small ones, as often is
true when the matrices store physical properti~s. then the assumption of associativity is reasonable.

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 645

(a) Version ijk
---------- code/memlmatmultlmm.c

1 for Ci = O; i < n; i++)
2 for (j = O; j < n; j++) {
3 sum = 0.0;
4 for(k=O;k<n;k++)
5 sum += A [il [kl •B [kl [jl ;
6 C[il [jl += sum;

7 }

--------- code/memlmatmult/mm.c

(c) Version jki
--------- code/memlmatmult/mm.c

for (j = O; j < Ilj j++)·

2 for (k = O; k < n; k++) {

3 r = B[k~[j];
4 for (i = O; i < n; ~t<:l
5 c [il [jl += A[il [kl•r;
6 }

---------- code/memlmatmult/mm.c

(e) Version kij
--------- code!mem/matmuifJmm.c

J
fo~ (k = O; k < n; k++)

' ~.

2 for (i = o~ i < n; i++) ~

3 r = A [i][k];
4 1for (j = o·; j < n; J++l

5 C [il [jl += r•B [kl [jl ;
6 } ..
--------- code/mem/"1atmultlmm.c

(b) Version j i k
---------- code/mem/matmultlmm.c

for (j = O; j < n; j++)
2

3

4

5

6

7

for (i = O; i < n; i++) {

sum = 0.0;

}

for (k = O; k < n; k++)
sum += A [il [kl •B [kl [jl ;

C[il [jl += sum;

---------- code/memlmatmultlmm.c

(d) Version kji
---------- code/memlmatmultlmm.c

1

2

3

~
5

6

for (k = O; k < n; k++)
for (j = 'o; j < n; j++) {

r=B[kl[jl;

}

for Cic = O; i < n; i++)
C[i] [jl += A[il [kl•r;

--~ •• -,------- cqdelmemlmatmultlmm.c

' (f) V~rsion,i~j.
------,---- codejmem/matmu/tlmm.c

2

3

4

6

,6

fpr (i = O· i < n; i++)

for Ck'= O; k < n; k++) {
r = A [il [kl ;

I ti,

for (j = q; j < n; j++)

r C[il [jl += r•B[k] [jl;
}

-~~~------ ~ode/memlmatmultlmm.c

Figure 6.44 Six v,ersions of matrix niul~iply. Each version, is uniquely identified by ,the ordering of its loops.

Matrix multiply Per iteratibn

version (class) Loads Stores A misses B misses 11C misses Total \l}isses

ijk & jik,,(AB) 2 0 0.25 1.00 0.00 1,25
jki & kji (AC) 2 1 1.00 ·o.oo 1.00 2.00
kij ,& ikj (BG) 2 1 0.00 jl.25 0.25. O.>O

Figure 6.45 Analysis of matrix mu Iii ply inner loops. T!ie .six versions, partition into
three equivalence classes, denoted by the pair of arrays th~t are accessed in the inner
b~. .

,• ...

"

646 Chapter 6 The Memory Hierarchy

100

7
/

/ ~

L f
z ±

,.,

,,,. Tr" ~ ~

,- ,- ,- ,- ,-
50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)

Figure 6.46 Core i7 matrix multiply performance.

.... jki
-a- kji
"*" ijk
-0- jik
-+- kij
-Ir- ikj

class AB routines, which perform two loads and no stores). Second, the inner
loop scans the columns of A and C with a stride of n. The result is a miss on each
load, for a total of two misses per iteration. Notice that interchanging the loops
has decreased the amount of spatial locality compared to the class AB routines.

The BC routines (Figure 6.44(e) and (f)) present an interesting trade-off: With
two loads and a store, they require one more memory operation than the AB
routines. On the other hand, since the inner loop scans both B and C row-wise
with a stride-1 access pattern, the miss rate on each array is only 0.25 misses per
iteration, for a total of 0.50 misses per iteration.

Figure 6.46 summarizes the performance of different versions of matrix mul­
tiply on a Core i7 system. The graph plots the measured number of CPU cycles
per inner-loop iteration as a function of array size (n).

' There are a number of interesting points to notice about this graph:

• For large values of n, the fastest version runs almost 40 times faster than the
slowest version, even though each performs the same number offioating-point
arithmetic operations.

• Pairs of versions with the same number of memory references and misses per
iteration have almost identical measured performance.

• The two versions with the worst memory behavior, in terms of the number of
accesses and misses per iteration, run significantly slower t\:lan the other four
versions, which have Jewer misses or fewer accesse~, or both.

• Miss rate, in this case, is a better predictor of performance than the total
number of memory accesses. For example, the class BC routines, with 0.5
misses per iteration, perform much better than the class AB routines, with
1.25 misses per iteration, even though the class BC routines perform more

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 647

r/" '""'·"~_.;1l'j ,p ff: ~~ \

Web Asic;fe MEM:BLOCKING Using blocking tp in,crease,temporat locality
' f • .;- • ;.

.:rh~re Is an in\e\~sting techh/9ue ~alle.cf b.(ocklng th~J can ~~prov{ tha\e~pp,ratlo?lity of inner loops.
;i;p~,ge!,'era\J1ea of blocking,is t? 'organi~e tl)e dat~ stJBctur~s:i11 a .W.°grr~jnt~ l,a.rge chunks called

• qlqcks. (l1,1 this context, "qlock'' refers .to an apphcatmq-level 9hunk.of da!a, no\ (oa cache block.) The
.,.f!f~&r~~ i~.~tru<;tured so tha~. ~{ 1q~ct,~ cl1,F-,,4u.rV\·lniO til~ .~1 c~>fne: ,4~es1 e'.Ji'"~he~14aos a'.nct;··write§'that it
.Heeds to. on that chunk;, then ?1sc,ard~.(~e ph,'!nJ\, lojld.~ 1g tqe;nexf'chpni,; ~l)d ~? PJ;· ,

Unlike the simple loop transform~tip,ns for il"provin& sB~\iiil lqc,?lity,)lflclj:ing makes the code
r harper f6 read and understand. F'<ir this r~ason, it is best suiteafor ORtimizing compilers or frequently

,exe:uted li~r:rlti?utin<;~:. il'(o~k!n.g. ~oe~,i;ot i~prqJe. t~~,fer,J;q~~.n·~~ ~(1)1a;i}'f ~ultiply on th;·Core
i7, b~cause of its soph,i,sticated,prefetch~ng ~ard~ai;t;. _$'liJl)~~ .. te'ih,J!i'l\!f' i~.J'lil'fest,ing to study and
.und~rsfancj beFause 1t 1.s ff g<;µera) ~09Srfl\Jha\,,can prod\fce big perforll,lan,c,e' gams on sys5ems th~t
' do ii 't prefetch. ·• ' "' "'

., •i' •. " .. .,
memory references in the inner loop (two loads and one store) than the class
AB routines (two loads).

• For large values of n, the performance of the fastest pair of versions (kij and
i kj'fis constant. Even though the array is much larger than any of the SRAM
cache memories, the prefetching hardware is smart enough to recognize the
stride-1 access pattern, and fast enough to keep up with memory accesses
in the tight inner loop. This is a stunning accomplishment by the Intel engi­
neers who designed this memory system, providing even more incentive for
programmers to develop programs with good spatial locality.

6.6.3 Exploiting Locality in Your Programs

As we have seen, the memory system is organized as a hierarchy of storage
devices, with smaller, faster devices toward the top and larger, slower devices
toward the bottom. Because of this hierarchy, the effective rate that a program
can access memory locations is not characterized by a single number. Rather, it is
a wildly varying function of program locality (what we have dubbed the memory
mountain) that can vary by orders of magnitude. Programs with good locality
access most of their data from fast cache memories. Programs with poor locality
access most of their data from the relatively slow DRAM main memory.

Programmers who understand the nature of the memory hierarchy can ex­
ploit this understanding to write more efficient programs, regardless of the specific
memory system organization. In particular, we recommend the following tech­
niques:

• Focus your attention on the inner loops, where the bulk of the computations
and memory accesses occur.

• Try to maximize the spatial locality in your programs by reading data objects
sequentially, with stride 1, in the order they are stored in memory.

• Try to maximize the temporal,locality in your programs by using a data object
as often as possible once it has been read from memory.

I'

,•
! 1

1
I
I:

648 Chapter 6 The Memory Hierarchy

6.7 Summary

The basic storage technologies are random access memories (RAMs), nonvolatile
memories (ROMs), and disks. RAM comes in two basic forms. Static RAM
(SRAM) is faster and more expensive and is used for cache memories. Dynamic
RAM (DRAM) is slower and less expensive and is used for the main memory and
graphics frame buffers. ROMs retain their information even if the supply voltage
is"turned off. They are used io store firmware. Rotating disks are mechanical non­
volatile storage devices that hold enormous amounts of data at a low cost per bit,
but with much longer access times than DRAM. Solid state disks (SSDs) based
on nonvolatile flash memory are becoming increasingly attractive alternatives to
rotating disks for some applications.

In general, faster storage technologies are more expensive per bit and have
smaller capacities. The price and performance properties of these technologies
are changing at dramatically different rates. In particular, DRAM and disk access
times are much larger than CPU cycle times. Systems bridge these gaps by orga­
nizing memory as a hierarchy of storage devices, with.smaller, faster devices at
the top and larger, slower devices at the bottom. Because well-written programs
have good locality, most data are served from the higher levels, and the eff~ct is
a memory system that runs at the rate of the higher levels, but at the cost and
capacity of the lower levels.

Programmers can dramatically improve the running times of their programs
by writing p~ograms with good spatial and temporal locality. Ei;:ploitiµg SRAM­
based cache memories is especially important. Programs that fetch data primarily
from cache memories can run much faster than programs that fetch data primarily
from memory.

Bibliographic Notes

Memory and disk technologies change rapidly. In our experience, the best sources
of technical information are the Web pages maintained by the manufae\urers.
Companies such as Micron, Toshiba, and Samsung provide a wealth of current
technical information on memory devices. The pages fqr Seagate and W~stern
Digital provide similarly useful information about disks.

Textbooks on circuit and logic design provide detailed information abput
memory technology [58, 89]. IEEE Spectrum published a series of survey arti­
cles on DRAM [55]. The International Symposiums on Computer Architecture
(!SCA) and High Performance Computer Architecture (HPCA) are commqn fo­
rums for characterizations of DRAM memory performance [28, 29, 18].

Wilkes wrote the first paper on cache memories [117]. Smith wrote a .~lqs­
sic survey [104]. Przybylski wrote an authoritative book on cache design [86].
Hennessy and Patterson provide a comprehensive disc.ussion of cache design is­
sues [46]. Levinthal wrote a comprehensive performance guide for the Intel Core
i7 [70].

Stricker introduced the idea of the memory mountain as a comprehensive
characterization of the memory system in [112] and suggested the term "memory
mountain" informally in later presentations of the work. Compiler researchers

j

I
j
1

Homework Problems 649

work to increase lpcality by automatically performing the kinds of manual code
transformations we discussed in Section 6.6 [22, 32, 66, 72, 79, 87~'>119]. Carter
and colleagues have proposed a cache-aware memory controller [117]. Other re­
searchers have developed cache-oblivious alg0tithms that are designed to run well
without any explicit knowledge Ii th« struciure o~ the underlying cache mem­
ory [30, 38, 39, 9].

There is a large body of literature on building and using disk storage. Many
storage resea~chers look for ways to aggregate individual disks into larger, more
robust, and more secure storage pools [20, 40, 41, 83, 121 J. Others look for ways
to use caches and locality to improve the performance of disk accesses (12, 21].
Systems such as Exokernel proyide ,ip,cre'ase'd user-1".vel control of disk and mem­
ory resources [57]. Systems such as !he Andrew'File System [78] and Coda [94]
extend the memory hierarchy ad·6ss computer networks and mobile notebook
computers. ~chlndler and Ganger developed an inte'restiit!\ tqol that automatically
characterizes the geometry and perfornl'ance of SCSI disk ddves (95]. Researchers
have investigated techniques for building and using flash-based SSDs [8, 81].

Homework Problems

6.22 ••

Suppose you are asked to design a rotating disk where the number of bits per
track is constant. You know that the number of bits per track is determined
by the circumference of the innermost track, which you can assume is also the
circumference of the hole. Thus, if you make the hole in the center of the disk
larger, the number of bits per track increases, but the total number of tracks
decreases. If you let r denote the radius of the platter, and x · r the radius of the
hole, what value of x maximizes the capacity'of the disk?

6.23 •

Estimate the average time (in ms) to access a sector on the following disk:

Parameter

Rotational rate

Tavg seek

Average number of sectors/track

6.24 ••

Value

15,000RPM
4ms
800

Suppose that a 2 MB file consisting of 512-byte logical blocks is stored on a disk
drive with the following characteristics:

Parameter

Rotational rate

Tavgseek

Average number of sectors/track
Surfaces
Sector size

Value

15,000RPM
4ms

1,000
8

512 bytes

I

650 Chapter 6 The Memory Hierarchy

For each case below, suppose that a program reads the logical blocks of the
file sequentially, one after the other, and that the time to position the head over

the first block is Tavgseek + Tavgrotation·

A. Best case: Estimate the \)ptimal time (in ms) requireo to read the file over
all possible mappings of logical blocks to disk sectors.

B. Random case: Estimate the time (in m~) ·required to read the file if blocks
are mapped randomly to disk sectors.

6.25.
The following table gives the par,ameters for a number of different caches. For
each cache, fill in the missing fields in the table. Recall that m is the number of
physical address bits, C is the cache size (num,ber of data 1/ytes), B is the block
size in bytes, E is the associativity, Sis the number of cache sets, t is the 9umber of
tag bits, s is the number of set index bits, and b is the numl/er of bloc_k offset bits.

Cache m c B E s s b

1. 32 1,024 4 4

2. 32 1,024 4 256

3. 32 1,024 8 1

4. .32 1,024 8 128 --.
5. 32 1,024 32 1

6. 32 1,024 32 4

6.26.
The following !able gives the paral)1eters for a number of different caches. Your
task is to fill in the missing fields in the tab\f'. Recall thatm is the numb~r of physical
address bits, C is the cache size (number of data bytes), B is the block size in bytes,
E is the associativity, S is the number of cache sets, t is the number of tag bits, s is
the number of set index bits, and b is the number of block offset bits.

Cache m c B E s s b

1. 32 8 1 21 8 ' 3·

2. 32 2,048 128 23 7 2

3. 32 1,024 2 8 64 1

4. 32 1,024 2 16 23 4

6.27 • This problem concerns the cache in Practice Problem 6.12.

A. List all of the hex memory addresses that will hit in set 1.

B. List all of the hex memory addresses that will hit in set 6.

6.28 ••
This problem concerns the cache in Practice Problem 6.12.

A. List all of the hex memory addresses that will hit in set 2.

Homework Problems 651

B. List all of the hex memory addresses that will hit in set 4.

C. List all of the hex memory addresses that will hit 'in sei 5.

D. Li~t all of the hex memory addresses that will.hit in set 7.

6.29 ••
Suppose we have a system with the following properties:

' • The memory is byte addressable.

• Memory accesses are to 1-byte words (not to 4-byte words).

'• Addressd are 12')Jits wide. '1

j •• ...~ J ' ' •

1 • The cache,i~ two-,way set ass9ciative !f,';;' 2), "1f'1a4;J;iY.t",l;>lock size (p =.4)
and foupets.(S = 4)., ·

The contents of the cache are as follows, with all ad&'esses;tai#. 'and values gl\.en
in hexadecimal notation:

Set index Tag Valid Byte 0 Byte 1 Byte2 Byte3

0 00 1 40 41 42 ~3

83 1 FE 97 cc DO'
1 00 1 44 45 46 ~7 '

83 0
2 00 1 '48 49 4A , 4B

40 0
·3• FF 1 9'A: co 03 FF

06 0

A. The following diagram .shows/the format of an address (1 bit per box).
Ii;tdicate (by lag<;ljng ~Jie diagram) the fjelds that.would b,I' used to de.terrnine
the follqwjpg:

CO. The cache block offset
CI. The cache set index
CT. The cache tag

12 11 10 9 8 7 6 5 4 3 2 0

, .
B. For each of the following memory accesses, indicate if it will be a cache hit

or mi?s when carried out in sequence as listed. Also give the value of a read
if it ca,n be inferp,'d from the infprrnation ii\ the ca~f!e.

Operatjon
Read
Write
Read

Address

0~~34
bx836

OxFFD

Hit? ;R;dd value (or unknown)

652 Chapter 6

·'

Index Tag v

0 FO 1

1 BC 0

2 BC 1

3 BE 0

4 7E 1

5 98 0
6 38 0

7 8A I

The Memory Hierarchy

6.30 •
Suppose we have a system with the following properties:

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not to 4-byte words).

• Addresses are 13 bits wide.

• The cache is 4-w;ay set associative (E = 4), with a 4-byte block size (B = 4)

and eight sets (S = 8).

Consider the following cache state. All addresses, tags, and value~ are given in
hexadecimal format. The Index column contains the set index for each set of four
lines. The Tag columns contain the tag valu'.e for each line. The V columns contain
the valid bit ~or each line. The Bytes 0-3 columns contain the data' for each line,
numbered left to rjght starting with byte 0 on the left.

4-way set associative cache

Bytes 0--3 Tag v Bytes 0-3 Tag v Bytes 0--3 Tag v Bytes 0-3

ED320AA2 SA 1 BF801D FC 14 1 EF09 862A BC 0 25 446F1A

03 3E CD 38 AO 0 167BED5A BC 1 8E4CDF18 E4 1 FB B71202

549E lEFA B6 1 DC81B214 00 0 B61F7B 44 74 0 10F5 B82E

2F7E3DA8 co 1 27 95 A4 74 C4 0 07 ll 6B D8 BC 0 C7B7 AFC2

32 211C2C 8A 1 22C2DC34 BC 1 BADD37D8 DC 0 E7 A239BA

A9762B EE 54 0 BC 91D592 98 I 80BA 9B F6 BC ,I 4816810A

5D4DF7DA BC I 69 C2 8C74 8A I A8CE7FDA 38 I FA 93 EB48

042A326A 9E 0 Bl 86560E cc I 96 3047 F2 BC ·li F81D 42 30

A. What is the size (C) of this cache in bytes?

B. The box that follows shows the format of an address'(l bit per box). Indicate
(by labeling the diagram) the fields that would be used to· determine the

following:

CO. The cache block offset
CL The cache set index
CT. The cache tag

12 11 10 9 B 7 6 5 4 3 2 0

6.31 ••
Suppose that a program using tl!e cache in Problem 6.30 references thi:'l-byte
word at address Ox071A. Indicate the cache entry accessed and the cache byte .,,,
value returned in hex. Indicate whetner a cache miss os;curs. If there is a cache
miss, enter "-" for "Cache byte returned." Hint: Pay attention to those valid

bits!

,, Homework Problems

A. Address format (1 bit per box):

12 11 10 9' 8 7 6
~

5 4 3 2 0

B. Memory reference:

Parameter r 1 Value

Block offset (CO) Ox __
' Index (p) Ox.----t\,

'" Cache tag (CT) Ox ___

"
Cache hit? (Y/N) -.--,

" 1 • ..r,,. Cache byte returned Ox __
,,

' I ,,.
6:32 ••• CJ• v J"" "'.I

Repeat Problem 6.31 for memory address.Ox16E8.
!•

!}.- ~ddre'!'i foni;iat (1 bit Pl"· bpx):

l':l l ' i-r-·l < ~I " I I ,[l I I .1
12 11 10 9 8 7 6 5 4 3 2 0

B. Memory ,reference: '
Parameter Value

Cache offset (CO) Ox ___

Cache index (CI) Ox __

Cache tag (CT) Ox __

Cache hit? (Y-/N)

'Cache byte,feturned Ox_---'-'-,

6.33 ••
j

For the cache in Problem 6;30, lisf the eight memory addresses (in h~x) that will
hit in set 2.

6.34 ••
Consider the following matrix transpose routirie:

l

2

typedef int array[4] [4];

,3" v9i~"'transpose:f(array g.:;it, 8fT'1Y srp)
4 {

5 int i, j;
6

J ' '

653

654 Chapter 6 The Memory Hierarchy

Col. 0

RowO m

Rowl
Row2
Row3

Col. 0

RowO
Rowl
Row2
Row3

7

8

9

10

11

12

for (i = O· ' i < 4; i++) {

for (j = O; j < 4; j++) {

dst [j) [i] = src [i) [j);
}

}

}

Assume this code runs on a machine with the following properties:

• sizeof(int) = 4.
• The src array starts at address 0 and the dst array starts at address 64

(decimal).
• There is a single L1 data cache that is direct-mapped, write-through, write-

allocate, with a block size of 16 bytes. "
• The cache has a total size of 32 data bytes, and the cache is initially empty.

• Accesses to the src and dst arrays are the only sources of read and write
misses, respectively.

A. For each row and col, indicate whether the access to src [row] [col] and
dst [row) [col] is a hit (h) or a miss (m). For example, reading src [OJ [OJ

is a miss and writing dst [OJ [OJ is also a miss. ·'

dst array src array

Col. l Col. 2 Col. 3 Col. O Col. 1 Col. 2 Col. 3

RowO m
Rowl
Row2
Row3

6.35 ••
Repeat Problem 6.34 for a cache with a total size of 128 data bytes.

dst array

Col. 1 cof.'2 Col. 3

src array

Col. i Col. 2 Cai. 3 Col. 0

RowO
Rowl
Row2
Row3

6.36 ••
This problem tests your ability to predict the cache behavior of C code'. You are
given the following code to analyze:

int x [2] [128) ;

2 int ii

Homework Problems 655

3 int sum = O;
4

s for (i = O; i < 128; i++) {
6 sum += x[O] [i] • x[1] (i];
7 }

Assume we execute this under the following conditions:

• sizeof(int) = 4.

• Array x begins at memory address OxO and is stored in row-major order.
• In each case below, the cache is initially empty.

• The only memory accesses are to the entries of the array x. All other variables
are stored in registers.

Given ~'1ese assumptions, estimate the miss rates for the following cases:

A. Case 1: Assume the cache is 512 bytes, direct-mapped, with 16-byte cache
blocks. What is the miss rate?

B. Case 2: What is the miss rate if we double the cacJ.i.e size to 1,024 bytes?

C. Case 3: Now assume the cache is 512 bytes, two-way set associative using
an LRU replacement policy, with 16-byte cache blocks. What is the cache
miss rate?

D. For case 3, will a larger cache size help to reduce the miss rate? Why or
why not?

E. For case 3, will a larger block size help to reduce the miss rate? Why or why
not?

6.37 ••

This is another problem that tests your ability to analyze the cache behavior of C
code. Assume we execute the three summation functions in Figure 6.47 under the
following conditions:

• sizeof(int) = 4.

• The machine has a 4 KB direct-mapped cache with a 16-byte block size.

• Within the two loops, the code uses memory accesses only for the array data.
The loop indices and the value sum1<re.help in registers.

• Array a is stored starting at memory address Ox08000000.

Fill in the table for the approximate cache miss rate for the two cases N = 64
andN = 60.

Function • N = 64

sumA

sumB

sumG

N=60

"

•i
I
h

~
'I

656 Chapter 6 The Memory Hierarchy

1 typedef int array_t [NJ [NJ;

2

3 int sumA(array_t a)

4 {

5 int i, j j

6 int sum = O;
7 for (i = O; i < N; i++)

8 for (j = Oi j < N; j++) {

9 sum+= a[iJ [jJ; I

10 }

11 return sum;

12 }

13

14 int sumB(array_t a)

15 {

16 int i, j j

17 int sum = O;
18 for (j = O; j < N; j ++)

' ' i++) 19 for (i = O; i < N; {

20 sum += a[i][jJ;

21' }

22 return sum;
23 }

24

25 int S1fIOC~~ray_t a)

26 {

27 int i' j;

28 int sum= O;

29 f,or (j = O; j < N; j+=;!l

30 for (i = O; i < Ni i +=2,l, {

31 sum += (a [iJ (jJ + a[i+1J [jJ

32 + a(iJ [j+1J + a[i+1J [j+1J);

33 }

34 return sum;

35 }
• I

Figure 6.47 Functions' referenced in Problem 6.37.

6.38.
3M decides to make Post-its by printing yellow squares on white pieces of paper.
As part of the printing process, they need to set the.CMYK (cyan, magenta, yellow,
black) value for every point in the square. 3M hires you to determine th<> efficiency
of the following algorithms on a machine with a 2,048-byte direct-mapped data ·
cache with 32-byte blocks. You are given the following definitions:

Homework Problems 657

struct •point_color {
2 int c; .:
3 int m;
4 int y; .,
5 int k;
6 };

7
.,

8 struct point_ color square (16] (16] ;
9 int i, j;

Assume the following:

• sizeof(int) = 4.

• square begins at memory address 0.

• The cache is initially empty.

• The only memory accesses are to the entries of the array square. Variables i
and j are s~ored in registers. n

Determine the cache performance of the following code:

for (i = O; i < 16; i++){
2 for (j = O; j < 16; j++) {
3 square!i],[j] .c = O;
4 square(i] [j] .m = O;
5 square [i] [j] . Y. = 1 · • 6 square(i] [j] .k = O;
7 }

··B j }

• ./ 1 I '1

A,, WI;tat·is ,the total numbFr of..writ~s?

B.. What is the total number of writes1that miss in the cache?
C. What is the miss rate?

6.39 •

Given the assumptions in Problem 6.38, determine the cache performance of the
following code:

1 for (i = O; i < 16; i++){
2 for (" • J = O; j < 16; j++) {
3 square [j] [i] . c = 0;
4 square [j] [i] .m = ,0;
5 square [j] [i] . y = 1;
6 square [j] [i] . k = 0;
7 }
8 }

658 Chapter 6 The Memory Hierarchy

A. What is the total number of writes?

B. What is the total number of writes that miss in the cache?

C. What is the miss rate?

6.40 •
Given the assumptions in Problem 6.38, determine the cache performance of the
following code:

for (i = O; i < 16; i++) {

2 for (j = O; j < 16; j++) {

3 square[i] [j] .y = 1;
4 }

5 }

6 for (i = O; i < 16; i++) {

7 for (j = O; j < 16; j++) {

8 square [i] [j l . c o·
'

9 square [i] [j] .m O;
10 square [i] [j] . k O;
11 }

12 }

A. What is the total number of writes?

B. What is the total number of writes that miss in the cache?

C. What is the miss rate?

6.41 ••
You are writing a new 3D game that you hope will earn you fame and fortune. You
are currently working on a function to blank the screen buffer before drawing the
next frame. The screen you are working with is a 640 x 480 array of pixels. The
machine you are working on has a 64 KB direct-mapped cache with 4-byte lines.
The C structures you are using are as follows:

struct pixel {

2 char r;
3 char g; ,,
4 char b;
5 char a;

6 };

7

8 struct pixel buffer[480] [640];
9 int i, j;

10 char *cptr;

11 int *iptr;

Assume the following:

• sizeof(char) = 1 and sizeof(int) = 4.

Homework Problems 659

• buffer begins at memory address 0.

• The cache is initially empty.

• The only memory accesses are io the entries of the"array buffer. Variables i,
j, cptr, and iptr are stored in registers.

' What percentage of writes !n the-following code will miss in the cache?
1 I l J 1 J

1 for (j = 0; j < 640; j+-t') {
2 for (i = O; i < 480; i++){
3 buffer [i][j]. r = O;

4 buffer(i] [j] -~I,; d;'
51 bilffer[i] (jf;'{, '= O;
6 <. bufter[i] [j1 .a = O;
7 }

8 }

6.42 ••
Given the assumptions in Problem 6.41, what percentage ofwriteS inthe following
code will miss ifi the cache?"

l char •cptr = (char •) buffer;
2 for (; cptr < (((char•) buffer) + 640·i 480 • 4); cptr++)
3 *Cptr = 0;

6.43 ••
Given the assumptions in Problem 6.41, what percentage of writes in the following
code will miss in tJ!e,cache?

1 int *iptr = (int •)buffer;
2 for(; iptr <((int •)buffer+ 640•4?0); iptr++)
3 •iptr = O;

6.44 •••
Download the mountain program from the CS: APP Web· site and run it on your
favorite PC/Linux system. Use the results to·estimate the sizes of.the caches on
your system.

6.45 ···~ In· this assignment, you will apply the concepts you learned in Chapters 5 and 6
to the problem of optimizing code for a memory-intensive application. Consider
a procedure to copy and transpose the elements of an N x N matrix of type int.
That is, for source matrix S _and destination matrix D, we want to copy 'each
element s,,1 to d1,,. This code can be written<with a simple loop,

1 void transpose(int •dst, int •src, int dim)
2 {

3 int i I j;
4

660 Chapter 6 The Memory Hierarchy

5 for (i = O; i < dim; i++)
6 for (j = O; j < dim; j++)
7 dst[j*dim + i] = src[i~dim + j];

8 }

where the arguments to the procedure are pointers to the destination (ds~) and
source (src) matrices, as well as the matrix size N (dim). Your job is to devise a
transpose routine that runs as fast as possible.

6.46 ••••
This assignment is an intriguing variation of Problem 6.45. Consider the problem
of converting a directed graph g into its undirected counterpart g'. The graph
g' has an edge from vertex u to vertex v if and only if there is an edge from u
to v or from v to u in the original graph g. The graph g is represented by its
adjacency matrix G as follows. If N is the number of vertices in g, then G is an
N x N matrix and its entries are all either 0 or l. Suppose the vertices of g are
named v

0
, v1, v2, ... , "N-l· Then G[i][j] is 1 if there is an edge from v; to v j and

is 0 otherwise. Observe that the elements on the diagonal of an adjacency matrix
are always 1 and that the adjacency matrix of an undirected graph is symmetric.
This code can be writte11 with a simple loop:

void col_convert(int *G, int dim) {

2 int i, j;
3

4 for (i = O; i < dim; i++)
5 for (j = O; j < dim; j++)
6 G[j*dim + i] = G[j•dim + il I I G[i•dim + j];

7 }

Your job is to devise a conversion routine that runs as fast as possible. As
before, you will need to apply concepts you learned in Chapters 5 and 6 to come
np with a good solution.

Solutions to Practice Problems

Solution to Problem 6.1 (page 584)
The idea here is to minimize the number of address bits by minimizing the aspect
ratio max(r, c)/ min(r, c). In other words, the squarer the array, the fewer the

address bits.

Organization r c b, b, max(b,, b,)

16 x 1 4 4 2 2' 2

16 x 4 4 4 2 2 2

128 x 8 16 8 4 3 4

512 x 4 32 16 5 4 5

1,024 x 4 32 32 5 5 5

Solutions to Practice Problems 661

Solution to Problem 6.2 (page 592)

The point of this little drill is to make sure you understand the relationship. between
cylinders and tracks. Once you have that straight, just plug and chug:

D. k . 512 bytes 400 sectors 10,000 tracks 2 surfaces 2 platters
1s capacity = x . x x x ~---

sector tracl{ surface platter disk

= 8,192,000,000 bytes

=8.192GB

Solution to Problem 6.3 (page 595)

The solution to this problem is a st;aightfo~ward' application of the formula for
disk access time. The average rotational latency (in ms) is

Tavg rotation = 1/2 X T max rotation

= 1/2 x (60 secs/15,000 RPM) x 1,000 ms/sec

~2ms
' 'J

The average transfer time is

Tavg transfer= (60 secs/15,000 RPM) x.1/500 sector,s/track x 1,000 ms/sec

""0.008 his

Putting it all together, the total estimated access time.is ,,

rl

Taccess = Tavg seek -h Tavg rotation + Tavg transfer

= 8ms + 2ms + 0.008ms

""lOm~ ..

Solution to Problem 6.4 (page 595) ''
This is a good check of your understanding of the factors that affect disk perfor­
mance. First we need to determine a few basic properties of the file and the disk.
The file consists of 2,000 512-byte logical blocks. For the disk, Tavgseek =15 ms,
T max rotation = 6 ms, and Tavg rotation = 3 ms.

A. Best case: In the optimal case, the blpcks are,mapped to contiguous sectors,
on the same cylinder, that can be read pne after the other without moving
the head. Once the head is positioned over the first-s.ector it takes two full
rotations (1,000 sectors per rotation) pf the disk to read all 2,000 blocks.
So the total time to read the file i~ Tavg seek + Tavg rotation + 2 X T max rotation =
5 + 3 + 12 = 20 ms.

B. Random case: In this case, where blocks are mapped randomly to sectors,
reading each of the 2,000 blocks requires Tavg seek + Tavg rotation ms, so the to­
tal time to read the file is Cf avg seek+ Tavgrotationl x 2,000 = 16,000 ms (16sec­
onds!).

You can see now why it's often a good idea to defragment your disk drive!

662 Chapter 6 The Memory Hierarchy

Solution to Problem 6.5 (page 601)
This is a simple problem that will give you some interesting insights into the feasi·
bility of SSDs. Recall that for disks, 1PB=109 MB. Then the following straight­
forward translation of units yields the following predicted times for each case:

A. Worst-case sequential writes (470 MB/s):

(109 x 128) x (1/470) x (1/(86,400 x 365)) ""8 years

B. Worst-case random writes (303 MB/s):

(109 x 128) x (1/303) x .(1/(86,400x365))""13years

C. Average case (20 GB/day):

(109 x 128) x (1/20,000) x (1/365) ""140 years

So even if the SSD operates continuously, it should last for at least 8 years, which
is longer than the expected lifetime of most computers.

Solution to Problem 6.6 (page 604)
In the 10-year period between 2005 and 2015, the unit price of rotating disks
dropped by a factor of 166, which means the price is dropping by roughly a factor
of 2 every 18 months or so. Assuming this trend continues, a petabyte of storage,
which costs about $30,000 in 2015, will drop beloW'$500 after about seven of these
factor-of-2 reductions. Since these are occurring every 18 months, we might expect
a petabyte of storage to be available for $500 around the year 2025.

Solution to Problem 6.7 (page 608)
To create a stride-1 reference pattern, the loops must be permuted so that the
rightmost indices change most rapidly.

int sumarray3d(int a[N] [N] [N])

2 {

3 int i, j, k, sum= O;

4

5 for (k = O; K <»N; k++) {

6 for (i = O; i < N; i++) {

7 for (j = O; j < N; j++) {

8 sum += a[k] [i] [j];

9 }

10 !
11 }

12 return sum;

13 }

This is an important idea. Make sure you understand why this particular loop
permutation resultS'in a stride-1 access pattern.

Solutions to Practice Problems 663

Solution to Problem 6.8 (page 609)

The key to solving this problem is to visualize pow the array is laid put in memory
and then analyze the reference patterns. Function clearl accesses the array using
a stride-1 reference pattern and thus clearly has the best spatial locality. Function
clear2 s'cans each of the N structs in order, which is good, but withi_n each struct it
hops around in a non-stride-1 pattern at the following offsets from the beginning
of the struct: 0, 12, 4, 16, 8, 20. So clear2 has worse spatial locality than clearl.
Function, clear3 not only hops around within each struct, but also hops from struct
to struct. So clear3 exhibits worse spatial locality than ~lear2 and clearl.

Solution to Problem 6.9 (page 616)

T\Je solution is a straightforward application of the definitions o(the various cache
parameters in Figure 6.26. Not very exciting, but you need to understand how
the cache organization induces these partitions in the address bits before you can
really understand how caches work.

Cache m c B E

1. 32 1,024 4 1
2. 32 1,024 8 4
3. 32 1,024 32 32

Solution to Problem 6.10 (page 624)

s
256
32
1

22
24
27

s

8
5
0

b

2
3

5

The padding eliminates the conflict misses. Thus, three-fourths of the references
are hits.

Solution to Problem 6.11 (page 624)

Sometimes, understanding why something is a bad idea helps you understand why
the alternative is a good idea. Here, the bad idea we are looking at is indexing the
cache with the high-order bits instead of the middle bits. '

A. With high-order bit indexing, each contiguous array chunk consists of 21

blocks, where t is the number of tag bits. Thus, the first 21 contiguous blocks
of the array would map to set 0, the next 21 blocks would map to set 1, and
so on.

B. For a direct-mapped cache where (S, E, B, m) = (512, 1, 32, 32), the cache
capacity is 512 32-byte blocks with t = 18 tag bits in each cache line. Thus, the
first 218 blocks in the array would map to set 0, the next 218 blocks to set 1.
Since our array consists ofonly (4,096 x 4)/32 = 512 blocks,)lll of the blocks
in the array map to set 0. Thus, the cache wi)l hold at most 1 array block at
any point in time, even though the array.·is-small enough to fit entirely in the
cache. Clearly, using high-order bit indexing makes poor use of the cache.

Solution to Problem 6.12 (page 628)

The 2 low-order bits are the block offset (CO), followed by 3 bits of set index (CI),
with the remaining bits serving as the tag (CT):

664 Chapter 6 The Memory Hierarchy

I CT I CT I CT I CT I CT CT I CT CT Cl Cl Cl I .'?0 I co

12 11 10 9 8 7 '· 6 5 •4 3 2 0

Solution to Problem 6.13 (page 628)

Address: OxOE34

A. Address format,(1 bit per box):

Cr CT CT CT CT CT CT CT Cl Cl' 'Cl co i5o'

I 0 I 1 I 1 I 1 0 0 0 I 1 , I 6 0 0

12 11 10 9 8 7 6 5 4 3 2 0

B. Memory reference:

Parameter Value

Cache block offset (CO) OxO

Cache set index (CI) Ox5

Cache tag (CT) Ox71

Cache hit? (Y /N) y

Cache byte returned OxB ' .

Solution to Problem 6.14 (page 629)

Address: OxODD5

A .. Address format (1 bit per box):

CT CT CT CT CT CT CT CT Cl Cl Cl co co

0 I 1 0 I 1 I 1 0 I 0 1 0 1,

12 11 1p 9 8 7 6 5 4 .3 2 ,r/. 0

B. Memmy reference:

Parameter Value
'

Cache block offset (CO) Oxl

Cache set index:(CI) Ox5

Cache tag (CT) Ox6E

Cache-hit? (YIN) N

Cache byte returned

Solution to Problem 6.15 (page 629)

Addre~s: Ox1FE4

A. Address format (1 bit per box):
).

CT CT CT CT CT CT CT CT Cl Cl Cl co co

I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 0 I 0 I 1 0 I 0 I
12 11 10 9 8 7 6 5 4 3 2 0

B. Memory reference:

Solutions to Practice Problems 665

Parameter Value

Cache·blcick'offset OxO

CaChe set index Ox1

Cache tag 'OxFF

C"ache hit? (YIN) N
Cache byte returned

I;

Solution to Problem 6. H\ (f?•ge 630) ,,
This problem is a sort of inverse ver~!on of Practice Problems. 6.12-Q.},5 that
requires you to work backward from the contents of the 'cache to derive the
addresses that will hit in a particular set. In this case0 set 3 contains one ,valid
line with a tag of Ox32. Since there is only one v~lid ilne in' the set, four addresses
will hit. These 'acidre~ses have the binary form o 0116 0100 '11xx. Thus, the four
hex addresses that hit in set '3 ~re

Ox064C, OJIOS4D, Ox064E, and Ox064F

Solution to Problem 6.17 (page 636)

A. The key to solving this problem i~ to visualize the picture in Figure 6.48.
Notice that each cache line holds exactly one row of the array,-that the cache
is exactly large enough to hold one array, and that.for a)~!, rqw i of src and
dst maps to the same cache line. Because the cache is too small to hold both
arrays, references to one array keep evicting 'useflll lines ftom the other a{ray.
For example, the write to dst [O]'[OJ evict~ the line tha! was loaded when
we read src [OJ [OJ. So when we next read src [OJ [1J, w.! have a miss.

d,st array src array
' ,

Col. 0 Col. 1 Col. 0 Col. 1

RowO m m RowO m. m
Rowl m m Rowl m h

B. When the cache is 32 bytes, it is large enough to hold both arrays. Thus, the
only misses are the initial cold misses. , .

RowO
Rowl

dst array

Col. 0

m

m

Figure 6.48
' Figure for solUtion to

Problem 6.17.

Col. 1

h
h

RowO
Rowl

src array

Col. 0

m

m

Col. 1

h

h

I

666 Chapter 6 The Memory Hierarchy

Solution to Problem 6.18 (page 637)
Each 16-byte cache line holds two contiguous algae_posi tion structures. Each
loop visits these structures in memory order, reading one integer element each
time. So the pattern for each loop is miss, hit, miss, hit, and so on. Notice that for
this problem we could have predicted the miss rate without actually enumerating
the total number of reads and misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 256 misses.

C. What is the miss rate? 256/512 =SO%.

Solution to Problem 6.19 (page 638)
The key to this problem is noticing that the cache can only hold 1/2 pf the ar­
ray. So the column-wise scan of the second half of the array evicts the lines that
were loaded during the scan of the first half. For example, reading the first ele­
ment of grid [SJ [OJ evicts the line that was loaded when we read elements from
grid [OJ [OJ. This line also contained grid [OJ [1J. So when we begin scanning the
next column, the reference to the first element of grid [OJ [1J misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 256 misses.

C. What is the miss rate? 256/512 = 50%.
D. What would the miss rate be if the cache were twice as big? If the cache were

twice as big, it could hold the entire grid array. The only misses would be
the initial cold misses, and the miss rate would be 1/4 = 25%.

Solution to Problem 6.20 (page 638)
1bis loop has a nice stride-1 reference pattern, and thus the only misses are the

initial cold misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 128 misses.

C. What is the miss rate? 128/512 = 25%.
D. What would the miss rate be if the cache were twice as big? Increasing the

cache size by any amount would not change the miss rate, since cold misses

are unavoidable.

Solution to Problem 6.21 (page 643)
The sustained throughput using large strides from L1 is about 12,000 MB/s, the
clock frequency is 2,100 MHz, and the individual read accesses are in units
of 8-byte longs. Thus, from this graph we can estimate that it takes roughly
2,100/12,000 x 8 = 1.4"" 1.5 cycles to access a word from L1 on this machine,
which is roughly 2.5 times faster than the nominal 4-cycle latency.frorp LL This is
due to the parallelism of the 4 x 4 unrolled loop, which allows multiple loads to

be in flight at the same time.

'·:t, ;;;-,i· .;;-: .,
;;. '· ,,..•~ '""• rt 11

.: '~· ·.
,: • : - . t ··~· .-.. ~;t~· 'J
~-~""'~ ·~····~~~ :-"· ·""' . · ' "·,,. .. ···Running Programs
' ;A;:' -~.~:·:~/! :.,' -~ ' '

· -"''"' · ·-s. ·ystem i ~-~· '.. ' ~ ~ .,_, .
~ J~ ' ~ t "-!·

. ·'711:~£~:'.~::. ·, ·;---
:~ .·'"~~ -,(' ·e· ur exploration of computer systems continues with a closer look

.;>'.", ,: ,·." • ·-0- atthe systems software that builds and runs application programs .
. ·-~~ • ·' ,., ,_ :,,. The linker combines different parts of our programs into a sin­

. l;\·· ·'··, 'g!e·fill' that can be loaded into memory and executed by the processor.
·;~ 'f! f/)~-, .MQd~rn operating systems cooperate with the hardware to provide each
.. , ·:·" ~,:,Program with the illusion that it has exclusive use of a processor and the

, ··~ ;::~''':::;·main memory, when in reality multiple programs are running on the sys-
1 ' '~ ,. • • • ·'.:·,'1.:·e tern at any pomt m lime.

\'''i.';,'<-;;,;.:• . . In the first part of this book, you developed a good understanding of
::t~ (·:'.{ :.i/ie interaction.between your programs and the hardware. Part II of the

'.,'>:. f' '.', .!109]> will broaden your view of systems by giving you a solid understand­
' ' ~,>\~• · 'ing·of the interactions between your programs and the operating system.
'· ;} .,,\./' · 'Yo\l will learn how to use services provided by the operating system to

\''' -.:,-;:;:·:· ·~µil1l system-level programs such as Unix shells and dynamic memory
• ,,,,,, ·~ ,.;; imr'j'lllckages. -.:"'' . ,. l

'~ ... _. ... ,y-

' tr ,_.;if - ~
~~'~ i~ ':.t.i:.

~"'' > ·~· J;.~-.~,;t· 1

·;, .~~~:~~:'.~~·. L
""" - J, ,.,[. ..;.:_...+'~-1

'

667

"

"

I,

Linking· "
1 ll. ,p,

fl 7.1 ,.
'. 7.2

7.3
··' 7.4

,, 7._5

Z.6 ' .
7.7

·7.8

\.7 .. 9

1.1 o·
7.11

7.12

7.13

7.14

7.15

J

Compiler Drivers 671

Static Link[ng 672

Object Files 673

Relocatable Object Files 67 4

Symbols and Symbof·Tables· 675

]yfT\bOI Resolution 679

Relocation 689
.. i iJ

Executable Object Files 695

LQaping. l;x~cutable Object Fil~s 697

Dyn'amtc Lir\)(ing with'Sharecf Lii:!raries 698
' '.r.

Loading and Linking Sh~red Libraries from .Applications 701

Po~ition'lndependerit Code (PIC) 704

' Liprary. lnterposifioning 707

Tools for Manipulating Object Files 713

Summary 71'3

Blbliographic Notes 714

Homework Problems 714

Solutions.to Practice Problems" 71 7

669

" ' 670 Chapter 7 Linking

L
inking is the process of collecting and combining various pieces of code and
data into a single file that can be loaded (copied) into memory and executed.

Linking can be performed at compile time, when the source code is translated
into machine cqde; at load time, when the program is loaded into memory and
executed by the loader; and even at run time, by application programs. On early
computer systems, linking was performed manually. On modern systems, linking
is performed automatically by programs called linkers.

Linkers play a crucial role in software development because they enable
separate compilation. Instead of organizing a large application as one monolithic
source file, we can decompose it into smaller, more manageable modules that can
be modified and compiled separately. When we change one of these modules, we
simply recompile it and relink the application, without having to recompile the
other files.

Linking is usually handled quietly by the linker and is not an important
issue for students who are building small programs in introductory programming
classes. So why bother learning about linking?

• Understanding linkers will help you build large programs. Programmers who
build large programs often encounter linker errors caused by missing modules,
missing libraries, or incompatible library versions: Unless you understand how
a linker resolves references, what a library is, and how a linker uses a library
to resolve references, these kinds of errors will be baffling and frustrating.

• Understanding linkers will help you avoid dangerous programming errors. The
decisions that Linux linkers make when they resolve symbol references can
silently affect the correctness of your programs. Programs that incorrectly
define multiple global variables can pass through the linker without any warn­
ings in the default case. The resulting programs can exhibit baffling run-time
behavior and are extremely difficult to debug. We will show you how this hap­
pens and how to avoid it.

• Understanding linking will help you understand how language scoping rules
are implemented. For example, what is the difference between global and local
variables? What does it really mean when you define a variable or function
with the static attribute?

• Understanding linking will help you understand other important systems con­
cepts. The executable object files produced by linkers play key roles in impor­
tant systems functions such as loading and running programs, virtual memory,
paging, and memory mapping.

• Understanding linking will enable you to exploit shared libraries. For many
years, linking was considered to be fairly straightforward and uninteresting.
However, with the increased importance of shared libraries and dynamic
linking in modern operating systems, linking is a sophisticated process that
provides the knowledgeable programmer with significant power. For exam­
ple, many software products use shared libraries to upgrade shrink-wrapped
binaries at run time. Also, many Web servers rely on dynamic linking of shared
libraries to serve dynamic content.

Section 7.1 Compiler Drivers 671

(a) main. c .:....:. ____________ code/linklmain.c (b) sum. c
-'-''-------------- code/l{nkl~um.c

int sum(int *a, int n); inf sum(int •a, int n)
2 2 {
3 int array[2] = {1, 2}; 3 fnt i, s = O;
4 4
5 int main() 5 for (i O· • i < n· • i++) {
6 { 6 s += a[i];
7 int val = sum(array, 2); 7 }
8 return val; 8 return s;
9 } 9 }

code!link/main.c code/link/sum.c

Figure 7.1 Example program 1. The e~ample program cqnsists,of two source files, main. c and sum. c. The
main function initializes an array of ints, and then calls the sum function to sum the array elements.

This chapter provides a thorough discussion of all aspects ohinking, from
traditional static linking,, to. dynamic linking of shared librari~~ at lo~.d time,
to dynamic linking of shared libraries at run time. We will describe the basic
mechilnisms using real examples, and we will identify"situations in which linking
issues can affect the performance and correctness of your programs. To keep things
concrete and understandable, we will couch our discussion in the context of an x86-
64 system running Linux and using the standard ELF-64 (hereafter referred' to as
ELF,~object file format. However, it is important to realize tqat the basic concepts
of linkjn~ are universal, reg~rdless of.the pp,eratjng sY,~tem, the ISA, or the object
file format. Details may varn but the concept,s are the same.

7.1 Compiler Drivers
11 h

Consider the C program in Figure 7.1. It will serve as a simple running example
throughout this chapter that will allow us to make some important points about
how linkers work.

Most compilation systems provide a compiler driver that invokes the language
preprocessor, compiler, assembler, and linker, as needed on behalf of the user. For
example, to build the exaihple program using the·GNU compilation syslem, we
might invoke the ace driver by typing the following ·command to the shell:

linux>·gcc -Og -o prog main.c sum.c

Figure 7.2 summarizes the activities of the driver as it translates the example
program' from an ASIZII source file'into an executable objt;ct file. (If you want
to see these steps for yourself, run ace with the -v option,) The driver first runs
the C preprocessor (cpp), 1 which translates the C source file main.. c into an ASCII
intermediate fil~'main. i: •, ..

1. In some versions of occ, the preprocessor is integrated into the compiler driver.

672 Chapter 7 Linking

Figure 7.2 main.c sum.c Source files

Static linking. The linker
combines relocatable
object files to form an
executable object file
prog.

Translators
(cpp, eel, as)

main.o

Translators
(cpp, cc1, as)

sum.o Relocatable
object files

Linker (ld)

r
prog Fully linked

executable object file

cpp [other arguments] main. c /tmp/main. i

Next, the driver runs the C compiler (cc1), which translates main. i into an ASCII
assembly-language file main. s:

cc1 /tmp/main. i 0-0g [other arguments] -o /tmp/main. s

Then, the driver runs the assembler (as), which translates main. s into a binary
relocatable object file main. o:

as [other arguments] -o /tmp/main. o /tmp/main. s

The driver goes through the same process to generate sum. o. Finally, it rm,1s the
linker program ld, which combines main'.'o and sum. o, along with the necessary
system object files, to create the binary executable' objeci file prog:

ld -o prog [system object files and args] /tmp/main. o /tmp/sum. o

To run the executable prog, we type its name on the Linux shell's command
line: '

linux> ./prog

The shell invokes a function in the operating system called the loader, which copies
the code and data in the executable file prog into memory, ,and then transfers
control to the beginning of the program.

7.2 Static Linking

Static linkers such as the Linux•LD program take as input a collection of relocatable
object files and command-line arguments and generate.as output a fully Jinked
executable object file that can be loaded and run. The input re\pcatable object
files consist of various code and data sections, where each sectiol) is a contiguous
sequence of bytes. Instructions are in one section, initialized global variables are
in another section, and uninitialized variables are in yet another section.

Section 7.3 Object Files 673

To build the executable, the linker must perform two main tasks:

Step l. Symbol resolution. Object files define and reference symbols, where each
symbol corresponds to a function, a global variable, or a static variable
(i.e., any C variable declared with the static attribute). The purpose of
symbol resolution is to associate each symbol reference with exactly one
symbol definition.

Step 2. Relocation. Compilers and assemblers generate code and' data sections
that start at address 0. The linker relocates these sections by associating a
memory location with each symbol definition, and then modifying all of
the references to those symbols so that they point to this memory location.
The linker blindly performs these relocations using detailed instructions,
generated by the assembler, called relocation entries.

The sections that follow describe these tasks in more detail. As you read, keep
in mind some basic facts about linkers: Object files are merely collections of blocks
of bytes. Some of these blocks contain program code, others contain program
data, and others contain data structures that guide the linker and loader. A linker
concatenates blocks together, decides on run-time locations for the concatenated
blocks, and modifies various locations within the code and data blocks. Linkers
have minimal understanding of the target machine. The compilers and assemblers
th~t generate the object files have already done most of the work.

7.3 Object Files

Object files come in three forms:

Relocatable objeci file. Contains binary code and data in a form that can be
combined with o\her relocatable obfect files at compile time to create an
executab'le object file.

Executable object file. Contains binary code and data in a form that can be
copied directly into memory and executed.

Shared object file. A special type of relocatable object file that can be loaded
into memory and linked dynamically, at either load time or run time.

Compilers and assemblers generate relocata15le obfect files (including shared
object files). Linkers generate executable object files. Technically, an object module
is a sequence of bytes, and an object file is an object module stored on ,disk in a
file. However, we will use these terms interchangeably.

Object ~Jes are organized according to specific, object file formats, which vary
from system'to system. The first Unix systems from Bell Labs used the a.out
format. (To this day, executables are still referred to as a. out files.) Windows
uses the Portable Executable (PE) format Mac OS-X uses the Mach-0 format
Modern x86-64 Linux and Unix systems use Executable and Linkable Format
(ELF). Although our discussion will focus on ELF, the basic concepts are similar,
regardless of the particular format.

t

I

' ,I

i
I
I

I
'

674 Chapter 7 Linking

Figure 7.3 0
ELF header

Typical ELF relocatable
object file.

.text

.rodata

Sections

Describes
object file

sections
{

.data

.bss

.symtab

.rel.text

.rel.data

.debug

.line

.strtab

Section header table

7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable object file. The ELF
header begins with a 16-byte sequence that describes the word size and byte
ordering of the system that generated the file. The rest of the ELF header contains
information that allows a linker to parse and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., relocatable, executable, or
shared), the machine type (e.g., x86-64), the file offset of the s~ction header table,
and the size and number of entries in the section header table. The locations
and sizes of the various sections are described by the section header table, which
contains a fixed-size entry for each section in the object file.

Sandwiched between the ELF header and the section header table are the
sections themselves. A typical ELF relocatable object file contains the following
sections:

. text The machine code of the compiled program .

. rodata Read-only data such as the format strings in printf statements, and
jump tables for switch statements .

. data Initialized global and static C variables. Local C variables are maintained
at run time on the stack and do not appear in either the . data or . bss
sections.

. bss Uninitialized global and static C variables, along with any global or static
variables that are initialized to zero. This section occupies no actual space
in the pbject file; it is merely a placeholder. Object file formats distinguish
between initialized and uninitialized variables for space efficiency: unini·
tialized variables do not have to occupy any actual disk space in the object
file. At run time, these variables are a/located in memory with an initial
value of zero.

Section 7.5 Symbols and Symbol Tables 675

,.,. ·~ ~_.,,, ... !!"Ji""'"" -• ""'¥" '-~ ""·"'"'!:·"'"'~ - "'"/.-""' "" '''"'""''"'"'<it~.·~'- r~~..,..,,...,"'ll' if!,, -· ~.

A~l!le 'l\'~y is uni[litia"llzed data ~ailed .. bss~. ,. , •

The use of the term . bss to denote uninitialized data is universal.·Uwas"orfginally ah acronym 'for the
"block'started by symbol" directive from the IBM 704/assembly language (circa 1957) and the ~cronym
has stucbA'"simple way to remember the d(fference bet"'.een 'lhe .data and . bss seption~ is to think
of ubss" as an abbreviation foI "Better Save Space! .. " " ..,;,t 1,. ·•

. symtab A symbol table with information about functions and global variables
that are defined and referenced in the program. Some programmers mis­
\~kenly believe that a program must be compiled with the -g option to
get syljlbol table information. In ~act, every relocatable object file has
a symbol table in . symtab (unless the programmer has specifically re­
moved it with the STRIP command). However, unlike the symbol table
inside a compiler, the . symtab symbol table does not contain entries for
local variables .

. rel. text •A list of locations in the . text section that will need to be modified
when the linker combines this object file with others. In general, any
instruction that calls an external function or references a global variable
will need to be modified. On the other hand, instructions that call local
functions do not need to be modified. Note that relocation information
is not needed in executable object files, and is usually omitted unless the
user explicitly instructs the linker to include it.

. rel. data Relocation information for any global variables that are referenced
or defined by the module. In general, any initialized global variable whose
initial value is the address of a global variable or externally defined func­
tion will need to be modified .

. debug A debugging symbol table with entries for local variables and typedefs
defined in the program, global variables defined and referenced in the
program, and the original C source file. It is only present if the compiler
driver is invoked with the -g option .

. line A mapping between line numbers in the original C source program and
machine code instructions in' the . text section. It is only pre~~nt if the

,.compiler driver is invoked with the -g option .

. strtab A string table for the symbol tables in the . symtab and . debug sec­
tions and for. the section names in the section headers. A string table is a
sequence of null-terminated character strings.

7.5 Symbols and Symbol Tables

Each relocatable object module, m, has a symbol table that contains information
about the symbols that are defined and referenced by m. In the context of a linker,
there are three different kinds of symbols:

r

676 Chapter 7 Linking '
• Global symbols that are defined by module m and that can be referenced by J

other modules. Global linker symbols correspond to nonstatic C functions and
global variables.

• Global symbols"that are referenced by module m but defined by some other
module. Such symbols are called externals and correspond to nonstatic C
functions and global variables that are defined in other modules.

• Local symbols that are defined and referenced exclusively by module m. These
correspond to static C functions and global variables t)lat are defined with the
s,tatic attribute. These symbols are visible anywhere within module m, but
cannot be referenced by other modules.

It is important to realize that local linker symbols are not the same as local
program variables. The symbol table in . symtab does n~t contain any symbols
that correspond to local nonstatic,program variables. These are managed at run
time on the stack and are not of interest to the linker.

Interestingly, local procedure variables that are defined with the C static
attribute are not managed on the stack. Instead, the compiler allocates space in
. data or . 'bss for each definition and creates a local linker symbbl in the symbol
table with a unique name. For 'example, suppose a pair of functions in the same
module define a static local variable x:

int f()

2 {

3 static int x = O;

4 return x;

5 }

6

7 int g()
8 {

9 static int x = 1;

10 return x·
'

11 }

In this case, the compiler exports a pair oflocallinker symbols with different names
to the assbhbler. For example, it miglit use x. 1 for the definition in function f and
x. 2 for tlie ·definition in function g.

Symbol tables are built by assemblers, using symbols exported by the compiler
into the assembly-language . s file. An ELF symbol table is contained in the
. symtab section. It contains an array of entries. Figure 7A·shows the format of

each entry.
The name is a byte offset into the string table that points to the null-terminated

string name of the symbol. The value is the symbol's address. For relocatable
modules, the value is an offset from tll.e beginning of the section where the object
is defined. For executable qbject files, the value is. an absolute run-time address.
The size is the size (in bytes).bf the object. The type is usually either data or
function. The symbol table elm aiso contain entries. for the individual sections•

Section 7.5 Symbols and Symbol Tables 677

$... "'"''·~--""i/_l'Wff''::'j'&J'l~'i""'fif/!'"'llH''"t''""'-~""-""""'~-.~~- 1~-,- ~if·~,: '"~'"}" ,~· ~"'off

N~w to;c? . . !-fidingyjlfi~pJ(,.~nd fypi:tion na.i;nhw)th:s.tat~.cr~, •• ,

, G}rqgtll.lmne'ts•"use;the stafi2lat!ribute1to hide' variaqle aha 'furictiBn·a,fo!arations inside ,modules,
'. hiucfr as'j>Ou W(\uld use public ah'd'phvdte aeclafatidns'in$Javf. lihd·€+'1-. 'ln. C; source files play the
'·role df mo\i.iiie,s. Any glooal 'vafi~.bl€br JunctiOH qec)ar~d with Jh~. st'!ti-t:attrlbut~ is privatt; tO: that·
• module. Similarly, any·gfobal vaHaSle or function decfarea withbtittli.e'stah~;atfribute is public and
; c~n be,a9ces1~d by any.other I]:!Oduie. It i§ ~f:>od progra~mi~gpni.s.tice to pi;otect your variables·and

functidns'wittt 'the S1;p.tfc attributeiwherev,er !lOSSib!e. • : • ~
~,:-~~ ~- '·' -t'•'" }:: -. '• '"~'"' ~ ~

___ ,,, ~.,.,, ""~ ~"'-"""''"' - """' ./J>fl.· ~~

------------~------------ codeJ/ink/elfstructs.c
'typedef struct {

2 int
3

I
char

4

5 char
6 short
7 long
8 long

name;
type:4,
binding:4;
reserved;
section;
value;
size;

I* string table offset *I
/* Func'tion or data (4 bits) */
I• Local or global (4 bits) •/
I• Unused •/
/* Section header index */
/* Section offset or ~bsolute address */
I* Object size in bytes *I

•, } Elf64_S,Y,mbol;

~~---~------------------- code/linklelfstructs.c

F}gure 7.4 ELF symbol table entry. The type and binding fields are 4 bits each.

and for the path name of the original source file. So there are distinct types for
these objects as well. The binding field indicates whether the symbol is local or
global.

Each symbol is assigned to some section of the object file, denoted by the sec­
tion field, which is an index into the section header table. There are three special
pseudosections that don't have entries in the section header table: ABS is for sym­
bols that should not be relocated. UNDEF is for undefined symbols-that is, sym­
bols that are referenced in this object module but defined elsewhere. COMMON
is for uninitialized data objects that are not yet allocated. For COMMON symbols,
the value field gives the alignment requirement, and size gives the minimum size.
Note that these pseudosections exist only in relocatable object files; they do not
exist in executable object files.

The distinction between COMMON and . bss is subtle. Modern versions of
Gee assign symbols in relocatable object files to COMMON and . bss using the
following convention:

COMMON
.bss

Uninitialized global variables

Uninitialized static variables, and global or static variables that are
initialized to zero

678 Chapter 7 Linking

The reason for this seemingly arbitrary distinction stems from the way the linker
performs symbol resolution, which we will explain in Section 7 .6.

The GNU READELF progr,am is a handy tool for viewing the contenis of object
files, For example, here are the last three symbol table entries for the relocatable
object file main. o, from the example program in Figure 7.1. The first eight entries,
which are not s!iown, are local symbols that the linker uses internally.

Num: Value
8: 0000000000000000
9: 0000000000000000

10: 0000000000000000

Size Type
24 FUNC

Bind Vis
GLOBAL DEFAULT

8 OBJECT GLOBAL DEFAULT
0 NOTYPE GLOBAL DEFAULT

Ndx Name

1 main
3 array

UNO sum

In this example, we see an entry for the definition of global symbol main, a 24-
byte function located at an offset (i.e., value) of zero in the . text section. This
is followed by the definition of the gl'1bal symbol array, an 8-byte object located
at an offset of zero in the . data sectioµ. The last entry comes from tjie reference
to the external symbol sum. READELF identifies each section by an integer index.
Ndx=1 denotes the . text section, and Ndx=3 denotes the . data section.

tBra!tif e-.i>jj)Bfl~ffi1iJ\;!iil;-meZti)'..j. :_:;;,~!:t : . ':f';, ir ' ,J:..; · \"' J:~ · · ·i
This problem concerns the m. o and swap. a modules from Figure 7.5. For each
symbol that is defined or referenced in swap. o, indicate whether or not it will
have a symbol table entry in the . symtab section in module swap. or If so, indicate
the module that defines the symbol (swap. o or m. o), the symbol type (local, global,
or extern), and the section (.text, . data, . bss, or COMMON) it is' assigned to
in the module.

(a) m. c
------------- code/link!m.c

(b) swap. c
--~--------- code/link/swap.c

void swap(); extern int buf[];
2 2
3 int buf [2] {1, 2}; 3 int •bufpO = &buf[O];
4 4 int *bufpl;
5 int main() 5

6 { 6 void swap()
7 swap(); 7 {
8 return O; 8 int temp;
9 } 9

code/linklm.c 10 bufpl 7 &buf[1];
11 temp = ~bufpO;
12 •bufpO = •bufpl;
13 •bufp1 = temp;

14 }

------------ codeJlink!swap.c

Figure 7.5 Example program for Practice Problem 7. 1.

Section 7.6 Symbol Resolution 679

Symbol . symtab entry? Symbol type Module where defined Section

buf
bµf pO
bufp1

swap

temp

7.6 Symbol Resolution

The linker resolves symbol references by associating each reference with exactly
one symbol definition from the symbol tables of its input relocatable object files.
Symbol resolution is straightforward for references to local symbols that are de­
fined in the sanie module as ti}F reference. The compiler allows ,only one pefinition
of each local symbol per module. The compiler also ensures that static local vari­
ables, which get local linker symbols, have unique names.

Resolving references to global symbols, however, is trickier. When the com­
piler encounters a symbol (either a variable or function name) that is not defined
in the current module, it assumes that it is defined in some other module, gener­
ates a linker symbol table entry, and leaves it for the linker to handle. If the linker
is unable to find a definition for the referenced symbol in any of its input modules,
it prints an (often cryptic) error message and terminates. For example, if we try to
compile and linK the following source file on a Linux machine,

void foo(void);
2

3 int main() {
4 foo();
s returzi O;
6 }

' then the compiler runs without a hitch, but the linker terminates when it cannot
resolve the reference to foo:

linux> gee -Wall -Og -o linkerror linkerror.c
/tmp/ccSz5uti.o: In function 1main':
/tmp/ccSz5uti.o(.text+Ox7): undefined reference to rfoo'

Symbol resolution for global symbols is also tricky because multiple ,object
modules might define global symbols with the same name. In this case, the linker
must either l!ag an error or somehow choose one of the definitions and discard
the rest. The approach adopted by Linux systems involves cooperation between
the compiler, assembler, and linker and can introduce some baffling bugs to the
unwary programmer.

i ..
' "

'l
I

I

·I
"

I
"I

680 Chapter 7 Linking

•
Aside Mangling of Unker,symbqls in C-1'+,!ln<;l'J;;"va,

Both C++ and Java allow overload'ed methods that have the same name in tlle sbltfce cdde but different
param"eter lists. So how ~oes the linker tell the difference lie tween these differ~nt ~verlo~d~d functions?
Overloaded' functions'\h. C++ and Java work. because the co_ippiler'encodes each. unique .method and
parameter list combination into a unique name for the linker. 'This encoding process i~ called mangling,

and the•inverse proc~SS is kn,?Wn as demang/ing.
Happily, C++ arid '.{ay;i 11se compatible' mangling schemes. A mangled.class name consists of the

!nt.eger numb!'r of characters in the name.,followed•by the.original name. f()r example" the class Foo
is.encoded as 3Foo. A met\lod is.rncode,t as the original m~thod nam.e,,followpd ~y __ ,followed
by the mangled class name, follo;.vetl by single Jetter encodings of each 'a'rgument. For ·damp1e;
Fqo: : bar ,(int, long~ i~ ~mcoded as !Ii~ -,-P~~qi;t. Similar~chemes areuse<j. tp ip~ngl!' glol;'al v~~iable
and template names.~ .r _. x'- ~ ~t ~·· r pf I.. '? '~ l..

7 .6.1 How Linkers Resolve Duplicate Symbol Names

The input to the linker is a collection of relocatable object modules. Each of these
modules defines a set of symbols, some of which are local (visible only to the
module that defines it), and some of which are global (visible to other modules).
What happens if multiple modules define global symbols with the same name?
Here is the approach that Linux compilation systems use.

At compile time, the compiler exports each global symbol to the assembler
as either strong or weak, and the assembler encodes this information..implicitly
in the symbol table of the relocatable object file. Functions and initialized global
variables get strong symbols. Uninitialized global variables get weak symbols.

Given this notion of strong and weak symbols, Linux linkers use the following
rules for dealing with duplicate symbol names:

Rule 1. Multiple strong symbols with the same name are not allowed.

Rule 2. Given a strong symbol and multiple weak symbols with the same name,
choose the strong symbol.

Rule 3. Given multiple weak symbols with the same name, choose any of the
weak symbols.

For example, suppose we attempt to compile and link the following two Cmodules:

1 I• fool.c •/

2 int main()

3 {

4 return O;
5 } ..
1 I• bar1. c •I
2 int main()

3 {

4 return O;
5 }

Section 7.6 Symbol Resolution 681

fn this Case, the linker will generate. an error message because the strong symbol
main is defined multiple times (rule 1):

linux> gee foo1.c bar1.c
/tmp/ccq2Uxnd.o: In function 'main 1 :

bar1.c:(.text+Ox0): multiple definition of· 1main'

Similarly, the linker will generate an error message for the following modules
because the, strong symbol x is defined twice (rule 1):

fl ' 1(11 •

1 /* foo2.c */
2 int x = 15213;
3

4 int main()
5 {

6 return O;
7 }

• 1 I• bar2.c •/
2 int x = 15213;
3

4 void f()
5 {

6 }

However, if xis uninitialized in one module, then the linker will qui~tly choose
the strong symbol defined in the other (rule 2):

1 /• foo3.c •/
2 #inClude <stdio.h>
3 void f(void);
4

5 int x = 15213;
6

" 7 int main(1l
8 {

9 £0;
10 printf("x %d\n 11

, x);
11 retlfrD O;
12 }

I• bar3.c •I
2 int x;
3

4 void f()
5 {

6 x = 15212;
7 }

682 Chapter 7 Linking

At run time, function f changes the value of x from 15213. to 15212, which
might come as an unwelcome surprise to the author of function main!· Notice.that
the linker normally gives no indication that it has detected multiple definitions
ofx: ·

linux> gee -o foobar3 foo3.c bar3.9
linux> ,/toobar3
x =',15212

The same thing can happen if there are two weak definitions of x (rule 3):

I• foo4.c •/
2 #include <stdio.h>

3 void f(void);

4

5 int x;
6

7 int main()
8 {

9 x = 15213;

10 f();
11 printf (11 x %d\n 11

, x);

12 return O;
13 }

I• bar4.c •I
2 int X';
3

4 void f()
5 {

6 x = 15212;

7 }

The application of rules 2 and 3 can introduce some insidious run-time bugs
that are incomprehensible to the unwary programmer, especially if the duplicate
symbol definitions have different types. Consider the following example, in which
x is inadvertently defined as an int in one module and a double in another:

1 /• foo5.c •/
2 #include <stdio.h>

3 void f(void);
4

.5 int y 15212;

6 int x 15213;

7

8 int mainO
9 {

10 f();

Section 7.6 Symbol Resolution 683

11 printf (11 x = Ox%x y Ox%x \nn,
12 x, y).;

13 return O;
14 }

1 I• bar5.c •I
2 double x;
3

4 void f()
5 {

6 x = -0.0;
7 }

On an x86-64/Linux machine, doubles are 8 byte&. and ints are 4 bytes. On
our system, the address of xis Ox601020 and the address of y is Ox6Cl1024. Thus,
the assignment x = -0. O in line 6 of bar5 . c will overwrite the memory locations
for x and y (lines 5 and 6 in foo5. c) with the double-precision floating-point
representation of negative zero!

linux> gee -Wall -Dg -o foobarS foo5.c bar5.c
/usr/bin/ld: Warning: alignment 4 of symbol 'x' in /tmp/cclUFK5g.o
is smaller than 8 in /tmp/ccbTLcb9.o
linux> ./foobar5
x = OxO y = Ox80000000

This is a subtle and nasty bug, especia~y because it triggers only a warning from
the linker, and because it typically manifests itself much later in the execution
of the program, far away from where the error occurred. In a large system with
hundreds of modules, a bug of this kind is extremely hard to fix, especially because
many programmers are not aware of how linkers work, and because they often
ignore compiler warnings. When in doubt, invoke the linker with a flag such
as the ace -fno-common flag, which triggers an error if,it encounters multiply­
defined global symbols. Or use the -Werror option, which turns all warnings into
errors.

In Section 7.5, we saw how the compiler assigns symbols to COMMON and
. bss using a seemingly arbitrary convention. Actually, ihis conveniion is due to
the fact<that in some cases the linker all9ws multiple modules to define global
symbol~ with the slime name. When the compiler is translating some module and
encounters a weak global symbol, say, x, it does not know if other modules also
define x, and if so,'it cannot predict which of the multiple instances of x the linker
might choose. So the compiler defers the decision to the.linker by assigning x tci
COMMON. On the other hand, if xis initialized to zero, then it'is a strong symbol
(and thus must be unique by rule 2), so the compiler can confidently assign it to
: bss. Similarly, static symbols are unique by construction, so the compiler can
confidently assign them to either .data or . bss.

I
I

I
~

684 Chapter 7 Linking

IPlA%ft;ff'p1£m~;(~fi~Pmm'='~," .!::i~mli~~:~i11;.re::i
In this problem, let REF(x.i) --> DEF(x.k) denote that the linker will associate an
arbitrary reference to symbol x in module i to the definition of x in module k.
For each example that follows, use this notation to indicate how the linker would
resolve references to the multiply-defined symbol in each module. If there is a
link-time error (rule 1), write "ERROR". If the linker arbitrarily chooses one of the
definitions (rule 3), write "UNKNOWN".

A. I• Module 1 •/ /• Module 2 •/

int main() int main;

{ int p20

} {

}

(a) REF(main.1)--> DEF(____ . ___)

(b) REF(main.2)--> DEF(____ . ___)

B. I• Module 1 •/
void main()

I• Module 2 •/
int main = 1;

int p20 {

} {

}

(a) REF(main.1)--> DEFC ___ . ___)

(b) REF(main.2) --> DEF()

c. /• Module 1 •I I• Module 2 •I
int Xj double x = 1.0;

void main() int p20

{ {

} }

(a) REF(x.1)--> DEF(____ .)

(b) REF(x.2) --> DEF()

7.6.2 Linking with Static Libraries

So far, we have assumed that the linker reads a collection otrelocatable object files
and links them together into an output executable file. In practice, all compilation
systems provide a mechanism for packaging related object modules into a single
file called a static library, wjiich can then be supplied as input to the linker. When
it builds the output executable, the linket copies only the object modules in the
library that are referenced by the application program. i. • 1

Why do systems support foe notion of libraries? Consider ISO G:99, which
defines an extensive collection of standard I/O, string manipulation, and integer
math functions such as atoi, printf, scanf, strcpy, and rand. They are available

Section 7.6 Symbol Resolution 685

to every C program in the lib.c. a library. ISO C99 also defines an extensive
collection oftloating-point math functions such as sin, cos, and sqrt in the libm. a
library.

Consider the different approaches that compiler developers might use to pro­
vide these functions to users without the benefit of static libraries. One approach

· would be ttf have the compiler recognize calls to the standard functions and to
generate the appropriate code directly. Pascal, which provides a small set of stan­
dard functions, takes this approach, but it is not feasible for C, because of the large
number of standard functions defined by the C standard. It would add significant
complexity to the compiler and would require a new compiler version each time a
function was added, deleted, or modified. To application programmers, however,
this approach would be quite convenient because the standard functions would
always be available.

Another approach would be to put all of the standard C functions in a single
relocatable·object module, say, libc. o, that application programmers could link
into their executables:

linux> gee main.c /usr/lib/libc.o

This approach has the advantage that it would decouple the implementation of the
stanllard functions from the implementation of'the compil'er~•and would still M
reasonably convenient for programmers. However, a'big disadvantage is that ev­
ery executable file in a systein would now contain a complete copy ofthe'cbllection
of standard functions, which would be' extremely wasteful of disk space. (On our
system, libc'. a is about 5 MB and libm. a is about 2 MB.) Worse, each running
program would now contain its own copy of these functions in1memory, which
would be extremely wasteful of memory. Another big disadvantage is'that any
change to any standard function, no matter how small, would require the library
developer to recompile the entire source' file, a time-consuming operation that
would complicate'the development and maintenance of tlfo siandatd functions.

We could address some' of these problems· t\y creating a 'Separate•relocatable
file for each standard function and storing them in a well-known directory. How­
ever, this approach would require application programmers to explicitly linl<l the
appropriate object modules into their executables, a' process that would be error
prone and time consuming: ' · f

linux> gee main.c /usr/lib/printf.o /usr/lib/scanf.o ...

The notion of'a static library was developed to resolve the disadvantages of
these various approaches. Related functiQns can be compiled into separate object
modules·and then pat:kaged in a single static library file .. Applii:ation programs
can then use any of the functions defined in the library by specifying ·a single
filename on the· command line. For example, a program that.uses functions from
the C standard library and the math library could be compiled and linked with a
command of the form

linux> gee main.c /usr/lib/libm.a /usr/lib/ljbc.a

I

686 Chapter 7 Linking

(a) addvec. o
-'--"----------- code!link!addvec.c

(b) multvec. o
------------ code!linklmultvec.c

1 int addcnt = O; int multcnt = O;

2

3 void addvec(int •x, int •y,

4 int •z, int n)

2

3 void multvec(int *X, int *.Y•
4 int *Z, int n)

s { s {

6 int i; 6 int i;

7 7

B addcnt++; s multcnt++;

9

10 for (i = O; i < n; i++)

11 z[i) = x[i) + y [i) ;

9
10 for (i = O; i < n; i++)

11 z[i) = x[i) * y[i);

12 } 12 }

------------ code!link/addvec.c ------------ code!link/multvec.c

Figure 7.6 Member object files in the libvector library.

At link time, the linker will only copy the object modules that are referenced
by the program, which reduces the size of the executable on disk and in memory.
On the other hand, the application programmer only needs to include the names
of a few library files. (In fact, C compiler drivers always pass li be. a to the linker,
so the reference to libc. a mentioned previously is unnecessary.)

On Linux systems, static libraries are stored on disk in a particular file format
known as an archive. An archive is a collection of concatenated relocatable object
files, with a header that describes the size and location of each member object file.
Archive filenames are denoted with the . a suffix.

To make· our discussion of libraries concrete, consider the pair of vector
routines in Figure 7 .6. Each rout\ne, defined in its own object module., performs a
vector operation on a pair of input vectors and stores the resultjn an output vector.
As a side effect, each routine records the number of times it has .been called by
incrementing a global variable. (1bis will be useful when we explain the idea of
position-independent code in Section 7.12.)

To create a static library of these functions, we would use the AR tool as follows:

linux> gee -c addvec.c multvec.c
linux> ar res libvector.a addvec.o multvec.o

To use the library, we might write an application such as main2. c in Figure 7.7,
which invokes the addvec library routine. The include (or header) file vector.h
defines the function prototypes for the routines in libvector. a,

To build the executable, we would compile and link the input files main2. o

and libvector. a:

linux> gee -c main2.c
linux> gee -static -o prog2c main2.o ./libvector.a

Section 7.6 Symbol Resolution 687

------------------------- code!link/main2.c
#include <stdio.h>

2 #include 11 vector.h 11

3

4 int x[2] {1, 2};
5 int y[2] {3, 4};
6 int z [2];

?
8 int main()
9 {

" 10 addvec(x, y', z, 2);
11 printf("z = [%d %d]\n 11

, z [OJ, z [1]);
12 return O;
13 }

--.---,-------------,..--------.----- code./link/main2.c

Figure 7.7 Example program 2. This program invokes a function in the libvector
library.

Source files main2. c vector. h

Translcitors
{cpp, cc1, ~as) libvector.a libc:: a Static libraries

Relocatable
object files

main2.o addvec.o

Linker (ld)

printf . o and any other
modules called by printf. o

prog2c Fully linked
'executable Object file

Figure 7.8 Linking with static libraries.

or equiy,al,ently,

iinux> gee -c main2.c

linux> gee -static -o prog2c main.2.o -L. -lvector
•

Figure 7.8 summarizes the activity of the linker. The -static argument tells the
compiler driver that the linker should build a fully linked executable phject file
that can be lo~dep into m~mory and run without any further linkin& a\ load tjme.
The -lvector argument ts a shorthand for libvector.a, and the -L. argument
tells the linker to look for l:lbvector. a in the current directory.

When the linker runs, it determines that the addvec symbol defined by
addvec. o i~ referenced by main2. o, so it,copies addvec. o into the executable.

I

I

688 Chapter 7 Linking

Since the program doesn't reference any symbols defined by mul tvec. o, the linker
does not copy this module into the executable. The linker also copies the printf. o
module from li be. a, along with a number of other modules from the C run-time
system.

7.6.3 How Linkers Use Static Libraries to Resolve References

While static libraries are useful, they are also a source of confusion to program­
mers because of the way the Linux linker uses them to resolve external reference&
During the symbol resolution phase, the linker scans the relocatable object files
and archives left to right in the same sequential order that they al?pear on the
compiler driver's command line. (The driver automatically translates any . c files
on the command line into . o files.) During this scan, the linker main fains a set E
of relocatable object files that will be merged to form the executable, a set U of
unresolved symbols (i.e., symbols referred to but not yet defined), and a set D of
symbols that have been defined in previous input files. Initially, E, U, and D are
empty.

• For each input file f on the command line, the linker determines if f is an
object file or an archive. If f is an object file, the linker adds f to E, updates
U and D to reflect the symbol definitions and references in f, and proceeds
to the next input file.

• If f is an archive, the linker attempts to match the·u.nresolved symbols in U
against the symbols defined by the members of the archive. If some archive
member m defines a symbol that resolves a reference in U, then m is added
to E, and the linker updates U and D to reflect the symbol definitions and
references in m. 1bis process iterates over the member object files in the
archive until a fixed point is reached where U and D no longer change. At
this point, any member object files not contained in E are simply discarded
and the linker proceeds to the next input file.

• If U is nonempty when the linker finishes scanning the input files on the
command line, it prints an error and terminates. Otherwise, it merges and
relocates the object files in E to build the output executable file.

Unfortunately, this algorithm can result in some baffling link-time errors
because the ordering oflibraries and object files on the command line.is significant
If the library that defines a symbol appears on the commandJine before the object
file that references that symbol, then the reference will not be resolved and linking
will fail. For example, consider the following:

linux> gee -static ./libvector.a main2.c
/tmp/cc~XH6Rp.o: In function 'main 1

:

/tmp/cc9XH6Rp.o(.text+Ox18): undefined reference to 'addVec'

What happened? When libvector. a is processed, U is empty, so no member
object files from libvector. a are added to E. Thus, the reference to addvec is
never resolved and the linker -emits an error message and terminates.

Section 7.7 Relocation 689

The,general rule for libraries is to place. them at.the end of the command
line. If tire members of the different libraries are independent, in that no member
references a symbol defined by another member, then the libraries can be placed
at the end of the command line in any order. If, on the other hand, the libraries
are not independent, then they must be qrdered so that for each symbol s that
is referenced externally \>Y a member of an archive, at least one definition of s
follows a reference to s on the command line. F9r example, suppose foo. c calls
fu~ctions in libx. a and libz. a that call functions in liby. a. Then libx. a and
libz. a must precede liby. a on the command line:

linux> gee foo.c libx.a libz.a liby.a

Libraries can be repeated on the command line if necessary to satisfy the
dependence r"quirements. For example, suppose foo. c calls a function in libx. a
that calls a function in liby. a that calls a function in libx. a. Then libx. a must
be repeated on the command line:

linux> gee foo.c libx.a liby.a libx.a

Alternatively, we could combine libx. a and liby. a into a single archive.

[[r~,.~~ a··~:t-8)".~L~1~~~;~\1At'";~~~
~-io-.~· ... J~.-1~ _,,_,,,.,..,,,,

Let a and b denote obj'ect modules or st,atic libraries in the current directory, and
let '}-jjb. denote that a depends on b, in the sense that b defines a symbol that is
referenced by a. For each of the following scenarios, show the minimal command
l\ne (i.e., one with the least number of object file and library arguments) that will
allow the static linker to resolve all symbol references.

A. p.o--> libx.a

B. p.o--> libx.a--> liby.a

C. p.o--> libx.a--> liby.a and liby.a--> libx.a--> p.o

7.7 Relocation

Once the linker has completed the symbol resolution step, it has associated each
symbol reference in the code with exactly one symbol definition (i.e., a symbol
table entry in one of its input object modules). At this point, the linker knows
the exact sizes of the code and data sections in its input object modules. It is now
ready to begin the relocation step, where it merges the input modules and assigns
run-time addresses to each symbol. Relocation consists of two steps:

1. Relocating sections and ~ymbo/ definitions. In this st~p, the linker merges all
sections of the same type into a new aggregate section of the same type. For
example, the . data sections from the input modules are all merged into one
section that will become the . data section for the output executable object

690 Chapter 7 Linking

file. The linker then assigns run-time memory addresses to the new aggregate
sections, to each section defined by the input modules, and to each symbol
defined by the input modules. When this step is complete, each instruction
and global variable in the program has a unique run-time memory address.

2. Relocating symbol references within sections. In this step, the linker modifies
every symbol reference in the bodies of the code and data sections· so that
they point to the correct run-time addresses. To· perform this step, the linker
relies on data structures in the relocatable object modules known as relocation
entries, which we describe next.

7.7.1 Relocation Entries

When an assembler generates an object module, it does not know where the code
and data will ultimately be stored in memory. Nor does it know the locations of
any externally defined functions or global variables that are referenced by the
module. So whenever the assembler encounters a reference to an object whose
ultimate location is unknown, it generates a relocation entry that tells the linker
how to modify the reference when it merges the object file into an executable.
Relocation entries for code are placed in . rel. text. Relocation entries for data
are placed in . rel. data.

Figure 7.9 shows the format of an ELF relocation entry. The offset is the
section offset of the reference that will need to be modified. The symbol identifies
the symbol that the modified reference sl\ould poi,nt to. The type tells the linker
how to modify the new reference. The addend is a signed constant that is used by
some types of relocations to bias the value of the modified reference. -

ELF defines 32 different relocation types, many quite arcane. We are con­
cerned with only the two most basic relocation types:

R_X86_64_PC32. Relocate a reference that uses a 32-bit PC-relative address.
Recall from Section 3.6.3 that a PC-relative address is an offset from
the current run-time value of the program counter (PC). When the CPU
executes an instruction using PC-relative addressing, it forms the effective
address (e.g., the target of the call instruction) by adding the 32-bit value

------------------------- code!link/elfstru>ts.c

1

2

3

4

5

6

typedef struct {
long offset;
long type:32,

symbol:32;
long addend;

} Elf64_Rela;

/* Off set of the reference to relocate */
/* Relocation type */
/* Symbol table index */
I* Constant part of relocation expression */

------------------------- code/linklelfstructs.c

Figure 7.9 ELF relocation entry. Each entry identifies a reference that must be relocated
and specifies how to compute the modified reference.

Section 7 .7 Relocation 691

encoded in the instruction to the current run-time value of the PC, which
is always the address of the next instruction in memory.

R_X86_64_32. Relocate a reference that uses'a 32-bit absolute address. With
absolute addressing, the CPU directly uses the 32-bit value encoded in
the instruction as the effective address, without further modifications.

These two relocation types support the x86-64 small code model, which as­
sumes that the total size of the code and data in the executable object file is smaller
than 2 GB, and thus can be accessed at run-time using 32-bit PC-relative addresses.
The small code model is the default for acc. Programs larger than 2 GB can be
compiled using the -mcmodel=medium (medium code model) and-mcmodel=large
(large code model) flags, but we won't discuss those.

7.7.2 Relocating Symbol References

Figure 7.10.shows the pseu'docode for the linker's relocation algorithm. Lines 1
and 2 iterate over each sections and each relocation entry r associated with each
section. For concreteness, assume that each section s is an array of bytes and that
each relocatitm entry r is a struct of type Elf64_Rela, as defined in Figure 7.9.
Also, assume that when the algorithm runs, the linker has already·chosen run­
time addresses for each section (denoted ADDR(s)) and each symbol (denoted
ADDR (r-. symbol)). Line 3 computes the address in the s array of the 4-byte ref­
erence that needs to be refocated. If this reference uses PC-relative addressing,
then it is relocated by lines 5-9. If the reference' uses absolute addressing, then it
is relocated by lines 11-13.

foreach section s {
2 foreach relocation entry r {
3

4

5

6

7

8

9

10

11

12

13

14 }

15 }

refptr = s + r.offsetj I* ptr to reference to be relocated•/

/* Relocate a PC-relative reference •/
if (r.type == R_X86_64_PC32) {

}

refaddr ADDR(s) + r.offset; /• ref 1s run-time address •/
•refptr = (unsigned) (ADDR(r.symbol) + r.addend - refaddr);

I• Relocate an absolute reference •/
if (r.type == R_X86_64_32)

•refptr = (unsigned) (ADDR(r.symbol) + r.addend);

Figure 7.10 Relocation algorithm.

I
I
·1
•

692 Chapter 7 Linking

-----------------------------_c:. __ code/link/main-relo.d

1

2

3

4

5

0000000000000000 <main>:
0: 48 83 ec 08
4: be 02 00 00 00
9: bf 00 00 00 00

e:

13:
17:

e8 00 00 00 00

48 83 c4 08
c3

sub $0x8,%rsp
mov $0x2,%esi
mov $0xO,%edi

a: R_X86_64_32 array

callq 13 <main+Ox13>
f: R_X86_64_PC32 sum-Ox4

add $0x8,%rsp
retq

Xedi == &array

Relocation entry

sum()

Relocation entry
6

7

8

9

-------------------------------- code/linklmain-relo.d

Figure 7 .11 Code and relocation entries from main. o. The original C code is in Figure 7.1 .

Let's see how the linker uses this algorithm to relocate the references jn our
example program in Figure 7.1. Figure 7.11 shows the disassembled code from
main.o, as generated by the GNU OBJDUMP tool (obj dump -dx main. o).

The main function references two global symbols, array and sµm. For each
reference, the assembler has generated a relocation entry, which is displayed on
the following line.2 The relocation entries tell the linker that the reference to sum
should be relocated using a 32-bit PC-relative address, and the reference to array
should be relocated using a 32-bit absolute address. The next two sections detail
how the linker relocates these references .

Relocating PC-Relative References

In line 6 in Figure 7.11, function main calls the sum function, which is defined in
module sum. o. The call instruction begins at section offset Oxe and consists of the
1-byte opcode Oxes, followed by a placeholder for the 32-bit PC-relative reference

to the target sum. ·
The corresponding relocation entry r consists of four fields:

r. offset Oxf
r.symbol sum
r.type R_X86_64_PC32
r . addend = -4

These fields tell the linker to modify the 32-bit PC-relative reference starting at
offset Oxf so that it will point to the sum routine at run time. Now, suppose that
the linker has determined that

ADDR(s) = ADDR(.text) = Ox4004d0

2. Recall that relocation entries and instructions are actually stored in different sections of the object
file. The OBJDUMP tool displays them together for convenience.

Section 7.7 Relocation 693

and

ADDR(r.symbol) = ADDR(sum) = Ox4004e8

Using the algorithm in Figure 7.10, the linker, jirst computes the run-time
address of the reference (line 7):

refaddr ADDR(s) + r.offset
Ox4004d0 + Oxf
Ox4004df

It then updates the reference so that it will point to the sum routine at run time
(line 8):

*refptr (unsigned)
(unsigned)
(unsigned)

(ADDR(r.symbol)
(Ox4004e8
(Oic5),

+ r.addend - refaddr)
+ (-4) - Ox4004df)

In the resulting executable object file, the call instruction has the following
relocated form:

4004de: es 05 00 00 00 callq 4004e8 <sum> sum()

At run time, the call instruction will be located at address Ox4004de. When
the CPU executes the call instruction, the PC has a value of Ox4004e3, which
is the address of the instruction immediately following the call instruction. To
execute the call instruction, the CPU performs the following steps:

1. Push PC onto stack

2. PC <- PC + Ox5 = Ox4004e3 + Ox5 = Ox4004e8

Thus, the next instruction to execute is the first instruction of the sum routine,
whiclf of cour~e is what we want!

1

Relocating Absolute References

Relocating absolute references is straightforward. For example, in line 4 in Fig­
ure 7.11, the mov instruction copies the address of array (a 32-bit immediate value)
into register %~di. The mov.instruction begins at section off~et Ox9 ~nd consists of
the 1-byte opcode Oxbf, followed by.a placeholder for the 32-bit absolute refer­
ence to array.

The corresponding relocation entry r consists of four fields:

r. offset
r.symbol
r.type,
r.addend =

Oxa
array
R_X86_64_32
0

These fields tell the linker to modify the absolute reference starting at offset Oxa
so that it will point to the first byte of array at run' time. Now, Suppose that the
linker has determined that

694 Chapter 7 Linking

(a) Relocated . text section

00000000004004d0 <main>:

2 4004d0: 48 83 ec 08

3 4004d4: be 02 00 00 00

4 4004d9: bf 18 10 60 00

5 4004de: e8 05 00 00 00

6 4004e3: 48 83 c4 08

7 4004e7: c3

8 00000000004004e8 <sum>:

9 4004e8: b8 00 00 00 00

10 4004ed: ba 00 00 00 00

11 4004f2: eb 09

12 4004f4: 48 63 ca

13 4004f7: 03 04 Sf

14 4004fa: 83 c2 01

15 4004fd: 39 f2
16 4004ff: 7c f3
17 400501: f3 c3

sub $0x8,%rsp
mov $0x2,%esi
mov $0x601018,%edi
callq 4004e8 <sum>
add $0x8, %rsp
retq

mov $0xO,%eax

mov $0x0, %edx
jmp 4004f d <sum+Ox15>
movslq %edx,%rcx

%edi = &array
sum()

add (%rdi,%rcx,4);%eax
add $0xL %edx
cmp %esi,%edx
jl 4004f4 <sum+Oxc>
iepz retq

(b) Relocated . data section

0000000000601018 <array>:
2 601018: 01 00 00 00 02 00 00 00

Figure 7.12 Relocated . text and . data sections for the executable file prog. The original C code is in

Figure 7.1.

ADDR(r.symbol) = ADDR(array) = Ox601018

The linker updates the reference using line 13 of the algorithm in Figure 7.l.o:

*ref ptr (unsigned)
(unsigned)
(unsigned)

(ADDR(r.symbol)
(Ox601018
(Ox601018)

+ r.addend)
+ 0)

In the resulting executable object file, the reference has the following relocated

form:

4004d9: bf 18 10 60 00 mov $0x601018, %edi %edi = &array

Putting it all together, Figure 7.12 shows the relocated . text and" data sections
in the final executable object file. At load time, the loader can copy the bytes
from these sections directly into memory and execute the instructions without
any further modifications.

Section 7.8 Executable Object Files 695

A. What is the hex address of the relocated reference to sum in line 5?

B. What is the hex value of the relocated reference to sum in line 5?

.
"''' _, .. ! ""''''"'''11!"""""""'"~"'-~--~"-
f,ruJ;i.!;e Prn.b!emz.s ,fu>JJ.tti2.o.fil!9l:.JJ.1;1L.,.. w ___ -· --- _,

Consider the call to function swap ii) object file rn. o (~igure 7.5~.

9: e8 00 00 00 00 tallq e <main+Oxe> swap()

with th'~ tallowing relocation entry:

r. offset = Oxa
r. symbol = swap
r.type = R_X86_64_PC32
r.addend = -4

I

Now suppqse that the linker relocates . text in rn. o to address Ox4004d0 and swap
to address Ox4004e~. Then' what i~ tl;i~ vaiue of the relocated reference to swap in
the cqllq,instruction,?

7.8 Executable·Object Files

We have seen how the linker merges multiple object files into a single executable
object file. Our example C program, which began life as a collection of ASCII
text files, has been transformed into a single binary file that contains all of the
information needed to load the program ipto memory and run)t, Figure 7.13
summarizes the kinds of information in a typkal ELF executable file.

0
Maps contiguous file
sectlons'to run-time {
memory segments

Describes
object file {
sections

.. d
ELF header

Segment header table

.init

.text

.rodata

.data

.bss

. symtab
.

.debug

.line

. strtab

Section header table

Figure 7.13 Typical ELF executable object file.

}

'

'.

Read-only memory segment
(code segment)

Read/write meinory segment
(data,segment)

Symbol table and
debugging info are not
loaded into memory

/

696 Chapter 7 Linking

---------------------------------code/linklprog-exe.d

Read-only code s'egment
LOAD off OxOOOOOOOOOOOOOOOO vaddr Ox0000000000400000 paddr Ox0000000000400000 align 2••21

2 filesz Ox000000000000069c memsz Ox000000000000069c flags r-x

Read/write data segment
3 LOAD off OxOOOOOOOOOOOOOdfB vaddr Ox0000000000600df8 paddr Ox0000000000600df8 align 2"21

4 filesz Ox0000000000000228 memsz Ox0000000000000230 flags rw-

--------------------------------- code/linklprog-exe.d

Figure 7.14 Program header table for the example executable prog. off: offset in object file;
vaddr/paddr: memory address; align: alignment requirement; filesz: segment size in object file;
memsz: segment size in memory; flags: run-time permissions.

The format of an executable object file is similar to that of a relocatable object
file. The ELF header describes the overall format of the file. It also includes the
program's entry point, which is the address of the first instruction to execute when
the program runs. The . text, . rodata, and . data sections are similar to those in
a relocatable object file, except that these sections have been relocated to their
eventual run-time memory addresses. The . ini t section defines a small function,
called _ini t, that will be called by the program's initialization code. Since the
executable is fully linked (relocated), it needs no . rel sections.

ELF executables are designed to be easy to load into memory, with contigu­
ous chunks of the executable file mapped to contiguous memory segments. This
mapping is described by the program header table. Figure 7.14 shows part of the
program header table for our example executable prog, as displayed by OBJOUMP.

From the program header table, we see that two memory segments will be
initialized with the contents of the executable object file. Lines 1 and 2 tell us
that the first segment (the code segment) has read/execute permissions, starts at
memory address Ox400000, has a total size in memory of Ox69c bytes, and is
initialized with the first Ox69c bytes of the executable object file, which includes
the ELF header, the program header tao le, and the . ini t, . text, and . rodata

sections.
Lines 3 and 4 tell us that the second segment (the data segment) has read/write

permissions, starts at memory address Ox600df8, has a total memory size of Ox230
bytes, and is initialized with the Ox228 bytes in the .data section starting at offset
Oxdf8 in the object file. The remaining 8 bytes in the segment correspond to . bss
data that will be initialized to zero at run time.

For any segments, the linker must choose a starting address, vaddr, such that

vaddr mod align = off mod align

where off is the offset of the segment's first section in the object file, and align
is the alignment specified in the program header (221 = Ox200000). For example,
in the data segment in Figure 7.14',

Section 7.9 Loading Executable Object Files 697

vaddr mod align= Ox600df8 mod Ox200000 = Oxdf8

and

off mod align = Oxdf8 mod Ox200000 = Oxdf8

This alignment requirement is an optimization that enables segments in the object
file to be transferred efficiently to memory when the program execntes. The reason
is somewhat subtle and is due to the way that virtual memory is organized as large
contiguous power-of-2 chunks of bytes. You will learn all about virtual memory in
Chapter 9.

7.9 Loading Executable Object Files

To run an executable object file prog, we can type its name to the Linux shell's
command line:

linux> ./prog

Since prog does not correspond to a-built-in shell command, the shell assumes that
prog is an executable object file, which it runs for us by invoking some memory­
resident operating system code known as the loader. Any Linux program can
invoke the loader by, calling the execve function, which we will describe in detail in
Section 8.4.6. The loader copies the code and data jn the executable object file from
disk into memory and then runs the program by jumping to its first instruction, or . (. ' '
entry point. This process of copying the programinto memory and then running
it is known as loadin!J,. · '

Every running Linux program has a run-time memory image similar to the
one in Figure 7.15. On Linux x86-64 systems, the cod~ segment starts at address
Ox400000, followed by the data segment. The run-time heap follows the data
segment and grows upward via calls to the malloc library. (We will describe malloc
and the heap in detail in Section 9.9.) This is followed by a region that is reserved
for shared modules. The· user stack starts below the>largest legal user address
(248

- 1) and grows down, toward smaller memory addre,sses. The region above
the, stack, starting at acjdress'248, is reserved for the code'and data in the kernel,
which·is·th'e memory-resident part of the operating system.

For simplicity, we've drawn the heap, data, and code segments as abutting
each other, and we've 'placed the top of the stack at the largest legal user ad­
dress. In practice, there is a gap betweeh the code and data segments due to the
alignment requirement on the . data segment (Section 7.8). Also, the linker uses
address-space lay,out randomization (ASLR, Section 3.10.4) when it assigns run­
time addresses to the stack, share,d library, and heap segments. Even though the
locatlons of these regions change each time the program is run, their relative po­
sitions are the same.

When the loader tuns, it creates a memory image similar to the one shown
in Figure 7.15. Guided by the program header table, it copies chunks of the

698 Chapter 7 Linking

Figure 7.15 Memory

Linux x86-64 run-time
memory image. Gaps

Kernel memory j invisible to
I--~~~~~~...;.~~-! user code

248-l User stack
due to segment alignment
requirements and address­
space layout randomization
(ASLR) are not shown. Not
to scale.

Ox400000

0

(created at run time)

Run-time heap
(qreated by malloc)

+-%esp (stack pointer)

.-brk

Read/write segment }
1----(._d_a_t•_'c_,._·b_•_•l'--~ Loaded from the

Read-only ~ode segmer'lt executable file
(. init, .it.ext, . rodat'a.)*~

executable object file into the code and data segments. Next, the loader jumps
to the program's entry point, which is always the address of the _start function.
This function is defined in the system object file crt1. o and is the same for all C
programs. The _start function calls the system startup function, __ libc_start_
main, which is defined in li be. so. It initializes the execution environment, calls
the user-level main function, handles its return value, and if necessary returns

control to the kernel.

7 .10 Dynamic Linking with Shared Libraries

The static libraries that we studied in Se~tio,n 7 .6.2 address many of the issues as­
sociated with making large collections of related functions available to application
programs. However, static libraries still have some significant disadvantages. Static
libraries, like all software, need to be maintained and updated periodically. If ap­
plication programmers want to use the most recent version of a library, they must
somehow become aware that.the library has changed and then explicitly relink
their pro&rams against the updated library.

Another issue is that almost every C program uses standard I/O.functions such
as printf and scanf. At run time, the code for these functions is <)up)ica!ed in the
text segment of each running process. On a typical system that is running hundreds
of processes, this can be a significant waste of scarce memory system resources.
(An i,nteresting property of memory is that it is always a scarce resource, regardless

Section 7.10 Dynamic Linking with Shared Libraries 699

Asld~ How do loaders really, work?·

Our•description of loading is conceptually correct but intentionally not entirely accurate. To uncterstand '­
how loading really works, you mus! un~erstand thttconcepts of pr9cesses, virtual memory, and memory
mapping, which We haven't discu§sed 'yet. As we encounter these concepts later in Chapters 8 and 9,
we will ~evisit loading and gr~dl\ally reveal the mystery lo ypu. •

For the impatienn~ader, heni i§ a preview of hdw1loading really works: Each' program in a Linux
, system runs in the context of a prbces's'with its oWil virtual address space. When the shell runs a program,
the pareni shell process forks a.child process that i~ a duplicate of the parent. The child process invokes
'the loader via the !'xecve system call. Th~ loader delet,es th~ child's existing virtual memory segments
and creites a•neW set of code, data, heap, and stack segments, The new stack• h.nd heap segments are
initialized to zero. Tqe new code and data sE!'gments are initialized to the contents of the executable
file by mapping pages in the virtual address"space tp page-size chunks of the.executable file. Finally,
the loader jumps to \h~ ocstart address, which ev'entually calls the applicatiOn's main routine. Aside
from some header ihformaticin, there is np copying of data from disk to memory during loading. The
copying is deferred urttil the CPU referencb a mapi;<:d virtual page, at which.point the operating system
automatically transfers the pag~ from dis(to memory USi!)g tts paging mechanism.

' I

of how much there is in a system. Disk space and kitchen trash cans share this same
property.)

Shared libraries are modern innovations that address the disadvantages of
static libraries. A shared library is an object module that, at either run time or load
time, can be loaded at an arbitrary memory address and linked with a program in
memory. This process is known as dynamic linking and is performed by a program
called a dynamic linker. Shared libraries are also referred to as shared objects, and
on Linux systems they are indicated by the . so suffix. Microsoft operating systems
make heavy use of shared libraries, which they refer to as DLLs (dynamic link
libraries).

Shared libraries are "shared" in two different ways. First, in any given file
system, there is exactly one . so file for a particular library. The code and data in
this . so file are shared by all of the executable object files that reference the library,
as opposed to the contents of static libraries, which are copied and embedded in
the executables that reference them. Second, a single copy of the . text section of
a shared library in memory can be shared by different running processes. We will
explore this in more detail when we study virtual memory in Chapter 9.

Figure 7.16 summarizes the dynamic linking process for the example program
in Figure 7.7. To build a shared library libvector. so of our example vector
routines in Figure 7.6, we invoke the compiler driver with some special directives
to the compiler and linker:

linux> gee -shared -fpie -o libvector.so addvec.c multvec.c

The -fpic flag directs the compiler to generate position-independent code (more
on this in the next section). The -shared flag directs the linker to create a shared

700 Chapter 7 Linking

Figure 7.16 main2.c vector.h

Dynamic linking with
shared librafies. Translators

(cpp,ccl,as)

Relocatable
object file

main2.o

libc.so
libvector,. so

l Relocation and i symbol table info

~-'------'--1
Linker (ld) .

Partially linked.
executable object file

I
prog21

Loader
(execve) libc.so

libvector.so l Code and data

Fully linked ~I -D-yn_a_m_i_,_c_lin_k_e_r-(l-d---1-in_u_x ___ so"-)~I
executable in memory . .

object file. Once we have created the library, we would then link it into our exal]lple
program in Figure 7.7:

linux> gee -o prog21 main2.c ./libvector.so

This creates an executable object file pr.og21 in a form that can be linked with
libvector. so at run time. The basic idea is to do some of the linking statically
when the executable file is created, and then complete the linking proc~ss dynami­
cally when the program is loaded. It is important to realize that none of the code or
data sections from libvector. so are actually copied into the executable prog21
at this point. Instead, the linker copies some relocation and symbol table informa­
tion that will allow references to code and data in libvector. so to be resolved
at load time.

When the loader loads and runs the executable prog21, it loads the partially
linked executable prog21, using the techniques discussed in Section 7.9. Next, it
notices that prog21 contains a . interp section, which contains the path name of
the dynamic linker, which is itself a shared object (e.g., ld-linux.so on Linux
systems). Instead of passing control to the application, as it would normally do,
the loader.loads and runs the dynamic linker. The dynamic linker then finishes the
linking task by performing the following relocations:

• Relocating the text and data of libc. so into some memory segment

• Relocating the text and data of libvector. so into another memory segment

• Relocating any references in prog21 to symbols defined by li be. so and
libvector.so

'.

•

Section 7 .11 Loading and Linking Shared Libraries from Applications 701

Finally, the dynamic linker passes control to tM application. From this point on,
the locations of the shared libraries are fixed and do not change during execution
of the program. ,,

7.11 Lpading and Linking Shai:ed Libraries from Applications

Up to this point, we have discussed the scenario in1which the dynamic linker loads
and links shared libraries when an application is loaded, just before it executes.
However, it is also possible for an application to request the dynamic linker to
load and link arbitrary shared libraries while the application is running, without
having to link in the applications against those libraries at compile time.

Dynamic linking is a powerful and useful technique. Here are some examples
in the real world:

• Distributing software. Developer~ of Microsoft Windows applications fre­
quently use shared libraries to distribute software updates. They generate
a new copy of a· shared library, which users can then download and use as a
replacement for the current version. The next time they run their application,
jt will automatically link and load the new shared library.

• Building high-performance Web servers. Many Web servers generate dynamic
content, such as personalized Web pages, account balances, and banner ads.
Early Web servers generated dynamic content by using fork and execve
to create a child process and nuJ a "CGI program" in the context of the
child. However, modern high-performance Web servers can generate dynamic
content using a more efficient and sophisticated approach based on dynamic
linking.

The idea is to package each function that generates dynamic content in
a shared library. When a request arrives from a Web browser, the server
dynamically loads and links the appropriate function and then calls it directly,
as opposed to using fork and execve to run the function in the context o'f a
child process. The function remains cached in the server's address space, so
subsequent requests can be handled at the cost of a simple function call. This
can have a significant impact on the throughput of a busy site. Further, existing
functions can be updated and new functions can be added at run time, without
stopping the server.

Linux systems provide a simple interface to the dynamic linker that allows
application programs to load and link shared libraries at run time.

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);

Returns: pointer to hiindle if OK, NULL on error

702 Chapter 7 Linking

The dlopen function loads and links the shared library filename. The external
symbols inf ilename are resolved using libraries previously opened with the RTLD_
GLOBAL flag. If the current executable was compiled with the -rdynamic flag, then
its global symbols are also available for symbol resolution. The flag argument
must include either RTLD_NDW, which tells the linker to resolve references to
extr.rnal.symbols immediately, or t~e RTLD_LAZY flag, which instructs the linker
to "defer symbol resolution until code from the library is executed. Either of these
values can be oRed with the,RTLD_GLDBAL flag.

#include <dlfcn.h>

void •dlsyzn(void *handle, char *symbol)j
Returns: pointer to symbol if OK, NULL oi;i."error

The dlsym function takes a handle to •a previously opened shared library and
a symbol name and returns the address of the symbol, if it exists; or NULL
otherwise.

#include <dlfcn.h> ,,

int dlclose (void *handle);
Returns: 0 if OK, -1 on error

The dlclose function unldads the shared library if no other shared libraries are
still using it.

#include <dlfcn.h>

canst char •dlerror(void) ;. ·'
Returns: c!ttor message if previous call to dlopen, dlsym, or dlclose failed~

NULL if previous call was OK

The dlerror function returns a string describing the most recent error that oc­
curred as a result of calling dlopen, dlsym, or dl close, or NULL if no error
occurred.

Figure 7.17 shows how we would use this interface to dynamically link our
1i bvector. so shared library at run time and then invoke _its addvec routine. To
compile the program, we would invoke Gee in the following way:

linux> gee -rdynamic -o prog2r dll.c -ldl

1

Section 7.11 Loading and Linking Shared Libraries from Applications 703

------------------------- code/linkldll.c
#include <stdio.h>

2 #include <stdlib.h>
3 #include <dlfcn.h>
4

5

6

7

8

int x [2]
int y [2]
int z[2];

9 int main()
10 {

{1, 2};
{3, 4};

11 vo1d *handle;
1t ·Void (*a'ddvec)(int *• int*• int*• int);
) 3L char •error.;
14

15 /* Dynamically load the.shared libiary cohtaining addvec() */
16 j ·handle=:= dlopen(11 ./libvector.so 11 , RTLD.!.LAZY);
17 if ·<!handle) {

'18 'fprintf (stderr, "%s\n", dlerror());
19 exit-(1); .J

io } t•

., 21

22

23

24

25

26

27

28

29

30

31

32
3} 1

J4

/*Get a pointer to the addvec() function we •just 1 loaded */
addvec·~= dlsym(handl'"e, 11 addvec 11);

if •((error = dlerror()•) != NULL) .{

}

fprintf(stderr, 11·%s\n", error);
exit(l);

/~Now We tan call addvec() just like any other function */
addvec(x, y, z, 2);

printf("z •= [%d %d]\no'1 z[O], z[1]');

/*'Unload the shared library*/ 1

if (dlclose(handle) < 0) {

35 fprintf(stderr, 11 %s\n", dlerror());
36J , exit(1);
37 }

38 ~ return O ;
39 }

)

----'--------'----'--------~--------- code/link/dfl.~

Figure·7.17 Example program 3. Dynamically loads and links the shared library
libvector :so at run time.

I
j

' f

.,
I
}
•

704 Chapter 7 Linking

Aside Shared libraries ahd the Java Native lnteitace
~ ,.,~ c .,

Java defines a standard cal!ing corivention"<:alled Java Native Jriterface.(Jl:fl),,th~,t allows :'natixe" C
and C++ functions 'to be callc;d from Java progp§is!·The basic'idea bf JNI is.;t9 59mpile·t!Je. 1'a~ve C
fnnction, say, foo, Into a sharecfliorary, say,'foo. so. whl:n a ruhning·Jav~'Program atiemptst<i invoke
function foo, the Java i;,terpret'eruses the dlope1Hht~rface (or so,methirlgljke;it) Jo:dY4'!.l/:licalfy link
and load foo. so and therl call £69.,. f ~ l;- } I

4 ,~ ,'.;!,,,..,,

7.12 Position-Independent Code (PIC)

A key purpose of shared libraries is to allow multiple running processes to share
the same library code in memory and thus save precious memory resources. So
how can multiple processes share a single copy of a program? One approach would
be to assign a priori a dedicated chunk of the address space to each shared library,
and then require the loader to always load the shared library at that address.
While straightforward, this approach creates some serious problems. It would
be an inefficient use of the address space because portions of the space would
be allocated even if a process didn't use the library. It would also be difficult to
manage. We would have to ensure that none of the chunks overlapped. Each time
a library was modified, we would have to make sure that it still fit in its assigned
chunk. If not, then we would have to find a new chunk. And if we created a
new library, we would have to find room for it. Over time, given the hundreds
of libraries and versions of libraries in a system, it would be difficult to keep the
address space from fragmenting into Jots of small unused but unusable holes. Even
worse, the assignment of libraries to memory would be different for each system,
thus creating even more management headaches.

To avoid these problems, modern systems compile the code segments of
shared modules so that they can be loaded anywhere in memory without having to
be modified by the linker. With this approach, a single copy of a shared module's
code segment can be shared by an unlimited number of processes. (Of course, each
process will still get its own copy of the read/w~ite data segment.)

Code that can be loaded without needing any relocations is known as position­
independent code (PIC). Users direct GNU compilation systems to generate PIC
code with the -fpic option to Gee. Shared libraries must always be compiled with
this option.

On x86-64 systems, references to symbols in the same executable object mod­
ule require no special treatment to be PIC. These referen~es can be compiled using
PC-relative addressing and relocated by the static linker when it builds the object
file. However, references to external procedures and global variables that are de­
fined by shared modules require some special techniques, which Vfe describe next.

PIC Data References

Compilers generate PIC references to global variables by exploiting the following
interesting fact: no matter where we load an object module (including shared

"
r

Fixed distance of ,..
Ox700Bb9 bytes
at r8n time i

between GOT [3]
and addl
instruction

Section 7.12 Position-Independent Code (PIC) 705

~) ., ~ ,.,,,,, . ,,,. ..
D~ta seg'ir}eq"(• "
"' ·. r dt(. "",fJ , t:i. ~-1'
,Global _offseMable"(GOT) .•

~- ~ •..

• GOT[O]: ...
GOT[!]:
GOT[2]:
GOT (3) : &add,cnt

Figure 7.18 Using the GOT to reference a global variable. The addvec routine in
liOvector. so references addcnt indirectly through the GOT f6r libvector. so.

object modules) in memory, the data segment is always the same distance from
the code segment. Thus, the distance betw~en any instruction in the code segment
and' any variable in the'data segment is a run-time constant, independent of the
absolute memory locations of the code and data segments.

Compilers that want to 'generate PIC'references to global variables exploit
this fact by creating a table called the global offset table (GOT) at the beginning
of the data segment. The GOT contains an 8-byte' entry for each global data
object (procedure or global variable) that is referenced by the object module.
The compiler also generates a relocation record for each entry in the GOT. At
load time, the dynamic linker relocates each GOT entry so that it contains the
absolute address of the object. Each object module that references global objects
has its own G.OT.

Figure 7.18 shows the GOT from our example libvector. so shared module.
The addvec routine loads the address of the global variable addcnt indirectly via
GOT [3] and then increments addcnt in memory. The key idea here is that the offset
in the PC-relative reference to GOT [3] is a run-time constant.

Since addcnt is.defined by the libvector. so module, the compiler could have
exploited the constant distance between the code and data segments by generating
a direct PC-relative reference to addcnt and adding a relocation for the linker
to resolve when it builds the shared module. However, if addcnt were defined
by another shared module, then the indirect access through the GOT would be
necessary. In this case, the compiler has chosen to use the most general solution,
the GOT, for all references.

PIC Function Calls

Suppose that a program calls a function that is defined by a shared library. The
compiler has no way of predicting the run-time address of the function, since
the shared module that defines ii could be loaded anywhere at run time. The
normal approach would be to generate a relocation record for the reference, which

' I

11

I

..
•• '

706 Chapter 7 Linking

the dynamic linker could then resolve when the program was loaded. However,
this approach would not be PIC, since it would require the linker to modify the
code segment of the calling module. GNU compilation systems solve this problem
using an interesting technique, called lazy binding, that defers the binding of each
procedure address until the first time the procedure is called.

The motivation for lazy binding is that a typical application program will
call only a handful of the hundreds or thousands of functions exported by a
shared library such as libc. so. By deferring the resolution of a function's address
until it is actually called, the dynamic linker can avoid hundreds or thousarl.ds
of unnecessary relocations at load time. There is a nontrivial run-time overhead
the first time the function is called, but each call thereafter costs only a single
instruction and a memory reference for the indirection.

Lazy binding is implemented with a compact yet somewhat complex interac­
tion between two data structures: the GOT and the procedure linkage tab(e (P LT).
If an object module calls any functions that are defined in shared libraries, then it
has its own GOT and PLT. The GOT is part of the data segment. The PLT is part
of the code segment.

Figure 7 .19 shows how the PLT and GOT work together to resolve the address
of a function at run time. First, let's examine the contents of each of these tables.

Procedure linkage table (PLT). The PLT is an array of 16-byte code_entries.
PLT [OJ is a special entry that jmvpsinto the dynamic linker. Each shared
library function c~lled by the executable has its own PLT entry. Each of

Data segtTient ,
~

Global offset tabte"(GOT)r

GOT(O]: addr of .dynamic
GOT[1]: addr of reloc entries
GOT[2]: addr of dynamic linker
GOT[3): Ox4005b6 #sys startup
GOT[4]: Ox4005c6 # addvec()
GOT[5): Ox4005d6 # printf()

~ode segmenf , ,.
. ' ~ rt- c3.11q Ox4Q05~0 tJ .• Call,,.;-<addy~c(')

CD P.,(pcedure link"a9~1;bie (Pi'..r)
PLT[O]: call dynamic linker

,-+ti 4005a0: pushq •GOT[1]
4005a6: jmpq •GOT[2] r-©
PLT[2]: call addvec()

f2' 4005c0: jmpq •GOT[4]
~ 4005c6: pushq $0x1

'---L'=4=0=05=c=b='=l=·m=p=q==4=00=5=a=O========c!.l

(a) First invocation of addvec

.. """'· ',, Data segme,pt ~ ~ u "~ :

Globa'I offse; tabl<i"(G01')·e1. ,, ' •

GOT[O]: addr of .dynamic
GOT[!]: addr of reloc entries
GOT[2]: addr of dynamic linker
GOT[3]: Ox4005b6 #sys startup
GOT[4]: &addvec()
GOT[5]: Ox4005d6 #print!()

Cpde seqment .,,.

+ : ca1i~~ox4'oosco """# "cal:1 addvec ()

Pr&bddur~unkaget'iabi8 (P~T) ...L..

PLT[O]: call dynamic linker
4005a0: pushq *GOT[!]
4005a6: jmpq *GOT[2]

PLT [2] : call addvec ()
4005c0: jmpq *GOT[4] -----++->@
4005c6: pushq $0x1
4005cb: jmpq 4005a0

(b) Subsequent invocations of addvec

Figure 7.19 Using the PLT and GOT to call external functions. The dynamic linker resolves the address of
addvec the first time it is called.

Section 7.13 Library lnterpositioning 707

these entries is responsible for invoking a specificfonction. PLT [lJ (not
shown here) invokes the system startup function (__ libc_start_main),
which initializes the execution environment, calls the main function, and
handles its return value. Entries starting at PLT [2J invoke functions called
by the user code. In our example, PLT [2J invokes addvec and PLT [3J (not
shown) invokes printf.

Global offset table (GOT). As we have seen, the GOT is an array of 8-byte
address entries. When used in conjunction with the PLT, GOT [OJ and
GOT [lJ contain information that tlie dynami~ linker uses when it resolves
function addresses. GOT (2J is the entry point for the dynamic linker in
the ld-linux. so module. Eacli of the remaining ebtries corresponds to
a called Tunctibi:i whose address needs to be resolv;ed at run time. Each
has a matching PLT entry. For example, GOT [4J and PLT (2J correspond
to addvec. Initially, each GOT entry points to the second instruction in
the corresponding PLT entry.

Figure 7.19(a) shows.how the GOT and PLTwork together to lazily resolve
the run-time address of function addvec th'e first time it is called:

Step 1. 'Instead of directly calling addvec, the program calls into PLT [2J , which
· is the PLT entry for addvec.

Step 2. The first PLT instructiqn does an indirect jump through GOT [4J . Since
each GOT entry initially points to the second instruction in its correspond­
ing PLT entry, the indirect jump simply transfers control back to the next
instruction in PLT [2J.

Step 3. After pushing an ID for addvec (Oxl) onto the stack, PLT [2J jumps to
' PLT [OJ.

Step 4. PLT[OJ pushes an argument for the dynamic linker indirectly through
GOT°[1J and then jumps into \he dynamic linkerindirect!J through GOT [2J.
The dynamic linker uses the two stack entries to deteqnine the run­
time location of addvec, overwrites GOT[4] with this address, and passes
control to addvec.

Figure 7.19(b) shows the control flow for any subsequent invocations of
addvec:

Step 1. Control passes to PLT [2J as before.

Step 2. However, tliis time the indirect jump through GOT [4J transfers control
' directly to addvec.

7.13 Library lnterpositioninQ

Linux linkers support a powerful technique, called library interpositioning, that
allows you to intercept calls to shared library functions and execute your own code
instead. Using interpositioning, you could trace the number of times a patticular

"I
11

I ·1

1·

708 Chapter 7 Linking

library function is called, validate and trace its input and output values, or even
replace it with a completely different implementation.

Here's the basic idea: Given some target function to be interposed on, you
create a wrapper function whose prototype is identical to the target function. Using
some particular interpositioning mechanism, you then trick the system into calling
the wrapper function instead of the target function:The wrapper function typically
executes its own logic, then calls the target function and passes its return value
back to the caller.

Interpositioning can occur at compile time, link time, or run time as the
program is being loaded and executed. To explore these different mechanisms,
we will use the example program in Fig~re 7.20(a) as a running example. It calls
the malloc and free functions from the C standard library (libc. sp). The call to
malloc allocates a block of 32 bytes from the heap and returns a pojnter to the
block. The call to free gives the block back to the heap, for use by subsequent
calls to malloc. Our goal is to use interpositioning to trace the calls to malloe and
free as the program runs.

7.13.1 Compile-Time lnterpositioning

Figure 7 .20 shows how to use the C preprocessor to interpose at compile time.
Each wrapper function in mymalloe. e (Figure 7.20(c)) c~lls the target function,
prints a trace, and returns. The local malloc. h header file (Figure 7 .20(b)) instructs
the preprocessor to replace each call to a target function witli a call fo its wrapper.
Here is how to compile and link the program:

linux> gee -DCOMPILETIME -e mymalloc.e
linux> gee -I. -o intc int.c mymalloc.o

The interpositioning happens because of the - I . argument, which. tells the C
preprocessor to.look for malloe .h in the current directory before looking in the
usual system directories. Notice that the wrappers in mymalloc. c are compiled
with the standard malloe. h header file.

Running the program gives the following trace:.

linux> ./intc
malloe(32)=0x9ee010
free(Ox9ee010)

7.13.2 Link-Time lnterpositioning

The Linux static linker supports link-time interpositioning with the --wrap,f flag.
This flag tells the linker to resolve references to symbol f as __ wrap_f (two
underscores for the prefix), and to resolve references to symbol __ real_f
(two underscores for the prefix) as f. Figure 7.21 shows the wrappers for our
example program.

Here is how to compile the source files into relocatable object files:

linux> gee -DLINKTIME -c myipalloc.c
linux> gee -c int.c

Section 7.13 Library lnterpositioning 709

(a) j:)\am(?le program int .'C

-------------------------. codeflinklinterposelint.c
#include <stdio.h>

2 #include <malloc.h>
3

4 int main()
.,

5 {

6 int *P = malloc(32);
7 froe(p);

8 return(6);
9 }

--~--------------~------- code/linklinterpose/int.c
. ! .

(b) Local malloc. h (i.le

----------------------- code/link/interpose!malloc.h
#define malloc(size) mymalloc(size)

2 '#define free(ptr) myfree(ptr)
3

4 void •mymalloc(size_t size);
5 void myfree(void *ptr);

---------------------'-------'-' 'code/link/interpose/malloc.h

(c) Wrapper functions in mymalloc. c

-~-------------------- codellink/interpose/mymalloc.c
1 #ifdef COMPILETIME
2 #include <stdio.h>
3 #include <malloc.h>
4

5 /* malloc wrapper function •/
6 Void *mymalloc(size_t size)
7 { ., u \"

8 void *ptr = malloc(size);
9 pr:intf~1malloc(%d)=%p\n",

10 (int)s:lze, ptr}';
11 return ptr;
12 }

13

14 /• free wrapper fnnction •/
15 void myfree(void *ptr)
16 {

17 free(ptr);
18 printf(11 free(%p)\n 11

, ptr);
19 }

20
p

~---------~--'----''"-'-'-'-~~---~-,code!linklinterpose!mymalloc.,:

• ' t •1
figure 7.io Col1')pile-time interpositioi;iing with

1
t/;J<\ C p~eprocessor • .,

710 Chapter 7 Linking

--------------------- code/linklinterpose/mymdlioc.c

#ifdef LINKTIME
2 #include <stdio.h>

3
4 void * __ real_malloc(size_t size);
5 void __ real_free{void *ptr);

6

7 /* malloc wrapper function */
8 void * __ wrap_malloc(size_t size)
9 {

10 void *ptr = __ real_malloc(size); /*Call libc malloc */
11 printf (11 malloc(%d) = %p\n". (int) size, ptr);

12 return ptr; '
13 }

14

15 f* free wrapper function */
16 void __ wrap_free(void *ptr)
17 {
18 __ real_free(ptr); /*Call libc free*/
19 printf(11 free(%p)\n 11

, ptr) i

20 }

21 #endif

--------------------- code/linklinterpose!mymalloc.c

Figure 7.21 Link-time interpositioningwith the --wrap flag.

And here is how to link the object files into an executable:

linux> gee -Wl,--wrap,malloc -Wl,--wrap,free -o intl int.o mymalloc.o

The -Wl, option flag passes option to the linker. Each comma. in option is
replaced with a space. So -Wl, --wrap, malloc passes --wrap malloc to the linker,
and similarly for -Wl, --wrap, free.

Running the program gives the following trace:

linux> ./intl
malloc(32) = Ox18cf010
free(Ox18cf010)

7.13.3 Run-Time lnterpositioning

Compile-time interpositioning requires access to a program's source files. Link- '
time interpositioning requires access to its relocatable object files. However, there .
is a mechanism for interpositioning at run time that require~ access only to the
executable object file. This fascinating mechanism is based on the dynamic linker's
LD_PRELOAD environment variable.

Section 7.13 'library lnterpositioning 711

If the LD~PRELOAD environment ;variable is set to a list of shared library.
pathnames (separated by spaces or colons), then when you load and execute a
program, the dynamic linker (LD·LINUx.so) will search the LD_PRELOAD l\b,raries
first, before any other shared libraties, when it resolves undefined references. With
this mechanism, you can interpose on any function in any shared library, including
libc. so, when you load and execute any executable.

Figure 7.22 shows the wrappers for malioc and free. In each wrapper, the
call to dlsym returns the pointer to the target libc function. Th,e wrapper then
calls the target function, prints a trace, and returns.

' ' Here is how to build the shared library that contains the wrapper functions:

linux> gee -DRUNTIME -shared -fpie -o mymalloc.so mymalloe.e -ldl

Here is)low to compile the main program:

linux> gee -o intr int.e

Here is how to run th~ program from the bash shel1:3

linux> LD_PRELDAD=" ./mym'a.lloc.so" ./intr
malloc (32)" = Oxlbf7010
free(Oxlbf7010)

And here is how to run it from the csh or tcsh shells:

linux> (setenv LD_PRELOAD "./mymalloc.so"; ./intr; unsetenv LD.YRELOAD)
malloc(32) = Ox2157010
free(Ox2157010)

Notice that you can use LD_PRELOAD to interpose on !He library calls of any
executable program!

linux> LD_PRELOAD=" ./mymalloe. so" /usr/binluPtime
malloc(568) = Ox21bb010
free(Ox21bb010)
malloc(15) = Ox21~b010

malloc(568) = Ox21bb030
malloc(2255) = Ox21bb27.0
free·(Ox21bb030)
malloc(20)
malloc(20)
malloc(20)
malloc(20)

Ox21bb030
Ox21bb050
Ox21bb070
Ox21bb090

malloc(20) Ox21bb0b0
mal~oc(384) = qx2lbb0d0

20:47:36 up 85 days, 6:04, 1 user, .load average: 0.10, 0.04, 0.05

3. If you don't know what shell you are running, type printenv SHELL at the command line.

712 Chapter 7 linking

--------~'-------------------- codellink/interposelmymalloc.c

1 #if def RUNTIME
2 #define _GNU_SOURCE
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <dlfcn.h>
6

i /* malloc wrapper function */
8 void •malloc(size_t size)

9 {

lO void *(*mallocp)(size_t size);
11 char *error i
12

13 mallocp = dlsym(RTLD_NEXT. 11 malloc 11
) i /* Get address of libc malloc */

14 if ((error = dlerror()) != NULL) {
15 fputs(error, stderr);
16 exit(l);
17 }

18 char *ptr = mallocp(size); /*Call libc malloc •/
19 printf(11 malloc(/.d) = %p\n 11

, (int) size, ptr);

20 return ptr;
21

22

23

24

25

26

27

28

}

/* free wrapper function •/
void free(void *ptr)
{

void (•freep)(void •)
char *error;

29 if (!ptr)
30 return;
31

NULL;

32 freep = dlsym(RTLD_NEXT, "free,') i I* Get address of libc free */
33 if ((error = dlerror ()) ! = NULL) {
34 fputs(error, stdarr);
35 exit(l);
36 }

37 freep(ptr); /•Call libc free •I
38 printf(11 free(Y.p)\n 11

, ptr);
39 }

40 #endif

'I

·;

----------------------------- codellink/interposelmymalloc.c

Figure 7.22 Run-time interpositioning with LD_PRELDAD.

Section 7.15 Summary 713

7.14 Tools for Manipulating Object Files

There are a number of tools availa\JI<? on Lin~ syste~ to help you understeynd
aq~ ,manipulate object files. I,n particular, the GNU binutils P,ackage is especially
helpfl,ll and runs on every Linux platform.

AR. Creates static libraries, and inserts, deletes, lists, and extracts me'mbers. ,,
STRINGS. Lists all of the printable strings contained in an object file.

STRIP. Deletes symbol table 'information from an object file.

NM. Lists_ the symbols defined in the symbol table of an object file.

SIZE. Lists the names and sizes of the sections in an object file.

RE,').DELF. Displays the cmpglete structure of an object file, including all of the
informatiop encoded iµ the J;lLF header. Subsumes the functionality of
SIZE and NM.

OBJDUMP. The mother of all binary tools. Can display all of the.information in an
object file. Its most useful function is disassembling the binary instructions
in the . text section.

Linux systems also pr~vide the LDD program for mani_pulating shared libraries:

wo: Lists the shared' libraries that an executable needs at run time.

7.15 Summary

Linking can be performed at compile time by static linkers and at load time' and run
time by dynamic linkers. Linkers manipulate binary files called object files, which
come in three different forms: relocatable, executable, and shared. Relocatable
object files are combined by static linkers into an executable object file that can
be loaded into memory and executed, Shared objecttfiles (shru;ed libraries) are
linked and loaded by dynamic linkers at run time, either implicitly when the calling
program is loaded and begins executing, or on demand, when the program calls
functions from the dlopen library.

The two main tasks of linkers are symbol resolutidn, where each global symbol
in an object file is bound to a unique definition, and relocation, where the ultimate
memory address for each symbol is determined and where references to those
objects are modified.

Static linkers are invoked by compiler drivers such as acc. They combine
multiple relocatable object files into a single executable object file. Multiple object
files can define the same symbol, and the rules that linkers use for silently resolving
these multiple definitions can introduce subtle bugs in user programs.

Multiple object files can be concatenated in a single static library. Linkers
use libraries to resolve symbol references in other object modules. The Jeft-to­
right sequential scan that many linkers use to resolve symbol references is another
source of confusing link-time errors.

714 Chapter 7 Linking

Loaders map the contents of executable files into memory and run the pro­
gram. Llnkers can also produce partially linked executable object files with un­
resofved references to the routines and data ~efined in a sHared library. At load
time, the loader m·aps the partially linked executable into memory and then calls
a dynamic linker, which completes the linking task by loading the shared !illrary
and rel9cating the references in the P~?gram.

Shared libraries that are compile'd as position-independent code can be loaded
anywhere and shared at run time by multiple processes. Applications can also use
the dynamic linker at run time in order to load, link, and access the functions and
data in shared libraries.

Bibliographic Notes

Linking is pooz:ly docm;:il'nted in the copiputer systems literature. Sincdt lies at
the intersection of compilers, computer architecture, and ope(ating systems, link­
ing requires an understanding of code generation, machine'.Janguage program­
ming, progr.am instantiation, and virtual memory. It does not fit neatly into any of
the usual computer systems specialties and thus is not well covered by the classic
texts in these areas. However, Levine's monograph provides a good general ref­
erence on the subject [69). The original IA32 specificati9ns for ELF and DWARF
(a specification for the contents of the .debug and .'line sections) are described
in [54]. The x~6-64 extensions to the ELF file format are described in [36]. The
x86-64 app!i!:'ation binary interface (ABI) describes the conventions for compil­
ing, linking, and running x86-64 programs, including the rules for relocation and
position-independent code (77].

t;lomework Problems

7.6.
This problem concerns them. o module from Figure 7 .5 and the following version
of the swap•. c function that counts the number of times it has been called:

extern int buf [);

2

3 int *bufpO = &:buf [OJ ;

4 static int •bufp1;

5

6 static void incr()
7 {

8 static int count=O;
9

10 count++;
11 }

12

13 void s1JapO
14 {

Homework Problems /115

15 int temp;
16

17 incr();
18 bufp1 = &buf [1];
19 temp = •bufpO;
20 *bufpO *bufp1;
21 •bufp1 = temp;
22 }

For each symbol that is definKd and' referenced in swap. o, indjeate if it will
have a symbol table entry in the . symtab section in module swap. o. If so, indicate
the module that defines the symbol (swap. o orm. o), the symbol type (local, global,
or extern), and the section (.text, . data, or . bss) it occupies in that module.

Symbol swap.o . symtab entry? Symbol type M<'>dule where"Clefined Section

buf ------- ----
buf pO ------ -----
bufpl ----- ----
swap ----- ---
t~mp ---- ----
incr ----- ---
count ----- ----

7.7 •

Without changing any variable names, modify bar5. c on page 683 so that f 005. c
prints the correct values of x and y (i.e., the hex representations of integers 15213
and 15212).

7.8 +
In this problem, let REF(x.i)-+ DEF(x.k) denote that the linker will associate an
arbitrary reference to symbol x in module i to the definition of x in module k. For
each example below, use this notation to indicate how ~he linker would resolve
references to the multiply-defined symbol in each module. If there is a link-time
error (rule 1), write "ERROR". If the linker arbjtrarily chooses one of the definitions
(rule 3), write "UNKNOWN".

A. /• Module 1
int main()
{ "
}

•/ I• Module 2 •/
static int· main=l[
int p20
{

}

' (a) REF(main.1)-+ DEF(___ . ___)

(b) REF(main.2)-+ DEF(.. ___)

716 Chapter 7 Linking

B. I• Module 1 •/
int Xj

void main()
{

}

(a) REF(x.1) _,.DEF(

!• Module 2 •/
double Xi

int p20
{

}

(b) REF(x.2) -+ DEF(___ . ___)

C. /• Module 1 •/
int x=1;
void main()
{

}

I• Module fl •I
double x=1".0;
int p20
{

}

(a) REF(x.1)-+ DEF(____ . ___ J
(b) REF(x.2) -+ DEF(. ___)

7.9.
Consider the following program, which consists of two object modules:

I• foo6. c •/
2 void p2 (void) ;

3

4 int main()

5 {

6 p20;
7 return O;

8 }

I• bar6.c •/
2 #include <stdio.h>

3

4 char m?in;

5

6 void p20
7 {

8 printf(11 0x%x\n 11
, main);

9 }

When this program is compiled and executed on an x86-64 Linux system, it
prints the string Ox48\n and terminates normally, even though function p2 never
initializes variable main. Can you explain this? ,

7.10 ••
Let a and b denote object modules or static libraries in the current directory, and
let a->-b denote that a depends on b, in the sense that b defines a symbol that is

Solutions t9 Practice Problems 7.17

referenced by .a. Ear each of the following scenarios, show the minimal command
line (i.e., one with the lea~rnumber of object file and library arguments) that will
allow the static linker to resolve all symbol references:

~ .1 !

P.. p.o-+ libx.a-+ p.o

B. p._o-t libx.a-t Eby.a and"liby/a-+ libx.a

C. p.o-+libx.a4liby.a4libz.a and liby.a-+libx.a-+libz.a

7.11 •• ,,
Thl\)'ro~lan'l heaqeiinFigure 7.1'4.indicates that the data segment occupie~ Ox230
b~fes 'in memory. However; only thb'first Ox228 bytes of these come from the
sections ol the executable file:'Whdt causes' this discrepancy? '

7.12' ••

Consider the call to function swap in object file m :o (Probfom 7.6).

9: e8 00 00 00 00

with the ,following relpcation entry:

t. offset = Oxa
r.symbol = swap
r.type = R_X86_64_PC32
r . addend = -4

callq e ~main+Oxe> swap\)

A. Suppose that the linker relocates . text in m. o to address Ox4004eQ and swap
, ,;.JCfli\c\dres~ 9,x4,Qp4f.8. Th,eir "{hat i,s the v!!lue of.the relocated refyrence to

swap i.J:i.the q.l~q instru~tion?

' B. Suppose that the"linker relocates . text in m. o to adilress Ox4004d0 and swap
to address Ox400500 .. Then what is·the value of the relocarea reference to
swap in the eallq instruction?

7.13 ••
Performing the following tasks will help you become more familiar with the
various tools for manipulating object files.

A. How many object files are contained in the v~rsions of libe. a and li bm. a
on ypur system?

B. Does gee LQg produce different executable code than gee -Dg -g?

C. What shared libraries does the occ driver on yo~r system use?

"
Solutions to Practic.e Problems

\•• .. •r ,.. (
Solution to Problem 7.1 (page 678)

The purpose of this problem is to help you understand the relationship between
linker symbols and C variables and functions. Notice that the C local variable temp
does not have a symbol table enti;y.

718 Chapter 7 Linking

Symbol . symtab entry? Symbol type Module where defined Section

buf Yes extern m.o .data

bufpO Yes global swap.o .data

buf pl Yes global swap.o COMMON

swap Yes global swap.a .text

temp No

Solution to Problem 7 .2 (page 684)
This is a simple drill that checks your understanding of the rules that a Unix linker
uses when it resolves global symbols that are defined in more than one !"oilule.
Understanding these rules can help you avoid some nasty programming bugs.

A. The linker chooses the strong symbol defined in module 1 over the weak
symbol defined in module 2 (rule 2):

(a) REF(main.1)-+ DEF(main.1)
(b) REF(main.2) -+ DEF(main.1)

B. This is an ERROR, because each module defines a strong symbol main (rule 1).

C. The linker chooses the strong symbol defined in module 2 over the weak
symbol defined in module 1 (rule 2):

(a) REF(x.1)-+ DEF(x.2)
(b) REF(x.2) -+ DEF(x.2)

Solution to Problem 7.3 (page 689)
Placing static libraries in the wrong order on the command line is a common source
of linker errors that confuses many programmers. However, once you understand
how linkers use static libraries to resolve references, it's pretty straightforward.
This little drill checks your understanding of this idea:

A. linux> gee p.o libx.a

B. linux> gee p.o libx.a liby.a

C. linux> gee p.o libx.a liby.a libx.a

Solution to Problem 7.4 (page 694)
This problem concerns the disassembly listing in Figure 7.12(a). Our purpose
here is to give you some practice reading disassembly listings and to check your
understanding of PC-relative addressing.

A. The hex address of the relocated reference in line 5 is Ox4004df.

B. The hex value of the relocated reference in line 5 is Ox5. Remember that
the disassembly listing shows the value of the reference in little-endian byte
order.

Solution to Problem 7.5 (page 695)
This problem tests your understanding of how the linker relocates PC-relative
references. You were given that

Solutions to Practice Problems 719

ADDR(s) ·= ADDR(. text) Ox4004d0

and

ADDR(r.symbol) = ADDR(swap) = Ox4004e8

Using the algorithm in Figure 7.10, the linker first computes the run-time
address of the reference: '

refaddr = ADDR(s) + r.offset
Ox4004d0 + Oxa

= Ox4004da

It then updates the reference:

*refptr (unsigned)
(unsigned)
(unsigned)

(ADDR(r.symbol)
(Ox4004e8
(Oxa)

+ r.addend - refaddr)
+ (-4) - Ox4004da)

Thus, in the resulting executable object file, the PC-relative reference to swap has
a value of Oxa:

4004d9: e8 Oa 00 00 00 callq 4004e8 <swap>

, • I

tti~JI·

•r·

Exc~ptfqnal Control Flow
' 1

' '

" 8.1 Exceptions 723,

~ '8:2' Processes , 732
\)•\\ ' r 11 I

[< ,f 8.3; Syste,m Call Errpr, l;landling. 737'

8.4' Process Control 738
r l ,,

{l.5 Sigpals 756

8.6 Nonlocal Ju'mps' 781
' I]1'1

,8.,7 \9,ols for lv!~riipulating Prpces.ses 786

8.8 Summa~y 787

"' Bibliographic Notes 787

Homework Problems 788
I , ' "
,Solutions to Practice Problems 795

" J • ''

721

722 Chapter 8 Exceptional Control Flow

F rom the time you first apply power to a processor until the time you shut it off,
the program counter assumes a sequence of values

where each ak is the address of some corresponding instruction lk. Each transition
from ak to ak+I is called a control transfer. A sequence of such control transfers is
called the flow of control, or control flow, of the processor.

The simplest kind of control flow is a "smooth" sequence where each Ik and
h+t are adjacent in memory. Typically, abrupt changes to this smooth flow, where
lk+I is not adjacent to 1,. are caused by familiar program instructions such as jumps,
calls, and returns. Such instructions are necessary mechanisms that allow programs
to react to changes in internal program state represented by program variables.

But systems must also be able to react to changes in system state that are
not captured by internal program variables and are not necessarily related to
the execution of the program. For example, a hardware timer goes off at regular
intervals and must be dealt with. Packets arrive at the network adapter and must
be stored in memory. Programs request data from a disk and then sleep until they
are notified that the data are ready. Parent processes that create child processes
must be notified when their children terminate.

Modern systems react to these situations by making abrupt changes in the
control flow. In general, we refer to these abrupt changes as exceptional control
flow (ECF). ECF occurs at all levels of a computer system. For example, at the
hardware level, events detected by the hardware trigger abrupt control transfers
to exception handlers. At the operating systems level, the kernel transfers control
from one user process to another via context switches. At the application level,
a process can send a signal to another process that abruptly transfers control to
a signal handler in the recipient. An individual program can react to errors by
sidestepping the usual stack discipline and making nonlocal jumps to arbitrary
locations in other functions.

As programmers, there are a number of reasons why it is important for you
to understand ECF:

• Understanding ECFwill help you understand important systems concepts. ECF
is the basic mecharlism that operating systems use to implement I/O, processes,
and virtual memory. Before you can really understand these important ideas,
you need to understand ECF.

• Understanding ECFwill help you understand how applications interact with the
operating system. Applications request services from the operating system by
using a form ofECF known as a trap or system call. For example, writing data
to a disk, reading data from a network, creating a new process, and terminating
the current process are all accomplished by application programs invoking
system calls. Understanding the basic system call mechanism will help you
understand how these services are provided to applications.

• Understanding ECF will help you write interesting new application programs.
The operating system provides application programs with powerful ECF

Section 8.1 Exceptions 723

mechanisms for creating new processes, waiting for processes to terminate,
notifying other processes of exceptional events in the system, and detecting
and responding to these events. If you und~rstand these ECF mechanisms,
then you can use them to write interesting programs such as Unix shells and
Web servers.

• Understanding ECF will help you understand concurrency. ECF is a basic
mechanism for implementing concurrency in computer systems. The following
are all examples of concurrency in action: an exception handler that interrupts
the execution of an application program; processes and threads whose exe­
cution overlap in time; and a signal handler that interrupts the execution of
an application program. Understanding ECF is a first step to understanding
concurrency. We will return to study it in more.detail in Chapter 12.

• Understanding ECF will help you understand how software exceptions work.
Languages such as C++ and Java provide software exception mechanisms via
try, catch, and throw statements. Software exceptions allow the program
to make nonlocal jumps (i.e., jumps that violate the usual call/return stack
discipline) in response to error conditions. Nonlocal jumps are a form of
application-level ECF and are provided in C via the setjmp and longjmp
functions. Understanding these low-level functions will help you understand
how higher-level software exceptions can be implemented.

Up to this point in your study of systems, you have learned how applications
interact with the hardware. This chapter is pivotal in the sense that you will begin
to learn how your app\ications interact with the operating system. Interestingly,
these interactions all revolve around ECF. We describe the various forms of ECF
that exist at all levels of a computer system. We start with exceRtions, which lie at
th'l intersection of the 11,ardware and ,the operating systen;. We also discuss system
calls, which are exceptions that provide applications with entry points into the
operating ~ystem. We then move up a level of abstraction and describe processes
an,d signals, which lie <;t the intersection of applications and the op~rating system.
Finally, we discuss nonlocal jumps, which are an application-level form of ECF.

8.1 Exceptions

Exceptions are a form of exceptional control flow that are implemented partly
by the hardware and partly by the operating system. Because they are partly
implemented in hardware, the details vary from system to system. However, the
basic ideas are the same for every system. Qur .aim in this section is to give you a
general understanding of exceptions and exception handling and to help demystify
what is often a confusing aspect of modern computer systems.

An exception is an abrupt change in the control flow in response to some
change in the processor's state. Figure 8.1 shows the basic idea.

In the figure, the processor is executing some current instruction lcurr when a
significant.change in the processor's state occurs. The state is encoded in various
bits and signals inside the processor. The change in state is known as an event.

724 Chapter 8 Exceptional Control Flow

·'
Aside Hardware v.e~s,u,s,sqf,t'.'{are,e~~eptions
C++ and Java progralnmers'wi,ll have noti~ed'thaflfie'form "'exception"'is also usedilci'llescribe the
application-level ECF ni:'ecfi'aniSm•provided by sz+·+'an'&Java in the form 'Of'catch, throw/arid 'fry
statements, If we'wanted to be perfectly cle~r, we might distin&uish between "hardware"ancf"software"
exceptions, but this is usually Unnecessary Secause the meaning is clear from t)le._contexL ··'

"'

Figure 8.1
Exception
handler

Anatomy of an exception.
A change in the processor's
state (an event) triggers
an abrupt control transfer
(an exception) from the
application program to an
exception handler, After

Application
program

Event Exception
occurs, fcurr<----==="-----»

here lnext ___________ 1 Exception
processing

Exception
return

(optional) it finishes processing, the
handler either returns
control to the interrupted
program or ~bolts,

The event might be directly related to the execution of the current instruction,
For example, a virtual memory page fault occurs, an arithmetic overflow occurs,
or an instruction attempts a divide by zero, 'On the other hand, the event might be
unrelated to the execution of the current instruction, For example, a system timer
goes off or an I/O request completes,

In any case, when the processor detects that the event has occurred, it ma~es
an indirect procedure call (the exception), through a jump table called an exception
table, to an operating system subroutine (the exception handler) that is specifically
designed to process this particular kind of event When the exception handler
finishes processing, one of three things happens, depending on the type of event

that caused the exception:

1. The handler returns control to the current instruction /00,,, the instruction
that was executing when the event occurred,

2. The handler returns control to I next> the instruction that would have executed
next had the exception not occurred,

3. The handler aborts the interrupted program,

Section 8,L2 says more about these possibilities,

8.1.1 Exception Handling

Exceptions can be difficult to understand because handling them involves close
cooperation between hardware artd software, It is easy to get confused about

~-

Figure 8.2
Exception table. The
exception table is a
j~mp table where entry
k contains the address
of the handler code for
exception k.

Figure 8.3
Generittiilg the address
bf an exception handler.
The exception number is
an index into the exception
table.

Exception number
(x 8)

Section 8.1 Exceptions 725

Exception table

:r----­
Address of entry i--:2ti::====i

Exception table for exception # k 1-----+(·+ base register
n-1~---~

which component performs which task. Let's look at the division of labor between
hardware and software in more detail.

Each type of possible exception in a system is assigned a unique nonnegative
integer exception number. Some of these numbers are assigned by the designers
of the processor. Other numbers are· assigned by the designers of the operating
system kernel.(the memory-resident part of the operating system). Examples of
the former include divide by zero, page faults, memory access violations, break­
points, and arithm.etic overflows. Examples of the latter include system calls and
signals from external I/O devices.

At system boot time (when the computer is reset or power,ed on), the operat­
ing system allocates and initializes ajump,table ca,lled an exception table, so that
entry~ conW,i;is the address of ij:le haJ:\dler for exception k. ,figure 8.2 shows the
format of an exception table.

At r\'n tim,<; (J<Vben the system is executing some program), the processor
detects that an event has occurred and determines the corresponding ei<ception
number k. The processor then triggers the exception by making an indirect pro­
cedure call, through entry k of the exception table, to the corresponding handler.
Figure 8.3 shows how the processor uses tl;ie exception table to form the address of
the appropriate exception handler. The exception number is an index into the ex­
ception table, whose starting address is contained in a special CPU register called
the exception table base register.

An exception is akin to a procedure call, but with some important differences:

• As with a procedure call, the processor pushes a return address on the stack
before branching to the handler. However, depending on the class of excep­
tion, the return address is either the current instruction (the instruction that

726 Chapter 8 Exceptional Control flow

Class

Interrupt
Trap
Fault
Abort

was executing when the event occurred) or the next instruction (the instruc­
tion that WOt!ld have executed after the current instruction had the event not

occurred).
• The processor also pushes some additional processor state onto the stack that

will be necessary to restart the interrupted program when the handler returns.
For examP.le,,~n x86-64 system pushes the EFLAGS register containing the
current condition codes, among other things, onto the stack.

• When control is being transferred from a user program to the kernel, all of
these items are pushed onto the kernel's stack rather than onto the user's

stack.
• Exception handlers run in kernel mode (Section 8.2.4), which means they have

complete access to all system resources.

Once the hardware triggers the exception, the rest of the work is done in
software by the exception handler. After the handler has processed the event, it
optionally returns to the interrupted program by executing a special "return from
interrupt" instruction, which pops the appropriate state back into the processor's
control and data registers, restores the state to user mode (Section 8.2.4) if the
exception interrupted a user program, and then returns control to the interrupted

program.

Cause

8.1.2 Classes of Exceptions

Exceptions can be divided into four classes: interrupts, traps, faults, and aborts.
The table in Figure 8.4 summarizes the attributes of these classes.

Interrupts

Interrupts occur asynchronously as a result of signals from I/O devices that are
external to the processor. Hardware interrupts are asynchronous in th<'; sense
that they are not caused by the execution of any particular instruction. Exception
handlers for hardware interrupts are often callefl interrupt handlers.

Figure 8.5 summarizes the processing for an 'interrupt. I/O devices such as
network adapters, disk controllers, and timer chips trigger interrupts by signaling
a pin on the processor chip and placing onto the system bus the exception number
that identifies the tlevice that caused the interrupt.

Async/sync Return behavior

Signal from I/O device Async Always returns to next instruction

Always returns to next instruction Intentional exception Sync

Potentially recoverable error Sync Might return to current instruction

Nonrecoverable error Sync Never returns

Figure 8.4 Classes of exceptions. Asynchronous exceptions occur as a result of events in 1/0 devices that
are external to the processor. Synchronous exceptions occur as a direct result of executing an instruction.

Section 8.1 Exceptions 727

Figure 8.5
(2) Control passes

to handler after current
(t) Interrupt pin instruction finishes

Interrupt handling.
The interrupt handler
returns control to the
next instruction in the
application program's
control flow.

goes high during lcurr ~----------~
execution of lnext_ r------____ j (3) lflferrupt

current instruction I handler runs
(4) Handler

Figure 8.6
Trap handling. The trap ...
handler returns contr,1>1
to the;next instruction in
the applica\ion program's
control flow.

(1) Application
makes a

system call

returns to
next instruction

(2) Control passes
to handler

(4) Handler returns
to instruction

following the syscall 1

After the current instruc!tion finishes eJtecuting, the processor notices that the
interrupt pin has gone high, reads the exception number from the system bus, and
then calls the appropriate interrupt handler. When the handler returns, it returns
control to the nexi instruction (i.e., the instr/!ction that would have followed the
cuf;e~(instrudlon in the tbntrol fid\\l had the interrupt not occurred). The effect is
ihatthe program cdntlhG~s executing ~s though the interrupt had never happened.

The remaininJl classes of exceptions (traps, faults, and aborts) occur syn­
chronously as a 're?uit of e'xecuting the current i~st~uction. We refer to this in­
st'tuction as f.he\faulting instruction:·

.•
Traps an,d System Cal)s

Traps are intentional exceptions that occur as a result 'of executing an instruction.
bile interrupt•handlers, frap handlers returrt colitrol to the next instruction. The
most important use of traps is to provide a'procetlure-Iike interface between user
programs and the kernel, known as a system call.

User prograihs often need'tb request services from the kernel such as reading
a file (read), creating a new process \fork), loading a new program (execve), and
terminating the current process (exit). To allow controlled access to such kernel
services, processors provide a special syscall n instruction that user programs can
execute whep,they want to request service n. Eic,~~uting the syscaF instruction
causes a trap to an exception handler that decqoes the argument anp c~lls the
appropriate kernel routine. Figure 8.6 summarizes'the processing for a system call.

' ' 1(• ' ' ~
From a programmer's perspective, a system call is identical to a regular func-

tion call. However, their impl~mentations are quite different. Regular fuhctions

(3) Trap
handler runs

728 Chapter 8 Exceptional Control Flow

Figure 8.7
Fault handling.
Depending on whether the
fault can be repaired or
not, the fault handler either
re-executes the faulting
instruction or aborts.

(2) Control passes
to handler (1) Current

instruction lcurrT«~---------+.
(3) Fault
handler runs

causes a fault

-· .. ··---------··--·-·• abort
(4) Handler either re-executes
current Instruction or aborts

Figure 8.8
Abort handling. The abort
handler passes control to a
kernel abort routine that
terminates the application
program.

(2) Control passes
(1) Fatal hardware fcurr "----t_o_h_an_d_1e_r ___ _....,

error occurs (3) Abort
handler runs

....................................... .,. abort
(4) Handler returns

to abort routine

run in user mode, which restricts the types of instructions they can execute, and
they access the same stack as the calling function. A system call runs in kernel
mode, which allows it to execute privileged instructions and access a stack defined
in the kernel. Section 8.2.4 discusses user and kernel modes in more detail.

Faults

Faults result from error conditions that a handler might be able to correct. When
a fault occurs, the processor transfers control to the fault handler. If the handler
is able to correct the error condition, it returns control to the faulting instruction,
thereby re-executing it. Otherwise, the handler returns to an abort routine in the
kernel that terminates the application program that caused the fauk Figure 8.7
summarizes the processing for a fault.

A classic example of a fault is the page fault exception, which occurs when
an instruction references a virtual address whose corresponding page is not res·
ident in memory and must therefore be retrieved from disk. As we will see in
Chapter 9, a page is a contiguous block (typically A KB) of virtual QJ~mory. The
page fault handler loads the appropriate page from disk and then returns control
to the instruction that caused the fault. When the instruction executes again, the
appropriate page is now resident in memory and the instruction is able to run to
completion without faulting.

Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors such
as parity errors that occur when DRAM or SRAM bits are corrupted. Abort
handlers never return control to the application program. As shown in Figure 8.8,
the handler returns control to an abort routine that terminates the application
program.

Section 8.1 Exceptions ·729

Exception number Description Exception class

0 Divide error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort

32-255 •• OS-defined exceptipns Interrupt or trap

Figure 8.9 Examples of exceptions in x86-64 systems.
' '

8. T.3 Exceptions in Linux/x86-64 Systems

To help make things more concrete, let's look at some of the exceptions defined
for x86-64 systems. There are up to 256 different exception types [50]. Numbers
in the.~ange,from 0 to 3.1 correspond to exceptions.that are defined by the Intel
.a~chiti:cts and.thus are identical for any x86-64 system. Numbers in the range from
32 to 255 correspond to· interrupts .and traps that'are defined by the operating
system. Figure 8.9 shows a few examples.

Linux/x86,64,Faults and Aborts ,

,.

Divide error. A divide errof (excfipii'on'O) occurs when an application·attempts
to divide by'zho or when the result of a di:_,;de instr;'iction is too big for
the de~t,inatio!] operand. Vnix does not lit!empt to recover from divide
errors,' opting inst~ii'd 10 abort the program. "Linux shells typically report
divide errors as "Floating exceptions."

')

General protection fault. The infamou.s general.protection f;rnlt (exception 13)
oi:curs for many, reasons,,qsually be~ause a program references an unde­
fir.ied area of virtqal m~mory or because the progra.m.attempts to, write to a
read-only tein,segment. Linux does not atte~pt t.o recover from this fault.
Linux shells typically report· general protection faults as "Segmentation
faults." ,

Page fault. A'1page fault (exception r4)"is an example of an'exception where
the faulting instructio1ns. restarted. The handler maps the appropriate
page of virttial memory on disk into a page of physical memory atld then
rd tarts the faulting instruction. We will see how page faulfs work' ill detail
in Chapter 9.

Machine check. A machine check (exception 18) occurs as a result of ·a fatal
hardware error that is detected during the ex,ecution of the faulting in­
struction. Machine check handlers never return control to the application
program.

Linux/x86-64 System Calls

Linux provides hundreds of system calls that application programs use when they
want to request services from the kernel, such as reading a file, writing a fiie, and

I

I
I

I
I

730 Chapter 8 Exceptional Control Flow

Number Name Description Number Name Description

0 read Read file 33 pause Suspend process until signal arrives

1 write Write file 37 alarm Schedule delivery of alarm signal

2 open Open file 39 getpid Get process ID

3 close Close file 57 fork Create process

4 stat Get info about file 59 execve Execute a program

9 mmap Map memory page to file 60 _exit Terminate process

12 brk Reset the top of the heap 61 wait4 Wait for a process to terminate

32 dup2 Copy file descriptor 62 kill Send signal to a process

Figure 8.10 Examples of popular system calls in Linux x86-64 systems.

creating a new process. Figure 8.10 lists some popular Linux system calls. Each
system call has a unique integer number that corresponds to an offset in a jump
table in the kernel. (Notice that this jump table is not the same as the exception

table.)
C programs can invoke any system call directly by using the syscall function.

However, this is rarely necessary in practice. The C standard library provides a
set of convenient wrapper functions for most system calls. The wrapper functions
package up the arguments, trap to the kernel with the appropriate system call
instruction, and then pass the return status of the system call back to the calling
program. Throughout this text, we will refer to system calls and their associated
wrapper functions interchangeably as system-level functions.

System calls are provided on x86-64 systems via a trapping instruction called
syscall. It is quite interesting to study how programs can use this instruction
to invoke Linux system calls directly. All arguments to Linux system calls are
passed through general-purpose registers rather than the stack. By convention,
register %rax contains the syscall number, with up to six arguments in %rdi, %rsi,
%rdx, %r10, %r8, and %r9. The first argument is in %rdi, the second in %rsi, and
so on. On return from the system call, registers %rcx and %r11 are destroyed, and
%rax contains the return value. A negative return value between.-4,095 and -1
indicates an error corresponding to negative errno.

For example, consider the following version of the familiar hello program,
written using the write system-level function (Section 10.4).instead of printf:

int main()
2 {

3 write(1 1
11hello, world\n 11

1 13);

4 _exit(O);

5 }

The first argument to write sends the output to stdout. The second argument
is the sequence of bytes to write, and the third ~rgument gives the number of bytes

to write.

Section 8.1 Exceptions 731

'"'''§---C-~ _,,:a,_,.,,,. ... ,.,, ... _ ~"""" ~- """ -· .,,.. } ... 1 ""'·)r" "'"~"~ ~~· ,...,,.,
, Aside A note on terminology • ~
l % ' ¥~/l ,,{ ~ •. f<

·· The terminology for the variqus ·cl~sses of exceptions varies from' system \o system. Processor ISA
~ Si}ecificatioiiS~ qfteri·~is!inguish ~e~eJh asynchi'onous ~tint~rruP~;;·~ an{! sYp.~hroh6us "~xceptions" yet
P,fqVide.~o }!plbf~lla term. to refei:,t_o these ver_y simi!ar c9nceEJs. To 'avdid'!JAYipg ti) constantlr refer to
"~x~~~ti~~ns ~1'd,jnter~l!RtS:' a;p.0.•"e~~pti0,!1-s of inteiri;p~s,"~we l!;se

1
the wotd~t~e~xcep!lon" as the general

term an<;l,djs,tii;.iiu!sh betw),en a~ynclitoqcius exceptions {mterrupl~) al!d synfhron'Qus ,exceptions (traps,

fa~lt,s1)."1 ~c(abqfts)._,onJf '0he~. iii~ ~P~rop~i~t; .. ,As \\;'.e t~iv.e ,l}o~ya.· .• t. h~:~a.sit ip~c\s a. r~. the sa~e for ev.ery
,systell}l.. Dpt yo~ sh9ul? be aware that some maµufact~rers' maµ.*~t~ls use_!~~k~qr4 "7xcephon" to refer
pnly tp !A?ffe cl,1!\n~es in cci~!rol flRw caus,\'d by'synclifonous e,ve~!$,,,,) · ·.. , ",

1
,;!Ji"".,._ 1't '""' J&. iJ,f <' ..

----------------------- code/ecf!hello-asm64.sa
.section .data

2 string:
3 .asc11 11 hello, world\n 11

4 string_end:
5 .equ ~en, string_end - string
6 .section .text
7 . globl main
B main:

First, call write(1,
9 movq $1, %rax

10 movq $1, %rdi
11 movq $string, %rsi
12 movq $len, %rdx
1j syscall

Next, call _exit(O)
14 movq $60, %rax
15 movq $0, %rdi
16 sys call

"hello, world\n,", 13)

write is system call 1

Arg1: stdout has descriptor 1

Arg2: hello world string
Arg3: string 1 ength

Make the sy~tem call

_exit is system call 60

Arg1: exit status is 0

Make the system cal•l

--,----------------------- code/ecf!hel/o-asm64.~a ,;

Figufe' 8.11 •Implementing the ·hello program directly with Linux system calls.

Figure 8.11 shows. an assembly-language version of hello that uses the
syscall instruction to invoke the write and exit system calls directly. Lines
9-13 invoke the write function. First, line 9 stores the number of the write sys­
tem call in %rax, and lines 10-12.set up the argument list. .Then, line 13 uses the
syscall instruction to invoke the system call. Similar!y,"lines 14-16 invoke the
_exit system call.

ii
'1.

1:
I
I

'1

I'

732 Chapter 8 Exceptional Control Flow

8.2 Processes

Exceptions are the basic building blocks that allow the operating system kernel
to provide the notion of a process, one of the most profound and successful ideas
in computer science. -

When we run a program on a modern system, w.e are presented with' the
illusion that our program is the only one currently running in the system. Our
program appears to have exclusive use of both the processor and the memory.
The processor appears to execute the instructions in our program, on~ after the
other, without interruption. Finally, the code and data of our program appear to
be the only objects in the system's memory. These illusions are provided to us by
the notion of a process.

The classic definition of a process is an instance of a program in execution.
Each program in the system runs in the context of some process. The context
consists of the state that the program needs to run correctly. This state includes the
program's code and data stored in memory, its stack, the contents of its general­
purpose registers, its program counter, environment variables, and the set of open
file descriptors.

Each time a user runs a program by typing the name of an executable object
file to the shell, the shell creates a new process and then runs the executable object
file in the context of this new process. Application programs can also create new
processes and run either their own code or other applications in the context of the
new process.

A detailed discussion of how operating systems implement processes is be­
yond our scope. Instead, we w11l focus on the key abstractions that a process
provides to the application:

• An independent logical control flow that provides the illusion that our pro­
gram has exclusive use of the processor.

• A private address space that provides the illusion that our program has exclu­
sive use of the memory system.

Let's look more closely at these abstractions.

8.2.1 Logical Control Flow

A process provides each program with the illusion that it has exclusive use of the
processor, even though many other programs are typically running concurrently
on the system. If we were to use a debugger to single-step the execution of
our program, we would observe a series of program counter (PC) values that
corresponded exclusively to instructions contained in our program's executable
object file or in shared objects linked into our program dynamically at run time.
This sequence of PC values is known as a logical control flow, or simply logical
flow.

Consider a system that •runs three processes, as shown in Figure 8.12. The
single physical control flow of the processor is partitioned into three logical flows,
one for each process. Each vertical line represents a portion of the logical flow for

Figure 8.12
Logical control flows.
Processes provide each
program with the illusion
that it has exclusive use of
the processor. Each vertical
bar represents a portion of
the logical control flow for
a process.

Process A

Time

Section 8.2 Processes 733

Process B Process C

a process. In the example, the execution of the three logical flows is interleaved.
Process A runs for a while, followed by B, which runs to completion. Process C
then runs for a while, followed by A, which runs to completion. Finally, C is able
to run tB completion.

The key point in Figure 8.12 is that processes take turns using the processor.
Each process executes a portion of its flow and then is preempted (temporarily
suspended) while other processes take their turns. To a program running in the
context of one of these processes, it appears to have exclusive use of the proces­
sor. The only evidence to the contrary is that if we were to precisely measure the
elapsed time of each instruction, we would notice that the CPU appears to peri­
odically stall between the execution of some of the instructions in our program.
However, each time the processor stalls, it subsequently resumes execution of our
program without any change to the contents of the program's i;nemory locations
or registers.

,8.2.2 Concurrent Flows'

Logical flows take many different form~ in computer systems. Exception handlers,
processes, signal handlers, threads, and Java processes are all examples of logical
flows.

A logical flow whose execution overlaps in time with another flow is called
a concurrent flow; and the two flows are said to run concurrently. More precisely,
flows X and Y are concurrent with respect to each other if and only if.X begins
after Y begins and before Y finishes, or Y begins after X begins and before X
finishes. For example, in Figure 8.12, processes A and B run concurrently, as do
A and C. On the other hand, B and C do not run concurrently, because the last
instru'ction of B executes before.the first instruction of C.

The. general phenomenon of multiple flows executing concurrently is known
as concurrency. Tue.notion of a process taking turns with other processes is also
known as·multitasking. Each time period that a process executes a portion of its
!low is called a time slice. Thus, multitasking is also referred to as time slicing. For
example, in Figure 8.12, the flow for process A consists of two time slices.

Notice that the idea of concurrent flows is independent of the number of
processor cores or computers that the !lows are running on. If two !lows overlap
in time, then they are concurrent, even if they are running on the same processor.
However, we will sometimes find it useful to identify a proper subset of concurrent

734 Chapter 8 Exceptional Control Flow

flows known as parallel flows. If two flows are running concurrently on different
processor cores or computers, then we say that they are parallel flows, that they
are running in parallel, and have parallel execution.

J>ractice er96lemK1JS'oiUtiO~'o"1~·rur" =·:"":'-:·::::: ; ,: >J
Consider three processes with the following starting and ending times:

Process Start time End time

A 0 2
B 1 4

c 3 5

For each pair of processes, indicate whether they run concurrently (Y) or
not (N):

Process pair

AB
AC
BC

Concurrent?

8.2.3 Private Address Space

A process provides each program with the illusion that it has exclusive use of the
system's address space. On a machine with n-bit addresses,,the address space is the
set of 2" possible addresses, 0, 1, ... , 2" - 1. A process provides each program
with its own private address space. This space is private in the sense that a byte
of memory associated with a particular address in the space cannot in general be
read or written by any other process.

Although the contents of the memory associated with each private address
space is different in general, each such space has the same general organization.
For example, Figure 8.13 shows the organization of the address space for an x86-64
Linux.process.

The bottom portion of the address space is reserved for the user program, with
the usual code, data, heap, and stack segments. The code segment always begins at
address Ox400000. The top portion of the address space is reserved for the-kernel
(the memory-resident part of the operating system). This part of the address space
contains the code, data, and stack that the kernel uses when it executes instructions
on behalf of the process (e.g., when the application program executes a system
call).

8.2.4 User and Kernel Modes

In order for the operating system kernel to provide an airtight process abstraction,
the processor must provide a mechanism that restricts the instructions that an

Figure 8.13
Process address space.

.Section 8.2 Processes 735

l ' f i
Kernel virtual memory

(code, data/heap, stack)•
Memory j invisible to

24a_1_.J. ________ .__. user code

Ox400000

Run-time heap
(creat~d by malloc)

%esp (stack pointer)

brk

~.,--.:.(;_d_a,..t_a:.., ~_b_s_s:..) ----l Loaded from the
Read/write segment }

11=tead-onlfcode segment ' executable file
· (.~i:Qit:,lli. text', :rodata)

application can execute,. as well as the portions of the address space that it can
access.

·Processors typically provide this capability with a mode: bit in some control
registep that characterizes the privileges that the process currently enjoys. When
the mode bit is set, ·the process is running in kernel. mode (sometimes called
supervisor mode). A process running in kernel mode can execute any instruction
in the instruction s~t and access any memory location in the system.

When the mode bif is not set, the process is running in user mode. A process
in user .mode is' no tallowed to execute privileged instructions that do things such
as halt th~ processor; change the mode bit, or initiate an I/O operatio11. Nor is it
allowed to directly reference code or \iata in the kernel area of the address space.
Any such attempt results in a fatal protection fault. User programs must instead
access kernel code and data indirectly via,the.system call interface.

··A: process running application code is initially.in user mode. The only way for
the process to change from user mode to kernel mode is via an exception such as
an interrupt, a f~ult, Or'a trapping system call. When the exception.occurs, and
control passes 10 the exception handler, the processor change~ the m6de from
user mode to kernel mode. The handler runs in kernel mode. When it returns to
the application code, the processor changes the mode from kernel mode back to
user mode.

Linux provides a clever mechanism, called the /proc filesystem, that allows
user mode processes to access the contents of kernel .data structures. The /proc
filesystem exports the contents of many kernel data structures as a hierarchy of text

I I

)

,.

, I

736 Chapter 8 Exceptional Control Flow

files that can be read by user programs. For example, you can use the /proc filesys­
tem to find out general system attributes such as CPU type.(/proc/cpuinfo), or
the memory segments used by a particular process (lproc/process-id/maps). The
2.6 version of the Linux kernel introduced a I sys filesystem, which exports addi­
tional low-level information about system buses and devices.

8.2.S Context Switches

The operating system kernel implements multitasking using a higher-level fonn
of exceptional control flow known as a context switch. The context switch mecha­
nism is built on top of the lower-level exception mechanism that we discussed in
Section 8.1.

The kernel maintains a context for each process. The context is the state
that the kernel needs to restart a preempted process. It consists of the values
of objects such as the general-purpose registers, the floating-point registers, the
program counter, user's stack, status registers, kernel's stack, and various kernel
data structures such as a page table that characterizes the address space, a process
table that contains information about the current process, and a file table that
contains information about the files that the process has opened.

At certain points during the execution of a process, the kernel can decide
to preempt the current process and restart a previously preempted process. This
decision is known as scheduling and is handled by code in the kernel, called the
scheduler. When the kernel selects a new process to run, we say that the kernel
has scheduled that process. After the kernel has scheduled a new process to run,
it preempts the current process and transfers control to the new process using a
mechanism called a context switch that (1) saves the context of the current process,
(2) restores the saved context of some previously preempted process, and (3)
passes control to this newly restored process.

A context switch can occur while the kernel is executing a system call on behalf
of the user. If the system call blocks because it is waiting for some event to occur,
then the kernel can put the current process to sleep and switch to another proceS&
For example, if a read system call requires a disk access, the kernel can opt to
perform a context switch and run another process instead of waiting for the data
to arrive from the disk. Another example is the sleep system call, which is an
explicit request to put the calling process to sleep. In general, even if a system
call does not block, the kernel can decide to perform a context switch rather than
return control to the calling process.

A context switch can also occur as a result of an interrupt. For example, all
systems have some mechanism for generating periodic timer interrupts, typically
every 1 ms or 10 ms. Each time a timer interrupt occurs, the kernel can decide that
the current process has run long enough and switch to a new process.

Figure 8.14 shows an example of context switching between a pair of processes
A and B. In this example, initially process A is running in user mode until it.traps to
the kernel by executing a read system call. The trap handler in the kernel requests
a DMA transfer from the disk controller and arranges for the disk to interrupt the

•J

Figure 8.l4
Anatomy of a process
co'nte?C-t switch.

\:\ ' "'

Time
.,,

read,.

Return ········•
fromread.f..

Section 8.3 System Call Error Handling 737

User code
-------- } Context

Kernel cod~ switch

, User code r---L---.---------------

processor after the C!isk controller h'as finfshe? transferring'the data ftbni disk to
mehlor~. 1 1

J,.,

1:'he disk will taKe a' relatively long tinle'ib'fefchthe'da!a (on the order of tens
uf milliseconds),.so instead of waiting and d~hi'g notilinglh the intefim, the kernel
performs a context switch from process A to B. Note that, before the switch, the
kernel is executing instructions in user mode on behalf of process A (i.e.~ there
is no separate kernel process). During the first part of the ~witch,'the k'ernel is
executing instructions in kernel mode on behalf of process A Then at some point
it begins executing instructions (still in kernel mode) on behalf of process B. And
after the switch, the kernel is executing instructions in µser mode on behalf of

' '· process B.
Process B then runs for a while in user mode until the disk s~Jids an interrupt

' ~· f to signal that data have been transferred from disk to memory. The kernel decides
that process B has run long enough and performs a context switch from process B
to A, returning control in process A to the iµstruc!ion impJ.edi<J!y\Jl·fJ?llowing t~e
read system call. Process A continues to run uritil the next exception occurs, and
soon.

... ., ,,
8.3 ·System Call Error' Handling ,

•r .. ~- "
W,hen Unix, system-level fµnctions.encounter an',ei;r.or, they typically, return ~~
and set !ht.global integer variable .ei::rp.o io indicate w,hat w.(lnt wrqng. Program­
mers should always 10heck for errors, but vnfortunate\y,.many s]>ip error c\l,,ecking
,because H bJoa.ts, the ,cpde and makes it harder .to r.ead. For example, here is how
y;e might check for eri;QJs when we call th~ Linux fork functiolJ:

if ((pid = fork()) < 0) {
2 fprintf(stderr, "fork error: %s\n 11

, strerror(errno));
3 exit(O); '
4 }

I

The frtrerror function returns a text string that describes.the error associated
with a particular value of errno. We can simplify this code somewhat by defining
the following error-reporting function:

I

1
'

I
'"

I
I

'I

738 Chapter 8 Exceptional Control Flow

1 void unix_error(char *msg) I* Unix-style error *I
2 {
3 fprintf(stderr, 11 %s: %s\n 11

, msg. strerror(errno));

4 exit(O);

5 }

Given this function, our call to fork reduces from four lines to two lines:

1 if ((pid = fork()) < 0)
2 unix_error("fork error 11

);

We can simplify our code even further by using error-handling wrappers,
as pioneered by Stevens in [110]. For a given base function foo, we define a
wrapper function Foo with identical arguments but with the first letter of the name
capitalized. The wrapper calls the base tunction, checks for errors, and terminates
if there are any problems. For example, here is the error-handling wrapper for the

fork function:

.P.id_t Fork(void)

2 {

3 pid_t pid;

4
5 if ((pid = fork()) < 0)
6 unix_error(11 Fork error");

7 return pid;
8 }

Given this wrapper, our call to fork shrinks to a single compact line:

pid = Fork();

We will use error-handling wrappers throughout the remainder of this book.
They allow us to keep our code examples concise without giving you the mistaken
impression that it is permissible to ignore error checking. Note that when we
discuss system-level functions in the text, we will always refer to them by their
lowercase base names, rather than by their·uppercase wrapper names.

See Appendix A for a discussion of Unix error handling and the error­
handling wrappers used throughout this book. The wrappers are defined in a file
called csapp. c, and their prototypes are defined in a header file called csapp. h.

These are available online from the CS:APP Web site.

8.4 Process Control
Unix provides a number of system calls for manipulating processes from C pro­
grams. This section describes the important functions and gives examples of how

they are used.

Section 8.4 ProcewCortrol 739

8.4.1 Obtaining'Process IDs

Each process has a unique positive (nonzero) process ID (PID). The getpid
function returns the PID of the calling process. The getppid functionTeturns the
PID of its parent (i.e., the process that created the calling process).

#inGluqe <sys/types.h>
#include <unistd.h>

pid_t getpid(void); ,.J ' 1.J1

pid_ t getppid (void) ; ' '

Returns: PID of either'the caller Ot the parent
'· , , ,,, Ill_ r

The getpid and g~tppiq rou!ines return an integer value ,of type pid_ t, which on
Linux systems is define,d•in,;types .has an int.,

"
8.4.2 Creating and Terminating Processes

From a programmer's perspective, we ,can think of a ,prqcess as being in one of
three states:

Running. The process is either executirl.g on the CPU or waiting to !le executed
and will eventually be scheduled by the kernel.

.r1r ~

Stopped. :Jl]e execution, of the,process is SlfSpended ~nd wil,l ,not b11 scheduled.
A process stops as a result of receiving a SIGSTOP, SIGTSTP, SIGTI1N,
or SIGTTOU signal, and it remains stopped until it receives a SIGCONT
signal, at which point it becomes running again. (A signaUs a form of
software interrupt that we will describe in detail in Section 8.5.)

Terminated. The process is stoppyf' pe.rmanen,tJy..,A process becgmys termi­
nated for one of three reasons: (1) receiving a signal whose default action
is to terminate the process, (2) returning from the main routine, or (3)
calling the exit function. ' 1

#include <stdlib.h>

vOid exit(int status);
1'' • '

ThiS 1-Unction does ,-?-ot return

' The exit function tyrminates tlle process-with an exit status of status. (The other
way to set the exit status is to return an integer valm; from the main routine.)

I I

740 Chapter 8 Exceptional Control Flow

A parent process creates a new running child process by calling the fork

function.

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);
Returns: 0 to child, PID of child to parent: -1 on error

The newly created child process is almost, but not quite, identical to the parent.
The child gets an identical (but separate) copy of the parent's user-level virtual
address space, including the code and data segments, heap, shared libraries, and
user stack. The child also gets identical copies of any of the parent's open file
descriptors, which means the child can read and write any files that were open in
the parent when it called fork. The most significant difference between the parent
and the newly created child is that they have different PIDs.

The fork function is interesting (and often confusing) because it is called once
but it returns twice: once in the calling process (the parent), and once in the newly
created child process. In the parent, fork returns the PID of the child. In the child,
fork returns a value of 0. Since the PID of the child is always nonzero, the return
value provides an unambiguous way to tell whether the program is executing in

the parent or the child.
Figure 8.15 shows a simple example of a parent process that uses fork to create

a child process. When the fork call returns in line 6, x has a value of 1 in both the
parent and child. The child increments and prints its copy of x in line 8. Similarly,
the parent decrements and prints its copy of x in line 13.

When we run the program on our Unix system, we get the following result:

linux> ./fork
parent: x=O
child : x=2

There are some subtle aspects to this simple example.

Call once, return twice. The fork function is called once by the parent, but it
returns twice: once to the parent and once to the newly created child.
This is fairly straightforward for programs that create a single child. But
programs with multiple instances of fork can be confusing and need to
be reasoned about carefully.

Concurrent execution. The parent and the child are separate processes that
run concurrently. The instructions in their logical control flows can be
interleaved by the kernel in an arbitrary way. When we run the program
on our system, the parent process completes its printf statement first,
followed by the child. However, on another system the reverse might be
true. In general, as programmers we can never make assumptions about
the interleaving of the instructions in different processes.

,Se•tion 8.4 Process Control 741

----------~-------------- code!ecf/fork.c

1 int main()
2 {
3 pid_t pid;
4 int x = 1;

s
6 pid = Fork();
7 if (pid == 0) { /• Child •/
8 printf("child: x=%d\n 11

, ++x);
9 exit(O);

10 }

11

12 /• Par~nt •(,
13 printf (11 parant: x=/.d\n" , --x) ;
14 exi t;(O);

15 }

---.,,,.,-,---------------------- code!ecflfork.c

Figure
0

8.15 Usi~g fork to create a new process.

Duplicaie but separate address spaces. If we could halt both the parent and the
child immediately after the fork. function returned in each ,process, we
would see that the, address space of·each process is identical. Each proc~ss
has the same US!'f ,stack, t)ie Sljme local variable valu~s, \he same heaR,
the same global variable values, and the san:i~ code. Thus, in our exanip\e
program, local variable~ has a value.of 1 in b,ath the parent and the child
when, tQ.e fork function returns in line 6. Howev~r. since tQ.e parent and
the chi,l\I are separate processes, they each have their.own priyate addr~ss
spaces. Any subsequent changes that a parent or child ma!<es to x are
private and are not retlected in the memory of the other process. This is
why the variable x has pifferent values in the parent and child when they
call their respective printf statelpents. ,.

Shared files. When we ruh the ex'ample program, we notice that both pareht and
child print their output on the screen. The reason is that the child inhetits
all of the parent's open files. When tbe p'arent calls fork, the stdout file
is open and directed to the screen. The cliild inherits this file, and thus its
OUtput fa a\SO directed tO the SCreen. I

'•
When yo'} are first <\earning about the fork function, it is often helpful to

sketch. the process graph, which is a simple kind of precedence graph that captures
the partial ordyring of program stateme~ts. Each vertex a corresponds to the
execution of a program statement. A directed edge a -> b denotes that statement
a "happens before" statement b. Edges can be labeled with information such as
the current value of.a variable. Vertices corresponding to printf statements can
be labeled with the output of the printf. Each graph begins with a vertex that

742 Chapter 8 Exceptional Control Flow

Figure 8.16 child: x=2

Process graph for the
example program in
Figure 8.15.

print!

parent: X""O

Child
exit

Parent
main fork printf exit

int main() hello

2 { printf exit
3 Fork();

hello
4 Fork();
5 printf(11 hello\n 11

);
fork printf exit

6 exit(O); hello

7 } printf exit

hell.a

main fork fork printf exit

Figure 8.17 Process graph for a nested fork.

corresponds to the parent process calling main. This vertex has no inedges and
exactly one outedge. The sequence of vertices for each process end~ with a vertex
corresponding to If call to exit. This vertex has one inedge and no outedges.

For example, Figure 8.16'shows the process graph for the example program in
Figure 8.15. Initially, the parent sets variable x to 1. The parent calls 'fork, which
creates a child process that runs concurrently with the parent in its own private
address space.

For a program running on a single processor, any topological sort of the
vertices in the corresponding process graph represents a feasible total ordering
of the statements in the program. Here's a simple way to understand the idea of
a topological sort: Given some permutation of the vertices in the process graph,
draw the sequence of vertices in a line from left to right, and then draw each of the
directed edges. The permutation. is a topological sort jf and only if each edge in
the drawing goes from left to right. Thus, in our example program in Figure 8.15,
the printf statements in the parent and child can occur in either prder because
each of the orderings corresponds to some topological sort of the graph vertices.

The process graph can be especially helpful in understanding programs with
nested fork calls. For example, Figure 8.17 shows a program with two calls to fork
in the source code. The corresponding process graph helps us see that this program
runs four processes, each of which makes a call to printf and which can execute
in any order.

Section 8.4 Process Control 743

Consider the following program:
·.

---~--------------------- codelecf/forkprobO.c

int main()

2 {

3 int x = 1;

4

5 if (For)<O == 0)
' 6 prj,n~f(11 p1: x=%d\n 11

, ++x);
' 7 printf("p2: :c=%d\n 11

, --x);
I< ' .
,8 exit(O);

9 }

----------------------- code/ecf/forkprobO.c

A. What is the output of the child process?

B. What is the output of the parent process?

8.4.3 Reaping Child Processes ..
When a process terminates for any reason, the kernel does not remove it from
the' system immediately. Ihstead, the process is kept around in a terminated state
until it is reaped by its parent. When the parent 'reaps the terminated child, the
kernel passes the child'!; exit status to the parent and then discards the terminated
process, at which point it ceases to exist. A terminated process that has not yet
been reaped is called a zombjf'.

If • • t I• • '' ~
When a parent 11rocess termm~tes, the i<;ernel arranges for the i'\i t procf!SS

to become the adoptea parent of any orphaned children. The ini t process, which
has a PID of 1, is created by. the kernel during system start-up, never terminates,
and is the ancestor of every,proce~s. If a p~rent process terminates without reaping
its zombie children, tl\en the kernel arranges for the ini t process to reap them.
f[owever, lpng-running prograi;ns such as shells or servers should ahvays reap their
zombie children. Even though zombies are not running, they still consume system
memory resources.

A procbss waits for its childreh to terminate or stop lly calling the wai tpid
function.

#include <sys/types.h>
#inclpde <;:i.ys/wai t .. h>

pid_t Waitpid(pid_t pid, int *statusp,· int options);

Returns: PID of child if OK, 0 (if WNOHANG), or -1 on error

744 Chapter 8 Exceptional Control Flow

Aside ,Why are terminated children called zombies?
'~ /r ~

In folklore, a zombie is a·living corpse, an entity that is half alive and half dead'. A zombie process is
similar in the sense that a\thoug!>it has already terminated, the kern.el maintains some of its state until
it can be reaped by the parent~

The waitpid function is complicated. By default (when options= 0),
waitpid suspends execution of the calling process until a child process.in its wait
set terminates. If a process in the wait set has already terminated at the time of the
call, then wai tpid returns immediately. In either case, wai tpid returns the PID of
the terminated child that caused wai tpid to return. At this point, the terminated
child has been reaped and the kernel removes all traces of it from the system.

Determining the Members of the Wait Set

The members of the wait set are determined by the pid argument:

• If pid > 0, then the wait set is the singleton child process whose process ID is
equal to pid.

• If pid = -1, then the wait set consists of all of the parent's child processes.

The wai tpid function also supports other kinds of wait sets, involving Unix pro­
cess groups, which we will not discuss.

Modifying the Default Behavior

The default behavior can be modified by setting options to various combinations
of the WNO HANG, WUNTRACED, and WCONTINUED constants:

WNOHANG. Return immediately (with a return value of 0) if none' of the
child processes in the wait set has terminated yet. The default behavior
suspends the calling process until a child terminates; this option is useful
in those cases where you want to continue doing useful work while waiting
for a child to terminate.

WUNTRACED. Suspend execution of the calling process until a process in the
wait set becomes either terminated or stopped. Return the PID of the
terminated or stopped child that caused the return. The default behavior
returns only for terminated children; this option is useful when you want
to check for both terminated and stopped children.

WCONTINUED. Suspend execution of the calling process until a running
process in the wait set is terminated or until a stopped process in the wait
set has been resumed by the receipt of a SIGCONT signal. (Signals are
explained in Section 8.5.)

You can combine options by oRing them together. For example:

Section 8.4 Process Control 745

• WNOHANG I WUNTRACED: Return immediately; with a return value of
0, if none of the children in the wait set has stopped or terminated, or with a
return value equal to the PID of one of the stopped or terminated children.

Checking the Exit Status of a Reaped Child

If the statusp argument is non-NULL, then wai tpid encodes status information
about' the' child' that caused the return in status, which is the value pointed to
by statusp. The wait. h include file defines several macros for interpreting the
status argument:

WIFEXITED(status). Returns trueif the cl;lild terminated normally" via a call
to exit or a return.

WEXITSTATUS(status). Returns the exit status of a norµially terminated
child. This status is only defined if WIFEXITED() returned true.

WIFSIGNALED(status). Returns true if the child process terminated be­
cause of a signal that was not caught.

WTERMSIG(status). Returns the number of the signal that caused the child
proce~s to terminate. This status is only defined if WIF~IQNALED()
returned true.

WIFSTOPPED(status). Returns true if the child that caused the return is
currently stopped.

WSTOPSIG(status). Returp,s,t)le number of the signal that caused the child
.t'o siop. This-status is on1y defined if W~STOP'f'.ED(). ret\lrned true.

WIFCONTJNIJED(status). Returns true if the child process was restarted by
receipt of a SIGCONT signal.

Error Conditions

If the calling process has no children, then wai tpid returns -1 and sets errno to
ECHILD. If the wai tpid function was interrupted by a signal, then it returns -1
and sets errno to EINTR.

List all of the possible output sequences for the following program: ,.

----------------------- codelecf!waitprobO.c
int maih()

2 {

3 if'(Fork() == 0) {
4

5 }
printf(11 a"); fflush(Stdout);

6 else {

'I

" I

' I

746 Chapter 8 Exceptional Control Flow

Aside

7

8

9

printf (11b 11
); fflush(stdout);

waitpid(-1, NULL, O);
}

10 printf (11 c"); fflush(stdout);

11 exit(O);
12 }

------------------------- code/ecf/waitprobO.c

The wait Function

The wait function is a simpler version of wai tpid.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *statusp);
Returns: PID of child if OK or -1 on error

Calling wait (&status) is equivalent to calling wai tpid(-1, &status, 0).

Examples of Using wai tpid

Because the wai tpid function is somewhat complicated, it is helpful to look at
a few examples. Figure 8.18 shows a program that uses waitpid to wait, in no
particular order, for all of its N children to terminate. In line 11, the parent creates
each of the N children, and in line 12, each child exits with a unique exit status.

Constants associated with Unix functions

Constants such as WNOHANQ and WUNJRACED are ~efined·by system h'1,ader fiJ~s. For pxample,
WNOHANG and WUN'FRf\.CED are defjned:(indirectly) by· thy wait .h h<;ader.file:

I* Bits in the third
#define \INOHANG 1

#define WUNTRACED 2

argument ,to 'waitpid • .,. *f
j

/"f, Don't block waiting. */
/* Report status ,of' stopped ,,children. */

In order to use these constants, you,must.incJude tpe wa-i t,. h headyr file in your~code~·

#include <sys/wait.h>
~ k~

The man page for each Ullix function lists the header files to include wl\enever" you use that function
in your code. Also, in order 'to chedk return codessuch as ECHILD and EINTR; you 'must i'uclude

> ~ • •

errno. h. To simplify our ,code,exampl,es, we include a single header file called csapp. h that includes
the header files for all of the functim;is u~ed ii\ the book. The csapp' h I'ieac.Jer file is available online
from the CS:APP Web site.

#include "csapp.h 11

2 #define N 2
3

4 int :ip.ain()
I 1

5 {

6 int status, i;
7 pid_t pid;
8

9

10

11

I* Parent creates N cfiildren */
f0~ (i =vO· i < N· i++) ' ' .

12

13
.,

if ((pid = Fork()) == 0) /• Child •/
exit(100+i);

Section 8.4 Process Control 747

14 l,l

~~) ~ t
I• Parerit' reaps N children in no particul~r order */

~ H) • • Jfl '

16

17

18

19

while ((pid = waitpid(-1, &status, 0)) > 0) {
if (WIFEXITED'(status))

else

printf(11 child %d terininated normally with
pid, WEXITSTATUS(status));

. (
exit status=%d\n 11

,

20 printf(11 child %d terminated abnormally\n", pid);
21 }

22

23 /* The only normal termination is if there are no more children */
24 if (errno ! = ECHILD)
25 unix_error("waitpid error");
26

27 exit(O);
28 }

---------------------------~~~~~-code/ecf/waupidl.c

Figure 8.18 Using the wai tpid function to reap'zombie children in no particular order.

Before moving on, make sure you understand why line 12 is executed by each of
the children, but not the parent.

In line 15, the parent waits for all of its children to terminate by using wai tpid
as the test condition of a while 'loop. Because the first argument is -1, the call to
wai tpid blocks until an arbitrary child has terminated. As each child terminates,
the call to wai tpid returns with the nonzero PID of that child. Line 16 checks the
exit status of the child. If the child terminated normally-in this case, by calling
'the exit function-then the parent extracts the exit status and prints it on stdout.

When all of the children have been reaped, the next call to wai tpid returns -1
and sets errno to ECHILD. Line 24 checks that the wattpid function terminated
normally, and prints an error message otherwise. When we run the program 9n
our Linux system, it produces.the following output:

748 Chapter 8 Exceptional Control Flow

linux> ./waitpid1
child 22966 terminated normally with exit status=100
child 22967 terminated normally with exit status=101

Notice that the program reaps its children in no particular order. The order that
they were reaped is a property of this specific computer system. On another
system, or even another execution on the same system, the two children might
have been reaped in the opposite order. This is an example of the nondeterministic
behavior that can make reasoning about concurrency so difficult. Either of the two
possible outcomes is equally correct, and as a programmer you may never assume
that one outcome will always occur, no matter how unlikely the other outcome
appears to be. The only correct assumption is that each possible outcome is equally

likely.
Figure 8.19 shows a simple change that eliminates this nondeterminism in the

output order by reaping the children in the same order that they were created tiy
the parent. In line 11, the parent stores the PIDs of its children in orde'r and then
waits for each child in this same order by calling wai tpid with the appropriate
PID in the first argument.

11) " '.~ •ff' .. ,,,-., fi. """'""'' '"f'::""'l'!'"":"·d "''""'_"'~""""""''°'1':.'!J!"!"!"'lfll:J"l!/f' l'~*"" 'f/f'l'<'1/f't.W<$J_,,~ -.,,~'''Ii ¥"!£'' Vf!"' ·~l"'!f{~f1Gli£"¥' • ""k,k ' ·~ w

;!J!..'!."t;ti~Q!;i!.~JJDli:fK~~Z~,}1'.."'wfl'°i!';11kl''' .~,ft"«t I ;; ""' ·'
Consider the following program:

------------------------- code/ecf!waitprobl.c

1 int main()
2 {

3 int status;
4 pid_t pid;

5
6 printf("Hello\n");
7 pid =Fork();
8 printf(11 %d\n 11

, !pid);
9 if (pid != 0) {

10 if (waitpid(-1, &status, 0) > 0) {
11 if (WIFEX2TED(status) != 0)
12 printf(11 %d\n 11 , WEXITSTATUS(status));

13 }

14 }

15 printf(11 Bye\n");
16 exit(2);
17 }

------------------------- code/ecf!waitprobl.c

A. How many output lines does this program generate?

B. What is one possible ordering of these output lines?

2
3

#include 11 csapp.h 11

#dehne N 2

4 int main()
5 {

6 int status, i;
7 pid_t pid[N], retpid;

8

r'f r i,~

9

10'

11

12

13

I* Parent creates N children */
for (i = O; i < N; i++)

if ((pid[i] =Fork()) == 0) /• Child •/
exit(100+i); ,,

14 /* Parent reaps N children in order */
15 i = O;

.section 8.4 Process Control 749

'·'

.,

19, I While ,((retpid waitpid(pid(i++), &status, 0)) > 0:\, {

17 'if (WIFEXITEDCstatus)) "'· . .,
18 printf(11 child %d terminated normally with exit status=%d\n",
19 retpid, WEXITSTATUS(statu~));
20 else

21 _printf(11 child %d terminated abnormally\n", retpid);
22

23

}

24 1* THe only,norJilal terminat~qn is if thererare no more children*/
25 if (errno != ECHILD)
26 unix_error("waitpid error 11

);

27

28

29

exit(O);

~-------------------------------- code/ecf/waitpid2.c

FiiJur'e 8.19 Using wai tpid to reap zombie children in the order they were created.

11
8.4.4 ,P\Jttirig Processes to.~leep

The sleep function suspends a process for a specified period of time.
1 i) .J I

#include <unistd'.h>

~~igne~ int sl~epC'unsigned int secs);
' 1-1ri

'
Returns: seconds left to sleep

l 0

Sleep returns zero if the requested amount of time has elapsed1and the number of
seconds still left to sleep otherwise. The latter case is possible if the sleep function

•,

750 Chapter 8 Exceptional Control flow

returns prematurely because it was interrupted by a signal. We will discuss signals

in detail in Section 8.5.
Another function that we will find useful is the pause function, whicp. puts the

calling function to sleep until a signal is received by the process.

#include <unistd.h>

int pause(void);
Always returns -1

1
. ~""',,,,,. '-ffeifo·i;""° .,..,..,.,.~- ~~~-wr1f"ff:'Jf'W.~'!"V'$f:;::':J?i//i;r~~,,,,~~
:er.ru;ttc_~g[pij~J!!:Q,;i .i.&!llti9~g~;~~~....-... . . •' !

Write a wrapper function for sleep, called snooze, with the following interface:

unsigned int snooze(unsigned int secs)j

The snooze function behaves exactly as the sleep function, except that it prints
a message describing how long the process actually slept:

Slept for 4 of 5 secs.

8.4.5 Loading and Running Programs

The execve function loads and runs a new program in the context of the current

process.

#include <unistd.h>

int execve(const char *filename, canst char *argv[],
const char *envp[]);

Does not return if OK; returns -1,on error

The execve function loads and runs the executable object file filename with the
argument list argv and the environment variable list envp. Execve returns to the
calling program only if there is an error, such as not being able to find filename.
So unlike fork, which is called once but returns twice, execve is called once and

never returns.
The argument list is represented by the data structure shown in Figure 8.20.

The argv variable points to a null-terminated array of pointers, each of which
points to an argument string. By convention, argv [OJ is the name of the executable
object file. The list of environment variables is represented by a similar data
structure, shown in Figure 8.21. The envp variable points to a null-terminated array
of pointers to environment variable strings, each of which is a name-value·pair of

the form name=value.

Section 8.4 Process Control 751

Figure 8.20
Organization of an
argument list.

argv "ls".

"-lt 11

·argv [argc - 1]

NULL I "/user/include" I

Figure 8.21
Organization of a,n
environment variable list.

envp

envp[]

i"PWD=/usr/droh"I

j 11PRINTER=iron")

I "USER=droh" I

After execve loads filename, 'it calls the start-up code described in Sec­
tion 7.9. The start-up code sets up the stack and passes control to the main routine
of the new program, which has a prototype of the form

iht main(fnt argc, char **argv, char **envp);

or equivalently,

int main(int argc, char *argv[], char *envp[]);

When main begins executing, the user stack has the organization shown in Fig­
ure 8.22. Let's work our way from the bottom of the stack (the highest address)
to the top (the lowest address). First are the argument-and enVironment strings.
These are followed further up the stack by a null-terminated array of pointers,
each of which points to an environment variable string on-the stack. The global
yariable enviroq points to the first qf these pointers, envp [OJ. The environment
array is followed by th!' null-te~minated "Ff!!'[] (!Hay, with J<ach_t;l,eme,nt P.Oin,ting
tp an argument string pn the. sta£k. At the.top of the stack, js the ~!ack fram~ fo1
the system start-up function, libc_start_main (Section 7.9).

There are three arguments to function main, each stored in a register accord­
ing to the x86-64 stack discipline: (1) argc, which gives the number of non-null
pointers in the argv [] array; (2) argv, which points to the first entry in the argv []
array; and (3) envp1 which points to the first entry in the. envp [] array.

Linux provides several functions for manipulating the environment array:

#include <stdlib.h>

char *getenv(const char *name);

Returns: pointer to name if it exists, NULL if no match

752 Chapter 8 'Exceptional Control Flow

Figure 8.22
Bottom of stack

Typical prganization of
the user stack when a
new program starts.

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp (n] == NULL

envp[n-1] environ
[/ (global var)

1-----•:::nc.vp...:.[0")'----4·· .:f::·.:::~: ~==~
argv [argc] "" NULL envp ,

argv[a"rgc-i] (in %rdx)

argv
(in %rsi)

argc
(in %rdi)

Stack frame for
libc_start_main

1------------1 Top of stack
Future stack frame for

main

The getenv function searches the envin:mment array for a string name=value. If
found, it returns a pointer to value; otherwise, it returns NULL.

#include <stdlib.h>

int setenv(const char *name, canst char •newvalue, int overwrite);
Returns:..O on success, -1 on error

void unsetenv(const char •name); '
Returns: nothing

. ,-,-

If the environment array contains. a string of the form 'name=oldvalue, then
unsetenv deletes it and setenv replaces oldvalue' with newiralue, but only if
overwrite is'nonzero. If name does not exist, tllen s'e'tenv adds name='n'.ewva'lue

to the array. "
' .

~~'",..,....,..bl . ""'ll'.'~ 'I".. J';:"i:'.'~>1"%'!0:: '' ''. >if~•',..,,_~,,,~~-~
!!;![i!J;llcgj,la:O, !l.rn;...,~ \ISOJ!lti111,_.;J.!a9£'il.:l~'·a>dliiii..Gi!,~•·i'.1·$:tM~
Write a program called·myecho that prints its command-line arguments and envi-
ronment variables. For example: · ' "'

linux> ./myecho argl arg2
Command-ine arguments:

argv[OJ: myecho
argv [1] : argl

' argv[2]: arg2

Environment variables:
envp[O]: PWD=/usrO/droh/ics/code/ecf
en,,P [1] : TERM=emacs

envp[25]: USER=droh
envp[26]: SHELL=/usr/local/qin/tcsh
envp[27]: HOME=/usrO/droh

8.4.6 Using fork and execve to Run Programs

Section 8.4 Process Control 753

Programs such as Unix shells and Web servers make heavy use of the fork and
execve functions. A shell is an interactive application-level program that runs
other programs on behalf of the user. The original she!\ was the sh program,
which was followed by variants such as csh, tcsh, ksh, and bash. A shell performs
a sequence of read/evaluate steps a9d then terminates. The read step reads a
command line from the user. The evaluate step parses the command line and runs
programs on behalf of the user.

Figure 8.23 shows the main routine of a simple shell. The shell prints a
command-line prompt, waits for the user to type a command line on stdin, and
then evaluates the command line.

Figure 8.24 shows the code that evaluates the command line. Its first task is
to call the parseline function (Figure 8.25), which parses the space-separated
command-line arguments and builds the argv vector that will eventually be passed
to execve. The first argument is assumed to be either the name of a built-in shell
command that is interpreted immediately, or an executable object file that will be
loaded and run in the context of a new child process.

If the last argument is an'&' character, then parseline returns 1, indicating
that the program should be executed in the background (the shell does not wait
for it to compl~te). Otherwise, it returns 0, indicating that the program should be
run in the foreground (the shell waits for it to complete).

,,, "'].-.. ,., "f' ·l;"' ;'<'f' ~ :t- ·l't" ·- 'r'' ,,,, tt· IF' ti(t .,J)' 'ii . ..,, H l"j' ~

Asic;I~. Prow~-m~ yerws proce~se~- .. -1

i ·~1)1../' 1l

t1 H'

This is a ~ood place to .pause and make ,sure you understand the dis\inction between a program aqd
~process'. A program·iS '(c'olfecti01i"of e6Cle a11,d data; programs cah1'xisLas dbject files on disk or as
segn1~1,1ts ii{ ,?~fl' address Spa~e. A "Process i;'Ja sP.~cifiC':tinslailce .6i'si~prograrif in execution; a~ program.
"always'nin's'ii:dhe "COjltexi onom~ proeess. Underst'anding this distinction is important if you want fo
uriderStanCT iiie·tO'i:-1(~no e'¥.9

1

2Ve tfupC~iOns:· The~fg\fk furic'tiO,n fUhs the Same Prog·ram. in a new child
"process that'is)l dupli~ate of t'hkp\lr~nt:Th.e:execvs'fuhcti,;-Il'f<lads'~nd 'nilis'a new program 'in the
cqntext of th~ cnrr,~nt prpcess. 'While it ove~it~s t)le adc(ress sp,ace ol' th~ fltrr,ent process, it does not
create· a newyroi;,ess, 1:he l)~'Y p.rogr~m,, ~t~U liy& i~~ sa~~:r.rrr. ·~vd it inherlfs'all of, the file descriptors
!hat were open ~t"the time of th'.~, call to t11,e e~e~v: ,p.inctton. ;t,J

.l' ,}.• '~ ..,, t,, ·~ 4\

I

t

754 Chapter 8 Exceptional Control Flow

-------------------------- code/ecf!shellex.c

1 #include 11 csapp.h"
2 #define MAXARGS 128
3
4 /* Function prototypes */
5 void eval(char *cmdline);
6 int parseline(char *buf, char **argv);
7 int builtin_command(char **argv);

8
9 int main()

10 {
11 char cmdline[MAXLINE] j /* Command line */

12

13 while (1) {

14 /• Read •/
15 printf("> 11

);

16 Fgets(cmdline, MAXLINE, stdin);
17 if (feof (stdin))
18 exit(O);

19

20

21

22

23 }

}

/* Evaluate */
eval(cmdline);

-------------------------- code/ecflshellex.c

Figure 8.23 The main routine for a simple shell program.

After parsing the command line, the eval function calls the buil tin_ command
function, which checks whether the first command-line argument is a built-in shell
command. If so, it interprets the command immediately and returns 1. Otherwise,
it returns 0. Our simple shell has just one built-in command, the quit command,
which terminates the shell. Real shells have numerous commands, such as pwd,

jobs, and fg.
If builtin_command returns 0, then the shell creates a child process and

executes the requested program inside the child. If the user has asked for the
program to run in the background, then the shell returns to the top of the loop and
waits for the next command line. Otherwise the shell uses the waitpid function
to wait for the job to terminate. When the job terminates, the shell goes on to the

next iteration.
Notice that this simple shell is flawed because it does not reap any of its

background children. !=orrecting this fl~"(requires the use of signals, which we

describe in the next section.

•l ·Section 8.4 Process Control 7..55

-------------------------- codelecfrshel/ex.c

I* eval - Evaluate a command line */
2 void eval(char *cmdline)
3 {

4 char •argv[MAXARGS]; •/• Argument list execve() •I
5 char buf[MAXLINE]; /*Holds modified conunand line*/
6 int bg; /* Should the job run in bg or fg? */
7 pid_t pid; /* Process id */
8

9

10

11

12

13

strcpy(buf. cmdline),;· !n

bg = parseline(buf, argv);
if (argv[O] == NULL)

return; I* Ignore empty lines */

14 if (!builtin_comman,d(argv)) {

15 if ((pid = Fork()) == 0) { /• Child runs user~jpb •/
16 if (execve(argv[O]. argv, environ) < O) {
17 printf(11 %s: Command not found.\n 1', argv[O]);
18 exit(O)j
19

20

21

}

}

22 I* Parent waits for foreground job to terminate */
23 if (! bg) {

24 int status;·
25 if (waitpid(pid, &status, 0) < 0)

26 unix_error("waitfg: ;waitpid<~rror");
27 }

28 else
29 printf("%d %s 11

, pid, cmdline);
30 }

31 return;
32 }

33

34 /* If first arg is a builtin command', run it and return <tfue */
35 int builtin_command(char **a~gv)

{ 36

37

38

39

40

if (!strcmp(argv[O], 11quit 11
)) /* quit command *I

exit(O);
if (!strcmp(argv[O], "&"))

1 Z.ettlrn 1;
/* Ignore singleton & */

41 return O; I* Not a ~uiltin command */
42 ., }

---------------------~---- code{ecflshellex.c

' Figure 8.24 eval evaluates the shell cb'mmand line.

756 Chapter 8 Exceptional Control Flow

-------------------------------- code/ecflshellex.c

/* parseline - Parse the command line and build the argv array */
2 int parseline(char *buf, char **argv)

3 {

4

5

6

7

8

9

10

11

char *delimj
int argc;
int bg;

buf[strlen(buf)-1]
while (•buf && (•buf

buf++;

/* Points to first space delimiter *f
/* Number of args */
!• Background job? •/

' '. '
/* Replace trailing 1 \n 1 with space */

')) /* Ignore leading spaces */

12 /* Build the argv list */
13 argc = 0;
14 while ((delim = strchr(buf,' '))) {
15 argv[argc++] = buf;
16 *delim = 1 \0 1

;

17 buf = delim'+ lj
18 while (•buf && (•buf ' ')) /• Ignore spaces •/

19

20 }

buf++;

21 argv [argc] = NULL;

22
23 if (argc == 0) !• Ignore blank line •/

24 return 1;

25
26 I* Should the job run in the·~background? */
27 if ((bg = (•argv[argc-1] == '&')) != 0)
28 argv[--argc] = NULL;

29
30 return bg;

31 }

-------------------------------- code!ecflshellex.c

Figure 8.25 parseline parses a line of input for the shell.

8.5 Signals
To this point in our study of exceptional control flow, we have seen how hardware
and software cooperate to provide the fundamental low-level exception mecha­
nism. We have also seen how the operating system uses exceptions to support a
form of exceptional control flow known as the process context switch. In this sec­
tion, we will study a higher-level software form of exceptional control flow, known
as a Linux signal, that allows processes and t!;i.e kernel to interrupt other processes.

Section 8.5 Signals 757

Number Name Default action Corresponding event

1 ~~G[IUP Terminate Terminal li~e hangup
2 SIG INT Terminate _Interrupt from keyboard
3 SIGQUIT Turmi]late Quit from keyboard
4 .SIG ILL Terminate ~ Illegal instruction
5 SIG TRAP Terminate and dump core 8 Trace trap
6 SIG AB RT Terminate and dump core 8 'Abort signal from abort function
7 SIGBUS "Terminate Bu~ error
8 SIGFPE Tetlllinate and dump core a Floating-point exception
9 siGKILL Termina'teb KiII program

10 SIGUSRl Terminate User-defined signal 1
11 SIGSEGV Terminate and dump core 8 Invalid memory reference (seg fault)
12 SIGUSR2 Terminate. User-defined signal 2
13 SIG PIPE Terminate Wrote to a pipe 'with no reader
14 SIGALRM Terminate Timer signal frail\ alarm function
15 SIG TERM Terminate Software terpiination signal
16 SIGSTKFLT Terminate Stack fault on coprocessor
17 SIDCHLD Ignore A child process has stopped or terminated
18 -SIG CONT Ignore Continue process if stopped
19 SIGSTGP Stop until next SIGCONT b Stdp signal not from terminal
20 SIGTSTP Stop until next S!GCONT Stop signal from terminal
21 SIGTTIN Stop until next SIGCONT Background process read from terminal
22 SIGTTQU Stop until next SIGCONT Background process wrote to terminal
23 SIGURG Ignore Urgent condition on socket

24 SIGXCPU .. Terminate CPU time limit exceeded
25 SIGXFSZ Terminate File size limit exceeded
26 SIGVTALRM Terminate Virtual timer expired
27 SIGPROF '1

Terminate Profiling tlmer expired
28 SIGWINCH Ignore ' Window size changed
29 SIG IO Tertl-iinate IIO now poisible qn a descriptor
30 S,IGPWR ' Power failure Terminate

• ,. c

Figure 8.26 Linux signals. Notes: (a) Years ago, main memory was implemented with a technology known
as core memory. "Dumping core" is a historical term that means writing an image of the code and data
memory segments to disk. (b) This signal can be neither caught nor ignored. (Source: man 7 signal. Data
from the Linux Foundation.)

A signal is a small message that notifies a process that an event of some type
has occurred in the system. Figure 8.26 shows the 30 different types of signals that'
are supported on Linux systems.

Each signal type corresponds tp some kind of system event. Low-level hard­
ware exceptions are processed by the kernel's exception handlers and would not
normally be visible to user processes. Signals provide a mechanism for exposing

758 Chapter 8 Exceptional Control Flow

Figure 8.27

the occurrence of such exceptions to user processes. For example, if a process at­
tempts to divide by zero, then the kernel sends it a SIGFPE signal (number 8).
If a process executes an illegal instruction, the kernel sends it" a SI GILL signal
(number 4). If a process makes an illegal memory reference, tbe kernel sends it a
SIGSEGV signal (number 11). Other signals correspond to higher-level software
events in the kernel or in other user processes. For example, if you type Ctrl+C
(i.e., press the Ctr! key and the 'c' key at the same time) while a process is running
in the foreground, then the kernel sends a SIG INT (number 2) to each process in
the foreground process group. A process can forcibly terminate another process
by sending it a SIGKILL signal (number 9). When a child process terminates or
stops, the kernel sends a SIGCHLD signal (number 17) to the parent.

8.5.1 Signal Terminology

The transfer of a signal to a destination process occurs in two distinct steps:

Sen/ling a signal. The kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process. The signal
is delivered for one of two reasons: (1) The kernel has detected a system
event such as a divide-by-zero error or the termination of. a child process.
(2) A process has invoked the kill function (discussed in then ext section)
to explicitly request the kernel to send a signal to the destination process.
A process can send a signal to itself.

Receiving a signal. A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal. The process
can either ignore the signal, terminate, or catch the signal by executing
a user-level function called a signal handler. Figure 8.27 shows the basic
idea of a handler catching a signal.

A signal that has been sent but not yet received is called a pending signal. At
any point in time, there can be at most one pending signal of a particular type.
If a process has a pending signal of type k, then any subsequent signals of type
k sent to that process are not queued; they are simply discarded. A process can
selectively block the receipt of certain signals. When a signal is blocked, it can be

Signal handling. Receipt
of a signal triggers a
control transfer to a signal
handler. After it finishes
processing, the handler
returns control to the
interrupted program.

(1) Signal received
by process

(2) Control passes
l to signal handler turr..__ _________ _..,

lnext 1~---------J (3) Signal
\ handler runs

(4) Signal handler
returns to

next instruction

Section 8.S Signals 759

delivered, but the resulting pending signal will not be received tlntil the process
unblocks the signal.

A pending signal is receiveCI at most once. For each process, the kernel main­
tains the set of pending signals in the pending bit vector, and the set of blocked
signals in the blocked bit vector.1 The kernel sets bit k in pending whenever a
signal of type k is delivered and clears bit k in pending whenever a signal of type
k is received.,. .rr /

l 11

8.5.2 Sending Signals

Unix systems provide a number of mechanisms for sending signals to processes.
All of the rlfechanisms rely on th'e notion of a process group.

Process Groups

Every process belongs to exactly one pr9ces._s group, which is identified· by a
positive integer process group ID. The getpgrp function returns the process group
ID of the current jlrocess. '

I r 'It

#include <unistd.h>

pid_t getpgrp(void);

Returns: process group ID of calling process

By defauli, a child pt<}cess belong(tb the same' process group as its parent. A
process can cliange tfie'!process groujl of itself or another process by using the
setpgid function:. .

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns: 0 on success, -1 on error

The setpgid function changes the process group of process pid to pgid. If pid is
zero, the PID of the current process is used. If pgid is zero, the PID of the process
specified by pid is used for the process group ID. For example, if process 15213 is
the calling process, then

setpgid(O, O~;

creates a new process group whose process group ID is 15213, and adds process
15213 to this new group.

1. Also known as the signal mask.

760 Chapter 8 Exceptional Control Flow

Sending Signals with the /bin/kill Program

The /bin/kill program sends an arbitrary signal to another process. For example,

the command "'

linux> /bin/kill -9 15213

sends signal 9 (SIGKILL) to process 15213. A negative PID causes the signal to
be sent to every process in process group PID. For example, the command

linux> /bin/kill -9 -15213

sends a SIGKILL signal to every process in process group 15213. Note that we
use the complete path /bin/kill here because some Unix shells have their own
built-in kill command.

Sending Signals from the Keyboard

Unix shells use the abstraction of a job to represent.the processes that are creat~d
as a result of evaluating a single command line. At any point in time, there is at
most one foreground job and zero or more background jobs. For example, typing

linux> ls I sort

creates a foreground job consisting of two processes connected by a Unix pipe: one
running the ls program, the other running the sort program. The shell creates
a separate process group for each job. Typically, the process group ID is taken
from one of the parent processes in the job. For example, Figuri' 8,28 shows a
shell with one foreground job and two background jobs. The parent process in the
foreground job has a PID of 20 and a process group ID of 20. The parent process
has created two children, each of which are also members of process group 20.

Figure 8.28
Foreground and
background process
groups.

Background
process group 32

·---------------·
' :

Back- i pid=40
~round 1 gid=40
1ob#2 : P

: , _______________ ..!

Background
process group 40

Section 8.5 Signals 761

Typing Ctrl+C at the keyboard causes the kernel to send.,•SIGINT ,signal to
every process in the foreground process group. In tqe default case, the result is to
terminate the foreground job. Siinil~rly, typing Ctrl+Z causbs the kJ\-nel to send a
SIGTSTE signal to every process in the foreground process~wup. In the default
case, the result is to stop (suspend) the foreground job.

,Sending Signals with the kill Fu~ttion
I ,,'l •1

Processes send signals. to other processes (including themselves) by calling the
kill function.

{ t ;>

• #;include <sys/types. h> 1 u
#includa,'.<signal.h>• l!

in~ kill(pid_t p~d, int sig);

Returns: 0 if OK, -1 on error
l ,

If pid is greater than zero, then:the kiH function sends signal number sig to
process"pid. If pid is equaJ,to,zero, then kill sends signal sig to.every, process
iIJ the process group of tl)e calling process, jpcluding the calling.process itself. If
pid is less than zero, then kHl sends signal sig to. every process irrprocess group
Jpidl {the absolute value ofpid). Figure 8.251 shows an.example of a parent that
uses the kiH function to send 3.ISIGKILL signal to its child.

I

+---~.~~--------~----------- code/ecf/kill.c
1 #include 11 csapp.h"
2

int main()
4 {

5 ,pid_t pid;
6

7

8

9,

/* Child sleeps until SIGKILL sigil~f received, th9n dies */
if ((pid =Fork()) ~= 0) {

Paus~(); I* Wait for a
1

signal to a~rive *~
1,q
11

1,2, f

13

,, ' . '
pri:p.tj{ ~:•c9i;trol should ,!7e"l{er reach here! \n");
exit(O),;

14 /• Parent sends a SIGKILL signal to a child •/
15 Kill(pid, SIGKILL);
16 exit(O);
17 }

---------.,------~---------- code/ecf/kill.c

,Figure 8.29 Using the kill'function to send a signal toa child.

762 Chapter 8 Exceptional Control flow

Sending Signals with the alarm Function

A process can send SIGALRM signals to itself by calling the alarm function.

#include <unistd.h>

unsigned int alarm(unsigned int secs);
Returns: remaining seconds of previous alarm, or 0 if no previous alann

The alarm function arranges for the kernel to send a SIGALRM signal lo the
calling process in secs seconds. If secs is 0, then no new alarm is scheduled. In
any event, the call to alarm cancels any pending atarms and returns the number
of seconds remaining until any pending alarm was due to be delivered (had not
this call to alarm canceled it), or 0 if there were no pending alarms.

8.5.3 Receiving Signals

When the kernel switches a process p from kernel mode to user mode (e.g.,
returning from a system call or completing a context switch), it checks the set of
unblocked pending signals (pending & -blocked) for p. If this set is empty (the
usual case), then the kernel passes control to the next instruction Unext) in the
logical control flow of p. However, if the set is nonempty, then the kernel chooses
some signal kin the set (typically the smallest k) and forces p to receive signal
k. The receipt of the signal triggers some action by the process. Once the process
completes the action, then control passes back to the next instruction Unext) in the
logical control flow of p. Each signal type has a predefined default action, which
is one of the following:

• The process terminates.

• The process terminates and dumps core.
• The process stops (suspends) until restarted by a SIGCONT signal.

• The process ignores the signal.

Figure 8.26 shows the default actions associated with each type of signal.
For example, the default action for the receipt of a SIGKILL is to terni.inate
the receiving process. On the other hand, the default action for the receipt of
a SIGCHLD is to ignore the signal. A process can modify the default action
associated with a signal by using the signal function. The only exceptions are
SIG STOP and SIG KILL, whose default actions cannot be changed.

#include <signal.h>
typedef void (•sighandler_t)(int);

sighandler_t signal(int signurn, sighandler_t handler);
Returns: pointer to previous handler if OK, SIG_ERR on error (does not set errno)

Section 8.5 Signals 763

.Tue signal function can change the action associated with a signal signum in
one of three ways:

• If handler is SIG_IGN, then signals of type signum are ignbred.

• If handler is SIG_DFL, then the action for signals of type signum reverts to
the default action.

• Otherwise, handler is the address of a user,defined fufl.ction, call"d a signal
handler, tliat will be called whenever the process receives a signal of type
signum. Changing the default action by passing the address of a handler to
the signal function is known as installing the handler. The invocation of the
handler is called catching tlie signal. The execution of the 11.anuler is referred
to as handling the signal.

When a proc;ess catches a signal of type k,.the handler installed for signal k is
invoked 'Yith a single in,t!'ger arg4ment set to k. This argument allows the same
handler function to C(ltcl,\,qiff.erent type~ of signals,, ·

When the handler "xecutes its return statement, control (u~uaJ!y) passes.back
to the instruction in the control flow ·?'here the process was interrupted by the
receipt of the signal. We say "usually" becau~e in some systems, interrupted system
calls return i_mmediately with an error. .

Figure 8.30 shows a program that,.catche~ the ,SIGINT signal that is sen}
whenever the user types Ctrl+C at the keyboard. The default action for SIG INT

----------,----------------.,.--- code/ecflsigint.c

#include 11 csapp.h 11

2 t t tc
3 void sigint_handler(int sig) /• SIGINT handler •/
4 {

5 printf("Caught SIGINT!\n");
6 exit(O);
7 }

8

9 int main()
10 {

11 /• Install the SIGINT haµdler •/ ~
•r

12 if (signal(SIGINT, sigint_handler) == 1HG_ERR)
13 unix_error(11 signal error");
14

15, pause(); I* Wait ,,for the receipt of a signal */
16

17 return O;
18 }

-------------------------- cdde/ecf!sigint.c

Figure 8.30 A progra'r'n-ttiat uses a signal'handler to catch a SIG1NT signal.

764 Chapter 8 Exceptional Control Flow

(1) Program
catches signal s

Main program Handlers

(2) Control passes
to handler S

lcurr"----~==~---+
(4) Control passes

to handler T

HandlerT

(3) Program
catches signal r"----------~

(7) Main program 1
next

resumes
(6) Handler S returns

to main program

(5) Handler T
returns to
handlers

Figure 8.31 Handlers can be interrupted by other handlers.

is to immediately terminate the process. In this example, we modify the default
behavior to catch the signal, print a message, and then terminate the process.

Signal handlers can be interrupted by other handlers, as shown in Figure 8.31.
In this example, the main program catches signal s, which interrupts the main
program and transfers control to handler S. While S is running, the program
catches signal t 'f. s, which interrupts S and transfers control to handler T. When
T returns, S resumes where it was interrupted. Eventually, S returns, transferring
control back to the main program, which resumes where it left off.

-~·- ·-~····--~·-·-~~,~=~"""'1':'.""'l'""""'- """Ti i::: :· ..., ~r<1c.ll~.!o!llim:eaiJe'7:&~~~;;. .\ •'_i

Write a program called snooze that takes a single command-line argument, calls
the snooze function from Problem 8.5 with this argument, and then terminate&
Write your program so that the user can interrupt the snooze function by typing
Ctrl+C at the keyboard. For example:

linux> ./snooze 5

CTRL+C
Slept for 3 of 5 secs.
linux>

User hits Crtl+C after 3 seconds

8.5.4 Blocking and Unblocking Signals

Linux provides implicit and explicit mechanisms for blocking signals:

Implicit blocking mechanism. By' default, the kernel blocks any pending sig·
nals of the type currently being processed by a handler. For example, in
Figure 8.31, suppose the program has caught signals and is currently run·
ning handler S. If another signals is sent to the process, thens will become
pending but will not be received until after handler S returns.

Explicit b/ockii;tg mechaflism. ,ftppljcations can explici,tly bloc~ and unblock
selected signals using the sigprocmask function and its helpers.

#include <signal.h>
P~JJ '

*int sigprocmask(int how, canst sigset_t " '
' *set, sigset_t *oldsei);

int sigemotyset(sigset_t *S9t);
1 ' "'(, ~ ,,..

~nt ..sigfi~lset(sigset_t •set);
"' ' ~n~ sigaddset (sigset_~ *~~t, int

i'nt sigdelset(sigset_t *set, int
signum);
signum),;,

,{I ' • ' \

Section 8.5 Signals 765

:ij.etprns: 0 if OK, -1 qy. error

int sigismember(const sigset_t *~et, int sigHUm);

Returns: 1 if member, O if not, -1 on error

~, ' :;r
The sigprocmask function changes the set of currently blocked signals (the

lllocked bit vector des'cribed in Section 8.5.1). The specific behavior depends on
the value of how: '

rr, r11.b ~ r
SIG_BLOCK. Add the signals in set to bloc)';ed (blockeq = blocke<;L.l ·set.).

SIG_UNBLOCK. Remove the signals
blocked & -set).
t ~ • •

SIG_SETMASK,. b).pcked = ser

ill set f±om blocked (blocked =
<'

If oldset is non-NULL, the pfeviotis value of the blocked bit vector is stored in
oldset. 1

' '\o. , ' ' •1•

Signal sets such as set are manipulated using the following function:!: 'Ihe
sigemptyset initializes set to the empty set. The sigfillset function adds every
signal to set. The sigaddset function, adds signum t9, s~:t. sigdelset deletes
signum from set, and sigismemP._er returns 1 if signum is J\ member of set, and
0 if not.

For ex~mple, Figure,,8.3,2 shows how ;yoµ would us,e sigprocmask to tempo­
rarily block the receipt of SIQINT signals.

2

3

4

5

f "

sigset_t mask, prev..:mask; .1

Sigemptyset(&fuask);
Sigaddset(&mask, SIGINT);

6 I* Block SIGINT and save previous.blocked set*/
7 Sigprocmask (SIG_BLDCK, &mask, &prev _mask)·;

' I' B II Code region that will not oe inierrupted, by SIGINJ

9

10

11

/-.:~Restore prev.ious blocked set.;11unblocking SIGINT */
SigprocmasR(SIG_SETMASK, &prev~<nas1' 1 NULL);

Figure 8.32 Temporarily blocking a signal from being received.

,•

I
'

766 Chapter 8 Exceptional Control Flow

8.5.5 Writing Signal Handlers

Signal handling is one of the thornier aspects of Linux system-level programming.
Handlers have several attributes that make them difficult to reason about: (1) Han­
dlers run concurrently with the main program and share the same global variables,
and thus can interfere with the main program and with other handlers. (2) The
rules for how and when signals are received is often counterintuitive. (3) Different
systems can have different signal-handling semantics.

In this section, we address these issues and give you some basic guidelines for
writing safe, correct, and portable signal handlers.

Safe Signal Handling

Signal handlers are tricky because they can run concurrently with the main pro­
gram and with each other, as we saw in Figure 8.31. If a handler and the main
program access the same global data structure concurrently, then the results can
be unpredictable and often fatal.

We will explore concurrent programming in detail in Chapter 12. Our aim
here is to give you some conservative guidelines for writing handlers that are
safe to run concurrently. If you ignore these guidelines, you run the risk of in­
troducing subtle concurrency errors. With such errors, your program works cor­
rectly most of the time. However, when it fails, it fails in unpredictable and
unrepeatable ways that are horrendously difficult to debug. Forewarned is fore-

armed!

GO. Keep handlers as simple as possible. The best way to avoid trouble is to keep
your handlers as small and simple as possible. For example, the handler
might simply set a global flag and return immediately; all processing
associated with the receipt of the signal is performed by the main program,
which periodically checks (and resets) the flag.

G 1. Call only async-signal-safe functions in your handlers. A function that is
async-signal-safe, or simply safe, has the property that it can be safely
called from a signal handler, either because it is reentrant (e.g., ac­
cesses only local variables; see Section 12.7.2), or because it cannot
be interrupted by a signal handler. Figure 8.33 lists the system-level
functions that Linux guarantees to be safe. Notice that many popu­
lar functions, such as printf, sprintf, malloc, and exit, are not on

this list.
The only safe way to generate output from a signal handler is to use

the write function (see Section 10.1). In particular, calling printf or
sprintf is unsafe. To work around this unfortunate restriction, we have
developed some safe functions, called the Sro (Safe l/O) package, that
you can use to print simple messages from signal handlers.

Section1 8.S Signals 767

Exit fexecve poll s}gqueue
_exit fork posix_trace_event sigset
abort fstat pselect)

sirgsuspend
accept fstatat raise sleep
access fsync read sockatmark
aio_error ftruncate readlink soc¥.et
aio,ret.ur:µ h futimens readlinkat socket pair
aio_suspend getegid recv stat
alarm geteuid. recvf rom s)'mlink
bind getgid recvmsg symlinkat

1 getgroups
) ' i' cfgetispeed rename tcdrain

cf getosp~ed ~getpeer;.~am~ 'ienameat tcflow
cf!3etislieed.. getpgrp,

' tlndir tcf luSh
cfsetpspeed, getpid s,elect tcgetattr
chdir getppid sem_post ... ,tcgetpgrp
ch.mod getsockname ; send·1J tcsendbreak
chow getsockopt sendmsg tcsetattr
clock~gettilh9' " g0tuid send to tcsetpgrp
close kill setgid 'time
connect . link •Setpg:i_d ~ timer_gl:ltov~rrun

creat 'linkat sets id 'timer_gettime
dup liSten setsockopt timer_settime
dup2 ls eek setuid times
ex eel. lstat shutdown um~sk
exec le mkdir sigaction uname
execv mkdirat sigaddset unlink
execve mkfifo sigd6lset unlink.at
faccessat mkfifoat sigemptyset utime
fchmod mknod sigf,illset utimensat
fchmodat mknodat sigismember utimes
fchown open signal wait
fchownat openat sigpause waitpid
fcntl pause sigpending. write
fdatasync pipe sigprocmask

Figure 8.33 Async-signal-safe functions. (Source: man 7 signal. Data from the Linux
Fou~dation:) '

•'

l.

I. •

768 Chapter 8 Exceptional Control Flow

#include "csapp.h"

ssize_t sio_putl(long v);
ssize_t sio_puts(char s[]);

Returns: number of bytes transferred if OK, -1 on error

void sio_error(char s(]);
Returns: nothing

The sio_putl and sio_puts functions emit a long and a string, respec­
tively, to standard output. The sio_error function prints an error mes­
sage and terminates.

Figure 8.34 shows the implementation of the Sm pack,age, which uses
two private reentrant functions from csapp. c. The sio_strlen function
in line 3 returns the length of string s. The sio_l toa function in line 10,
which is based on the itoa function from [61], converts v to its base b

, string representation ins. The _exit function in line 17 is an async-signal-

safe variant of exit. "
Figure 8.35 shows a safe version of the SIGINT hand)er from Fig-

ure 8.30.

G2. Save and restore errno. Many of the Linux async-signal-safe functions set
errno when they return with an error. Calling such functions inside a
handler might interfere with other parts of the program that rely on errno.

--------,~------------------- code/srdcsapp.c

ssize_t sio_puts(char s[]) /*Put string*/

2

3

4

5

{
return write(STDOUT_FILENO, s, sio_strlen(s));

}

6 ssize_t sio_putl(long v) /* Put long */
7 {
8 char s[128];
9

10 sio_ltoa(v, s, 10); /*Based on K&R itoa() */
11 reiur~. sio_puts(s);
12 }

13
14 void sio_error(char s[]) /*Put error message and exit*/

15 {
16 sio_puts(s);
17 _exit(1);
18 }

-------------------------- code!srdcsapp.c

Figure 8.34 The 510 (Safe 1/0) package for signal handlers.

.

r
..
'.?'

~
?.:
'

I

Section 8.5 Signals 769

------------------------- code/ecflsigintsafe.c

~ #'iD.Clude 11 csapp.h 11

I
2

3 void sigint_handler(int sig) /• Safe SIGINT handler •/
4 {

5 Sio_puts("Caught SIGINT!\n"); /* Safe output */

1~ _exit(O); I* Safe exit */
7 }

----------~~--------~---- code/ecf/sigintsafe.c
i •J1 I

Figure 8.35 A safe version of the SIG/NT handler from Figure 8.30.

, ..

The workaround is to save errno to a local variable on entry to the handler
and restore it before the handler r~turns. Note that this is only necessary
·if the handler returns. It is n~t necessary if the handler terminates the
process by calling _exit. '

G3. Protect accesses to shared global data structures-by blocking all signals. If
a handler shares a global data structure with the main program or with
other handlers, then your handlers and main program should temporarily
•block all ~ignals while accessing (reading or writing) that data structure.
The reason for this rule is that accessing a data structure' d from the main
program typically requires a sequence of instructions. If this instruction
sequence is interrupted by a handler that accesses d, then the handler
might find d in an inconsistent state, with unpredictable results. Tempo­
rarily blocking signals .while you access d guarantees that a handler will
not inte~rupt the instruction sequence.

G4. Declare global variables with volatile. Consider a handler and main rou­
tine that share a global variable g. The handler updates g, and main pe­
riodically reads g. To an optimizing compiler, it would appear that the
value of g never changes in main, and thus it would be .safe to use a cppy
of g that is cached in a register to satisfy every reference tog. In this case,
the maiIJ function would never see the updated values from the handler.

You can tell the.compiler not to cache a variable by declaring it with
the volatile type qualifier. For example:

volatile int g;

The volatile qualifier forces the compiler to read the value of g from
memory each time it is referenced in the code. In ,general, as with.any
shared data structure, each access to a global variable should be protected
by temporarily blocking signals.

G5. Declare flags with sig_atornic_ t. In one common handler design, the
handler,records the receipt of the signal by writing to a global flag. The
main program periodically reads the flag, responds to the signal, and

770 Chapter 8 Exceptional Control Flow

clears the flag. For flags that are shared in this way, C provides an integer
data type, sig_atomic_t, for which reads and writes are guaranteed to be
atomic (uninterruptible) because they can be implemented with a single
instruction:

volatile sig_atomic_t flag;

Since they can't be interrupted, you can safely read from and write to
sig_atomic_ t variables without temporarily blocking signals. Note that
the guarantee of atomicity only applies to individual reads and writes.
It does not apply to updates such as flag++ or flag= flag+ 10, which
might require multiple instructions.

Keep in mind that the guidelines we have presented are conservative, in
the sense that they arc not always strictly necessary. For example, if you know
that a handler can never modify errno, then you don't need lo save and restore
errno. Or if you can prove that no instance of printf can ever be interrupted
by a handler, then it is safe to call printf from the handler. The same holds for
accesses to shared global data structures. However, it is very difficult to prove such
assertions in general. So we recommend that you take the conservative approach
and follow the guidelines by keeping your handlers as simple as possible, calling
safe functions, saving and restoring errno, protecting accesses to shared data
structures, and using volatile and sig_atomic_ t.

Correct Signal Handling

One of the nonintuitive aspects of signals is that pending signals are not queued.
Because the pending bit vector contains exactly one bit for each type of signal,
there can be at most one pending signal of any particular type. Thus, if two signals
of type k are sent to a destination process while signal k is blocked because the
destination process is currently executing a handler for signal k, then the second
signal is simply discarded; it is not queued. The key idea is that the existence of a
pending signal merely indicates that at least one signal has arrived.

To see how this affects correctness, let's look at a simple application that
is similar in nature to real programs such as shells and Web servers. The basic
structure is that a parent process creates some children that run independently for
a while and then terminate. The parent must reap the children to avoid leaving
zombies in the system. But we also want the parent to be free to do other work
while the children are running. So we decide to reap the children with a S\GCHLD
handler, instead of explicitly waiting for the children to terminate. (Recall that
the kernel sends a SIGCHLD signal to the parent whenever one of its children
terminates or stops.)

Figure 8.36 shows our first attempt. The parent installs a SIGCHLD handler
and then creates three children. In the meantime, the parent waits for a line of
input from the terminal and then processes it. This processing is modeled by
an infinite loop. When each child terminates, the kernel notifies the parent by
sending it a SIGCHLD signal. The parent catches the SIGCHLD, reaps one child,

·' I< ,Section 8.5 Signals '77~

-----~·~· ------------~~f-~-~~·,~· code!ecPsignall.c

I• W~RNING: This code is buggy! •/
i " I.

3 void handlerl (int sig)' -
4 {

5 int olderrno = errno;
6

7 if ((waitpid(-1, NULL, 0)) < 0)
8

9

10

11

sio_error(11 waitpid error 0);

Sio_puts(11 Handler reaped child\n 11);

Sleep(l);

12

13

1411,

15

}

l
int
{1

errno ~ olderrnoj

main()

16 int i, n;
1 7 char buf [MAXBUF] ;
18

19 if (signal(SIGCHLD, handlerl) == SIG_ERR)
20 unix_ error (11 signal error 11) ;

21

/* Parent creates children */,..
for ·(-i = O; i < 3; i++) {

if (Fork() == 0) {

"

22

23

24

25

26

27

28

29

30

3f
32

33

34

35

36
37

38

printf("Hello
exit(O);

from· child' %d\n 11
, (int)getpid()};

•

39 '}

}

}

'"
/~ Paient waits 1 for~t'~rffiinal input 'and then Processes
if (,(tt = read(STDf~_FILENq, 'f!u'f,' si!teof(buf))) < 0)

unix errof(11 read") · 1 l.r"' - .)
·p~ri~tf ("Parent
;,hile (1)

" '

~xit(O);

processing input\n");
• ?

- "

' ' ----~----------~--------· code/ecl'/signall.c I~ '\ , I \' •J<" • "}/ l

Figure 8.36
queued.

signalL This program is flawed beta'use it assumes that:'signals are''
!

"

772 Chapter 8 Exceptional Control Flow

does some a<;lditional cleanup work (modeled by the sleep statement), and then •. ·1.·

returns.
The signal1 program in Figure 8.36 seems fairly straightforward. When we

run it on our Linux system, however, we get the following output: ·I

linux> ./signal1
Hello from child 14073
Hello from child 14074
Hello from child 14075
Handler reaped child
Handler reaped child
CR
Parent processing input

From the output, we note that although three SIGCHLD signals were sent to the
parent, only two of these signals were received, and thus the parent only reaped
two children. If we suspend the parent process, we see that, indeed, child process
14075 was never reaped and remains a zombie (indicated by the string <defunct>
in the output of the ps command):

Ctrl+Z
Suspended
linux> ps t

PID TTY

14072 pts/3
14075 pts/3
14076 pts/3

STAT TIME COMMAND

T

z
R+

0:02 ./signall
0:00 [signal!] <defunct>
0:00 ps t

What went wrong? The problem is that our code failed to account for the fact
that signals are not queued. Here's what happened: The first signal is received
and caught by the parent. While the han~ler is still processing the first signal, the
second signal is delivered and added to the set of pending signals. However, since
SIGCHLD signals are blocked by the SIGCHLD handler, the second signal is not
received. Shortly thereafter, while the handler is still processing the first signal,
the third signal arrives. Since there is already a pending SIGCHLD, this third
SIGCHLD signal is discarded. Sometime later, after the handler has returned,
the kernel notices that there is a pending SIGCHLD signal and forces the parent
to receive the signal. The parent catches the signal and executes the handler a
second time. After the handler finishes processing the second signal, there are no
more pending SIGCHLD signals, and there never will be, because all knowledge
of the third SIGCHLD has been lost. The crucial lesson is that signals cannot be
used to count the occurrence of events in other processes.

To fix the problem, we must recall that the existence of a pending signal only
implies that at least one signal has been delivered since the last time the process
received a signal of that type. So we must modify the SIGCHLD handler.to reap

Section 8.5 Signals 773

--------------------.--'--~---- code/ecf!signa/2.c
void hanliler2(int sig)

2 {

3 int olderrno = errno;
4

5 while (waitpid(-1, NULL, O) > 0) {
6 Sio_puts(11 Handler reaped child\n") i
7 }

8 if (errno != ECHILD)
9 Sio_error("waitpid error 11)~;

10 Sleep(l);
11 errno = olderrno;
12 }

------------------.,-------- codelffcflsigna/2.c

Figure 8.37 signal2. An improved version of Figure 8.36 that correctly accounts for
the fact that signals are not queued.

as many zombie children as possible each time it is invoked. Figure 8.:p shows tbe
ti~ , modified SIGCHLD handler.

When we run signal2 on our Linux system, it ho~ coq5ctly reaps all of the
zombie children,:

linux> ./signal2
Hello 'from child 15237
Hello from child 15238
Hello from child 15239
Handler reaped child
Handler reaped child
Handler reaped child
CR
Parent processing input

\\;hat is th!' outp.µt.of t\;r!)rfol\9wing prograll).? •
• r

1 ~t l1J I H• ..1,

-----,,-T;-.,-,~,~--------,-.,..,-,,-~-n-,,--- codelecf/sig~alprobO.c
volatile long counter = 2;

2

3 void handler1'(int !si'g)1
I; ., 'u

4 {
• l • • '

5 sigset_ t ma_sk, prev _mask;
. ~3 ' ., ,,

6

7

8

s':igfillset°(krnask);
·sigrrocma~kCSIG_BLOCK, &mask, &prev'_mask);

'

,,

'
I•

774 Chapter 8 Exceptional Control Flow

9 Sio_putl(--counter);
10 Sigprocmask(SIG_SETMASK, &prev_mask, NULL); /•Restore sigs •/

11

12 _exit(O);
B }

14

15 int main()

16 {

17 pid_t pid;
18 sigset_t mask, prev_mask;
19
20 printf ("%ld 11

, counter) ;
21 fflush(stdout);
22

23 signal(SIGUSR1, handler1);
24 if ((pid =Fork()) == 0) {
25 while(1) {};
26 }

27 Kill(pid, SIGUSR1);
28 Waitpid(-1, NULL, 0);
29
30 Sigfillset(&mask);
31 Sigprocmask(SIG_BLOCK, &mask, &prev_mask); /•Block sigs •/
32 printf (11 %ld 11

' ++counter) i
33 Sigprocmask(SIG_SETMASK, &prev_mask, NULL); /•Restore sigs •/

34

35 exit(O);
36 }

----------------------- code/ecflsignalprobO.c

Portable Signal Handling

Another ugly aspect of Unix signal handling is that different systems have different
signal-handling semantics. For example:

• The semantics of the signal function varies. Some older Unix systems restore
the action for signal k to its default after signal k has been caught by a handler.
On these systems, the handler must explicitly reinstall itself, by calling signal,

each time it runs.
• System calls can be interrupted. System calls such as read, wait, and accept

that can potentially block the process for a long period of time are called
slow system calls. On some older versions of Unix, slow system calls that are
interrupted when a handler catches a signal do not resume when the signal
handler returns but instead return immediately to the user with an error
condition and errno set to EINTR. On these systems, programmers must
include code that manually restarts interrupted system calls.

J handler_t •Signal(i~t signum, ~andler_t •handler)
2 {

? stFuct si&aq~ion act~on, old_~ctipn;

Section 8.5 Signals 775

f'

1
5

6

7

action.sa_handler = hp.ndfe~;

sigemptyset(&action.sa_mas<);
I Jf!, l" !• Block sig~ of" type be}ng h,andled •/

~
9

10

11

12 }

action.sa_flags = SA_RESTART; /* Rest~t,.syscalls if possible *I
/< , L

if (sigaction(signum, &action, &old_action)
l.J I { 1

< 0)

,unix_error('!Signal error");
return (old_action.sa_handler);

' ' '
I

~~~~~~~~~~~~~~~~~~---'~~~~~~~~~~~~~~~code/srdcsapp.c 

Figure g,38 sig;{al. A wrapper 'tor s:lgaction that provides·p6rtab\! si~nal h?ndli~g on Posix-compliant 
systems. 

n• 
To deal with these issues, the Posix standard c[<;fines the pigaction function, which 
allows users to clearly specify the signal-handling semantics they want.when they 
install a handler. 

,#include <signal.h> 

int digaction(int signum, struct sigaction *act, 
struct sigactioh •oldact); 

Returns'. o if o~. -1 on error 

. b. l The sigactioh-function is unwieldy oecause it n;quires the user to sett e'entries 
of a complicated structure. A clea~er approach,' originally proposed by W. Richard 
Stevens (110], is to define a wrapper function, called Signal, that calls sigaction 
for 'us. Figure 8.38 shows 'the definition of Signal; which' is invoked-in the same 
way as the signal function. 

The Signal wrapper installs a signal handler with the following signal-
handling semantics: -,., 

t J I I 

-• ,Only signals o{the type currently being processed by the handler are blocked. 
' , ' 

·-as with all.signal implementgtions, signals are not queued' 

• •·Interrupted system calls are automatically restarted whenever possible. 

• Ohte'the signal handler Is installed, 'ii remains installed until Signal kcalled 
' with a handler argument of either SIG_IGN or SIG_DFL. .. 

We will use the Signal wrapper in all of our code. 



i 
I' 

.t.' 

'I 

776 Chapter 8 Exceptional Control Flow 

8.5.6 Synchronizing Flows to Avoid Nasty Concurrency Bugs 

The problem of how to program concurrent flows that read and write the same 
storage locations has challenged generations of computer scientists. In general, 
the number of potential interleavings of the flows is exponential in the number of 
instructions. Some of those inter\eavings will produce correct answers, and others 
will not. The fundamental problem is to somehow synchronize the concurrent 
flows so as to allow the largest set of feasible interleavings such that each of the 
feasible interleavings produces a correct answer. 

Concurrent programming is a deep and important problem that we will discuss 
in more detail in Chapter 12. However, we can use what you've learned about 
exceptional control flow in this chapter to give you a sense of the interesting 
intellectual challenges associated with concurrency. For example, consider the 
program in Figure 8.39, which captures the structure of a typical Unix shell. The 
parent keeps track of its current children using entries in a global job list, with one 
entry per job. The add job and deletej ob functions add and remove entries from 

the job list. 
After the parent creates a new child process, it adds the child to the job 

list. When the parent reaps a terminated (zombie) child in the SIGCHLD signal 
handler, it deletes the child from the job list. 

At first glance, this code appears to be correct. Unfortunately, the following 

sequence of events is possible: 

1. The parent executes the fork function and the kernel schedules the newly 
created child to run instead of the parent. 

2. Before the parent is able to run again, the child terminates and becomes a, 
zombie, causing the kernel to deliver a SIGCHLD signal to the parent. 

3. Later, when the parent becomes runnable again but before it is executed, the 
kernel notices the pending SIGCHLD and causes it to be received by running 
the signal handler in the parent. 

4. "fhe signal handler reaps the terminated child and calls deletej ob, which doe1 
nothing because the parent has not added the child to the list yet. 

5. After the handler completes, the kernel then runs the parent, which returns 
from fork and incorrectly addsJhe (nonexistent) child to the job list by calling 

addjob. 

Thus, for some interleavings of the parent's main routine and signal-handling 
flows, it is possible for deletejob to be called before addjob. This results in an 
incorrect entry on the job list, for a job that no longer exists and that will never be 
removed. On the other hand, there are also interleavings where events occur in 
the correct order. For example, if the kernel happens to schedule the·parent to run 
when the fork call returns instead of the child, then the parent will correctly add 
the child to the job list before the child terminates and the signal handler removes 

the job from the list. '· 
This is an example of a classic synchronization error known as a race. In this 

case, the race is between the call to addjob in the main routine and the call to 

' 



Section 8.5 .Signals 777. 

----'-----------------''--''-----'-
11
"-'''-' ----'-'-'-'-- code/ecf/procmaskl .c 

1 /• WARNING: Thls 
2 : void )fandler (int 
3 '{ 

code 
~igl 
•[/ 

.~ 

is buggy! •/ .. ~ 

4 

5 

6 

. i,nt 
1
plderrno = errno; 

'sigset_ t mask_ all, 'prev ~a.11; 
«pid t pid. ., 

7 , ' 
- ) , 

• rf r 

)!f 

H' I 

8' 

9 

10 

11 

12 

1'1 ' 
14 

l.S' 

Sigfillset(&mask_all); 
·'wb.he ((pid = waitp:i.d(-1, NULL, o)J '> oi { •/f Rea'.p 'a'. il6mb'i'!. child•/ 

Sigprocmask(SIG_BLOCK, &mask_all, &prev_alll; 

deletejob(pid); /• Delete the •chil~ ;trom',t\l~ jpj) 1ist. •/ 
Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

} ) 

'if (errn6 ! = E'cHiLD) 
s'io_error( 11 -\>7~itpid error")!~ 

16 errno = olderrno; 
17· } 
18 

19 Th'.t main(int argc, char# **argv)' 
20 f ( { '1 [ >I ,(l 1, 

21' 

22 

23 

·" int pid; 
l si'kset_ t mask_ all~. pr(:iv _all; ,, 

24 Sigfillset (!imask'._all); 11 

25 Signa'.i!(SIGCHLD. handler!'; 

" 

26 initjobs(); /*Initialize the job list*/ 
27 

28 while (1) { 
29 

30 

31' 

32' 

33 

34 

35 

' [ JI 

} 

if ((pid Fork()) == 0) { /• Ch~ld process •/ 
EXecve( 11 /bin/date 11 argv Nbi..i:) .' 

} J''• i!~,1· J' '1 ~)' .J 

Si'kf,
1
rocmask(SfG_BibCK, &mask_all, icPiev_all); I* Par0nt 

addjob(pid); /•Add the child •to the job list •/ 
Sigprocmask (S1G_SETMASK; &prev _all, 'NULL';' 1

' '' 

36 exit(O); 
37 } 

t>rocess */ 

-------------------------~----,-- code/ecf/procmaskl.c 

Figure 8.39 'A shell program with a subtle synchronization error. If ttie child terminates before the parent 
is able to run, then' addjob and deletej ob will be called-in•the wrong' order. 

" ...... ~ j t 

I ' 



778 
,, 
I 

1j 

' 

I• 

I 

I 

,, 

.1 

.I 

Chapter 8 Exceptional Control Flow 

deletejob in the handler. If addjob wins the race, then the answer is correct. If 
not, the answer is incorrect. Such errors are enormously difficult to debug because 
it is often impossible to test every interleaving. You might run the code a billion 
times without a problem, but then the next test results in an interleaving that 

triggers the race. 
Figure 8.40 shows one way to eliminate the race in Figure 8.39. By blocking 

SIGCHLD signals before the call to ~ork and then unblocking them only after we 
have called addj ob, we guarantee that the child will be reaped after it is added to 
the job list. Notice that children inherit the blocked set of their parents, so we must 
be careful to unblock the SIGCHLD signal in the child before calling execve. 

8.5.7 Explicitly Waiting for Signals 

Sometimes a main program needs to explicitly wait for a certain signal handler to 
run. For example, when a Linux shell creates a foreground job, it must wait for 
the job to terminate and be reaped by the SIGCHLD handler before accepting 

the next user command. 
Figure 8.41 shows the basic idea. The parent installs handlers for SIGINT an_d 

SIGCHLD and then enters an infinite loop. It blocks SIGCHLD to avoid the race 
between parent and child that we discussed in Section 8.5.6. After creating the 
child, it resets pid to zero, unblocks SIGCHLD, and then waits in a spin loop for 
pid to become nonzero. After the child terminates, the handler reaps it and assigns 
its nonzero PID to the global pid variable. This terminates the spin loop, and the 
parent continues with additional work before starting the next iteration. 

While this code is correct, the spin loop is wasteful of processor resources. We 
might be tempted to fix this by inserting a pause in the body of the spin loop: 

while (!pid) /• Race! •/ 
pause(); 

Notice that we still need a loop because pause might be interrupted by the 
receipt of one or more SIGINT signals. However, this code has a serious race 
condition: if the SIGCHLD is received after the while test but before the pause, 

the pause will sleep forever. 
Another option is to replace the pause with sleep: 

while (!pid) /*Too slow! */ 
sleep(l); 

While correct, this code is too slow. If the signal is received after the while 
and before the sleep, the program must wait a (relatively) long time before it 
can check the loop termination condition again. Using a higher-resolution sleep 
function such as nanosleep isn't acceptable, either, because there is no good rule 
for determining the sleep interval. Make it too small and the loop is too wasteful. 
Make it too high and the program is too slow. 



Section 8.Y Signals 7"1.9 

-------'--------------------------- code/ecf/procmask2.c 

void handler(int sig) 
2 { 

3 int olderrno = errno; 
4 sigset_t mask_all, prev_all; 
5 pid_t pid; 
6 

7 Sigfillset(&mask_all); 
8 while ((pid = waitpid(-1, NULL, 0)) > 0) {./..•Reap a zombie 'child *I 
9 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 

10 ·cteletejob(pid); /*Delete the child from the job list*/ 
11 Sigprocmask(SIG_SETMASK, &prev_all, NULL); 
12 } 

13 if (errno ! = ECHILD) 
14 Sio_error( 11 waitpid error 11

) j 

15 errno = olderrnoj 
16 } 

17 

18 int main(int argc. char **argv) 
19 { 

20 int pid; 
21 sigset_t mask_all, mask_one, prev _one; 
22 

23 Sigfillset(&mask_all); 
24 Sigemptyset (&mask_one); 
25 •Sigaddset (&mask_one, SIGCHLD); 
26 Signal(SIGCHLD, liandler).; ' ' 
27 initjobs()j /*Initialize the job l~st */ 
28 

29 while (1) { 
30 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /•Block SIGCHLD •/ 
31 if ((pid = Fork()) == 0) { /• Child process •/ 
32 Sigprocmask(SIG_SETMASK, &prev_one, NULL);"'!* '\Jnblock SIGCHLD •/ 
33 Execve( 11 /b~n/date 1~. argv, NULL); 
34 } 

35 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /• Parent"prodess •/ 
36 addjob(pid); /• Add the child to the job list •/ 
37 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /•Unblock SIGCHLD •/ 
38 } 

39 exit(O); 
40 } 

-------------------------------- code/ecf!p"rocmask2.c 

Figure 8.40 Using sigprocmask to syhchroni_?~ processes. In this ex'ampJe, the parent ensures that 
addfob executes before the corresponding delete job. 

"l ' I• 



780 Chapter 8 Exceptional Control Flow 

-------------------------------- code/ecf/waitforsignal.c 

1 #include ,. csapp'. h 11 

2 
3 volatile sig_atomic_t pid; 

4 

s void sigchld_handler(int s) 

6• { 

7 int olderrno = errno; 
8 pid = waitpid(-1, NULL, O); 
9 errno = olderrno; 

10 } 

11 
12 void s-igint_handler(int s) 

13 { 

14 } 

15 
16 int main(int argc, char **argv) 

17 { 

18 sigset_t mask, prev; 

19 
20 Signal(SIGCHLD, sigchld_handler); 
21 Signal(SIGINT, sigint_handler); 
22 Sigemptyset(&mask); 
23 Sigaddset(&mask, SIGCHLD); 

24 
25 while (1) { 
26 Sigprocmask(SIG_BLOCK, &mask, &prev); /• Block SIGCHLD •/ 

27 if (Fork() == 0) !• Child •/ 
28 exit(O); 

29 

30 

31 

32 
33 

34 

35 

36 

!• Parent •/ 
pid = O; 
Sigprocmask(SIG~SETMASK,,,&prev, 'NULL); /• Unblock SIGCHLD •/ 

/• Wait for SIGCHLD to be received (wasteful) •/ 

while C,!pid) 

37 
38 /* Do some work after receiving SIGCHLD */ 
39 printf ( 11

• 
11
); 

40 } 

41 e~it(O); 

42 } 
•r ,,,. ;1 •) ~, ------------"-~'---"-------''----'------'~----- code/ecf!waitforsign,d{.c 

Figure 8.41 Waiting for a signal with a spin loop. This code is correct, but the spin loop is wasteful. 



Section 8.6 Nonlocal )umps 781 

The ,proper solution is to use sigsusRen\l .. 

#include <signal.h> 

int sigsuspend(const sigset_t •mask); 

Returns: -1 

The sigsuspend function temporarily replaces the "current blocked set with mask 
and then suspends the process until the receipt of a signal whose action is either 
to run a handler or to terminate the process. If the action is to terminate, th~en the 
process terminates without returning from sigsuspend. If the action is to run a 
handler, then sigsuspend returns after the handler returns, restoring the blocked 
set to its state when sigsuspend was called. 

The sigsuspend function is equivalent to an atomic (uninterruptible) version 
of the following: 

sigprocmask(SIG_BLOCK, &mask, &prev); 
2 pause(); 
3 sigprocmask(SIG_SETMASK, &prev, NULL); 

The atomic property guarantees that the calls to sigprocmask (line 1) and pause 
(line 2) occur together, without being interrupted. This eliminates the potential 
race where a signal is received after the call to sigprocmask and before the call 
to pause. 

Figure 8.42 shows how we 'Y'?uld use sigsuspend to replace the spin loop 
in Figure 8.41. Before each call tb sigsuspend, SIGCHLD is blocked. The 
sigsuspend temporarily unblocks SIGCHLD, and then 'sleeps until the parent 
catches a signal. Before returning, it restores the original blocked set, which blocks 
SIGCHLD again. If the parent caught a SIG INT, then the loop test succeeds and 
the next iteration calls sigsuspend again. If the' parent caught a SIGCHLD, then 
the loop test fails and we exit the loop. At this point, SIGCHLD is blocked, and 
so we can optionally unblock SIGCHLD. This might be useful in a real shell with 
background jobs that need to be reaped. 

The sigsuspend version is less wasteful than the original spin loop, avoids the 
race introduced by pause, and is more efficient.-tlian. sleep. 

8.6 Nonlocal jumps 

C provides a form of user-level exceptional control flow, called a nonlocal jump, 
that transfers control directly from one function to another currently executing 
function without having to go through the normal call-and-return sequence. Non­
local jumps are provided by the setjmp and longjnip functions. 



! 

782 Chapter 8 Exceptional Control Flow 

• 

------------------------ code/ecflsigsuspend.c 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

#include 11 csapp.h 11 

volatile sig_atomic_t pid; 

void sigchld_handler(int s) 
{ 

} 

int olderrno = errno; 
pid = Waitpid(-1, NULL, O); 
errno = olderrno; 

void sigint_handler(int s) 
{ 

} 

int main(int argc, char **argv) 
{ 

} 

sigset_t mask, prev; 

Signal(SIGCHLD, sigchld_handler); 
Signal(SIGINT, sigint_handler); 
Sigemptyset(&mask); 
Sigaddset(&mask, SIGCHLD); 

while (1) { 
Sigprocmask(SIG_BLOCK, &mask, &prev); /•Block SIGCHLD •/ 
if (Fork() == 0) !• Child •/ 

exit(O); 

/* Wait for SIGCHLD to be received */ 
pid = O; 
while ( ! pid) 

sigsuspend(&prev); 

/• Optionally unblock SIGCHLD •/ 
Sigprocmask(SIG_SETMASK, &prev, NULL); 

/* Do some work after receiving SIGCHLD •/ 
printf( 11 

•
11

) j 

} 

exit(O); 

------------------------ code/ecflsigsuspend.c 

Figure 8.42 Waiting for a signal with sigsuspend. 



Section·8.6 Nonlocal jumps 783 

#ill~iude <setjmp.h> 

int ,setjmp(jmp~buf env); 
int sigsetjmp(sigjmp_buf env, int savesigs); 

Returns: 0 from setjmp, nonzero from longjmps 

The setjmp function saves the current calling environment in the env buffer, for 
later use by longjmp, and returns 0. The calling environment includes the program 
counter, stack pointer, and general-purpose registers. For subtle reasons beyond 
our scope, the value that setjmp returns should not be assigned to a variable: 

re= setjmp(env); I* Wrong! */ 

However, it can be safely used as a test in a switch or conditional statement{62]. 

#include <setjmp.h> 

void longjmp(jmp_bUf env, int retVal); 
void siglongjmp(sigjmp_buf env, int retval); 

Ne\ter returns 

The longjmp function restores the calling environment from the env buffer and 
then triggers a return from the most recent setjmp call that initialized env. The 
setjmp then returns with the nonzero return ~alue retval. 

The interactions between set jmp and longjmp can be confusing at first glance. 
The set jmp function is called once but returns multiple times: once when the 
setjmp is first called and the calling environment is stored in the env buffer, 
and once for each corresponding longjmp call. On the other hand, the longjmp 
function is called once but never returns. 

An important application of nonlocal jumps is to permit an immediate return 
from a deeply nested function call, usually as a result of d~tecting some error 
condition. If an error condition is detected deep in a nestecf flJilction call, we can 
use a nonlocal jump to return directly to a common localizea ertor handler instead 
of laboriously unwinding the call stack. 

Figure 8.43 shows an example of how this might .work. The main routine first 
calls setjmp to save the current calling environment, and then calls function foo, 
which in turn calls function bar. If foo or bar encounter an error, they return 
immediately from the setjmp via a longjmp call. The nonzero return value of the 
setjmp indicates the error type, which can then b,e decodefl an'd'handled in one 
place in the code. 

The feature of longjmp that allows it to skip up through all intermediate calls 
can have unintended consequences. For example, if some data structures were 
allocated in the i,ntermediate function calls with, the iliotention to di;~ll1>cate them 
at the evd of the function, ,the deallocation code gets skipped, thus creating a 
memory leak. 

,• 



784 Chapter 8 Exceptional Control Flow 

-------------------------- code/ecflsetjmp.c 

1 #include "csapp.h11 

2 

3 jmp_buf buf; 
4 

5 

6 

7 

int error1 Oj 
int error2 = 1 i 

8 void foo(void), bar(void); 
9 

10 int main() 
11 { 

12 switch(setjrnp(buf)) { 
13 case 0: 
14 foo(); 
15 bi"eak; 

16 case 1: 
17 printf( 11 Detected an errorl condition in too\n 11

); 

18 break; 
19 case 2: 

20 printf ( 11 Detected an error2 condition in foo\n 11
); 

21 break; 
22 default: 

printf( 11 Unknown error condition in foo\n"); 
24 } 

25 exit(O); 
26 } 

27 

28 

29 

30 

/* Deeply nested function foe *I 
void foo(void) 
{ 

31 if (error!) 

32 
33 

34 

35 

} 

longjmp(buf, 
bar(); 

36 void bar(void) 
37 { 

38 if (~rror2) 

1); 

39 longjmp(buf, 2); 
40 } 

" 

r 

' ( 

-------------------------- code/ecflsetjmp.c 

Figure 8.43 .'Nonlocal jump example. This example shows the framework for using 
nonlocal jumps 'to recover tr6m error conditions in deeply nested•functions'without 
having to unwind the entire stack. 



Section 8.6 Nonlocal Jumps 785 

-------------------------- codele_cffr,estart.c 
#include "csapp.h 11 

2 

3-· sigjmp_buf buf; 
4 

5 void handler(int sig) 
6 { 

7 siglongjmp(buf, 1); 
B } 

9 

10 int main() 
11 { 

12 if (!sigsetjmp(buf, 1)) { 
13 Signal (SIGINT, handler); 
14 Sio_puts ( "starting\n 11 ) ; 

15 } 

16 else 
17 Sio..:puts c;•restarting\n II) ; 
18 

19 while(1) { 
2q Sleep(1); 
21 Sio_putsC 11 Processing ... \n 11 ); 

22 } 

23 exit(O); /* Control rlever reaChes here */ 
24 j ) 

-------------------------- co4elecf!restart.c 

Figure 8.44 A program that uses nonlocal jumps to restart itself when the user . ' types Ctrl+C. 

Another important application of nonlocal jumps is to branch out of a signal 
handleqo,:i,specific qode location, rather than returning to the instrucFion.~at 'Yas 
interrupted tiy the arrival of the signal. Figure 8.44 shows a simple program that 
illustrates this basic te9hnique. The progra~ 4ses signals and nonlocal jumps to 
do a soft restart whenever the user types Ctrl+C at the keyboard. '.\he sigsetjmp 
and siglongjmp functions are versions of setjmp and longjmp that ca~ be used 
by signal handlers. I 

The initial cal) to the sigsetjmpJµ_nction saves the,c.allil)g environment and 
signal context (including the pending and blocked signal vectors) when the pro­
gram first starts. The main routine tlien' ent~rs an infinite processing 1'oop. When 
the.u~er types Ctrl+C, the kernel sends a SIGIN'f.·signal to the process, which 
catches it. Instead of returning from.tlie signal handler,,which would pass control 
back·to the interrupted processing lo.op, the handler perfo~ms a' nonlocal jump 
back to the beginning of the main program. When we run the program on our 
system, we get the following output: 



786 Chapter 8 Exceptional Control Flow 

Aside 
} ,,._, ~ ,,.... ,,.,., 

Software exceptions in C++ and Java -
" >~ '"'°'xi 

The exception mechanisms provided by C++ and Java are higher-level. more stru"ctured versions of the 
C~etjmp and longjmp funcJions. You can think of a catch clause inside a try st~tement as being akin 
to a se-t:jmp function. Similarly, a throw stateme'nt is simil8r to a longjmp function. 

linux> ./restart 
starting 
processing .. . 
processing . . . 
Ctrl+C 
restarting 
processing . .. 
Ctrl+C 

restarting 
processing . .. 

There a couple of interesting things about this program. First, To avoid a race, 
we must install the handler after we call sigsetjmp. If not, we would run the 
risk of the handler running before the initial call to sigsetjmp sets up the calling 
environment for siglongjmp. Second, you might have noticed that the sigsetjmp 
and siglongjmp functions are not on the list of async-signal-safe functions in 
Figure 8.33. The reason is that in general siglongjmp can jump into arbitrary 
code, so we must be careful to call only safe functions in any code reachable from 
a siglongjmp. In our example, we call the safe sio_puts and sleep functions. 
The unsafe exit function is unreachable. 

8.7 Tools for Manipulating Processes 

Linux systems provide a number of useful tools for monitoring and manipulating 

processes: 

STRACE. Prints a trace of each system call invoked by a running program and 
its children. It is a fascinating tool for the curious student. Compile your 
program with -static to get a cleaner trace without a lot of output related 

to shared libraries. 

PS. Lists processes (including zombies) currently in the system. 

TOP. Prints information about the resource usage of current processes. 

PMAP. Displays the memory map of a process. 

/proc. A virtual filesystem that exports the contents of numerous·kerneLdata 
structures in an ASCII text form that can be read by user programs. For 
example, type cat /proc/loa:davg to see the current load average on 
your Linux system. , 

• 

I• 

r 



Bibliographic Notes 787 

8.8 Summary 

Exceptional control flow (ECF) occurs at all levels of a computer system and is a 
basic mechanism for providing concurrency in a computer system .. 

At the hardware level, exceptions are abrupt changes in the control flow that 
are triggered by events in the processor. The control flow passes to a software 
handler, which does some processing and then returns control to the interrupted 
control flow. 

There are four different types of exceptions: interrupts, faults, aborts, and 
traps. Interrupts occur asynchronously (with respect to any instructions) when 
an external I/O device such as a timer chip or a disk controller sets the in­
terrupt pin on the processdr chlp'.·'Control returns to the instruction follow­
ing the faulting instruction. Faults and aborts occur synchronously as the re­
sult of the execution of an instruction. Fault handlers restart the faulting in­
struction, while abort handlers never return control to the interrupted flow. 
Finally, traps are like function calls that are used to implement the system calls 
that provide applications with controlled entry points into the operating sys­
tem code. 

At the operating system level, the kernel uses ECF to provide the funda­
mental notion of a process. A process provides applications with two important 
abstractions: (1) logical control flows that give each program the illusion that it 
has exclusive use of the processor, and (2) private address spaces that provide the 
illusion that each program has exclusive use of the main memory. 

At the interface between the operating system and applications, applications 
can create child processes, wait for their cliild processes-to stop or terminate, run 
new programs, and catch signals from other processes. The semantics of signal 
handling is subtle and can vary from system to system. However, mechanisms exist 
on Posix-compliant systems that allow programs to clearly specify the expected 
signal-handling semantics. 

Finally, at the application level, C programs can use nonlocal jumps to bypass 
the normal call/return stack discipline and branch directly from one function to 
another. 

Bibliographic Notes 

Kerrisk is the essential reference for all aspects of programming in the Linux 
environment [ 62]. The Intel ISA specification contains a detailed discussion of 
exceptions and interrupts on Intel processors (50]. Operating systems texts [102, 
106, 113] contain additional information on exceptions, processes, and signals. 
The classic work by W. Richard Stevens [111] is a valuable and highly readable 
description of how to work with processes and signals from application programs. 
Bovet and Cesati [11] give a wonderfully clear de'scription of the Linux kernel, 
including details of the process and signal implementations. 

., 



I 
• 

' ' 

788 Chapter 8 Exceptional Control Flow 

Homework Problems 

8.9. 
Consider four processes with the following starting and ending times: 

PNcess Start time End time 

A 5 7 

B 2 4 

c 3 6 

D 1 8 

For each pair of processes, indicate whether they run concurrently (Y) or 

not (N): 

Process pair 

AB 
AC 
AD 
BC 
BD 

Cl? 

Concllrrent? 
" 

8.10 • 
In this chapter, we have introduced some functions "'.it!~ unusual call· and return 
behaviors: se1:jmp, longjmp, execve, an,d fork. Match each function with one of 

the following behaviors: 

A. Called once, returns twice 

B. Called once, never returns 

C. Called.once, returns-one or more tim~s 

8'.li • 
How many "hello" output lines does this program print? 

----------------------- code/ecf!forkprobl.c 

1 #include ''csapp.h" 

2 

3 int mainO 
4 { 

5 int i; 

6 

7 for (i = O; i < 2i i++) 

8 Fork(); 

9 printf("hello\n 11
); 

10 exit(O); 
11 } 
----------------------- codelecf/forkprobl.c 



HomeworlCProblems -789 

8.12 • 

How many "hello" output lines does this program print? 
,. 

----------------------- code/ecf!forkprob4.c 
1 #include 11 csapp.h 11 

2 

3 void doitO 
4 { 

5 Fork(); 
6 Fork(); 
7 printf ( 11hello \n") j 

8 return; 
9 } 

10 

ii int main() ,. 
12 { 

13 doit(); 
14 printf( 11 hello\n 11 ); 

15 exit(O); 
16 } 

------------------------- code!ecf!forkprob4.c 

8.13. 

What is one possible output of the following program? 

------------------------- code!ecflforkprob3.c 
1 #include 11 csapp.h 11 

2 

3 int main() 
4 { 

5 int x = 3· ' 
6 

7 if (Fork() != 0) 
8 printf( 11 x=%d\n 11 , ++x); 
9 

10 printf( 11 x=%d\n 11
• --x); 

11 exit(O); 
12 } 

----------------------- code!ecf!forkprob3.c 

8.14. 

How many "hello" output lines does this program print? 
'( 

----------------------- code/ecf/forkprob5.c 

2 

3 

#include 11 csapp.h 11 

void doit() 
4 { 



790 Chapter 8 Exceptional Control Flow 

5 if (Fork() == 0) { 

6 Fork(); 

7 printf ( 11hello \n 11
) ; 

8 exit(O); 

9 } 

10 return; 

11 } 

12 

13 int main() 

14 { 

15 doitO; 

16 printf( 11 hello\n 11
); 

17 exit(O); 

18 } 

----------------------- code/ecf/forkprob5.c 

8.15 • 
How many "hello" lines does this program print? 

----------------------- code/ecflforkprob6.c 

#include 11 csapp.h 11 

2 

3 void doitO 

4 { 

5 if (Fork() == 0) { 

6 Fork(); 

7 printf( 11 hello\n 11
); 

8 return; 

9 } 

10 return; 
11 } 

12 

13 int main() 

14 { 

15 doitO; 

16 printf( 11 hello\n"); 

17 exit(O); 
18 } 

------------------------- code/ecflforkprob6.c 

8.16 • 
What is the output of the following program? 

----------------------- code/ecf!forkprob7.c 

#include "csapp.h" 
2 int counter = 1; 

3 



I 
I 
I 
I 

' I 

I 
I 
I 
I 

Homeworl<'ProbleMs ?91 

4 int main() 
5 { 

6 if (fork() == O) { 
7 counter--; 
8 exit(O); 
9 ~- ,, 

10 else { J " 

11 Wait(NULL); 
12 printf( 11 counter %d\n 11

, ++counter); 
13 } 

14 exit(O); 
15 } 

----------------------- code/ecf!forkprob7.c 

8.17 • 

Enumerate all of the possible outputs of the program in Practice Problem SA. 

8.18 •• 
Consider.the following program: 

code/ecflforkprob2.< 
1 #include 11 csapp.h 11 

~) I ' 
,3 voi~ end )yo, id) 
4 { 

1 ' . 
fflush(stdout); 5 printf("2 11

); 

6 }, 
' i; 

' J 
,, 

8 int ma~p() 
p 

9 { 

10 if (Fork() 0) 
11 atexit(end); 
12 if' (Fork() == O) { 
13 prfntf("0 11 ); fflush(stdout); 
14 } 

15 else { 
16 printf( 11 1"); fflush(stdout); 
17 } 

18 exit(O); 
19 } 

,Y t 't • coiJ..e!ecf![orkl'rob2.F 

Determine which of the following outputs are possible. Note: The atexi t 
function takes a pointer to a function and adds it to a list of funCtions (initially 
empty) that will be called when the exit function is called. 

A. 112002 

B. 211020 

., . 



I . 

792 Chapter 8 Exceptional Control Flovy 

c. 102120 

D. 122001 

E. 100212 

8.19 •• 
How many lines of output does the following function print? Give your answer as 
a function of n. Assume n 2:: l. 

----------------------- code/ecf/forkprobB.c 

void foo(int n) 

2 { 

3 int i; 

4 

5 

6 

for (i = O; i < n; i++) 
Fork(); 

7 printf ("hello \n 11
) ; 

8 exit(O); 
9 } 

" 

----------------------- code/ecflforkprobB.c 

8.20 •• 
Use execve to write a program called myls whose behavior is identical to the <' 
/bin/ls program. Your program should accept the same command-line argu-
ments, interpret the identical environment variables, and produce the identical \ 

output. 
The ls program gets the width of the screen from the COLUMNS environ-

ment variable. If COLUMNS is unset, then ls assumes that the screen is 80 
columns wide. Thus, you can check your handling of the environment variables 
by setting the COLUMNS environment to something less than 80: 

linux> setenv COLUMNS 40 
linux> ./myls 

: II Output is 40 columns wide 

linux> unsetenv COLUMNS 

linux> ./myls 

II Output is now 80 columns wide 

8.21 •• 
What.are the possible output sequences from the following program? 

----------------------- codelecflwaitprob3.c 

1 int main() 

2 { 

3 if (fork() 0) { 



Homework Problems 793 

4, printf( 11 a 11
); fflush(stdout); 

5 exit(O); 
6 } 

7 else { 
s printf( 11 b 11

); fflush(stdout) i 
9 waitpid(-1, NULL, O); 

'10 } 

11 printf("c 11
); fflush(stdout); 

12 exit(O); 
13 } 

------------------------- codelecf!waitprob3.c 

8.22 ••• 

Write your own version of the Unix system function 

int mysystem(char *command); 

The mysystem function executes command by invoking /bin/ s.li -c command, and 
then returns after command has completed. If command exits normally (by calling 
the exit function'or executing a return statement), then mysystem returns the 
command exit status. For example, if command terminates by calling exit (8), then 
mysystem returns the value 8. Otherwise, if command terirlinates abnormally, then 
mysystem returns the status returned by the shell. 

8.23 •• 

One of your colleagues is thinking of using signals to allow a parent process to 
count events that occur in a child process. The idea is to notify the parent each 
time.an event occurs by sending it a signal and letting the parent's signal handler 
increment a global counter variable, which the parent can then inspect after the 
child has terminated. However, when he runs the test prograrri in Figure 8.45 on 
his system, he discovers that when the parent calls printf, counter always has a 
value of 2, e¥~1). though...the child has sent five signals to the parent. Perplexed, he 
comes to you for help. Can you explain the bug? 

8.24 ••• 

Modify the program in Figure 8.18 s.o that the following two conditions ar~ met:, 

L 'Each chilfl termin,ates'abnormally after attempting to write to a location in 
the read-only text segment. 

' 2. The parent prints output that is identical (except for the PIDs) to the fol-
lowing: 

cqild 12255 ter)Ilinated by sign~l· +t= ,Segmen~ation fault 
child 12254 terminated by signal 11: Segmentation <fault 

Hint: Read the man page for psignal (3). 



I 

794 Chapter 8 Exceptional Control Flow 

------------------------ code/ecf/counterprob.c 

#include 11 csapp.h 11 

2 

3 int counter = O; 

4 

5 

6 

void handler(int sig) 
{ 

7 counter++; 
8 sleep(1)i /*Do some work in the handler*/ 

9 return; 
·10 } 

11 

12 int main() 

13 { 

14 int i; 

15 
16 Signal(SIGUSR2, handler); 

17 
18 if (Fork() == 0) { /• Child •/ 
19 for (i = O; i < 5; i++) { 

20 ,Kill(getppid(), SIGUSR2); 
21 printf( 11 sent SIGUSR2 to parent\n

11
); 

22 } 

23 exit(O); 

24 } 

25 
26 Wait (NULL) ; 

27 

28 

printf( 11 counter=%d\n 11
, counter); 

exit(O); 

,. 

29 } 
---------------------'~---- codelecf/counterprob.c 

Figure 8.45 Counter program referenced in Problem 8.23. 

8.25 ••• 
Write a version of the fgets function, called tfgets, that times out after 5 seconds. 
The tfgets function accepts the same inputs as fg~ts. If the user doesn't type an 
input line within 5 seconds, tfgets returns NULL. Otherwise, it returns a pointer 

to the input line. 

8.26 •••• 
Using the example in Figure 8.23 as a starting point, write a shell program that 
supports job control. Your shell should have the following features: 

• The command line typed by the user consists of a name and zero or more argu· 
ments, all separated by one or more spaces. If name is a built-in command, the 



Solutions to Practice Problems 795 

shell handles it immediately and waits for the next command line. Otherwise, 
the shell assumes that name is an executable file, which it loads and runs in the 
context of an initial child process Gob). The process group ID for the job is 
identical to the PID of the child. 

• Each job is identified by either a process ID (PID) or a job ID (JID), which 
is a small arbitrary positive integer assigned by the shell. JIDs are denoted on 
the command line by the prefix '%'. For example, '%5' denotes JID 5, and '5' 
denotes PID 5. 

• If the command line ends with an ampersand, then the shell runs the job in 
the background. Otherwise, the shell runs the job in the foreground. 

• Typing Ctr!+C (Ctrl+Z) causes the kernel to send a SIG INT (SIGTSTP) signal 
to your shell, which then forwards it to every process in the foreground process 
group.2 

• The jobs built-in command lists all background jobs. 

• The bg job built-in command restarts job by sending it a SIGCONT signal 
and then runs it in the background. The job argument can be either a PID or 
aJID. 

• The f g job built-in command restarts job by sending it a SIGCONT signal and 
then runs it in the foreground. 

• The shell reaps all of its zombie children. If any job terminates because it 
receives a signal that was not caught, then the shell prints a message to the 
terminal with the job's PID and a description of the offending signal. 

Figure 8.46 shows an example' shell session. 

$.olutions to Practice Problems 

Solution to Problem 8.1 (page 734) 

Processes A and B are concurrent with respect to each other, as are B and C, 
because their respective executions overlap-that'(s, one process starts before the 
other finishes. Processes A and € are not concurrent because their executions do 
not overlap; A finishes before C begins. 

Solution to Problem 8.2 (page 743) 
In our example program in Figure 8.15, the parent and child execute disjoint sets 
of instp,ictions. Howyver, in this p~ogram, the parent and, child execute nC!ndisjoint 
sets of instructions, whish is P,Ossible because the P¥ent and child have identical 
code segments. Thjs can be a difficult conceptual hurdle, so be sure you understand 
the solution to this problem. Figure 8.47 shows the process graph. 

2. Note that this is a simplification of the way that real shells work. With real shells, the kernel responds 
to Ctrl+C (Ctrl+Z) by sending SIG INT (SIGTSTP) directly to each process in the terminal foreground 
process group. The shell manages the membership.of~this group using.the tcsetpgrp function, and 
manages the attributes of the terminal using the tcsetattr function, both of which are outside the 
scope of this book. See [62) for details. 



796 Chapter 8 Exceptional Control Flow 

linux> ./shell 
>bogus 

Run your sh.ell program 

bogus: Command not found. Execve can't find executablE1 

>foo 10 
Job 5035 terminated by. signal~ Interrupt User types CtrlT-C 

>foo 100 It 
[1] 5036 foo 100 & 

>too 200 It 
(2) 5037 foe 200 & 
>jobs 
(1] 5036 Running f oo 100 & 
[2] 5037 Running foo 200 & 
>fg %1 
Job [1] 5036 stopped by signal: Stopped User types Ctrl+Z 

>jobs 
[1] 5036 Stopped 

(2) 5037 Running 

>bg 5035 

too 100 & 
too 200 & 

5035: No such process 
>bg 5036 
[1) 5036 f oo 100 & 
>/bin/ki11 5036 
Job 5036 terminated by signal: Terminated 
> fg %2 Wait for fg job to finish 

>quit 
linux> Back to the Unix shell 

Figure 8.46 Sample shell session for Problem 8.26. 

Figure 8.47 pl:,',=~ pl: x=l 

Process graph for Practice 
Problem 8.2. 

pr;intf printf exit 

x==1 p2: :x .. o 

main fork printf exit 

,. 

ChHd 

Parent 

'" 

A. The key idea here is that the chlld executes both printf statements. After 
the f ark returns, it executes the printf in line 6. Then it falls out of the if 
statement anct executes the printt in line 7. H:ere is the output produced by 
the child: ' 

pi: x=2 

p2: x=l 
, ' 

B. The parent executes only the printf in line 7: 

p2: x=O 



•Solutions to PracticeProblems 797 

Figure 8.48 
Process graph for Practice 
Problem 8.3. 

Figure 8.49 
Process graph for Practice 
Problem 8.4. 

• 
.main 

• 

fork prip.tf 

Hello 
•• .1 

c 
• I 

printf 

1 

waitpid print£ 

Bye 
•• 

priiltf 

•• 
exit 

main printf ~fork pri.n'.tf waitpid printf 

-Solution to Problem 8.3 (page 745) 

We k'tl6w that the sequences acbc, abcc, and bacc"!i.re possible because"lhey 
correspond fo topological ;sorts of the process grapli 1 (Figure s:48). However, 
sequences"stich' as bcac and cbca:do' Not ~Bf're1p'8~d to anY topoiogica! sort and 
thus are not feasible. ' >1 

Solution to Problem 8.4 (page 748) 

' . A. We can determine the number of lines of output by simply counting the 
number of printf vertices in the process grapl) (figun~ 8.49) .• In thi~ case, 
there are six such vertices, and thus the program will P,Tint ~ix lines of output. 

B. Any output sequence corresponding to a topological sort of the graph is 
possible. For example: Hell.o~ 1, 0: Bye,.2, Bye is possible. 

Solution to Problem 8.5 (page 750) 

------------+-----~.--------- code/ecf/snooze.c 
unsigned int snooze(unsigned int secs) { , 

2 unsigned int re= sleep(secs); 
3 

4 printf( 11 Slept for %d of %d secs.\n 11 , secs-re, secs); 
5 return re; 
6 } 

-------------------------- code/ecf/snoozac 

Solution to Problem 8.6 (page 752) 

-----~~-------~~---------- codelecf!myecho.c 
#include "csapp.h 11 

2 

3 int main(int argc, char *argv[], char *envp[]) 
4 { 

5 int i; ~! 
6 

7 printf ("Command-line arguments: \n"); 

Bye 
•• 

printf • • 
exit 



798 Chapter 8 Exceptional Control Flow 

8 for (i=O; argv[i] != NULL; i++) 
'9 printf(" argv[%2d]: %s\n", i, argv[i]); 

10 

11 printf{l'\n"); 
12 printf ("Environment variables: \n 11

) i 

13 for (i=O; envp[i] != NULL; i++) 
14 printf( 11 envp[%2d]: %s\n", i, envp[i]); 

15 

16 

17 

exit(O); 
} 

--------------------------code!ecflmyecho.c 

Solution to Problem 8.7 (page 764) 
The sleep function returns prematurely whenever the ~leepi,ng procys~_re.ceives a 
signal that is not ignored. But since the default action upon receipt of a SIG INT is 
to terminate the process (Figure 8.26),, ye must_install a SIG INT handler to allow 
the sleep function to return. The handl}'r simp)l( catches the SIGt'{AL a,nd returns 
control to the sleep function, which returns immediately. 

-------------------------- code/ecflsnopze.c 

#include 11 csapp.h 11 

2 
3 /• SIGINT handler •/ 
4 void handler(int sig) 

5 { 
6 return; /* Catch the signal and return */ 
7 } 

8 

9 unsigned int snooze(unsigned int secs) { 
10 unsigned int re= sleep(secs); 

11 
12 printf ( 11 Slept for %d of %d secs. \n 11 

, secs-re, secs) ; 

13 return rcj 
14 } 

15 
16 int, main,Cint argc, char **argv) { 

17 

18 if (argc != 2) { 
19 fprintf(stderr, "usage: %s <secs>\n 11

, argv[O)); 

20 exit(O); 
21 } 

22 
23 if (signal(SIGINT, handler) == SIG_ERR) /• Install SIGINT •/ 

•/ 
24 

25 

unix_error( 11 signal error\n 11
); 

(void)snooze(atoi(argv[1])); 

I• handler 



Solutions to Practice Problems 799 

26 exit(O); 
27 } 

------------------------ codelecf/snooze.c 

Solution to Problem 8.8 (page 773) 

This program prints the string 213, which is the shorthand name of the CS:APP 
course at Carnegie Mellon. The parent starts by printing '2', then forks the child, 
which spins in an infinite loop. The parent then sends a signal to the child and 
waits for it to terminate. The child catches the signal (interrupting the infinite 
loop), decrements the counter (from an initial value of 2), prints '1', and then 
terminates. After the parent reaps the child, it increments the counter (from an 
initial value of 2), print~ '3', and terminates. 





" 

; " 

I ' 

J 

,, ,, 

"' 

9.1 

'9.2 

9.3 

" ,, 
" ' 

,I ,, 0 

' 

Physidl and Virtu~I Addressi~g 803 

Address Spaces 80.4 
J 

VM a1 a Tool for Caching 805 

9A VM as a Tool for Memo,ry Management 811 

9.5 VM a~ a Tool (or Memory Pr~tection 812 

9.6 Address Tianslation ''813 
• 'I 

9.7 Case Study: The·lntel Core i7/Linux Memory System 825 
' 

9:8 Memo,Y Mapping 833 

9.9 

9.1d 

9.1,1 

9.12 

' I ' 
pynamic Memory Allocation 839 

Garbage C61lection 86S 
) 

Commo~ Men;iory-Re\ated Bugs in c; Progra1J1s B7,0 

-Summary 875 

Bi~liographic Notes 876 

Homework Problems 8Z6 

Solutions'lQ Practice Problems 880 

' I 

801 



.. 

j , 
' 

j 

I 

802 Chapter 9 Virtual Memory 

Processes in a system share the CPU and main memory with other processes. 
However, sharing themain memory poses some special challenges. As demand 

on the CPU increases, processes slow down in some reasonably smooth way. But 
if too many processes need too much memory, then some of them will simply 
not be able to run. When a program is out of space, it is out of luck. Memory is 
also vulnerable to corruption. If some process inadvertently writes to the memory 
used by another process, that process might fail in some bewildering fashion totally 
unrelated to the program logic. 

In order to manage memory more efficiently and with fewer errors, modern 
systems provide an abstraction of main memory known as virtual memory (VM). 
Virtual memory is an elegant interaction of hardware exceptions, hardware ad­
dress translation, main memory, disk files, and kernel software that provides each 
process with a large, uniform, and private address space. With one clean mech­
anism, virtual memory provides three important capabilities: (1) It uses main 
memory efficiently by treating it as a cache for an address space stored on disk, 
keeping only the active areas in main memory and transferring data back and 
forth between disk and memory as needed. (2) It simplifies memory management 
by providing each process with a uniform address space. (3) It protects the address 
space of each process from corruption by other processes. 

Virtual memory is one of the great ideas in computer systems. A major reason 
for its success is that it works silently and automatically, without any intervention 
from the application programmer. Since virtual memory works so well behind the 
scenes, why would a programmer need to understand it? There are several reason& 

• Virtual memory is central. Virtual memory pervades all levels of computer 
systems, playing key roles in the design of hardware exceptions, assemblers, 
linkers, loaders, shared objects, files, and processes. Understanding virtual 
memory will help you better understand how systems work in general. 

• Virtual memory is powerful. Virtual memory gives applications powerful ca­
pabilities to create and destroy chunks of memory, map chunks of memory to 
portions of disk files, and share memory with other processes. For example, 
did you know that you can read or modify the contents of a disk file by reading 
and writing memory locations? Or that you can load the contents of a file into 
memory without doing any explicit copying? Understanding virtual memory 
will help you harness its powerful capabilities in your applications. 

• Virtual memory is dangerous. Applications interact with virtual memory ev­
ery time they reference a variable, dereference a pointer, or make a call to a 
dynamic allocation package such as mall oc. If virtual memory is used improp­
erly, applications can suffer from perplexing and insidious memory-related 
bugs. For example, a program with a bad pointer can crash immediately with 
a "segmentation fault" or a "protection fault," run silently for hours before 
crashing, or scariest of all, run to completion with incorrect results. Under­
standing virtual memory, and the allocation packages such as malloc that 
manage it, can help you avoid these errors. 

·., I 

-,~ 

•' 



Section 9.1 Physical and \iirtual Addressing 803 

This chapter looks at virtual memory from two angles. The first halfof the 
chapter describes how virtual memory works. The second half describes how 
virtual memory is used and m,anageq by applicati9\)s. There is no avoiding the 
fact that VM is complicated, and the aiscussion reflects this in places. The good 
news is that if you work through the details, you will be able to simulate the virtual 
memory mechanism of a small system by hand, and the virtual memory idea will 
be forever demystified. 

The second half builds on this understanding, showing you how to use and 
manage virtual memory in your programs. You will learn how to manage virtual 
memory via explicit memory mapping and calls to dynamic storage allocators such 
as the malloc package. You will also learn about a host of common memory­
related errors in C programs and hqw to avoid them. 

9.1 Physical and Virtual Addressing 
) lr•r 

The main memory of \190,\l!PUte~ system is organized as a,n array of M contiguo11s 
byt~-size cells. Each byte has,,a,.unique physical address (PA). The .1U"st byte has 
an add,re,ss of 0, the.next byte an adgress of 1, the next byte an address of.2, 
and ~o. '?!\; Given this simple organizafj9n1 the most natural way for a CPU to 
access memory wc;mld be to use physical aqqresses. We call this appr.qach p~ytical 
addressing. Figure 9.1.s,hmys a,n qample of phy.sical a,1,d,ressing in the context of 
a load instruction that reads the 4-byte word starting at physical address 4. When 
the CPU executes the load instruction, it generates an effective physical address 
and passes it to main memory over the memory bus. The main memoiy'fetches'the 
4-byte word startin& at physical address 4 and returns it to the CPU, which stores 
it in a register. ' '' 

Early PCs used physical addressing, anP, systems such as digital signal pro­
cessors, embedded rnicrocontrollers, and Cray supercomputers continue to do so. 
Howev~~' modern processors use a form of addressing known as virtual address­
ins, ~s shown in Figure 9.2. 

Figure 9.1 
A system that uses 
physical addressing. 

l CPU l 
I 

Main memory 
O: 

Physical 1: 
address 2: 

(PA) 3: 
4 4: 'S"iv"lff;f!J"',,,_~i{!·'!//t 

5:'~$'.;_.,.•':1/" r--
6:~_,,,$9;~,, 
7: ~l ;:~;.~;;; ., 
8: 

M-1:E==3 

Data word 



J' 
' " 

r" 

f 
J 
I 

~ 
'I 

! 

., 

l 

804 Chapter 9 Virtual Memory 

Main memory 
Figure 9.2 

-----------------------------------------------~ 0: 
A system that uses virtual 
addressing. 

Virtual 
address 

Address i 
translation \ 

MMU I\ 

Physical 1: 
address 2: 

(PA) 

[ CPU l- (VA) 

I 
3: 

4100 4 4: 'i:r ·$! ,>l ~~l 

---- -- ---------- --- ----- --- -------- --- _______ J 

5: ~.l· 1--
6: ~.;' 
7: ·~ 

M-1:E3 
Data word 

With virtual addressing, the CPU accesses main memory by generating a vil­
tual address (VA), which is converted to the appropriate physical address before 
being sent to main memory. The task of converting a virtual address to a physical 
one is known as address translation. Like exception handling, address translation 
requires close cooperation between the CPU hardware and the operating sys­
tem. Dedicated hardware on the CPU chip called the memory management unit 
(MMU) translates virtual addresses on the fly, using a lookup table stored in main 
memory whose contents are managed by the operating system. 

9.2 Address Spaces 
An address space is an ordered set of nonnegative integer addresses 

{O, 1, 2, ... ] 

If the integers in the address space are consecutive, then we say that it is a linear 
address space. To simplify our discussion, we will always assume lineat address 
spaces. In a system with virtual memory, the CPU generates virtual addresses from 
an address space of N = 2" addresses called the virtual address space: 

(0, 1, 2, ... , N - 1] 

The size of an address space is characterized by the number of bits that are 
needed to represent the largest address. For example, a virtual address space 
with N = 2" addresses is called an n-bit address space. Modern systems typically 
support either 32-bit or 64-bit virtual address spaces. 

A system also has a physical address space that corresponds to the M bytes of 

physical memory in the system: 

(0, 1, 2, ... , M - 1] 

Mis not required to be a power of 2, but to simplify the discussion, we will assume 

thatM=2m. 



Section 9.3 VM as a Tool for Caching 805 

The concept of an address• space is important because it makes a clean dis­
tinction between data objects (bytes) and their attributes (addresses). Once we 
recognize this distinction, then we can generalize and allow each data object to 
have multiple independent addresses, each chosen from a different address space. 
This is the basic idea of viriuai memory. Each byte of main memory has a virtual 
address chosen from the virtual address space, ~nd a physical address chosen from 
the physical address space. 

IR'tf:~i~]l}lll!i'ffi12!itt?filtlra8~mMfs/fil'i.t!4.l'k~t~~i'}t~ZJi.:lll 
Complete the following table, filling in the missing entries and replacing each 
question mark with the appropriate integer. Use the following units: K = 210 

(kilo), M = 220 (mega), G = 230 (giga), T = 240 (tera), P = 250 (peta), or E = z6o 
(exa). 

Number of 
virtual address bits (n) 

64 

'" 

Number of 
virtual addresses ( N) 

.7---
z? =256T 

.r 

9.3 VM as a Tool for Caching 

Largest possible~virtual•address 

232 - Lr=? G - 1 

Conceptually, a virtual memor-y is organized as an array of,N contiguous byte-size 
cells stored on disk. Each.byte has a· unique ',Cirtual address that serves as an index 
into the array: The contents of the array on disk are cached in main m¢mory. As 
with any other cache in the memory· hierarchy, the data on disk ~the lower..Ievel) 
is partitioned into blocks that ser.ve as the transfer units between the disk and 
the main memory (tlie upper lev'el). VM systfms handle, this by·partitioning the 
virtual memory into fixed-size blocks called virtual pages (VPs). Each virtual page 
is P = J.P bytes in size. Similarly, physical memory is partitioned into physical pages 
(PPs), also P bytes in size: (Physical pages are also referred to as page frames.) 

.At any point in time, the set of virtual pages is partitioned into three disjoint 
subsets: 

Unallocated. Pages that have not yet been allocated (or created) by the VM 
syslem. Unallocated blocks do not have any data associated with them, 
and thus do not occupy any space on disk. 

Cached. Allocated pages that are currently cached in physical memory. 

'uncached. Allocated. ~ages that aie not cached in physical memory. 

The· example 0in Figure 9.3 shows a small virtual memory with eight virtual 
pages. Virtual pages 0 and 3 have not been allocated yet, and thus do not yet exist 



,. ,, 

I, 

,1 
I 

·1 
l 

806 Chapter 9 Virtual Memory 

Figure 9.3 
Physical memory 

How a VM system uses 
main memory as a cache. 

c 
Uncached 

Unallocated 

~u;nca~c~he~d~::::::::::=><:::::::::~~~~ e pp 2m-p_ 1 

VP 2n-p _ 1 Uncached N-1 

Virtual pages (VPs) 
stored on disk 

Physical pages (PPs) 
cached in DRAM 

on disk. Virtual pages 1, 4, and 6 are cached in physical memory. Pages 2; 5, and 7 
are allocated but are not currently cached in physical memory. 

9.3.1 DRAM Cache Organization 

To help us keep the different caches in the memory hierarchy straight, we will use 
the term SRAM cache to denote the Ll, L2, and L3 cache memories between the 
CPU and main memory, and the term DRAM cache to denote the VM system's 
cache that caches virtual pages in main memory. 

The position of the DRAM cache in the memory hierarchy has a big impact 
on the way that it is organized. Recall that a DRAM is at least 10 times slower 
than an SRAM and that disk is about 100,000 times slower than a DRAM. Thus, 
misses in DRAM caches are very expensive compared to misses in SRAM caches 
because DRAM cache misses are served from disk, while SRAM cache misses are 
usually served from DRAM-based main memory. Further, the cost of reading the 
first byte from a disk sector is about 100,000 times slower than reading successive 
bytes in the sector. The bottom line is that the organization of the DRAM cache 
is driven entirely by the enormous cost of misses. 

Because of the large miss penalty and the expense of accessing the first byte, 
virtual pages tend to be large-typically 4 KB to 2 MB. Due to the large miss 
penalty, DRAM caches are fully associative; that is, any virtual page can be placed 
in any physical page. The replacement policy on misses also assumes greater 
importance, because the penalty associated with replacing the wrong virtual page 
is so high. Thus, operating systems use much more sophisticated replacement 
algorithms for DRAM caches than the hardware does for SRAM caches. (These 
replacement algorithms are beyond our scope here.) Finally, because of the large 
access time of disk, DRAM caches always use write-back instead of write-through. 

9.3.2 Page Tables 

As with any cache, the VM system must have some way to determine if a vir(Val 
page is cached somewhere in DRAM. If so, the system must determine which 
physical page it is cached in. If there is a miss, the system must determine 



Figure 9.4 
Page table. 

Physical page 
number or 

disk address 
Valid 

0 

Section 9.3 VM as a Tool for Caching 807 

Physical memory 
(DRAM) 

•\'YP•1 .•.. , ''; PP 0 
~ .. y:·vp2·· .: 

~~· VP,;t ~~ M: 

o Virtual memory 

PTE 7 ~ M~:~~.~~:~~e~ •• ::::········ ••••• , I ~~: 
page table "-.., "-..:=I ·===<y~p;:'3~~ 

(DRAM) •• .. .,.,., :=
1 
=::;':y~p~4=~ 

·~~=~YP~6~=: 
YP7 

where the virtual page is stored on disk, select a victim page in physical memory, 
and copy the virtual page from disk to DRAM, replacing the victim page. 

These capabilities are provided by a combination of operating system soft­
ware, ;iddress translationh.ardware in the MMU. (memory management unit), and 
a data structure stored irl physical memory known as a page table that maps vir­
tual pages tQ physi,C:al p~ges. The aqdress tran'slation hardware reads th~ page table 
each time it cm;iveris a virtual address to a physical adilress. The operating system 
is responsible 1oi'maintaining the ~on tents of the page table and transterring pages 
back and forth between disk and DRAM. 

Figu~e9.4 sil~ws the basjc organization of a page table. A page table is an array 
of page tab/{ entries (PTEs). Each page jn the virtual address space li~s. a PTE at 

' ' . I J ' • ' 
a fixed offset m the page t\\bl~. For our purposes, we will assume that each PTE 
consists of a valid bit and an n~bit address field. The valid bit indicates whether 
the virtual page is currently cached in DRAM. If the valid bit is set, the address 
field indicates the start of the corresponding physical page in DRAM where the 
virtual page is cached. If the valid bit is not set, then a null address indicates that 
the virtual page has not yet been allocated. Otherwise, the address points to the 
start of the virtual page on disk. 

The example.in Figure 9.4 shows a page table' for a system with eight virtual 
pages ·and four physical pages. Four virtual pages (VP 1, VP 2, VP 4, and VP 7) 
are currently cached in DRAM. Two pages (VP 0 and VP 5) have not yet been 
allocated, and the rest (VP 3 and VP 6) have been allocated but are not currently 
cached. An important point to notice about Figure 9,4 is that because the DRAM 
cache is fully associative, any physical .page can contain any virtual page. 

tmrtti!if~Bf.i'.lijiIDDJ2'~~1Jid!E"g1JI~7iii~i~~B 
Determine the number of page table entries (PTEs) that are needed for the 
following combinations of virtual address size (n) and page size (P): 



• .. 
I 

!. 

808 Chapter 9 

Figure 9.5 

Vii:tual Memory 

n P=2' Number of PTEs 

16 4K 

16 SK -----
32 4K ----
32 SK ----

9.3.3 Page Hits 

Consider what happens wheh the CPU reads a word of virtual memory contained 
in VP 2, which is cached in DRAM (Figure 9.5). Using a technique we will describe 
in detail in Section 9.6, the address translation hardware uses the virtual address 
as an index to locate PTE 2 and read it from memory. Since the valid bit is set, the 
address translation hardware knows that VP 2 is cached in memory. So it uses the 
physical memory address in the PTE (which points to the start of the cached page 
in PP 1) to construct the physical address of the word. 

9.3.4 Page Faults 

In virtual memory parlance, a DRAM cache miss is known as a page fault. Fig­
ure 9 .6 shows the state of our example page table before the ~ault. The CPU has 
referenced a word in VP 3, which is not cached in DRAM. The address transla­
tion hardware reads PTE 3 from memory, infers from the valid bit that VP 3 is 
not cached, and triggers a page fault exception. The page fault exception invokes 
a page fault exception handler in the kernel, which selects a viCtim page-in this 
case, VP 4 stored in PP 3. If VP 4 has been modified, then the kernel copies it back 
to disk. In either case, tlie kernel modifies the page table entry for VP 4 to reflect 
the fact that VP 4 is no longer cached in main memory. 

Physical page 
VM page hit. The reference 
to a word in VP 2 is a hit. 

Virtual address number or 
disk address 

Valid 

Physical memory 
(DRAM) 

VP 1 ; , PPO 
'•VP 2 '• 

'"•"VP 7'F ' 
PP3 

0 

o Virtual memory 
o ••• (disk) 

PTE 7 1 ~:~o~~r~::~~~----~"-.-. ............. j\ ~: ~ 
page table "-.._ • VP 3 
(DRAM) " 

""-.-..~ VVPP46 

;::1. ==:==::::I- , 
VP7 I 



Figure 9.6 
VM page fault (before). 
The reference to a word in 
VP 3 is a miss and triggers 
a page fault. 

Figure 9.7 
VM page fault'(after). 
lhe page fault handle' 
selects VP 4 as the victim 
and replaces it with a copy 
of VP 3 from disk. After the 
page fault handler restarts 
the faultJng, instruction, it 
will read the' word from 
memo'Y'nOrJTially, without 
generating an exception. 

Section 9.3 VM as a Tool for Caching 809 

Physical page 
Virtual address number or 

Physical memory 
(DRAM) 

disk address 
Valid 

1 .._,: ,,,_~ ~ ~. 

1 ~ ' _//" 
0 
1 

.. \•VP.1 .. ,.,. PP 0 
~ '\~ "··~VP 2 
~\~~'VP?"·°'\.~~ 

".WR.41 l·• PP 3 

O Virtual memory 

PTE 7 ~ M'.::o~~::i::~:.::::············· •••.•• 1 ~=! 
page table '··.... I VP 3 

PTE7 

(DRAM) •••••••• •• ~ VP 4 

t VP6 
VP? 

Physical memory 
(DRAM) 

···VP·•l "f PPO 
•• NP.2, .... ' 

Null ' .. ,, Virtual memory 
• '•, (disk) 

~.f·t~.~~~::; ~~-'N!.: (';,. '',,,, VP 1 

Memory-resident''· •• , '···· •• , :===;V~P:;c2~=; 
page table ••••• ••• •••• •• , I VP 3 

(DRAM) •••• ••• J,'==~V::;P::::4==: 
'j~=T=CC.VP~6~=: 

VP? 

Next, the kernel copies VP 3 from dis.k1o PP '3 in memory, updates PTE 3, 
and then returns. When the•handler returns,dt restarts the faulting instruction, 
which resends the faulting virtual ad9ress to the address translation hardware. 
But now, VP 3 is cached in main i.nemory; and the page hil'is handled normally by 
the address' translation hardware. Figure 9.7 shows the state of our example page 
table after the page fault. 

Virtual memory was invented in the early 1960s,- long before the widening 
CPU-memory gap spawned SRAM:~aches. As a result, virtual memory systems 
use a different terminology from SRAM caches, even, though many of the ideas 
are similar. In virtuaLmemory parlance, blocks are known as pages. The activity 
of transferring a page between disk and memorf is known as swapping or paging. 
Pages are swapped in (paged in) from disk to DRAM, anct swapped out (paged 
out) from DRAM to disk. The strategy of waiting until the last moment to swap 

l 
I 



: i 
' 

.f 

i 

·I 

810 Chapter 9 Virtual Memory 

Figure 9.8 
Allocating a new virtual 
page. The kernel allocates 
VP 5 on disk and points PTE 
5 to this new location. 

Valid 

Physical page 
number or 

disk address 

Physical memory 
(DRAM) 

0 
0 
0 

PTE7 

Virtual memory 
(disk) 

I VP? 

in a page, when a miss occurs, is known as demand paging. Other approaches, such 
as trying to predict misses and swap pages in before they are actually referenced, 
are possible. However, all modern systems use demand paging. 

9.3.5 Allocating Pages 

Figure 9.8 shows the effect on our example page table when the operating system 
allocates a new page of virtual memory-for example, as a result of callingmalloc. 
In the example, VP 5 is allocated by creating room on disk and updating PTE 5 
to point to the newly created page on disk. 

9.3.6 Locality to the Rescue Again 

When many of us learn about the idea of virtual memory, our first impression is 
often that it must be terribly inefficient. Given the large miss penalties, we worry 
that paging will destroy program performance. In practice, virtual memory works 
well, mainly because of our old friend locality. 

Although the total number of distinct pages that programs reference during an 
entire run might exceed the total size of physical memory, the principle of locality 
promises that at any point in time they will tend to work on a smaller set of active 
pages known as the working set or resident set. After an initial overhead where 
the working set is paged into memory, subsequent references to the working set 
result in hits, with no additional disk traffic. 

As long as our programs have good temporal locality, virtual memory systems 
work quite well. But of course, not all programs exhibit good temporal locality. If 
the working set size exceeds the size of physical memory, then the program can 
produce an unfortunate situation known as thrashing, where pages are swapped in 
and out continuously. Although virtual memory is usually efficient, if a program's 
performance slows to a crawl, the wise programmer will consider the possibility 
that it is thrashing. 



Section 9.4 VM as a Tool for Memory Management 811 

' Figure, ~.9 Physical memory 
Ho"'( YM provides 
processes with separate 
address spaces. The 
operating system n;i1~intains 
a separate page taole for 
each process in the system. 

Process i: 

Processj: 

Virtua 
0 

N-1 

0 , 

,,_ 1 

I address spaces 

'~P~i1b 
Address translation 

fl:fll!P.:<'< 

I !W.!f"li\ )-
l:l!,}VR;2':' 

9,4 VM as a Tool for Memory Management 

0 

~PP2~l 

;,'RP fO' 

M-1 

In the fast section, we saw how virtual memory provides a mechanism for using the 
DRAM to cache pages from a typically larger virtual aadress space. Interestingly, 
s9me early systems such as the DEC PDP-llnO supp~rted a virtpal address space 
that was smaller than the .avai)~ble physical memory. Yet virtual ll\emory was 
still a useful mechanism b,ecause it greatly simplified memory management and 
provided~ µatural way tr,.protect,memory. 

Thus far, we have assume.;! p. single r.age table that maps a single virtual 
addres~ space to the physical addfess space. In fact, operat\ng sy~tems provide 
a, separate page table, and thus a ~eparate viqual addres~ sp,ace,, for each process. 
Figure 9.9 shows the basic idea. In the example, the page table for process i'maps 
VP 1 to PP 2 and VP 2 to PP 7. Similarly, the page table for process j maps VP 1 
to PP 7 and vP 2 to PP 10. Notice that n\.ultiplevihual pages can be mapped to 
the same shared physical page. 

The 'combination of demand paging and separate virtual address spaces has 
a' profound impact on the way that memory is used antl managed in a system. In 
particular, VM simplifies linking' and loading, the sharing of code and data, and 
allocating memory to applications. 

• Simplifying linking. A separate address space allows each process to use the 
same basic format for its Il].emory image, regardless of where the code and data 
actually reside in physical memory. For example, as we saw in Figure 8.13,.ev­
ery process on a given Linux system has a similar memory foru'iat. For 64:bit 
address spaces, the code segment always starts at virtual address Ox400000. 
The data segment follows the code segment after a suitable alignment· gap. 
The stack occupies the highest portion of the user process address space and 

Shared page 



,, 
'" 

... 
• 

" I 
I 

' 

'I 
.I 
I 

I 

l 
' , l 

812 Chapter 9 Virtual Memory 

grows downward. Such uniformity greatly simplifies the design and implemen­
tation of linkers, allowing them to produce fully linked executables that are 
independent of the ultimate location of the code and data in physical memory. 

• Simplifying loading. Virtual memory also makes it easy to load executable 
and shared object files into memory. To load the . text and . data sections of 
an object file into a newly created process, the Linux loader allocates virtual 
pages for the code and data segments, marks them as invalid (i.e., not cached), 
and points their page table entries to the appropriate locations in the object 
file. The interesting point is that the loader never actually copies any data 
from disk into memory. The data are paged in automatically and on demand 
by the virtual memory system the first time each page is referenced, eit)ler by 
the CPU when it fetches an instruction or by an executing instruction when it 
references a memory location. 

This notion of mapping a set of contiguous virtual pages to an arbitrary 
location in an arbitrary file is known as memory mapping. Linux provides 
a system call called mmap that allows application programs to do their own 
memory mapping. We will describe application-level memory mapping in 
more detail in Section 9.8. 

• Simplifying sharing. Separate address spaces provide the operating system 
with a consistent mechanism for managing sharing between user processes 
and the operating system itself. In general, each process has its own private 
code, data, heap, and stack areas that are not shared with any other proi;ess. In 
this case, the operating system creates page tables that map the corresponding 
virtual pages to disjoint physical pages. 

However, in some instances it is desirable for processes to share code 
and data. For example, every process must call the same operating system 
kernel code, and every C program makes calls to routines in the standard C 
library such as printf. Rather than including separate copies of the kernel 
and standard C library in each process, the operating system can arrange 
for multiple processes to share a single copy of this code by mapping the 
appropriate virtual pages in different processes to the same physical pages, 
as we saw in Figure 9. 9. 

• Simplifying memory allocation. Virtual memory provides a simple mechanism 
for allocating additional memory to user processes. When a program running 
in a user process requests additional heap space (e.g., as a result of calling 
malloc), the operating system allocates an appropriate number, say, k, of 
contiguous virtual memory pages, and maps them to k arbitrary physical pages 
located anywhere in physical memory. Because of the way page tables work, 
there is no need for the operating system to locate k contiguous pages of 
physical memory. The pages can be scattered randomly in physical memory. 

9.5 VM as a Tool for Memory Protection 

Any modern computer system must provide the means for the operating system 
to control access to ·the memory system. A user process should not be allowed 



Section 9.6 Address Translation 813 

Figure 9.10 
Using VM to provide 
page-level memory 
protectio.1_1. 

Page tables with permission bits 
,(' it 

SUP READ WRITE Address 

VP O: No Yes No 

Process i: •VP 1: No veS . Yes 
VP 2: Yes Yes Yes 

pp 6 _..,_ 

PP4~ 
PP2 

Physical memory 

r--_,jPPO 

PP2 
L J 

PP4 
J 

~~B-PP6 
/ j 

VPO:~N~o--+~¥~ess__j_~N~o~~"~P~P~9'.___'.:::l::;?"~:__~__,•~ll!IJ!ll§~PP9 
,SUP ~EAD WRITE Address 

Process j: VP 1: Yes Yes Yes PP. 6 ,,,--- ] 

VP 2: No Yes Yes PP 11 
,-

to modify its read-only code section. Nor should it be allowed to read or modify 
any of the code and data strpctures in the kernel. It should' not· be allowed to read 
or write the private memory of other processes, and it should not be allowed to 
modify any virtual pages that are shared with other proce~ses, unless all parties 
explicitly allow it (via calls to-explicit interprocess communication system calls). 

As we have seen, providing separate virtual address spaces'inakes it easy to 
isolate the private memories of different processes. But the address translation 
mechanism can be extended in a natural way to provide even finer aGcess control. 
Sin.ce th~ adgress translaiiQn h.ardware reads;&fTE each till)e the CPU generates 
an adpress,.it is straightforward to control access to the contents of a.virtual page· 
by adding some additional permission bits to the PTE. Figure 9.10 shows the 
general idea. 

,_In this example, we have added three p,ermission bjts to each PT):':. The SUP bit 
indicates whether processes must be running iu kernel (supervisor) mode to access 
the page. Processes running in kernel mode can access any page, but processes 
running in user mode are only allowed to. access pages for which SUP.is 0. The 
READ and WRITE bits control read and write access to the page. For example, 
if process i is running in user mode, then it has permission to read VP 0 and to 
read or write VP 1. However, it is not allowed to access VP 2. 

'If an instruction violates these permissibns, then the CPU triggers a general 
protection fault that transfers control to an exception handler in the.kernel; which 
sends a SIGSEGV signal to the offending process. Linux shells typically report this 
exception as a .':segmentation fault." 1

"" 

<' 

9.6 Address Translation 

Riis section covers the basics:of address translation. Our ainl'is to give you an 
appreciation of the hardware's r~le in supportingwirtual memory, with\enough 
detail soJhat you can work through some concrete.examples by hand. However, 
keep in mind that we are omitting' a number of details, especially related to timing, 

pp 11 



" It 814 Chapter 9 Virtual Memory 

Symbol Description 

Basic parameters 
N = 2n Number of addresses in virtual address space 

M = 2m Number of addresses in physical address space 

P = 2' Page size (bytes) 

Components of a virtual address (VA) 
VPO Virtual page offset (bytes) 
VPN Virtual page number 
TLBI TLB index 
TLBT TLB tag 

Components of a physical address (PA) 
PPO Physical page offset (bytes) 
PPN Physical page number 
CO Byte offset within cache block 
CI Cache ,index 
CT Cache tag 

Figure 9.11 Summary of address translation symbols. 

that are important to hardware designers but are beyond our scope. For your 
reference, Figure 9.11 summarizes the symbols that we will be using throughout 

this section. 
Formally, address translation is a mapping between the elements of an N­

element virtual address space (VAS) and an M-element physical address•space 

(PAS), 

where 

{
A' 

MAP(A)= 
0 

MAP: VAS--> PASU 0 

if data at virtual addr. A are present at physical addr. A' in PAS 

if data at virtual addr. A are not present in physical memory 

Figure 9.12 shows how the MMU uses the page table to perform this mapping. 
A control register in the CPU, the page table base register (PTBR) points to the 
current page table. The n-bit virtual address has two components: a p-bit virtual 
page offset (VPO) and an (n - p)-bit virtual page number (VPN) .. The MMU uses 
the VPN to select the appropriate PTE. For example, VPN 0 selects PTE 0, VPN 1 
selects PTE 1, and so on. The corresponding physical address is the concatenation 
of the physical page number (P,PN) from the page table entry and the VPO from 
the virtual address. Notice that since the physical and virtual pages are both P 
bytes, the physical page offset (PPO) is identical to the VPO. 



Section 9.6 Adpress Translation 

'Virtual address 
Page table ~1 p p-1 0 base register _L 

Virtual page number (VPN) ] Virtual page offs:ti(VPOJj l (PTBR) 
' 1 ' 

Valid Physica~ numbecQ'Pt:Q_ .,,,. 
<1,11/} ~· '·.~.~"' :~~· f Page ' .• ~~ '4 The VPN acts 

table as an index into 
the page tabla 

If valid= 0, 
then page 
not in memory m--1 p p-1 0 (page (~ult) [ Physical page number (PPN) jPhysical page offset (PPOTI 

Physical address 

Figure 9.12 Address translation with a page table. 

Figure 9.13(a) shows the steps.that the CPU hardware performs when there 
is a page hit. 

Step 1. The processor genera\es a virtual address and sends it to the MMU. 

Step 2. The MMU generates the PTE address and requests it from the cache/ 
main memory. h 

Step 3. The cache/main memory return't'the PTE to the MMU. 

Step 4. The \\1MU constructs the physical address and sends it to the cache/main 
memory. 

Step 5. The cache/main memory returns the requested data word to the pro­
cessor. 

Unlike a page hit, which is handled entirely by hardware, handling a page 
fault requires cooperation between hardware and the operating system kernel 
(Figure 9.13(b)). 
~ 

Steps 1to3. The same as steps 1to3 in Figure 9113(a). 

Step 4. The valid bit in the PTE is zero, so the 'MMU triggers an exception, 
which transfers control in the CPU to a page fault exception handler in 
the operating system kernel. 

Step 5. The fault handler identifies a victim page in physical memory, and if that 
page has been modified, pages it out to disk. 

Step 6. The fault handler pages in the n~w page and updates the PTE in memory. 

815 

i ,. 

:t', 
J' 



. I 

I ,, 

816 Chapter 9 Virtual Memory 

9.P.\L9~Jp_ _____ ---------------------------------, @ 
• • PTEA 

[ 
CD PTE 

Processor J VA MMU @ Cache/ 

1 
PA memory 

---------- ----------------------:-------------- 0 
Data 

® 
(a) Page hit 

0 
Exception 

Page fault exception handler' 

® 9.P.!L9~Jp_ __________________________ _ 
! ---------: PTEA 

~ I PTE 

l 1 '=·:~i--~·,_1 ® 
memory 
Cache/ 

(b) Page fault 

i: 
'' '' '' '' '' ,..! '1 
'•/ 

Victim page 

® 
New page 

® 

Disk 

Figure 9.13 Operational view of page hits and page faults. VA: virtual address. PTEA: 

page table entry address. PTE: page table entry. PA: physical address. 

Step 7. The fault handler returns to the original process, causing the faulting 
instruction to be restarted. The CPU resends the offending virtual address 
to the MMU. Because the virtual page is now cached in physical memory, 
there is a hit, and after the MMU performs the steps in Figure 9'.13(a), the 
main memory returns the requested word to the processor. 

·~-~0"!!"' -w..-~~:~-~"<~"'91"·"' .. ''l/!;i"•'""""l'(;~'l/J">"'tt,~ 0"."#''!f"'·'Jm.-~f~'>L,,V-''!"!J'I"~~,~ ~ o~".'.Ji'!J,"'}"""'~ ,..,,_, 
:P.rit!=1:JS:~~!QJlJ~d'..;(s9l\lti2!1 u.lf9'1Jl!l.1}_.:: ... 2 ,k:;_,p'. : • ,,.;,;..;.,,.Ii,,, ,, ~ . • 
Given a 32-bit virtual address space and a 24-bit physical address, determine the 
number of bits in the VPN, VPO, PPN, and PPO for the following page sizes P: 

Number of 

p VPN bits VPO bits PPNbits PPO bits 

lKB --- ---- ---- ·------

2KB ·---- ---- ---- -~-

4KB ---- ---- -----~ ----
SKB 

~----- ---- ~--- ---~~ 



Section 9.6 Address Translation 817 

CPU chip PTE 
--------------------------------------±-------

PTEA 
hit 

PTE 

PTEA PTEA PTEA 

MMU l Processor }1--V-A _ _., 
PA 

Data 

miss 

PA ,__P_A _ _., 
miss 

PA' Data 
hit 

L1 
cache 

Memory 

• 

Figure 9.14 Integrating VM with a physically addressed cache. VA: virtual address. 
PTEA: page table entry address_ PTE: page 'table entry. PA: physical address. 

9.6.1 Integrating Caches and VM 

In any system that uses both virtual memory and SRAM caches, there is the 
issue of whether to use virtual or physical addresses to access the SRAM cache. 
Although a detailed discussiofl of the trade-offs is beyond our scope here, most 
systems opt for physical addressing. With physical addressing, it is sp;aightforward 
for multiple processes to have blocks in the cache at the same time and to share 
blocks from the same virtual pages. Further, the cache does not have to deal 
with protection issues, because access rights are checked as part of the address 
translation process. 

Figure 9.14 shows how a physically,addressed cache might be integrated with 
virtual memory. The main idea is that the address translation occurs before the 
cache lookup- Notice that page table Jntries can be cached, just like any other 
data wbrds. 

9.6.2 Speeding U:P Add!ess Translation with a TLB 

As we have seen, every time the CPU generates ayirtual addrpss, the ,MMU must 
refer to a PTE in order to translate the virtual address into a physical address. In 
the worst case, this requires an additional fetch from memory, at a cost of tens to 
hnndreds of cycles. If t)1e PTE happens to be cached in Lt, then the cost goes down 
to a handful of cycles. However, many systems try to eliminate even this cost by 
including a small cache of PTEs in the MMU called a translation lookaside buffer 
(TL'BJ; . " 

1 'A TLB is a small, virtually addressed cache where: each line holds a block 
consisting of a single PTE. A TLB usually has "ii high degree of assoCiativity_ As 
shown in Figure 9.15, the index and tag fields that are used for set selecti9n and line 
matching are extracted from the virtual page num6er in the virtual address. If'the 
TLB has T = 2~ sets,1:hen the TLB inde,x (TLBI) consists of the t least significant 
bits of the VPN, and the TLB tag (TLBT) consists of the remaining bits in the VPN_ 

•• 



818 Chapter 9 Virtual Memory 

Figure 9.15 
Components of a virtual 
address that are used to 
access the TLB. 

Figure 9.16 
Operational view of a TLB 
hit and miss. 

n-1 p+t p+t-1 pp-1 o 

I TLB tag (TLBT) I TLB index (TLBI) I VPO I 
VPN 

CPU chip 
r-----------------------------------------------, 
f TLB ( 

l @VPN PTE!@ 
\ ': 

l \ 
) ( 

'

[, Processor G) Trans- i (3) 
VA lation PA 

! 
\__________ ------------------------------------' 

CPU ch"1p 

[ Processort 

@Data 

(a) TLB hit 

TLB 

@VPN 

CD Trans-
VA lation 

) 

! 
\ 

i 

l 
\ 

-------- ------------------------------------' 
Data 

© 
(b) TLB miss 

0 
PTE 

® 
PTEA 

PA 

® 

Cache/ 
memory 

Cache/ 
memory 

Figure 9.16(a) shows the steps involved when there is a TLB hit (the usual 
case). The key point here is that all of the address translation steps are performed 
inside the on-chip MMU. and thus.are fast. 

Step 1. The CPU generey)es a virtual address. 

Steps 2 and 3. The MMU fetches the appropriate PTE from the TLB. 



Section 9.6 Address Translation 819 

Step 4. The MMU translates the virtual address to a physical address and sends 
it to the cache/main memory. 

Step 5. The cache/main memory returns the requested data word to the CPU. 

When th~re is a TLB miss, then, th~ MMU must fetch the PTE from the L1 
cache, as shown in Figure 9.16(b). The newly fetched PTE is stored in the TLB, 
possibly overwriting an existing entry. 

9.6.3 Multi-Level Page Tables 

Thus far, we have assumed that the system uses a single page table to do address 
translation. But if we had a 32-bit address space, 4 KB pages, and a 4-byte PTE, 
then we would need a 4 MB page table resident in memory at all times, even if 
the application referenced only a small chunk of the virtual address space. The 
problem is compounded for systems with 64-bit address spaces. 

The common approach for compacting the page table is to use a hierarchy 
of page tables instead. The idea is easiest to understand with a concrete example. 
Consider a 32-bit virtual address space partitioned into 4 KB pages, with page 
table entries that are 4 bytes each. Suppose also that at this point in time the virtual 
address space has the following form: The first 2 K pages of memory are allocated 
for code and data, the next 6 K pages are unallocated; the next 1,023 pages are also 
unallocated, and the next page is allocated for the user stack. Figure 9.17 shows 
how we might construct a two-level page table hierarchy for this virtual address 
space. 

Each PTE in the level 1 table is responsible for mapping a 4 MB chunk of the 
virtual address space, where each chunk consists of 1,024 contiguous pages. For 
example, PTE 0 maps the first chunk, PTE 1 the next chunk, and so on. Given that 
the address space is 4 GB, 1,024 PTEs are sufficient to cover the entire space. 

If every page in'Chunk i is unallocated, then level 1 PTE i is null. For example, 
in Figure 9.17, chunks 2-7 are unallocated. However, if at least one page in chunk 
i is allocated, then level 1 PTE i points to the base of a level 2 page table. For 
example, in Figure 9.17, all or portions of chunks 0, 1, and 8 are allocated, so their 
level 1 PTEs point to level 2 page tables. 

Each PTE in a level 2 pag~,table is responsible for mapping a 4-KB ]\'age of 
virtual memory, just as before when we looked at single-levefpage tables. Notice 
that with 4-byte PTEs, each level 1 and level 2 page table is 4 kilobytes, which 
conveniently is the same size as a page. 

This scheme reduces memory requirements in two ways. Frrst, if a PTE in the 
level 1 table is null, then the corresponding level 2 page table does not even have 
to exist.. This Tepresents a significant potential savings, since most of the 4 GB 
virtual address space for a typical program is unallocated. Second, only the level 
1 table needs to be in main memory at all times. 'The level 2 page tables can be 
created and paged in and out by the VM system as they are needed, which reduces 
pressure on main memory. Only the most heavily used level 2 page tables need to 
be cached in 'main memory. 



' •'' I 

820 Chapter 9 Virtual Memory 

Level 1 
page table 

PTEO 
PTE 1 

PTE 2 (null) 
PTE 3 (null) 

PTE 4 (null) 
PTE 5 (null) 
PTE 6 (null) 
PTE 7 (null) 

PTE8 

' :.( 1 l<5iJ) l 
, riUJl"P'rf's.: 

Level2 
page tables 

PTEO 
"lth,_t~.~ ~ 

PTE 1,023 

Virtual 
memory 

~,---~a 

VPO 

VP 1 ,023 2 K allocated VM pages 
for code and data 

VP2,047 

Gap 6 K unallocated VM pages 

' ,'f:P23"' } 
Dnallocat¢0 1,023 unallocated pages 
V•l,lges•At 
¥'~" ' ': 
VP 9,215 } 1 allocated VM page 

tor the stack 

Figure 9.17 A two-level page taqle hierarchy. Notice that addresses increase from 

top to bottom. 

Virtual address 
n-1 

p-1 0 

VPN 1 VPN k VPO 

Level2 Level k 
page table page table 

Er""" ~ . 

m-1 p-1 0 

PPN PPO 

Physical address 

Figure 9.18 Address translation with a k-level page table. 

Figure 9.18summarizes address translation with a k-level page table hierarchy. 
The virtual address is partitioned into k VPNs and a VPO. Each ,VPN i, <l ::'. i :Ok, 
is an index into a page table at level i. Each PTE in a level j table, 1 ::'. j ::'. k - 1, 
points to the base of some page table at level j + 1. EaclrPTE in a level k table 
contains either the PPN of some physical page or the -address of a disk block. 
To construct the physical address, the MMU must access k J'TEs. before it can 



Section 9.6 Address Translation 821 

determine the PPN. As with a single-level hierarchy, the PPO is identical to tqe 
VPO. 

Accessing k PTEs may seem expensive and impractical at first glance. How­
ever, the TLB come'> to the rescue here by caching_PTEs from.the page tables at 
the different levels.,Jn practice, address translation with multi-level page tables is 
not significantly slo'wer than with single-level page tables. 

' 
9.6.4 Putting It Together: End-to-Enp Address Translation 

In this section, we put it all together with a concrete example of end-to-end 
address translation on a small system with a TLB and L1 d-cache. To keep things 
manageable, we make the following assumP.!isms: 

• The memory is byte addressable. 

• Memory accesses are to I-byte words (not 4-byte words). 

• Virtual addresses are 14 bits wide (n = 14). 

• Physical addresses are 12 bits wide (m = 12). 

• The page size is 64 bytes (P = 64). 

• The TLB is 4-way set associativ,e with lq total.entries. 

• The L1 d-cache is physically addressed and direct mapped, w_ith a 4-byte line 
size and 16 total sets. 

Figure 9.19 shows the formats of the virtual and physical addresses. Since each 
page is 26 = 64 bytes, the low-order6 bits of the virtual and physical addresses serve 
as the VPO and PPO, respectively. The high-ord~r 8 bits of the virtual address 
serve as the VPN. The high-order 6 bits of the physical address se~e as the PPN. 

Figure 9.20 shows a snapshot of our little memory system, including the TLB 
(Figure 9.20(a)), a portion of the page tab(e (Figure ~.ZO(b)), a!)d the L1 cache 
(Figure 9.ZO(c)). Above the figures of the TLB and cache, we have also shown 
how the bits of the virtual and physical addresses are partitioned by the hardware 
as it accesses these devices. 

1 

13 12 11 10 9 8 7 6 5 4 3 2 0 
Virtual I. I address 

VPN' VPO' 
(Virtual page number) (Virtual page offset) 

11 10 9 8 7 6 5 4 3 2 0 
Physical I: . I address 

PPN PPO 
(Physical p~g~ number) (Physi~al page offset) 

Figure 9.19 Addressing for small memory system. Assume 14-bit virtual addresses 
(n = 14), 12-bit physical addresses (m = 12), and'64'byte pages (P = 64). 



.i 

1' 

Virtual 
address 

~--- TLBT .__ TLB1--+ 

13 12 11 10 9 8 7 6 5 4 3 2 

VPN VPO 

0 

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid 

VPN 

00 

01 

02 

03 

04 

05 

06 

07 

0 

2 

3 

03 

03 

02 

07 

PPN Valid 

28 1 

- 0 

33 1 

02 1 

- 0 

16 1 

- 0 

- 0 

-
2D 

-
-

0 09 OD 1 00 - 0 

1 02 - 0 04 - 0 

0 08 - 0 06 - 0 

0 03 OD 1 OA 34 1 

(a) TLB: 4 sets, 16 entries, 4-way set associative 

VPN PPN Valid 

08 

09 

OA 

OB 

oc 
OD 

OE 
OF 

13 

17 

09 

-
-
2D 

11 

OD 

·1 

1 

1 

0 

0 

1 

1 

1 

'07 
OA 

03 

02 

(b) Page table: Only the first 16 PTEs are shown 

Physical 
address 

CT +----Cl ---++---CO --+ 

11 10 9 8 7 6 5 4 3 2 1 0 

PPN PPO 

ldx Tag Valid Blk 0 Blk 1 Blk 2 Blk 3 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

19 

15 

1B 

36 

32 

OD 

31 

16 

24 

2D 

2D 

OB 

12 

16 

13 

14 

1 99 

0 -
1 00 

0 -
1 43 

1 36 

0 -
1 11 

1 3A 

0 -

1 93 

0 -
0 -

1 04 

1 83 

0 -

11 23 11 

- - -
02 04 08 

- - -
6D SF o9' 

72 FO 1D 

- - -
C2 DF 03 

00 51 89 

- - -
15 DA 3B 

- - -

- - -

96 34 15 

77 1B D3 

- - -

(c) Cache: 16 sets, 4-byte bloqks, direct mapped 

02 1 

- 0 , 
- 0 

- 0 

Figure 9.20 TLB, page table, and cache for small memory system. All values in the 
TLB, page table, and cache are in hexadecimal notation. 



Section 9 .6 Address Translation 823 

TLB. The TLB is virtually addressed using the bits of the VPN. Since the TLB 
has four sets, the 2 low-order bits of the VPN serve as the set index (TLBI). 
The remaining 6 high-ord>Jr bits serve as the tag (TLB!) tha,t distinguishes 
the different VPNs that might map to the same TLB sgt. 

Page table. The page table js i' single-level design with a total of 28 = 256 page 
table entries (PTEs). However, we are only int~rested in th,e first 16 of 
these. For convenience, we have labeled each PTE with the VPN that 
i,n.9exes it; but keep in IJlind t~at t(te~~ YP1N~ are not part '<f the page 
fable and not stored in,memo11. Alsp, notice tha\ the PPN of each invalid 
PTE is denoted with a 'dash t6 reinforce the idea that whatever bit values 
might happen to be stored the~e.are not meaningful. 

fi:ache. The direct-mapped,cache is addressed by the. fields in the physical 
address. Since each block is 4 bytes, the low-order 2 bits of the physical 
address serve as the block offset (CO). Since there are 16.sets, the next 4 
bits serve as the set index (81). The remaining 6 bits serve as.the tag (CT). 

Given this initial setup, let's see what happens, when the CPU executes a load 
instruction that reads the byte at address Ox03d4. (Recall that our hypothetical 
CPU reads tcbyte words father tha'n 4-byte words.) to begin.this kind of m~nual 
simtilation, we find it helpful to write do\vn the bits in' the virtuai address, identify 
the various fields we will deed, and determine their hex values. Thi: hard~are 
performs a siftlilar task when'.it decodes the adaress. 

TLBT TLBI , 
Ox03 Ox03 

l Bit position 

l VA= Ox03d4 

13j 12J 11J 10J s J a 
0JoJ0JoJ1J1 

1 J s 
1} 1 

sj4J3J2J1Jo 
0J1Jol1J.0J,o 

VPN YPO 

Ox Of Ox14 

To begin, the MMU extracts the VPN ( OxOF) from the virtual address and 
checks with the TLB to see if it has cached a copy of PTE OxOF from some previous 
memory reference. The TLB extracts the TLB index (Ox03) and the TLB tag (Ox3) 
from the VPN, hits on a valid match in the second entry of set Ox3, and.returns 
the cached PPN (OxOD) to the MMU. 

If the TLB had missed, then the MMU would need to fetch the PTE ff om main 
memory. However, in this case, we got lucky and had a TLB hit. 'Jihe MMU now 
has everything it needs to form the physical address. It does this by concatenating 
the PPN ( OxOD) from the PTE with the VPO (Ox14) from the virtual address, which 
forms the physical address (Ox354). 

Next, the MMU sends the physical address Jo the cache, which extracts the 
cache offset CO (oxo), the cache set index CI (Ox5), and the cache tag CT (OxOD) 
from the physical address. 



! 
.1 

824 Chapter 9 Virtual Memory 

CT Cl co 
OxOd Ox OS OxO 

l Bit positio;- 11l10\ 9TaT716 5 T 4 I 3 -r 2 1To 

LPA= Ox354 olo \ 1T1Tol1 0T1Iol1 oTo 
PPN PPO 

OxOd Ox14 

Since the tag in set Ox5 di'akhes CT, the cache detects a hit, reads oul the data 
byte (Ox36) at offset CO, and returns it to the M,MU, wl}ich then passes'it back to 

the CPU. . 
Other paths through the translation process are also possible. For example, if 

the TLB misses, then the MMU must fetch the PPN from a PTE in the page table. 
If the resulting PTE is invalid, then there is a page fault and the kernel must page 
in the appropriate page and rerun the load instruction. Another possioility is that 
the PTE.is·valid, but the necessary memory block misses in the cache. 

·f>'fittlf!i[>oi.:Zf>1~"'!A'!51r~i~~,;;;:'R~f.:!;:;ri.~:t~~'4:':ii~.;W~""'l!'l"::;:J "" ~,.J,.J.~Jl~ ~,,·~.~;a~~u .. ·, aw t-~ 

Show how the example memory system in Section 9.6.4 translates a virtual address 
into a physical address and accesses the cache. For the given virtual address, 
indicate the TLB entry accessed, physical address, and cache byte value returned. 
Indicate whether the TLB misses, whether a page fault occurs, and whether a cache 
miss occurs. If there is a cache miss, enter"-" for "Cache byte returned." If there 
is a page fault, enter"-" for "PPN" and leave parts C and D blank. 

Virtual address: Ox03d 7 

A. Virtual address format 

13 12 11 10 9 B 7 6 5 4 3 2 0 

B. Address translation 

Parameter Value 

VPN ----
ThB index ----
TLB tag ---
TLB hit? (YIN) 
Page fault? (YIN) ---
PPN ----

c Physical address format 

11 10 9 8 7 6 5 4 ·3 2 0 

I I 



Section 9.7 Case Study: The Intel Core i7/Linux Memory System B25 

D. "Physical memory reference .. ' 
Parameter 

Byte offset 
Cache index 
Cache tag 
Cache hit? (YIN) 
Cache byte retu.rn~d 

. ' 

Value 
' 

9.7 Case Study: The Intel Core i7 /Linux Memory Syster,n 

We conclud°6~~ur dis~ussion of virtual memory mechani~P'~~~th a case study of 
a real-system: an ·Intel Core i7 running Linux. Although the undeC!ying Haswell 
microarc~itecture .aJ.lows for full, 64-bit vi~tual and P.,~:ysictl.addr~ss space~, the 
~urrent Core i7 imP,lementations (and those for the foreseeable future )"support a 
48-bit (256 TB) virtual address space and a 52.;-bit (4PB) physical address space, 
along with a compatibility mode that supports 32-bit (4 GB)'virtuai and physical 
address spaces. 

Figure 9.21 gives the highlights of the Core i7 memory system. The processor 
package (chip) includes four cores, a large L3 cache sh~red ){y ~ll of the cores, and 

' Processor package 
,, ,, 

.------------------------------------------------------------------------------------------------------------, 
i~d i 
' ' 

''

: Registers Instruction ·' 1 , MMU ., , ,,! 

fetch (S,ddr tranSl9.t1on) 

! l ~t· f ! ' ( i 
' L 1 d-caqhe L 1 i-cache L 1 d-TLB' J L 1 ::i;JLB • 
J 32 KB, 8-way 32 KB, 8-way "'6;4 ,entries, 4-way 128 entries, 4-way I 
i > 1

"" l 
: L2 Unified cache L2 unified TLB : I 256 KB, 8-way 512 entries, 4-way I 
i To other 

cores 
i 

i- QuickPath interconnect 

Tol/O 
bridge i '--~~~~~+-~~~~~~~~~+-~~~--+~~~--1 i 

'''

i, L3 unified cacp~ 
8 .MB, J 6-wey 

(sharecf.by all cores) 
: ~ ii i 
L---------·----------------------------------·---------------------------------- -- ------------------------' 

DDR3 m9rhory controller 
(shared by au cores) f· 

' Main merTiory 

Figure 9.21 The Core i7 memory system. 

.. 



I :I 

I 
' 

I 
I 

826 Chapter 9 Virtual Memory 

TLB 
miss 

12 

TLB 
" ''·'!•"~ ,~,,~ hit 

32164 

Result 
L2, L3,and 

main memory 

L1 
L1 miss 
hit 

L1 d-cache 
(64 sets, 8 lines/set) 

L 1 TLB (16 sets, 4 entries/set) 

9 9 9 ~ 12 ~ 6 6 

VPN1 VPN2 VPN3 VPN4 PPN PPO - CT Cl CO 
'---,--'---' Physical c_ __ ...L-1---l 

address 
(PA) 

CR3--1-~ 

Page tables 

Figure 9.22 Summary of Core i7 address translation. For simplicity, the i-caches, 

i-TLB, and L2 unified TLB are not shown. 

a DDR3 memory controller. Each core contains a hierarchy ofTLBs, a hierarchy 
of data and instruction caches, and a set of fast point-to-point links, based on the 
QuickPath technology, for communicating directly with the other cores and the 
external I/O bridge. The TLBs are virtually addressed, and 4-way set associative. 
The Ll, L2, and L3 caches are physically addressed, with a block size of 64 bytes. 
Ll and L2 are 8-way set associative, and L3 is 16-way set associative. The page 
size can be configured at start-up time as either 4 KB or 4 MB. Linux uses 4 KB 

pages. 

9. 7 .1 Core i7 Address Translation 

Figure 9.22 summarizes the entire Core i7 address translation process, from the 
time the CPU generates a virtual address until a data word arrives from memory. 
The Core i7 uses a four-level page table hierarchy. Each process has its own private 
page table hierarchy. When a Linux process is running, the page,tables associated 
with allocated pages are all memory-resident, although the Core i7 architecture 
allows these page tables to be swapped in and out. The CR3 control register 
contains the physical address of the beginning of the level 1 (Ll) page table. The 
value of CR3 is part of each process context, and is restored during each context 

switch. 



Section 9.7 Case Study: The Intel Core i7/Linux Memory System 827 

63 62 52 51 1211 9 B 7 6 5 4 3 ~~2 0 

XD Unused Page table physical base addr Unused G PS A CD WT U/S R/W P=1 

Held 

p 

R!W 

U/S 
WT 
CD 

A 
PS 
Base addr 
XD 

Available for OS (page table loc;<tion on disk) P=O 

Description 

Child page table present in physical memory (1) or not (0). 
Read-only or read-write access permission for all reachable pages. 
User or supervisor (kernel) mode access·permission for all reachable pages. 
Write-through or write-back cache policy for the child page table. 
Caching disabled or enabled foe the child page table. 
Reference bit (set by MMU on reads and writes, cleared by software). 
Page size either 4 KB or 4 MB (defined for level 1 PTEs only). 
40 most significant bits of physical base address of child page table. 

.Disable or enable instruction fetches from all pages reachable from this PTE. 

Figure, 9.23 Format of level l, level 2, and level 3 page table entries. Each entry 
references a 4 KB child page table. 

Figure 9:23 shows the format of an entry in a .level 1, level 2, or level 3 
page table. 'When P = 1 (which is always the case with Linux); the address field 
contains a 40;bit physical page number (PPN) that points. to the beginning of the 
appropriate page table. Notice that this.imposes a 4 KB alignment reqllirement 
on page tables. 

, Figure 9.24 shows the format of an entry in a levej 4 page table. When P = 1, 
the address field.contains a 40-bit PPN that ppints to the base of some page in 
physical memory. Again, this imposes a 4 KB alignment requirement on physical 
pages. 

The PTE has three permission bits thaf control access to \he page. The Rf W bit 
determines whether the contents of a page are read/write or read-only. The U / S 
bit, which. determines whether {be page can be accessed in user,wode1 protects 
code.and.data in the operating system kernel from user programs. The XD (exe­
cute disable) bit, which was introduced in 64,.bit systems, can be used•to disable 
instruction.fetches from individual memory pages. 'D!is is an important new fea­
ture that allows the operating system kernel to reduce the risk of buffer overflow 
attacks by restricting execution to the read-only code segment. 

1 As the MMU translates each virtual address, it also updates two othel"bits that 
can· be used by the kernel's page fault handler. The MMU sets.the A ·bit, which 
is known as .a reference bit, each. time a page is accessed. The kernel can use the 
reference bit to implement its page replacement algorithm. The MMU sets the D 
bit, or dirty bit, each time the page is written to. A page that has been modified is 
;ometimes called a dirty page. The dirty bit tells the kernel whether or not it must 

----------------------~~~ 



828 Chapter 9 Virtual Memory 

63 62 52 51 1211 98765432 0 

XD Unused Page physical base addr Unused G 0 D A CD WT U/S R/W P=1 

Field 

p 

RfW 
U/S 

WT 
CD 
A 

D 
G 
Base addr 
XD 

Available for OS (page table location on disk) P=O 

Description 

Child page present in physical memory (1) or not (0). 
Read-only or read/write access pennission for child page. . ,: 

User or supervisor mode (kernel mode) access permission for child page. 

Write-through or write-back cache policy for the child page. 
Cache aisabled or enabled. 
Reference bit (set by MMU on reads and writes, cleared by software). 
Dirty bit (set by MMU on writes, cleared by software). 
Global page (don't evict from TLB on task switch). 
40 most significant bits of physical base address of child page. 
Disable or enable instruction fetches from the chilq page. 

Figure 9.24 Format of level 4 page table entries. Each entry references a 4 KB child 

page. 

write back a victim page before it copies in a replacement page. The kerne'l can 
call a•special kernel-mode instruction to clear the reference or dirty bits. 

Figure 9.25 shows how the Core i7 MMU uses the four levels of"page tables 
to translate a virtual address to a physical address. The 36-bit VPN is partitioned 
into four 9-bit chunks, each of which is used as an offset into a page table. The 
CR3 register contains the physical address of the Ll page table. VPN 1 provides 
an offset to· an Ll PTE, which contains the base address of the L2 page table. VPN 
2 provides an offset to an L2 PTE, and so on. 

9.7.2 Linux Virtual Memory System 

A virtual-memory system requires close cooperation between the hardware and 
the kernel. Details vary from version to version, and a complete description is 
beyond our scope. Nonetheless, our aim in this section is to describe enough of 
the Linux virtual memory system to give you a sense of h0w a real operating system 
organizes virtual memory and how it handles page faults. ' 

Linux maintains a separate virtual address space for each process of the form 
shown in Figure 9.26. We have seen this picture a number of times already" with 
its familiar code, data, neap, shared library, and stack segments. Now that·we 
understand address translation, we can fill in some more details about the k~rnel 
virtual memory'that lies•above the user stack. 

The kernel virtual memory contains the code and data structures in the kernel. 
Some regions of the kernel virtual memory are mapped. to physical pages that 



9 9 9 9 12 

L.._,_V-'-P-'-N_1 __ ~J_~-'-V_P_N-'2'--~-r-V-P-'-N_3 __ J-'--~-'-V_P_N4_~ ___ V_P_O'---r--J~ Virtual address 

L1 PT 

Page global 
40 directory 

CR3 ~-+1+. .--~ 
Physical 
address 
of Lt PT 

Figure 9.26 

512GB 
region 

Pff!' entry 

" 
The virtual memory' of a 
Linux process. 

" 

L2 PT 
Page upper 

40 directory 

1 GB 
region 

per entry 

L3PT 

Page middle 
40 directory 

rr 

2MB 
region 

per entry 

40 J 

40 

L4 PT 
Page 
table 

4'KB 
region 

per entry 

40 

PPN 

' structures 
Difter~nt for ( t bl each proCe:Ss e.g., page 8 es, 

task and mm structs, 

Physical 
address 
of page 

12 

PPO 

, 
' {' ' Proces9-specific data 

kernel stack) 'Kernel 
1-------~'-.----1~· virtual 

{ 

Physical memoiy memory 
ldentic~I for 

each process 
Kernel code and data 

User stac,k 

,, 

1 Offset into 
i2 physical and 

virtual page 

brk--+ _ 

Run;lime heap (via ma.lloc) 

P:ocifss., 
virtual 
memory 

Ox400000--+ 

0 

Uninitialized data (. bss) 



\ 

830 Chapter 9 Virtual Memory 

Aside Optimizing address translation 

In oµr 'discussion of address translation
1 
We~have~ described a sequential two-step~process }Vhere the 

MMU (1) translates the virtual address 'to a physical aqdi;es~ and tJ;ten (2)',passes theJ>hysical address ' 
to the Ll cache. However, real hardware implement~tions use & neat trick that allows these stepS{O 
b'e partially overlappecj, thus speeding' up acce~se.s,to the Li cacJ;te, For example, a virtual .address on 
a Core i7 with 4 KB pages has 12 bits of VPc'l, and these bits.are identica) to the lz bits of PPO in the • ~ .,, < ._~· l ~ ~ ·~ ,,,~.,~~' .,.:;, 

correspon~ing physica(address. Since the 8-wa¥ setlasso¢iayve pl)ysically'addressed Ll caches have 
64 sets and 64-byte cache blocks, each physical address has 6 (log2 64) caclie offset bits and 6 (log2 64) 
index bits. These 12 bits fit exactly. in t)le 12-bit VPO of a virtual address, which is no accident! When 
the CPU needs a virtual addre_s~; wms1ate{ 'it'sends the YPN to the MMU and_lhe VPO to the Ll 
cache. While the MMU ,is requesting a page·t~ble entry from the TLB, the Ll cache is busy usin,g the 
VPO bits to fin,d the appropriate set anil reap'out'the' eigl!'t tags arid, corresponding (fata•words in that ' 
set. When the MMU gets 'the PPN )Jack from the·TLB,.the ca~he is ready to try to match the P,PN to 

one of these eight tags. 

are shared by all processes. For example, each process shares the kernel's cocje 
and global data structures. Interestingly, Linux also maps a set of contiguohs 
virtual pages (equal in size to the total amount of DRAM in the system) to the 
corresponding set of contiguous physical pages. This provides the kernel with a 
convenient way to access any specific location in physical memory-for example, 
when it needs to access page tables or to perform memory-mapped 1/0 operations 
on devices that are mapped to particular physical memory locations. 

Other regions of kernel virtual memory contain data that differ for each 
process. Examples include page tables, the stack that the kernel uses when it is 
executing code in the context of the process, and various data structures that keep 
track of the current organization of the virtual address space. 

Linux Virtual Memory Areas 

Linux organizes the virtual memory as a collection of areas (also called segments). 
An area is a contiguous chunk of existing (allocated) virtual memory whose pages 
are related in some way. For example, the code segment, data segment, heap, 
shared library segment, and user stack are all distinct areas. Each existing virtual 
page is contained in some area, and any virtual page that is not part of some area 
does not exist and cannot be referenced by the process. The notion of an area is 
important because it allows the virtual address space to have gaps. The kernel does 
not keep track of virtual pages that do not exist, and such pages do not consume 
any additional resources in memory, on disk, or in the kernel itself. 

Figure 9.27 highlights the kernel data structures that keep track of the virtual 
memory are<:1s in a process. The kernel maintains a distinct task structure (task_ 
struct in the source code) for each process in the system. The elements of the task 
structure either contain or point to all of the information that the kernel needs to 



Section 9.7 Case Study: The Intel Core.i7/Linux Memory.System 831 

task_struct mm_struct 

' 

vm_area_struct 

['""""'"ex;. , 
'~~'<0hq: ~"' 

"gym:..:;}tcirt•· 

°'i\rmLpro.f:"· 
t~\nn~fl0.gs~~ 

' vnr_~~d~~· 

~ ~~;.s"~¥'t;; 
$ ~ytn:_prot~, · 

·im-filal;~ : 
• '"Vm.:-i!,)x't'~·'· 

Figure 9.27' How Linux organizes virtual'memory. 

Process virtual memory 

.. 

tun the pr&ess'( e.g., the }'ID, pointef'to the u~er stack, name of the executable 
object file, ana program COUnter). I 

One of the entries in tlie tas'k sltuctur~ points to 'an nlm_struct that charac­
lerii'es the current siate of the virtuaLniemory. 'The two fields of interest to us 
are pgd, i¥hich points to ihe base of the level 1 'table (the page glblJa'i'directory), 
and mmap, wbi'ch'r,oints to a list of, vm:.area_structs (area structs), each of which 
~hata'cterlzes ~h area of the ttirrent virtual address space. Wli:en the !Cernel runs 
this ~rocess, it sfores' P!jd in the CR3 control register: 

For bur purpose?, the area siruct for a 'particular area contains the following 
fields: ' 

, 

fvm_~tart. f(lints to, fh!; ,beginning of the area. 

vmc,epd. Points to the end of the area. 

vm~prot. pesc~ibe~ the readiwrit~ permissions for all of the pages contained 
'in~ tlie area. ~ 

vm_flags. Describes (among other things) whether the pages in the area are 
shared with qth7r processes or private, to this process. 

vm~next. Points t6 the next atea struct in the iist. 

•, . 



832 Chapter 9 Virtual Memory 

Process virtual memory 
Figure 9.28 vm_area_s t t rue 

Linux page fault handling. '" vm_en~ "'..I"-. 
v..:start ·~ 

• r/~ .. ';•\\ •· ' ; 
, 

[ vm_next ·• 
~sbare~d'!ibratie~~ 

" 

,~ viii_el}d ;: 

,Vl!l_start,, ~ 

• tlw '· \'\ 
( 

· '°ata , 
[ Vm_riext •.. ·"''·. '• . ,.. , 

~ 

~_ehd :~, 'i~ . " !' 
" of 

~ ~vm_start 

~-
pode, "# 

r/r;:"~ ' •· 
~ \ril_rl'.efi" 

, 

~ ,,., 

, 
, 

' 

G) 
Segmentation fault: 
Accessing a nonexistent page 

® Normal page fault 
+--

® 

0 

Protection exception 
( e.g., violating permission by 
writing to a read~only page) 

Linux Page Fault Exception Handling 

Suppose the MMU triggers a page fault while trying to translate some virtual 
address A. The exception results in a transfer of control to the kernel's page fault 
handler, which then performs the following steps: 

1. Is virtual address A legal? In other words, does A lie within an ar~a defined by 
some area struct? To answer this question, the fault handler searches the list of 
area structs, comparing A with the vm_start and vm_end in each area srruct. 
If thy instruction is not legal, then the fault handler triggers a segmentation 
fault, which terminates the process. This situation is labeled "l" in Figure 9.28. 

Because a process can create an arbitrary number of new virtual memory 
areas (using the mmap function described in the next section), a sequential 
search of the list of area structs might be very costly. So in practice, Linux 
superimposes a tree on the list, using some fields that we have not shown, and 

performs the search on this tree. 
2. Is the attempted memory access legal? In other words, does the process have 

permission to read, write, or execute the pages in this area? For example, 
was the page fault the result of a store instruction lrying to write to a read· 
only page in the code segment? Is the page fault the result of a process 
running in user mode that is attempting to read a word from kernel virtual 
memory? If the attempted access is not legal, then the fault handler triggers a 
protection exception, which terminates the process. This situation is labeled 

"2" in Figure 9.28. 
3. At this point, the kernel knows that the page fault resulted from a legal 

operation on a legal virtual address. It handles the fault by selecting a victim 
page, swapping out the victim page if it is dirty, swapping in the new page, 



Section 9.8 Memory Mapping 833 

and updating the page table. When the page fault handler returns; the CPU 
restarts the faulting instructiqn, which s~nds A to the MMU again. This time, 
the MMU translates A normally, without generating a page fault. 

~.8 Memory Mappirig. rr J 11 

Linux initializes"the contents of a virtual' m~mory area by associating it with an 
object on disk, a process known as memory mapping. Area's can be mapped to one 
ofiwo trpes of objects: ~ · 

1. Regular.file in the Linux file system: An area can be mapped to a contiguous 
section of a regular disk file, such 'as an executable object file.•The-file section 
is divided into page-size pieces, with each piece containing the-initial contents 
of a virtual page. Because of demand paging, none of these virtual pages is 
actually swapped into physical memory until the CPU first touches the page 
(i.e., issues a virtual address that falls within that page's region of the address 
space). If the area is large'r'than the file section, then the area is padded with 
zeros. 

2. Anonymous file: An area can also be mapped to an anonymous file, created 
by the kernel, that contains all binary zeros. The first time the CPU touches 
a virtual page in such an area, the kernel finds an appropriate victim page 
in physical memory, swaps out the victim page if it is dirty, overwrites the 
victim page with binary zeros, and updates the page table to mark the page 
as resident. Notice that no data are actually transferred between disk and 
memory. For this reason, pages in areas that are mapped to anonymous files 
are sometimes called demand-zero pages. 

In either case, once a virtual page is initializ~d,-it is swapped back and forth 
between a special swap file maintained by the kernel. The swap file is also known 
as the swap space or the swap area. An important point to realize is that at any 
point in time, the swap space bounds the total amount of virtual pages that can be 
allocated by the currently running processes. 

9.8.1 Shared Objects Revisited 

The idea of memory mapping resulted from a clever insight that if the virtual 
memory system could be integrated into the conventional file system, then it could 
provide a simple and efficient way to load programs' and data into memory. 

As we have seen, the process abstraction promises to provide each process 
with its own private virtual address space that is protected from errant writes 
or reads by other processes. However, many.processes have identical read-only 
code areas. For example, each process that runs the Linux shell program bash has 
the same code area. Further, many programs need to access identical copies of 
read-only run-time library code. For example, every C program requires functions 
from the standard C library such as printf. It would be extremely wasteful for 
each process to keep duplicate copies of these commonly used codes irr physical 

r 



" 

834 Chapter 9 Virtual Memory 

Figure 9.29 

memory. Fortunately, memory mapping provides us with a clean mechanism for 
controlling how objects are shared by mnltiple processes. 

An object can be mapped into an area of virtual memory as either a shared 
object or a private object. If a process maps a shared object into an area of its virtual 
address space, then any writes that the process makes to that area are visible to 
any other processes that have also mapped the shared object into their virtual 
memory. Further, the changes are also reflected in the original object on disk. 

Changes made to an area mapped to a private object, on the other hand, are 
not visible to other processes, and any writes that the process makes to the area 
are not reflected back to the object on disk. A virtual memory area into which a 
shared object is mapped is often called a shared area. Similarly for a private area. 

Suppose that process 1 maps a shared object into an area of its virtual memory, 
as shown in Figure 9.29(a). Now suppose that process 2 maps the same shared ob-

Physical 
memory 

Process 2 
virtual memory 

A shared object. (a) After 
process 1 maps the shared 
object. (b) After process 

Process 1 
virtual memory 

2 maps the same shared 
object. (Note that the 
physical pages are not 
necessarily contiguous.) 

Process 1 
virtual memory 

Shared 
object 

(a) 

Physical 
memory 

Shared 
object 

(b) 

Process 2 
virtual memory 

-~-------------------



Figure .9'.30. " 
A private copy-on-write 
object. (a) After both 
processes have m.apped 
the_ P.r[vate copy-ori1write. 
object. (b) After process 
2.JNri_te~ tq i' page in the 
Rrivate area. 

' ' 
" 

1. 

,fJ H 

.• ) 

·l 
, 

Section 9.8. Memory Mapping 835 

Process 1 
virty~I memory 

·-

Process 1 
virtual memory I 

Phy~i9al 
memory 

Phy~ca) 
memory 

''J;roCfiSS 2 
virtual r:nemory 

Process 2 
""virtual memor)l 

" 
___ ).~----- r,,,~: ·-,, 

•• --· JJ cOpy-on-write 

,, 

"~'· \ -- •, '•, ~ 

~ '~; . ;ft~-l!ii~,..,11!,l+--":~~~~~;~~~~· 
\\ \r;:;;;f·'." / ,// 

\l£ij,/ 
Private 

copy-on-wrije object 

(b) 

ject into its address space (not necessarily at tlle same virtuataddress as process· 1 ), 
as shown in Figure 9.29(b). 

Since each object has Ii unique filename,' the kernel ca~ quickly determine 
that process l. has already mapped this object ana can point the page"table entries 
in proces~2'to the'appr~prfate physical pages. ·1'h& key point Is that only a single 
copy of the shared object needs to be stored in 'physical memory; eyei:t though the 
object is mapped into multiple shared areas. For convenience, we have shown the 
physical pages as being contiguous, but of course this is not true in general. 

Private objects are mapped into virtual memory using a clever technique 
known as copy-on-write. A private object begins life in exactly the same Fay as a 
shared object, with only one copy of the private object stored in physical memory. 
For example, Figure 9.30(a) shows a case where two prqcesses have mapped a 
private object into differenr areas of their virtual memories'but share the same 



. l 
1 
'j 

t 

l 
I 
I 
·1 
'1 
I 

I 

J 

836 Chapter 9 Virtual Memory 

physical copy of the object. For each process that maps the private object, the page 
table entries for the corresponding private area are flagged as read-only, and the 
area struct is flagged as private copy-on-write. So long as neither process attempts 
to write to its respective private area, they continue to share a single copy of the 
object in physical memory. However, as soon as a process attempts to write to 
some page in the private area, the write triggers a protection fault. 

When the fault handler notices that the protection exception was caused by 
the process trying to write to a page in a private copy-on-write area, it creates a 
new copy of the page in physical memory, updates the page table entry to point 
to the new copy, and then restores write permissions to the page, as shown in 
Figure 9.30(b ). When the fault handler returns, the CPU re-executes the write, 
which now proceeds normally on the newly created page. 

By deferring the copying of the pages in private objects until the last possible 
moment, copy-on-write makes the most efficient use of scarce physical memory. 

9.8.2 The fork Function Revisited 

Now that we understand virtual memory and memory mapping, we can get a clear 
idea of how the fork function creates a new process with its own independent 
virtual address space. 

When the fork function is called by the current process, the kernel creates 
various data structures for the new process and assigns it a unique PID. To create 
the virtual memory for the new process, it creates exact copies of the current 
process's mm_struct, area structs, and page tables. It flags each page in both 
processes as read-only, and flags each area struct in both processes as private copy­
on-write. 

When the fork returns in the new process, the new process now has an exact 
copy of the virtual memory as it existed when the fork was called. When either 
of the processes performs any subsequent writes, the copy-on-write mechanism 
creates new pages, thus preserving the abstraction of a private address space for 
each process. 

9.8.3 The execve Function Revisited 

Virtual memory and memory mapping also play key roles in the process ofloading 
programs into memory. Now that we understand these concepts, we can under­
stand how the execve function really loads and executes programs. Suppose that 
the program running in the current process makes the following call: 

execve( 11 a.out", NULL, NULL); 

As you learned in Chapter 8, the execve function loads and runs the program 
contained in the executable object file a. out within the current process, effectively 
replacing the current program with the a. out program. Loading and running 
a. out requires the following steps: 



Figure 9.31 
How the loader maps the 
areas of the user address 
space. 

.J 

Ii be.so 
.data 
.text 

a.out 
.data 
.text 

Section 9.8 Memory Mapping 83;:1 

} Private, demand-zefo 

} Shared, file-backed 

Run-time heap ('{ia malloc) } Private, demand-zero 

t-U_n_i-ni-tia-1-iz-ed~'~-at_a_(_. b_s_s_)-1 } Private, demand-zero 

Initialized data (.data) } 
r---------7,,- Private, file-backed 

1 
1. Delete existing user areas. Delete the existing area structs in the user portion 

of the curtent process:s virtual address. 

2. Map private _areas. Crdte new area stfucts for the code,'da'ta,'bss; aritl stack 
areas of tlie' new program. All of these new areas ite' private copy-on-write. 
lJ:te co'de and data areas are' inapped t6' the . text and . data sections of the 
a. ou~ file/Thebss area is'dema1fd-z'ero, mapped to ah anonymous file-whoge 
size is, contained in a. out, The ~tack and heap area are also demand-zero, 
initially of zero length. Figure 9.31 summarizes the diffeteht mappings of the 
f>i-ivate areas. P 

~) >l< •l>. . < •• ( h. 

-'· Map shared areas. If the a. out program was hnked with shared objects, sue 
as the standard C library libc. so, then these objects are dynamically linked 
into.ti)<';' program, and then mapped into the shared regipn of the user's virtual 
address space. , , 

4. Set the program counter (PC). ;Tue )ast thing that execv,e•does i~ to set the 
program counter in the current' process's context to point to the entry point 
in the code area. " · ~ 

The ne,xt time this process is scheduled, it will begin execution from the entry 
point. Linux wil\ swap in code an,d 'data pages as needed. 

It< ,I , J! 

9.8.4 User-Level Memory Mappin,g with the rnmap Function 

Linux processes can use the mmap function to create new areas of virtual memory 
and to map obje'cts'into these areas. 



11 
' ,, 
' 

838 Chapter 9 Virtual Memory 

Figure 9.32 
Visual interpretation of 
mmap arguments. __ .. ,···········----· } length (bytes) 

.-start 
length (bytes) { :~~-~ _ •• ••••••••• •. .., 

offset ----+' " ' ,,,,,,'' 

(or address 
chosen by the 

kernel) 
(bytes) 

0 

Disk file specified by 
file descriptor fd 

#include <unistd.h> 
#include <sys/mman.h> 

0 

Process 
virtual memory 

void *mmap(void *start, size_t length, int prot, int flags, 
int fd, off _t offset) ; 

Returns: pointer to mapped area if OK, MAP _FAILED (-1) on error 

The mmap function asks the kernel to create a new virtual memory area, preferably 
one that starts at address start, and to map a contiguous chunk of the object 
specified by file descriptor fd to the new area. The contiguous object chunk has a 
size of length bytes and starts at an offset of off set bytes fro.m the beginning of 
the file. The start address is merely a hint, and is usually specified as NULL. For 
our purposes, we wiil always assume a NULL start address. Figure Q.32 depicts the 

meaning of these arguments. , 
The prot argument contains bits that describe the access permissions o) the 

newly mapped virtual memory area (i.e., the vm_prot bits in the corresponding 

area struct). 

PROT_EXEC. Pages in the area consist of instructions that may be executed 

by the CPU. 

PROT _READ. Pages in the area may be read. 

PROT_ WRITE. Pages in the area may be written. 

PROT_NONE;. Pages in the area cannot be accessed. 

The flags argument consists of bits that describe the type of t\le mapped 
object. If the MAP _ANON flag bit is set, then the backing store is an anonymous 
object and the corresponding virtual pages are demand-zero. MAP _PRIVATE 
indicates a private copy-on-write object, and MAP _SHARED indicates a shared 

object. For ·example, 

bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATEIMAP_ANON, 0, O); 



Section 9.9 Dynamic' Memory Allocation 

asks the kernel to create a new read-only, private, demand-zero area of virtual 
memory containing size bytes. If the call is successful, then bufp· contains the 
address of the new area. 

The munmap function deletes regions of virtual memory: 

#include <unistd.h> 
#include <sys/mman.h> 

int munmap(void *start, size_t length)j 

Returns: 0 if OK, -1 on error 

The munmap function deletes the area starting at virtual address start and consist­
ing of the next length bytes. Subsequent references to the deleted region result 
in segmentation faults. 

l!kas1t~~m2~~'m!Wf?P-1l~:?,;~ 
Write a C program mmapcopy. c that uses mmap to copy an arbitrary-size disk file to 
stdout. The name of the input file should be passed as a command-line argument. 

9.9 Dynamic Memory Allocation 
l'J 1. 

While it is certainly·possible to use the low0 level mmap and munmap functions to 
qeat~and delete areas ofovirtual memory, C programmers typically find it more 
cbnvenient and mor.e portable to use a dynamic memory allocator when they need 
to acquire additional virtual memory at run time: 

A dynamic m'<ll)ory allocator maintains an area of a process's virtual memory 
known as the heap (Figure 9.33). Details vary ftofo system to system, but without 
loss of generality, we will .assum1Nhat the l\eap is ·an area of demand-zero mem­
ory that begins' immediately after the uninitialized ·data area and grows upward 
(toward higher addresses). For each process, the kernel maintains a variable brk 
(pronounced "break") that points to the top of the heap. 

An allocator maintains the heap'. as a collection' of various-size blocks. Each 
block is a contiguous chunlfof virtual memory that is either allocated' or free. An 
allocated block has been explicitly reserved for use by the application. A free block 
is available to be allocated. A free block remains free until it is explicitly allocated 
by the application. An allocated block remains allocated until it is freed, either 
explicitly by the application or impliBitly by the memory allocator itself. 

Allocators come in 'two basic styles. Both' ~tyles .require the application to 
explicitly allocate blocks. They differ about whl'ch entity is responsible for freeing 
allocated blocks. 

, 
• Explicit allocators require the application to explicitly free any allocated 

blocks. For example, the C standard library provides an explicit allocator 
called the malloc package. Cl programs allocate a block by calling the malloc 

839 



840 Chapter 9 Virtual Memory 

Figure 9.33 
The heap. 

0 

Heap 

Uninitialized data (. bss) 

Initialized data (.data) 

Code (.text) 

,._ Top of the heap 
(brk ptr) 

function, and free a block by calling the free function. The new and delete 

calls in C++ are comparable. 
• Implicit allocators, on the other hand, require the allocator to detect when 

an allocated block is no longer being used by the program and then free 
the block. Implicit allocators are also known as garbage collectors, and the 
process of automatically freeing unused allocated blocks is known as garpage 
collection. For example, higher-level languages such as Lisp, ML, and Java rely 
on garbage collection to free allocated blocks. 

The r,emainder of this section discusses the design and it;nplementation of 
explicit allocators. We will discuss implicit allocators in Section 9.10. For concrete­
ness, our discussion focuses on allocators that manage heap memory. However, 
you should be aware that memory allocation is a general idea that aris<;s in ,a vari­
ety of contexts. For example, applications tJ;ia,t do intensive manipulation of graphs 
will. often use the standard allocator,to acquire, a large block o(,virtual memory 
and tl\en use an applic~tion-specific allocator to manage the memory within that 
blo€k as the nodes of the graph are created and destroyed. 

9.9.1 The malloc and free Functions 

The C standard library provides an explicit allocator known as the malloc package. 
Programs allocate blocks from the)1,eap by calling the malloc function. 

#include <stdlib.h> 

void *malloc(size_t size); 
Returns: pointer to allocated block if OK, NULL on error 



Section 9.9 Dynamic Memory Allocation 841 

The malloc function returns a pointer to a block of memory of at least size bytes 
that is suitably aligned for any kind of data object that mfght be contained in the 
bl9ck. In practice, the aligmnerit depends on whether the code is compiled to run 
in 32-bit mode (gee -m32) or 64-bit modt (the cfefault). In 32-bi(mode, malloc 
returns a block whose address iS always a multiple of 8. In 64-bit mode, the address ' 
is always a multiple of 16. 

If malloc encounters a ptobl'llll ( e.g:, !he program-requests a bloc!} of memory 
that is larger than the·available virtual memory), then it returns NULL and sets 
errno. Malloc does not initialize the memory it returns. Applications that want 
initialized dynamic memory can use callee, a thin wrapper around the malloc 
function that initializes the allocated memory to.zero. Applications that want to 
change the size of a previously allocated block..ca1L1ise the realloc function. 

Dynamic memory allocators such as malloc can allocate or deallocate heap 
memory explicitly by using the mmap and munmap functions, or they can use the 
sbrk function: 

#include <unistd.h> 

void *sbrk(intptr_t incr)-; 

Returns: old brk pointer on success, -l•on error 

The'sbrk function grows or ~brinks the heap l\y adding incr to the kernel's brk 
p'd{~ter. If successfui, it returns ili.e old value of brk', otherwise it returns -1 and 
sets errno to ENOMEM. If incr is zero, then sbrk returns the current value of 
brk. €Jailing sbr!{ with a negative incr is legal but tricky because the return value 
(the old value of brk) points to abs (incr) bytes past the new top.of the heap. 

Programs free allocated heap blocks by calling the free function. 

• #include <stdl"ib. h> 

void free(void *ptr); 

Returns: nothing 

The ptr argument must point to the beginning of an allocated block that was 
obtained from malloc, calloc, or realloc. If not, then the- behavior of free 
iS' uiidefined. Even worse, since it returns nothing, free gives no indiciition to 
the application that something is wrong. As we shall see in Section 9.11, this can 
produce some baffling run-time errors. 

., 



.· 

1, 

I 
. I 
'I 

I 
I 

842 Chapter 9 Virtual Memory 

Figure 9.34 
Allocating and freeing 
blocks with mall oc 

p1 
t 
I I I I I I I I I I I I 

and free. Each square 
corresponds to a word. 
Each heavy rectangle 
corresponds to a block. 
Allocated blocks are 
shaded. Padded regions of 
allocated blocks are shaded 
with a darker blue. Free 
blocks are unshaded. Heap 
addresses increase from left 
to right. 

(a}p1 ~ malloc(4*sizeof(1nt)) 

p1 p2 
t t 
I I I I I I I I I l,,'-f I 
(b) p2 • malloc(S•sizeof(int)) 

p1 p2 p3 
t t t 

(c)p3 = malloc(6*Sizeof(int)) 

(d) free (p2) 

p1 p2 p4 
t ... , 
I I I I I I I 
(e)p4 ~ malloc(2•sizeof(int)) 

I-' I ·I 

Figure 9.34 shows how an implementation of malloc and free might manage 
a (very) small heap of 16 words for a C program. Each box represents a 4-byte 
word. The heavy-lined rectangles correspond to allocated blocks (shaded) and 
free blocks (unshaded). Initially, the heap consists of a single 16-word double­
word-aligned free block.1 

Figure 9.34(a). The program asks for a four-word block. Malloc responds by 
carving out a four-word block from the front of the free block and return­
ing a pointer to the first word of the block. 

Figure 9.34(b). The program requests a five-word block. Malloc responds by 
allocating a six-word block from the front of the free block. In this exam­
ple, malloc pads the block with an extra word in order to keep the free 
block aligned on a double-word boundary. 

Figure 9 .34( c). The program requests a six-word block and mall oc responds by 
carving out a six-word block from the free block. 

Figure 9.34(d). The program frees the six-word block that was allocated in 
Figure 9.34(b). Notice that after the call to free returns, the pointer p2 

1. Throughout this section, we will assume that the allocator returns blocks aligned to 8-byte double­
word boundaries . 

:-



Section 9.9 Dynamic Memory Allocation 843 

still points to the freed block. It is the responsibility of the application not 
to use p2 again until it is reinitialized by a new call to malloc. 

Figure 9.34(e). The program requests a two-word block. In this case, malloc 
allocates a portion of the block that was freed in the previous step ano 
returns a pointer to this new block. 

9.9.2 Why Dynamic Memory Alloca'tiori? 

The most important ryason that programs use dynamic memory allocation is that 
9ften they do not know the sizes of certain data structures until the program 
actually runs. For example, suppose we are asked to write a C program that reads 
a list of n ASCII integers, one integer per line, from stdin into a ,c; array. The 
input c9nsists of the integer n, followed by the n integers to be read and stored 
into 1he array. The simplest approach is to define. the array stati~ally.with some 
hard-c.oded·maximum array size: . ,, 

,. 
1 #ihclude 1\Csapp~'h" 
2 #define MAXN 15213 
3 

4 int array[MAXN]; 
5 ' ,, ' 6 int main() 
7 { 

8 int i, n· ' 
9 

10 sc'filif( 11 %Ci 11 , Im); 
{1 if (n'> MAXN) 
fa app_error("Input file "too big"); 
13• for (i = 0; 'i ~<~'n1 j 'i ++) 
14 S'cahf ( II %d II-', itarray[i]); 
15 exit(O); 
16 J 

t 

Allocating arrays witfrhaid-coded site's like' this is often a !fad idea'.'The value 
of ~.is arbill;ary. and.h~no relation lo.the actual amount of available virtual 
memory on the machine. Further, if t)le,µser of this program wanted to read a file 
that was large,r than MAXN, Jhe only recourse would be to recompile the program 
wit!{ a !~~[er' va!Ue of MAXN. while not a problem for this 'simple example, the 

I { ' I• · '. presence of hard-coded array bounds can become a mamtenance mghtmare for 
large software products with millions of lines' of code and numerous users. 

A better approach-is to allocate the array dynamically, at run time, after the 
value of n becomes known. With this approach, tlle maximum size of the array is 
limited only by the amount of available virtual memory. 



844 Chapter 9 Virtual Memory 

#include "csapp.h 11 

2 

3 int main() 
4 { 

5 int *array. i, n; 
6 

7 scanf("%d 11
, &:n)j 

B array= (int *)Malloc(n *· sizeof(int))j 
9 for (i = O; i < n; i++) 

10 scanf(tt%d", &array(i]) j 

11 free(array)i 
12 exit(O); 
13 } 

Dynamic memory allocation is a useful and important programming ~ech- ,, 
nique, However, in order to use allocators correctly and efficiently, programmers 
need to have an understanding of how they work. We will discuss some of the grue­
some errors that can result from the improper use of allocators in Section 9.11. 

9.9.3 Allocator Requirements and Goals 

Explicit allocators must operate within some rather stringent constraints: 

Handling arbitrary request sequences. An application can make an arbitrary se­
quence of allocate and free requests, subject to the constraint that each 
free request must correspond to a currently allocated block obtained from 
a previous allocate request. Thus, the allocator cannot make any assump­
tions about the ordering of allocate and free requests. For example, the 
allocator cannot assume that all allocate requests are a~comj'./anied by a 
matching free request, or that matchi'1g allocate and free requests are 
nested. 

Making immediate responses to requests. The allocator must respond immedi­
ately to allocate requests. Thus, the allocator is not allowed to reorder or 
buffer requests jp order to improve performance. 

Using only the heap. In order for the allocator to be scalable, any nonscalar data 
structures used by the allocator must be stored in the heap itself. 

Aligning blocks '{alignment requirement). The allocator must align blocks in 
such a way that they can hold any type of data object. 

Not modifying allocated blocks. Allocators can only manipulate or change free 
blocks. In particular, they are not allowed to modify or move blocks 
once they are allocated. Thus, techniques such as compaction of allocated 
blocks are not permitted: " 



Section 9.9 Dynamic Memory Allocation 845 

Working within these constraints, the author of an allocator attempts to meet 
the often conflicting performance goals of maximizing throughput and memory 
utilization. 

Goal 1: Maximizing throughput. Given some sequence of n allocate and free 
requests 

we wpµ,\d, ¥ke to maxilljj;e an,allocator'qhroughput, which is deliqed as the 
nu,m1:5er o(requests that 1t completes per uni( time. For example, if an alloc?­
tor c;ompletes 500 alloc~te requests and 5,0p free requ,ests in 1 second, \\len its 
throughput is 1,000 operi'tions per second. In general, we can maxirpize through­
pµt by minimizing the ~verage time tp satisfy allocate and free requests. As we'll 
se~, it is not too \lifficult to ?e".elop

1
allocators with reasonably good P<;rformanc~ 

where the worst-case running time of an allocate request is linear in the number 
' ? ' • ~ ' I J 

of free blocks and the running time of a free req11est is constant. 

Goal 2: Maximizing memory utilizgtion. ·Naive programmers often incorrectly 
assume·that virtual memory is an unlimited. resource. In fact, the total amount 
of virtual memory allocated by all of the processes in a system i~ limited by the 
amount of swap space on disk .. Good programmers know that virtual memory is 
a finite resource that must be used efficiently. 1hls is especially true for a dynamic 
memory allocato~ that might be asked to allocate and free large blocks of memory. 

There are· a number of wa'ys to characterize how efficiently an allocator uses 
the heap . .In our experience, the most useful metric is·peak utilization. As before, 
we are giveh some sequence of n allocateiand free request~• 

If an application requests a block oI p bytes, then the resnlting allocated block has 
a payload of p bytes. After request Rk has completed, let ihe aggregate•payload, 
denoted' Pb be the sum·of·the payloads of the currently allocated blocks, and let 
Hk denote the current (monotoriically ni:mdecfeasing') size of the heap. 

Then the peak utilization _over the first k + 1 requests, denoted by T:!b is 
given by ., 

'The objective of the· allocator, then, is to maximize the peak utilization Un-I 

over the entire sequence. As we will see, there is a tension between maximizing 
throughput and utilization .. In particular, it is easy to write an allocator that 
maximizes throughput at the expense of heap !lt4ization. One of the ,interesting 
challenges in any allocator design is finding an appropriate balance be

1
tween the 

two goals. 



I' ,. 

'· 

I 

" 

846 Chapter 9 Virtual Memory 

Aside Relaxing the monotonicity 4~,;;umptio•J 
We could relax the monotonically nondecreasing assumption in our definition of u, and allow th~ heap 
to grow up and dowi:i.by l,etting,ij,.be the high,watern:!~rk over tl)e firs! k ;t 1.requests,. t, 

9.9.4 Fragmentation 

The primary cause of poor heap utilization is a phenomenon known as fragmen· 
talion, which occurs when otherwise unused memory is not available to satisfy 
allocate requests. There are two forms of fragmentation: internal fragmentation 

and external fragmentation. 
Internal fragmentation occurs when an allocated block is larger than the pay­

load. This might happen for a number of reasons. For example, the implementation 
of an allocator might impose a minimum size on allocated blocks that is greater 
than some requested payload. Or, as we saw in Figure 9.34(b ), the allocator might 
increase the block size in order to satisfy alignment constraints. 

Internal fragmentation is straightforward to quantify. It is simply the sum of 
the differences between the sizes of the allocated blocks and their payloads. Thus, 
at any point in time, the amount of internal fragmentation depends only on the 
pattern of previous requests and the allocator implementation. 

External fragmentation occurs when there is enough aggregate free memory 
to satisfy an allocate request, but no single free block is large enough to handle 
the request. For example, if the request in Figure 9.34(e) were for eight words 
rather than two words, then the request could not be satisfied without requesting 
additional virtual memory from the kernel, even though there are eight free words 
remaining in the heap. The problem arises because these eight words are spread 

over two free blocks. 
External fragmentation is much more difficult to quantify than internal frag­

mentation because it depends not only on the pattern of previous requests and the 
allocator implementation but also on the pattern of future requests. For example, 
suppose that after k requests all of the free blocks are exactly four words in size. 
Does this heap suffer from external fragmentation? The answer depends on the 
pattern of future requests. If all of the future allocate requests are for blocks that 
are smaller than or equal to four words, then there is no external fragmentation. 
On the other hand, if one or more requests ask for blocks larger than four words, 
then the heap does suffer from external fragmentation. 

Since external fragmentation is difficult to quantify and impossible to predict, 
allocators typically employ heuristics that attempt to maintain small numbers of 
larger free blocks rather than large numbers of smaller free blocks. 

9.9.5 Implementation Issues 

The simplest imaginable allocator would organize the heap as a large array of 
bytes and a pointer p that initially points to the first byte of the array. To allocate 

" l 



Section 9.9 Dynamic Memory Allocq:tion 

size bytes, malloc would save the current value of p on the stack, increment p by 
size, and return the old value of p to the caller. Free would simply return to the 
caller without doing anything, 

This naive allocator is an extreme point in the design space. Since each malloc 
and free execute only a handful of instructions, throughput would be extremely 
good. How~ver, s\nce the allo<11tot n~ver reuses any. blqcks, mell,lory utilization 
would be extremely bad. A practical allocator that strike~~ better balance between 
throughput and utilization must consider the following issues: 

Free block organization. How do we keep track of free blocks? 

P,lac~m/7f;, How do we choose an appropriate free blqck in which to place a 
newly allocated block? 

Splitting. After we place a newly allocated block in some free block, what do 
we do with the remainder of the free block? 

Coalescing. What 'do we do with a block that has just been freed? 

The rest of this section looks at these issues in more detail. Since the basic 
techniques of placement, splitting, and coalescing cut across many different free 
block organizations, we will introduce them in the context of a simple free block 
organization known as an implicit free list. 

9.9.6 ,Implicit Free Lists 

Any practicai allocator needs some data structur~ that allows it to di,stinguish 
block boundaries and t.o distinguish between al\ocated and free blocks. Most 
allocators embed this inf6rmation in the blocks themselves. One simple approach 
is s)l.~wn.in Fig~re 9.35. , • ' 

In this case, a block consists of a one-word header, the payload, and possibly 
some additional padding. The header encodes the block size (including the header 
ahd any padaing) as well as whether the block is allRcated 'or free. If we impose a 
double-word alignment constraint, then the block sit'e:is always a multiple of 8 and 
the 3 low-order bits or'the block size are always ze;ro.1Thus, we need to store only 
the 29 high-order bits' of the block size, freeing the remaining 3 bits to encode 
other informati'~n. In this case, we are usii;g the least significant of'these bits 

Figure 9.35 
Format of a simple heap 
block. 

mallob returns a 
pointer to the beginning ......---.... 
of the payload · 

31 Header 3 2 1 o 

Block size f ·b· o a } : : b:: ::i:ated 

847 

· l?ayload 
(allocated bloc~ only) 

The block size includes 
the header, payload, and 
'any padding 

'< ~ ~ '"' ·'' .,. ., 

ie~ddigg,! ?Jl1io,na1y \" , 
.;,;-'flfr ~ ., ' ~ ~-..• 

' ' ' ~ 

i ,'. 

f 

! 
' 



"' ' 

I 
I· 
' 

848 Chapter 9 Virtual Memory 

I~ 
' I I I 
' I I I 
I I ' I 
I I I I 

~ : : ! 

•Double­
,i word 
~ aligned 

Figure 9.36 Organizing the heap with an implicit free list. Allocated blocks are shaded. Free blocks are 
unshaded. Headers are labeled with (size (bytes)/allocated bit). 

(the allocated bit) to indicate whether the block is allocated or free. For example, 
suppose we have an allocated block with a block size of 24 (Ox18) bytes. Then its 
header would be 

Ox00000018 I Ox1 = Ox00000019 

Similarly, a free block with a block size of 40 (Ox28) bytes would have a header of 

Ox00000028 I OxO = Ox00000028 

The header is followed by the payload that the application requested when it 
called malloc. The payload is followed by a chunk of unused padding that can be 
any size. There are a number of reasons for the padding. For example, the padding 
might be part of an allocator's strategy for combating external fragmentation. Or 
it might be needed to satisfy the alignment requirement. 

' Given the block format in Figure 9.35, we can organize the heap as a sequence 
of contiguous allocated and free blocks, as shown in Figure 9.36. 

We call this organization an implicit free list because the free blocks are llnked 
implicitly by ihe size fields in the headers. The allocator can indirectly traverse 
the entire set of free blocks by traversing all of the blocks in the heap. Notice that 
we need some kind of specially marked end block-in this example, a termi~ating 
header with the allocated bit set and a size of zero. (As we will see in Section 9.9.12, 
setting the allocated bit simplifies the coalescing of free blocks.) 

The advantage ofan implicit free list is simplicity. A significant disadvantage is 
that the cost of any operation that requires a search of the free list, such as placing 
allocated blocks, will be linear in the total number of allocated and free blocks in 
the heap. 

It is important to realize that the system's alignment requirement and the 
allocator's choice of block format impose a minimum block size on the allocator. 
No allocated or free block may be smaller than this minimum. For example, if 
we assume a double-word alignment requirement, then the size of each block 
must be a multiple of two words (8 bytes). Thus, the block format in Figure 9.35 
induces a minimum block size of two words: one word for the header and another 
to maintain the alignment requirement. Even if the application were to request a 
single byte, the allocator would still create a two-word block. 

'I 

,. 

" 



Section 9.9 Dynamic Memory Allocation 849 

l&'l:'l!Al:':":i'lj¥'t:'j~·8:2:n&=·''"~~.,.~ ,, u~ · "'""" rdwc;e:,ryO,MSJlJ ~.y;;~~R~~:,.,#~~t~~~?~St::!#"~;Jlj 
Determine the block sizes and header valnes that would result from the fol­
\owing sequence of malloc re.quests. assum"pt!ons: (1) The allocate( maintains 
double-word alignment and uses an implicit free list with the block format from 
Figure 9.35. (2) Block sizes are rounded up to the nearest multiple of 8 bytes. 

Request 

malloc(l) 
malloc(5) 
malloc(12) 
malloc(13) 

Block size (decimal bytes) 

~-·-

9.9.7 Placing Allocated Blocks 

Block heade• (hex) 

When an application requests a block of k bytes, the allocator searches the free 
list for a free block that is large enough to hold the r<\quested block. The manner 
in which the allocator performs this search is determined by the placement policy. 
Some common policies are jirst.fit, next.fit, and, best fit. 

First fit searches the free list from theJ~eginning apd chooses the first free 
bfock that fits. Next fit is similar to first fit, but instead of starting each search at 
the beginning of the list, it starts each, search where the .previous search left off. 
Best fit examines every free block and chooses the free block with the smallest size 
that fits. 

Ap advantage< of first fit is that it tends to retain large, free blocks at the end 
of the list. A disadvantage is that it tends to leave "splinter~" of small free blocks 
toward the beginning of the list, which will increase the search time for larger 
blocks. Next fit was first proposed by Donald Knuth as an alternative 'to first fit, 
motivated by the idea that if we found a fit in some free block th~ last time, there 
is a good chance that w~ )"ill find a fit.the next limy in the remainder of the block. 
Next fit can run significantly faster .;han first fit; especially if the front of the list 
becomes lit\ered ,with many small splinters. However, some studies sugg<;st that 
next fit suffers from wo(Se memory utilization than first fit. Stud~es have found 
that best fit generally enjoys better mempry utiliz>ttion than either first fit or next 
fit. However, the disadyantage of using best fit with simple free list organizations 
such as the implicit free• list is that it requires an exhaustive .search of the heap. 
Later, we will loolvat more sophisticated segregated·free li&t.organizations that 
approximate a best-fit poli~y without an exhaustive search of the heap. 

9:9.8 Splitting FreE! Blocks 

Once the allocator has located a free block that fits, it must make another policy 
decision about how much of the free block Jo allocate. One option is to use 
the entire free block. Although simple and fast, the main disadvantage is that it 



I 
! 

:I 

850 Chapter 9 Virtual Memory 

Figure 9.37 Splitting a free block to satisfy a three-word allocation request. Allocated blocks are shaded. 
Free blocks are unshaded. Headers are labeled with (size (bytes)/ allocated bit). 

introduces internal fragmentation. If the placement policy tends to produce good 
fits, then some additional internal fragmentation might be acceptable. 

However, if the fit is not good, then the allocator will usually opt to split 
the free block into two parts. The first part becomes the allocated block, and the 
remainder becomes a new free block. Figure 9.37 shows how the allocator might 
split the eight-word free block in Figure 9.36 to satisfy an application's reguest for 
three words of heap memory. 

9.9.9 Getting Additional Heap Memory 

What happens if the allocator is unable to find a fit for the requested block? One 
option is to try to create some larger free blocks by merging (coalescing) free 
blocks that are physically adjacent in memory (next section). However, if this 
does not yield a sufficiently large block, or if the free blocks are already maximally 
coalesced, then the allocator asks the kernel for additional heap memory by calling 
the sbrk function. The allocator transforms the additional memory into one large 
free block, inserts the block into the free list, and then places the requested block 
in this new free block. 

9.9.10 Coalescing Free Blocks 

When the allocator frees an allocated block, there might be other free blocks 
that are adjacent to the newly freed block. Such adjacent free blocks can cause 
a phenomenon known as false fragmentation, where there is a lot of available free 
memory chopped up into small, unusable free blocks. For example, Figure 9.38 
shows the result of freeing the block that was allocated in Figure 9.37. The result 
is two adjacent free blocks with payloads of three words each. As a result, a 
subsequent request for a payload of four words would fail, even though the 
aggregate size of the two free blocks is large enough to satisfy the request. 

To combat false fragmentation, any practical allocator must merge adjacent 
free blocks in a process known as coalescing. This raises an important policy 
decision about when to perform coalescing. The allocator can opt for immediate 
coalescing by merging any adjacent blocks each time a block is freed. Or it can opt 
for deferred coalescing by waiting to coalesce free blocks at some later time. For 
example, the allocator might defer coalescing until some allocation request fails, 
and then scan the entire heap, coalescing all free blocks. 

I 
\ 



Section 9.9 Dynamic Memory Allocation 851 

'=,'): Double· 
( ,,~ •word 

""--+--"---+---'---1--'---1---"'--'-l'-...J....-'-+---"""' .. "'"' ~ aligned 

' f 

Figure 9.38 An example of false fragmentation. Allocated blocks are shaded. Free blocks are unshaded. 
Headers are labeled with (size (bytes)/allocated bit). 

Immediate coalescing is straightforward and can be performed in constant 
time, but with some request patterns it can introduce a form oi'thrashing where a 
block is repeatedly coalesced and then split soon thereafter. For example, in Fig­
ure 9.38, a repeated pattern of allocating and freeing a three-word block would 
introduce a lot of unnecessary splitting and coalescing. In our discussion of allo­
cators, we will assume imrnediate'coalescing, but you should be. aware that fast 
allocators often-opt.for some form of deferred coalescing. .. 

9,9.11, Coalescing with Boundary Tags 
' ' ' . 

How·does an allocator implement coalescing? Let·us t'efer to the block we warit 
to free as the current block. Theri c'oalescihg the next free block (in memod) is 
straightforwara and efficient. The header of the' current block points to the he'ader 
of the next block, which can be checked-to'determine if the next block is free. If 
so, its size is siinply added to the size of the currerif header and' the blocks are 
coalesced iil. constant time. 

But how would we·coalesce tll.e previ6us bliick? Given an' implicit free list'6f 
blocks with lieadefs, tlie only option would be to search the entire list, remember­
ing the' location °of the previous block;until we reacheo the current bloc)<. With an 
iinplicitfree list, this means that each call to free would require time linear in the 
size"f the heap. Even with more sophisticated free list organizations, the search 
time would not be constant. 

Knuth developed a clever and general technique, know'n as boundary tdgs, 
that allow's for constant-time coalescing of the previous block..The idea, 'which is 
shown in Figure 9.39, is to add a footer (the boundary fag)'at the end of each block, 
where the footer is a replica of tlie'header. If each block includes· such a footer, 
then the allocator can determine the starting lcicaticin' and status of the previous 
block by inspei.:ting i!S fodter, which is always one word away from the start of the 
cutrent block. ' 

Consider all the cases that can exist when the allocator frees the current block: 

1. The previous and next blocks are both allocated. 

2. The previous block is allocated and the next block is free. 

3. The rr.evious qlock is free and the nqt block,i~ alloGated. 

4. The previous and next blocks are both free. 



.J 
II 
•: 

! 
I 
l 
I 

I 
1 

I 
l 

l 
' 

I 
I 

I 
l 
I 

852 Chapter 9 Virtual Memory 

Figure 9.39 31 3 2 1 0 

Format of heap block that 
uses a boundary tag. 

Block size l a/f 
a= 001: Allocated 

Header a = 000: Free 

Payload 
(allocated block only) 

,, jJ '(\'. .j;;" 

Paddi[lg (oittbnalt 

Block size ] a/f Footer 

Figure 9.40 shows how we would coalesce each of the four cases. 
In case 1, both adjacent blocks are allocated and thus no coalescing is possible. 

So tbe status of the current block is simply changed from allocated to free. In case 
2, the current block is merged with the next block. The header of the current block 
and the footer of the next block are updated with the combined sizes of the current 
and next blocks. In case 3, the previous block is merged with the current block. 
The header of the previm}s block an(! the footer of the current block are updated 
with the combined sizes of the two blocks. \n case 4, all three blocks are merged 
to form a single free block, with the header of the previous block and the footer ,of 
the next block updated with the combined sizes of tbe three blocks. In each.case, 
the coalescing is performed in constant time. 

The idea of boundary tags is a simple and elegant one that generalizes to 
many different types of allocators and free list organizations. However, there is 
a potential disadvantage. Requiring each block to contain both a header and a 
footer can introduce significant memory overhead if an application manipulates 
many small blocks. For example, if a graph application dynamically qea.tes and 
destroys graph nodes by making repeated calls to malloc and free, and each graph 
node requires only a couple of words of memory, then the header and the footer 
will consume half of each allocated block. 

Fortunately, there is a clever optimization of boundary tags that eliminates 
the need for a footer in allocated blocks. Recall \hat when we attempt to coalesce 
the current block with the previous and next blocks in memory, the size field in 
the footer of the previous block is only needed if the previous block is free. If we 
were to store the allocated/free bit of the previous block in one of the excess low· 
order bits of the current block, then allocated blocks would not need footers. and 
we could use that extra space for payload. Note, however, that free blocks would 
still need footers. 

Determine the minimum 'block size for each of the following combinations of 
alignment requirements and block formats. Assumptions: Implicit free list, zero· 
size payloads are not allowed, and headers and footers are stored in 4-byte words. 

,, 

' 



Figure 9.40 
Coalescing with 
boundary tags. Case 1: 
prev and next allocated. 
Case 2: prev allocated, next 
free. Case 3: prev free, next 
allocated. Case 4: next and 
prev free. 

,. 

' ) 

h " 
,, 

.,, 

" ' 

m1 ]a . 
JTI1 a 
[1 a 

•>I 

~ ~·:;i~\,¢1 
n a 

m2 a 

.m2 • ,,,a~ 

Case 1 

.. 
, m1 . a, \ 

m1 
" a 

n a 
;;:, j}i !it.f,>t< ~\ 

n a . 
m2 'f ' 

m2. f' 

Cas82 

m1 

-H•rt 

1 ~ ,~ n· ,, m2 •a 
II' 

'case 3 

' 
m1 f 

J • 

m1 f 
n a 

~ 
n ~ 

m2 r 
m2 f 

Case4 

Section 9.9 Dynamic Memory Allocation 853 

m1 a 

•m1 a 
n f 

~··;,; ::>!,~~~ ;;;"\ 

" n f 
m2 a 

m2 . a. . 

m1 ,. 

l 

m2 ·a 

" 



854 Chapter 9 Virtual Memory 

Minimum block 
Alignment Allocated block Free block size (bytes) 

Single word Header and footer Header and footer 
Single word Header, but no footer Header and footer ----
Double word Header and footer Header and footer ----
Double word Header, but no footer Header and footer ---

9.9.12 Putting It Together: Implementing a Simple Allocator 

Building an allocator is a challenging task. The design space is large, with nu­
merous alternatives for block format and free list format, as well as placement, 
splitting, and coalescing policies. Another challenge is that you are often forced 
to program outside the safe, familiar confines of the type system, relying on the 
error-prone pointer casting and pointer arithmetic that is typical of low-level sys­
tems programming. 

While allocators do not require enormous amounts of code, they are subtle 
and unforgiving. Students familiar with higher-level languages such as C++ or Java 
often hit a conceptual wall when they first encounter this style of programming. To 
help you clear this hurdle, we will work through the implementation of a simple 
allocator based on an implicit free list with immediate boundary-tag coalescing. 
The maximum block size is 232 = 4 GB. The code is 64-bit clean, running without 
modification in 32-bit (gee -m32) or 64-bit (gee -m64) processes. 

General Allocator Design 

Our allocator uses a model of the memory system provided by the memlib. c 
package shown in Figure 9.41. The purpose of the model is to allow us to run 
our allocator without interfering with the existing system-level malloc package. 

The mem_ini t function models the virtual memory available to the heap as a 
large double-word aligned array of bytes. The bytes between mem_heap and mem_ 
brk represent allocated virtual memory. The bytes following mem_brk represent 
unallocated virtual memory. The allocator requests additional heap memory by 
calling the mem_sbrk function, which has the same interface as the system's sbrk 
function, as well as the same semantics, except that it rejects requests to shrink 
the heap. 

The allocator itself is contained in a source file (mm. c) that users can compile 
and link into their applications. The allocator exports three functions to applica­
tion programs: 

1 extern int mm_init(void); 
2 extern void *mm_malloc (s,ize_t size); 
3 extern void mm_free (void *ptr); 

The mm_ini t function initializes the allocator, returning 0 if successful and 
-1 otherwise. The mm_malloc and mm_free functions have the same interfaces 
and semantics as their system counterparts. The allocator uses the block formal 



Section 9.9 Dynamic Memory Allocation 855 

---~¥"~~·"'"~-~-----'-----------------~-- codelvm/malloc/memlib.c 
' • l .... , 

5 

/*~Private global variables */ 
Statit cti?r *mem_heap; /*·Points to 
sta;tM: ... :~har ~ll!e_1q_brJi;___ ~%* .. PoiniLJs tp 
static char *mem_max_addr; /* Max legal 

first byte of hell:)l-'•/ 
' I ' last.byt~ of lieaR RJ..qs_l •/ 

heap addr plus 1•/ 

6 !• 
7 

8 

9 

10 

11 ' 

1, 

* mem_init - Initialize the memory system mod~l 
•I 

void mem_init(void) 
{ 

mem_heap = (~haz: •)Malloc(MAX_HEAP); 
mem_b;;k~ = (char *)m,em_h~ap.i ,,.. 

" mem_max_addr =, 'char •) (mepi!.,Jt~~p + MAX_HEAP); 
} , .. ''• 

I• 
ll , 

)• 

1 ~ .t 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25' 

26 

27 

28 

29 

* mem_sbrk - Simple, model of the sbrk function. Extends the heap 
* by incr byteS ~ahd'~returns the start address of the new area. In 
r* this, IJ}oP,~l, the heap canno~ be shrunk. 
•I 

voi~ ~~~m_s?rk(int Jn~r) 
{ 

le 

-j 

1 char *old.:.qrk = mem_br;k;~1 
<if ,, I• '> ' • •" 

( (incr:,;: .~) 1,1 ((mem_brk + i11cr), > mem_max_addr))
1 

{ 

errno ~ ENOMEM; . 
1 

" 30 

31 

/2 } 

fprintf (stder;r, 11 ERRO)\: mem_sbr~~ fp.i\?,d .... Ran out of,. memory . .. \n 11 ); 

return (v9idf*)-1; 
) 
mem brk += incr; 
ret~r~· (void *)old_brk; 

·" 

, ' 

---,,------,,+, ------------.----~,e,.;---~---.---,--,, , code/vmlmallodmemlib.c 
• ~· '"'I 1.:f...., .• J!~.J I J , t"' F1gure9,41 memub.c: Me'l\ory.system model. 

' ,.I/ I <" \ "'!I 

• l f I ..J ./ ~A. [ "' /,1 ,) l' 

~h'own in Figure 9.39. The miniffium'block size' is 16 by'tes!Tiie free list'is organltbd 
as an implicit free list, with the invariant form shown in'Figure 9.42. 

The first word' is an uhu1ed padding word aligned to a double-word boundary. 
The patlding' is follow~d by a special prologue blbck, which is an 8-byte allocated 
block consisting of only' a header and' a foote'f. 'Tlie prologue block is' created 
during initialization and is never freed. Following the prologue block are zero 
or more regular blocks that are created by calls to mll.iloc Of' free. The ,heap. 
always ends with a special epilogue block, which is a zero-size allocated block 



., 856 Chapter 9 Virtual Memory 

Start 
of 

heap 

Prologue 
block 

Regular Regular 
block 1 block 2 

~.~~~-"--~~~~~~~~---

Regular 
block n 

Epilogue 
block hdr 

'Double· 
1 word 
! aligned 

static char •heap_listp 

Figure 9.42 Invariant form of the implicit free list. 

that consists of only a header. The prologue and epilogue blocks are tricks that 
eliminate the edge conditions during coalescing. The allocator uses a single private 
(static) global variable (heap_listp) that always points to the prologue block. 
(As a minor optimization, we could make it point to the next block instead of the 
prologue block.) 

Basic Constants and Macros for Manipulating the Free List 

Figure 9.43 shows some basic constants and macros that we will use throughout 
the allocator code. Lines 2-4 define some basic size constants: the sizes of words 
(WSIZE) and double words (DSIZE), and the size of the initial free block and 
the default size for expanding the heap (CHUNKSIZE). 

Manipulating the headers and footers in the free list can be troublesome 
because it demands extensive use of casting and pointer arithmetic. Thus, we find 
it helpful to define a small set of macros for accessing and traversing the free list 
(lines 9-25). The PACK macro (line 9) combines a size and an allocate bit and 
returns a value that can be stored in a header or footer. 

The GET macro (line 12) reads and returns the word referenced by argu­
ment p. The casting here is crucial. The argument pis typically a (void *)pointer, 
which cannot be dereferenced directly. Similarly, the PUT m·acro (line 13) stores 
val in the word pointed at by argument p. 

The GET_SIZE and GET_ALLOC macros (lines 16-17) return the size and 
allocated bit, respectively, from a header or footer at address p. The remaining 
macros operate on block pointers (denoted bp) that point to the first payload 
byte. Given a block pointerbp, the HDRP and FTRP macros (lines 20-21) return 
pointers to the block header and footer, respectively. The NEXT _BLKP and 
PREY _BLKP macros (lines 24-25) return the block pointers of the next and 
previous blocks, respectively. 

The macros can be composed in various ways to manipulate the free list. For 
example, given a pointer bp to the current block, we could use the follpwing line 
of code to determine the size of the next block in memory: 

size_t size= GET_SIZE(HDRP(NEXT_BLKP(bp))); 



Section 9.9 Dyoamic, Memory Allocation 857 

~~--~------------------------- codelvm/mallodmm.c 

2 

3 

4 

s 

/* Basic constants 
#define WSIZE 
#define DSIZE 
#define CHUNKSIZE 

and mac~o,s *I 
4 /• Word and header/footer s,ize (bytes) •/ 

,8 /• Double word size tbytes) •/ 
ii«12) I*. Extend h~ap"by this amount (bytes);>/ 

6 #defil)~ MAX(x, _y) ((x) ~ ,(y)? (x) : (y)) 
7 

1
8 /* P(\fk a size and allocated bit into q word */ 
9 #define PACK(size, alloc) ((size) I (alloc)) 

10 

11 /* Read and write a word at address p */ 
12 #define GET(p) (•(unsigned int •}(p)) 
13 #define PUT(p, val) (•(unsigned• int •)(p) ~ (v~l)) 

14 

15 /* Read the size and allocated fields from addres's p */ 
16 #define GET_SIZE(p) (GET(p) & -Ox7) 
17 #def~ne GET_ALLOC(p)_ (GE~(p) &. Ox!) 
18 

19 

20 

21 

;J Given block ptr bp, 
#define HDRP(bp) 
#define FTRP(bp) 

22 1 t' 

23 

24 

2S 

/• Given block ptr bp, 
#define NEXT_BLKP(bp) 
#define PREV_BLKP(bp) 

computef addr'0sS •of! ti'ts headel:-. and fOoter */ 
((char •)(bp) - WSIZE) 
((char •)(bp) + GET_SIZE(HDRP(bp)) - DSIZE) 

compute address of next and_previo~snQlpcks *I 
((char •)(bp) + GET_SIZE(((char •)(bp) - WSIZE))) 
((char •)(bp) - GET_SIZE(((char •)(bp) - DSIZE))) 

------------------------------ codelvm!ma//odmm.c 

Figure 9.43 Basic constants.and macros for m~r.ipulating the free Ii.st. 

Creating the Initial Free List ·r' 1 

Before calling mm_malloc or llUl!~free, the' application mvst' ipitialize t,h<i' heap tiy 
calling the mm_ini t function (Figure 9.44). ' . , 

1 
,• • 

The mm_ini t fun~tion'gets four word~ from tJ:i.e memory syst6m ~nd initializ'ys 
them to create the empty free list Oi11es 4-10). It t.hen calls the extend_heap 
function (Figure 9.45), which extends the heaj;by CHbNKSIZE bytes a'.pd create~ 
the initial free block. At this point, the allocator is initialized and ready to accept 
allocate and free requ~sts fro,m !he application. 

Tlie extend_heap function is iµvoked iq llvo different circumstances: (1) when 
the heap is initialized, and (2) when, mm_malloc is °1\able ,to find a suitable fi.t. Tu 
maintain alignment, extend_heap rounds up the requested size to the nearest 



858 Chapter 9 Virtual Memory 

--------------------------------codelvm/mal/odmm.c 

1 

2 

3 

• 
5 

6 

7 

8 

9 

10 

11 

int mm_init(void) 
{ 

/* Create the initial empty heap */ 
if ((heap_listp = mem_sbrk(4•WSIZE)) == (void •)-1) 

return -1 i 
PUT(heap_listp, O); 
PUT(heap_listp + (l•WSIZE), PACK(DSIZE, 1)); 
PUT(heap_listp + (2•WSIZE), PACK(DSIZE, 1)); 

PUT(haap_listp + (3•WSIZE), PACK(O, 1)); 

heap_listp += (2•WSIZE); 

I• Alignment padding •/ 
I* Prologue header */ 
/• Prologue footer •/ 
I• Epilogue header •/ 

12 /• Extend the empty heap Yith a free block of CHUNKSIZE bytes •/ 
13 if (extend_haap(CHUNKSIZE/WSIZE) == NULL) 
14 return -1; 
15 return O; 
16 } 

-------------------------------- code!vmlmal/ac/mmc 

Figure 9.44 mm_init creates a heap with an initial free block. 

-------------------------------- code/vmlmalloc/mm.c 
static void •extend_heap(size_t words) 

2 { 

3 char *bp; 
4 size_t size; 
5 

6 /* Allocate an even number of words to maintain alignment •/ 
7 size = (words % 2) ? (words+1) • WSIZE : words • WSIZE; 
8 if ((long)(bp = mem_sbrk(size)) == -1) 
9 

10 

return NULL; 

11 /* Initialize free block header/footer and the epilogue header •/ 
12 PUT(HDRP(bp), PACK(size, O)); /•Free block header•/ 
13 PUT(FTRP(bp), PACK(size, O)); /•Free block footer•/ 
14 PUT(HDRP(NEXT_BLKP(bp~). PACK(O, 1)); /•New epilogue header•/ 
15 

16 /* Coalesce if the previous block was free •/ 
17 return coalesce(bp); 
18 } 

-----------------------------~-- code!vmf,ma//ac!mm.c 

Figure 9.45 extend_heap extends the heap with a new free block. 



Section 9.9 Dynamic Memory Allocation 859 

multipl« of 2 word~ (8 bytes) and then requests the additional heap space from 
the memory system (lines 7-9). , 

The remainder of the extend_heap function (liii'es 12-17) is somewhat subtle. 
The heap begins on a double-word aligned boundary, and every call \o extend_ 
heap returns a block whose size is an integral number of double words. Thus, every 
call to mem_sbrk returns a double-word aligned ch,ul}k of memory immediately 
following the header of the epilogue 6lock. This he'ailer becomes th~ header of 
the new free block (line 12), and the last word of the chunk becomes the new 
epilogue block header (line 14). Finally, in the likely case that the previous heap 
was terminated by a free block, we call the coalesce function to merge the two 
free blocks and return the block pointer of the merged blocks (line 17). 

Freeing and Coalescing Blocks 

An application frees a previously allocated block l<Y calling the mm_free function 
(Figure 9.46), which frees the requested block (bp) and then merges adjacent 
free blocks using the boundary-tags coalescing technique described in Section 
9.9.11. 

The code in the coalesce helper function is a straightforward implementation 
of the four cases outlined in Figure 9.40. There is one somewhat subtle aspect. The 
free list format we have chosep--.-;with its prologue and epilogue blocks that are 
always marked as allocated-allows us to ign9re the potentially troublesome edge 
conditions where the requested block bp is at the beginning or end of the heap. 
Without these special blocks, the code would be messier, more error prone, and 
slower because we would have to check for these rare edge conditions on each 
and every free request. 

Allocating Blocks 

An application requests a block of size bytes of memory by calling the mm_malloc 
function (Figure 9.47). After checking for spurious requests, the allocator must 
adjust the requested block size to allow room for the header and the footer, and to 
satisfy the double-word alignment requirement. Lines 12-13 enforce the minimum 
block size of 16 bytes: 8 bytes to satisfy the alignment requirement and 8 more 
bytes for the overhead of the header and footer. For requests over 8 bytes (line 15), 
the general rule is to add in the overhead bytes and then round up to the nearest 
multiple of 8. • " 

Once the allocator has adjustecf the requested size, it searches the free list for a 
suitable free block (line 18). If there is a fit, then the allocator places the requested 
block and optionally splits the excess (line 19) and then returns the address of the 
newly allocated block. 

If the allocator cannot find a fit, it extends the heap with a new free block 
(lines 24-,26), places the requested block in the new free block, optionally splitting 
the block (line 27), and then returns a pointer to the newly allocated block. 



860 Chapter 9 Virtual Memory 

----------------~------ code!vm/mallodmm.c 

1 void mm_free(void *bp) 
2 { • 

3 size_t size= GET_SIZE(HDRP(bp)); 

4 
5 PUT(HDRP(bp), PACK(size, O)); 

6 PUT(FTRP(bp), PACK(size, O)); 

7 coalesce(bp); 
8 } 

9 
10 stat'ic void *coalesce(void *bp) 

11 { 
12 size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp))); 
13 size_t next_a~loc = GET_ALLOC(HDRP(NEXT_BLKP(bp))); 
14 size_t size= GET_SIZE(HDRP(bp)); 

15 

16 

17 

if (prev_alloc && next_alloc) { 

return bp; 
l} 

/* Case 1 */ 

18 

19 

20 

21 

else if (prev_alloc && !next_alloc) { /* Case 2 */ 

22 

23 
} 

size+= GET_SIZE(HDRP(NEXT_BLKP(bp))); 
PUT(HDRP(bp), PACK(size, O)); 

PUT(FTRP(bp), PACK(size,0)); 

24 

25 

26 

27 

else if (!prev_alloc && next_alloc) { /* Case 3 */ 

28 

29 

size+= GET_SIZE(HDRP(PREV_BLKP(bp))); 
PUT(FTRP(bp), PACK(size, 0)); 
PUT,\HDRP(PREV_BLKP(bp)), PACK(size, 0)); 

30 bp = PREV_BLKP(bp); 
31 } 

32 
/• Case 4 •/ 

33 else { 
34 size += GET_SIZE(HDRP(PREV_BLKP(bp))) + 
35 GET_SIZE(FTRP(NEXT_BLKP(bp))); 
36 PUT(HDRP(PREV_BLKP(bp)), PACK(size, O)); 

37 PUT(FTRP(NEXT_BLKP(bp)), PACK(size, O)); 

38 bp = PREV_BLKP(bp); 
39 } 

40 return bp; 

41 } 

-----------------------'code!vm/mallodmm.c 

Figure 9.46 mm_free frees a block and uses boundary-tag coalescing to merge it 
with any adjacent free blocks in constant time. 

1~. 

I
>;·. 

. 
' 

11• .1i 

'' ·, 



Section 9.9 Dynamic Memory Allocation 861 

------~------0----------------- codelvm/mallodmm.c 
void *mm_malloc(size_t size) 

2 { " . 
3 size_t asize; /* Adjusted block Size */ 
A size_t extendsize; /* Amount to extend~heap if net- fit i/ 
5 char *bp; 
6 

7 I* Ignore spurious requests *I 
8 if (size == O) 
9 ~ r.eturn NULL; 

10 ' 

11 /• Adjust blpck size. to include overhe'ad and.•alignID.ent 1reqs. · *I 
12 if (size <= DSIZE) 
13 asize = 2*DSIZE; 

14 else 
151 asize = DSIZE • ((shoe + (DSIZE) + (DSIZE,~1·)) / DSIZE); 
16 t' • 

17, 

18 

19 

20 

'" 

21 J d~ 

22 

23 

24 

25 

26 

27 

28 

29 } 

I* Search rthe ~free»list~ for,~1fit *I 
, if ((bp = find_fit(asize))1 !;o. NULh) {,, 

place\bp, asize); 
return bp; ·r 

,}. .J. 

I 

l l.f, 

/* No fit found. Get more memory and place the block *I 
extendsize = MAX(asize,CHUNKSIZE)j 
if ~(bp = extend_heap(extendsize/WSIZE)) ==NULL) 

return NULL; 
place(bp, asize); 

1. return bp; 

----------'-'-------------------- code/vmlmalloclmm.c 

Figure 9.47 mm_malloc allocates a block from the free list. 

!f'rfefiQ1Vli~1fJiil@w.81\BfBMl#'tM¥M 
Implement a find_fi t function for the, simple allocator described in Section 
9.9.12. 

static void *find_fit(size_t asize) 

Your'solution should perfo~m a first-fit search of the implicit free list. 

m&fic'le&om!fiimt(11!lb'Wlafi\l~,~iiilW 
Implement a place function for the example allocator. 

I 
I 



I 
1 
1 
1 
I 
.1 
i 

I 

1: 

I 

! 
,, 
' 
~ 

l 

862 Chapter 9 Virtual Memory 

static void place(void *bp, size_t asize) 

Your solution should place the requested block at the beginning of the free 
block, splitting only if the size of the remainder would equal or exceed the mini-

mum block size. 

9.9.13 Explicit Free Lists 

The implicit free list provides us with a simple way to introduce some basic 
allocator concepts. However, because block allocation time is linear in the total 
number of heap blocks, the implicit free list is not appropriate for a general­
purpose allocator (although it might be fine for a special-purpose allocator where 
the number of heap blocks is known beforehand to be small). 

A better approach is to organize the free blocks into some form of explicit 
data structure. Since by definition the body of a free block is not needed by the 
program, the pointers that implement the data structure can be stored within the 
bodies of the free blocks. For example, the heap can be organized as a doubly 
linked free list by including a pred (predecessor) and succ (successor) pointer in 

each free block, as shown in Figure 9.48. 
Using a doubly linked list instead of an implicit free list reduces.the first-fit 

allocation time from linear in the total number of blocks to linear in the number 
of free blocks. However, the time to free a block can be either linear or constant, 
depending on the policy we choose for ordering the blocks in the free list. 

F3~'~~~~~~~3-,-c'-''--io 31 1 a/I Header 

3 2 1 0 

Block size 1 all Header 
Block size 

pred (predecessor) 

succ (successor) 
Old payload 

Payload 

h --; 'c~ 

P,,adding (optional) 
P~_dding (optional) 

, , ' , -~ 

Block size 1 a/I Footer 
Block size 

(a) Allocated block (b) Free block 

Figure 9.48 Format of heap blocks that use doubly linked free lists. 



Section 9.9 Dynamic Memory Allocation 863 

One approach is to maintain the list in last-in first-'ou( (LIFO) order by in­
serting newly fryed blocks at the beginnin~ of the list. With a LIFO ordering 
and a first:Jit placement policy, the allocator inspects tlie most recently used 
blocks first. In this cas~, freeing a block can be ,perf;irined in constant· ti~e. 
If boundary tags are used, then coalescing can also be performed in constant 
time. 1 

' '' Apother appro~ch is to maintain ihe !isl in agd~ess order, wh~re the' address 
of each block in the list is less than the address' of its successor.'In this case, freeing 
~ •' l • •l . ' ~ , 

a block·r~qufres a linear-time search tp focate the appropriate predecessor. The 
trade-off IS that address-orderetl flrst fi( en]· oys 

0

better· memor'y utilization than " . , c • r· 
LIFO-orc\ered first fit, a~proaching the u'ti!izatio,n pf best fit. 

A disadvantage of explicit lists in general is that free blocks must be large 
enough to contain all of the necessary pointers, as well as the header and possibly 
a footer This results in a l~rg~r ihinimum block size and increases the potential 
for intrrnal fragmel}t~tion. 

9,9.14 Segrega,e9 Free Lists 

As we have seen, an allocator that uses a single link'ed list of free blocks requires 
time linear in the number of free bfocks to allocate a block. A popular approach for 
reducing the allocation time, known generally as 'segreg(lted storage, is to maintain 
multiple free lists, wheri each list holds blocks that are roughly the same size:The 
generalidea i's to partition the set ofall possible block sizes ihto equivalence classes 
called size classes. There are many ways to define the size classes. For example, we 
might partition the block sizes by powers of 2: 

(l], (2), (3, 4}, (5-8},. · ·, {1,025--2,048], {2,049-4,096], {4,097-oo] 

Or we might assign small blocks to their own size classes and partition large blocks 
by powers of 2: 

(l], {2}, {3], ·. · ·, (1,023], {1,024], {l,025-2,048f, {2,049-4,096}, {4,097-oo} 

The allocator maintains an array of free lists, with one free list per size class, 
ordered by increasing size. When the allocator needs a block of size n, it searches 
the appropriate free list. If it cannot find a block that fits, it searches the next list, 
and so on. 

The dynamic storage allocation literature describes dozens of variants of seg­
regated storage that differ ill' how they define size classes, when they perform 
coalescing, when they request· additional heap memory from the operating sys­
tem, whether they allow splitting, and so forth. To give you a sense of what is 
possible, we will describe two of the basic approaches: simple segregated storage 
and segregated fits. 



" ' 864 Chapter 9 Virtual Memory 

Simple Segregated Storage 

With simple segregated storage, the free list for each size class contains same-size 
blocks, each the size of the largest element of the size class. For example, if some 
size class is defined as (i 7-32), then the free list for that class consists entirely of 

blocks of size 32. 
To allocate a block of some given size, we check the appropriate free list. If the 

list is not empty, we simply allocate the first block in its entirety. Free blocks are 
never split to satisfy allocation requests. If the list is empty, the allocator requests 
a fixed-size chunk of adaitional memory from the operating.system (typically a 
multiple of the page size), divides the chunk into equal-size blocks, and links the 
blocks together to form the new free list. To free a block, the allocator simply 
inserts the block at the front of the appropriate free list. 

There are a number of advantages to this simple scheme. Allocating and 
freeing blocks are both fast constant-time operations. Further, the combination 
of the same-size blocks in each chunk, no splitting, and no coalescing means that 
there is very little per-block memory overhead. Since each chunk has only same­
size blocks, the size of an allocated block can be inferred from its address. Since 
there is no coalescing, allocated blocks do not need an allocated/free flag in the 
header. Thus, allocated blocks require no headers, and since there is no coalescing, 
they do not require any footers either. Since allocate and free operations insert 
and delete blocks at the beginning of the free list, the list need only be singly 
linked instead of doubly linked. The bottom line is that thiJ only required neld in 
any block is a one-word succ pointer in each free block, and thus the minimum 
block size is only one word. 

A significant disadvantage is that simple segregated storage is susceptible to 
internal and external fragmentation. Internal fragmentation is possible because 
free blocks are never split. Worse, certain reference patterns can cause extreme 
external fragmentation because free blocks are nevef coalesced (Practice Prob­

lem 9.10). 

''.!>" ~t:'"'' ;· 1tl'u1::.1n.a~f;,,,· • .:,;:r,.-0_ . ..::iii'~~' ""'-;;;·, ·-~ • :ir:r·"'-~"' \ -l 
- J'..i!._J,!;~,J ,~Q,_o,j,!""-"' ~""'-~"'''-1!."'W!Q ··-" ..,._,_ . -~ 
Describe a referenc~ pattern that results in severe external fragmentation in an 
allocator based on simple segregated storage. 

Segregated Fits 

With this approach, the allocator maintains an array of free lists. Each free list is 
associated with a size class and is organized as some kind of explicit or implicit list. 
Each list contains potentially different-size blocks whose sizes are members of the 
size class. There are many variants of segregated fits allocators. Here we describe 

a simple version. 
To allocate a block, we determine the size class of the request and do a first­

fit search of the appropriate free list for a block that fits. If we find one, then we 
(optionally) split it and insert the fragment in the appropriate free list. Ifwe cannot 
find a block that fits, then we search the free list for the next larger size class. We 



Section 9.10 Garbage Collection 

repeat until we find a block that fits. If none of the free lists yields a blosk that fits, 
then we request additional heap memory from the operating system, allocate the 
block out of this new heap memory, and place the remainder in the appropriate 
size class. To free a block, we coalesce and place the result on the appropriate 
free list. 

The segregated fits approach is a popular choice with production-quality 
allocators such as the GNU malloc package provided in the C standard library 
because it is both fast and memory efficient. Search times are reduced because 
searches are limited to particular parts of the heap .instead of the entire heap. 
Memory utilization can improve because of the interesting fact that a simple first­
fit search of a segregated free list approximates a best-fit search of the entire heap. 

Buddy Systems 

A buddy system is a special.case of segregate,d fits w,here each size class is a power 
of 2. The lwsic idea is that, given a heap of 2m wo.rds, we maintain a separate free 
listfo~ each bIOck siz~ 2k, where 0 ~· k ::0 m. Requested block sizes are rounded up 
l.o the nearest power of 2.,0riginally, there is ~ne free block of size 2m words. 

To all~cate a block of size 2k, we find the first available block of size 2/, such 
' . 

tha.t k ::s j ::s m. If j = k, then we are done. Otherwise, we recursively split the block 
in half until j = k. As we perform this splitting, each req;aining ha!f'(kn01xn as a 
buddy) is placed on the appropriate free list. To free a, block of size 2k, we continue 
coalescing with the free. buddies. When we encounter an allocated buddy, w.e stop 
the coalescing. ' 

,A key fact aboutJ:ipddy systen;is is that, given the address and size of a block, 
if i~ ea,sy .\9 compute the address of its buddy. For example, a block of size 32 bytes 
with address 

xxx ... xOOOOO 

has its buddy at address 

xxx ... xlOOOO 

In other words, the addresses of a block and its buddy differ in exactly one bit 
position. 

'The major· advantage of a buddy system allocator is its fast searching and 
coalescing. The major diSadvantage is that the power-of-2 requirement on the 
bloCk size can cause significant internal fragmentation. For this reason, buddy 
system allocators are not appropriate for general-purpose workloads. However, 
tot certain application-specific workloads, where the block sizes are known in 
advance io be powers of 2, l:iuddy system allocators have a certain appeal. 

9.10 Garbage ·collEtction 

With an explicit allocatOr such as the C malloc package, an application allocates 
l ' ').. ' • ., 

and frees heap blocks by making calls to malloc and free. It is. the apP.lication's 
responsibility to free any allocated lil6cks that it no longer needs. 

865 

; 

.I 



866 Chapter 9 Virtual Memory 

Failing to free allocated blocks is a common programming error. For example, 
consider the following C function that allocates a block of temporary storage as 
part of its processing: 

void garbage() 
2 { 

3 int *P =(int •)Malloc(15213); 
4 

5 return; /* Array p is garbage at this point */ 
6 } 

Since p is no longer needed by the program, it should have been freed before 
garbage returned. Unfortunately, the programmer has forgotten to free the block. 
It remains allocated for the lifetime of the program, needlessly occupying heap 
space that could be used to satisfy subsequent allocation request& 

A garbage collector is a dynamic storage allocator that automatically frees al­
located blocks that are no longer needed by the program. Such blocks are known 
as garbage (hence the term "garbage collector"). The process of automatically 
reclaiming heap storage is known as garbage collection. In a system that supports 
garbage collection, applications explicitly allocate heap blocks but never explic­
itly free them. In the context of a C program, the application calls malloc but 
never calls free. Instead, the garbage collector periodically identifies tM garbage 
blocks and makes the appropriate calls to free to place those blocks back on the 
free list. 

Garbage collection dates back to Lisp systems developed by John McCarthy 
at MIT in the early 1960s. It is an important part of modern language systems such 
as Java, ML, Perl, and Mathematica, and it remains an active and important area of 
research. The literature describes an amazing number of approaches for garbage 
collection. We will limit our discussion to McCarthy's original Mark&Sweep al­
gorithm, which is interesting because it can be built on top of an existing malloc 
package to provide garbage collection for C and C++ programs. 

9.10.1 Garbage Collector Basics 

A garbage collector views memory as a directed reachability graph of the form 
shown in Figure 9.49. The nodes of the graph are partitioned into a set of root 
nodes and a set of heap nodes. Each heap node corresponds to an allocated block 
in the heap. A directed edge p -+ q means that some location in block p points to 
some location in block q. Root nodes correspond to locations not in the heap that 
contain pointers into the heap. These locations can be registers, variables on the 
stack, or global variables in the read/write data area of virtual memory. 

We say that a node p is reachable if there exists a directed path from any root 
node top. At any point in time, the unreachable nodes correspond to garbage that 
can never be used again by the application. The role of a garbage collector is to 
maintain some representation of the reachability graph and periodically reclaim 
the unreachable nodes by freeing them and returning them to the free list. 



Section 9.10 Garbage Collection 867 

Figure 9.49 Root nodes 
A garbage collector's 
view of memory as a 
directed graph. 

I 
I 

t 

___r__;-.~ 
6~ •. • 1 

•,I Q Reachable 

4 (!j ,, @ l!nreachable 
, ·· (garbage) 

' 

L --- ---""-

Figure 9.50 Dynamic storage allocator 
Integrating a conserva­
tive garbage collector 
and a C malloc package. 

C application 
program 

,---------------------------------------------------------------------------_-··: : 
: Conservative 
: malloc() garbage free() 

collector 
•-------------------------------------------------------------------------------' 

Garbage collectors for languages like ML and Java, which exert tight contrbl 
over how applications create and use pointers, can maintain an exact representa­
tio~ of thd reayhability graph and thus can reclaim all garbage. However, collectors 
for languages like C and C++ cannot in general maintain exact representations 
of the reachability graph. Such collectors are known as conservative garbage col­
lectors. They are conse{"ative i~ the seq,~e ,that each reachable block is'correctly 
identified as reachable, while some unreachable nodes might be incorrectly iden­
tified as reachable. 

Collectors can· provide _their s~ryic!' )in demand, or they can run as separate 
threads in parallel with the application, continuously updating the reachability 
graph and reclaiming gf!rbage. For example, consider how we might incorporate a 
conservative collector for 't programs ihto an existing malloc package, as' shown 
in Figure 9.50. 

The application calls malloc in the usual manner' whenever it needs heap 
space. If mallo'c is unable to find a free block that fits, then it calls the garbage col­
lector in hopes of reclaitning some garbage to the free list, The collector identifies 
the garbage blocks and returns them to the heap by calling the free function. The 
key idea is that the collector calls free instead of the application. When.the call 
to the collector returns, malloc tries again to find a free block ihat fits. If that fails, 
then it can ask the operating system for additional memory. Eventually, malloc 
returns a pointer to the requested block {if successful) or the NULL pointer (if 
unsuccessful). 

9.10.2 Mark&Sweep Garbage Collectors 

A Mark&Sweep garbage collector consists of a mark phase,.which marks all 
reachable and allocated descendants bf the root nodes, followed by a sweep phase, 
which frees each unmarked allocated block. T)'pically, one of the spare low-order 
bits in the block header is used to indicate whether a block is marked or not. 

'I. 



868 Chapter 9 Virtual Memory 

(a) mark function 

void mark(ptr p) { 

(b) sweep function 

void sweep(ptr b, ptr end) { 
while (b < end) { 

} 

if ((b = isPtr(p)) ==NULL) 

return; 
if (blockMarked(b)) 

return; 
markBlock(b); 
len = length(b); 
for (i=O; i < len; i++) 

mark (b [i]) ; 

return; } 

} 

if (blockMarked(b)) 
UnmarkBlock(b); 

else if (blockAllocated(b)) 
free(b); 

b = nextBlock(b); 

return; 

FigJre 9.51 Pseudocode forvthe mark arid sweep funi::tions. 

Our description of Mark&Sweep will assume the following functions, where 
ptr is defined as ~ypedef void ~ptr: 

ptr isPtr(ptr P,)· Ifp points to some word iq an allocated blo~k, jt,r:'turns a 
pointer b to thy beginning of theyt block. Returns NULL: other;wise. 

int blockMarked(ptr b) .. Returns true if block b 
0

is already marked. 

int blockAllocate'd(ptr b). Ret\irns true if block b'is allocated. 
1 ' .} .«')1 

void markBlock(ptr b). Marks block b. 

fot length(ptrb). Returns the length~n·w6rds (excluding the' header) of 
r. block b. ;l •, 

void;)lllmark~lock(ptr b). Chang~~1t)ie status of filock b from.marked to un­
marked. 

ptr nextBlotk (ptr b)1. Returns the successor of block bin -!he·heap. 

'The mark phase calls the mark function shown inc Figure,9.Sl(a)'once for 
each root•node. The mark function returns -immediately ·if p does not point to 
an allocated and unmarked heap block.rOtherwise, it marks the block and calls 
itself recursively on each wortl fa block. Each call to the mark function marks any 
unmarked and'feachable descendants.of some.root ~@de. kt the .end of the mark 
phase, any allocated block that is not marked is guaraqteed to be unreachable and, 
hence, garbage that can be reclaimed-in the sweep phase. . .. 

The sweep phase is a single call to the sweep function shown in Figure 9.Sl(b ). 
The sweep function iterates over each block in ,t,he he~p, freeing,any unmarke~ 
allocated blocks (i.e., garbage) that it encounters. 

Figure 9.52shows a graphical interpretation•ofMark&Sweep for a small heap. 
Block boundarie8 are indicated by heavydinesJ Each square corresponds to a 
word of memory: Each block"has-a one-word header, which is either marked or 
unmarked. 



Section 9.10 Garbage Collection 869 

Figure 9.52 
Mark&Sweep example. 
Note that the arrows in this 
e~ample denote memory 
reft:;rences, not fr~~ list 
pointers. 

,• 

Figure 9.53 
Left and right pointers 
in a balanced tree of 
allocated blocks. 

" 

.• 
Before mark: '---' 1.-JUt!J-'"'-'6.....1"1.J.-L-<:W.-L-L--1'""1....J....J 

Remainder of block 

Initially, the heap in Figure 9.52 coqsists of ~ix allocated blocks, each of.whi9h 
is unmarked. Block~ cqntains a pointer to block 1. ijlock 4 contains pointers to 
blocks 3,and 6. The.root points to blo>k 4. After the,)Park ghase, blocks l, 3, 4, and 6 
are marked bycause they are reac)lable from the r,oot. Blocks 2 and 5 are unmarked 
because they are unreachable. After the sweep phase, the two unreachable blocks 
are reclaimed to the free list 

9.10.3 Conservative Mark&Sweep for C Prowams 

Mark&Sweep is an appropriate approach for garbage colle~ting C programs be­
cause it )Vorks,in place without moving any.blocks. However, the C language.poses 
some interesting challenges for the implementation,of the isPtr function. 

First, C does not tag mempry.locations with any type information. Thus,. there 
is no obvious way for isPtr to determine if its ihput para,meterp is a pointer, or not. 
Second, even if we were to kno)V that p was"' pointer, there \\'.OUld be no.obvious 
way for isRtr to determine whether p·points to some.location in the payload of 
an allocated block. 

One solution to the latter problem is to maintain the set of allocated blocks 
as a balanced binary tree that maintains the invariant that all blocks in the left 
subtree are located at smaller addresses and all blocks in the right subtree are 
located in larger addresses. As shown in Figure 9.53, this requires two additional 
fields t1e:ft and right) in the header of each allocated block. Each field points to 
the header of some allocated block. The isP;tr(ptr p) function uses.the tree to 
perform a binary search of the allocated blocks. At each step, it relies on the size 
field in the block header to determine if p falls within the extent of the block. 

n Unmarked block 
L'.':::J header 

• 
Marlced block 
header 



I 

j 
•I 

•1:t 

"1 

870 Chapter 9 Virtual Memory 

The balanced tree approach is correct in the sense that it is gnaranteed to mark 
all of the nodes that are reachable from the roots. This is a necessary guarantee, 
as application users would certainly not appreciate having their allocated blocks 
prematurely returned to the free list. However, it is conservative in the sense that 
it may incorrectly mark blocks that are actually unreachable, and thus it may fail 
to free some garbage. While this does not affect the correctness of application 
programs, it can result in unnecessary external fragmentation. 

The fundamental reason that Mark&Sweep collectors for C programs must 
be conservative is that the C language does not tag memory locations with type 
information. Thus, scalars like ints or floats can masquerade as pointers. For 
example, suppose that some reachable allocated block contains an int in its 
payload whose value happens to correspond to an address in the payload of some 
other allocated block b. There is no way for the collector to infer that the data is 
really an int and not a pointer. Therefore, the allocator must conservatively mark 
block b as reachable, when in fact it might not be. 

9.11 Common Memory-Related Bugs in C Programs 

Managing and using virtual memory can be a difficult and error-prone task for 
C programmers. Memory-related bugs are among the most frightening because 
they often manifest themselves at a distance, in both time and space, from the 
source of the bug. Write the wrong data to the wrong location, and your program 
can run for hours before it finally fails in some distant part of the program. We 
conclude our discussion of virtual memory with a look at of some of the common 
memory-related bugs. 

9.11.1 Dereferencing Bad Pointers 

As we learned in Section 9.7.2, there are large holes in the virtual address space of a 
process that are not mapped to any meaningful data. If we attempt to dereference 
a pointer into one of these holes, the operating system will terminate our program 
with a segmentation exception. Also, some areas of virtual memory are read-only. 
Attempting to write to one of these areas terminates the program with a protection 
exception. 

A common example of dereferencing a bad pointer is the classic scanf bug. 
Suppose we want to use scanf to read an integer' from stdin into a variable. 
The correct way to do this is to pass scanf a format string and the address of the 
variable: 

scanf ( 11 %d". &val) 

However, it is easy for new C programmers (and experienced ones too!) to pass 
the contents of val instead of its address: 

scanf( 11 %d", val) 



Section 9.11 Common Memory~Related Bugs in C Programs 871 

In this case, scanf wi!J:interpret,the cohtents of var a~ an address and -attempt to 
write a word to that location. In the best case, the program terminates iirimediately 
with an exception. In the worst case, the contents of val correspond to some 
valid read/Write area of virtual mein.ory, an'd we overwrite memory, usually with 
disastrous and baffling consequences much later. 

\ 

9.11.2 Reading Uninitialized Me!'llory 

While bss memory locations (such as uninitialized global C variables) are always 
initialized to zeros by the loader, this is not true for heap memory. A common 
error is to assume that heap memory is initialized to zero: 

1 I* Return y = Ax */ 
2 int *matvec(int **A, int *x, int n) 
3 { 

4 int i, j ;· 
5 

6 int *Y (int •)Malloc(n • sizeof(int)); 
7 "' -8 for· (i O; i < n; i++), 
.9 

i.o 
11 

12 

II 

•' 

for (j ·= 0; j < n; j+T) 1 

y[iJ += Hil [jl •lx[jl; 
return y; 

In th.is example,' tlie prograinnier has incorrectly assume'd that vector y has b<leri 
initialized to zero. A correct implementation would explicitly zero y [i] or use 
callee. l. 

,. 
9.11.3 Allowing Stack Buffer Overflows 

As we saw in Section 3.10.3, a program ha'.s a buffifi overflow bug if it writes 
to a target buffer on the stack without examining the size of the input string. 
For example, the follo;wing function has a buffer 9verfiow bug because the gets 
function copies an arbitrary-length string to' the buff fr To fix this, we would need 
to use the fgets function, which limits the ~ize of the input string. 

1 void bufoverflow() 
2 { 

3 char buf[64]; 
4 ,, 
5 gets(buf); I• He' re is the stack buffer overflow bug •I 
6 re~urn; 

7 } 



872 Chapter 9 Virtual Memory 

9.11.4 Assuming That Pointers and the Objects They.Point to 
.Are the Same Size 

One common misrake is .to assume tJ;iat pointers to o_bjects are the sai;ne size as 
the objects they point to: ,. 

1 /* Create an nxm array •I 
2 int ••makeArray1(int n, int m) ,, 
3 { 

4 int i; 

5 int **1A ... = (int *,*)Malloc(n * sizeof (int)); 

6 

7 for (i = Oi i < n; i++) 

8 A[i] = (int •)Malloc(m • sizeof(int)); 

9 return A; 
10 } 

The intent here is to create an array of n pointers, each of which points to an array 
of m ints. However, because the programmer has written sizeof (int) instead 
of sizeof (int •) in line 5, the code.actually creates.an array oh.nts. 

This code will run fine on machines where ints and pointers to ints are the 
same size. But if we run this code on a machine like the Core i7, where a pointer is 
larger than an int, then the loop in lin"es 7-8 will write past the end of the A array. 
Since one of these words will likely be the boundary-tag fOoter of the allocated 
block, we may not discover the error until we free the block much later in the 
program, at which point the coalescing code in the allocator will fail dramatically 
and for no apparent reason. This is an insidious example of the kind of "action at 
a distal}~e" that is sp ,typiq1j.of meplocy-n,lat"<;l-progqynming bugs. 

9.11.5 Making Off-by-One Errors 

Off-by-one errors are another common spurce of overwriting bugs: 

/* Create an nxm array */ 
•:;, " 1 

2 int **ma.k.eA~ray2(i.p.t q, int_ m) 

3 { 

4 int i;. 
' **fMalloc(n 

.. . 
5 ,~nt ••A,= Ci11t * ,sizeof(int,•{); 

6 

7 for (i = O; i <= Ilj i++) 

8 A[i] = (int •)Malloc(m • sizeof(int)); 

9 return A; 
10 } 

This is another version of the program in the previous section. Here we have 
created an n-element array of pointers in line 5 but then tried to initialize n + 1 of 
its elements in lines 7 and 8, in the process overwriting some memory that follows 
the A array. 



Section 9.11 Common Memory-Related Bugs in C Program! 873 

9.11.6 Referencing a Pointer Instead of the Object lt·Points To 

Ifwe are not careful.about.the precedence and associativity ofCop_erators, thert 
we incotrectly manipulate a pointer instead of the object it points to. For example; 
consider the following function, whose purpose is to remove the first item in a 
binary heap of •size items and then reheapify the remaining •size - 1 items: 

1 int *binheapDelete(int **binheap, int *size) 
2 { 

3 int *Racket= binheap[O]; 
4 

5 

.6 

7 

8 

9 } 

G 

binheap[O] = binheap[~size.- 1]; 
*size--; /* This ,should be (*siz~)-- */ 

I I' lf' 

hea~iJYS~,!n\leap, •siz~, 0); 
return,C~acket~.i " 

}..; 'I 

In line 6, the intent is to decrement the integer value pointed to by the size 
pointer. However, because the \l!'JFY·~-;- and• op.e,rators hav.«.the S'}Il1e,Preced~i;tci' 
and associate from right to left, the code in line 6 actually decrements the pointer 
itself instead of the integer value that it·points.to. If we are lucky, the program.will 
crash immediately. But more likely we will be left scratching.our heads when the 
program produces an incorrect answer much later in' its execution. The moral her'< 
is to use parentheses whenever in doubt about precedence and associativity. For 
example, in line 6, we should·have clearly stated our intent by using the expression 
(*size)--. 

9.11.7 Misunderstanding Pointer Arithmetic 
, 

Another common mistake is to.forget that arithmetic operations on pointers are 
performed in units that are the size of the objects they point to, which are not 
necessarily bytes. For example, 'the intent of the follo~g functfon is to scan an 
array of ints and return a pointer to the first occurrence of val: 

1 int *search(int *P• int val) 
2 { 

3 while (~p && •p != val) 
4 p += sizeof(int); I• Should be p++ •/ 
5 return Pi 
6 } 

However,·because line 4 increments the pointer•by•4 (the numbe~1of bytes in ~n 
integer) each time thrqug(l the loop, the function.facorrectly~cans every fourth 
integer in the array. 



874 Chapter 9 Virtual Memory 

9.11.8 Referencing Nonexistent Variables 

Naive C programmers who do not understand the stack discipline will sometimes 
reference local variables that are no longer valid, as in the following example: ,, •• 

int *stackref () 

2 { 

3 int val; 
4 

5 return &val; 
6 } 

This function returns a pointer (say, p) to a 16cal variable on the' stack and 
then pops its stack frame. Although p still points to a valid memory address, it 
no longer points to a valid variable. When other functions are called later in the 
program, the memory will be reused for their stack frames. Lliter, if the program 
assigns some value to •p, then it might actually be modifying an entry in another 
function's stack frame, with potentfally disastrous and baffling consequences . 

.. 
9.11.9 Referencing D~ta in Free Heap Bloc.ks 
' ,. 

A similar error is to reference data-in heap blocks that have ·already-been freed. 
Consider the following example,. which" allocates an integer array x in line 6, 
prematurely frees block'X in line 10, and then later references it.in·line 14: 
' . 
2 

3 

4 

5 

6 

7 

8 

9 

int *heapref(int n1 int m) 
{ 

int i; 
int *X, *Y; 

x (int *)Malloc(n * sizeof(int)); 

II Other calls tq m~lloc and free go here 

10 free(x); 

11 

12 

13 

14 

15 

y = (int 
for (i = 

y [i] 

16 return y; 
17 } 

*)Malloc(m * sizeof(int)); 
O; i < m; i++) 

x[i]++; I• Oops! x[i] is 

, r 

a word in a free block ~/ 

Depending on the pattern_of malloc and free calls that occur between lines 6 
and 10, whenJhe program references x[i] in,line 14; the array x might be part of 
some other allocated heap block and may have been overwritten. As with many 



Section 9.12 Summary 875 

memory-related bugs, the error will only become eVident later iq the program 
when we notice that the values in y are corr.upted. ' 1 

• • ~J ' 
1,p,tn,iducmg Mem!>fY L.:;aks 

Memory leak's are slow, silent killers 'that occur when programmers inadvertently 
create garbage in the heap by forgetting·to'free allocated blc\cks. For example, the 
following fim~tion allocates a heap·block x and then returns withouffreeing it: 

" 
1 vo~d leak(int n) r 

" 
2 { " -
3 i'nt '*x '= (int •)Malloc(n * 1size6'f (int)); 
4 

's retutn; I• >: is garbage at this 'point' .,t; 
6 }' 

., 
If leak is called frequently, then the heap will gradually fill 'up with -garbage, 

in the worst ca~e consuming the entire virtual address space. Memory leaks are 
particularly serious for programs such as daemons and servers, which bx,<feljnition 
never terminate. ' 

9.12 Summar}' 
' " 

Virtual memory is an abstraction of. main memory. Processors. that'suppott•vir­
tual memory referetlc'e'tnain memory usirlg a form of indirection known as virtual 
addressing. The processor generates a virtual address, which is translated into a 
physical address before being sent to the· maim memory. The translation of ad­
dresses from a virtual address space to.a physical address space'requires close 
cooperation between hardware and software! Dedicated hardware· translates vir­
tual addresses using page. tables ·Whose contents•arelsuppJied by the operating 
system. 1 

Virtual memory provides three important capabilities. First),-lit automatically 
caches recently used contents of the-virtua1 address space stored on disk·in main 
inemory. The block in a·virtual memory cache is known. asia page. A referenee 
to•a page on disk •triggers a page fault that transfers control to a fault handler 
in the operating system. The fault handler cop~es the page' from disk to the main 
memory cache, writing back the evicted page if necessary. Second, virtual memory 
simplifies memory management, "which in turn simplifies linking, sharing data 
between processes, the allocation of memory for proces'j,e,s. arn;lprogram lo,adiIJg, 
Finally, virtual memory simplifies memory protection by incorporating protection 
bits into every page table entry. 

The process of address translation. must b'e integrated with the operation of 
any hardware caches. in the system. Most page table entries are located in the Ll 
cache, but the cost of accessing page .table entries from Ll is usually· eliminated 
by an on-chip cache of page table entries called a TLB. 



876 Chapter 9 Virtual Memory 

Modern systems initialize chunks of virtual memory by, associating them with 
chunks of files on disk, a process known as memory mapping. Memocy mapping 
provides an efficient mechanism for sharing data, creating new processes, and 
loading programs. Applications can manu_ally create and delete areas of the virtual 
address space using the mmap function. However, most programs rely on a dynamic 
memory alloc;ator such as malloc, whicl} manages n;iemory in an area of the virtual 
address space called the heap. Dyrnµnic memory allocators a,re application-level 
programs with a system-level f~el, directly manipulating .Ql~mory without much 
help from the type system. Allocators come in two flavors. Explicit allocators 
require applications to explicitly free their memory blocks. Implicit allocators 
(garbage collectors) free any unused and unreachable blocks automatically. 

Managing and using memory,i~ a difficl\It and error-prone task for C program­
mers. Examples of common errors include dereferencing bad pointers, reading 
uninitialized memory, allmying stack buffer overflows, assuming that pointers and 
the objects they point to are the same size, referencing a pointer instead of the 
object it points to, misunderstanding pointer arithmetic, referencing nonexistent 
variables, and introducing memory leaks. 

Bibliographic Notes 

Kilburn and his colleagues published the first description of virtual memory [63). 
Architecture texts contain additional details about the hardware's role in virtual 
memory [46). Operating systems texts contain additional infprmation aqout the 
operating system's role [102, 106, 113). Bove! and Cesati [11) give a detailed de­
scription of the Linux virtual memory system. Intel Gorporation provides detailed 
documentation on 32-bit and 64-bit address translation on IA processors [52]: 

Knuth wrote the classic work on storage allocation in 1968.[64). Since that 
time, there has been a tremendous amount of work in the area. Wilson, Johnstone, 
Neely, and)3oles have written a beautiful sm;vey and:performance evaluation.of 
explicit allocators [118). Tue general comments in this book about the througl).put 
and utilization of different allocator strategies are paraphrased from their sur­
vey. Jones and Lins provide a comprehensive survey of garbage collection [56). 
Kernighan and'Ritchie [61) show the complete code for a simple allocator based 
on an explicit free list with a block size and successor pointer in each free block, 
The code is intere,sting in that it uses.unions to eliminate a lot of the complicated 
pointer arithmetic, but at the expense·of a linear-time (rather than constant-time) 
free operation. Doug Lea develop~d a widely used open-source malloc package 
called dlmalloc [67). • 

Homework Problems 

9.11 • 
In the following series of problems, you are to show how the.example memory 
system in Section 9.6.4 translates a virtual address into a physical addres~ "ond 
accesses the cache. For the given virtual address, indicate the TLB entry accessed, 



••tio111ework' Problems 87'1' 

the physical address, and the cache byte value returned. Indicate :whether the TLB 
misses, whether a page fault occurs, and whether a cache miss occurs. If there is 
a cache miss, enter"-" for "Cache byte returned." If there is a page fault,· enter 
"-"for "PPN" and leave parts C and D blank. 

Virtual address: Ox027 c 

A. Virtual address format 

13 12 11 10 9 8 7 6 5 4 3 2 0 

.1 

B. Address translation 

Parameter 

VPN 
TLB index 
TLB tag 
TL'S hit? (YIN) 
Page fault? (YIN) 

PPN 

Value 

C. Physical address format 

r 

11 10 9 8 7 6 5 4 3 2 0 

D. Physical memory reference 

Parameter 

Byte offset 
Cache index 
Cache tag 
Cache hit? (YIN) 
Cache byte returned 

9.12 • 

Value 

Repeat Problem 9.11 for the following address. 

Virtual address: Ox03a9 

A. Virtual address format 

, 

13 12 11 10 9 8 7 6 5 4 3 2 0 

' ' 

I 1 



Chapter 11 Virtual •Memory 

B. Address translation 
I .. ~u_ 1 

Parameter Value 

VPN 
TLB index 
TLB tag ---
TLB hit? (YIN) ---
Page fault? (Y/N) 
PPN 

c. Physical address format 

11 10 9 8 7 6 5 4 3 2 0 

D. Physical memory reference 

Parameter Value 

Byte offset 
Cache index 
Cache tag 
<;:ac,he hit? (YIN) ---
Cache byte returned 

.9.13 • Repeat Problem 9.11 for the follo>ying address. 

Virtual address: Ox0040 

13 12 11 10 9 8 7 6 5 ~ 3 2 0 

A. Address translation ~ 

PC}rameter Value 

VPN 
TLB index 
TLB tag ----
TLB hit? (YIN) 
Page fault? (YIN) ---
PPN ----

B. Physical add,ress format 

11 10 9 8 7 6 5 4 3 2 0 



C. Physical memory reference 

Parameter 

B~te offset 
Cache index 
Cachet~~ _ 
Cache hit? (YIN) 

l ~ache byte returnef! 

9.14 •• 

Value 

Homework Problems BZ~ 

Given an input file hello. txt that consists 'dJ the string' Hello, world! \n, write 
a C propam. th.at uses mmap to change the" cbnJ!Jnts 9f hel.io · 1;,xt'!d Jello, 
world!\n. 

9.15,+ ., 1 

Determine the block .sizes.and header.ivah,tes that would resuJt.)rom the fol­
lowing sequence of malloc requests. Ass.@lption~:. H) 'IJ1e alloq1tor maintains 
double-word.alignment.and US!'S an implicit free list withJ);t" block format from 
Figure 9.35. (2) Block sizes are rounded J1P to the.n«.arest mq\tiple of 8 bytes. 

Request 

malloc(3) 

malloc(11) 

malloc(20) 

malloc (21), 

9.16 • 

Bio ck size ( ctecin\ai bytes J 

'--~-
____ ,. 

11,.,-1--·--- ---.-
·~----

. ,, . 
Determine thi: nlinimurii block sfze for each of the following combinations of 

~ t-fp •; \'L •i•• fl'• Jr'••' I 
alignment requirements ana b!Ock formats. Assumptions: Explicit free list, 4-byte 
pred and succ pointers ii{ each free block, zer~-size payloads 'are not aii'~wed, and 
headers aqd footers are stored in 4-byte words. 

Minimum bloc!<' 
Alignmen\ Allocated. block Free block ' ,, siie (b\'.tl:s)· .. . "' . ..,, _,, ~ 

Single word Header and footer Header and footer 
Single word Header, but no footer Header and footer ----
Double word Header and footer Header anp footer "'---. ,. 
Double worcj Header, but no footer Header'and footer 

9.17 ••• 
Develop a ver5ion of the •!locator in Section 9.9:12 that performs a next-fit search 
instead of a first-fit search. 

l• ! wl 

The allocator in Section 9.9.12 ~e,quires both a header and a footer for,each bloc!< 
in order to perform constant-time coalescing. Modify the allocator so that free 
blocks require a header and a footer, but allocated blocks require only a header. 



880 Chapter 9 Virtual Memory 

9.19 • 
You are given three groups of statements relating to memory management and 
garbage collection below. In each group, only one statement is true. Your task is 
to indicate which statement is true. 

L (a) In a buddy system, up to 50% of the space can be wasted_due to internal 
fragmentation. I t '' 

(b) The first-fit memory allocation algorithm is slower than the besl'-fit algo­
rithm (on average). 

( c) Deallocation using bounqary tags is fast 9nly ,when the ,list pf fre~ blocks 
js, Of pered ascording to. increasi~g memo~y addresses. 

1 
(d) The "buddy system suffers from internal fragmentation, but not from 

external fragmentation. 

2. (a) Using the first-fit algorithm on a free list that is ordered according to 
decrea"sing block sizes' results in,low performance for allocations, but 
avoids external fragmentation: 

(b) For tlie·best-fit method, the'list ciffree blocks should be order\,d accoraing 
to increasing memory addresses.' 

(c) The best-fit rpNh<:<! cho?,~I" the largesr, f~~e block into which the re­
quested segment fits. 

(d) Using the first-fit algorithm on a free list that is ordered according to 
increasing block sizes is equivalent to using the best-fit algorithm. 

3. Mark&Sweep garbage collectors are called conservative if 
(a) They coalesce freed rpemory only when a memory request cannot be 

satisfied. 
(b) They treat everything that looks like a-pointer as a pointer. 
cc j 'f!l~Y "perform garbage .~~1ieplion ~m1y w!l1en 'th~y run.put i?f melnory. 
(d) Th,~Y do not fre~ memory blocks formin& a_cy,clic l\eyt. 

.. 
9.20 •••• 
Wrfre, y_~:mr. OWJ1 version of mal~oq ~nd free, and-comp~re iis1unning time and 
space utilization to the version of malloc provided in the standard C library. 

' (' t 

l' "h~ r, 
Solutions to Practice Prohlems LI, 

!• Ir 

Solution to Problem 9.1 (page 805) , , . 
This problem gives yo11 ~P,me appreci\l,tion, for the sizes of different apdress spaces. 
At onf'.point in time, a 32-bit address space seemed i!"possibly.large. J3utJJow 
there are database and scientific applications that need more, and you can expect 
thi~ trend to continue. At some point in your lifetime, expect to find' yourself 
c'oniplaining about the cramped 64-bit address space on\your personal' computer! 

•' !• f 'J "' 



Number of 
address bits (n) 

B 
16 
32 
4B 
64" 

Number of 
virtual addresses ( N) 

28 =256 
216 =64K 
232 = 4G 

248 =256T 
264 = 16,3B4 P 

Solution to Problem 9.2 (page 807) 

Solutions to Practice Problems 881 

Largest possjble virtual address 

28 -1=25,5 
216 - 1=64; K - 1 
232 -1=4G-1 
248-1=256T-1 
264 -1=16,3B4P-1, 

Since each virtual page is p = 2P bytes, there are a total of 2" /2P = 2n-J> possible 
pages in the system, each of which needs a page table entry (PTE). 

n 

16 
16 
32 
32 

p =2P 

4K 
BK 
4K 
BK 

Number of PTEs 

16 
B 

IM 
512K 

Solution to Problem 9.3 (pllge 816) 1 

You need to understand'this kind of problem well in order to fully grasp'adoress 
translation. Here is how to solve the first subproble'm: We are given n = 32 'vil'tual 
address bits and m = 24 physical address bits. A page size of P = 1 KB means we 
need log2(1 K) = 10 bits for both the VPO and PPO. (Recall that the VPO and PPO 
are identical.) The remaining address bits are the VPN·and PPN; respectively. 

Number of 
p VPN llits VPO bits PPN bits PPO bits 

lKB 22 10 14 10 
2KB 21 11 13 11 
4KB 20 12 12 12 
BKB 19 13 11 13 

Solution to Problem 9.4 (page 824) 

Doing a few of these manual simulations is a great way to firm up your understand­
ing of address translation. You might find it helpful to write out all the bits in the 
addresses and then draw boxes around the different bit fields; such as VPN, TLBI, 
and so on. In this particular problem, there.are no<misses of any .kind: the TLB 
has a copy of the PTE and the cache has a copy of1he requested data' words. See 
Problems 9.11, 9.12, and ·9.13 for some different combinations.of hits and misses. 



882 Chapter"9 Virtual Memory 

A. 00 0011 1101 0111 

B. Parameter Value 

VPN O~f 

TLB index Ox3 

TLB tag Ox3 
TLB hit? (YIN) y 
Page fault? ():'/N) N 

PPN Oxd 

c. 0011 0101 q111 

D. Parameter Value '• 

Byte offset Ox3 

Cache index Ox5 

Cache tag Oxd 

Cache hit? (YIN) y 

Cache byte returned Oxld , 
' 

Solution to Problem 9.5 (page 839) 
Solving this problem will give you a good feel for the idew of memory mapping. 
Try i\ yourself. 'YJ? hav~n't disyussed t,he OP,~n, fstat, 'W wr~te functions, so you'll 
µeed \o read tqeir man pages to:~.~e how they work .. 

,, ,, 
--~----,, ~",----~-+-----=>;7--f-T----.1 code!ymlmmapcopy.c 

1 1 #include~ '!cYSapp. h 11A~ 

2 

3 

4 

5 

I• 
* mmapcopy - uses mmap to copy file fd to st~out 
•I ' 

6 void mmapcopy(int fd•, int size) 

7 -t " 
8 char *bufp; /* ptr to memory-mapped VM area */ 
9 

10 bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, O); 
11 Write(1, bufp, size); 
12 return; " .t 

13 ·}. ,t J, 

14 

151 
16 

17 

18 

/* mmapcopy dri var''*/ 
int main(int argc, char 
{ .,. 

sttuct stat' stat; 
19 int fd; 

20 

••argv) 

l 
;· 

,,, 
,, 



Solutions to Pra1;tice' Problerris 883 

21 /* Check for required command-line argiun9nt. ;¥/' ,(I J 

22 if· (argc != 2) { > ~ , 1 ~ 1, 

23 printf("usage: %s•·<filencime>\n 11 , argv[O]); 
24 exit(O); if• 
25 } 

26 

27 

28 

29 

30 

31 

32 } 

/* Copy the input argument to stdouU */ 
fd = Open(argv[1], O_RDONLY, O); 
fstat(fd, &stat); 
mmapcopy(fd, stat.st_size); 
exit(O); 

' -----'---------'----------'----- code/vmlmmapcopy.c 

Solution to Problem 9.6 (page 849) 

This problem touches on some core ideas such as alignment requirements, min­
imum block si2es, and header encodings. The general approach for determining 
the block size is to round the sum of the requested payload and the header si2e,. 
to the nearest multiple of the alignment requirement (in this case, 8 bytes). For 
example, the block size for the malloc(1) request is 4+1=5 rounded up to 8. 
The block size for the malloc(1:3) request is 13 + 4 = 17 rounded up to 24. 

Request f,1 

malloc(1) 
maHi\c'(5) 
malioc'(1~) 
malioc(13) 

Block, si~e. (:cteciIJlal, pytes) 

8 

16 
i6 
24 

Solution to Problem 9.7 (page 852) 

p• ' 
J3lock he,ad~1 (hex) 

Ox9' 

Ox11 

Ox11 

Ox19 
•I 

.. 

the minimum block si2e can have a significant effect on internal fragmentation. 
Thus, it is good to understand the minimum block sizes associated·With l:lifferent 
allocator designs and alignment requirements. The tricky part is to reali2e that the 
same block can be allocated or free at differeht pofo(s iii tiib.e:Thus, the minimum 
block size is the maximum of the minimum allocated block size and the minimum 
free block size. For example, in the last subproblem, the minimum allocated block 
si2e is a 4-byte header and a 1-byte payload rounaed up to 8 bytes. The minimum 
free block size is a 4-byte header arid 4-byte foot<ir, .which i's already a multiple of 
8 and doesn't need to be rounded. So the minimum block size for this allocator is 
8 bytes. ·~ 

Minimum block 
Alignment Allocated block Free block size (l;>ytes) 
Single word Header and footer Header and footer 12 
Single word Header, but no footer Header and r-ooter 8 
Double word Header and footer Header and footer 16 
Double word Header, but no footer Header and footer 8 

I 



884 Chapter 9 , Virtual Memory 

Solution to Problem 9.8- (page 861) f o 
There is nothing very tricky here. But the solution requires you to understand 
how the rest of mfr simple implicit-list allbcator works an"d how to manipulate 
and traverse blocks. 

----------------------- code!vm/malloc!mm.c 

1 static void *find_fit(siz,.e_t--.asize) 

2 { 

3 /* First-fit search */ 
4 void *bp; 
5 
6 for (bp = heap_listp; GET_SIZE(HDRP(bp)) > O; bp = NEXT_BLKP(bp)) { 
7 if. (!GET_ALLOC(HDRP(bp)) && (asize <= GET_SIZE(HDRP(bp)~)) { 
B return bpi 

9 } " 
10 } 

11 

12 

return NULL; 'I* No• fit '*/'t ·l'
1 

#endif 

., 

13 } 

" ------------'----'----------- code!vm/malloc!mm.c 

Solution to Pr.oblem 9.9 (page 861) 
This is another warm-up _ei{e'~cise t'o help )'ou llecome'"fanfiliar' with allocators. 
Notice that for this allocatOF the minimum block size is 16 bytes. If the remainder 
of the block after splitting would be greater than or.equal to the minimum J;>iock 
size, then we go ahead and split the block (lines 6-10). The only tricky part here 
is to realize that you need Jo.place ihe new allocated block (lines 6 and 7j .before 
moving to the next block (line 8). 

--------.-,--------------~co4eJvnfmallodmm.r ,. 

2· 

3 .. 
5 

~ 

7 " 
,8 

9 

10 

11 

12 

13 

14 

static ,v9id place(void *bp, siz~_t asiz~)~ 

{ I .r t. 'l 

size_t cs,ize1 = G)lT_SIZE_(HpRP()>p)); 
•hf;"). I ,f 

Jl,if ((csil'e - asize) ~= (2•DSrZE)) \, 
PUT(HDRP(bp),. PA9~\~size, 1~); 
PUT(FIBP(bp), PACK(asize, 1.)); 
bp = N,EXT_BLKP(bp); ·' " I 

PUT(HDRP(bp), PACK(csize-asize, O)); 
PUT(FmP(bp), PACK(csize-asize, O)); 

J 
~He' { 

PUT(HDRP(bpl'. 
PUT(FTRP(bp~, 

.. 
PACK(csize, 1)); · 
PACK(csize, 1)); 

15 } 

16 } 

'I 

----------------------- code!vmlmalloc/mm.c 



Solutions to Practice Problems 885 

Solution to Problem 9.10 (page 864) 
Here is one pattern that will cause external fragmentation: The application makes 
numerous allocation and free requests to the first size class, followed by numer­
ous allocation and free requests· to the second size class, followed by numerous 
allocation and free requests to ·the third size class, and so on. For each size class, 
the allocator creates a lot of memory that is never reclaimed because the allocator 
doesn't coalesce, and because the application never requests blocks from that size 
class again. 





interaction and 
~~7'!1--i-~·mmunicatron 

~··~~~.i..t~en Programs 
\.'' ':- ,t: ·--·--...:...-~---~-·-

' '!., ;., "'- l., • 

··~· 9. t)li.s pdint in our study of computer systems, we have assumed that pro­
, ·''.: .. ' ,grams run in'isolation, with minimal input and output. However, in the real 

,; ·;: . »yorJ,d .. applic~tion programs use services provided by the operating system 
. ·to p:nnmyriicate with I/O devices and with other programs. 
~:·• .{ ''')llis parfof the book will give you an understanding of the basic I/O services 
,> ,.provided br. Unix operating systems al)d how to use these services to build appli­
'",'-; cl.t)'l:>n~ such as ·web clients and servers that communicate with each other over 
· 'the arlternet, )'ou will learn techniques for writing concurrent 'programs, such as 

'we? server~that~an.service m,ultiple clients at the same time. Writing concurrent 
• ;appli~!ionprograiµs can also allow them to execute faster on modern multi-core 

'pt<ice~fo,rs. when you finish this part, you will be well on your way to becoming a 
.'.' 'ower' ro rammer witl! a mature understanding of computer systems and their 
"'n;!lR~c OI) yo,llr prpgrams. 

"t"' ,. · .s: I 
h·" " 'f, "'~. ~·-· 
~ ·~ .. J ,;r:'' '·· ;/;•• l 

"" '¥ t 

• "" '; '\ *' ;' .J 

887 



'. 

" h .. 



, , 
fl 

'' 

'1 

( ( 

I I 

0 •l 

'ff ·.> ~ 

.,. 

, 

" 

,., .... , ... 

System-Level I/0' 

10.1 

10.2 

... 
.Unix 1/0 890 

Jlfd ,. r 

Files 891 

" I 

~ii l I I 

,(' 

, 
1
1
0.3 'opening and Closing 'Files 8~3, 

19.4 R~ading ai;id W.riting F.iles , 895 .,, ,. 

10.5 -jlobust Reading an(l Writing with the R1'0 Package 897 
l ,, • 

1 Q.6 R,eaqiQg,file Metadi!\a 903 

10.7· Reading Directory Cdntents 905 

·10.8 Sharing Files 906 

10.9 
11"1 • 

1/0 Redirection 909 
l 11 ' 

'' 10.10 .5tandard ~10 911 

.. 

10.11 Putting It '1ogether:'Whicti 1/0 'Functions skould I Use? 911 

10.12 Summary 913 

Bibliographic Notes 914 

Homework Problems '914 

Solutions to Pra'ctice Problems 915 

" , ' 

' " 

" 

889 

i 
[. 

! : 

I 
' '. 



890 Chapter 10 System-Level 1/0 

I nput/output (UO) is the process of copying data between main memory and ex­
ternal devices such as disk drives, terminals, and networks. An input operation 

copies data from an UO device to main memory, an\! an output operation copies 
data from memory to a device. 

All language run-time systems provide higher-level facilities for performing 
UO. For example, ANSI C provides the standard I/0 library, with functions such as 
printf and scanf that perform buffered 1/0. The C++ language provides similar 
functionality with its overloaded« ("put to") "and>~ ("get from") operators. On 
Linux systems, these higher-level 1/0 functions are implemented using system­
level Unix 110 functions provided by the kernel. Most of the time, the higher-level 
IIO functions work quite well and there is no peed to use Unix 1/0 directly. So 
why bother learning about Unix 1/0? ' 

• Understanding Unix UO will help you understand other systems concepts. I/O is 
integral to the operation of a system, and because of this, we often encounter 
circular dependencies between 1/0 and other systems ideas. For example, 
1/0 plays a key role in process creation and execution. Conversely, process 
creation plays a key role in how files are shared by different processes. Thus, 
to really understand 1/0, you need to under~\and processes, and vice versa. 
We have already touched on aspects of 1/0 in our discussions of the memory 
hierarchy, linking and loading, processes, and virtual memory. Now that you 
have a better understanding of these ideas, we can close the circle and delve 
into 1/0 in more de{ail. 

• Sometimes you have no choice but to use Unix UO. There are some important 
case~ where using higher-level IIP _functions is either impossible or inappro­
priate. For example, the standard 1/0 library l?rovides no way to access file 
metadata such as file size or file creation time: Further, there are problems 
with the standard 1/0 library that m'}ke it risky to use for network program­
ming. 

This chapter introduces you to the _general concepts of Unix 1/0 and standard 
1/0 and shows you how to use them reliably from your C programs. Besides serving 
as a general introduction, this chapter lays a firm foundation for our subsequent 
study of network programming and concurrency. 

1 

10.1 Unix 1/0 

A Linux file is a sequence of m bytes: 

All 1/0 devices, such as networks, disks, and terminals, are modeled as files, and 
all input and output is performed by reading and writing the appropriate files. This 
elegant mapping of devices to files allows the Linux kernel to export a simple, low­
level application interface, known as Unix 110, that enables all input and output 
to be performed in a uniform and consistent way: 



·Section 10.2 ·Files 891 

Opening files. An application announces its intention to access an VO device 
by asking the kernel to open the corresponding file. The kernel returns 
a small nonnegative integer, called a descriptor, that identifies the file 
in all subsequent operations on the file. The kernel keeps track of all 
information about the open file. The application only keeps track of the 
descriptor. ' 

Each process created by a Linux shell begins !if" with three open files: 
standard input (descriptor 0), stal}dard output (descriptor 1 ), and standard 
error (descriptor 2). The header file <uni std. h> defines constants STD IN_ 
FILENO, STDOUT _FILENO, and STDERR_FILENO, which can be used instead 
of the explicit descriptor values. 

Changing the current file position. The kernel maintains a file position k, initially 
0, for each open file. The file position is a byte offset from the beginning 
of a file. An appli9ation can set the cufrent file po~ition k f'Xpj~citly by 
perfoqnil).g a srek OJ?eratio!1. " ,; 

Reading and writing files. A read operation copiesln-> 0 bytes from a file to 
memory, starting at the current file position k and then incrementing k 
by n. Given a file with a si~s> of [11, bytes, performing a read 9peration 
when k 2: m triggers a condition known as enq-of-fi.le· (E,OF), which can 
be detected by the application. There is no explicit "EOF character" at 
the end of,a file. 

Similarly, a write operation copies n o: a.bytes from memory to a file, 
starting.at the current fil" go~ition k and then updating k. 

Closing files. When an application has finished accessing a file, it informs tlie 
kernel by asking it to close the file. The kernel responds by freeing 
the data structures it created when the file was opened and restoring tlie 
descriptor to a pool of available deS'Criplors. When a process terminates 
foi any reason, fhe kernel closes· all open' files and frees their memory 
resources. ' 

10.2 Files 

Each Linux file has a type that indicates its role in the system: 

• A regular file contains arbitrary data. Application programs often distinguish 
between text files, which are regular files that contain only ASCII or Unicode 
characters, and binary files, which are everything else. To the kernel there is 
no difference between text and binary files. 

A. Linux text file consists of a sequence of text lines, where each line is a 
sequence of characters terminated by a newline character ('\n'). The newline 
character is the same as the ASCII line feed character (LF) and has a numeric 
value of OxOa. 

• A directory is a file consisting«if an array of links, where each link.maps. a 
filename to a file, which may be another directory. Each directory contains at 



.~92 Chapter 10 System-Level 1/0 

·~'"" .,,., "': \'~J-o•;<'~~,.J' <}'' {}/>!:~}.~~ '1""'"°~ ttf ..:0. ~ '~'"},~ i 

1 
Aslde :Enp'bf li,n~E!)G) in,(J[ta,J'.orsJ .~, _ ·"' ~, l ,,., t',: . ~·$ ,. 
One at the clumsy,a;p'ecis of wdfRi'ng wiih te)d lj,feg is' that, different'sy~te!"'{~'pifrefent pnan\cters_to 1 

t mark th. e en. d of a !in~. I.,inu;;t. ~nd'M. ·. a~--@~,X,--u-.1~.e '\~ ... :.-(.ox .. }t)~ ... "' .. .!'iCh. h't.he .AS·C.Ii1in .. e.fe .. ed .. ·(lF_ )··.c. 6aracler._ ·~1-! Howey<;r, MS Windqws Im\\ Inteth~tptofocolsi;ucliil';fli;-f P use t\le,sequende"~r\°"1"(bxci:0)<a), which 
! is th~ ASCII carriag~-retu.rii .\C~) .c)l~racr:;r:fdllpw~f.~Y-~:!i?e feed (~.f)-'~! yo\I bry~~t•r'file foo :txt" 

m Wmdow~ ~'!d theny1~~:1fm.J1 ~mµx,t_1;x't egM_r: yoWil ~e~-,~ ~r_moy~~~:-M:a!-t~e .e~d.of,each_ lme, 
f ~h1ch 1s h,ow L111ux)o9Js ii~p}_~~ t_~'; ~~ ';'~~--:ct,.e;._;y~_?,.'<;'i):_remo~ .. e-thes~,llli't~_te.d'CR'J.'l).!racters· 1 
, from foo:txt m p\ace:byxunmng}he.iolloW)n'g-cpiriiifa,na:;t'' . '' .. ," ;", · ,,.. ~ 

~ '• '4:'~ ";RI_ i,J}t~. ' !.'.\,\i, ~\-.,~ #_t-1 -' t 
' Hpu'x>' perl -pi'""·j/' "'s/\r\n/\nl,f': foo. txt '; - ,, , · ;• J· ' ' ,· ' ! 
~"" -...~.,,,,,,-~- "'---"""""''Ii(~-'"'" -~,~.l<lO.~!.it-

" 
least two entries: . (dot) is· a link to the directory itself, and .. (dot-dot) is 
a link to the pare{lt directory in the directory hierarchy (see below). You can 
create a directory with the mkdir command, view its contents with ls, and 
delete it with rmdir. 

• A socket is a file that is used to communicate with another process across a 
> network (Section 11.4). 

Other file types include named pipes, symbolic links, and character and block 
devices, which are beyond our scope. 

The Linux kernel organizes all files in a 'single' directory hierarchY'anchored 
by-the.r,oot directory n~med I (slash). EacJ:t file ii\ the 5ystem i,s a direyt or indirect 
descendant 9f,the root directory. Figure 10.1 sho:ns a portion of the directory 
hierarchy on our Linux.system. , 

As part of its context, <;~ch,.proi:ess has a ~wrent workjng directory that 
identifies its currenf location in the dire~!9ry hi'1rarchY,. ,You can change the shell's 
current working directory with the cd command. 

I 

usr/ 

~. 
il(cfnde/ bin/ 

~I 

home/ 

~ 
droh/ bryant/ I ., 

bin/ 

I 
dev/ 

I 
etc/ 

~ 
bash ttyl gr our passwd 

hello.c stdio.h sys/ vim 

·1 
unistq.~ 

Figure 10. 1 Po.rtion of the Linux directory hierarchy. A trailing,slash denotes a 

directory. 



Section 1'0.3 Opening and Closing Files 893 

Locations jn the directory hierarchy are specified by pathnqmes. A pathname 
is a string consisting of an optional slash followed by a sequence of filenames 
separated by slashes. Pathnames have two forms: ' ( 

J-.. 
• An absolute pathname starts with ~ slasji .!iJld denotes a• path from;Jhe root 

node. For example, in Figure 10.1, the absolute pathname for hello. c is 
/home/ droh/hello .'c. ' 

• A relative pathname'eftarts with a filename and denot'e's a path from the cufrent 
working directory.'.For'.exarttple, ih·•Figure 10.!, if /!Mme/droh is the current 
working directory, then the relative,pathname for.l)ello. c,is . /he:qo. s-.9n 
the other hand, if /home/bryant is the current working directory, then the 
relative pathname is .. /home/droh/hello. c. · 

10.3 Opening and Closing Files 

A process opens an existing file or creates a.new file by calling the open function. 
' .~ < ,...,, ~ ~ 

#include <sys/types.h> 
#include <sys/stat .h> f~~ 
#include <fcntl.h> 

t, 'I I/ 

int open(char *filename, int' flcigsr,_ mode~t mode); 

Returns: new file descriptor if OK, -1 on error 

The open function Converts a t'ilename to a file descriptor ana returns the d'e­
scriptor number. The 'descriptor returned is always tli'e smallest descriptor that is 
not currently open in the process. The flags argument indicates ho~'ihe'process 
inteIJ,ds to access the file: " 

O_RDONLY. Reading only 

O _ WRONLY. Writing only ,, 

O _RDWR. Redding antlwriting 

For example, here is how to open an existing file for reading: 

fd = Open( 11 foo. txt 11
', O_RDONLY, 0) i 

l fl hH~• 1 

The flags argument can·also be m~ed with one or more bit masks that provide 
additional instructions for·writing: 

' ' 
O_CREAT. If the file doesn't exist, then create a truncated (empty) version, 

of it. 

O_TRUNC. If the file already exists, then truncate it. 

O_APPENQ. Before each write operation, set the file position to the end•of 
the file. 

)· 
''. 



894 Chapter 1 O 'System-Level 1/0 

Mask 

S_IRUSR 
S_IWUSR 
S_IXUSR 

S_IRGRP 
S_IWGRP 
S_IXGRP 

Description 

User (owner) can read this file 
User (owner) can write this file 
U~er (owner) can execute this file 

Members of the owner's group can read this file 
Members 9f the owner's group can write thi~,file 
Membprs of the ,owner's group can ex8cute this file 

S_IROTH 
S_IWOTH 
S_IXOTH 

' Others (anyone) can read this file 
others (anyone) can write this file 
Others (anyone) can execute this file 

Figure 10.2 Access permission bits. petined in sys/stat,-h. 

For example, here is how you iniglit open an existing file with the int'enf of 

appending some data: 

fd = Open("foo.txt", O_WRONLYIO_APPEND, 0); 

The mode argument specifies the access permission bits of new files. Th~ 
symbolic names for these bits are shown ip Figure 10.2. 

As part .of its context, each procesS< has a umask that is set by calling the 
umask function. When a process creates a.new file by calling the open function 
with some mode argument, then the a((~ess permission bits of the file are set to 
mod,~ & -umask. For eii:ample, s1,1pi;ose we ,are given the following def~l\l\ values 

for mode and )lll\ask: ,-, H A' >j ~ Jfj{ 

•• 
#define DEF_MODE S_IRUSRIS_IWUSRIS_IRGRPIS_IWGRPIS_IROTH1S_IWOTH 
#define DEF_UMASK S_IWGRPIS_IWOTH ,1r 

Then the following code fragment creates a new file in which!the owner of the file 
has read and write permissions, and all other µsers hav~ re~d permission~: , 

umask(DEF_UMASK); 
fd = Open("foo.txt", O_C~ATID_TRUNCIO_WRONLY, DEF_MODE<' 

Finally, a process closes an open file by calling the close function. 
J I 'JI. 

#include <unistd.h> 

' int Close(int'fd); "' ) _() 

Returns: 0 if OK, -1 on error 
,_l • 

Closing a descrfptonthat is already closed is an error. 



Section 10.4 Reading and Writing Files 895 

#include 11 csap'p.h 11 

2 

3 int main() 
4 { 

5 int fdl, fd2; 
6 

7 fdl = Open("foo.txt 11
, O_RDONLY, O); 

8 ciose(fdi); 
9 fd2 = Open("baz.txt 11

, O_RDDNLY, 0); 
10 print! ( 11 fd2 = %d\n 11

, fd2); 
11 exit(O); 
12 } 

10.4 R~a.ding and Writing File~ 

Applications perform input and output by calling the read and write functions, 
respectively. 

#include <unistd.h> 

ssize_t read(int fd, void *buf, size_t n); 

"'Retllrns: number of bytes read if OK, 0 on EOF, -1 on error 

ssizeJ.;t "i.rrite(int".fd, const void ~buf, 'Size_t n); 
It 'i, l ( I ' • 

Returns: number of bytes 'written if OK, -1 on error 

' ' 

The read function t:9pies at mostn'oytes fr6ln the'currbnt file position of descriptor 
fd to memory JOC,atiori buf'. A return-value of -1 indicates an error, and a return 
value of o' indicaies EOE C>tlierwise, the·returh ·vahie indicales the number of 
bytes that w,ere.actually transferred. , , 

The write function copies.at most n bytes from memory loc;ation buf to the 
current file position of descriptor fd. Figure 10.3 shows.a program.that uses read 
and writ~ calls tp cqpy the standard ipputjo the standard output, l. byre.at a time, 

Applications can ·explicitly modify.the current.file position by calling the 
lseek function, which is beyond our scope. 

In some situations, 'read and wri t.e transfer'fewer bY,tes than the application 
req{\ests. Such short counts do not indicate an error. They occur for a number of 
reasons: 



896 Chapter 10 System-Level 1/0 

_,, ,,,,,__,_i'<lal'"_'~iH'!/1""1%'__,'l"""!I""''" " "'J!'l!'.""J!";i'li>"f/;l~"lfrq,"" 11'"""''V ,,,,,,_,,_,, 11"1""'' ·-----~---. 

Asfde Wb~'vs ttie Bif{erE;hce betweeh ~'Size_t alJ~,size..'.t? , ' ·. ' 
,._ ··' • "7<!, { if; "'.:t··~"l<f)'';'~ ~ .,., ~-»<~;,;,.,.. .. ~ftli<i~ ' 

You inight hiJ.Ve,,n9ti~.eq tha( t~e ~r,.ia<}.l~n~~t~~dn: .. h~&-a~sin~-2¥~ \nput-argument a~d an~~~size_t return, ~ 
' '\a!ue, ~'t what's)he d1ffer~nce-between thes,e two.types.?.On xSf/-64 syst~ms, ~ siZe_F 1s c;!efin,ecj ;)S an. ! 
l unsigned longt\!an(! an s)Sl~e_t lsikned,,,,_si~e)i'S'~O.efined a~ a ~10D.g:'Jbe,,f6acfflln'ftl3if r~lufhs a~si"gn~df"i' 

size nitber t)larl ~n,UIJSigl)ed,si~e J:>~<;i\USe jt l,llU~t reJl\rn a -:;f 9n-error.-Inter~sting!y, t~i°.,£JS,si\Jility of 
! ,retufni1!~ a-sipg_lp >-1 ~~c;!uyeithe•ma,i<imum sIB_~ of a rea.dlJy ~,fac,tor of:J: 1- '< ' · ' , __ ..._ ___ "" -~ ,, .. __,,.__...,~.,,.,--"""""-''"""" ~.,, -~"-~~.,,--,,,,;w ,,..,,,,_.,,..,.....__.,,._;i:,.,. ~ ,,,,,_,..,, """'~:>/- ,,.__,,_,,.,,_ •"'"""'""~~ 

-------------------------- code/io/cpstdin.c 

~include 11 csapp.h" 
2 

3 int main(void) 
4 { 

5 char c; 
6 

7 while(Read(STDIN_FILEND, &c, 1) != 0) 

8 Write(STDOUT_FILENO, &:c, 1); 

9 exit(O); 
10 } 

-------------------------- code!iolcpstdin.c 

Figure 10.3 Using read and write to copy standard input to standard output 1 byte 
at a time. 

Encountering EOF on reads. Supppse that we are ready to read from a file that 
contains only 20 more bytes from the current file position and that we are 
reading the file jn 50-byte chunks. Then the,next ·;read will returl} a short 
cou\lt of 20, and.the read after tha~.wjll signal EOF by returning a short 
count of 0. 

Readin8 text lines from. a.Jerminal. J~ the 9p1>n fil~ is ass}lciated with a terminal 
(i.e.,!\ keyboard anq display), then,faph reaq funcliop w,ill,trHn~fer one 
text line at a time, returµing a short cqunt equal to tp.e size of th'f te,xt line. 

Reading and writing network sockets. If the open file corresponds to a network 
"· socke!J (Section lt:4), then internal buffering,comitraints and long net-

,, work.d"ela31s can cause read and write to return short counts:Short counts 
1 >.can also occur when-you call read.and write on a Linux pipe, an inter­

"process'communication mechahism that is beyond our scope. 
r 

.,, In practice, you will never encounter short counts·when you read. from disk 
files except on EOF, and ¥ou will never encounter short counts when you write 
to disk files. However, if you want to build robust (reliable) network applications 



Section 10.5 Robust Reading and Writing with the R16 Package 897 

such as· Web servers, then you: must deal.with short courits- by repeatedly calling 
reaqGmd write until all requested bytes have been•transferred11 

" .,, 
10.5 Robust Reading and Writing with the Rio 'Package 

In this section, we will develop an I/O package, called the- Rm (Robust 'I/0) 
package, that handles these s~ort c'?u.n!s fqr you au~o.11?,atjca)ly. T)ie ,Rio pa~~age 
proyid~s. FOnV\"l)ieqt, robust, and effiqr,ent F6". ip. 'app\ications such a,s irenyorl} 
pr'iWf:~lP~ that are subject to short counts. Rro l?rovides t'?'O diff~r.erit kinds of 
functrons: 

I 

Unbuffered input and output functions.' These 'functiorls ·transfer data •directly 
'
1l5'et:Weeb memory and a file, with no application-level buffering: They are 
especially u~eful for reading afid writing binary data to and from ne!Werks. 

;, • • ' . r:,. ' • · .;. \. I ur . 
,nuffered inpu~func;tfrm~. ;I\te~e. funct!Or(~,l'Jlow you to emcientli-; r,ead tex,t Imes 

and bin,~ry cJi't~~rom ~file whose, contents ar<;,yached i,11 an applic~~ion­
level buffer, similar to,the on~ provide~. for st~nda~q ~9 funstions,~uch as 
printf. Unlike the buffered "i!O routines presented in [110], the buffered 
Rro input functions are thread-safe (Section 12.7.1) and carr be inter­
leaved arbitrarily on the same descriptor. For exaniple, you can Tead some 
text lines from a descriptor, tQ.,en some.binary data,.and then some more. 
text Jines. ' 

I 
We eyre presenting the Rio routines for two reasons. First, we will be using 

'them in the netwdrk 
0

applicati6ns we develop in the next two chapters. Second, by 
'studying the code for these rou!ines, you will gain a deeper understanding of Unix 
IIO in general. 

·10.5.1 Rio Unbuffered Input and Output'Func;tions 
C'-:. ... ~ lJ 

l}pplications Cf!n transfer data djrectly betweel),,memory and a file by calling the 
rio_readn ~and,fih'O_wri t.~n f~9ti9ns .. 

#include "csapp.h 11 

t,:: If 

ssize_t rio_read.n(int fd, void •usrbuf, size_t n); 
,ssize_t ric:_writ,en~f?~ fd, void •usrpuf? si2:e,,t n) ;~ 

., 

1 R~tµrns: number of bytes transfei::red if OK,,O on EOF (rio_re~dn only), -1 on error 

· Ji J • 1 • f • I 

The rio_readn function transfers up to n:bytes froll)•the-current> file position 
of descriptor fdito memory location usrbuf. Similarly, the rio_writen function 
transfers n bytes from location usrbuf to descriptor fd, The rio_r.eadn function 
can only return a short count if it encounters EOF. The rio_wri ten function:bever 
returns :a short count. Calls to .rio~readn and rio_wri ten can be interleaved 
arbitrarily:on the same descriplor. 



898 Chapter to System-Level 1/0 

Figure 10.4;shows the code for rio_readn and rio_writen. Notice that each 
function manually restarts· the read or.write function if iUs interrupted by the 
return from an application signal handler. To be as port'lble as possible, we allow 
for interrupted system calls and restart them when necessary. 

10.5.2 Rio Buffered Input Functions 

Suppose we wanted to write a pro&f.am that coui;its the number of lines in a text file. 
How might w~ do this? One approach is to use the reaclJunction to transfer 1 brte 
at a tfrne from the file to the user"s \nemory, check;,{g each byte f6t"the 'n~Wline 
character. The disadvantage of this approach is that it is inefficient, requirihg a 
irap to the kernel to read ea,c)l. byte in the file. 

A better agproach is to c~ll a wrapp,~r function,(rio_re,l'l.\ll:i..ne,1;>). that copies 
the ~l'.t line from an internal read b~ffefr, i'l\!Pmatically making a read call to refill 
the buffer whenever it becomes empty. For files that contain both text lines and 
binhry data (such as the HTrP'fesponses d'escribetl in 'section 11.5.3), we also 
pro'viO'e a buffered rersibn of !-io_readn, calld& ~io_i-e·alinb, that transfers raw 
bytes from 1ne"sa'me. read buffer'as rio_reac;tlineb. 

' 
#include "csapp.h" 

'void rio_readinitb(rio_t *rp, int fd); 

Returns: nothing 

ssize_t rio_readlineb(rio_t *rp, void *usrbµ,f, .size_t} maxle.H); 
ssize_t rio_reacb;J.b(rio_t *rp, yoid *usrbu~, size_t n); 

Returns: number of bytes read if OK, 0 on EOF, -1 on 'trror 

The rio_readini tb function,is called once per open descriptor. It associates the 
descriptor fd with a read buffer of type rio_ t at address rp. 

The rio_readlineb function-reads the nexi text line from file rp (including 
the terminating newline character), copies'H to 'inemory location usrbuf, and 
terminates the.text line with the NULL (zero) character. The rio_readlineb 
function reads a(\nost maxlen-1 bytes, leaving room for the terminating NULL 
character. Text lines that exceed maxlen-1 bytes are truncated and terminated 
with a NULL character. ' 

The rio_readnb fiinctfon reads up ton bytes from file rp'to memory locatiOn 
usrbuf. Calls to rio_feadlineb and rio_readnb can be interleaved arbitrarily 
on the same descriptor.-However; calls to these buffered functions should not be 
interleaved with.calls to the unbuffered rio_readnfonction.1" 

You will encounter numerous examples of theR10 functions in the remainder 
of this text: Figure 10.5 shows how toJJse the Rm functions to copy a text file from 
standard input to standard output, one line, at a time. 

Figure 10.6 shows'"the format,of a read buffer, along with the code for the 
rio_readini tb function that initializes it. The rio_readini tb function sets up 
an empty read buffer and associates an open file descriptor with that buffer. 



Section 10.5 Robust Reading and Writing witMhe Rio Package 899 

---------------------------------- codelsrdcsapp.c 
1 ssize_t rio_readn(int fd, void •usrbuf, size_t n) 
2 { 

3 size_t nleft = n; 
4 ssize_t nread; 
5 char *bufp = usrbuf; 
6 

7 while (nleft > 0) { 
8 if ((nread = read(fd, bufp, nleft)) < 0) { 

9 if (errno == EINTR) /• Interrupted by sig handler return •/ 
10 nread = O; !• a.Ild,tall read() again •/ 
11 else '• 
12 

13 

14 

15 

16 

17 

18 

19 

20 } 

} •• 

return -1; 
} 

else if (nread 
break; 

nleft -= nread; 
bufp += nreadi 

return (n - nleft); 

/* errno set by read() •/ 

O) 
L I• EDf' •/ ~ " · 

/* Return >= 0 •I 

----------------------,,.---------------code/srdcsapp.c 

---------------------------------- code/srdcsapp.c 
' 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

161
' 

17 

ssize_t rio_writen(int fd, void •usrbuf, size_t n) 
{ 

size_t nleft = n; 
) > ssize_t nwritten; 

char •bufp = usrbuf; 

while (nleft > O) { 

J •• 

} 

if ((nwritten = write(fd, bufp, nleft)) <= 0) { 

if (errno == EINTR) /• Interrupt,ed bl'. sig handle~ 
nwritte~ = Oi /• and call write() again •/ 

else 
return -1; 

} ' ,, ' 
nleft -= nwritten; 
bufp += nwritten; ,. 

/• errno set" by write() */ 

return -tJ..t 
18 } 

·. 
retui-n •/ 

•(' l ' 1• ----------------------0 .. ~~-~---------codelsrdcsapp.c 
l 

Figure110.4 The rio_readn and' rio_w:b ten functions. 

• 
' 



900 Chapter J-0. . .System-Level 1/0 h 'I 

---~~------------------------------coddio/cpfile.c 

#include 11 csapp.h" " 
2 

3 int main(int argC, char **argv) 
4 { 

5 int n; 
6 rio_t rio; 
7 char buf[MAXLINE]; 
8 

9 Rio_readinitb(&rio, ~TDIN_FILENO); 
10 while((n = Rio_readlinebC&.rio, buf,, MAXLINE)) != •Q) 

11 Rio_writen(STDDUT_FILENO, buf, n); 
12 } 

--------------------------------~--code!io!cpfilec 

Figure 10.5 Copying a text file from standard input, to standard output. 

-----------------------------~---code!include!csapp.h 
#define RIO_BUFSIZE 8192 
typedef struct { 

int rio_fd; 
int rio_cnt; 
char *rio_bufptr; 
char rio_buf[RIO_BUFSIZ~]; 

} rio_t; 

/* Descriptor for this internal buf */ 
I• Unread~bytes in internal buf *f 
I* Next unread byte in internal buf */ 
I* Internal buffer */ 

.:~ l" 

-------------------------------...,,--- code!include!csapp.h 

---------------------------------- 'code!srdcsapp.c 

2 

3 

4 

5 

6 

void rio_readinitb(rio_t *rp. int fd) 
{ 

rp->rio_fd = fd; 
rp->rio_cnt = 9; 

~ .. , r \, . 

} 
rp->rio_bufptr =, rp->rio_buf;; 

• /!: ' • 

< 

-----------------,,,,~,-----------~.r.----code!srdcsapp.c 

Figure 10.6 A read buffer of type rio_t and the rio_readini tb function that initializes it. 

The heart of the Rio read routines is the rio_read function shown in Fig­
ure 10.7.'The rio_read function is a buffered version of the Linux read function. 
When rio_read is called with a request to read n bytes, there are rp->r~o_cnt 
unread bytes in the read buffer. If the buffer is empty, then it is replenished with 
a call to read. Receiving a short count from this invocatiqn of read is not an er­
ror; it sin:ply has the effect of.partially filling the read,buffer. Once the 'buffer is 



Section 10.5 Robust Reading and Writing with the Rio Package 901 

2 

3 

static ssize_t rio_read(rio_t *rp, char *usrbuf, size_t n) 
{ 

int cnt; 

4 ! 

5 while (rp->rio_cnt <= O) { /• Refill if buf is empty •/ 
6 rp->rio_cnt = read(rp->rio_fd, rp->rio_buf, 

7 sizeof(rp->rio_buf)); 
B if (rp->rio_cnt < 0) { 

9 if (errno != EINTR) /* Interrupted by sig handler return */ 
10 

11 
return -1; 

} 

12 else if (rp->rio_cnt 0) I• EDF •/ 
13 return O; 
14 else ~ 

15 

16 } 
'rp->rio_bufptr. rp->rio_buf~ /.-* Reset buffer ptr *I 

17 

18 /*Copy min(n, rp->rio_cnt) bytes from internal,buf to user buf */ 
19 cnt = n; 

20 if (rp->rio_cnt < n) 
21 cnt = rp->rio_c:nt; 

22 memcpy(usrbuf, rp->rio_bufptr. cnt); 
23 rp->rio_bufptr += cnt; 
24 

25 

26~ } 

rp->rio_cnt 
return cnt; 

cnt; 
I 

----------------~=---~-"------------- code/srdcsapp.c 

Figure 10.7 The internal rio_read function. 

. ' 
nonempty, rio_read copies the minimum of n and rp->rio_cnt bytes from the 
read buffer to the user bJ,lffer and returns the number of bytes coPied. 

To an application pr<Jgram, the ~io_read function"haiitqe same semantics as 
the Linux read function. On error, it returns -.1 and sets errno appropriately. On 
EOF, it returns 0. It returns a_ short cm,mt if the number of requested bytes exceeds 
the number of unread bytes in the read buffer. The similarity'of the two functions 

• r· r 

makes it easy to build different kinds of buffered read functions by substituting 
rio_read for read. For example, the rio_readnb functfun in"Figure 10.8 has the 
same structure as rio_readn, with rio_read substituted for read. Similarly, the 
rio_readlineb routine in Figure 10.8 calls rio_read at most maxien-1 times. 
Each call returns 1 byte from the read buffer, which is then checked for being tlie 
terminating newline. 



902 Chapter 1 O System-Level 1/0 

------~--------------------- code/srdcsapp.c 

ssize_t rio_read~ineb(rio_t *rp, void *usrbuf, size_'t maxlen) 

2 

~ 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

·ns 
19 

20 

21 

22 

23 

{ 

} 

int n, re; 
char c, *bufp usrbuf; 

for (n = 1i n < maxlen; n++) { 
if ((re·= rio_re~d(tp, &e, 1)) 

*bufp++ = c; 
if (e·== '\n') { 

} 

n++; 
break; 

} else if (re == 0) { 

if (n == 1) 

1) { 

return O; I• EDF, no data read '*/ 
else 

break; 
} else 

return -1; 

} 

•bufp O· 
' 

return n-1; 

/* EOF, some data was read*/ 
< 

/* Error *I 

---------------------------'- code!src/csapp.c 

--~----------------------- codelsrc/csapp.c 

ssize_t rio_readnb(rio~t *rp, void *usrbuf, size~t n) 
2 { 

3 size_t nlefi = n; 
, r 

4 ssize_t nread; 
5 char *bufp = usrbuf; 

'" «ii 6 

7 while (nleft > 0) { 
' ' •r , •} 1 , 1 •I 

if ((nread = rio_read(rp, bufp, nleft)) < 0) 8 

9 

10 

11 

J" ·~"' • ,f)f • 
returq -1; I* errno set by read() */ 
' • •• • ' - ( t ' ~ 

'll• 
12 

else if (niead ~= 0) · 
·~re~'; . . ,/,· * EDF i} 

1
' 

' j 
nleft -= µead; 

" ... 

bufp += nread; 

), 
return (n, - nleft)'; " l• Retw;n >= o •I ,, 

·' I 

J 
--------------------~----- code!src/csapp.c 

13 

14, 

15 

16 } ., 

Figure 10.8 The rio_readlineb and rio_readnb fu~ctions. 



Section 10.6 Reading~File Metadata 903 

""" 'if""i""41~-""' -...--"""'- - ~ ,....,,. 

~ )(side 'Origlns' of\he Rib package -
• "' ' < 1' .,,~ ?''' ~ ,j< 't "" , ~., ~ f ""\be Rm fun?tions ~re mspir~d,by the readiine, readn,'and w~i ten functions.described by W. Richard 

j Stevens m his classic network programmmg'text [110]. The•rJ'.'o_readn and rio_writen f\mct10ns are 
identical to the Stevens readn and wri ten furlctions. However;~the Stevens re·a'dline function has some' ' 
limit~tions that3re"Cbrrected~in·R10. First, beCause readline is buffered ~ii:d ;eadn is not, these two 

' function~ ca~ot b~'tls~il togetlier pn \he sam~ descripfoi;. 'Secdnd, beeause 'it uses 'a static buffer, the 
Stevens readline function knot th'~ead-sati!, which reqilirecfStevens to intj6duce a different thread­
~safe version~called read.line_r. ;We 'have cofrected both of these flaws With the rio_readlineb and 
rio_readnb fun~tiops1 "'.hich ~re' m~tmi)l_Y coIIJ~atible ~Q,(i!hfead-saJe: : , 

10.6 Reading File Metadata. 

An application can n;trieve information about a file (sometimes called the file's 
meiadata) by calling tlie stat and fstat functions. 

#include <unistd.h> 
#include»<Sys/stat.h> 

int stat(const char *filename, struct stat *buf); 
int fstat(int fd, struct stat *buf); 

Returns: 0 if OK, -1 on error 

The stat function takes as input a filename and fills in the members of a stat 
structure shown in Figure 10.9. The fstat function, is similar, but it takes a file 
descriptor instead of aJilellJ!me. We will need the st_mode and st_size members 
of the stat structure when we discuss Web servers in Section 11.5. The other 
memb'ers 'are beyond our scope. t 1~ 

The st_size member contains the file size in- bytes. The st_mode member 
encodes both the file permission bits (Figure 10.2) and the file type (Section 10.2). 
Linux defines macro predicates in sys/ stat. h for determining the file type from 
the st_mode member: 

S_ISREG(m). Is this a regular file? 

S_ISDIR(m). Is this a directory file? 

S_ISSOCK(m). Is this a network socket? 

Figure 10.ll\ shows how we miglit usethese macros and the stat function to read 
and interpret a file's st_m9de bits. 

' . ; . 
I 



904 Chapter .10' .System-Level 1/0 

!tatbufh,unc~~~ed}y sysistaj-h) 
stat and fstat functions */ /* Metadata returned by the 

struct stat "{ ,,.· 

}; 

dev_t 
ino_t 
mpde_t 

.,.nlink_t 
uid_t 

gid,t 
dev_t 
off_t 

unsigned 
unsigned 
time_t 
time_t 
time_t 

long 
long 

st_dev; 

st_ino; 
st_mode; 
st_nlink; 
st_ui~; 

s~_gid; 

st_r~ev; 

st_size; 
st_blksize; 
st_blocks; 
st_atime; 
st_mtime; 
st_ctime; 

lh ,Device */ 
/* !node */ 'l 

/* Protection1~d file type */ 
/,~ ~umber of hard links */ 
!• User ID of owner •/ 
I* Group ID of owner */ 
/* Device type (if inode device) */ 
/* Total size, in bytes */ 
/* Block size for fil~system I/0 •/ 
/* Number of blocks allocated */ 
/* Time of last access *I 
/* Time of last modification */ 
/* Time of .last, chihige •/ 1l> 

------------------- stat6ufh (incluiled by sys/stat.'h) 
• •.!•, '•\;\~) '· 

Figure 10.9 The stat structure. 

,, 
-------------------------,,,,...---- code!io/statcheck.c, 

#include "csapp.h 11 

2 

3 int main (int argc, char **argv) 
4 { 

struct stat stat; 
char •type, ,•readok; 

"' 1 .. , 
5 

6 

7 

8 

9 

10 

11 

12 

13 

]4 
15 

16 

17 

18 

19 

20 
21 

Stat(argv[1l, &stat); 
if'· (S_ISREG (st'at. st_mode)) 

ty:ee ,= 11 regular"; 

f* Dete:Ci'n'ill0 lt!i.le type' •/ 

22 } 

else if (S_ISDIR(stat.st_mode)) 
type =' "direct'ory"; 

e~s~, 

L , r1 ~ q, 

1 

'fl J J 

type = "othe:r"; 
if ((stat.st_mode & S_IRUSR)) /* Check read access, •/, 

readok "yes 11 j 

else 
readok = "no"; ,, 

printf("type: %s, read: %s\n". type, readok); 'f 

exit(O); 

I l 
,. 

.. , , codelio/statcheck.c 
t '0• t 'HJ~ 

Figure 10.10 Querying and manipulating a file's st_mode bits. r 



Section 10.7 Reading Directory Contents 905 

1 Q.7 ftea,ding Directory Contents 

Applications can read the contents of a directory with the readdir family of 
functions. 

#include <sys/types.h> 
#include <dirent.h> 

DIR *opendir(const char *name); 
Returns: pointer to handle if OK, NULL on error 

The opendir function takes a pailin&;,,e and l-etun1s'a poi.ii!eito a directory stream. 
A stream is an abstraction for an ordered iikt ol items, irl'this case a iist of directory 
entries. 

'· 

#include <dirent.h> 

str~ct dirent *readdir(DIR *dirp)i 

Returns: pointer to next directory entry if OK, NULL if no more entries or error 

Each call to readdir returns a pointer to tj1e next directc;>ry entry in th,I' stream 
o\ ·~ .,,~ 1 • J • • '• L ,,• 

dirp, or NULL if there are no more entries. Each directory entry 1s a structure of 
the form 

struct dirent { 1f11 
ino_t d_inoj /* inode number */ 
cliar 'd_name [256] ;• /.•"Filename •/ 

}; 

' , 
Although some versions of Linux include other structure members, these 

are (he,-0nly two that are standard across all systems. 'l)ie,d_name mem\Jer is the. 
filename, and d_ino is the file IQ¢atjon. " 

' On error, readdir returns.NU.LL.and sets eqno. U)lfortuniJtely,,Jqe'only way 
to distinguish an error from the end-of-stream condition is to check if errno has 
Been modified since the call to readdir. 

.. J 

" 
~ 1#

1
incluQ.e: <dl

1

r9nt. h> 
,rl ' 

,, 

int closedir!DIR *dirp); 
Returns: 0 on success,1.1.....1 on error 

" 
The 'Clbsedir function closes .the stream and frees up .any of its resources. Fig­
ure 10.11 shows how we might use readdir to read the contents of.adire~tory. 

I 



906 Chapter 10 System-Level>l/O 

#includ~ "rsapp.J:\.',' 
2 

3 int main(int argc, char **argv) 
4 { 

5 DIR *strea.J?Pi 
6 struct dirent *dep; 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

streamp = Opendir(argv(l]); 

errno = O; 
while ((dep = readdi,(streampl) !~ NULL) { 

\ ! JtT~ ,. (', ' l ~' ·~ 

1
, printf( 11 i;,oup.d file: %s~n 11 , dep->d_name); 
} 

if (errno ! = 0) 
unix_error("readdir e;:.ror 11

); 

17 Closedir(streamp)j 

18 exit(O); 
19 } I• 

Figure 16.~ 1 Reading' the contents .;(·a directory: 
' • 1 

10.8 Sharing Files 
r ' ' 

Linux files can be shared in a number of different.waysi U;iless you·have·a·clear 
picture of how the kernel represents open files, the idea of file sharing can be quite 
confusing. The kernel represents open files using three related data structures: 

'1 ,IJ l' 1 )(· 

Desl:'ripto,.. tab1e. Eaeh process has its own separate descriptor table whose en­
tries are indexed by the process's open file descriptors. Each open descrip-

"tot>erltry points fb art ehtry in1:he file iable: ~· 

File table. The set of open hies is represented by 'a file tab'Je tliat ·is shared by all 
processes. Each file table entry consists of (for our purposes) the current 
file position, a ~efe!e_nce count of the number of descriptor entries that 
currently point to it, and a pointer to an entry int~~ v-no(i,e table. C\9sing 
a descriptor decrements the reference count in the associated file table' 
entry. The kernel will not delete the file table- entry-until its reference, 
count is zero. 

v-node iiible. Like the file table, the v-node table is shared by all processes:Each 
entry contains mo~t of the information in the stat structure, including !lie 
st_mode anctst_siZe members. 1 t ,J ' II i1 



- -- - - - ------- - - --_---_--_-_-_- - _----------===--=== - .....:;; 

Section 10.8 Sharing files 907 

Figure 10.12 ... 1-1 1-

Typical kernel cfata" 
structures for open 
files. In this example, 
two descrip(ors reference 
distinct files. There' is no 
sharing. 

.. , 

'Descriptor table 
(one table 

per process) 

stdin fd 0 
stdout fd,1 
stderr fd 2 

Id 3 
Id 4 

,-----

f--
f--
f--
~ 

Open file table 
(shared by 

all processes) 

File A 

r-
File pas 

refcnt=1 

File B 

i---
File pas 

refcnt=l 

v-node taQJe 
(shared ~Y, :' , 

1 
all p~oqesses) t' 

l 
iJe.access 
File size 
File type 

File access 
File size 
File type 

Figure 10.13 
File sharing. This exarnRI~ 

' ). 
shows two descriptors 

Descriptor table 
(one table 

per process) 

Open file tatile 
(shared ~y 

au processe's) 

v-node table 
(shared by 

all processes) 

sharing the same disk file 
through two open file table 
"entries. 

File A 

File pas 
refcnt=l 

FileB 

File pos 

refcnt=1 

File access 
File size 
File type 

Figure 10.12 shows an example where descriptors 1 and, 4 reference two 
different files through distinct open file table entries. This is the typical situation, 
where files are not shared and where each descriptor corresponds to a distinct file. 

Multiple descriP,tors can also reference the same file through different file 
table entries, as shown in Figure 10.13. This might happen, for example, if you 
were to call the open function twice with the same filename. The key idea iS that 
each de~i;riptor !)as 'its own· gi~tinct file positiq!l,·SO differ.en! reads on different 
descriptors can fetch data from diffen;nt)ocatiOI)S in the file.. ,. , 

We can also understand how parent and child processes share files. Suppose 
that before a call to fork, the parent process has the open files shown in Fig­
ure 10.12. Then Figure 10.14 shows the situation after the call to fork. 

The child gets its own duplicate copy of the parent's descriptor table. Parent 
and child share the same set of open file tables and thus share the same file pos­
ition. An important consequence is that the parent and child must both close their 
descriptors before the kernel will delete the corresponding file table entry. 

I , 

'' 
I 

): 



908 Chapter 10 System-Level 1/0 

Figure 10.14 Descriptor tables 

How la child process 
inherits the parent's open 
files. The initial situation is 
in Figure 10'.12. 

Parent's table 
fd 0 
fd 1 

Open file table 
(shared by 

-all processes) 
File A 

v-node table 
(sharljd by 

all proc~sses) 

File access ~ " 
~ii size 

fd 2 
fd 3 
fd 4 L_ _ _r--_ 

Child's table 

fdO.___u 
fcf, 
fd 2 
fd3,__,,... 
fd 4 

FileB 

File pas 
refcnt=2 

File type 

File access 
File size 
File type 

/ 

m!=tidilr§§!e'.&J: g'.0"?2; M!filtiri!i ii~~~ 91fil. , :£,. t .. . :.; : ,·'·· <;;::: ·~ 
•t ~~ • • • .• 

Suppose the disk file foobar. txt consists of the six ASCII characters foobar. 

Then what is the output of the following program? " 

1 #include "csapp.h" 

2 

3 int mainO 

4 { 

5 int fd1, fd2; 

6 char c; 

7 

8 fdl = open( 11 foobar.txt 11
, D_RDONLY, 0); 

9 fd2 = Open( 11 foobar.txt", O_RDDNLY, O); 

10 Read(fd1, ,&c, 1); 

11 Read(fd2, Ile, 1); 

)2 printf~ 11 c = %c\n 11
, c); 

13 exit (0); 

14 } 

i') l )• 

' • i~ - - • - • - - -il ' . 
li!6iicticii~C2b!~fuilQ.3 CS!ii\itian.$~9i))si :~.;;; ,ll:;;;:.;.:;~· :?:· :s:;,'111.i',;?. ~i'i 
As before, suppose the disk file foobar. txt consists 0fthe six ASCII characters. 
foobar. Then what is the output of the.following progr~m? 

1 '#include 11 csapp.h" 

2 

3 int main() "' 
4 { " ,, ,, '· 
5 int fd; 

6 char c; " 



SectionJ 0.9 1/0 Redirection 909 

7 

8 

9 

10 

fd = Open( 11 foobar. txt", 
if (Fork(), == 0) { 

Read(fd, &c, t); 
11 exit(O); 

12 } 

13 Wait(NULL); 
14 Read(fd, &c, 1); 

15 

16 

17 } 

printfC:'c = %c\n 11
, c); 

exit(O); 

10.9 1/0 ~direction 

O_RDONLY, O); 

,, 

Lip).lx shells provide IIO redirection operators that allow users to associate stan­
dard input and output with disk files. For example, typing 

'; 
linux> ls > foo.txt 

causes the shell to load and execule the ls program, with stancjard output redi­
rected to disk file foo. txt. As we will see in Section 11.5, a Web server performs 
a similar kmd of redirection when it runs a CGI program ,;n behalf of the client. 
So how does I/O redirection work? One way is to use the dup2 function. 

#include <unistd.h> 
' J 

int dup2(int oldfd, int newfd); 
Returns: nonnegative descriptor if OK, -1 on error 

The dup2 function copies descriptor table entry oldfd to descriptor table entfy 
newfd, overwriting the previous contents of descriptor table entrynewfd. If newfd 
was already open, then dup2 closes newfd before it copies oldfd. 

Suppose-that before calling dup2(4, 1), we have the situation in F1gure 10.12, 
where descriptor 1 (standard output) corresponds to file A (say, a terminal) 
and de~criptor 4 corresponds to file B (say, a disk file). The reference counts 
for A-and B are both equal to f. Figure 10.15 shows the situation after calling 
dup2(4, 1). Both descriptors now point to file B;1file A' has been closed and its 
file table and v-node table entries deleted; and the reference count for file B has 
been incremented. From this point on, any data written to standard' output are 
redirected to file B. 

ll!t~~~1mall$19Sm>.~::rrn;;:~~i!;1:r1 
How would you use dup2 to redirect standard input to descriptor 5? 

. ,, 



910 Chapter 10 ,System-Level 1/0 

r·"{·~~--·~ !!' !§',... .,,.. .. ~. •· "-"'~t .. •·""ii'~""'I;-......_~~- • ,,,,.,.. • .,,. _ _.._.,.,. .. .,.,.,,.__,,,.,.,,.,,,.,.,,.._ """"'-~:r""'"""w ...,,... ... ~ ~ ,,,.i 

!1-Aside. Right a11d l!!ft,hoinkies' . .,, \'f "~ ,, ,. "" 
I•' To.?':'.cli~ confusion ·with other brac!<et-JY,P<;-operators such as .'.l' and '[', we'liave al':"ay~ l'eferred to•; 
i 11}.'e shell's'>' 6'p6fator as a "right hoiiiky'' and the'<.: opefatOr as~a "left hoihky:" i ,_, ·t ~ 
l-"""""''""' ~.,.,,,_;7,,,~ .... .,,, • ..,..,_._,,,,~-·""'"""'"'""''.-~""- ... ' ,,_,_ ~ .. '""""'""'""""' ---·~ ...,.:i; ,..,;:,.,..,_.,,_,., _ _;...,.,,,,,_~--~"""'""'"'--~,--,,,,.:;_~~ 

Figure 10.15 
Kernel data structures 
after redirecting standard 
output by calling 
dup2(4, 1). The initial 
situation is shown in 
Figure 10. 1 2. 

Descriptor table 
(one table 

per process) 

Id 0 
fd1, " 
fd 2 
fd 3 
fd4L__J'-

Open file table 
(shared by 

all processes) 

FileB 

File Pas 
refcnt=2 

j t 

v·node table 
(shared by 

all processes) 

File access 
File size 
File type 

Assuming that the disk file foobar. txt consists of the six ASCII characters 
too bar, what is the output of the following program? 1l 

"" ' " 
#include "csapp.h" 

2 

3 in,t main() 
4 { 

5 .int fd1, fd2; 

{6 " char c; 
7 

8 fd1 ;;,1Dpen("foobar. :txt 11
, 

9 fd2 7.,0pen(l1fo0Par. txt", 

10 Read(fd2, &,c, t); 
11. pup2(fd2, fd1); 

12 Re'ad(fd1, &c, 1); 

13 printf("c = %c\n". c); 
14 exit(O); 
15 } 

,, 

O_RDONLY, O); 
O_RDONLY, 0); 

) " 

,, 

. ~ l , 



Section 10.11 Putting It Together: Which 1/0 Functions Should "Use? 911 

10.10· Standard 1/0 

Tpe C lanllu~gf, ,defines a set.of,higher-l~vel input and outP,ut functions, called the 
standard 110 library, that provide& programmers wi\h a higher~level alternative 
to Unix I/O. The library (libc) provides functipns for opening anp closing files 
(fopen andJclos~), readiJ;ig and writing by,\es (;h·ead and fwrite)1.r~'\din_g and 
":ritin~ string.s,(fgets and fputs),.<jnd.~ophisticated formatted I/O (scanf and 
printfj. 

The standard I/O library models an open file as a stream. To the programmer, a 
stream i~. a pointer to a structure o,f type FILE. Ev,ery A.l'f~I C_pr~gram begins with 
three open streams, stdin, stdoU.t, and stderr, which corresponq to stantjard 
input, standard output, and standard error, respectively: 

#include <stdio'.h> 
extern FILE *stdin;i 
extern FILE *stdout! 
ektern FILE *stderr; 

" 

I• Standard input' (descriptor 0) •7 
I*- Standard outputt (des'criptor 1) */ 
I• Standard error (descriptor 2~ *'! 

' 
A stream of type FILE is an· abstraction for a file descriptor and .a stream 

bf'tfer. l;he p4rpose of the sl('eam ,buffer is the p.flme as the Rm ~ea~,'buffer: to 
miillmize the \\umbfr of expensive Linux l!O system calls. For, eJfample, suppose 
we have a program thfit makes n;peate~ cp}ls to the stap.dard I/O getc function, 
where each invocation returns the next,cha~acter from,ii file. When gate is called 
the first time, the library fills the stream buffer with a single call to the read function 
and then returns the first byte in th~ buffer to the application. As lqng ;s there are 
unread bytes in the buffer, subsequent calls to getc can be served directly from 
the stream buffer. · 

J 

10.11 Putting It Together: Which 1/0 Functions Should I Use? 

Figure 10.16 summarizes the various I/O packagys th.at we have dj~cussed in this 
chapter. 

" 
fopen 
fread 
fscanf 
sscanf 
fgets 
ffiush 
fclose 

fdopen 
fwrite 
fprintf 
sprint£~ .. 
fputs . ' 
tseek \ 

\ 
\ 

'l'.' .. 
C application program 

Standard VO l Rio 
functionS functions.> 

~. 'f,~ .. t .. . . . ~ .!'" !•"' .• • •' . open read 
write lseek 
stat close •··--··· 

'"" ~~-, .. -' "' -¢0 -.~ lld:fi(-~C.i~_. -~ }"-' ., -~ ,,, ' r"-i nrx n t1on~ ~ ''!!+ 
.. "· ~~. !ff -c~pesSifd'·Viii~fYS~Q1ixfa1l~)·~'(•' ,,. ~ . . . ... . -"- . . . 

.. 

rio_readn 
rio_writen 

...... rio_readini tb 
rio_readlineb 

r rio_readnb 

Figure 10.16 Relationship between l!nix 1/0, standard.1/0, and Rio. 

I 



912 Chapter 10 System-Level 1/0 

The Unix I/O model is implemented in the operating system kernel. !tis avail~ 
able to applications through functions such as open, close, lseek, read, write, 
and stat. The higher-level Rio art& standard I/Q .functions are impleinented "cln 
top of' (using) the Unix I/O.funclions. The Rio f'/;nctions are robust wrappers for 
read and write that were developed sp~cifically for this textbook. They automati­
cally deal with short counts and ptoyi~~ an efficient buffered approach for reading 
text lines. 0The standard I/6 fllhctions pro ville "ii more complete buffered alterna­
tive to the Unix I/O functions, including formatted I/O routines such as pr.intf 
and scanf. 

So which of these functions should you use'in your programs?.Here are some 
basic guidelines: ' 

G 1: Use the standard 110 functions whenever possible. The st.a.ndard I/O func­
tions are the method of choicl' for IIP on disk and t~rminal devices. Most 
C programmers use standard I/O exclusively throughout their careers, 
never.bothering with the lower-level l,Jnix I/O functions (except possibly 
stat, which has no counterpart in the standard I/O library). Whenever 
possible, we recommend that you do likewise. 

G2: Don't use scanf or rio_readlineb to read binary files. Functions like scanf 
and rio_readlineb 'ate designed specifically for reading text files. A 
commo~ ~rror that students make is to use these funaion'.s to read binary 
data, causing theirprograms to fail ill strange and unpredictable ways. 
For example, binary files might be littered with many Oxa bytes that'have 
nothin~fo do with te'rntinating teilf lines. 

G3: Use the R.Io functions for 110 on network sockets. Unfortuµately, standard 
I/O poses some nasty problems when we attempt to use it for input and 
output on networks. As we will see in Section 11.4, the Linux abstrac­
tion for a network is a type of·file called a·socket. ,Like any Linux.file, 
sockets are referenced by file descriptors, known in this case as socket de­
scripto'rs. Application prifcesses comn'funicate with'processes running on 
other computers by reading and writing socket descriptors. 

Standard I/O streams are full duplex in the sense that programs can perform 
input and output on the same stream. However, there are poorly documented 
restrictions on streams that intera:ct badly with restrictions on sockets: 

' Restriction 1: Input functions following output functions. An input function 
cannot follow an output function without an intervening call to fflush, 
fse~k, fsetpos, or rewind. The fflustl function empties the buffer as­
sociated with a stream. The latter three funCtions use the Unix I/01Seek , . 
function to reset the curreµt file position. ·" 

Res\riction 2: Output ftinctions following input functions. An output function 
cannot follow an' input fuhction with6llt an intervening 'call to f seek, 
fsetpos, or rewind, unless the input function encounters an end-of-file. 



Section 10.12 Summary 

These.restrictions pose a problem for network applications because it is illegal 
to, use tbe lseek function on a,sock'.et, The first restrictionlm.stream I/O 9an be 
worked around by adopting a disaipline.of flushing:the buffer before every input 
operation. However, the only way to work around the second restriction is to 
open two streams on the same open socket descriptor, on~ tor·reading,and one 
for writing: 

I 

FILE *fr,>in, *fpout,;nt 

fpin = fdopen(sockfd, 11 r 11
); 

fpout = fdopeµ(sockfd, 11 w"); 

But this approach has problems as well, because it requires tbe application..1o call 
fclose on botli'streams in order to free the memory resources associated with 
each stream and avoid a memory leak: 

fclose(fpin); 
fclose(fpout); 

Each of these operations attempts to close the same underlying socket descriptor, 
so the second close 9peration will tail. This is not a problem for sequential 
programs, but closing an already closed descriptor in a threaded program is a 
recipe for disaster (see Section 12.7.4). 

Thus, we recommend that you not use th~ standard UO functions for input 
and output on network sockets. Use the robust Rm functions instead. If you need 
lormatted output, use the sprintf function to, format a string in memory, and then 
send it to the socket using rio_wri ten .. If you· need formatted input, use rio_ 
readlineb to read an entire text line, and then use sscanf to extract different 
fields from the text line. 

10.12 Summary 
J u , ~ (I~ • I £ ~1 ~ , 

Linux provicjes a small !lumber. of sysl(jlJl·level f1,1nct\cms.;ba.~ed on the Unix I/O 
model, that allow applications to open, close, read, and write files, to fetch file 
metadata, and to perform I/O redirection. Linux read and write operationS'are 
subject to short counts that 'applications mqst anticipate• ahd handle correctly. 
Instead of calling the Unix I/O .functions directly, applications shc;mld use the Rm 
package, which·deals with short counts automatically by repeatedly performing 
read and )"rite operations until all of the requested data have been transferred. 
ii . .'rlie 'r.iliux kernel uses three related data structures to represent open files: 

Entries in a descriptor table point to entries in the '?_pen file ta)?le, "'.hich ~qint 
to entries in the v-node table. Each process has its own distinct descriptor table, 
while all processes share the same open file and v-node tables. Understanding the 
general organization of these structures clarifies our understanding of both file 
sharing and I/O redirection. " , 

The standard UO library is.implemented on top ofuUnix I/O·and provides a 
powerful set of higher-level I/O routines. For most applications, standard I/O is the 

913 

. I 



914 Chapter 10 System-Level 1/0 

sin;tpler, preferred alternative.to Unix.I/O. However, because of some mutually 
incompatible restrictionson standard I/O and network files, Unix I/O, rather than 
standard I/O;shou1d l)e.used fonnetwork applications. •P .• v, 

" 
Bibliograpliic Notes 

Kerrisk gives a comprehensive treatment of Unix I/O and the Linux file sys­
tem [62]. Stevens wrote the original standard reference text for Unix I/O [111]. 
Kernighan and Ritchie give a clear and complete discussion of the standard I/O 
functions [6lj. • 

'I ~1 ~ 

Homework Problems 

' 
,, 

10.6 • 
What is the output of the following program? 

1 #include 11 csapi).h" 

2 

3 int main() 
4 { ' 
5 int fd1, fd2; 
6 

7 fd1; =:,open( 11 foo.txt 11
, O_RDONLY, 0); 

8 fd2 = Open~~'bai;.txt", O_RDONLY\ O); " 
9 Close(fd2) ;· •, J~ 

10 , fd'.4, ,; Open( 11 baz. tJf;t 11
•, O_RDONLY, O)q 

11 11rintf,(l'fd2·= %d\n 11
, fd2) ~ ,, 

12 exit(O) i " 
13 } 

10.7 • 
Modify the cpf ile program in Figure 10.5 so that it uses th~ Rro functions to copy 
standard input to standard o'utput, MAX'BUF bytes at a'tirhe'. •, ' 

1-6 '"f" 1 .... , 

10.8 •• ',,, 
Write a version of the,statcheck-program in 'Figure 10.10,. called fstij.tcheck; 
that takes a descriptor number on the command.Jh).e rather th'an-a filename: ' 

•• 
10.9, ++ '• I 
C<;msider tl\e.following invocation of the f statch,eck program,from Proqle,in,10.8: 

linUx> fstatcheck 3' < 'too. txt J ·qi 1 

.... , 1• { ,, '(() " t ,(l ). J 

You might expect that this invocation of fstatcheck'would fetch ·and display 
nietadata for file foo. txt• However, when we run it on our system, it fails with 
a "bad file descriptor." Given this behavior, fill in the pseudocode that the· shell 
must· be qecutin'g between the fork and exe'c;ve calls: 

'"' f • :r '• ..J• f, J 1n ,_ 



if (Fork() == 0) { /• child •/ 

} 

I* What code is the shell executjng right.here? *I 
Execve ("fstatcheck", argv, envp); 

10.10 •• 

Solutions to Practice Problems 915 

Modify the cpfile program in Figure 10.5 so that it takes an optional command­
line argument infile. If infile is given, then copy infile to standard output; 
otherwise, copy standard input to standard output as before. The twist is that your 
solution must use the original copy loop (lines 9-11) for both cases. You are only 
allowed to insert code, and you are not allowed to change any of the existing code. 

Solutions to Practice Problems 

Solution to Problem 10.1 (page895) 
Unix processes begin life with open descriptors assigned to stdin (descriptor O), 
stdout (descriptor 1), and stderr (descriptor 2). The open function always re­
turns the lowest unopened descriptor, so the first call to open returns descriptor 3. 
The call to the close function frees up descriptor 3. The final call to open returns 
descriptor 3, and thus the output of the program is fd2 = 3. 

Solution to Problem 10.2 (page 908) 
The descriptors fd1 and fd2 each have their own open file table entry, so each 
descriptor has its own file position for foobar. txt. Thus, the read from fd2 reads 
the first byte of foobar. txt, and the output is 

c = f 

and not 

c = 0 

as you might have thought initially. 

Solution to Problem 10.3 (page 908) 
Recall that the child inherits the parent's descriptor table and that all processes 
shared the same open file table. Thus, the descriptor fd in both the parent and 
child points to the same open file table entry. When the child reads the first byte 
of the file, the file position increases by 1. Thus, the parent reads the second byte, 
and the output is · 

c = 0 

Solution to Problem 10.4 (page 909) 
To redirect standard input ( descriptorO) to descriptor 5, we would call dup2(5, O), 
or equivalently, dup2 (5, STDIN_FILENO). 



916 Chapter' 1 0 System-Level 1/0 

Solution to.Problem 10.5 (page 910) 
At first glance, you might think the output would be 

c = f 

but because we are redirecting fd1 to fd2, the output is really 

c = 0 

)• 

" 

'" 

" 

.. · <I l 
J J ., 



I 
,. 

" 

·' 

'" 

. " 1 

Network Programming 
I 

11.1 The Client:server Programming Model '9f 8 
•i. t 

.Networks 919 11.2 

11.3 'The Glpbal IP Internet 924 
' 

11.4 The Sockets Interface 932 

" 11 .5 Web Servers 948 

11.6 Putting It Together: The TINY Web Server 956 

'11.7 Surlimary 994 " 
1<" If ~· f 

Bibliographic Notes 965 

·Homework Problems 96.5 

Solutions tO Praciice Problems 966 , ' 

917 



918 Chapter 11 Network Programming 

. .. 

N
etwork applications are everywhere. Any time you browse the Web, send an 
email message, or play an online game, you are using a network application. 

Interestingly, all network applications are based on the same basic programming 
model, have similar overall logical structures, and rely on the same programming 
interface. 

Network applications rely on many of the concepts that you have already 
learned iu our study of systems. For example, processes, signals, byte ordering, 
memory mapping, and dynamic storage allocation all play important roles. There 
are new concepts to master as well. You will need to understand the basic client­
server programming model and how to write client-server programs that use the 
services provided by the Internet. Atihe end, we will tie all of tlj,ese ideas together 
by developing a tiny but functional Web server "that cah serve both static and 
dynamic content with text and graphics to real Web browsers. 

11.1 The Client-Server Programming Model 

Every network application is based on the client-server model. With this model, an 
application cm:isist~.of a server l'.rocess and oµe or more client processes. A server 
manages some resource, and it provides some service for its clients by manipulating 
that resource. For example, a Web server manages a set of disk files that it retrieves 
and executes on behalf of clients. An FTP server manages a set of disk files that it 
stores and retrieves for clients:Similarly, an email s~rver manages.a spool file that 
it reads and updates for clients. 

The fundamental operation in the client-server model is the transaction (Fig-
ure 11.1). A client-server transacti~n consists of four steps: 

1. When a client needs service, it initiates a trans~ction by sending a request to 
the server. For example, when a Web browser needs a file, it sends a request 
to a Web server. ' 

2. The server receives the request, interprets it, and manipulates its resources in 
the appropriate way. For example, when a Web server receives a request from 
a browser, it reads' a disk file. 

3. The server sends a response to the client and then waits for the next request. 
For example, a Web server sends the file back to a client. 

Client 
process 

4. Client ...._ _ __. 
processes 
response 

1. Client sends request 

3. Server sends response 

Figure 11.1 A client-server transaction . 

Server 
process 

2. Server 
processes 

request 

Resource 



" Section 1.t.2 Networks 919 

!~si~:-~flent-s;r;v::t~a:~~;;~--~~;{us·~;t;b~s;~~~n;:~t::ns _.,,__"----~·· --;r:F'1 
t 7 P. ·' ,,,,,. ~. '·~.,,,~"}"~·"\ ; < \~ '~~ 11 

I <;;Iient'seryer,transactions are.not database•iransacti911s and do not share any of th~ir'properties, such j 
, as atomicity.,In our conte,xt,.~ !r?hsaction is si,mply•J! sequence of steps carried out by a client and a j 
~ Server. ., , "" 
t - J!k.,Jr,. ,,_ •" • .,,., "-"' -~' f-.-.~ .,,,,,,, ..,, M ~ .. ,_ .. __ ''it• "6 ,.~,- """"""""' ,..,., J 

4. The cEent receive~ the resppnse aqn manipulates it. Por example, after a Web t .Jtt • T , t. , 
browser receiveS' a pag~ from fhe server, it disJ?lays it on the scre~n. 

;'I ' 0 itf"i I J 

It is impbrtant 'to realiZe that clients and servers 'Are pfocesses and not ma­
ch,~es, or hbstslts tRby}tre cifteh 4aftyd in tlji~ context. A sirill!~ h~st'!oan run many 
different client~ an'ct s'ervers coJcll'r¥erltiy, and a client and s~rvef'transaction can 
be on the same or ctlfferent~l1.sts. Tlje client-~eiv,er 'rftodelis the s::lme, regardless 
of the mapping of clients and serve'fs to hosi~. ' ''' 

..IT /( I 

11.2 Networks 
L.1U l 

Clients and servers often run on separate· hosts and communicate using the hard­
ware and software resources of a computer network. Networks are sophisticated 
systems, and we can·only hope to scratch the surface here. Our aim is to give you 
•·workable mental model from a programmer's1perspective, 

To a host, a.network is just another 1/0 device that serves·as a source and sink 
for data; as sh©wn in.Figure 11.2. • , 

Figure 11,2 1 

Hardwamo~gani~ation ,, 
of a network host. 

,, 

' 

CPU'chip 

Register file 

System bus 

"' 
" 

l/O.bus ,,, 

controller 

Mouse Keyboard Monitor 

Expansion slots 

.,, 
I' 

I' 
'I ,, 

1; 

" 

" t 

l 

.I 



920 Chapter 11 Network Programming 

Figure 11.3 
Ethernet segment. 

.. 

Host Host 

100 Mb/s 

Hub 

An adapter plugged into an expansion slot on the I/O bus provides the physical 
interface to the network. Data received from the network. are copied fro'n\ the 
adapter across, the l/O and memory buses into mell)ory, typically by a DMA 
):ransfer. Similarly, d?ia can also,be S?Pied fr<;\11 'i1emo~y tqJJ:e}.let~prk. 

Physically.,a,J¥ltwo,rk is a hier?rchical system t~at is orga~<;.d by
1
geographical 

proximity. At the lowest level is a L_AN (local area n~twork) th~t spa~s a building 
or a campus. The most popu!ar LAN technology by far.is Ethernet, which was de­
veloped in the mid-1970s at Xerox PARC. Ethernet has proven to be remarkably 
resilient, evolving from 3 Mb/s to 10 Gb/s. 

An Ethernet segment consists of some wires (usually twis~ed pairs of wires) 
and a small box called a hub, as shown in Figure 11.3. Ethernet segments typically 
span small areas, such as a room or a floor in ,.·building. Each wire has the same 
maximum ;bit bandwidth, typically 100· Mb/s or 1 Gb/s. One end tis attached to 
an adapter on.a host,· and the other end is attached•to a 'port on the hub. A·hub 
slavishly copies every bit that it receives on each port to every other port. Thus, 
every host sees every bit. / 

Each Ethernet adapter has a globally unique 48-bit address that is stored in 
a nonvolatile memory on the adapter. A host can send a chunk of bits called a 
frame to any other host on the segment. Each frame includes some fixed number 
of header bits that identiry the source and destination of the frame and the frame 
length, followed by a payload of data bits. Every host adapte" sees tlrEi'frAine, but 
only the destination host actually reads it. ' 

Multiple Etherne't segments can be connected into larger LANs, called 
bridged Ethernets, using a set of wires and small boxes called bridges, as shown 
in Figure 11.4. Bridged Ethernets can span entire buildings or campuses. In a 
bridged Ethernet, some wires connect bridges to bridges, and others connect 
bridges to hubs. The bandwidth~ of the wfres can be different. In our example, 
the bridge-bridge wire has a..l Gbts bandwidth, while the four hub-bridge wires 
have bandwidths of 100 Mb/s. 

Bridges make better use of the available wire bandwidth than hubs. Using a 
clever di~tributed algorithm, they automatically learn over time which hosts are 
reachable from which ports and then selectively copy frames from one port to 
another only when it is necessary. For example, if hosi A sends a frame to host B, 
which is on the segment, tlie11'bridge X will throw away the frame when it arrives 
at its input port, thus saving bandwidth on the other segments. However, if host A 
sends a frame to host C on a different segment, then bridge X will copy the frame 
only to the port connected to bridge Y, which will copy the frame only to the port 
connected to host C's segment. 



Section 11.2 Networks 921 

~:'!.~;-;~;s;;r:~s~;:in!~;~:t , ·. < •: .~:-- '~ •• ~-~···1 
t Wtt"' will al'X,ays 

1u~e~ldwerCase inlerneJ to denote the .. gene-r;l ,co~cept, ~nd upper'Case Inter11;,ei~to Cienote· 
4.ra,'il'e~ific imple!I\~ntatjon4namely; t\le. global IP Interpet: • ~· vi.. ' , 
~~-._,;o,..,,.,-~--, -- ...,,,,,,,, .. .,,t$,.,~,,,,,- ~ ""'''''"'"~"'"'"'"""""""'""-"",:,,,..-~.-,,.,.."~""""'-"""" - --ff;;,J,,,,,,,,,,,_< ..,, __ """"_., >•;b. ~ "-~ 

,, 
A B 

Host J-lq~t Host , 
·I 

Hub 
t100 Mb/s 

,,. 
•) 

100 Mb/s• 

fliist HoSt 

J 

" • ' 

Host 

x 
Bridg,e Hub 

100 Mb/s' 

1 Gb/s ' . 
,.,, Host 

•100 Mb/s 
Bridqe 

y 

B----.-, --,-1, Hub. 

Host 

Figure \ 1-4 Bridged Etbernet segments.' 

Figure 11.5 
Co~ceptual view of a 
LAJ\l. 

"' 

O} ,1 1 :' 

. . 
1.Host f .Host Host.t 

,, f;!pst 

... 
Hosi'' 

Host 

c 

r To simplify 01.ir,pictures of L~~Ns, we will draw the hubs-and bridges and the 
wires that connect them as a single.horizontal line, as shown in Figure 11.5. 

At a higher level in the ltierarchy, multiple incompatible LANs can be COI\­

ne'ctect by specialized computers called·routeh to forln an internet (intercohnhcted 
network). Each router has an adapter (port) for'each ne~work that it is connected 
to. Routers can also connect high-speed point-to-point phone connectiqns, wltich 
are examples.of networks known as WANs.(wide area networks), so called be­
cause they span largef> geographical0areas than LANs. In general, routers can be 
used to build)nternets from'arbitrary c6llections of EANs and WANs. For. ex­
ample, Figure 11.6,Shows;an example internet.with.a:pair of LANs and·WANs 
connected by three routers. ,, ,,, J 

' . 



922 Chapter 11 Network Programming 

Host Host Host Host Host 

LAN LAN 

Router l=:::c::::!:;;::I Router Router 
WAN WAN 

Figure 11.6 A small internet. Two LANs and two WANs are connected by three routers. 

The crucial property of an internet is that it can consist of different LANs 
and W ANs with radically different and incompatible technologies~ Each host ls 
physically connected to every other liost, but how is it possible for some source 
host to send data bits to another destination host across all of these incompatible 
networks? 

The solution is a layer of protocol software running on each host and router 
that smoothes out the differences between the different networks. This software 
implements a protocol that governs how hosts and routers cooperate in order to 
transfer data. The protocol must provide two basic capabilities: 

Naming scheme. Different LAN technologies have different and incompatible 
ways of assigning addresses to ltosts. ;rhe internet protocol smooth es these 
differences by defining a uniform format for host addresses. Each host 
is thrn assigned 'at least one of these internet addresses that uniq\lely 
identifies it. 

Delivery mechanism. Different networking technologies have different and 
incompatible ways of encoding bits· on wires·and of packaging these bits 
into frames. The internet protocol smoothes these differences by defining 
a uniform way to bundle up data bits into discrete chunks called packets. A 
packet copsists of a header, which contains the packet size and addresse~ 
of the source and destination hosts, an'd a payload, which contains ,data 
bits sent from the source host. 

Figure 11.7 shows an example of how hosts and routers use the internet 
protocol to transfer data across incompatible LANs. The example internet consists 
of two LANs connected by a router. A client running on host A, which is attached 
to LANl, semis a sequence of data bytes to a server running on host B, which is 
attached to LAN2. There are eight basic stei:s: ,, 

1. The client. 011 host t-invo,kes a system c~ll that copies the data from the client's 
virtual address space intp a kernel buffer. ,, 

2. The protocol software on host A creates a l:ANl frame by appending an 
internet heaaef'.and a·LANl frame l\eadento the data. The internet header 
is addressed to internet host B. The LANl frame header is addressed to the 
router. It then passes the frame to the adapter. Notice that the.payload ofthe 
LANl frame is an internet packet, whose payload.is the actual user data. This 
kind of encapsulation is one of the fundamental insights of internetworking. 



(1)) Dai; I 

Internet packet 
,...--A----, 

Host A 

I Cli~nt I 
! 

Protocol 
software 

(2)f Data I PH fFH1 I 
'-,...-----' _ _i_._ 

LAN1 frame LAN1 
adapter 

r 

HostB 

I s7~r I 
! 

Protocol 
software 

LAN2 
adapter 

Section 11.2 Networks 923 

(Blf Data I 

(7)! Data I PH fFH2J 

(3)) Data I PH !FH1 I 
:;; 

LAN1 

, Router , 

[_ _______ ? LAN1 11 LAN2 t--·--;;---·;j (6Jf D~ta J PH fFH21 
&z-! adapter _ _ adapter . LAN

2 
fi 

0 1 

I * ~LAN2 
(4)1 Data I PH )FH1\ ! ( I Data I PH !FH2) (5) . . 

: \ 

Protocol 
software 

Figure 11.7 How data travel from 011.e ho~t to anpther on an internet, PH: internet 
packet heaqer; FH]: frame header for lANl; FH2:,frame header for lAN2. 

3. The LANl adapter copies the.frame to the network. 

4. When the frame reaches the touter, the router's LANl adapter reads'it from 
the wire and pa~ses it to tlle'protocol software. 

5. The router fet~he's !J;te des'tination,infernet,aqdress from the, internet packet 
header and uses this as an index irito a ro"uting table to determine where to 
forward the pac~<;t, which in this case is LAN2: The router then,strip,S 9ff the 

• 9ld Li\N} fram~ hea<;t\"• pr~Bends a new LAN2 frame header addre.ssed to 
host B, an CI passes the resl\lting frame ,\o the ,adapter. 

6. The ro,nter:s i,AN2 apapt1>r ,cop,ies the frame tq the network. 

7. When the frame·reaches host B, its adapter reads the frame from the wire and 
''passes it to the protocol softw~re. " f 

8. Finally, the protbcol software on host B strips offthe packet lieader and frame 
header. The protocol software' ;..ill eventually'copy the-resulting ddta into the 
server's virtual address space when the server invok'es .a system cal) that reads 
the data. ' 

" 
.Of course, we are glossing over many difficult issues her~. What if ,different 

networks have different maximum frame .. sizes? How do routers k11ow, wji~re ,to 
forward frames? How are routers informed when the network topology changes? 
What if a packet gets lost? Nonetheless, our example captures the essence of the 
internet idea, and encapsulation is the key. 

i I 

' 

I 

I I 
I 



924 Chapter 11 Network Programming 

Figure 11.8 Internet client host Internet server host 
;------------------, 

Hardware and software 
organization of an 
Internet application. Sockets interface 

(system calls) 

' ' ' ' ! Client ! User code 
' ' ' ' ' ' ' ' --...--------- ________ ....,_, 
' ' 

-' 

r------------------: 
' ' ' Server ! 

--~--\ 
Hardware interface 

(interrupts) 
' ' ' ' --:-------- --------:-· 
' ' 
[ Network i Hardware 
1 adapter : 
' ' 

11.3 The Global IP Internet 

TCP/IP 

Network 
, adapter 

' '--------- ---------

The global IP Internet is the most famous and successful implementation of an 
internet. It has existed in one form· or another since 1969. While the internal 
architecture-of the Internet is complex ano constantly changing, the organization 
of client-server applications has remained remarkably"sfable since the early 1980s. 
Figure 11.8 shows the basic hardware and software organization of an Internet 
client-server application. 

Each Internet host runs software that implements the TCP/IP protocol 
(Transmission Control Protocol/lnternet·Protocol), which is supported.by almost 
every modern computer system. Internet clients. a11d servers communicate using 
a mix of sockets interface functions ancj Unix I/O functions. (We will describe the 
sockets interface in Section 11 . .f.) The sockets functions are typically implem~nted 
as syst'em callsthat trap into tlie kernel and c~ll various kerp'el-mode functions in 
TCP/IP. ,; .. 

TC_P/IP is actually a family of protocols, each of whicji contributes different 
capabilities. For example, IP provides' the l:iasic naming scheme and a delivery 
mechanism that can send packetS, known as datagf'a,,;s, from one Tuter~et'host to 
any other host. The IP m'echanism is tinreliab1e in the sense that~t makes no effort 
to recover if datagrams are lost or·duplicated in the network<·BDP •(Bnreliable 
Datagram Protocol) extends IP slightly, so that.c<latagiams can be- transferred 
from process to prosess, rather than hpst to l:)ost. TC_I'. .is a complex, protoco( that 
builds on IP to provide reliable full d'!plex (bidirectional) connect!011s between 
processes. To simplify oiy-1d,iscussion, we "(ill, treat 'I;'CP/IP f!S a ~ingle monolithic 
protocol. We will not discuss its inner workings, and we will only discuss.some of 
the basic capabilities that TCP and IP' provide to application programs. We will 
not discuss UDP. 

From a programmer's perspective, we can think of the Internet as a worldwide 
collection of hosts with the following properties' 

• The set of hosts is mapped. to a set of 32-bit IP addresses. 



Sectiort<l 1.3 The Global IP Internet 925 

'·' '< >t/o ~ 

The original Iiiternet protocol, with its 32-bit addresses, isrJ<nown as Internet Protol::ol Version 4 (IPv4). 
'In 1996, 'the I\lternetEngineering· Task Force (IETJ.;;J propqsed.a ne.w vpn;joi:t.of

1
IP, called InternN 

l!rotocol \.'.ersion.Q. (IPv,6),Jh;ll>µses.-128-bit addresses and tliat was intended•as th<; s11ccessor to IPv'\. 
H9wever, as of 2015, almost 2Q years later, the vast majority of'Inter11et traffic is still carried by IPv4 

'networks. For example, onlyA percent ot'users aetess•Gpdgle'Shvices using IIN6 [42]. 
· Because of lt! low ad9ption raie, we will notdiscuss-IPv6-[n .. anY11etaihnt!i'is qpqk and will focus 
exclusively on the concepts b'ehlnaIPv4. When we talk about the Internet, what we mean is the Internet• . 

.. based on 1Pv4.·Non~ihelessrthe techniques for wtitipg clients•a.pd servers-that we ;,,ill tea~h you laier 1 

11-in~his c;.hajl!e~.aFe,~il."&d onmp'dem'4tt<;rfac~s tha,t ar'lin<;l.e~ew:ten~of~riy P'\rtip¥lar protocoJ. 
"""" .- '= "'' >!#.,. m~-~"' ~ ·1~ o\;~ ·".,,.. Ji.· =-•"f'- """~ 

• The set of IP addresses is mapped to.a.set of identifiers called lntrrnet i;iomain 
names. 

, , 

• A process on one Ipternet ho~t can communicate with a p,rocess on any other 
Internet host over a.c~nnectio(I. 

pie fpllowing sections discuss these fundamental Internet ideas in more detail. 

11.3.1 IP Addresses 

An IP address is an unsigned 32-bit integer. Network programs store IP addresses 
in the IP address structure'shown in Figure 11.9. 

Storing a scalar address in a structure is an unfortunate artifact from the early 
implementations of the sockets interface. It would make more sense to define 
a scalar type for IP addresses, but it is too late to change now because of the 
enormous installed base of applications. 

Because Internet hosts can have different host byte orders, TCP/IP defines a 
uniform network byte order (big-endian byte order) for any integer data item, such 
as an IP add~ess, tljat.is carried a~ross the ne.twork in a p!lcket header. Addresses in 
IP address structures are always stored in (big-endian) network byte order, even 
if the host byte order is Jittle-endian. Unix provides the following functions for 
converting between network and host byte order. 

------------------------------- codelnetp/netpfragments.c 

I* IP addre'ss~ structure */ 
struct in_addr { 

uint32_t s_addr; /* AOdress in network• byte order (big-endian) */ 
}; 

----------~-------------------- codelnetp/netpfragments.c 

Figure 11.~ IP address structure. 

I 
• 

I 

I 
I 
• 

I I 
. I I . 
I I 



926 Chapter 11 Network Programming 

#include <arpa/inet.h> 

uint32.,:t htonl(uint32_t hostlong); 
uint16_t htons(uint16_t hostshort); 

uint32_t ntohl(uint32_t netlong); 
uint16_t ntohs(unit16_t netshort); 

Returns: value in network byte order 

Returns: value in host byte order 

The htonl function converts an unsigned 32-bit integer from host byte order to 
network byte order. The ntohl function converts an unsigned 32-bit integer from 
network byte order to host byte order. The htons and ntohs functions perform 
corr~~ponding conversions for unsigned 16-bit integers. Note that there are no 
equivalent functions for manipulating 64-bit values. 

IP addresses are typically presented to humans in a form known as dotted­
decimal notation, 'where each byte is represented by its decimal value and sep­
arated from the other bytes by a period. For example, 128. 2'.194. 242 is the 
dotted-decimal representation of the address Ox8002c2f2. On Linux systems, you 
can use the HOSTNAME comm'and to determine the dotted-decimal address ~fyou'r 
own host: 

linux> bostname -i 
128. 2. 210 .175 

Application progr~ms can convert back and forth between IP addresses and 
dotted-decimal strings using the functions inet_pton and inet_ntop. 

#include <arpa/inet.h> 

int inet_pton(AF _!NET,• canst char *src, void\ *dst); 
Re'turns: 1 if OK, 0 if src is invalid dotted decinl.al,1-1 on error 

• 
canst char;*inet~ntop(AF_INET, canst void *src, char *,dst, 

socklen_t size); 
Returns: pointer to a dott~d-decimal st~ing if OK, NULL on error 

In these function names, the, "n" stands for netwprk and the "p" stands for pre­
sentation. They can manipulate either 32-bit IPv4iaddresses (AF _INET); as shown 
here, or 128-bit IPv6 addresses (AF _INET6), which we do not cover. 

The inet_pton function converts a dotted'decimal string (src) to a binary IP 
address in network byte order ( dst ). If src does not point to a valid dotted-decimal 
string, then it.returns 0. Any other error returns -1 and sets errno. Similarly, the 
inet_ntop function converts a binary IP address in network byte order (src) to 
the corresponding dotted-decimal representation and copies·at most hze' bytes 
of the resulting null-terminated string to dst. 



Hex address 

OxO 
Oxff ff ff ff 
Ox7f000001 

Dotted-decimal address 

205.188.160.121 
64.12.149.13 " . 
205.188.146.23, 

Section 11.3 The 61obal IP Internet 

~~~-#\')~ ..... ,.,*'·'J/!f!'~ +1.••-h #,-• ...... ~~~~ 

~~.Qlgm~T.tA~..!!ll~:#&;..'"~
Write a program hex2dd. c that converts its hex argument to a dotted-decimal
string and prints the result. For example,

linux> . /hex2dd Ox800~~2f2,
128.2.194.242

11>'"-fiti .. '·~.fi~';rcr~;-~,~d·"c'>•l'."""'1 .. <:;:~:.9··~ 'z'i\111!~~'" •0 '"''"',,,~.·· . UiJ..~ ce;~~i~ _sg_yt1~ u_..Ji· ,.,~ ~~ aA • 1 ;,,.~
,, - " , 0L ,

Write a Jlfogram dd2hex. c that cony~rts its dotted-decimal .. argument to a hex
number and prints the, result. For example,

ifnux> ./dd2hex 128.2.194.242
0~8002c2f2

' I
11.3.2 !n,tei;net Domain Names

Internet clients arid servers use IP' addresses when they com,municate with each
other. However, large integ~rs are di(ficult for people to remember, so the Internet
also defines a separate set of more hunian-frierldly domain names, as well as a
mechanism that maps the set of domain names to the set ofIP addresses. A domain
name is a sequence of words' (letters, numbers,' and dashes) sep'a):ated by periods,
such as whaleshark. ics. cs. emu. edu.

The set of domain names forms a hierarchy, and each domain name encodes
its position in the hierarchy. An example is the easiesi way to uncferstand'this.
Figure 11.10 shows a portion of the domain name hierarchy.

The hierarchy is represented as a tree. The nodes,of the tree represent domain
names that are formed by the path back to the ro9t. Subtrees are'ieferred to as sub­
'domains'. The'first level in ihe hierarchy is an uhnamed root node. The next level
is a collection of first-level domain names that are defined by a nonprofit organi­
zation called ICANN (Internet Corporation for Assigned Names and Numbers).
Common first-level domains include com, edu, gov, org, and net.

927

l
I

I

I
I

I

928 Chapter 11 Network Programming

Unnamed root

~
com First-level"'domain names

mil A gov

mit emu berkeley
\
amazon Second-level domaif, names

~
cs ece

I
www Third-l'evel domain names

/~
ics pdl

176.32.98.166 (

.J l
whaleshark www

128.2.210.175 128.2.131.66

Figure 11.10 Subset of the Internet domain name hierarchy.

At the next level are second-level domain names such as emu. edu, which are
assigned on a first-come first-serve basis by various authorizea' agents of I CANN.
Once an organization has received a second-level domain'naine','then ifis free to
create any other new domain name within its subdomain, suth as· cs. 'clnu. edu.

The Internet defines a mapping between the set of domain names and the
set of IP addresses. Until 1988, this mapping was maintained manually in ;t,sin­
gle text file called HOSTS. TXT. Since. then, the mapping has been maintainecl in a
distributed worldwide database known as DNS (Domain Name System). Concep­
tually, the DNS database consists of millions of host entries, each of which defines
the mapping between a set of domain names and a 'set of IP actdressek'In a math­
ematical sens~, think of each host i;ntry as a_n equiy!llepw~lass,of,doJ?lain l\~~iies
and IP addresse~ .yv,e cari,explq~e s01;ne of the pro,Pertie~,of !\le DNS mappmgs
with the Linux NSLOOj<UP prpgram,·which displays th)O IP addresses associated with

a domaiµ name~.1 ~r "
,. Each Interne,t

1
host has th,e ,l?cally deJ1ned l)omaiI] naq:i~ ~ocalho~t, whiph

always maps to the loop back address 127. Q. 0. ~:

~ .,rt
linux?v nsl?oif?P localhost
Address: 127.0.0.1 ,.

' "' -~ . ., ., ~. .
'.Jbe loc.~l,i\9st npme provides a conven_ient ,and por~abl<; w,ay to reference clients
~p.d servers tl;tal,jlfe runniI]g.qn.th!' sa!i]e machine, -.yh_icli can be y,spefja,lly usefl!I

.-r f• ,,
1. We've reformatted the output of NSLOOKUPJl:o improve readability.

Section 11.3 The Global' IP Internet 929

for debugging. We can use HOSTNAME to determine the real domain, name of our
local host:

linux> hostname
whaleshark.ics.cs.cmu.edu

"
In tlie simplest case, there is a one-to-one mapping between a domain name

and an IP address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

However, in some cases, multiple domain names· are mappe"il to the same IP
address:

linux> nslookup .cs.mit.edu
Address: 18.62.1.6

linux> nslopkup eecs.mit.e~u
Address: 18.62.1.6

I •

In the rrtost general case, 'multiple' domain names are mapped to the same set of
multiple1P addresses: • "' '

linux> nslookup WWW.twitter.Com
Address: 199.16.156.6
Addres·s: 199 .16 .156. 70
Address: 199.16.156.102
Address: i99•.16 .156. 230

•t ;;, ',,

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Addr~ss: 199. l'il'.'i56.70

"

,.
Finally, we notice that some ,valid domain,Ji1!mes are not mapped to any IP

address: ,,

linux> nslookup edu
*** Can't find edu: No answer
linux> nSiOokfip i cS. c.S. emu. edu
*** Can 1 t find ics.cs.cmu.edu: No answer

11.3.3 Internet Connections

Internet clients and servers communicate by sending and receiving streams of
bytes over connections. A connection is point-to-point in the sense that it connects
a pair of processes. It is full duplex in the sense that data can flow in both directions

I
I
l

l
' '\

l
l

l

'I

I

930 Chapter 11 Network Programming

~,...., , ~ ~ { Jff ;1;,I}~/ :;

Aside How many Internet hosts ar~ there?·· id

1\vice a .year since 1987, the Interllet Systems Consortivmp0nducts the Internet Domain Survey. The !
, survey, which. estimates the n"Umber of Internet "hosts by"counting the number of IP adctre's;;,,. thar l

have
0

been a~~igned a domain ~am~,, reveals an am~ing tr~nd. Since 1987: 'when there were abdul "
20,000 Internet hosts, t!;e riumb~rR~ hpst~)las ,been,}ncn!asii;g~exr,onentially. By,Z015,. therp.w~r~ .orer ,
1,000,000,000 Internet hosts! . , ' ., ~ ' ~ ·{

at the same time. And it is reliable in the sense that-barring some catastrophic
failure such as~ c;able cut by the proverbial careless backhoe operator-th~ stream
ofbytes sent by the source process is eventually received by the destination process
in the same order it was sent

A socket is an end point of a connection. Each socket has a corresponding
socket address that consists of an Internet address and a 16-bit integer port2 and
is denoted by the notation address: port.

The port in the client's socket address is assigned automatically by the kernel
when the client makes a connection request and is known as an ·ephemeral port.
However, the port in,.lh~ server's socket ad~res~, is typically some well;k71own
port that is permanently associated with the service. For example, W~b servers
typically use port 80, and email servers use port 25. Associated with each service
with a well-known port is a corresponding well-1,nown service name. For ex~ple,
the well-known name for the Web service is http, and the well0 known name for
email is smtp. The mapping between well-known names and well-known ports is
contained in a file called /etc/servic~s.

A connection is uniquely identified by the socket· addresses of its two end
points. This pair of socket addresses is known as a socket pair and is denoted by
the tuple

(cliaddr: cliport, servaddr :servport)

where cliaddr is the client's IP address, cliport is the client's port, servaddr js the
server's IP address, and servport is the server's port. For example, Figure 11.11
shows a connection between a Web client and a Web server.

In this example, the Web client's socket address is

128.2.194.242:51213

where port 51213 is an ephemeral port assigned by the kernel. The Web seryer's
socket address is

208.216.181.15:80

2. These software ports have no relatiorrto,the hardware ports in network"Switches and routers.

•

Section 11.3 -The Global IP Internet 931

Thelhternet iS one of the most successful examples of governpient, unive'fsit)r, and industry partnership.
Many factors~ontributed to its success, but we think t'.yO arl' particularly important: a strstained 30.

I
year i~vestmepflzylhe United States gqverhmeht and ff commitment by.passionate researchers to what
Dave Clarke at MI'F has dubbed •'lfbugh·conserlsus ·and working code'J' 1,'

Th"' seeds of the Internet were.sown iii 1957, when1 allthe height ohhe €old War,< tire· Soviet
I' Union shocked the world by launching Sputnik, the first artiflcial earthsatellite. In response, the lJnited '
, States:11;overnn!e11t.created the Advanced Resean;h'Projects Agency (ARPA), wllose charter was to
I reestablish the US lead in science anq .technology. In· 1967, Lawrence Roberts at ARPA published
~ plans fo~ a n~w qetwork i:alJi:cj th.e ARPA~ET. The fu;sl· ARP,:\NET nodes were up and running by
' 1969. By 1971, there were 13 ,:\RPANET nodes, and·email had emerged as the first important network
j application... •. , ~
1 ln 1'972, Robert Kahn outlined the general principles bf internetworking: a collection of intercon­
f nectecf Il'!'tWorks,,with Commtµiication be\w~en,the ne1works hm;idJeti.independently On a "best-effort
[•basis" by black (>ox.es call~d "routern.'' In 1974, Kahn lmd•Vinton'Cerf,publishect the ,first details of
I' TC:PM lvhicl>by<1982 had b8come the standard internetworking protocol fm;ARPANET. On January
i i, 1983,,ever~·node on ~he ARPANET1s\vit~hed to.n:,;PIIP, qiarkirlg the bird\ of th!" global IP Internet.
r . In 1985, Paul Mockapetris inyenttld DJ:!S, aiid there mere' over 1,QOO Internet hosts. The next year,
I th!' NatioqaLScience Fo\Jndation (NSF) liuilt the NSFNET backbone connecting 13 sites with 56 Kb/s•
f e]:tone}ines)t ~as upgrade.ct top Mbfs Tl !inks in 1988and15 Njb/s plinks in 1991. By 1~88, there

were more than 50,000hosts.In1989, the original ARPANET was officially retired. In 1995, when there
t were almbst 10,000,000 Inter1J<:t hosts, NSF retired NSI;N]':T and replaced it with thp modern Internet

.. architecture, based on priva!e commercial backbopes~co~uiec~ed by~public network access points.
~ '$ ~

Figure 11.11
Anatomy of an Internet
connection.

Client socket address
128.2. 194.242:51213

Server socket address
208.216.181.15:80

r-8-----------------!._.······· ···r----(-p~o:rt~8~0-r_) _____ i,,'

i,, Client f, Connection socket pair
-·------------------.! (12a.2.194 242:51213, 2oa.21e.101.15.00) :_ _________________ J

Client host address
128.2.194.242

where port 80 is the well-known port associated with Web services. Given these
client and server socket addresses, the connection between the client and server
is uniquely identified by the socket pair

(128.2.194.242:51213, 208.216.181.15:80)

Seiver host address
208.216.181.15

•
~!
l

ll
I

l
I

I '
, "

932 Ehapter 11 Network Programming

Aside 'Origins ot the socket§ interface '
l
'• The original sockets interface was cteveloped by researchers at University of California, Berkeley, ·in
! th,e early 1980s. For, this reason; it is"ofteruefefred to.as ':BtrReley sockets•· The B!'rkelerrese·archers !

develbped the sockets interface to work•with any underlying protocol. Thefirst implementation was !
• for TCP/IP, which they included in the ,Unix 4.2BSD kernel and distribllted to numerous universities I

and labs. This was ati•important. evegt in Internet history.· Almost overnigh\, thousands of people had j
~ccess tq TCP/IP anp ifs source codes. It generated tremendous excitement'1nd sparked a flurry of new
research in networking and~interp.etworking.~ •''

t:
~""'" """''•~' rn '"" >!lo...,_ -·u~,,..- o'>"'

11.4 The Sockets Interface

The sockets interface is a set of functions that are used in conjunction with the Unix
IIO functions to build network applications. It has .been implemented on most
modern systems, including all Unix variants as well as Windows and Macintosh
systems. Figure 11.12 gives an overview of the sockets interface in the context of a
typical client-server transaction. You should use this picture as a road map when
we discuss- the individual functions.

~open_clientfd

Client

getaddrinfo

socket

connec,t

Connection
request

---------------....

Server

getaddrinfo

socket

bind

listen

.accept

rio_writen 1------•\rio_readlineb

rio_readlineb \.--------! rio_writen

EOF
i-io_readlineb close

close

open_listenfd

Await connection
request from
next client

Figure 11.12 Overview of network applications based on the,so;i.ck,ets _interface.

!
i
r
I

Section 1 l .4t The Sockets Interface

<, -$- ., ' ' '' ~. >,' ., ,.,,, J; t ' ..,,, ~{;'- "' r._.,_.-_ ·~,......-. '-"""""'t"'"''"1. '!"'""'"""""""~-~--='""'!'•'""t"""'"!l'='l,""~--·~. -.-.,..,-.,..,.-,""'~~~11"""'"""!'.f-"' ·--·· .,,_,,,. - ... , .• -.

·Asl!fe , Wh<1,t.ddes th~,-i.n suf(i~ mean? • • ·,i;,"', ,. .: ·
' I· The .'.in suffix is snort for inier~ift, bof input.
~-.,..,.~~-,--,.~.. -~ .,,. ... ~"'~ ... ,,_. ~~~'1{1.!l._ ~~-).(~4;£L,l:,,,,,...,....,"" ~ !'':!""' -~"" ~

933

. ~
' j

------------------------------- code/netplnetpfragments.c

/* IP socket address ,structure */
struct sockaddr_in {

};

uint16_t sin_family;
uint16_t sin_port;
struct in_addr S'i~_addr i
unsigned char sin_zero[S];

I• Protocol family (always AF_INET) •/
I• Poit number in network byte order */
/* IP address in network byte order *I
I* Pad to sizeof(struct sockaddr) */

/* Generic socket address structure (f9r connect, bind, and accept) */
' " . struct sockaddr { '

,uJnt16_t
ch~f

sa_family;

~a-~~t~[14];
!• Protocol .f,am~ly ~/
!,• ~~~r.e~s ,data, •/ '

-~~-~~-------~------~---~------ code/netplnetpfragments.c

Fi,g~re 11.13 ~ocket adar'ess structures.

11'.4.1 Soc~et AdClress Stru'ctures,

From the perspective of the Linux kernel, a socket is an end point for communi·
cation. From the perspective of a Linux program, a socJiet is an open ille with a
corresponding descriptor.

Internet socket addFesses are stored in''16-byte structures liaving tlie type
sockaddr _in, shown in Figure 11.13. For Internet applications, the sin_family
field is AF_INET, the sin_port field is a 16-bit port Jtllll!ber, and the sin_addr
field contains a 32-bit IP address. The IP address and port number are always
stored in network (big-endian) byte orcfer.

The connect, bind, and ~ccept functions require-a'fpointer to a protocol­
specific socket address structure. The problem faced by the designers of the sockets
interface was· how to define these functions to accept any kind of socket address
structur~ .. Today,,w~ would use the generic void • pqinte,r, wqicJi..slid 1uit exist in
C '!t that tjme. Their sqlution w~s to define socket~ fqnctions to expect a pointer to
a generic sockaddr str).lcture (Figure, 11.1~) and then require appJications to cast
any poiQ.ters.ito;protocpl,specific ~truc;ture~ to this geperic stpwture. To simplify
our code.examples, we fo!)ow•Stev~ns's lead an<! defin~ ,the,follo)".ing, type:

typedef struct sockaddr SA;

I

l

934 Chapter 11 Network Programming

We then use this type whenever we need to cast a sockaddr _in structure to a
generic sockaddr structure.

11.4.2 The socket Function

Clients and servers use the socket function to create a socket descriptor.

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns: nonnegative descriptor if OK, -1 on error

If we wanted the socket to be the end point for a connection, then we could call
socket with the following hardcoded arguments:

clientfd = Socket(AF_INET, SOCK_STREAM, O);

where AF _INET indicates that we are using 32-bit IP addresses and SOCK_
STREAM indicates that the socket will be an end point for a connection. However,
the best practice is to use the getaddrinfo function (Section 11.4.7) to generate
these parameters automatically, so that the code is protocol-independent. We will
show you how to use getaddrinfo with the socket function in Section 11.4.8.

The clientfd descriptor returned by socket is only parti~lly opened and
cannot yet be used for reading and writing. How we finish opening the socket
depends on whether we are a client or a server. The next section describes how
we finish opening the socket if we are a client.

11.4.3 The connect Function

A client establishes a connection with a server by calling the connect function.

#include <sys/socket.h>

int connect(int clientfd, const struct sockaddr. *addr,
socklen_t addrlen);

Returns: 0 if OK, -1 on error

The connect function attempts to establish an Internet connection with the server
at socket address addr, where addrlen is sizeof(sockaadr_in). The connect
function blocks until either the connection is successfully established or an error
occurs. If successful, the clientf d descriptor is now ready for reading and writing,
and the resulting connection is characterized by tile socket pair

(x:y, addr.sin_addr:addr.sin_port)

•

Section 11.4• The Sockets Interface 935

where x is the client's IP address and y is the· ephemeral port that uniquely
identifies the client process on the client host. As with socket, the best practice is
to use getaddrinfo to supply the arguments to conn'ect (see Section 11.4.8).

11.4.4 The bind Function
'

The remaining sockets funCtions-bind, listen, and acf:ept-are used by servers
to establish connections with clients.

J

#incl'Ude <sys/socket.h>

int bind(int sockfd, const~ struct sockaddr *t_ddr,
socklen_t addrlen) i

0

Returns: 0 if OK, -1 on error

The bind function asks the kernel to associate the server.'s;socket address in addr
with the socket descriptor sockfd. The addrlen argument is sizeof (sockaddr _
iii)'. As With socket and connect, 'the oest'practice 'is to use•getaddrinfo to
s,upply the arguments to bind (see Section 11.4.8).

11.4:5 Th1dist'lh Function

Clients are active entities that initiate.connection requests. Servers are passive
entities that wait for connection requests from clients. By default, the kernel
a~~umes that a descriptor created by the socket functioi{ cor"responct'if to an activ~
s~'ckel 1that will live on the client end of a connectilm. A sen:er calls the ij.'~ten
' I ,\ I _,< • • ~ , • ~\

funct10n to tell thekernel that the descriptor will be usea by a servi(r instead of a
cli~nt. ·

· #include '$-Bys/socket .h>,

' int listen(~nt:·soc~fd, int backlog);
'J' .J

Returns: 0 if OK, -1 on ehor
T<•f'.) t

,., lt Jl

The listen function converts• sockfd from air activ~ socket to a listening socket
that can accept connecti8n requests from clients. Thebacklo'g argiiment is a hint
about the number of'outstan'ding connection requests thafthe kernel should queue
up before· it starts to refuse requests. The exact meaning Of the backlog argument
requires an· understanding of TCP/IP that is beyond our sco'pe. We will typically
set it to a large value, such as 1,024.

t
I

I
I
I

I

936 Chapter 11· Network Programming

listenfd(3) a a
clientfd

Connection listenfd(3)
request a----------------------1 Server 1.

clientfd

listenfd(3)

I Client l, t Server I
clientfd connfd(4)

1. Server blocks in accept f
waiting for conn'ectton }eq'JeSt on
listening descripto'r i:rstenfd.

2. Client makes cpnnection request by
calling and blocking in connect.

3. Server returns connfd from accept.
Client returns from connect. Connection
is now established between clientfd
andconnfd.

r·
Figure 11.14 The roles o~ the listening and connected descriptors.

11.4.6 The accept Function

Servers wait for connection requests from.,iients by calling the accept function.

#include <sysYsocket.h>

int accept(int listenfd, struct sockaddr ~ad~f? int *~d~~~~n)j
Returns: nonnegative connected descriptor if OK, -1 on error

" '• f•

• • • #"!

The accept function waits fo~ a connection request from a client to arrive· on
th'!_ listening desc~iptor ~isten~d, !Jien nils !n the client's soc~et.addrds in addr,
and returns a connected itesc'riptor that can be used to communicate with the.clieri'f .,
using Unix I/O functions.

The distinction between a listening descriptor and a connected descrlpfor
confuses many students. The listening descriptor serves as an end point for client
connection requests. It is typically created once and exists for the lifetime of
the server. The connected descriptor is the end point of the connectfon that is'
established between the client and the server. It is created each time the server
accevts a connection request and exist~ 'only as long as it takes th;; server to service
a 6iient. ,,~, 1

Figure 11.14 outlines the roles of the listening and connected descriptors. In
step 1, the-server calls accept, which waits for a connection request to arrive on
the listening descriptor, which for.concreteness we will· assume is descriptor 3.
Recall that descriptors 0-2 are reserved for the·s\andard files, .,., •

In step 2,. the client calls the connect function, which sends a connection
request to,listenfd. In step 3,.the accept function opens a new connected de­
scriptor connfd (which we will assume is descriptor 4), establishes the connection
between clientfd and connfd, and then returns connfd to the application. The

Section. J 1 ,4, The Sockets Interface 937

Aside Why.·th.e d\~iln~ti~n'betwe';;n'listenfn!f<tnd!conneCte~ descript,9rs? M• • i: ;1:':: ··: • '~,iq r'''">V -~~'"''''"""''~·--"""'f(;;W'""'1P"'~":-"""'!!:-,-""~""~"'-""'itJ.~~--~""--:~~ ,,.,,,,,,,,.,._,,,,,,,,,_.,,..,,~.,,,.,,,""efl':"'':"-.~l!"'"""""-""''1

• Yo!11Jll~t~*P;£!er)".it¥ .til~ ,,,sotk;ts inre~ac~ ;niak;~. \ distinc~igp· ~eny~:n li;t~i11g'}1~Cl:coMecM;> f
I >aescr·.··.iP.!~rs, ;\t. fir~t glaJce, }:~ppe;>'.f:'f.~ b~·a. n ~IJn~~c.,es. ~~.ry;co. mp!,isa.6?g •. :fHoW,e ..• ~er;·dis~ingu,i~hihg l
~.betw.~ep !he-tw;? turqs,puf t0Ji~:,qy1t<?)~e(ul,,.l>,ecavse1Hll~s µs t9'.JJJ,11Ict cpncµn:ept servers.that can

[

p. roce.ss .tpa.n. Y. c)i.·e .• n· t con. ne,ctio. !1 .. s. ;ffei!Jlul. !~n .•.... eoq.s} F··o .. J' c;x.ant. ··.Pf.ee., .e~sh .t.i1J1'1·<1··co. l}li,ect.ilJp.feql\e~ .. forriv~s. 1 dn:t~e •l!s.t~i)ing .1Jscriptor, W,e,,m~~t.fork ~ ~~"'.;:roce,ss,t\Jat.cg~u!'i?'.es·with•JQ.e cli~nt.2yer.it§ l
9onp!'c1e,? \]<:cS,SW!tor,. You'll \earn 111ore ~bqu~f2\WUJ;J:e~t,serv;£_s.11!.'Ch~pt~r 12;. ,, . l
.,,.,,,,,,.,~,,,,...~~ ... ~-~-~...,,.w,,.~-~~~..,y,J~..@;,,,.~- -~ - ~ ... ·b~ "lb"".!'.,,.·~'""'$

client also returns from the co'i"ect, and from this point, the client and server
can pass data back and forth by reading and writing clientfd and connfd, re­
spectively.

11.4.7 Host and Service Conversion

Linux provides some powerful functions, called getaddrinfo and getnameinf o,
for converting back and forth between'binary socket address structures and the
string representations of, hostnames, host addresses, service names, and port
numbers. When used in conjunction with the sockets interface, they allow us to
write network programs that are independent of any particular version of the ·IP
protocol.

The getaddrinfo Function
'

The getaddrinfo func_tion converts string representa_tions of hostnallles, host
addresses, service .names, and.port numbJ'rs into socket iiddress stru,tµr~s.,lt is
the modern replacement for the. obsolete gethostbyname and getservbyname
functions. Unlil>l: "these "functions, it is reentrant (see Section 12.7.2) and works
with any protocol!

#include <sys/types.h>
#,include <sys/socket.h>

. #include <netdb .'h> ..
int getaddrinfo(const char *host, const ch'ar'*service,

const stDuct addrinfo *hints,
struct addrinfo **result);

Returns: 0 if OK, nonzero error code o'n error

yoid freeaddrinfo(struct ~ddrinfo *result);
Returns: nothing

const char 'J'gai._sitrel'ror (int errcode);

Returns: error message

938 Chapter 11 Network Programming

Figure 11.15 addrinf o structs

' r

Data structure returned
by getaddrinfo.

[result

r,

]
,,

J

.. ·~.~-
...,,..

'
Socket address stru cts

.,. ~~ ~
ai_canonname

J "•·" ' ~] p.i_addr L~'""u ,.~

c ai_next

.f1 .,
'

' '
NULL

J ~

.1 l ai_addr 1 '

fl ai_next

<Jo l ,
NULL ._.,

' J• ~

' ~ ai_addr 1«, • ~ ""\<'

NULL

Given host apd.servic;e (the, two components of a socket adc,lress/, getaddrinfo
returns a result that points to a linked list of addrinfo structures, each of
which points to a socket address structure that corresponds to host and service
(Figure 11.15).

After a client calls getaddrinfo, it walks this list, trying each socket address
in turn ·until the calls to' socket and connect succeed and the connection is
established. Similarly,- a server tries each socket atldtess on tlre list until the calls
to sos;ltet and bind succeed and the descriptor is bound to•a valid socket address.
To 'avoid· memory leaks, the application must eventually free the list b}'<calling
freeaddrinfo. If getaddrinfo returns a nonzero error code, tlie application can
call gai_strerror to convert the code to a message string.

The host argument to getaddrinfo Can be either a dOlpain name or a numeric
address (e.g., a dotted-decimal IP address). The service argument can be either
a service name (e.g., http) or a decimal port number. If we are not interested in
converting the ~ostname to an address, we can set host to NULL. The same hol'ds
for service. However, at leasl·one of them must be specified.

The optional hints argument is an addrinfo .structure (Figure 11.16) that
provides finer control over the list of socket addresses that getaddrinfo re­
turns. When passed as a hints argqment, only the ai_family, ai_socktype,
ai_protocol, and ai_flags fields can be set. 'D!e other fields must be set to zero
(or NULL). In practice, we use memset to zero the entire structure and then set a
few selected fields:

• By default, getaddrinfo can return both IPv4 and I~6 ·socket addresses.
Setting ai~f ainily to AF _INET restricts the list to IPv4 addresses. Setting it
to AF _INET6 restricts the list to IPv6 addresses.

.section. 11.4 The Sockets Interface 939

--~"'--------'---"'-' -'-' --------------- code/netp/netpfragments.c

"

struct addrihfo {
int
fut
int
int
char
size_t
str1;.ct sockaddr

ai~flags;

ai~family;

ai_sock.type;
ai_protocol;

*ai_Canonllame;
ai_ttdd~len;

*ai:_addt!
struct addrinfo *ai_next;

}; <l <

I• Hints argument' 'flags >'/
/* First arg td"I socket flln'ction */
'/* second arg to sdcket function */
/* Third' arg to socket fundtion */
'/• Canorri'cal hbstname */
/* Size of ai_addr struct */
/* Ptr to socket~ adqress' Structure •/
/* Ptr to next item''in 'liriked list */

'
"' ------------------------------- code/netp/netpfragments.c

Figure 11.16 The addrinfo structure used by getaddrinfo.

,,,
"

'" .J 1.'1

• By default, for each unique address associated with host, the getaddrinfo
function can return:up to three addrinfo structures, each with a different aL
socktype field: one for connections, one for datagrams (not covered), and
one for raw sockets (not covered). Setting ai_socktype to SOCK_:S'FREAM
restricts ,th,<; list to at most one 11\ldrinfo structure for_,ei1;ch unique address,
one whose socket address can be used as !he end point of a connection. This
is the desired biohavior for ~of our example pr,ograms.

• The ai_flags field is a;bit mask that further modifies the default behavior.

"

You create it by oRing combinations of various values. Here11re some that we
find useful:
. Al_ADD~CONFIG .. This flag is recommend~d if\ou are using conrn:,c­

tions;r~4]. I~ ~sk~ g~taddr~nfo to,return I,Pv4 a.cJd,r~s~es Ol).(Y if t,he
, ... local,hosi is con~gure<j for 1Pv4. Similarly ~or 1Pv6. ' "

,~l_CAN,ONNAME. By p~faul\, th~,ai_,canonname field is N.ULL. If this
flag is set, it instructs getaddrinfo to point the ai_e<anonname field in

' { f I) f " '
the first addr~nfo str,u,rtwe,i? ihe list to the caponical (o\ficia) qame
of host (see Figure 11.15).

• ' .< • ~ r)' ! ,

AI_NU:r.:rnRJCSERV. By defa':'lt, the servic<; argument c.;m.be a s9rvice
i;iame or a port nuII\\Jer. 'J)n,s flag forces the, service argument to be
a port number.

Al_PASSIVE. By default, getaddrinfo returns socket addresses that can
be used by clients as active sockets.in calls to connes::t. This flag
instructs, it to return socket address~srthat can be used by servers as
listening sockets. In this case, the host argument should be NULL.
The address field in the resulting socket address structure(s) will be
the wildcard address, which tells the kernei'that this serv~r will accept
req'u~sis to'iny of the'JVaddresses for !his host. This is ilie desired
'behavior for all of our example servers.

I
' ~

I
j ,,

940 Chapter 11 Network Programming

When getaddrinfo creates an addrinfo structure in the output list, it fills
in each field except for ai_flags. The ai_addr field points to a socket a~dress
structure, the ai_addrlen field.gives the size of this socket address structure, and
the ai_next field points to the next addrinf o structure in the list. The other fields
describe various attributes of the socket address.

<J

One of the elegant aspects of getaddrinfo is that the fields in an addrinfo
structure are o'paque, in the sense that th~y can be passed directly to the functions
in the sockets interface without any further manipulation by the application code.
For example, ai_family, ai_socktype, and airprotocol can be passed directly
to socket. Similarly, ai_addr ai;id ai_addrlen can be pas~ed directly to connect
and bind. This powerful property allows us to write clients and servers that are
independent of any particular version of the IP protocol.

The getnameinfo Function

The getnameinfo function is the inverse of getaddrinfo. It converts a socket ad­
dress structure to the corresponding host and service name strings. It is the modern
replacement for the obsolete gethostbyaddr and getservbyport functions, and
unlike those functions, it is reentrant and protocol-independent.

#incl~de <sys/socket.h>

.#inc~ude <ne~db.h>

"

int getnameinf6'(tonst struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen,
char *servic'~, size_t servlen, int flags);

Returns: 0 if dK, nonzeto error code on error
•,

The sa argument points to a socket addres~ structure of size si'len bytes, host
to a buffer of size hostlen bytes, and service to a buffer of size servlen bytes.
The getnameinfo function converts the socket address structun: sa to the corre­
sponding host and service name strings and copies ~hem tp ihe J:tost,and service
buffers. If g:,-tnameinf a returns a nonzero error code, tne application can convert
it to a string by calling gai_strerr6r.

if we don't want the hostname, we dm se\ho'st to N,ULL and hostlen to zero.
The same holds for the service fields. However, one or the other must be set.

The flags argum'ent is a bit mask that modifies the default behavior. You
create it by oRing combi~ations of various values. Here are a couple of useful
ones: ;

NI_NUMERICHOST. By default, getnameinfo tries to return a domain name
in host. Setting this'flfig will causeit to return a numeric address string
instead.

NI_NU]'\1ERICSERV. By default,,getn"!.rneinfo will look in /etc/services
'anif if possible, return a service na,ri\e instead of a port number. Setting
l:liis flag forbes it to skip the lo,okup a~d simply return the port number.

Section 11.4• The Socket~ Interface !14l

c
-~""------------'---'-------'--'-----'-'----'-'~' ------'--"'-'~ code/netp/hostinfo.c

#iriClude 11 csa'pp.h 11 ''' l2j ''fl

,)
4•

5

6

7

8

iJ.].t nUlin (irit arg!c, char **argv)~
{' "

struct addrinfo *P• *listp; hinis;
~h'ar tiuf[MAXLINE];
int re, flags;

' I

9 if (argc != 2) {
10

11

fprintf (stderr, 11 usage: %s <domain name>\n", o;..argv [OJ);
exit(O);

12 }

13

14

15

16

17

18

19J "f(

20

21

22

23

24

25

26'
2i
28

29

30

31

32

I* Get a list of addrinfo records */
memset (&hints. 0, sizeof (struct ~dcit':i'.nfo)); '• ' -·

1(hints. ai_family = AF _!NET;. r.l*-"'IPv4. only */
f<"C hint's-. ai_socktype = SOCK_STREAM; f,6• Connections only */

if ((re.= getad11rinfo(argv[1], NULL,~&hints, &l'istp)) r•!= 0) '{

fpr,j_ntf(stderr, "getaddrinfo· error.: %s\n 11
, gai~strerror(rc));

exit(1)i l:<

}

I* Walk the list and display each IP address */
flag~ = NI_NUMERJCHOST;:Jt~ •. D.isplay address string•.instea'.cf of domain name •/
for (p = listp; p; p = p->ai_next) {

t ·aetnatn~info(p->ai_!i'ddr, p->ai_addrl9n, buf, MAXLINE: NULL, o, flags);
piintf(11 %s\D. 11

, buf)j .i r
1

}

I• Clean up •I
Freeaddrinfo(listp)j

II

~· >'

.l

33 exit(O);
34 }

1
--------------------------------- code/netp!hostinfo.c

Figure 11.17 HOST! N FO displays the mapping of a domain name to it; ass.:i-ciated IP addresses.

Figure H.l 7:shows a simple program, called HOSTINFO/,tliat uses getaddri-nfo
and getnameinfo·tO'display the mapping.of a doJilain·name to its•associated IP
addresses. It is.similar.to the NSLOOKUP. program from Sectio'.rull.3.2-

, 'First, we initialize. the.hints structure so tlial.getaddrihfo returns the ad-
dresses we want. In this .case, we are looking for 3Q-bit ,Jp addresses (line· 16)

• ijl1 I

942 Chapter 11 Network Programming

that can be used as end points of connections (line 17). Since we are only asking
getaddrinfo to convert domain names, we call it with a N,ULJ;, service argument.

After the call to getaddrinfo, we walk the list of addrinfo structures, using
getnameinfo to convert each socket address to a dotted-decimal aqdress string.
After walking the list, we are careful to free it by calling freeaddrinfo (although
for this simple program it is not strictly necessary).

When we run HOSTINFO, we see that twitter. com maps to four IP addresses,
which is what we saw using NSLOOKUP in Section 11.3.2.

linux> ./hostinfo twitter.com
199.16.156.102
199.16.156:230
199.16.156.6
199.16.156.70

fiiilti~e:.ei:2mem~mttftr;;tii8i:2m:rn· .i~;:r~:L:Xm?W~:l
The geti,ddrinfo and getnalneinfo functions subsume the functionality of inet_
pton and inet_ntop, respectively, and they provide a higher-level of abstraction
that is independent of any.particular address format. To convince yourself how
handy this is, write a version of HOSTINFO (Figure 11.17) that ns~s inet_ntop in­
stead of getnameinfo to convert each socket address to a dotted-decimal address
string.

.,.
11.4.8 Helper Functions for the Spckets lnterface

The getaddrinfo function and the sockets interface ca'n seem somewhat daunting
when yon first learn about them. We find it convenient to wrap them with higher;
level helper functions, called open_clientfd and open_listenfd, that clients and
servers can use when they want to communicate with each other.

The open_clientfd Function

A client establishes a connection with a server by calling open_clientfd.

#include 11 csapp. h"
y·

int open_c~ientfd\char *hostn~e, char *port);
• n

Returns: descriptor if OK, -1 on error

The open_clientfd function establishes a connection with a server running on
host hostname and listening for connection reqnestst on port number port. It
returns an open socket descriptor that is ready for input and output using the
Unix 1/0 functions.Figure 11.18 shows the code for open_clientfd.

We call getaddrinfo, ;which returns a list·of addrinfo .structures, each of
which points to a socket address structure that is suitable for establishing a-con-

Section 11.4' The Sockets Interface 943

.int open_clientfp(char *hostn...ame, char~ *pprt) {
2 int clientfd; ..
3 struct addrinfo hints, *listp, *Pi
4

5

6

7

8

9

10

11

]2
1'3

14

15

16

17

18

!9;

29
21

22,

23

24

25

26

27

~~
29

30 }

"

I* Get a list of potential server addresses */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_socktype = SOCK_STREAM; I* Open a'" cbhnection *I
hints.ai_flags = AI_NUMERICSERV; I* ... using a numeric port arg. *I
hints.ai_flags I= AI_ADDRCONFIG; /* Recommended for connections */
Getaddrinfo (host;iame, port, &h~nt~, ftli.f!.tp)3_,J

'((

/~,Malk the ~}st for one that !#€ can successfully ~9!lll~~t to */
toz:r (p = listp; Pi p~ = p->ai_next) { o "u,

/* Create a socket descriptor */ 8 ..., ,,

lh i~, ((cl,ientfd = socket(p->ai_fapi:!l;Y,• p->,~i-~oc}ttype, 1p->ai_protocol)) < 0)
J.< J, continue; I* Socket failed, -i;;ry the,,next,...,*.4

{r~. t J

,I*, Connect tq th¥ seliv.er. 'I*/
ii (connect(clientfd, P,~>ai_~pgr. p->aj~ad,drle~) !~ -1),

br,eak; I* Sucs;;:iss *I JTf J• ,.

Close(clientfd); /*Connect failed, try;another */
}

'~)]

I• Clean up •/
Freeaddrinfo(listp);
if (!p) /• All connects failed •/

return -1 i -,,1 ~<. ~

else I* The last connect succeeded *I
return clientfd;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~code/srdcsapp.c 

FiguYe 11 !·18 'o\>eti_ clientf d: Helper function that establishes a-connection with a server. It is reentrant 
and protocol-indE!pen"dent: n r 

' ' ·' 
nection with a ser.ver running on•hostname and listening on port. We then walk 
the list, trying each list entry in turn, until the calls to socket and connect Suc­
ceed. If the" connect fails, we are careful to close. the socket descriptor before 
trying the next entry. If the connect succeeds; we free·the.list memory and retutn 
the socket.descriptor to the client, .which can immediate~y begin using lJitix I/Ci) 
to communicate .with the server. 

Notice how there is no dependence on any particula!'version of IP anywhere 
in the code. The arguments to socket and connect are generated fa. us automat­
ically by getaddrinfo, which allows.our code to be clean and portable. 

I 

I 

1· 

• 



944 Chapter1l l Network Programming 

The open_listenfd Function 

A server creates a listening descriptor tha~ is ready to receive connection requests 
by calling the open_listenfd function. 

#include ,,csapp.h 11 

int open_listenfd(char *port); 

Returns: d.escriptor if OK, -1 on error 

The open_listenfd function returns a listening descriptor that is ready to receive 
connection requests on port port. Figure 11.19 shows the code for open_listenf d. 

The·style is similar'to open_clientfd. We call getaddrinfo arl'd·then walk 
the resulting list until the calls to socket and bind succeed. Note that in line 20 
we use the setsockopt function (not described here) to configure the server so 
that it can ·be terminated, be restarted, and begin accepting connection requests 
immediately. By default, a restarted server will deny connection requests from 
clients for approximately 30 seconds, which seriously hinders debugging. 

Since we have called getaddrinfo with the AI_PASSIVE flag and a NULL 
host"argument, the a11dress field-in each socket atldress struciU:re is set to the 
wildcard address, which tells the kernel that this server will accept requests to any 
of the IP· addresses for this host. 

Finally, we call the listen function to convert listenfd to a listening descrip­
tor and return it to the caller. If the listen fails, we are careful to avoid a memory 
leak by closing the descriptor before returning. 

11.4.9 Example Echo Client and Server 

The best way to learn the sockets interface "is to study example code. Figure 11.20 
shows the code for an echo client. After establishing a connection with the server, 
the client enters a loop that repeatedly reads a text line from standard input, sends 
the text line to the server, reads the echo line from the server, and prints the-result 
to standard output, The loop tennina\es when, f gets .encounters.BOP on ~tandard 
input, either because the user typed Ctrl+D at the keyboard or. because it has 
exhausted the text.lines in a redirected input file. 

After the loop terminates, the client closes the descriptor. This results in an 
EOF notification being sent to the server, whicli it detects-when it receives a return 
code of zero from its rio_readlineb function. After closing its descriptor, the 
clieht tennipates. Since the client's kernelautomatically closes all open descriptors 
when a'process terminates, the close in line 24 is not necessary. However, it is good 
programming practice to explicitly close any des9riptors that yqu have opened. 

Figure 11.21 shows the main routine for the·echo server..Aftei: opening the 
listening descriptor, it enters anjnfinite loop. Each iteration waits for a connection 
request from a client, prints the domain name and port of the connected client, and 
then calls the echo function that services the client. After.the echo routine returns, 



;Section 11.4· TJ:\e Sockets Interface 91!5 

int open_listenfd(char *port) 
2 { 

3 struct addrinfo hints 1 *listp, *P; 
4 int listenfd, optval=1; 
5 

6 I* Get a list of potentiai server addresses */ 
7 memset(&hints, 0, sizeof(struct addrinfo)); 

B hints.ai_socktype = SOCK_STREAM; I* Accept connections */ ' . 
9 hints,.;ii_flags = AI_PA~SIVE I AI_ADDRCONFIG; /• on any IP address •/ 

10 hints.ai_flags I= AI_NUMERICSERV; /• ... using port number•/ 
11 Getaddrinfo(NULL, port, &hints, &listp); 
12 

13 /* Walk the list for one that we can bind to */ 
14 for (p = listp; p; p = p->ai_next) { 
15 /*Create a socket descript~r·*/ 

16 if ( (listenfd = socket cp->ai_family)~ p->ai_socktype' p->ai_protocol)) < 0) 
17 continu!3; /*·-Socket failed, try the next */ 

. ' 
18 

19 

20 

21 

22 

23 

24 

25 

26 

/* Eliminates 11 Address already in usa 11 error from bind */ 
• • 'l 

Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, 
(canst void *)&optval , sizeof(int)); 

/* Bind the descriptor to the address */ 
if (bind(listenfd, p->ai_addr, p->ai_addrlen) 0) 

break; /* Success */ 
Close(listenfd); /*Bind failed, try the next*/ 

27 } 

28 

29 

30 

31 

32 

33 

34 

35
1 

' 

., 
36 

37 

38 

39 

40 } 

/• Clean up •/ 
Freeaddrinfo(listp); 
if ( !p) /• No addz;ess 

re'tll?:'n - ~; 
worked */ 

'" ,• 
'-J ff) 

• :i{ ,,. ' I 1 ~ h 
/* Make ~t .a .. list?ning soyk~t-: rea~¥ .~o accept connection requests */ 
if (listen(l1stenfd, lISTEN~) < 0) {, , 

l ', ~ Jt • I ' 

} 

C1ose(listenfd); 
return -1; 

' 
retl!rn listenfd;: 

' ! ,. , •)' 

If f',; 

---------------~---,,,--,., ,,,-;1 ,--.-~,------------ code/srdcsapp.c 

Figure 11.19 open_listenfd! Help~r fu'nction"that'<lpens and returns a listening descriptor. It is 
J rr reeniranU1hd protocol'il)dependent'. r 



'I' " 

' I' 
' 

) I 
I 

/.,1 

r 
I 

" 

946 Chapter 11 Network Programming 

------------------------ codelnetp!echoclient.c 
1 

2 
#include 11 csapp. h" 

3 int main(int argc, char **argv) 
4 { 

5 int clientfd; 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

22 

23 

24 

25 
26 } 

char *host, *port, buf[MAXLINE]; 
rio_t rio; 

if (argc !• 3) { 

} 

fprintf(stderr, "usage: %s <host> <port>\n", argv [O]); 
exit(O); 

host = argv [1] ; 

port = argv [2) ; 

clientfd = Open_clientfd(host, port); 
Rio_readinitb(&rio, clientfd); 

while (Fgets(buf, MAXLINE, stdin) != NULL) { 
Rio_writen(clientfd, buf, strlen(buf)); 
Rio_readlineb(&rio, buf, MAXLINE); 
Fputs(buf, stdout); 

} 

Close(clientfd); 
exit(O); 

------------------------ code/netp/echoclient.c 

Figure 11.20 Echo client main routine. 

the main routine closes the connected descriptor. Once the client and server have 
closed their respective descriptors, the connection is terminated. 

The clientaddr variable in line 9 is a socket address structure that is passed 
to accept. Before accept returns, it fills in clientaddr with the socket address of 
the client on the other end of the connection. Notice how we declare clientaddr 
as type struct sockaddr _storage rather than struct sockaddr _in. By defini­
tion, the sockaddr _storage structure is large enough to hold any type of socket 
address, which keeps the code protocol-independent. 

Notice that our simple echo server can only handle one client at a time. 
A server of this type that iterates through clients, one at a time, is called an iterative 
server. In Chapter 12, we will learn how to build more sophisticated concurrent 
servers that can handle multiple clients simultaneously. 

Finally, Figure 11.22 shows the code for the echo routine, which repeatedly 
reads and writes lines of text until the rio_readlineb function encounters EOF 
in line 10. 



Section 11 .4 The Sockets Interface 947 

---------------------------------- codelnetp/echoserveri.c 

1 #include "csapp. h 11 

2 
3 void echo(int connfd); 
4 

5 int main(int argc, char **argv) 
6 { 

int listenfd, connfd; 
socklen_t clientlen; 

7 

8 

9 
10 

11 
12 

13 
14 

15 

16 
17 
18 
19 
20 
21 

22 

23 
24 

2~·,, 
26 

struct sockaddr_storage clientaddr; /* Enough space for any address •/ 
char clie~t_hostname[MAXLINE], client_port[MAXLINE]; 

if (argc != 2) { 

} 

fprintf (stderr, "usage: %s <port>\n 11
, argv [O]) ; 

exit(O); 

listenfd = ,9pen_;Lif.ltenfd(argv[1]); 
while (1}( f. ,

1 

clie~tlen = sizeof(struct 1 sockaddr_storage); 
connfd = Accept(listenfd', cSiJ1;i.)&clientaddr, &ciientle~); 
Getnameinfo((SA *) &clientaddr, clientlen, client_hostname, MAXLINE, 

client_port, MAXLINE, O); 
printf( 11 Connected to (%s, %s)\n 11

, client_hostname, _client_port); 
echo(connfd); 

2'7 
28 ' 1'·} 

Close(cqnnfd); 
} . ., 
e?Cit(O) i 

'[11 

('\_ \ l 

.. ' II 

----------.-----,,------,------,---,----;---------,-l code!netp/echoserveri.c 

Figure 11.21 lterative'ecHo server n'lain routine. 

------------------~~-----~ code!netplecho.c 

1 

2 
3 
4 

#inClude "csapp.h 11 

void echo(int connfd) 
{ 

5 size_t n; 
6 char buf [MAXLINEJli~ 
7 rio_t rio; 
8 

9 Rio_readlnitb(&rio, cOnnfd); 
10 while((n = Rio_read~ineb(&rio, buf, MAXLINE)) !~ O) { 
11 printf("server received %d bytes\n", (int)?J-); 
12 Rio_writen(cbnnfd, buf, n); [~ 
13 } 
14 

" j I' 
---~---~--~-------~-=~-...,r-'~-~.code/netp/echo.c 

Figure H.22 . I • ' ' ,.f 
echo furif'tion that reads •l)p echoes·text lines. 

• v ~ t' J I 

I ,, 

i 
I 
I 

I 
I 



948 Chapter 11 Network Programming 

.,. ~' ~ ~ ~~ ""-.~ ~ ·•"' 
Aside What does EOF on a oonnection mean? 

• 

·.w~. '~~ '>!' ~ 

The.idea of EbF is often confusing to '.students, especihlly in Jhe'context of Internet connections. First,.' 
we ne(\d to understand tharthere is no s~ch.\hit\g as an•EOF character. Rathel\ EOF•is a condition that 

, is detected by the kernel. An application}inds out about the EOF condition when it re~ei~es,a;iercl ' 
return code froin the rea'd fuifcticih. For dislj: files, EOF qi;curs whe,/l·the current file p6sifiot exceeds 
the file length. For Internet connections, 'EOf _occurs wlien' ~ process closes its ,end of<the connection. 
The process at the other end of the connection detects the EOF when it-attemptS"t<l' read past the last 
l;>yte in' the stre<J.m. " '. • • ' '• " 

""-""'''" '·"'·~ ""' ,,,...,,, ,,,,,,.;,,, "' ,,,,,._,,,., ""'""""'~;,.~~",;:;: ~W.,, ~- "" ei ,,;;.._,,,,,.._,., ,)s.IA~,,,,,,,,, "" ,,.,. ::_! 

11.5 Web Servers 

So far we have discussed network programming in the context of a simple echo 
server. In this section, ,we will show you how to use the basic ideas of network 
programming_ to build your own sm~~· but quite functional, Wiob server. 

11.5. i Web Basics 

Web clients and servers interact using a text-based application-level protocol 
known as HTTP (hypertext transfer protocol). H'ITP is a simple protocol. A Web 
client (known as a browser) opens an Internet connection to a server and requests 
some content. The server responds with the requested content and then closes the 
connection. The browser reads t11e content and dispfays1I on the screen. 

What distinguishes Web services from ~onventional file retrieval services-sqch 
as FTP? The main difference is that Web content can be written in a. language 
known as HTML (hypertext markup language). An HTML program (page) con­
ta.ins instructions (tags) that tell the browser how to display various text and 
graphical objects in the page. For example, the code 

<b> Make me bold! </b> 

tells the browser to print the text between the <b> and <;lb> tags in boldface type. 
However, the real power of HTML is that a page can contain pointers (hyperlinks) 
to content stored on any Internet host. For example, an HTML line of the form 

<a href= 11 http://www.cmu.edu/iD.Ciex.html 11 >Carnegie Mellon</a> 

tells the browser to highlight the text object'ci.rnegie Mellon and to create'a 
hyperlink to an-HTML file called index. html that is stored on the CMU Web 
server. If1he user clicks qn the highlighted text object, the browser requests the 
corresponding HTML file from the CMU server and disp!iys it. 



Section 11.5 Web Servers 949 

r ,,,~, ... #</,,,""" """:··-.'011,__,,_, ..,,.,,,. "'"" "'>; '!"''!#<~·~· ""' "-""""""""'"-""-"-~""'""""' ,.,,,,, ,'~"""""'"" ""'""'"""~ .,,,..,,,. '"' -·"':,: .. "'1·'ffl''I};"'-""' r 
<~sid,e' <;lriQfr1s of,tbe.'1vg;ld\M,CJe\Neb ' ' , , I The !NoHd' Wide Web was ii\v«.rlt'd by.Tim B~rners-Le,, .r siiftyvare engiheer'worklng at CERN, a Swiss 
rp~ysics ~~b. ~~ 1,989, Bern';~'"L~e'-';'~te ~n int~rn~l .::ielno')lroposing a 'distribut.e\l hypertext system 1 
! that wou1ct cm:n~9t a 'iweb-0f notes w1th'Iinks." Themten\'of:the'f>roposed system was.to help CERN ·1 

! scierltists share and manage infd~\nation. Over the next two~years,. after"Berped-Lee implemented 
I the first W~ti sen;er a,nci Web brmyser, the Web,developed a small f9ilowing'wi\Jiin C,PRN'and a'iew'·" 
! other sites. I\ pi\'otal event occurred ih 1993;when Ma~c Andre"<lserr(who lalel'fourtiled Netscape and I 
I Apdre,es~en,.H9[ow,it~) ~pp pis co)l,(',aguf~ 11\N<;:~A,rel~,a~eq a gr~pnjc,akl]r9;.;;s~r called ,";'OSAIC for all · I t)\ree. majo~ platforms;.I,inux,, \',[in,qo.iy~; ~np" M~cint?s!J. ~fter, t,.h~1r~J·~~e,.of '!O~AIC, interest in the . 
i Web exploded, with tne nu'jnb,er1of:Wep s\te§ il}Crl'Ming a; ;u1 ~l'ijflnential rate. By 2015, there were J 
• ovel"~75,0b'6,900 sites woHdwide. (Source: Netcraft Web Survey) 
t ~ """ ~ "'J:.-.. ~ ~ l' ~ •.''A-~};,,.-.,,,, •..• > .•, '· 'i... ~ ._,,,,,,_ ••. ""' q ........ ~~ .,.. .'> "',,,.,,..,,,_,.,,..,,.,_~ "' ·-""'- " •. ,.,.,.,,,.~ .,-~.~~ ...... ll<~ ·---~ ___ ,..,_ .... • -

MIME type 

text/html 

texf/P.lft!n 
application/postscript 
image/gif 
image/png 
ima~e/jpeg 

.. 

Description 

HTML page 
Unformatted text 

Postscript document 

Binarf image encoded in GIF format 
Binary image encoded in PNG format 
Binary image encoded in JPEG format 

' . 
Figure 11.23 Example MIME types. 

11.;,.2 Web Co11ten~ 

To WelJ clients ahd servers, content is a sequence of bytes with an associated MIME 
(multipurpose internet mail extensions) type. Figure ll.23'shows some common 
MIME types. 

Web servers provide content to clients in two differ~nt ways: 

"' • Fetch a disk fil11 an<;\ return its contents to the client. The disk file is known 
as ~tatic content and the process of returning the file to th". client is known as 
serving static content. 

• Run an executable file and return•its output to the client. The output produced 
by the executable at nm time is known as dynamic content, and the process of 
running the program and returning its output to the client is known as serving 
dynamic content. 

Every piece of content returned by a<-Web server is associated with some file 
that it manages. Each of.these files has a unique name known as a URu(univ'ersal 
resource locator). For example, the URL 

http://www.google.com:80/index.html 

J 



950 Chapter 11 Network Programming 

identifies an HTML file called /index.html on Internet host www.google.com 
that is managed by a Web server listening on port 80. The port number is op­
tional and defaults to the well-known HTTP port 80. URLs for executable files 
can include program arguments after the filename. A '?' character separates the 
filename from the arguments, and each argument is separated by an '&' character. 
For example, the URL 

http://bluefish.ics.cs.cmu.edu:8000/cgi-bin/adder?15000&213 

identifies an executable called I cgi -bin/ adder that will be called with two argu­
ment strihgs: 15000 and 213. Clients and servers use different parts of the URL 
during a transaction. For instance, a client uses the prefix 

http://www.google.com:SO 

to determine what kind of server to contact, where the server is, and what port it 
is listening on. The server uses the suffix 

I index . html 

to find the file on its filesystem and to determine whether the request is for static 
or dynamic content. 

There are several points to understand about how servers interpret the suffix 
ofa URL: 

• There are no standard rules for determining whether a URL refers to static 
or dynamic content. Each server has its own.rules for the files it manages. 
A classic (old-fashioned) approach is to identify a set of directories, such as 
cgi-bin, where all executables must reside. 

• The initial'/' in the suffix does not denote the Linux ro'of directory. Rather, it 
denotes the home directory for whatever kind of content is being requested. 
For exampl~, a. server might be cqnfigured so that all stadc c01{tent is stor~d 
in directory /usr /httpd/html and all dynamic content is stored in directory 
/usr/httpd/cgi-bin. 

• The minimal URL suffix is the'/' character, which all servers expand to some 
default home page such as I index·. html. This explains why it is possible to 
fetch the'home page of a site liy simply typing a domain name'to the browser. 
The browser appends the missing '/' to the URL and passes it to the server, 
which expands the '/' to sm:ne default filename. 

11.5.3 HTIP Transactions 

Since HTTP is based on text Jines transmitted over Internet connections, we can 
use the Linux TELNET program to conduct transactions with any Web server on 
the Internet. The TELNET program·has been largely supplanted by SSH as a remote 
login tool, but it is very handy for debugging servers that talk to clients with text 
Jines over connections. For example, Figure 11.24 uses TELNET to request the home 
page from the AOL Web server. 



4 
3 

4 

5 

6 

7 

B. 

~ 
10 

11 

12, 
13 

14 

15 

16 

linux> telnet www.aol.com f30 
Trying 205 . 188 . 1 ~6. 23'. ... 

fonnected·toia?l.com. 
Escape characp,~r is 1 

... ) 
1 

• 

GET / HTTP/,1..1 

Ho~t: www.aol.com 

HTTP I 1<. 0 :2p0 OJI 
MIME-V~rsiov: 1.0 
Dat~:; Mon, 8 Jan 20\q 4:99:44 GMT 
Server: Apache-Coyote/1.1 

.. ~oµtent-Type' t,e~t/html 
9on;~nt-L~ngth: 42092, 

<html> 

., Section 11.5 Web Servers 951 

Client :.,peen connection to ,ser;v,er 

Telnet pri~ts 31tines to the terminal 

lJl<" f, 

Cljen~i.Lrequest line 

<:;f)ent: requi,red,,HTTP/1.1 heaqer 

Client: ~mpty lipe terminates headers 

Server,: ·response l.:jne 

Server: followed...PY fivr response headers 

1 Server: e?Cpect HTML 7n the re,sponse body 

Server: expect 42,092 bytes.in, the response body 

Server: empty line terminates response headers 

Server: first HTML line in response body 

Server: 766 lines of HTML ,not shown 

17 </html> Server: last HTML line in response body 
18 cOimecti'on close<i'l by foreign host. Server':· 1'clp.Set!•COnnection (' 

19 l linux>' 'l ,( Uclieiit: closes co.Dnection and te:iminates 

Figure 11.24 Exampl~ of an HTTP transa'ctio,n tl"\~t serve~ static content. 

" 1' 

j, Jf I 

In line 1, we run TELNET from a Linux shell and ask it to open.a connecti9n to 
the AOL Web server. TuLNET prints three lines of output.to.the terminal, opens 
the.x:onnectibn;Jmd \hen waits for- us to enter text (line· 5). Each time we enter 
a text line and hit the enter key, TELNET reads the line, appends carriage return 
and line feed characters ('\r\n' in C notation); and sends the line to.the server. 
This is consistent with the HITP standard, which requires every text line to be 
terminated by a cai:riage return and line feed pair. To initiate the tn1nsaction, we 
enter an HTTP request (lines 5-7). The server replies with an HTTP response 
(lines 8-17) and then closes the conrle'ctiori (Ihle 18). ' 

JI , •l 

HTIP Requests 
" 

An HTTP request consists of a request line (line 5), followed by zero or more 
request headers (line 6), followed by an empty text line that terminates' the list of 
heacjyrs (line 7), {\. reques\ line has the form 

method, UIJ.I version 

J[ < ( l 
HTTP supports a number of different methods, including GET, POST, OPTIONS, 
HEAD, PUT, DELETE, and TRACE. We will only discuss the workhorse GET 
method, which accounts for a maj~rity of HITP +equests,,,The \}fl';I' method 
instructs the server to generate and return the content identifiec! by the URI 



952 Chapter 11 Network Programming 

(uniform resource identifier). The URI is the suffix of the corresponding URL 
that includes the filename and optional arguments.3 

The version field in the request line indicates the HTTP version to which the 
request conforms. The most recent HTTP version is HTIP/1.1 [37]. HTIP/1.0 is an 
earlier, much simpler version from 1996 [6]. HTIP/1.1 defines additional headers 
that provide support for advanced features such as caching and security, as well 
as a mechanism that allows a client and server to perform mUltiple transactions 
over the same'persistent connection. In practice, the two versions are compatible 
because HTIP/1.0 clients and servers simply ignore unknown HTIP/1.1 headers. 

To summarize, the request line in line 5 asks the server to fetch and return 
the HTML file I index. html. It also informs the server that the remainder of the 
request will be in HTIP/1.1 format. 

Request headers provide additional information to the server, such as the 
brand name of the browser or the MIME types that the browser understands. 
Request headers have the form 

header-name: header-data 

For our purposes, the only header to be concerned with is the Host header (line 6), 
which is required in HTTP/1.1 requests, but not in HTIP/1.0 requests. The Host 
header is used by proxy caches, which sometimes serve as intermediaries between 
a browser and the origin server that nianages the requested file. Multiple proxies 
can exist between a client and an origin server in a so-called proxy chain. The data 
in the Host header, which identifies the domain name of the origin server, allow a 
proxy in the middle of a proxy chain to determine if it might have a locally cached 
copy of the requested content. 

Continuing with our example in Figure 11.24, the emptrtext line in line ,7 
(generated by hitting eµter on our keyboard) terminates the headers and instructs 
the server to send the requested HTML file. 

HTTP Responses 

HTTP responses are similar to HTTP requests. An HTTP response consists of 
a response line (line 8), followed by zero or more response headers (lines 9-13), 
followed by an empty line that terminates the headers (line 14), followed by the 
response body (lines 15-17). A response line has the form 

version status-code status-message 

The version field describes the HTTP version that the response conforms to. I 
The status-code is a three-digit positive integer that indicates the disposition of j 
the request. The statuS'-message gives1he English equivalent of the error code. J 

Figure 11.25 lists some common status codes and their corresponding messages. 

3. Actually, this is only true when a browser requests content. If a proxy server requests content, then 
the URI must be the complete URL. 

.~ i 



< ,?ection 11.5 Web Servers 953 

1"7- ..,,...,...,,_ ~.. "" ..,.,_ .. "it' -~ .,,. ~"'~""~If.~-'·"'""-.. "'""" ...... .,.,.-~...,.,.,:· .............................. ~ - -:---....... ._ _"':""""'"_ ....... _ ,,. __ 1 
·r Aside Passing argU!J1\!h}s i_n. HTJP eosJ i-eq~~sfs " f· • ~ .. ~ . l 

ruguments ·r~r H'TI-e POST &q;"."ts a;e passed}n·fll~ n;que.st liq,dy ~lib!'[ iha11.'i~ thellJRI: , 
~ . ..., ... --~--.Jo-- --~---..--i....:J .. ~-----.... - .......... '""',...._,._:,_,.;i,...A-~.~ ....... ~,., ..... _...._. ,,.,..,,,.._~ 

Status code 

• 

200 
301 
400 
403 
404 

,.soi 
. ~PS. 

n , .,, 

Status message 

OK 
Moved 'permanently 
Bad request 
Forbidden 
Not found 
Not implemented 

\ •; •' -= 

q. 

"!JI 

HTIP yersion ,n9~supported r1 

Figure 11.25 Some HTTP status codes. 

Description 

·Rb'quest was handled without error. 
Co~tent has moved to the hostname in the Location header. 

R"i'lui;st could not be understood by the server. 
Server lacks permission to access the requested file. 
Server could not find the requested file. 
Serve~ does not support the request method. 

,( ~ f, • ~ I J ff 
ServeI Hoes not ~upport vers\on iq. ~y.quest . 

f !• I '11 /'1 

The response headers in lines 9-13 provide additional informati6n.,about the 
response. For our purposes, the two most important headers are Content-T-ype 
(line 12), which tells the cli~nt the MIME.\YP'i o~ t,hepontent in the response body, 
and Content-Length (li'ne 13), which ih'dicates its size in bytes. 
1 , The;>mpty text line in line l4.that termiriates the response.headers is followed 
by the response body, which contains the requested content. 

11.5.4 Serving Dynamic Content 

If:w~ stop to think for a moment \J.ow a s1m1«J:·ipight provide \lynaroic l'ontent 
to a,~li~nt, cei;tain que~tions arisi For exampl~},how .does the client pass any 
program;p.rguqie)ltS to the server? How does.the server pass, the,eye arguments 
to the child pr11"ess that it crea\es? How does the server pass other, information 
to the child that it might need to generate the content? Where, dges th~ child 
sel)p it§ output? These qµestjon~~re adpre,ssed by a de facto stand~rd calle,d CG/ 
(common gateway interface). »,. 11 

How Does the Client Pass Program Arguments to the Server? 

~~gum~nts for GET req':'est~ are passed in the l!ll~. ~we hp-ve §een,'a '?' char­
acter ~eparates the filenatlle from the arguments, ahd each argum'et\.t is separated 
by an'&' character. Spaces ~r~'not allowed irlhrguinentS and must be represenled 
with the %20 string. Similar encodings exist for other special characters. 

,How .Does the Server Pass Arguments to the Chil.d? 

After a server.receives a request such as 

GET /cgi-bin/adder?15000&213 HTTP/1.1 



954 Chapter 11 Network Programming 

Environment variable 

QUERY STRING 
SERVER_PpRT 
REQUEST_METHOD 
REMQTE_HOST 
REMOTE_ADDR 
CONTENT_TYPE 
CONTENT_LENGTH 

Description 

Program arguments 
Port that the parent is listening on 
GET or POST 
Domain name of client 
Dotted-decimal IP address of client 
POST only: MIME type of the request body 
POST only: Size in bytes of the request b?dY 

Figure 11.26 Examples of CGI environment variables. 

it calls fork to create a child process and calls execve to run the I cgi -bin/ adder 
program in the context of the child. Programs like the adder·program are often 
referred to as CG! programs because they obey the ~ules of the CGI standard. 
Before the call to execve, the child process sets theCGI environment variable 
QUERY_STRING to 15000&213, which the adder program can reference at run 
time usingi tne Linux getenv function. 

H6w Does the Server Pass Other Information to the <:;hild? 
• \1' 

CGI defines a number of other environment variables that a CGI program can 
expect to be set when iLruns. Figure ll.261SJ:ipws a subset. 

Where Does the Child Send Its Output? 

A CGI program sends its dynamic content to the standard output. Before the 
child process loads and run&~ifd'C:GI program, it uses the Linux dup2 function 
to redirect standard output to'the connected descriptor that 'is' associated with 
the client. Thus, anything that the CGI program writes to standard output goes 
directly to the client. · 

·Notice that since the parent does not know•the type or size of the content that 
the child generates, the child is responsible for generating the Content-type" and 
Content-length response headers, as well .as the empty line that terminates the 
headers. 

Figure 11.27 shows a simple CGI program that sums its two arguments and 
returns an H1ML.fj.le with t'i)e result )o ·the client,-.,Figu';e 11.28 show~ an HrrP 
transactioµ that serves dynamic ~ontent from the adder _progra~. " 

rn:::~:"O~~ .~!169~"""'·'";$.,'''"''· f',,....,...~J £,w:~illtQ!utiori,R.119~; ;:, .. ~. :.n 'i •il• 3 .a;.::; ,,,; 
In Section 10.11, we warned 

0

you about the dangers of using the C standard rio 
functions in network applications. Yet the CGI program in Figure.11.2'1 is able to 
use standard I/O without any problems. Why? 



Section l •1.5 Web Servers 955 

#'II',,._._,,,,,__,,,,_.,,,,,,,,,.,,.,..~''''" "" ""''""''''!"''"<;- - - ..,,, _,.. ____ !£'-...._.,,_,..,,,,_..,,,,,,,.,~ ~ ,_,, ____ "'"""""*-"''""''""''"--"11:" -- ._."fl I Aside· Passin~ argumerits.ln'.i-n;:ri' POSf.c~Hu~~ts to, q:;i p_rogi'arn,~, .~." • i' ., r ! 
; For PQST,r~quests},the ~hild wpul<f?Isq ne,ed,tq'r~glrS'ct standarp input tc;fth~e l'?iirlecied descriptQr: J 
' Ae·cor progra111 w9u19 tl)en:i;eact t!Je. wJluJnen\S in'lh~ re<J.ti~st'boay1fro'm sfanct:rct irlput' '" ". J 
L --~- -~-... ~--~~,.,,,~.,,,,_. ,....,._-,:;-... ~-~ .. -~.,.,,,_. _,;._ J;~ .......... ,,,,,,.;,~~-~ 

-----------------------------code/netRltiny!cgi-pinf..adder.c 

1 #include "csapp.h 11 

2 

3 int main(void) { 
4 char *buf •. *P; 
s char argl[MAXLINE], arg2[MAXLINE], content[MAX~INE]; 

6 int n1=0, n2~Pi 
7 

8 /* Extract the two argumen~s *I 
9 if ((buf = getenv("QUERY_STRING")) 

10 p = strchr(buf, 1 &
11
); 

11 *p='\O'; 
12 strcpy(arg1·; ·but); ,j 
13' strcpy(arg2, p+1) i 
14' l nl' = atoi (arg1)';u 
15 1

fl r-' n2 = atoi(arg2) i 
16 } 

11• ;, 

!= NULL) { 

" 

, 

18 /*'Make thS response1 body •/· ,£1 "• 1 ' 

sprirltt"(content~1 11 QUERY_STRING=%S 11 ,-'bufry; 
sprintf.(content,' 11 W8lcome to add.cbm: 11

); l' 

" 

19 

20 

21 

22 

23 

24 

25 

26 

sprintf (content,' 11 %sTHE Internet a'ddi:tion portal. \r\n<p> 11
• content); 

sprintf(content, 11 %sThe answer is: %d~+ %d = Y0d\r\n<p> 11 , 

2f' 
?B 
29 

30 

31 

32 

33 

31 

'\l.'.) 

I 

content, n1, n2, n1 + n2); 
sprintf(content, 11 %sThanks for visiting!\z:\n11

, content); 

' .~. I.. './' 
I* Generate the HTTP response */ 
.Prilltf( 11 Connection: ciose\r\n 11

); 

~rintf C 11 Content.:_ lene:th: .%ct\r\n 11
, Cint) str1€n(content)); 

"i"l' ' '' I < ' ')IQ 
printf("Content-typ~: t€xt/html\J;'\n\r\n 11

); 
I ? I ' I • 

printf ( 11 %s", content)~; ' 

fflush(stdout); 

"'!I exit(O); 
} 

L 

------------~'--'''---''--"--''------=..i.....----- c'ode/netp/tiny!cgi-binladder.c 
Ji t l 

Figure 1) .7z? CGI P.[Ogram,t~at sum~ two integ!'rs. "1 

I 

I 
! 
! 

I 

I 
l 



956 Chapter 11 Network·Programllling 

linu.x> telnet kittyhawk. cihcl. cs. emu. edu 8000 Client: open connection 

2 ,Trying 128.2.194.242... ,,, 
3 Connested to kittyhaw~.cmcl.cs.cmu.edu. 
4 Escape character is '~] 1 

• 

5 GET /cgi-bin/adder?15000&213 HTTP/1.0 Client: request line 
6 Client: empty line terminates headers 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

HTTP/ 1. 0 200 OK 
Server~ Tiny Web Server 
Content-length: 115 
Content-type: text/html 

Welcome to add.com: THE 
<p>The answer is: 15000 
<p>Thanks for visiting! 

Server: response line 

Server: identify server 

Adder: expect 115 bytes in response body 

Adder: expect HTML in response body 

Adder: empty line terminates headersr 

Internet addition portal. Adder: first HTML line 

+ 213 = 15213 Adder: secol.zd HTML line in response body 

Adder: third HTML line in ~response body 

Connection closed by foreign host. 
linux> 

Server: closes connection 

Client: closes Connection and terminates 

Figure 11.28 An HTIP transaction that serves dynamic HTML content.' 

11.6 Putting It Together: The T1 NY Web Server 

We conclude our discussion of network programming by developing a small but 
functioning Web server called TINY. TINY is •an iqte.resting program. It combines 
many of the ideas that we have learned about, such as process control, Unix.I/O, 
the sockets interface, and HTTP, in only 250 lines of code. While it lacks the 
functionality, robustness, and security of a real server, it is powerful enough to 
serve both static and dynamic content to real Web browsers. We encourage you 
to study it and implemept<it yourself. It is quite,exciting (even for the authors!) to 
point a real.browser at y011r own server and watch it.cJisplay a complicated Web 
page with text-and graphics. 

The TINY.main Routine 

Figure 11.29 shows TrNY's main routine. TINY is.an iterative server that listens 
for connection requests on the po'rt th!'! is passed in the command line. After 
opening a listening socket by calling the open_listenfd function, 'TINY executes 
the typical infinite serv~r loop, ~~peatedly accepting a connection request (line 32), 
performing a trails action (line 36), and closing ,its end of the connection (line 37). 

The doi t Function 

The doi t function in Figure 11.30 handles one HTTP transaction. First, we 
read and parse the request line (lines 11-14). Notice that we are using the rio_ 
readlineb function frpm Figure 10.8 to read the request line. 

TINY supports only the GET method. If the client requests another method 
(such as POST), we send it an error message and rtiurn t3 the ~ain 'routine 



Section-11.6 Puttitig It Tog~ther:'The TINY Web Server 95Z 

----~-.--------~------------------- code!netp/tiny!tiny.e 
I• 

2 

3 

4 

5 

6 

* tiny.c - A simple, iterative HTTP/1.0 Web server that uses the 
* GET method to serve! static and dynamic cont0nt .iz. 
•I 

#include 11 csapp.h 11 ,, 

7 void doit(int fd); 

8 void read_requesthdrs(rio_t *rp); 

9 int parse_tlri(char *uri, char *filename, char *cgiarg~); 
10 void serve_static(int fd, char *filename, in\ f_.i~esize); 
11 void get_filetype~char *filename, char *filetyp,e) ;, ~ ,. 
12 void serve_dynamic(int fd: char *filename, char *~giargs); 
13 

14 

15 

void clienterror(int fd, char *cause,- char *errnum, 
char *shortmsg, char *longm$g)•; 1 

'" 
16 ,int main(int argc, char **argv) 
17 { 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 } 

int listenfd, connfd; 
char hostname[MAXLINE], port[MAXLINE]; 
socklen_t clientlen; 
struct sockaddr_storage clientf~dr; 

I* Check command-line args :t:../ "' •' 
if (argc != 2) { 

" 

1' 

fprintf(st'ct-err, "usage: %s <port>\n 11 , argv[O]); 
exit(l); 

} 

listenfd = Open~listenfd(argv[l] )';, 
while (1) { 

} 

clientlen sizeof(clientaddr); J 

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen); 
Getnameinfo((SA *) &clientaddr, clientlen, hostname, MAXLINE,~ 

port, MAXL~NE, O); 

printf (" Ac~epted connection from C%s ,: %s)~n 11 , hostname ~ port); 
doit(connfd); 
Close(connfd); 

------------------------------.----- c9de!netpltiny!tiny.c 

Figure 11.29 The T1 NY Web server. 

I 

I 
l 

J 



958 Chapter 1.1 Netwbrk"Programming 

-~------------------------------- code/netpltinyltiny.c 

1 void doi t (int fd) 

2 { 
3 int is_static; 
4 struct stat sbuf; 
5 char buf[MAXLINE], method[MAXLINE], uri[MAXLINE], version[MAXLINE]; 
6 char filename[MAXLINE], cgiargs[MAXLINE]; 
7 rio_t rio; 
8 
9 /* Read request line and headers */ 

10 Rio_readinitb(&rio, fd) ;' 
11 Rio_readlineb(&rio, bill: "MAXLINE); 

12 

13 

14 

15 

16 

17 

18 

printf ( 11 Request headers: \ri") ,.. 

printf(11%s 11
, buf); 

sscanf (buf, 11 %s %s %s 11
, method, uri, version); 

if (strcasecmp(method, nGET") ), { ,. 
clienterior(fd, ·method, 11 501 11

, 
11 Not implein.ented1

', 

"Tiny does not implement this method"),!· 

return; 
19 } 

20 read_requesthdrs(&rio); 
21 

22 
23 

24 

25 
26 

27 

/* Parse URI from GET request •/ 
is_static = parse_uri(uri, filename, cgiargs); 
if (stat (filename, &sbuf) < 0) {. 

clienterror(fd, filename, 11 404 11
, "Not found 11 1 

11 Tiny couldn 1 t find, this file 11
); 

return; 
28 } 

29 
30 if (is_static) { /* Serve static content */ 
31 if (!(S_ISREG(sbuf.st_mode)) l'I !(S_IRUSR & sbuf.st_mode)) { 
32 clienterror(fd, filename, 11 403"·, "Forbidderi", 
33 "Tiny couldn't read the file"); 
34 return; 
35 } 

serve_static(fd, filename, sbuf.st_size); 
} 

else { /* Se~ve dynamic content */ 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

if (!(S_ISREG(sbuf.st_mode)) I I !(S_IXUSR & sbuf.st_mode)) { 

} 

} 

} 

clienterror(fd, filename, 11 403 11
, "Forbidden", 

11 Tiny couldn't run the CGI program 11
); 

return; 

serve_dynamic(fd, filename, cgiargs); 

1 

--------------------------~------code!netp/tinyltiny.c 

Figure 11.30 TINY doi t handles one HTTP transaction. 



Section 11.6 Putting It Together: J'he TINY Web.S~rver 959 

(lines 15-19), '}'hich then closes.the.connection.and awaits the next connection 
request. Otherwise, we read and (as we shall see2 i~~fe,~n¥ request headers 
(line 20). 

Next, we parse the URI into a filename and a possil:/ly ef11pty CGI argument 
string, and we set a flag that indicates whether the request is for static or dynamic 
content (line 23). If the file does not e~i~t on disk, we imm,,diately send an error 
message to the client and return. 

Finally, if the reques~ is for static content, w1werify that the file is a regular 
file and that we have read permission (line 31). I( so, we serve the stat~c content 
(line 36) to the client. Similarly, if the request is for dynamic codtent, we verify 
that the file is executable (line 39), and, if so, we go ahead and serv<o \lie dynamic 
content (line 44). 

The clienterror Function 
'I 

TINY lacks many of the error-handling features of a real server. However, it does 
check for some obvious errors and reports them to the client. The clienterror 
t\lllction in.Figure 11.31 s,en,ds an HTTEf<osponse to, the client.with g1e appr9p,ria\e 

~ Y( 

ti4 '· -----,-,-------------..,...---------~------- codelnetp/tinyltiny.c 
11 J l ,J ~ /' , ).., I 

2 

3 

4 

5 

6 

'7 

8 

9 

10 

11 

12' 

13 

14 

15 

16 

17 

18 

19 

20 J. 

void clienterror(int ,f<\, char :']c,.ause, cha.r, ~ri;rnum, 
char *shortmsg, char *longmsg) 

{ 

' 

char buf [MAXLINE] , body [MAXBUF] ; " " 

11Q I I .J 

(* Build the ll1JP i>espons,e bqdy •/ 1 

~printf.(body,,, 11 <html.><t,itle>.T_iny Error<(title:S-~) i;•, 1 

sprint£ (body, 11 %s<.bpP.y bg9plor= 1111fftfff 11 ">\r\n 11 
.... J?o,dy); 

sprintf(body, 11 %s%s: %s\r\n 11
, body, errnu.m, shortmsg); 

sprinJ;f (body, 11 %s<p>%s: %s\r\n11
, body, longmf!g. cause); 

sprintf(body, 11%s<hr><em>The Tiny Web Jerver</em>\r\Il11
, body); 

/* Print' the HTTP response */ .i ... 

sprintf(buf, ·~HpP/1.0 %s ~%s\r\n 11 , errbum, shor;tmsg); 
Rio_writen(fd, buf, strlen(buf)); ~. 

s}SrJntf(buf, "Contentrtype: text/html\r\n 11
); 

Rio_writen(fd, "buf, strlen(buf)).; 
sprintf (buf. "Content-length> %d\n\n\r\n 11

, (int")..strlen(body)); 
Rio..:writen(fd,. buf.,r,s,trlen(buf)); ,f 

"!1,io_writen(fd, body.,' Strlen(body)) ;B 

21 } 

----~.!.-'------------"-----~-----.L.---~- code!netp/tinyltiny.c 
Ill ., J 

Figure 11.31 TINY clienterror sends an error message to the client. 

" 

d 

' 
' 



960 Chapter 11 Network Programming 

-------~---------~------ code/netp/tiny/tiny.c 

void read_tequesthdrs(rio_t *rp) 

2 { 

3 char buf[MAXLINE]; 
4 

5 Rio_readl1neb(rp, buf, MAXLINE); 
6 

7 

8 

9 

io 
11 

while(strcmp(buf. 11 \r\n 11
)) { 

Rio_readlineb(~p, buf," MAXLINEJ; 
printf ( 11 %s", blif); 

} ' 
return; 

} 

-----------------------code/netpltiny!tiny.c 

Figure 11.32 TINY read_requesthdrs reads and ignores request headers. 

status code and status message in the response line, along with an HTML file in 
the response body that explains the error to the browser's user. 

Recall that an HTML response should indicate the size and type of the content 
in the body. Thus, we have opted to build the HTML content as a single string so 
that we can easily de-termine its size. Also, notice that we are using ihe robust 
rio_wri ten function from Figure 10.4 for all output. 

; 

The read_requesthdrs Function 

TINY does not use any of the information in the request headers. It simply reads and 
ignores them by calling the read_requesthdrs function in Figure ri.32. Notice 
that the empty text line l!iat terminates the·request headers consists '6f a carriage 
return and !foe feet! pair, which we checkJor in line 6. 

' 
The parse_uri Fu.nction 

TINY assumes that the home directory for static content is its current directory and 
that the home directory for executables is . /cgi-bin. Any URI that contains the 
string cgi-bin:is•assumed .to denote a request for aynamic content. The default 
filename is , /home. html. 

The parse_uri function in Figure 11.33 implements these policies. It parses 
the URI into a filename and an optional CGI argument string. If the request is 
for. static content (line 5), we clear the C6I argument string (line 6) and then 
convert the URI into a relative Linux pathname such as .. /index. html (lines 7-8). 
If the URI ends with a'/' character (line 9), then we append the default filename 
(line 10). On the other hand, if the request is for dynamic content (line 13), we 
extract any CGI arguments (Jines 14-20) and convert the remaining portion of the 
URI to a relative Linux filename (lines 21-22). 

,, • J '?.:1 l > 



Section 11.6 Putting It ,Tog.ether: The71NY Web·Server 961 

-~----------------------- code/netp/tiny/tiny.c 

int p&rse_uri(char *uri, char *filename, char~*cgiargs) ~ 
{ 2 

3 char *ptr; 
4 

5 if ( ! strstr(uri, ncgi-bin 11 )) 

.strcpy ( cgicirgs, 11 11 ) ; ' 

strcpy(filename, 11
• 

11
); 

strcat (filename, 'uri); 

{ I* Static content */ 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 " 
20 

21 

22 

23 

24 

25 } 

if (uri[strlen(uri)-1] c~= 1 Jr) "I< 

strCat(filename, 11 home.htmi 11 ); 

return •1 i J.'.,' 

} " 
else { /* Dynaniic coDtent y*/ 

ptr = index(uri, 1 ? 1
); 

} 

if (ptr) { 
strcpy(cgiargs, ptr+l); 
*ptr = 1\0'; 

} 

el SS 
strcpy(cgiargs, II 1~) ; 

strcpy(filename, 11 • 11 ); 

strcat(filename, uri); 
return O; 

, 

-------'----~-'-'~'-------------- code/neipltfny!tiny.c 

Figure 11.33 TINY p_ars.e_uri p11rses ~n HTTP, URI. 

The serve_static Function 

TINY serves five common types of static.,cpntent: HTML fiJl's, unformatted text 
files, and images encoded in GIF, PNG, and JPEq{9rj11ats. 

The serve_static function.in f'igure 11.34 S~l,l~S an,HTTP response whose 
body contains the contents of a, losal file. FiI~t •. we determine th!' .ljle type by 
inspecting the suffix in the filename (l\np 7) and then stind f P~l~sponse line and 
response headers to the client (lines 8--13). Notice that a blank line te11]1inates the 
headers. 

Next, we send the response body by copying the contents of the requested file 
to the connected'Clescriptor fd. The code here is somewhat subtle and needs to be 
studied carefully. Line 18 opens filename for reading and gets iis descriptor. In 
line 19, the Linux mmap,fun~tjon maps the requested file to a virtuatmemory.area. 
Recall from our discussion of mmap in Section 9.8 that the call to mmap maps the I 

I 

.l 



962 Chapter 11 Network Programming 

---~-~--------------------- code/netp/tinyltiny.c 

1 

2 

void serve~static(int fd, char *filename, int filesizel 
{ 

3 int srcfd; 
4 char •srcp, filetype[MAXLINE], buf[MAXBUF]; 
5 

6 f* Send response headers to client *i~ 
7 get_filetype(fi~ename, filetype); "' 
8 sprintf(buf, "HTTP/1.0 200 OK\r\n"); 
9 sprintf (buf, 11 %sServer: Tiny Web Server\r\n11

, buf); 
10 sprintf (buf, 11 %sConnection: close\r\n", buf); 
11 sprintf (buf, 11 %sContent-length: %d\r\n", •buf 'i filesize); 
12 sprint£ (buf, 11 %sContent-type: %s\r\n\r\n11

, buf, filetype); 
13 Rio_writen(fd, buf, strlen(buf)); 
14 

15 

16 

17 

18 

19 

20 

21 

22 

printf( 11 Response headers:\n"); 
printf( 11 %s 11

, buf); 

/* Send response body to client */ 
srcfd = Open(filename, O_RDONLY, O); 
srcp = Mmap(O, ·filesize, PROT_READ, MAP_PRIVATE, 
Close(srcfd); 
Rio_writen(fd, srcp, filesize); 
Munmap(srcp, filesize); r 

23 } 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

/• 
* get_filetype - Derive file _:type from fi~ename 

•I 
void get_filetype(char *filenffine", ,,,ch'a.1:" *filetype) 
{ 

" ' ) 

i' . ' 
; 

., 

srcfd, O); 

•• 

·hr..;, 

·I, 

- l 

" 

-----'-,..-.,.,.---.1--~------------ code!netp/tiny!tiny.c 

Figure ;11.3411TINY serV'e_static serves static content tb•a::tlient. 

" 



Section 11.6 Putting It Together: TJie TINY Web Server 963 

first filesize bytes of file srcfd to a private read-only area of virtual memory 
that starts at address srcp. ' 

Once ~e have mapped the fil!' to memory, we no longer need jts descriptor, 
so we close the file (line 20). Failing to do this would introduce a potentially fatal 
memory leak. Line 21 performs the actual transfer of the file to the client. .. The, 
rio_wri ten function copies the filesize bytes starting at location srcp (whlch 
of course is mapped to tqe requested file) ,to the cliel,lt's connected descriptor. 
Finally, line 22 frees the mapped virtual memory area. This is important to avoid 
a potentially fatal memory leak. 

The ser.ve_dynainic Function 

TINY serves any type of dynamic content by forking a chlld process and then 
running a CGI program in the context of the child. 

The serve_dynamic function in Figure 11.35 begins by sending a response line 
indicating success to the client, along with an informational Server header. The 
CGI prpgraip is respqµsibl<; ~'f'r sending, the rest of the ,response.,Nqtice th~t ,this 
is not as robust as we might wish, since it doesn't allow for the possibility tqat the 
CGI prograllf might \'J1COUJJ,ler som(( error. , 

1 
Af~er s~nding th~ firs\ part ;of t~e re;~ponsel wl' ,for~ a n,ew child pr9ces~ 

Qine,11). The child initiali~ys the QUERY_STRING·envrrpnment variab)e with 
the rG.~ arguments pcom the request U:RI (line 13). Notice th\'f a real se,rver would 

., 
' ' 1J 

" 

~--.~,-----~--~-~-----.. ,~-~----~----~ code/netp/tinyltiny.c 

2 

3 

4 

5 

6 

7 

8 

.9 

10 

void serve_dynamic(int fd, char *filename, char *cgiargs) 
{ 

char buf[MAXLINE], •emptylist[J = {NULL}; 

I* Return first part of HTTP response */ 
sprintf.(buf; "H'CTP/1.0 206 OK\r\n"); 
Rio_writen(fd, buf,' stD~en(buf)); 
sprintf.(buf, "Server: 'tiny Web Server\r\n"); 
Rio_writen(fd, bU~~ strlen(buf)); 

" 
11 if (ForkG). == 0) { /• •GJ1ild••/ ,, 

/* Real; sevver wolilct set.;all CG! vars he1'e l */ 

" 

12 

13 

14 

15 

setenv( 11 QUERY....:STRING" J•'cgiargs, 1) i '· 

Dup2(fd, STDOU'l:~'FILENO); /• Red.irect stdout to client •/ 
Execve(filename, emptylist, envi'ron~j /*Run CGI•program */ 

16 } 

17 .Wait(NULL); /*'!Parent ·waits for and reaps child *'I 
18 J-

--~·-·~· -------~-~~,~·~: ~·~------~"-~·~'-·~·---'~"~·~- code!netpltinyltiny.c 
,.Jf ~ l .. 

Figure 11.35 TINY serve_ dynamic serves dynamic content to ~a client. 

I 
I 
• 

I 

I 
I 
I' 

I 
I 

! I 
I 
I ,1 



964 Chapter 11 Network Programming 

Aside Dealing ~ith prei.;1atur~ly clps~d 1~onn~ctlo'r:is .. , - -~ ~ " ,;,:·· ",c 1 ··~ 
Although the basic functions of.a,Web•§'erver are' quite'silnple;we·dorl't w:in\:to·give:YQ\I'the'fa1se 
impression that.wr!tin.$ ateal'\\'.~o'sefve'tlis>ellsJ. BhildingfA robust w'tib·se..Ver tl\atl-'!Ils' for extended ' 
periods wi\hout crasilJ;n)(isa ·difficul1das'k that requites;a. deyper unC!erst~nding of Linilx<'systefl\s 'I 
programming than we'V'e 'le'a'!'nect llere. For·exa!fipfo, if>a''serVer wril>s tcfa comlection thai> lfas alr~ady I 
been closed by thc!.clierlt·(~ay, hec:!U§e~ybq'clicked the <'Stdp''. button•on·yo\Ir bfowser),·theft the ffr~t· j 
such .write returns normally, oiltthe'second'\\lfite causdthe tie livery c5f·a SIGPIPE signa'I whose·defaulf • 
behavior is to terminate th'e pr,ocess. ffthe SIGPIPE'.signal is caught.or ignoied~then the'syt!ond wfite i 
operation returns -1 with ertno set to EPIPJ:l. The strefi and perror {unctions report the EPIPE I 
error as a "Broken pipe," a nonintuitive message that has confused generations of students. 1J:ie bottom;·~ 
·~ne is that a robust serve: ~ust ~~~~\) t~e.~r$f,GPI~E sig~als and check wri ;•function' c11lJsf.~r. EPifE, j 
errors. · " · ' '· ,., 

~v 'ii~: ... ~ot>.._ \. l'· ... ~1 'uWi 

set the other CGI environment variables here as wei!'. For brevity, we have omitted 
this step. 

Next, the child redirects the child's standard output to the connected file 
descriptor (line 14) and then loads and runs the CGI program (line 15). Since 
the CGI program runs in the context of the child, it has access to the same opeµ 
files and environment variables that existed before the call to the execve function. 
Thus, everything that the CGI program writes to standard output goes directly to 
the client process, without any intervention from the parent process. Meanwhile, 
the parent blocks in a call to wait, waiting to reap the child when it terminates 
(line 17). 

11.7 Summary 

Every network application is based on the client-server model. With this model, 
an application consists of a server and one or more clients. The server manages 
resources, providing a service for its clients by manipulating the resources in some 
way. The basic operation in the client-server model,is a client-server transaction, 
which consists of a request from a client, followed by a response from the server. 

Clients and servers communicate over a global network known as the Internet. 
From a programmer's point of view, we can think of the Internet as a worldwide 
collection of hosts with the following properties: (1) Each Internet host has a 
unique 32-bit name called its IP address. (2) 'Tue set of IP addresses is mapped 
to a set of Internet domain ·names. (3) Processes on different Internet hosts can 
communicate with each other over connections. 

Clients and servers establish connections by using the sockets interface. A 
socket is an end point of a connection that is presented to applications in the 
form of a file descriptor. The sockets interface proyides functions for openiqg and 
closing socket descriptors. Clients and servers communicate with each other by 
reading and writing these descriptors. 



Homework Problems 

Web servers and their clients (such as browsers) communicate with each' other 
using.the HTTP protocol. A browser requests either static or dynamiC.content 
from the server. A request for static content is served by fetching a ·file from the 
server's disk and returning it to the client. A request for dynamic content is served 
~y running a program in the context of a child p~{\cess on t!Je .server and {e'thr~ing 
1!s output to the client. The CGI standard provideS' a set of rufos tlfat govern how 
the client passes program arguments to the server, how the server passes'these 
arguments and other information to the child process, and how the chl)d sends 
its output b~ck t<;> ,the clieW, A simple QU\ fuq~tioning "-;.,:b ~erv~r. >J;iat' s~'rves 
both static and dynamic content can be i,~ple~~nt,ep in a.f<;w hundred 

1
1ines 9f 

C code. 

1:.,, 

B_ibli9graphi~ N,otes " 
The official source ofinformation for the Internet is contained'in a set of frel!ly 
available numbered documents known as RFCs (requests for com'!'9nts). A 
se~~chable ind~?< }'f RF,q is ~;.'ai/ab,le on the We)> ~t 5 

•JJ ,:_ I 
ht!lj:i/rfc-editor.org 

., 

RFCs are typic~lly wrihe~.for developers of'Internef'infrasttu'cture, ·ahd thus 
the{are usually'too detailed for the 'casuaJ·reader.'·Howeve't, f<;>r authoritative 
information, there is no better source. The HITP/1.1 protoCbl \s dacumented in 
RFC 2616. The authoritative list of MIME types is maintained at , 

. '~. ' 
http://www.iana.org/assignments/media-types 

Kerrisk is the bible for all aspects of Linux programming and' provides a de­
tailed discussion of modern network programming.(62Je There' are a riumber of 
good general texts on computer 'networking (65,,..84, 114]. The great techniaal 
writer W. Richard Stevens developed a series of classic texts on such topics as ad­
Yi'n~ed Unix programming (111], the ~nternet protocols (109, 120, 10'7];and Unix 
network progran\ming (108, 110]. Serious students of Unix systems programming 
will \vant to study all of th'em. Tragically, Stevens dibd on September'!, 1999:'l!is 
contributions are greatly missed. ' 

Homework Problems 

11.6 •• 
A. Modify TINY so that it echoes every request line and request header .. 

B. Use your favorite browser to make a request to TINY• for static content. 
Capture the output from TINY in a file. 

C. Inspect the output from TINY to determine the version of HTTP your 
browser uses. .~ 

965 



966 Chapter 11 Network Programming 

D. Consult the HTTP/1.1 standard in RFC 2616 to determine the meaning of 
each header in the HTIP request from your browser. You can obtain RFC 
2616 from www.rfc-editor.org/rfc.html. 

11.7 •• 
Extend TINY so that it serves MPG video files .. Check your work using a real 
browser. 

11.8 •• 
Modify TINY so that it reaps CGI children inside a SIGCHLD handler instead of 
explicitly waiting for them to terminate. 

11.9 •• 
Modify TINY so that when it serves static content, it copies the requested file to the 
connected descriptor using malloc, rio_readn, and rio_wri ten, instead of mmap 

and rio_wri ten. 

11.10 •• 
A. Write an HTML form for the CGI adder function in Figure 11.27. Your form 

should include two text boxes that users fill in with the two numbers to be 
added together. Your form should request content using the "GET method. 

B. Check your work by using a real browser to request the form from TINY, 

submit the filled-in form to TINY, and then display the dynamic content 
generated by adder. 

11.11 •• 
Extend TINY to support the HTIP HEAD method. Check your work using TELNET 

as a Web client. 

11.12 ••• 
Extend TINY so that it serves dynamic content requested by the HTIP POST 
method. Check your work using your favorite Web browser. 

11.13 ••• 
Modify TINY so that it deals cleanly (without terminating) with the SIGPIPE 
signals and EPIPE errors that occur when the write function attempts to write to 
a prematurely closed connection. 

Solutions to Practice Problems 

Solution to Problem 11.1 (page 927) 

Hex address 

OxO 
Oxffffffff 
Ox7f000001 
Oxcdbca079 

Dotted-decimal address 

o.o.o.o 
255. 255. 255. 255 
127.0.0.1 
205.188.160.121 



Hex address 

Ox400c950d 

Oxcdbc9217 

Dotted-decimal address 

64.12.149.13 

205 .188 .1.46. 23 

Solution to Problem 11.2 (page 927) 

Soluti6nS to Practice Problems 967 

------------------------- code!netp/hex2dd.c 

#include 11 csapp.h" 
2 

3 'int main (int argc, char **argv) r· 

5 

6 

7 

8 
'9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

{ 

21 } 

s~ruct in_add~·inaddr; 

uint
0

:i2_t addr; 
char buf[MAXBUF]; 

if (argc != 2) { 

rt ' ~ 
./* Addr~_?S in networl} byte.>prder */ 
/~ Address ;;,host byte o;)i;; *I 

' H 'J ~ "'I", • 

/* Buffer for dotted-decimal string */ 

fprintf (stderr, "usage: %s <hex number>\nlf, argV[O]); 
exit(O); 

} 

sscanf(argv[1], 11 %x 11
, &addr); 

inaddr.s_addr = htonl(addr); 

if ( ! inet_ntop (AF _INET, &inaddr, buf, MAXBUF)'J 
unix_error("inet_ntop 11

); 

printf( 11%s\n 11
, buf); 

'exit'(O); 

------------------------- code!netp/hex2dd.c 

Solution to Problem 11.3 (page 927) 
-------------------~-~--- code!netp/dd2hex.c 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

#include 11 csapp.h" 
\. 

i.zit main(int argc, char **argv) 
{ 

struct in_addr inaddr; /* Address in network byte order •/ 
int re; 

if (argc != 2) { 
fprintf(stderr, 
exit(O); ~ 

} .. 
"Usage:. %s <dotted-decimal>\n 11

, argv [OJ); 

13 re inet_pton(AF_INET, argv[1], &inaddr); 
14 if (re == 0) 

15 app_error( 11 inet_pton error: invalid dotted-decimal address 11
); 

j 
l 
I 

I 
I 

I, 



Chapter 1 ·l ,,_,Network l?rogramming 

2 

16 else if (re < 0) 
17 unix_error( 11 inet_pton error 11

) i 

18 

19 printf( 11 0x%x\n 11
, ntohl(inaddr.s_addr)); 

20 exit(O); 
21 }, 

----------------------~- l:ode!netpldd2hex.c 

Solution to Problem 11.4 (page 942) 
Here's a solution. Notice how much more difficult it is to use inet_ntop, which 
requires messy castin'g'ina deep structure references. The getnamei'ti:Eo function 
is much simpler Because il'dOes all bf that work for us. ' 

----------------------- code/netplhostinfo-ntop.c 

#inclJIP.,e. 11 cs~pp.h 11 

3 int main(int argc, char **argv) 
4 { 

5 struct addrinfo *P• *listp, hintsj 
6 struct sockaddr_in *sockp; 
7 char buf[MAXLINE]; 
B int re; 

9 

10 if (argc != 2) { 
11 fprintf(stderr, "usage: %s <domain name>\n 11

, argv[O]); 

12 exit(O); 
13 } 

14 

15 /* Get a list of addrinfo records */ 
16 memset(&hints, 0, ~Sizeof(struct addrinfo)); 
17 hints.ai_family = AF_INET; /* IPv4 only *} .... 1~~' 

18 hints.ai_socktype = s9cK_STREAM; I* Connections only *I 
19 if ((re = getaddrinfo(argv[1],, NULL, &hints, ,&listp)) !=,,O) { 
20 fprintf(stderr, 11 getaddrinfo error: %s\n 11

, gai_strerror(rc))j 

21 exit(1); 
22 } 
23 

24 /* Walk the list and display each associated IP address */ 

25 .for (p =- listp; p; p "p->ai_next)· { r·•l 
26 sockp = (struct sockaddr_in *)p->ai_addr; ~ 

27 Inet_ntop(AF_INET, &(sockp->sin_addr), buf, MAXLINE); 

28 printf ("%s\n 11
, buf); 

D } a 
30 



Solutions to Practice Problems 969 

31 /• Clean up •/ 
32 Freeaddrinfo (listp) i 
33 

34 exit(O)j 
35 } 

---------------------- code/netplhostinfo-ntop.c 

Solution to Problem 11.5 (page 954) 

The reason that standard I/O works in CGI programs is that the CGI program 
running in the child process does not need to explicitly close any of its input 
or output streams. When the child terminates, the kernel closes all descriptors 
automatically. • • 

I 

f 

I 
• 

f 
I 

I 
I 



r . 1l 

, , )1 



" . ' 

.. 

J\1 '• 

,. 

Concurrent Programming 
•t ., r 

) ,_ 

" 12.1 Conmrrent Programming with Prdcesses 973 
! I " J";, J. I 

12.2 Concurrent Pro!:{ramming wiJl).1/*l Multiplexing 977 

12.3 Concurrent Programming with Threads 985 ,,. 

H > i'2.4 "Shared Variables iri'Threaded Programs 992 

12.5 

12.6 

' '; .... Jl,. f { 

..Synchronizing Threads with Semaphores 995 

Llsin'g Threads for Parallelism l 0'13 1 

12.7 Other Concurrency Issues ·1.020 

• ' 12.11 Summary 1 030 
J 

Bibliographic Notes , 1 p30 

Homework Problems 1031 
• ,11 

.~Plutjq[\5 to Pr~cH~~ Problem~ 1036 
f 

" 

" 

971 

I 
l 

• 
I 
' 

I 
l 
l 

I 
r 

I 
_,1 



972 Chapter 12 Concurrent Programming 

As we learned in Chapter 8, logical control flows are concurrent if they overlap 
in time. This general phenomenon, known as concurrency, shows up at many 

different levels of a computer system. Hardware exception handlers, processes, 
and Linux signal handlers are all familiar examples. 

Thus far, we have treated concurrency mainly as a mechanism that the oper­
ating system kernel uses to run multiple application programs. But concurrency is 
not just limited to the kernel. It can play an important role in application prograins 
as well. For example, we have seen how Linux signal handlers allow applications 
to respond to asynchronous events such as the user typing Ctrl+C or the program 
accessing an undefined area of virtual memory. Application-level concurrency is 
useful in other ways as well: 

• Accessing slow 110 devices. When an application is waiting for data to arrive 
from a slow I/O device such as a disk, the kernel keeps the CPU busy by 
running other processes. Individual applications can exploit concurrency in a 
similar way by overlapping useful work with 1/0 requests. 

• Interacting with humans. People who interact with computers demand the abil­
ity to perform multiple tasks at the same time. For example, they might want 
to resize a window while they are printing a document. Modern windowing 
systems use concurrency to provide this capability. Each time the user requests 
some action (say, by clicking the mouse), a separate concurrent logical flow is 
created to perfoi;m the action. 

• Reducing later;cy by deferring work.,Som~times, apylications can use concur­
rency to reduce the latency of certain operations by deferring other operations 
and performing them concurrently. For example,·a dynamic storage allocator 
might reduce the lat~ncy of individual fre.~ operations by deferring coalesc­
ing to a concurrent "coalescing" flow that runs at a lower priority, soaking up 
spare CPU cycles as they become available. 

• Servicing multiple network clients. The-iterative network servers that we stud­
ied in Chapter 11 are unrealistic because they can only service one client at 
a time. Thus, a single slow client c'an'.'deny seiV'ice to every other client. For a 
real server that might be expected to sewice,lmnqreds or thousands of clients 
per second, it is \lot acceptable to allow one slow cljent to deny service to the 
others. A better approach is td btiiltl a 'i:oncurren! server that creates a separate 
logical flow for each client. This allows the server to setvice multiple clients 
concurrently and precludes slow clients from monopolizing the server. 

• Computing in parallel on multi-core machines. Many modern systems are 
equipped with multi-core processors that contain multiple CPUs. Applica­
tions that are partitioned into concurrent flows often run faster on multi-core 
machines than on uniprocessor machines because the flows execute in parallel 
rather than being interleaved. 

Applications that use application-level concurrency are known as concurrent 
programs. Modern operating systems provide three basic approaches for building 
concurrent programs: 



Section 12.1 Concurrent Programming with Protesses 973 

• Processes. With this approach, each logical control flow is a process that is 
scheduled an'd maintained by the kernel. Since processes have separate virtual 
address spaces, flows that want to comm~nicate with each other must use some 
kind of explicit interprocess communication (!PC) mechanism. 

• I/O multiplexing. This is a form of concu{rwt programming where applications 
explicitly schedule their own logical flo~s in the coµtext of a single process. 
Logical flows are modeled as state machines that the main program explicitly 
transitions from state to state as a result of data arriving on· file "descriptors. 
Since the program is a single process, all flows share the sam.! ·address space. 

• Threads. Threads are logical flows that run in the context of a single process 
and are scheduled by the kernel. You can think of threads as a hybrid of the 
other two approaches, scheduled by the kernel like process flows and sharing 
the same virtual address space like 1/0 multiplexihg flows. 

This chapter investigates these three different concurrent programming tech­
niques. To keep our discussion concrete, we will work with the same' motivating 
application throughout-a concurrent. version of the iterative echo server from 
Section 11.4.9. 

1 
• 

12.1 Concurrent Programming with" Pr<ic't!sses 

The simplest way to build a c;oncurrent program is with proce'ss·es, using familiar 
functions such as fork, exec, and wai tpid. For example, a natural approach for 
building a concurrent server is to accel?tc!i.ent connection reqy~sts in the parent 
arid.,th~n cq;ate a l}!<W child process to servi<;e each new, client. , 

To see how this might work, suppose we have tw9,f\i,e1Jt~ and ,a, serve,r that is 
listenin&for cpqpyc,t~9n r.e11uests on a listening. descriptor1 (~ay, 3) . .Now S!fppose 
\A'l~,the server accepts a coµnection re!luest from filient 1 and returns a c.wmected 
descriP,tor (say, 4), a.s sho)V\linFigure 12).,Aftyr accey~ing the ~onnection request, 
the servei: for\<s.a c\lil.~, )Vhiqh get& a complete COP,y.qf t\1~ server's cjescripto,r tf!ble. 
The chilcj cJ9ses.its copy of listening c\~scriptor ;'31 and tl:je p,arent clos'<s its copy of 
connected descriptor 4, since thei; .~re.no longer µeeded,. Th\s gives us t\1\' situation 
shown in Figure 12.2, where the child process is busy servicing the client. 

Since the connected de'iffiPt,or~ in tife parent ,and ~.hil\I, eash· point tq the 
same file table .entry, it .is crucial for the parent to close its copy of fue connected 

Figure 12.1 
Step 1: Server accepts 
conn~~ti<;>n,re,quest frorr 
client. 

' 
~· Connection 
~······ .. !:qUE!St 

clientfd r-•••••••• liste:d;tid(3) 

l'.J (< ···1 ' 
\ l ') r' Server 

I Clie~t2 ~ connj'd(4) 

' clientfd 

~l•J ,( 

I' 

,. 

I 

I 
~ 

I 
l 
I I I 
I I 

I 
I 

I 

I 
I 

I 

I 
I 
I. 

I 
I 



9711 Chapter 12 Concurrent Programming 

Figure 12.2 
Step 2: Server forks. a 
child process to service 
the client. Client 1 

,, 

Child~1 
' .. , 

Figure 12.3 

client:f'a_fl 

I Cli<:.,n,t,2 l 
clientfd 

J.is,t~enfd(3) 

B 
• 

1 

, 

Step 3: Server accepts 
another connection 
request. Client 1 

,Data Child 1 
transfers 

connfd(4) 

' listenfd(3) 'clientfd 

, .... ··········1 Server 
_ ... -· connfd(5) 

~--·· t:onpectio,n 
~ request ' 

,, 
clientfd 

descriptor. Otherwise, the file-table entry for connected descriptor 4 will never 
be released, and the' resulting memory leak will eventually consume the available 
memory and crash tlie system. • 

!\low·suppose·that"after the parent creates the child'for~clielit 1, it accepts 
a new'connecticin request from·'Client 2 and refurhs a'new conn'ecfod desi:riptor 
(say, 5), as shown ih Figure 1'2.3. The parent then forks another child, which begins 
servicing its client using cohliected ilescripto'r 5, as shoWn-id'Figure 12.4. At this 
point,' the· parent is waiting fot'the next'c'onnection request'and'the two children 
are servicing their respective clients coneurrehtly. ;> ,. . )-

12.1.1 A cJi\ctirre~t ~erver Basell on Processes 
' f r i 

Figure 12.5 shows the code for a concurrent echo server based on processes. 
The, echo function called in line 29 comes from Figure 11.22. There are several 
important points to _i;nake aoout this server:. 

" • First," servers ;typically run for loqg periods of time,. so we m\Ist include a 
SIGCHLD handler that reaps zombie children (lines 4-9). Since SIGCHLD 
signals are blockeq while the SIGCHLD handler is executing, and since Linux 
signals are not queued, the SIGCHLD.handler must be prepared to reap 
multiple zombie children. ' 

• Second, the parent and the child,.must close their respective copies or connfd 
'(lines 33 and 30, respectively). As we have mentioned, this is especially im-



Section 12.1 Concurrent Pr6gramming with Processes 975 

Figure 12.4 
Step 4: Server forks 
another child to service 
the new client. 

. Data Child 1 
transfers _,...,,.,_ __ _J 

connfd(4) 

Client 1 

clientfd 

Client 2 Data 
transfers 

clientfd 

listenfd(3) 

8 

Child 2 

connfd(5) 

portant f9r the parent, which must close its copy of the corn;iect,ed, desqipto_r 
to' avoid a memory leak. 

• Finally,. because of the reference count in the socket's file table entry,, the , 1 

connection to the client will no_t be terminated.until lioth the p~reJJt's·and 
child's copies of connfd are closed. 

12. 1'.2 Pros and Cons of Processes 

~rocesses have a clean model for sharing state informatjon;between.parents and 
children: file tables are shared and user address spaces are not. Having separate 
address spaces for processes is both an advantage and a disadvantage. It is im­
possible for one process to accidentally.overwrite <he virtual memory. of another a 
process, which eliminates a lot of confusing failures-an obvious advantage. 

On the other hand, separate address spaces.µiake it more difficult for pro­
cesses to share state information. Tq sliare information, they must.use explicit 
IPC (interprocess communications) mechanisms. (See the.Aside on page 977.) 
Another disadv.antage of process-based designs is that t)iey tend to be slower be­
cause the overhead for process control and IPC is high. 

~ter the.p'\fent closes.ti)~ connected descriptor in line 33 of the concurreµ! ~erves 
in Figure 12.5, the child is still able to communicate with the client using its copy 
oHhe'descriptor. Why? •' , • ., · ' 

ffi!tim:mti(~'JJA'l.l2;~~j\itj!i&;!iliae~Q3fil$~'~' ~~~~:: :: ~'.;I 
If we were to delete line 30 of Figure 12.5, which closes the connected descriptor, 
the code would still be correct, in the sense that there would be no memory leak. 
Why? 

,, 
' ' 



97.6 Chapter 12 Concurrent Programming 

-------------------~-------------- code/condechoserverp.C 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

#include 11 csapp.h 11 

void echo(int connfd); 

void sigchld_handler(int sig) . 
{ 

' ' 
while (waitpid(-1, 0, WNOHANG) > 0) 

return; 
} 

11 int main(int argc, char **argv) 
12 { 

13 int tistenfd, connfd; 
14 

15 

16 

17 if (argc ! = -2) »{ 

18 

19 

fprintf(stdei:'r] Vusake~ %s <port::.:\n 11
,' argv[O]); 

exit(O); 
20 } 

21 

22 Signal(SIGCHLD, sigchld_handler); 
listenfd = Op~n_listenfd(argv[l)); 
while ( 1) {. ' ,!;_J 

l 

., 

•• , l 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

clientlen = sizeof,1'.:Struct sockaddr_storage); J <1 

} 

} 

connfd = Accept(ltsteri,f~, (SA *) &clien1;;~ddr,_.&cl,ientlen); 

if (Fork() == O).>;{ •JJ.,, "' '" 

Close(iistenfd); /*' Child closes its listening socket */ 
e·cho(connfd); I* Child "services client */ 
Close (connfd); /* Child closes connection; with client */• 
exit (0); I• Child exi;:s *! ' . ' 

} ,., ell, r• 

.Close(connfd); I* ,Parent closes conn!=!cted socket (important!) •/ 

----------'-------~--''-------'-''---"'-'----'--~ c6fJe!condechbsdrverp.c 
H ']. ,,. )J 

11 • { ' I 

Figure 12.5 Concurrent echo server based on processes. The parent forks a child;to hapd_le each <flew 
connection request. 

,, ; ,, 



Section 12.2 Concurrent Programming with 1/0 Multiplexing 977 

~: "~: ~ ~ ~-:;;~ ... d-r:-- ~r"Kre~"'T"-,....~"'""'f~~ ,,,_. : - :r.t: , - ~ "" .,~ 

si~e ~~ ~U.~ix )~C· Aft. 't' " • \ A r r '),1; "-{f1 -> , ".!~ • .. ~ 
ou haye !'lr".ady enc~untere? Jeveral exall)ples of IPC in this t"el<i. :rh'e wai1'p1f!·flntttion and signals 

I from.Chapt~r &~re priin,itive IPC.me~hanis.IJl~ that allow processes to send tiJ!Y message,s to processes 
I rµnn,fng on the sain~ host. The sockgts interface from' Chapter 11 is an important form of IPO that 
j ·:ill9ws proce~e~·o9 tliffCrent hosts.to e~chaJ.lge arbitrpry byte streams. lfoweve~,.Jhe term ~nix !PC ' 
i)s' ~XPi~~llxfe§ey~ed tor: Jio~gepo.dge o~~·~~1!{q~ef igat ilJ!o'w' pr£ce.S~;~ i0.boni11'.un~cate witti other 
l prpcesses that ar~ runnmg 011 tile sam~ host. Example~if)<;iu<ie p,ipes, FIJ;'Os,~Yst$!m V shared memory, 
J .Mct"systeri(y .r;n1a11hores.:These;nethanisms \lfe'bevond 9ui·scol>e;T\ii, bonk'by Kerrisk [62] is a}l 1

1 ~t~l ·l"" ~ . .,.. l· .. • •.•• t.~,,,-l}f _.,.,'\ T" • 
• P..Xce lent..refefence -~, 1

· _ ~- _ ~ "' ~-"" • ' 1 
t ("""- . '\. ~-t!b ...,. -... '"' ~f • .... • J 
~--· .. --- ...&-~ .,;...., "' ... ;;,....,,,~ ~ ...... ~ .. , ..,,, 4" .... ,,,." .... ··~ ' .:; '''"""' _ ... 

CJ 

12.2 Conc.urrent Programmi.ng with. 1/0 Multiplexing 

Supp(\se you are as\i,'ed to write an echo server that can al~o respo11d to interactive 
c~mmands that the user types to staJ!dljl'd input. Jn this case, the server must 
respond to twci independCnt I/O evehts: ,(1). a, network client making a coqnection 
request, ana (~) a user typil\g a command line at t!)e keyboard: Which ev~nt 
do we wait for first? Neither option is ideal. If we are waiting for a connection 
request in a~cept, then we cannot respond' to input commands. ~imilariy, if we are 
waiting for an input command in read, then we cannot respond to any connection 

_jj,J ~ " 
requests. " 

One solution to, this ailemma is a technique called IIO'hiultiplexing. The basic 
idea is to use the se1ect function to ask the kernel to su&pend ihe process, return­
ing control to ilie' appjication only after one or more I/O events have occurred, as 
in the following examples: 

• Return when any descriptor in the set {O, 4} is ready for reading. 

• Return when any descriptor in the set {l, 2, 7) is ready for writing. 

• Time out if 152.13 seconds have elapsed waiting for an I/O event to occur. 

Select is a complicated function with many different usage scenarios. We 
will only discuss the first scenario: waiting for a set of descriptors to be ready for 
reading. See [62, 110] for a complete discussion. 

#include <sys/select.h> 

int select(int n, fd_set *fdset, NULL, NULL, NULL); 
Returns: nonzero count of ready descriptors, -1 on error 

FD_ZERU(fd_~et •fdset); 
FD_CL'it(int fd, fd,set •fdset); 
FD_SET(int fd', fd_!le't •fdset)'; 
FD_ISSET(int fd, fd_set •fdset) ; 

I• Clear alr;bits in fdse~' */ 
I• Clear bit fd in fdset •/ 
!*'turn on bit fd in fdset •/ 
I• I!. ··'6'it fd in fdset on? •/ 

Macros for manipulating descriptor sets 

! 

I 
l 
l 

.. l 



978 Chapter 12 Concurrent Programming 

The select function manipulates sets of type fd_set, whic~ are known as de­
scriptor sets. Logically, we think of a descriptor set as a bit vec1or (introduced in 

'· Section 2.1) of size n: 

Each bit bk corresponds to descrjptor k.'Descriptor k is a memb~r of the descriptor 
set if and only if bk= 1. You are only allowed to do three things with descriptor 
sets: (1) all~cate them, (2).assign one variable of this type to another, and,.(3) 
modify and inspect them using the FD_ZERO, FD_SET, FD_CLR, ,and FD_ 
ISSET macros. 

For our purposes, the select function takes two inputs: a descriptor set 
(fdset) called the read set, and the card\nality (n) of the read set (actually the 
maximum cardinalify of any descriptor set). The sel'.ect function'blOcJ<s until at 
least one descriptor in the read set. is rea~y for reading. ,A descriptor k is ready 
for reading if and only ifa re'quysl to r.eaq l lbyty from that' ai:scriptor would not 
block. As a side effect, select modifies t)l'.~ fd_set pointhi:I to by a~gument fdset 
to indicate a subset of the reac\ set called the ready set, consisting oft.he descriptors 
in the read set that are ready; for reading. Th~ yalue return,ed' by the function 
indicates !\le ~:;irdinality of the ready set. Note that because of the side eft)~~\1 we 
must update the_ read set every time select is ca)led. 

The best way to understand selec't is to study'a concrete example. Figure 12.6 
shows how we might use select to impleinent an iterative echo server tliat also 
acc~pJs user commands on th~ standard 'mput. We 'begin \,y u~Jng the, open_ 
l,istenfd func,tion from Figure 11.19 to open a lfstening descriptor (line)6), anq 
then using FD_ZERO to create an empty read set (line 1~): ' 

listenfd st din 

.3 2 0 

read_set (QI): LI __ o_i.__o _ _, .. l __ o _ __,___o _ __, 

Next, in.lines 19 and 20,
0

we defineLthe read set to consist of descriptor 0 (st~ndard 
input) and descriptor 3 (the listening descriptor), respectively: 

listenfd stdin 

3 2 0 

read_set ({0,3))' LI --~--0-~_o_~---

At this point, we b~gin the typjcal server loop. B~t \!)stead of ""~iting. for a 
connection request l;>Y, calling the accept function, we c,all the sele;t f\m.ction, 
which blocks until either the li~t~Q./ng descriptor or.standard input is read}'; for 
reading (line 24). For exampl".,J:\ere is the vafoe. 9f ready +set that select would 
return if the user hit the enter key, ,thus causing the standard input descriptor to 



Section 12.2 Concurrent Programming with 1/0 Multiplexing 979 

--------------------------~· ~' cotle!condselect.c 

#include "csapp.h 11 

2 void echo(int connfd); 
3 void command(void); 
4 

5 

6 

int main(int argc, char *~argv) 
{ 

7 int. listenfd, .._connfd;_ 
8 socklen_t clientlen; 
9 

10 
11 ,J 

12 

struct sqckaddr_storage c;ti,T/ttaddr; 
fd_set r~ad_set, r9ady~~et; 

if "(argc ! ~ "2) { 

.. ' 

• 13 

14 

15 
16> 

fprintf(stde'rr, '"usage:' %s"<port>\n", argv[O]); 
exit(O); 

} ~ , 
listenfd = ,OpeilL,list.enfd(argv [1]); 

' 

17' ~· 
JB .FD_ZERO(&read_s~t); /*Clear r~ad set•/ 
19i , •• FD_SE:r<sTDIN_FJ.L~f-!O .• &rea~set) ;. /* Add (stdin. tp re,fld• ~~t •I· 
20 FD_SET(listenfd, &:rea~set); /• Add listenfd ,tpj,read; set •/ 
21 

22 
23 
24 
~5 

26 
27 
28 
29 
30 
31 

3~~ 
}3 
34 

35 

36 

37 

38 

39 

40 

41 

" 
} 

;while (1) { 
ready_set = read_set; 
Select(listenfd+1, &ready_set, NULL, NULL, NULL); 
if (FD_ISSET(STDIN_FILENO ,1 &ready ~set)) 

command(); /•Read Con\mand line from"atdin1•i 
if (FD_ISSET(listenfd, &ready_set)) { 

} 

clientlen ~ sizeof(struct sockaddr_storage); 
connfd: Accept(listenfd, (SA •)&clientaddrJ &clientlen); 
echo(connfd); /•Echo client input. until EOF~ •/ 

• I ~ .. I I I 
Close (connfd) ; 

.. 

void 1tommand(void) { 
' ~ha:r buf[MAXLINE); 

} 

if (+Fgets(buf, •MAXLrNE, stdin)) 
exit(O) ;'l/•~EOF *I '.t-

pril}.tf.("Y.s"" buf); I• Process •tl).e1 input -command •/ 

---------------------------- co'delcondselect.c 
If ~ } 

Figur)' 1 ;i.6 f!o..n iteratjv~ e.cho server that use~, 1/0, m11ltiplexing. The s~rver uses 
sel'lct to wai! for conn,ectj_on, r:.1;quests on a listening,descriptor and ~.?mrn~nds on 
~ta~dard input. " 

' 
'I 

j 

"' 

" I 

I 
l 
t 
I I 
I I 
' I 
I 
I 
I 
ti 



980 Chapter 12 Concurrent Programming 

become ready (or reading: 

listenf d stdin 

3 2 a 

Once select returns, we use tbe FD_ISSET macro to determine which de­
scriptors are ready for reading. If standard input is ready (line 25), we call the 
command function, which reads, parses, ·and responds to the command before re; 
turning to the main routine. If the listening descriptor is ready (line 27), we call 
accept to g'et a connected descriptor and then call the echo function from Fig­
ure 11.22, which echoes each line from the client until the client closes its end of 
the connection. 

While this program is a good example of using select, it still leaves something 
to be desired. The problem is that once it connects to a client, it continues echoing 
input lines until the client closes its end of the connection. Thus, if you type a 
command-to standard input, you will not get a response until the'server is finished 
with the client.·A better approach would' be to multiplex at a finer' granularity, 
echoing (at'most)·one fext line e&ch time througli the sbrver loop. 

IPiaCTaM!emiil~~lfti~h'i&'~TQ),j;~.~ .. ~Fil';h.'a~.;·.;?11 
In Linux systems, typing Ctrl+D indicaf'ts EOf on.standard input., What happens 
if you type Ctrl+D to the program in Figure 12.6 while it is.blocked in the call to 
select'? # .. 

12.2.1 A Concurrent Event-Driven Server Based on 1/0 Multiplexing 

I/O multiplexing can be used as the basis for concurrent event-driven,programs, 
where flows make progress as a result of certain events. The general idea is to 
model logical flows as state machines. Informally, a state machine is a collection of 
states, input events, and transitions that map states and input events to states. Each 

• J 
transition maps an (input state, input event) pair to ai;i.output state. A self-loop is 
a transition between the same input and output state. State ma~hines are typically 
drawn as directed graphs, where nodes represent states, directed arcs represent 
transitions, and arc labels represent input events. A state machine begins execution 
in some initial state. Each input event triggers a transition from the current state 
to the next sta)e. 

For each new client k, a concurrent server based on I/O multiplexing creates 
a new state machine sk and as~lltiates it with connected 'descriptof'dk. As shown 
in Figure 12.7: each state·m!ichine sk has 'one state {'"waiting' for descriptor dk to 
be ready for reading''), one input event ("descriptor dk is ready for reading")','anil 
one·transition ("read a text line from descriptor d<"). 



Figure 12.7 
State machine for 
a logical flow in a 
concurrent event-driven 
echo server. 

Section 12.2 Concurrent Programming with 1/0 Multiplexing Q8l 

Input event: 
"descriptor dk 

Transition: 
"read a text line from 

,,-,,.<:;:--... descriptor dk' 

is ready for reading" ~.i;..· ,., ---...'.'./ 
,, 

State: 
''waiting for descriptor dk to . 

. be r~ady for reading" 

The server uses the I/O multiplexing, courtesy of the select function, to 
detect the occurrence of input events. As easl:) .. connected descriptor becomes 
ready for reading, the server executes the transition for the corresponding state 
machine-in this case, reading and echoing a text line from the dl'scriptor. , 

Figure 12.8 shows the complete example code for a concurrent event-driven 
server based on I/O multiplexing. The set of active clients is maintained in a pool 
structure (lines 3-11). After initializing the pool by calling ini t_pool (line 27), 
the server enters an infinite loop. During each iteration of this loop, the server calls 
the select function to detect two different kinds of input events: (1) a connection 
request arriving from a new client, and (2) a connected descriptor for an existing 
client being ready for reading. When a connection request arrives (line 35), the 
server opens the connection (line 37) and'coalls the'actd_client function to add the 
client to the pool (line 38). Finally, the server calls the check_ clients function to· 
echo a single text line from each ready connected descriptor (line 42). 

The init_pool function (Figure 12.9) initializes the clie'nt pool. The clientfd 
array represents a set of connected descriptors, with the integer -1 denoting an 
available slot. Initially, the set of connected descriptors is empty (lines 5-7), and 
the listening descriptor is the-only descriptor in the select read set (lines 10--12). 

The add_ client function (Figure 12.10) adds a new client to the pool of active 
clients. After finding an empty slot in the clientfd array,' the server adds the 
connected descriptor to the array and initializes a corresponding Rm read buffer 
so that we can call rio_readlineb on 1the descriptor (lines 8--9). We then add 
the connected descriptor to the select read set (line 12), and we up&ate some 
global properties of the pool. The maxf d variable (lines 15-16) keeps track of the 
largest file descriptor for select. The maxi variable (lines 17-18) keeps track of 
the largest index into the clientfd array so that the check_ clients function does 
not have to search the entire array. 

The check_-clients• function in Figure .12.lLechoes a .text line from each. 
ready connected descriptor. If we are successful in reading a text line from the 
descriptor, then we echo that line back to the clien((lines 15-18). Notice that in 
line 15, we are maintaining a cumulative count of total bytes received from all 
clients. If we detect EOF because the client has closed its end of the connection, 
then we close our end of the connection (line 23) and remove the descriptor from 
the pool (lines 24-25). ' ' ' " ' 



982 Chapter 12 Concurrent Programming 

------------------------------------ code/conde'cho~eiVers.c 

2 

3 

4 
5 

6 

7 

8 

9 
10 

"' #include 11 csapp.h 11 

' ,\ 
typedef struct {/•Represents a pool. of ~onnected.descriptors •/ 

int maxfd; /• Largest descriptor lit read_set •/ 
fd_set read_set; /•~et of all active descriptors'•/ 
fd_set ready_set; /• suOset of ~desCiiptors featly for reading •/ 
int nready; /* Number of ready d0scriptors from se+ect •/ 
int maxi; /•High water inde~.,into client array•/ 
int clientfd[FD_SETSIZE]; /•Set of active descriptors•/ 
rio_t clientrio[FD_SETSIZE]; /•Set of active read buffers•/ 

, . 

11 } pool; 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
27 

28 
29 

30 

31 

32 

33 

34 
35 

36 
37 

38 
39 

40 

41 

42 

43 
44 

int byte_cnt = O; /•Counts total bytes 'receiVed by server •/ 
_,., t' o' 

int main(int argc, char!'•*argv) 
{ 

} 

' 
int listenfd, cohnfd; 11 

socklen_t clientlen; 
struct sockaddr_storage clientaddr; 
static po9l po9li 

.. 

if (argc ! =. 2) { 
fprint:f(stderr, 
exit (0); 

" ' 11usage: %s <port>\n 11
, argv[O]); 

J .. 
} 

' ' ' listenfd = Opeh_listenfd(argv[l]); 
' ' . init_pool(lidtenfd, &pool); 

while (1) { 

•I 
[·, 

, 
/* Wait; for listening/connected descriptor(s) .td becom~e"' ready */ 

} 

pool.ready,_set = pool.read_set; •, 

pool.nfeady = Select(pool~maxfd+i, &pool.readY._set, NULL, NULL, 

I 
I* If listening descriptpr, r~ady, add new client to, pool */ 
if (FD_ISSET(l,istenfd, &pool. ready _set)) .{. · 

} 

. ' .,~ 
clientlen = sizeof(struct sockaddr_storage); 
c?nnfd .1• A'cce~t (listenfd

1

, (SA *')&clientaddr .~ &clientlen) ;' 
add_client(connfd, &pobl); 

/* Echo' a· text "line ftom ea'ch ready connected descript"OY
1 *'I 

check_clients(&pool) ;, 1, , 

r' 
J 

i 

'• 

;. 

,f. 

" 
NULL); 

" 
t ... , 

'f, ... 

---------------~-~'-'---~--'c;·-·~··ec•-------"----·cade/condechoserverS.t 
.. ' .1 'T' • _l { •• 

Figure 12.8 Concurrent echo server based on 1/0 r11ultiplexing. Each server iteration echoes a tex~ line 
from each ready descriptor. 



Section 12.2 Concurrent P,rogr~mming with 1/0 Multiplexing 983 

--~-------------------- code/condechoservers.c l 
1 

2 
void init_pool(int listenfd, pool *p) 
{ 

3 I* Initially, there are no connected descriptors */ 
4 int i; 
5 p->maxi = -1 i 

6 for (i=O; i< FD_SETSIZE; l++) 
7 p->clientfd [i] = -1; 
8 

9 I* Initially, listenfd is only member of select~read set */ 
10 

11 

12 

13 

p->maxfd = listenfd; 
FD_ZERO(&p->read_set); 
fD_SET(listenfd, &p->read_set);, 

,,. 

} 

---------~'"-'''-------------'-- code/condechoservers.c 

Figure 12.9 i'li"t;~pool initializes the poo'I of active, clients. 

----------------------- code/condechoservers.c 
1 void add_Client(int connfd, pool *p) 
2 { 

3 int i; 

4 p->nready--; ~o 

5 for (i = O; i < FD_SETSIZE; i++) /• Find an available slot •/ 
6 if (p->clientfd[i] < O) { 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

2o' 
21 

22 

23 } 

} 

/* Add connected descriptor to the pool */ 
p->clientfd(i] = connfd; 
Rio_readinitb(&p->clientrio[i], connfd); 

/* Add the descriptor to descriptor set */ 
FD_SET(connfd, &p->read_set)~ 

'11• •lO --v1<1_'""'"'-.f I* Update max descriptor and pool nigh water mark */ 
if (connfd > p->maxfd) 

p->ma'xfd = connfd; 
if"' (i "> p-)maxi) ~,I,£ 1 

'"" ,f p->ri:iaxi =' i; 
break; 

' 
) 

if (i == FD_SETSIZE) /• Couldn't fi~d an empty slot •/- 1 

app_error( 11 add_client error: Too many clients"); 

--------------~-;:---------- codelcondechoservers.c 
f< 'l1~J i J 

Figure 12.10 add_client adds a new cli~,\t connection to the pool. 

I 

l 
l 

!• 

'I, 
I 
l 

I 

I 
I 

! I 
I I 
1· 
l 

" 

I· 
I 
" 

I 



984 <Ehapter 12 Concurrent Programming 

void check_clients(pool *p) 
2 { 

3 int i, connfd, n; 
4 char buf[MAXLINE]; 
5 rio_t rioj 
6 

7 for (i = O; (i <= p->maxi) && (p->nready > O); i++) { 
8 connfd = p->clientfd[i]; 
9 rio = p->clientrio[i]; 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 } 

29 } 

/* If the descriptor is ready, echo a text line from it */ 
if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) { 

p->nready--; 

} 

if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) { 
byte_cnt += n; 

} 

printf( 11 Server received %d (%d totalA) 'byieS•1on fd %d\n", 
n, byte_cnt, connfd); 

Rio_wri~en(connfd, buf, n); 

I* EDF detected, remove descriptor from pool */ 
else { 

} 

plose~connfd); 

FD_CLR(connfd, &p->read_set); 
p->clienj;fd[il = -1; 

-------------------~--~-----~-- cbdelcondechoservers.c 

Figure 12.11 check_ clients services ready client connections. 
~, ~ ~·\' 

' ..... 
In terms of the finite state model in Fi1p;1~e 12.7, the ~e).ect function detects 

input events, and the add_client function creates a ne;.v logical flow (state ma­
chine). The check_clients function performs state transitions by echoing input 
lines, and it also deletes the state machine when the client has finished sending 
text lines. , 

nwa'f.tigi :efR"mfiliY'J~Jr~fi~illil!i&:mldfl o~·Jii'.2::N~:t:e:~!'.:~··!'it'. -:::3 
In the server in Figure 12.8, we are carefuffo refoiiialiZe ilie pool~ ready _set 
V')fiable imm~dia\ely1before every call i:o s~lect. Why? 



Section 12.3 ~oncurrent Programming with Threads 985 

,, 
12.2.;1· P~os and Cons of 1/0 Multiplexing J 

The server in Figure ;tf,.8 provides a nice e~ample of the advantages and disad­
vantages of event-driven programming based on Ilb multiplexing. One advantage 
is that event-driven designs give programmers mo~e control over the beha~ior of 

' ' ' ' • ' ., I 
their programs than process-based designs. For example, we can imagine writ-
ing an event-driven concurrent ~e~ver tha( gives)referred service to some clients, 
which would.be difficult for a concurrent server based on processes. 

Another advantage is that an event-driven server based on 'r10 multiplexing 
runs in the context of a single process, and thus every logical flow has access to 
the entire address space of the process. This makes it easy to share data between 
flqws. A related advantage of running as a single process is that you can debug 
your c9ncurren,t server as you would any &equential program, using a ,familiar 
debugging (oo\ such as GDB. Finally, event-drh:en ,designs are often significantly 
more etp,cient tJi.an pi;ocess-ba~ed designs because,~hey.do not require.a proyyss 
contex~ s,witch to schedule a new flow. 

A sigpificant disadvan,tage of event-drivel},.desjgns is coding complexity. Our 
eV~J?.J-driven c,oncurrent echo server requires three tilJ!es, mqre code than the 
process-based server. Unfortunately,, tl),e complexity increases as the granuli1fity 
of the concurr,ency decreases. By granularity, we mean th.e. number of instructions 
that each logical flow executes per time slice. For ins\ance, jn our exam Ill\' concur­
rent server, the granularity of concurreJ,lCY is the nur11ber of instructions req~ired 
to read an entire !ext \ine. f\s long as somo; logical flow i~ busy reading a text line, 
no other logical flow can make progress. This is fine for our example, but it makes 
our event-driven server vulnerable to a malicious client that sends only a partial 
text line and then halts. Modifying an event-driven server to handle partial text 
lines is a nontrivial task, but it is handled cleanly and automatically by a process­
based design. Another significant disadvantage of event-based designs is that they 
cannot fully utilize multi-core processors. 

12.3 Concurrent Programming with Threads 

To this point, we have looked at t\vo approaches for creating concurrent logical 
flows. With the first approach, we use a separate process fpr each flow. The kernel 
schedules each process automatically, and each process has its own private address 
space, which makes it difficult for flows to share data. With the second approach, 
we create our own logical flows and use I/O multiplexing to explicitly schedule 
the flows. Because there is only one process, flows share the entire address space. 

l 

I· 

I 
I 
I 

I I 
\ I 

I 
f 



,, 

I' 

986 Chapter 12 Concurrent Programming 

Figure 12.12 
Concurrent thread 
execution. 

This section introduces a third approach-based on threads-that is a hybrid of 
these two. 

A thread is a logical flow that runs in the context of a process. Thus far 
in this book, our programs have consisted of a single thread per process. But 
modern systems also allow us to write programs that have multiple threads running 
concurrently in a single process. The threads are scheduled automatically by the 
kernel. Each thread has its own thread context, including a unique integer thread 
ID (TID), stack, stack pointer, program counter, general-purpose registers, and 
condition codes. All threads running in a process share the entire virtual address 
space of that process. 

Logical flows based on threads combine qualities of flows based on processes 
and IJO multiplexing. Like processes, threads are scheduled automatically by the 
kernel and are known to the kernel by an integer ID. Like flows based on IJO 
multiplexing, multiple threads run in the context of a single process, and thus they 
share the entire contents of the process virtual address space, including its code, 
data, heap, shared libraries, and open files. 

12.3.1 Thread Execution Model 

The execution model for multiple threads is similar in some ways to the execution 
model for multiple processes. Consider the example in Figure 12.12. Each process 
begins life as a single thread called the main thread. At some point, the main thread 
creates a peer thread, and from this point in time the two threads run concurrently. 
Eventually, control passes to the peer thread via a context switch, either because 
the main thread executes a slow system call such as read or sleep or because it 
is interrupted by the system's interval timer. The peer thread executes for a while 
before control passes back to the main thread, and so on. 

Thread execution differs from processes in some important ways. Because a 
thread context is much smaller than a process context, a thread context switch is 
faster than a process context switch. Another difference is that threads, unlike pro­
cesses, are not organized in a rigid parent-child hierarchy. The threads associated 

Time 

Thread 1 Thread 2 
(main thread) (peer thread) 

~~~~]--~~~ 
·-=::i;-:.::-:.::-::_-;:_------- } Thread context switch ----------- ---- i-----

--------_:--:.:-:.:-~=;:.==-=-~---===== } Thread context switch

~~~~~J ~~~ 
______ -_~_"' __ "'_'-'j.:=:.::=:.::=;:_~:_:-i = = = = = } Thread context switch 

----------- -----------



Section 12.3 Concurrent Programming with Threads 987• 

with a process form a pool of peers, independent of which threads were created 
by which other threads. The main thread is distinguished from other threads only 
in:the sense that it is always the first thread to run in the process. The main impact 
of this notion of a pool of peers is that a thread can kil1 any of its- peers or wait 
for any of its peers to terminate. Further, each peer can read and write the same 
shared data. , " 

'T 1 ~ 

H ' J 2.3.2 Posix Thr11ads 

Posix threads (Pthre'ads) is a standard interface for manipulating threads'tTom C 
programs. It was adopted in.1995 and is available on'all Linux systetns. Pthreads 
defines about 60' functions that allow progrfil'nk·to create, ·kill,-and reap"11/reads, 
to share data' safely wiih peer tlfreads, and to notify peers about ch'ahges in the 
system state. ~-"' TiL 

Figure 12.13 shows a simple.PthJeads program. The main thread creates a peer 
thread and then waits for it to terminate. The peer thread pririts HeHo~ worla ! \n 
and terminates. When the main thread detects that the peer thread has terminated, 
it terminates·the process by calling' exit. This ls the first tliredad pi'O'wam 'we 
have seen, so let us dissect it carefully. The code and local data for a thread are 
encapsulated in a thread routine. As shown by the prototyp~_ip, liIJe 'f, eQch, thr,ead' 
routine takes as input a single generic pointer, an!), returns a gern;ric poi11ter. If 
you want to pass multiple arguments to a thread routine, then you should put the 
arguments into a structure and pass a pointer to the structure. Similarly,'. if ybu, 

' 

---~-~------------------ code/conphello.c 
fl, 

1 

2 

3 

4 

5 

6 

7 

8 

9 

#include "csapp.h 11 

( . ) • l 1 
void *thread(void 'v~rgp) 1 ; 

int main() 
{ 1· 

pthread_t tid; ~< 
Pthread_create(&t~d, NULL, 
Pthread_join(tid, NULL); 
exit(O); 1 

10 } 

11 

ihread, NULL); 

12 void *thread(void *Vargp) /* Thread routine */ 
13 {' 

14 printf( 11 Hello, world!\n 11 ); 

15 return NULL; 
16 } 

,. 
!' 

., 

!'f 

-----------------~-----~ tode/condhello.c 

Figurll, 12.13 hello. c: ,The Pthreads "Hello, world!" program .. 

( 

j I 
I 
I 

I 

I 
I 

I 
l 

I 
I 

I 

I 

I 

.. 



988 Chapter 12 Concurrent Programming 

want the thread routine to return multiple arguments, you can return a pointer to 
a structure. 

Line 4 marks the beginning of the code for the main thread. The main thread 
declares a single local variable tid, which will be used to store the thread ID of 
the peer thread (line 6). The main thread creates a new peer thread by calling the 
pthread_create function (line 7). When the call to pthread_create returns, the 
main thread and the newly created peer thread are running concurrently, and tid 
contains the ID of the new thread. The main thread wait~ f'!r the peer thread to 
terminate with the call to pthread_j oin in line 8. Finally, the main thread calls 
exit (line 9), which terminates all threads (in this case, just the main thread) 
curreqtly running in the process. 

Line,s,12-16 define \he thread routine for the peer thread. It simply prints a 
string and thyn terminates the peer thread by executing the return statement in 
line 15. 

12.3.3 Creating .Threads 

Threads create other threads by calling the pthread_create functioJl. 

#include"<pthread.h> 
typedef' void •(func)(void •); 

int pthread_create(pthread,t *tid, pthread_attr_t *attr, 
func *f, void *arg); 

Returns: 0 if OK, nonzero on error 

The pthread_create function creates a new thread and runs the thread routine f 
in the context of the new thread and with an input argument of arg. The attr 
argument can be used to change the default attribuies of the newly created thread. 
Changing these attributes is beyond our scope, and in our examples, we will always 
call pthread_create with a NULL attr argument. 

When pthread_create returns, argument tid contains the ID of the newly 
created thread. The new thread can determine its own thread ID by calling the 
pthread_self function. 

#include <pthread.h> 

pthread_t pthread_self(void); 

Returns: thread ID of caller 

12.3.4 Terminating Threads 

A thread terminates in one of the following ways: 

• The thread terminates implicitly when its top-level thread routine returns. 



Section 12.3 Concurrent Programming with Threads 989 

•;.The threat! terminates explicitly by calling the• pthread_exi t .function, If 
the main thread calls pthread_exi t, it waits.for all otheF peer threads td 
terminate and then terminates the main thread and the entire process iWith 
a.return .value of thread_ret1'rn. 

#include <pthread.h> 

void pthread_exit(void *thread_return); " 
.Never returns 

•.Some peer thread calls the Linux exit function, which terminates the process 
and all threads associated with the process. 

• O' ' ~ • ' 1 
• Another peer thread termirlates the currenJ thread by calling the pj;i,read_ 

cancel functibn with the ID of the current thread: ' 
,_,, 

#include" "<pthread. h> 
I ) .. , 

int ptµread_cancel(pt~rea~_t' tid); 
Retur~s:, 0 if OK, nonzero on error 

"· 
12.3.5 Reaping Termin~t~d Threads ., 

Threads wait for other threads to terminate by calling the pthread_j oin function. 

#include <pthread.h> 
!' J• I 

int pthread_join(pthread_t tid, void **thread_return); 

Returns: 0 if OK, nonzero on error 

The pthread_j oin function blocks until thread tid terminates, assigns the generic 
(void•) pointer returned by the thread routine to the location pointed to by 
thread_return, and then reaps any memory resources held by the''termillated 
thread. 

Notice that, unlike the Linux wait function, the pthread_join function can 
only wait for a specific thr,ead to terminate. There is no way to instrnct pthread_ 
join to wait for a'! arbitrary thread t,o terll!inate. This can complicate our S.9£1~ by 
forcing us to use other, less intuitive mechanisms to detect process termination. 
Indeed, Stevens argues convincingly that· this is.a bug in.the' specification [HO} . . , ) 

12.~.6 Detaching Tlireads' 
t '' I ,'' l 

At· any poinl'in time11a thread is joinable or detached. A· joinable thread can1be 
reaped and killed by:other. threads. Its memor~ resources (such as the stack) are 
not freed until it is reaped by another.thread. In contrast, a detached thread cannot 

• 
I 
I 
I 

I 



990 Chapter 12 C:oncurrent Programming 

be reaped or killed by other threads, Its memory resources are freed automatically 
by the system when it terminates. 

;By default, threads are creaJedjoinable. In order to avoid memory leaks, each 
joinable thread should be either explicitly reaped by another thread or detached 
by a call to the pthread_detach function. 

#include <pthread.h> 

int pthread...detach(pthread_t tid); 
Returns: 0 if OK, nonzero on error 
' 

The pthread_detach function detaches the joinable threac\ .tid. Threads can 
detach themselves by calling pthrea~_detach with an argJment of pthread_ 
self(). • • 

Although some of our examples will use joinable threads, there are good rea­
sons to use detached \breads in real programs. For example; a·high-performance 
Web server might create a new peer threag ~ach time i,t receives a connection re­
quest from a Web browser. Since each connection is Handled independently by a 
separate thread, it is unnecessary-and indeed undesirable-for the server to ex­
plicitly wait for each peer thread to terininate. In this case, each peer thread should 
detach itself before it begins processing the request ~o that its memory resources 
can be reclaimed after it terminates. I 

12.3.7 Initializing Threads 

The pthread_once function allows you to initialize the state associated with a 
thread routine. ' 

'#include <pthread.h> u 

pthFead_once_t onc~_contrpl = PTHREA~_ONCE_INIT; 

int pthread_once(pthread_once_t *once_control, 
void (*init~routine)(void)); 

T<) f 

Always returns 0 

The1once_control variable is a global or static variable .that is always initialized 
to PTHREAD_ONCE_INIT. The first time you call pthread_once with an ar­
gument of once_control, it invokes init_routin2,, which ~S·{i,~Unytion with no 
input arguments that returns nothing. Subsequent calls to pthread_once with the 
saine 'once_ control :v.ariable do nothing. The pthread._oncer function is useful 
whenever you need to dynamically initialize globatsariable~ that are shared by 
multiple threads. We will look at an 'example in Section 12.5.5. 



Section 12.3 Concurrent Programming with "Oireads 991 

12.3.8 A Concurrenf·Se~er Based or1 Threads . ., 
Figure 12.14 shows the code for a concurrent echo server based on threads. The 
overall structure is similar to the process-based design. The.main thread repeat­
edly waits for a connection :request and then creates a peer thread toohandle the 
request. "\\(hi,le tJ;te code loo~s simple, there are a c.ouple of geµeral. ~n~ soi!}ej' 
what subtle issues we heed"fo look at more closely. The first issue,is hbw to pass 

---------------------------------- code!condechoservert.c 
#include "csapp.h" 

2 

3 void echo(int connfd); 
4 void •thread(void •vargp); 
5 • ' r 
6.~ int main(illt argc, char **argv) I' 

•J 7 ~{ I, ,,, ft I ,. 
8 int listentq, •connfdp; " -

so~kl~n~~ clie¥~l~n; J 

B~rlfct sockadc\I'c~~?n~g~.clientaddr; 

ll'.pthre~d... t tid; 'I '< , t 'o I 

' .Jf• 
if (argc != 2) { 

9 

10 

1.1 
12 

13 

14 

15 

16 

17 

1 !!' 

·•fprintf (stder,r, 
exitiO); 

"usag,e: %s1><p1ort>\n", argv[O]); 
~ I t f' 

19 

20 

21 

} 
,, 

" listenfd = Op•n_l1stenfd(argv(1]); 
n 

111 1 while (1) { " 
clientlen=sizeof(struct sockaddr_storage); 
connfdp = Malloc(sizeof(int)); 

" . ' 

22 
23 

*connfdp = Accept(listenfd, (SA •) &clientaddr, &clientlen); 
Pthread_C:reate(&tid, ..:NULL, thread1 connldp); 

24 

25 

26 
27 
28 

29 
30 

31 

32 
33 

34 

35 

} " 
I fl , f 

r! I P( 

/* Thread routine */ 
vofd *thread(void •vargp) 
{ 

I 
int connfd ~ •((int'•)vargv); 
Pthread_detach(pthread_self()); •• Free ( vargp) ; 
echo (conri'.fd~ ; ' 
~Close(connfd); 

re~Urn NULL; 
36 ' } 

" 
., 

fl 

., 

--...!.---'-------''-''---'----'-----'''-' ----'1-'-'''-'-'--''--~----....,.-- code/condechoservert.c 

Figure 12.]4 Concurrent echo, server based on threads. 

•II 
I 

I 

• 

I 

I 
I 
I 
I 

I 
j ll 



992 Chapter 112 Concurrent> Programming 

the connected descriptor to the peer thread when·we calLpthread_create. The 
obvious approach is to pass a pointer to the descriptor, as in the fo.Jlowing: 

" ' 
· .: connfd = Accept(listenfd, (SA~) &clientaddr, &clientlen); 

Pthre'adLcreat:eE&tid, NULL" thread;, &connfd)i; 

The,n we havf ~he peer threa~ dereference the p<ljnt~r ~nd assign it. t.o a local 
variable, as follows: , 

void *thread(void *Vargp) { 
int connfd =*((int *)vargp); 

} 

This would be wrong, however, because it introduces a race between the assign­
ment statement in the peer thread and the accept statement in the main thread. If 
the assignment statement completes before the next accept, then the local connfd· 
variable in the peer thread gets the correct descriptor value. However, if the as­
signment completes after the accept, then the local connfd variable in the peer 
thread gets the descriptor number of the next eonrreCticin. The unhappy result'is 
that two threads are now performing input and output on the same'descriptor. In 
order to avoid the potentially deadly race, we must assign eacp ~OJ)nect~d descrip­
tor returned by accept to its 9wn dynamically allocated memory block, as shown 
in lines 21-22. We will return to the issue of races in Se~lion 12.7.4. 

Another issue is avoiding memory leaks in the thread routine. Since we are 
not explicitly reaping threads, we must detach each thread so that i;s memory 
resources will be reclaimed when it terminates (line 31). Further, we must be 
careful to free the memory block that was alloc~ted by the main thread (line 32). . , 
~-i&!1ilw'1;RW1:~lmr~:11ii#lliili 
In the process-based server in Figure 12.5, we were careful to close the connected 
descriptor in two places: the parent process and the child process. However, in the 
threads-based server in Figure 12.14, we only closed the connected descriptor in 
one place: the peer thread. Why? 

12.4 Shared Variables in Threaded Programs 

From a programmer's perspective, one of the ahractive aspects of threads is the 
ease with which multiple threads can share the same prograiµ_ variables. However, 
this sharing can be tricky. In order to write correctly threaded progi;ams, we must 
have a clear understanding of what we mean by sharing and how it works. 

There are some basic questions to work through in order to understand 
whether.a variable.in a C program is.shared or not~ (1) What is the underlying 
memory model.for threads? (2) Given this model, how are instances of the vari­
able mapped to memory? (3) Finally, how many th'reads"teference eacl\ of fhese 



I 
f 

f 
! 

I 
i 

I 
' 1. 
• 

Section 12.4 Shared Variables in Threaded Progra~ 993 

1 

'2 I' 

3 I Void~ *thread fvoid *vargp) ; 
4 

" 
" 

5 char **ptr; f* G!obal variable''*/ " '61 " if f ( Jll ,, int ~main() .i )• ,J[ .) I 

8 

9 
·"\. 

10 rl • 
11 

15 I 

.~n_J; .i; ' 
pt1¥'~ad_t tid; 
c~ar *msgs[N] = ~ 

·}; 

"Hel~o from foo", 
"Hello from bar" 

16 'ptt = msgg,; 

17 foll' (i = iO; it~~; i++) 
18 Pthr0ad_create(&tid, 
19 Pthread_exit(NULL); 
20 } 

21 

22 void *thread(void *vargp) 
23 I H{ '( l .. J'l. f !, , 

24 int myid = (int)vargp; 
static int cnt = O; 

,. , 

NUL:D, i_;thread, (void *> i') ~ 

I ' 

~· ,f 

) 

25 

26. printf(" [%d]: %S ·.(tnt=%d)\n", 'tnyid, ptr[myid], ++cnt'Y ;' 
27 .re't:urn ·J'l'Ut"L; 
28, J} 

t 1 

_ _,__ __ _,,,,,,,,___.,_, --'-----'-'--------------"- 'co'deJcdnC!sharing.c 
.. Hf\ 

~igur~ ·1 ~.1 s~, Exa')'lpls.Jl•,09r•m. tha\ illus,t~~t.~s different ~sp~ct.s of sharj~g. 
.~ 

instances? The variable is shared'ii and only if multiple' threads refetence'~ome 
instance of tlle variable."' f• 110rl· r 

To ke'ep ouridis'c'ussio~ of shating' ~qncrete, we will qse the progrMn in Fig­
uri! 12.15'~s' a running'example.,1A.It!1ouglt somewliat'conlriVe'd, ihs nonetheless 
useful tcYstudy because it iliusti#es"a number of subtle points abo'ut sharing. The 
example program consists of a main thread'Jhat creates two peer iltreads. The 
rtl.ain thread passes a uruque IQ to eacli fle.erthreail, wfrich uses the Iq to print 
a'personal~ec(messagb'alcihg'With a'count of tqe total'number of time'~ that the 
th'.read routine nas been invoJi:ed. j N V 

12.4. 1 Threads Meihory Mo'def" " '"" 
ri i J J• • 

>\ pocll·uf concurrent.threads runs:in the context'of a process' Eacltihread has 
its own separate thread context, which includes a thread ID, stack, stack pointer, 

,, 
I 
I 



994 Chapter 12 Concurrent Programming 

program counter, condition codes, and general-purpose register values. Each 
thread shares the rest of the process context with the other threads. This includes 
the entire user virtu~l address space, which consists of read-only text (code), 
read/write data, the heap, and any shared library code and c;!ata areas. The threads 
also share the same set of open files. 

In an operational sense, it is impossible for one thread to read or write the 
register values of another thread. On the other hand, any thread can access any 
location in the shared virtual memory. If some thread modifies a memory location, 
then every other thread will eventually see the change if it reads that location. 
Thus, registers are never shared, whereas virtual memory is always shared. 

The memory model for the separate thread stacks is not as 'tfoan. These 
stacks are contained in the stack area of the virtual address space and are usually 
accessed independently by their respective threads. We say usually rather than 
always, because different thread stacks are not protected.from other threads. ~o 
if a thread somehow manages to acquire a pointer to another thread:s stack, then 
it can read and write any part of that stack. Our example program shows this in 
line 26, where the peer threads reference the.contents of the main thread's stack 
indirectly through the global ptr variable. 

12.4.2 Mapping Variables to Memory 

Variables in threaded C programs are mapped t~' virtual memory according to 
their storage classes: 

Global variables. A global variable is any variable declared outside of a func­
tion. At run time, the read/write area of virtual memory contains exactly 
one instance of each global variable that can be referenced by any thread. 
For example, the global ptr variable declared in line_S_has one run-time 
instance in the read/write area of virtual memory. When there is only one 
instarlce of a variable, we will denote the instance by simply using the 
variable name-in this case, ptr. 

Local automatic variables .. A local automatic variable is one tha~ is declared 
i~side a f~nction with(;~( ihe static attribute. At ;un time, each thre~d's 
stack contains i\s o~instans\',s, of a\ly losa\, aµtom,atic ,v,ariables. 'This 
is true even j~. multiple t)lrea~s e'f1;cu,te. \\11' ,sam_e thread routine. !;Qr 
example, there is one instance of the local .variable tid, and it resides 

' ' ~ II» 
on.the stack of the m"!n. t/lfJi!)~, We "'.ill denote this instance as tiq.,m. 

, As another example, there ar"J tl"?:instal,lces of the local ;variable my,i,d, 
one instance on .the, stack of peer thread 0 and the other on.the stack of 

• , ~ I,, l ~ - • 

peer thread 1. We will denote these instarn;es as myid.pO and myid.p1, 
respectively. ' 

Local static variables. A local static variabl~ !s one th'lt i,s de9la~ed in.side~ funq­
tion with the static attribute. As with global variables, the read/write 
area· of virtual memory contains exactly-one instlmce..of each local static 



Section 12.S SyJ1chronizjng Threads with Semap~ores 995 

., variable declared in a program. For example, even though each peer 
thread in our example program declares cnt in line 25, at run time there is 
only one instance of cnt residing in the read/write area of virtual memory. 
Each peer thread reads and writes this instance. 

12.4.3 Shared Variables 
., 

We say that a variable v is shared if and only if one of its instances is referenced 
by more than one thread. For example, variable cnt in our example program is 
shared because it has only one run-time instance and this instanc'< is referenced by 
both peer threads. On the other hand, myid is not sha~ed, becau~e each of its two 
instances is referenced by exactly one thread. However, it is important to realize 
that local automatic variables such as msgs can also be shared. 1 

IP.mlirn!Rl$1$1¢1it{1W6'f!!1~ill:l~a~:ttti36'%'.'.t~mt};;Ui;i1t~i'lt~·ii.ll 
A. Using the analysis fr~m Section' 12.4, fill ea~h entry in tll.e following table 

with "Yes" or "No" for the example program in Figure 12.15. In the first 
column, the notation v.t denotes an instance, of variable v residing on the 
local stack for thread t, where t is either m (main thread), pO (peer thread 0), 
or pl (peer thread 1). 

' 

Variable Referenc.~d by .. 
instance main thread? peer thread O? peer thread 1? 

•• ptr ----
cnt 
i.m ---
msgs.m _, __ 

-----
myid.pO 
myid.pl ---

B. Given the analysis in part A, which of the yariables ptr, cnt, i, msgs, and 
myid are shared? 

12.5 Synchronizing Threads with Semaphores ,. 

Shared variables can be convenient, but they introduce theipossibility of nasty 
synchronization errors. Consider the badcnt: c program in Figure 12.16, which 
creates two threads, each of which increments a global shared counter variable 
called cnt. :c1. 

Since each thread increments the counter niters times, we expect its final 
value to be 2 'x niters. This seems quite simple and straightfmward. However, 
when we run badcnt. c on o,ur Linux system, we not onlY. get wrong ~n~wers, we 
get different answers each lime! . ,, ' • , 

I 

I 

r 



996 Chapter~12, rConcurrent•Programming. 

--------------------------- code/conclbadcnt.c 

/* WARN±NG: 'This'" code' is buggy! */ 
2 #include II CSapp, h II 

3 

4 void *thread_(void *vargp); /* Thread routine prototype *I 
5 
6 I* Global shared variable */ 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

volatile long cnt = O; /* Cou.liter */ 

r 

in"t1.1wain(iI].t argc, cl;i.,arr,'f*argv) 
{ 

long niters; 
pthread_t tid1, tid2; 

/* Check input argument */ 
if (argc != 2) { 

·• 

pri~tf'(/'usage: %s <:q.iters>\n11
, argv [O]); 

exittoJ; 
} ' 
diters atoi(argV[1]~; '' 

' ' 

•" 

21 /* Create threads and wait for them to finish */ 
22 Pthread_create(&tid1, NULL, thread, &niters); 
23 Pthrea,9._create(&tid2, NULL, thread, &niters)'; 
24 Pthread_join(tid1; NULL); 
25 Pthread_join(tid2, NULL); 

26 
27 /* Check result */ 

if (cnt != (2 * niters)) 28 
29 
30 

31 

32 

33 

34 

printf("BOOM! cnt=%ld\n 11
, cnt); 

35 

36 
37 
38 

39 

.} 

else 
'Printf ( 11 OK 

exit(O); 

J 
cnt=%ld\n", cnt); 

/* Thread routine *I 
void *thread(void *vargp) 
{ 

long i, nit~rs =*((long ~Jvargp); 

40 for (i :£ ().;• i < niters; i++) 
41 

42 

43 

41 

.cnt++:; 
) 

return NULL; 

I ()"! 

' (, 
,, 

. ' 
HJ. 

'. 

,. 

H 

\ ' 

J 

..... code7condbadclit.c 

Figure 12.16 
, I 1 .. r ~ ~ ,I "' 
badcnt. q: An improperly synchroniz~d·<\>,unter pro~ram. 



Section 12.5 Syni::hronizing T.hreads with Semaphores 997 

linux> ./badcnt 1000000 
BJ00t1 ! cn~=14450~5, 

l~nux> ./badcnt 1000000 
BOOM! cnt=1915220 

linux> ./badcnt 1000000 
BOOM! cnt=1404746 

So what went wrong? To understand the problem dearly, we need to study 
the assembly code for the counter loop (lines 40-41), as shown in, Figure 12.17-. 
We will find it helpful to partition the loop code for thread i into five parts: 

'H;: The block of instruction~ at ihe head' of the loop 

The instruction that loads the .shared variable cnt into the .accumulator 
registef %rdxi, wher~ %rdx; denotes lhe value o'f ;egister %rdx in thread i 

U1: The instruction that updates (increments) %rdx
1
· 

\ ' } l l .L l 

S1: The instruction that stores the updated,value of %rc!x,,back to the slpre'd 
variable cnt ~ .,, 

t,: Tite )llock of instructions at the tail of' the loop 

j'lptice th;lt the,heag 11;nd'tail manipµlate 01;ily.Jo,c,~lf(a9J<:, variable;s, wliiie L1, u,, 
and s, m~~pul~\e the c~ntent~ of the s.h.~red ,co.uqtrr va,ri,aJ;ile. 

When the two peer threads in badcnt. c run concurrently on «1 'unipr6cessor, 
• .. ' '1 l • ' ' '. { ' • 

the machine instructions are completed one after the other in' some_orde~: Thus, 
each cJki:ur:ent execution defines some total prdering '(or i~terleaving) of the in-

, • • ' j I ' ' I • " 
structions in the two threads. Unfortunately, some of these orderings will produce 
correct results, but others will not. 

Asm code for thread i. 

mOvq (%rdi), %rcx 
testq %rcx, %re~ 
jle .L2 >- H1: Head 

C code for thread i -----~~~~- --~?-~ -~:~_'5 _______ :-1 ~ 
.13: 

for (i = O; i < niters; i++) 
cnt++; 

movq cnt(%rip),%rdx 
addq %eax 
movq %eax,cnt(%rip) 

~-----~ddq---$i;-Y,;~---------

cmpq %rcx, %rax 
jne .13 

.L2: 

Li: Load cnt 
?- Ui: Update cnt 

S;: Store cnt 

>-T;: Tail 

Figure 12.17 Assembly code for the counter loop (lines 40-41) in badcnt. c. 

r 

I I 

! 



998 Chapter 12 Concurrent'P,rogramming 

(a) Correct ordering (b) Incorrect ordering 

%rdX'1 I· %rdx2 
" Step Thread Instr. %rdx1 %rdx2 cnt Step Thread Instr. cllt~ 

1 1 H1 0 1 1 H1 0 

2 1 L1 0 0 2 .1 L1 0 0 

3 1 U1 1 0 3 1 U1 1 0 

4 1 S1 1 1 4 2 Hz ..... ' 91 
5 2 Hz 1 5 2 Lz 0 0 

6 2 Lz 1 1 .6 1, S1 " 
1. 1 

7 2 Uz'I 2 1 7 1 ' Ti i1 1 

8 2 Sz ~ 2 2 8 2· Uz l 1 1. 

9 2 Tz 2 2 -9 2 Sz 1 1 

10 1 T1 1 2 1,10 4 Tz 1 1 

Figure 12.18 Instruction orderings for 'fhe first loop iteration in badcn't. c. r, " " .. 
\r j f 

Here is the crucial point:' Jn general, tn'e're is no way for you td predict whether 
the operating system wilf"choose a correct ordering'for your threads. For example, 
Figure 12.lS(a) shows the step-by-step operation of a correct instruction ordering. 
After each thread has updated th\'t sq\'.rt;d variable ,cnJ;J,its valµy in 111em.qry is 2, 
which is the expected result. 

On the other hand, !\le or~ering in Figure p.18(b) produces ae in~orr1'ct valu~ 
for cnt. The problem occurs liecause 'thread 2 lbadS'cnt'in steg s;'after'thread'l 
loads cnt in step 2 b11! b'drore tliteacl '1 sto\:'es i{s u'pd~ted value ln slep'li. Thus, e'ach 
thread'ends up storinf an updated' counter value of 1. W~ 2an clarify these notions 
of correct and incorrect instructibn ofderi!lgs with the heiii'o'r'a de'vice kno\vn rt~ 
a progress graph;'\vhtcli w;_ introduce in the next s~Cli6rl. · · - "' ' 

J ) • ' I ) ) ti 

mrmi~a~jra1m~6"<i,1~1>·mm~;.m'!:D:"'~·l 
Complete the table for the following instruction ordering of badcnt . c: 

Step Thread Instr.· %rdX1~ %rdx2 cnt. 

1 1 Hi 0 

2 1 t, ----
3 2 fiz --- ---
4 2 Lz ----
5 2 u2 ----

' 6 2 Sz 
7 1 

•• !., 

u, _,___ 
Step Thread Instr. %rdx1 %rdx2 cnt 

8 1 Sj - --- ---
9 1 T1 -·'----·-· .. -



:· 

' 

Section 12.5 SynchroniJ:ing.Threads with Semaphores 

10 2 T2 

Does this ordering result in~ correct valne for cnt? • 

12.5. 1 Progress Graphs 
A 

A progress graph models the execution of n •concurrent threads as a trajectory 
through an n-dimensional Cartesian space. Each axis k co~responds to the progress 
of thread k. Each poil\t (/1. h, ... , In) represents the state where _!Juead k (k = 
1, ... , n) has completed jnstruction lk. The origin.Q{..!l)e grJ!12.h corresponds to the 
initial state where none of°the threads has yet completed an" instruction. 

Figure 12.19 shows the two-dimensional progress graph for the first loop 
iteration of the badcnt. c program. The horizontal axis corresponds to thread 1, 
the vertical axis to thread 2. Point (L" S2) corresponds to the state where thread 
1 has completed L 1 and thread 2 has completed S2. 

A pro#e~s graph models instruction execution as a transition" from one state 
to another. A transition is represented as a directed•edge 'from one point to an 
adjacent point. Legal .transitions move to the right (an instruc\idh 'ill• thfead•l 
completes) or up (an instruction in thread 2 completes). Two instructions cannot 
complete at the same time-diagona) transi\iqps.are not allowed. Programs never 
run backward so transitions that move down or to the left are not legal either. 

., ul ., 
t01 '" 

r 

~ J ..... 6 

Figure 12.19 Thread 2 
Progress graph for the •r 
first loop iteration of • -~ ., ... 
badcnt.c. T2 

(L,, S,) .. .. • ,, .,_J '• 82 
l ,, .,, ,, ,, 

r- ~ r. • ,, ,•. ,, 
I 

,. 
' U2 ( 0 

• • • • 
~ C..fh 

L2 
• . ·,. • • • 

" /' 

H2 " 
Thread 1 

H, L, u, li1 11 

\..~r 

999 

,/ I 

" 



1000 Chapter 12 Concurrent Programming 

Figure 12.20 Thread 2 

An example trajectory. 

T2 , 
• • 

s, 

u, •• 
. , 

1--1.-.-.... --'""-I~--'--~-~- 'Thread 1 

The execution histor¥ .qf a progran;t is mo!!eled as a trajectory·through the 
state space. Figure 12.20 s}lpws the t,raj~ctory that yorrespo11ds to the, fo\10\ying 
instru>tibn,qrg~,ring: >' " 

·' 
For thread i, the instructions (L;, U;, S;) that manipulate the contents of the 

shared variable cnt constitute a critical section (with respect to shared variable 
cnt) that should not.be interleaved with the critical section of the other thread. In 
other words, we want to ensure that each thread has mutually exclusive access to 
the shared v~riable while it is executing the instru,ctions in its critical section. T\le 
phenomenon in general is known as mutual exclusion. , '1 

On the progress graph, the intersection of the two critical sections defines 
a region of the state space known as an unsafe region. Figure 12.21 shows the 
unsafe region for the variable cp.t. Notice that the unsafe region abuts, but does 
not include, the states along its perimeter. For example, states (Hi. H2) and (S1, Uz) 
abut the unsafe region, but they are not part ofif.A trajectory that skirts the unsafe 
region is known as a safe'trajectory. Converselt, a trajectory that touches any part 
of the unsafe region is an unsafe trajectory. Figure 12.21 shows examples of safe 
and unsafe trajectories through the st!'te space of our example badcnt. c program. 
The upper trajectory skirts the unsafe region along its left and top sides, and thus 
is safe. The lower trajectory crosses the unsafe region, and thus is unsafe. 

Any safe trajectory"will correctly" update the shared counter. In order to 
guarantee correct execution of our example threaded program-and indeed any 
concurrent program that-shares global data-.structures-we must somehow syn­
chronize the tiireads so that they a!Ways have a safe trajectory. A classic approach 
is based on the idea of a semaphore, which we introduce next. 



Figure 12.21 
Safe and unsafe 
trajectories, Jhe . 
intersection of the critical 
regions forms an unsafe 
region. Trajectories that 
skirt the unsafe region 
correctly update th~." 
counter variable. 

.. ·' l. 

>' 

" 

'• 

------ -

Critical\ 
section 

··r· wrt cnt, 

Section·12.S Synchronizing Threads with Semaphores 1001 

Thread 2 

.r• 

Unsafe 
trajectory 

/:' 

,_--1-.-----1-~'·~~~"--"-+- Thread 1 
H, L, u, s, r, 

C[itical t?0Ction wrt cnt 

1M:art:ef.i61~~1Xl2x~~:1i1~m~l!l;~~*im1~~m~ 
Using the progress graph in Figure 12:21, classify the following trajectories as 
,either safe or unsafe. 

A. Hi. Li. Ui, SI> Hz, ~;;1, f.'.z, S2, Tz, T1 

B. Hz, Lz, Hi, Li, U1. S1: Ti, Uz, Sz, Tz 

C. H!: Hz, Lz, Uz, Sz, L1, Ui, Si, T1, Tz 

12.5.2 Semaphores ' , ~ r J 'J 
·' 

E\lsger Dijkstra, a pioneer of concurrent programming, proposed a claSsic solution 
to''the problem of synchronizing different execution- threads based1'6n a special 
type of variable called a semaphdre. A s€m'apliore, s; iira 'global variable with a 
nonpegative integer value tljat can only be manipuJatesJ by two special operjltio11s, 
called P and V: 

P(s): If's is non'zero, then' P decrenlents '.rand returns immediately. Ifs is 
zero, then suspend the thrhc;t until s'b'el:odles nonzero and the thread is 
1'estarte'd by a I:' operation. After restarting, the P operation decrements 
s and relurns control to the ca.lier. 

V (s ): The V operation'increll}1;i;its s by 1. If !,here are ~PY t\J.~;;tds qjoc,k'e<;l a!!I. f 
operation waitihg for s to become nonzero, then the V operation restarts 
exactly one of.these threads; which then completes its1P operation by 
decrementing s. 

I 
I, 

I 
11 



100.l! Chapter 12 Concurrent Programming 

1, 

The test and decrement operations in P o,ccnr indivisibly, in the sense .that 
once the semaphore s becomes nonzero,, the decrement of s occurs without in­
terruption. The"i11crement operation 'in V also occurs indivisibly, in that it loads, 
increments, and stores the semaphore without interruption. Notice that the defi­
nition of II. does not define the order in which waiting threads are restarted. The 
only requiremen~ is that the V must r~'start exactly one waiting thread. Thus, when 
several threads are wait(ng at q semaphore, you cannot predict which one will be 
restarted as a result qf the V. 

The definitions of P and V ensnre that a running program can never enter a 
state where a properly initialized semaphore has a negative value. This property, 
known as the semaphore invariant, provides a powerful tool for controlling the 
trajectories of concurrent programs, as we shall see in the next section. 

The Posix standard defines a variety of functions for manipulating sema­
phores. 

#include <semaphore.h> 

int sem_init(sem_t *sem, 0, unsigned int value); 
int sem_wait(sem_t *s); /* P(s) */ 
int sem_post(sem_t •s); /• V(s) •/ 

Returns: 0 if OK, -1 on error 

The sern_ini t function initializes semaphore sem to value. E,ach semapho~e must 
be initialized before it can be used. For onr purposes, tne middle a~unierit is 
always 0. P~ografQS perform P and Y operations-.by, ~all.ing ,the sem_wait ancj 
~em_post functions, re~pectively, Fqr concis,eness, we,prefer,to use the following 
equivalimt P and V wr11pper functim;is-instead: 

#include 11 csapp.h 11 

void P(sem_t, *s); 
voi~ V(sem_t •s); 

•• • I 

/* Wt,a~p_er function fo~. ~rm_wait */ 
I• Hfapper ~unctio~,fot sem_post •/ 

~rturns: nothing 

'' 

12:5.3 'using Sen'iapliores for Mutual Exclusion ' 1 1' 

" 

Semaphores provide a convenient way to ensnre mutually exclusive· access to 
shared variables. The basic idea is to associate a semaphores, initially 1, with 



', 

> ' 

Initially 
s== 1 

Thread 2 

1 0 . ,• 
T, 

1 • .o 

V(s) 
0 0 • 

s, 
0 0 • 

u, 
0 0 

v '" 
: 

t' L, 
0 0 •, 

P(s) 
.1 0 . 

' H, 1 

0 
• 

0 . 
.o 

0 • 

Forbidde,n region 

0 . 

Section 12.5 Synchroniztng Threads with Semaphores 

.o • 

0 0 

0 0 
• • 

0 0 • 

0 0 
• 

l 

1 ,,1 .. 0 
• 

H, 

0 0 0 0 
~-~--~----~--~----~-Thceqd 1 

P(s) L1 U1 S1 V(s) T1 

Figure 12.22 Using semaphores for mutual exclusion. The infeasible states where 
s < O define a forbidden region that surrounds the unsale·region and prevents any feasible 
trajectory from touching the unsafe region. 

each shared variable (or related set of shar~p va~i~bles) and th~n s'lrround the 
corresponding critical section with P(s) and V (s) operations. , 

A semaphore that is used in this way to protect shared variables is called a 
binary semaphore because its .value is always 0 or 1. Binary semaRhores whose 
purpose is to provide mutual exclusion are often called mutexes. Performing a 
P operation on a mutex is called locking the mutex. Similarly, performing the 
V operation is called unlocking the mutex. A thread that has locked but not yet 
unlocked a mutex is said to be holding the mutex. A semaphore that is used as a 
counter for a set of available resources is called a counting semaphore. 

The progress graph in Figure 12.22 shows how we, would use llfuary sema-
phores to properly synchronize our·example counter program. ' · 

Each state is labeled with the value of semaphore s ip. that state. 1,he crucial 
idea is that this combination of P and V operations creates a collection of states, 
called a forbidden region, where s < 0. Because of the semaphore invariant, no 
feasible trajectory can il/cluq<; one of the ~tates)n.,~he forbidden region, And sine~ 
the forbidden region completely encloses the unsafe region, no feasible trajectory 
can touch any part of the unsafe region. Thus, evi;i;y. feasible trajectory is safe, and 
regardless.of the ordering of the.instructions at run time,.the program correctly 
increments the counter. 

l003 

,, 
i 
l 

I· 

I 

•' 

I 

,, 
I 

I\ 

I . 
" 
I 

I 



1004 Chapter 12 Concurrent Programming 

1
°• A~lde ~ ~nlit;itJd~~:£f pt-rog,~ ; .. ':;;;;~ p~J,F'" 4

: '·~"~"I,~~~ ~"15' . * ,~·:·li ""':,"\i~"~t ·.zy~~~·~ ... ,~ ~w;;,,,-· T ~j. 
" ~ ~ - '"!Ii.,. ·• ~~ ::::t ~ {: ~ •1.o;. {< ., ll\: *" ~ ' ""' '"' -i 

~- Pr:ogress .grl~iis &~ve,,u~~~ni"Ce .. ~ay to vis~aljzy~c9ncurre~~}pr?~ra~ .. execUtiOn o_n ~llfpfo~e~s~r; a,ncf to ·J 
i .. j:il! d ~rs ta:nd,>':l\Y, -.yei1ectl1. sx11.,c1ir<i1*1>!i ?'FJ,'f o~ey'<f, :t!!ey tja:l(a '1,.e;1iffii fa !ion~,. p~~tifularl ~·With ~esRe~t, 1 
f to•cgncurr~11;~ execut10n·?'tr·mult!proJ0<;,S,SQJS, wher'?'1~e} qf ,G:PJ!7cache'1Jair~ shars !h~.~11!'1e inaui 

I memory. Mµliiprocessorsbeliave m ways iha.t qanncibbe explained by 11rogr~ss graphs. Ii.rpai:ficu1;ir,,a J 
, ,ninlJiproc'<c~~qt !11~!\}.~f,Y ,?st<i~ cM l5{Jn,'a~tateJli'l,i.~~~~·liot£o~~}i>~~~J~.auy ii:~Je.ctorri?·a pr~~resr l 

I. graph~ ~gar,flless, th;> m.~~s.~g.ere'fa.m,s the'!!ame.: alw.~y~.:ll.\l"l'hrq~[zi!'acq<;'s.:~s t<?,J;O,llf.S.liar,ec1 .. var.)al?I;s.J 
regardless tf you're Funning on~~ un1processorror a multiprocessor. 0 r· ,,,., '"fu ,, t, .[/,'. ~ ., ~· 4 

""""-._.;;_,_,_~ _,,,.!~~~.,.4,t, ¥z~*''; ~.~,.,,,~,;:.,~ •• ,.!,,;~, •• ~~-l\ZW~-~~~~~~ 

In an operational sense, the forbidden region created by the P and V op­
erations makes it impossible for multiple threads to be executing instructions in 
the enclosed critical region at any point in time. In other words, the semaphore 
operations ensure mutually exclusive access to the critical region. 

Putting it all together, to properly synchronize the example counter program 
iu Figure 12.16 using semaphores, we first declare a sema11hore called mut~~: 

volatile long cnt =~ O; /* Counter */ 
sem_t mutex; I* Semaphore that protects counter *I 

an,d then w~ initialize it to u11ity in the main routine: 

Sem_init(&mutex, 0, 1); /* mutex = 1 */ 

Finally, we protect the update of the shared cnt variable in the thread routine by 
surrounding it with P and V operations: 

for (i = O; i < niters; i++) { 
P(&mutex); 
Cnt++; 
V(&n\ui:ex); 

,. } 

When we run the properly synchronized program, it uow produces the correct 
answer each time. ( • 

linux> ./fJOodcnt 1000000 
OK cnt=2000000 

linux~ ./goodcnt 1000000 
OK cnt=2000000 

12.5.4 Using Semaphores to Sch~dule Shared Resources 

Another important use of semaphores, besides providing mutual exclusion, is to 
schedule accesses to shared resources.' In this scenario, a thread uses a semaphore 



~' 
Producer 
thread I 

Bounded I >---->'. buffer 1-. __ .. , 

- ------- -

Section 12.5 Synchronizing Threads with Semaphores 1005 

Consumer 
thread 

Figure 12.23 Prod~c~r-consunier problem. Tlie producer generates itemk and inserts 
them into a bounded buffer. The consumer removes item·s from 'the buffer and then· 
consumes them. 

operation to notify another thread that some condition in the program stifte h~s 
become true. 1\vo classical and useful examples are the producer-consumer and 
redders:w'iiters problems. -

J ... 
Producer-Consumer Problem 

'The producer-consumer'p'roblem is shoWfi in Figure 12.23:'A produ~et and'con­
sumer thread'share a bounded buffer with n slots. The producer thread iepeate'dly 
produces hew items and inserts them in the buffet!'The 'consumer thre'all'iepeat' 
edly removes items from the buffer and'tlien consumes (uses) iliem. Varia'nt~With 
ni'ultiple ptoducers and consumers are also possible. " , 
·· Since inserting and removing items involves updating shared variables, we 

must' guarantee mutually exclusive 'access to the &'uffer. But guaranteeing mut\.\ai 
exclusion is not'shffici6nt. We also need' to schedule 'accesses· to the ·buffer. If the 
buffer is full (there are no empty slots J: fhen 'the pt8ducei must Wait until a slot 
becomes available. Similarly, ifth~ buffyrikempty (there are no available items)", 
then the consumer must wait until an item becomes available. 

Producer-consumer interactions occur frequently in r~al ~stems. for exam' 
pie, in a multimedia system, the producer mi&ht. encpde viqeo frames '_V,hi)e ,the 
consumer decodes.and renders them on the sqeen. The purpose of the buffer is 
to redu,ce jitter in the video sti;eam .ca/ifed by daia-dependen~ dj,fferences in th~ 
encoding and decoding times for individual frames. The buffer provides a reser­
voir of slots to the producer and a reservoir of encoded flames to the consumer. 
Another common example is the design of graphical user i11terfaces. The prqducer 
detects mouse and keyboard events and inserts them in the buffer. The consumer 
removes the events from the buffer in some priority-based manµ.er ahtl P?ints the 
screen. 

In this section, we will develop a simple package, called SBuF, for buildi!)g 
producer-consumer programs. In the next section, we look ai how to use it 1'o 
build an interesting concurrent server.based on prethreading. SBUF mahipulates 
bounded buffers of type sbuf _ t (Figure 12.24). Items are stored in a·dynamically 
allocated integer array (buf) with" n items. 'lbe front and rear indices keep 
track of.the first and last items iii. the array. Three sem?phores.synchronize access 
to ~he buffer. The mutex semaphore provides•mutually exclusive buffer access. 
Semaphores slots and items are counting semaphores·that count the number of 
empty slots and available itenis~respectively. 

j I 

! 
,I 
I 

I 
I 
I 
I 

i I 

I 
I 

.ll 



.1006 Chapter 12 ·Concurrent Programming 

1 typedef struct { 

2 int *buf; 
3 int n; 
4 int front; 
5 int rear; 
6 sem_t mutex; 
7 sem_t slots; 
8 sem_t items; 
9 } sbuf_t; 

" 

I• 
/• 
!• 
I• 
/• 
I• 
I• 

Buffer array */ 
Maximum number of slots */ 
buft(front+1)7.nl i~ first item ·~ 
buf[rear%n] is last item */ 
Protects accesses to buf */ 
Counts available slots */ 
Counts available items */ 

Figure 12.24 sbuf_t: Bounded buffer used by the SsuF package. 

Figure 12.25 sh9ws the implementation of the SBUF pac)<~ge. The sbuf_ini} 
funs;tion al\ocates heap, memory for the buffer, ~e\s,front qnd re11r to indicate 
a!f ,ei;npty. buffer,, and .'),'\~gns initial values to the,tpree semaphores. This function 
is caller,! once, bef9re,calls_to any of the.other three f'!n~tions. The sbuf_deinit 
function frees the buffer storage when the, applicatiop is througi} using it; Tl)e 
sbuf _insert function waits for an available slot, locks the mutex, adds the item, 
u1:1locks th,e mute~, anq ,then announces the 'availabiiity of a new ite~. The sbuf _ 
remove f1wction is symmetric. After ~a/ting for.an availabl~ buff!<r item, it lock~ 
the mutex, removes the it!';l\1 from the f~ont qf the buffer, unlocks·\l].e !"l!tex, and 
then signals the availability of a new.slot. 

llm(!trewiUiifIDW!2ttJi!lttll:millt<m!MHli1Mifil}4il'/611!tftim¥Bil 
Ut p denote th'e huniber of protlul:e~s, c the •number of consunibrs, and n the 
buffer size in units bf items. For each of the following 'scenarios, indicate whether 
tile mutex semaphore in sbuf_ins9rt and f?buf_remOve is necessary of n6t. 

A. p,;=l,c=l,n>l 

B.' p '= 1, c = 1, n = 1 
' C. p>l,c>l,n=l 

., r , ~ 

w 
~eaders-Writers Problem 

The readers-writers problem is a generalization of the mutual exclusion problem. 
A -collection of concurrent threads is accessing a shared object such as a data 
structure in main memory or a database on disk. Some threads only read the 
object, while others modify it. Threads that modify the·o]Jject are called writers. 
Threads that only read it are called readers. Writers must have exclusive access to 
the object, but readers may share the object·with an unlimited.number of other 
readers. In general, there are an unbounded number of concurrent readers and 
writers. 



Section 12.S Synchronizing .Threads with Semaphores 1007 

I 

~~~~~~i~~~~~~~~~~~~~~~~~~~·~·~·~~~·L·~~~~~~~codelcondsbufc 

1

2

3

4

5

6

7,
8

9

10

11

12

'#inclucJ,e "csapp.h"
#include "sbuf.h"

) •'
I• Create an empty, boundetl, shaiea
void ~buf_init(sbuf_t •sp, int n)

FIFO• buffer.'with1.fi '~slots •/..
,f {.(

{

,sp->,buf, = Cal!ocGn, ,siz,eo~(ip.t)); 4

sp->n = n; ,~ ,, •} /• Bp.ff1¥" hold,s max o~ n items •/
sp->front = sp->z;ear = 0 ;, !•,Empty buffer iff ;fro:q.t == rear */
Sem_init(&sp->mutex, 0, 1); /•Binary semaphore for locking•/
Sem_init(&sp->slots, 0, n); /•Initially, buf h~s n empty slots•/

l(~ '< • ' • •l O) ,·' I .. f ' .!• I' ' J I Se~_init &sp->items, 0, • I~itiall7, buf has zero data items *
13 } t •·1
14

/* Clean up buffer sp */
void•sbuf_deinit(sbuf_tu*sp)
{

},

I
Free(sp->buf);

15

16

17

18

19

20
21

22,

23
24

25
26'
27

28
29

I J I I, '
~* Insert item on;to ;,h;,e rear of ,shafE?~ buffer ,i;ip
void sbuf insertfsbuf t

1
*sp,, int item)

•I.
{ ' - • l•1,· - t, ',Hr •
{ < I I ,j iw rl (_I

}

P(&sp;->s ots);
P(.ksp->mutex);
sp',.>bi.lf [(++sp->rear)% (sp->n)]
V(&:sp->mutex);
V(&:sp->items);

'.
30 '10

,,
item;

;f Wtart fol- available slot·*/
I• Lock -Clie' bu'.ffer *j
/*' Insert the f:f~m */
/* Unlock the bUff er */
/*J!Announce available item */

31 /* Remove.,and return ~e first, item~fro{ll buffer SB!',{
32 int sbuf_remove (sbuf_t •sp)
33 {

34

35

3~
37

3~
39

40 "

int item;
P(&sp->items);
P(&sp->mutex);
it~m = sp->buf[(++sp->front)%(sp->n)];

'v(&sp->mutex);
'V(&sp->slots); t: 11

£

return item;

/* Wait for available item */
/* Lock thy buffer */
/* Remove the ited *I
/* Unlbck the buff~r' '*}
/* Ann'6Jii.Ce availabl'e sl'.ot */

41 }

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~code/condsbufc 

. Hi ' '5 A " 'f h ' •'· 1 ' • ,I !'rt b . ~ d b ff Figure 12.2~~ BUF: pacl\age or sync ron1z1ng concurrent access to ounue u ers. 

,. 
J, 

I I 
j 
I 

I 1 
I 

I 

I 

I 
I 

I 



1008 Chapter 12 Concurrent Programming 

Readers-writers.interactions occur frequently in real systems. For example, 
in an online airline reservation system, an unlimited number of customers are al­
lowed to concurrently inspect the seat assignments, but a customer who is booking 
a seat must have exclusive access to the.database. As another example, in a multi­
threaded caching Web proxy, an unlimited number of threads can fetch existing 
pages from the shared page cache, but any thread that writes a new page·to the 
cache must have exclusive access. 

The readers-writers problem has 'several variations, each based on the priori­
ties of readers and writers. The·first readers-writers problem, which favors readers, 
requires that no reader be kept waiting unless a writer has alreadytieen granted 
permission to use the object. In other words, no reader should wait simply because 
a writer is waiting. The seco1Jd readers-writers problem, which favors writers, re­
quires that once a writer is re'ady to write, it performs its write as soon as possible. 
Unlike the first problem, a reader that arrives after a writer must wait, even if the 
writer is also waiting. 

Figure 12.26 shows a solution to the first. read~rs-writers problem. Like the 
solutions to many synchronization problems, it is subtle and deceptively simple. 
The w semaphore controls access to the critical sections that ·access the shared 
object. The mutex semaphore protects access to the shared readcnt variable, 
which counts the number of readers currently in the critical section. A writer locks 
the wmutex each time it enters the criticl.l section ana'imlocks it each time ilieaves. 
This guarantees that there is at most one writer in the critical section'at'any point 
in time. On the other hand, only the first reader to enter the critical section locks 
w, and only the last re>1der to leave the critical section unlocks it 'The w mutex 
is ignored RY re~ders ~ho enter and leave while other readers ar'io p,resent. This 
means that as long as a single reader holds thew mutex, an unbounded number of 
readers can enter the critical section unimpeded. 

A correct solution to either of the readers-writers problems can result in 
starvation, where a thread blocks indefinitely and fails to make progress. For 
example, in the solution in Figure' 12.26, a writer 'could •wait indefinitely while 
a stream of readers arrived. ' 

M:.rac ice t1 e ¥1:.~ ~· ;: . ~~~~~~.'z·3;,:;:;,;.:,4 ~""'''J'"~~'f!Wr Of J~o ~!!lii~'Ui~~-~'m 
The solution to the first readers-writers problem in Figure 12'.26 gives'priority to 
readers, but thi;priority is weak in the sense that a writer leaving its critical section 
might ,r<;.start a w'lfting writer instead of a waiting reader.' D~~cribe a scenario 
where this weak priority would allow a collection of writers to starve a reader. 

12.5.5 Putt[ng It_ Together;,A.Concurrent Server Based on Prethreadin~ 

We have seen how semaphores can be used to access shared variables and to 
schedule accesses to shared resources. To help you understand these ideas more 
clearly, let us apply 'them to a concurrent server based on a technique called 
prethreading. 



Section 12.5 Syachronizing Threads with Semaphores 1009 

/* Global variables */ 
int readcnt; /* Initially = 0 */ 
sem_~ ~utex~ wi /* Both init~ally 1 •/ .. 
void reader(vo~d) 
{ 

' while Cl) { 
P(&mutex/; 
readcnt++j 
if (readcnt 

P(&w); 
V(&mutex); 

1) /• First in •/ 

} 

} 

/* Critical section *I 
I* Reading happens */ 

P(&mutex); 
readcnt--; 
if (readcnt 

V(,&w); 
.V(&mutex); 

O) I• Last out •/ 

void w"r~~er(void) 
{ ,,,, J ·i' 

l 

} 

while (1) { 

P(&w); 

11}*l'Cri'tical section */ 
,I* Writing happens */ 

V(&w); 
} 11•1· • 

•; ·.r 1~ 1 h I 

!; 

" 
Fig_uJ~ 1,2.26 ,Solution. to \lw first readJlrs-writers pr,oblei;n. Favors read~rs over 
writers. ,, •" 

' 
.Jn the concurrent server in Figure 12.14, we created a new thread for each 

hew client. A disadvantage of this approach is that we.incur the nontrivial:cost 
ofi creatipg a new t'lread for each new client. A server 'based on· pre threading 
tries to '.ieduce: this. overhead by using the producer-consu!"er model shown.Jn 
Figure lZ/2'7. The server consists of a main thread and"ll set of.worker,thre:ads. 
The main thread repeatedly accepts connection requests from clients and places 

,. 
··~ 

• 

• 



• 

1010 Chapter 12· Concurrent Programming 

ii /'l, Ji~ "'; ?~ .... ..,~ 

Aside Other sync~ronization mecha.nisms , •. ,,. .,., 

We have shown you how t6 synchronize threads qsing'seni3phdtes~ mainly beC~u'Se the)r areSim'ple;"clas-"' 
sical, and have a clean semanti~'lnodet But'yotl sholilct,ki\ow'that otlfef sync!ironizaffon tecllniques 
exist as welL Fqr example, ,JaVa threads 'lue'sytlchrbnize~ with a'rtlechanis1ircalled.a·;fava ~onitor{ 48), 
which provides a hiiher-level abstraction of the mutual exclusibri and sclieauling capabilities of serl'la"' 
phores; in fact, \llonitors 'can be 'implem'ente<;I wltJi semaphore§. As. anothpr exalt/pie, 'the ,Pthreads • 
interface defines a set of synchronization operations on muterand conditi<lwvariables.-Ptlrr!iads mu­
texes are used for mutu~l exclusion.' COnditiofr V¥iables are ~sed for sch&dulfng acceSSes to Shiirid ' 
resources, su~h as tp.e bonnded~ljt.iffer ilia produCer-con~fu,mer'prbgr'am. ) 

i; l ,~ ~~ ~;~·~ =~ >/' ~. ·~~ ~ '"""-""";l;';\t,,,,< ~ "''""'~~...!·... },.._~,_.1-:,.,.,,.,. 

Pool of worker threads 

~:------------------------------~:'.~'.~~-~!'.~~:-----------·,--,--------------- ;;,~~~",; 
~- "-.-.......... Insert 

Accept Master descriptors Remove 
Buffer 

S
eo::~-~:~:~_..• thread descrip:ors Worker 

------------------------------------------------------------------------------· thread 
Service client 

Figure 12.27 Organization of a prethreaded concurrent server. A set of eJ$isting 
threads repeatedly remove and process connected descriptors from a bound'ed buffer. 

the resulting connected descriptors in a bounded buffer. Each worker thread 
repeatedly removes a descriptor from the buffer, services the client, and then waits 
for the next descriptor. 

Figure 12.28 shows how we would use the SBUF package to implement a 
prethreaded concurrent echo server. After initializing buffer sbuf (line 24), the 
main thread creates the set of worker threads (lines 25-26). Then it enters the 
infinite server loop, accepting connection requests and inserting the resulting 
connected descriptors in sbuf. Each worker· thread has a very simple behavior. 
It waits until it is able to' remove a connec!ed descriptor'from the'1mffer (line 39) 
and tben calls the echo_cnt function to echo client input. ' h 

The echo_cnt function in Figure 12.29 is a version of the echo function 
from Figure 11.22 that records the cumulative number of bytes received from 
all clients in a global variable called byte_cnt. This is interesting code 'to study 
because it shows you a general technique for initializing packages that are called 
from thread routines. In our case, we need to initialize the byte_cnt counter 
and the mutex semaphore. One approach, which we used for the SBuFland Rm 
packages, is to require the main thread to explicitly call an initialization'function. 
An6'ther approach, shown here, uses the pthread_once function (line 19) to-call 



-·· 
Section 12.5 Synchr.onizing Threads with Semaphores 1Ol1 

,..------~---,------------------------ code/condechoservert-pre.c 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 

16 

17 

18 

19 

20 
21 

22 
23 

24 

25 

26 
27 

28 

#include "csapp. h" 
#include 11 sbuf.h 11 

#define NTHREADS 4 
#defin~ SBUFSIZE 16 

void echo_cnt(int connfd); 
void •thread(void •vargp); 

sbuf_t sbuf; /• Shared buffer of connected descriptors•/ 

in\ main(int argc, char **argv) 
{ 

int i, listenfd, connfd; 
socklen_t clientlen; 
struct sockaddr_storage clientaddr; 
j:ithread_t tid; 

if (argc != 2) { 

fprintf Cs1:derr, "usage: %s <port>\n", argv[O]); 
exit(O); 

} 

listenfd = Open_listenfd(argv[1]); 

sbuf_init(~sbuf, SBUFSIZE); 
for (i = O; i < NTHREADS; i·++) 

Pthread_create C&tid, jNULL, 

while (1) { 

/* Create worker threads */ 
thread, NULL) ; 

29 clientlen ~ sizeof(struct sockaddr_storage); 
' J~ I 

30 connfd = Accept(listenfd, (SA*) &clientaddr, &clientlen); 
31 sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer *I. 
32 } 

33 } 

34 

35 ·vdid *thread(void •Varg'P) 
36 { 

37 Pthread_detach(pthread_self()); 
38 while (1) { 

39 

40 
41 

42 
43 } 

} 

int connfd = sbuf_remove(&sbuf); 
echo_cnt(cOnnfd); Ht.1 _. 

Close (connfd)·; 

/* Remove connfd from buffer */ 
/~ Service client •/ 

r. 

----~------""..i---.--'-~-~-~---~"--.----~~~-~ code!condechoservert-pre.c 

' 
'f:iJJure 12.28 A preth.n:;ad,e~ s:oncurrent ~cho server. The server usJ~s a producer-consumer model with 
one producer and multiple consumers. 

11
1 

l 
II 

l 
' • 

r 
I 
I 

I 
11 

I 
I 

I 

I 



1012 Chapter 12 Concurrent Programming 

--¥------------------------ code/condecho-cnt.c 

#include "csapp.h 11 

2 

3 static int byte_cnt; /* Byte counter */ 
4 static sem_t mutex; /* and the mutex that pr"oiects it *f· 
5 

6 static void init_echo_cnt(void) 
7 { 

8 Sem_init(&mutex, 0, 1); 
9 byte_cnt = 'o; 

10 } 

11 

12 void echo_cnt(int connfd) 
13 { 

14 

15 

int n; 
char buf[MAXLINE]; 

16 rio_t rio; 
17 static pthread_on..,ce_t once = PTHREAD_ONCE_INIT; 
18 

19 Ptµread~once(~onc~, init_echo_cnt); 
20 Rio_readinitb(&rio, co~fd):i 

21 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) { 
22 P (&mutex) ; J 1 

23 byte_cnt ~= n; 
24 printf( 11 server received %d (%d total) bytes on fd %d\n 11

, 

25 n, byte_cnt, connfd); 
26 V (&mutex) ; 
27 Rio_writ~n(connfd, buf, n); 
28 }'" 

29 } 

------------------------- codelcondecho-cnt.c 

Figure 12.29 echo_cnt: A version of echo that coul)ts all byt~s received from 
clients. 

the initialization function the·first time' some thread calls the echo_cnt function. 
The advantage of this approach is that it makes the'pllckage easier to use, The 
disadvantage is that every call to echo_cnt makes a call to pthread_once, which 
most times does nothing useful. 

Once the package is initialized, the echo_cnt function initializes the Rm 
buffered I/O package (line 20) and then echoes each text line that is received from 
the client. Notice that the accesses to the shared llytLcnt variable in lines 23-25 
are protected by P and V operations. ' ·, 



t 
I 
I 
I• 
I 

' ' I 
~ 
' I 
I 

" 

Section 12.6 Using Threads for Parallelism 1013 

r:;s~~,~{~~~:·~~f;;~,P~;--graajm~i~;.-w;ra,ds~~:r,~:'~ ... ,,: ~"1.-~'""""'\;'"i''""'"'----"' _,,, .~ '!? 1 
~- ·~·~ ~ "··•1 , .• "' '!f .. "··i,)>. I 

•I/O m~ltiplexiiigc·is,not tlie only way to wrife'lan,.gvelit~tlriven' proglaili. Fd'r•ttxanipte, you might:have I 
'rloticl!"d tltiit tfl~ ~bi)currentJpreil\)'e~aect s~i'ver tnay w,e just.aeyelopea iS're"atly an eveni-driv~n ;erver 
witl1'siri\ple state.maChiheH&.th~maip'a,fid.work'erJhreactS.'.'IJte' main thi'~a<fhiis iwo.~tates ("waiting ' 

~-f&~ro:c_onhehct'ion,~re4u~st!i.ahtrr"W3itihg!f0r:avaiia0le btiffefslob-~);~two ilO~evtdts~{'('connectibn··request ~ 
: a'rrives"··and "btfffef stof:beecihieJ;avhllable•i);'and two tlii,nsitions (''accept-connection request" and. ! 
"Jnse~t.buJfertt~ni"'f: Similar!'¥,'eiish worl<erlnl'Md 11~.i ~fie'sl~t; fw~iting'for avai'iable buffer item1'): I 

~-one t1a ev~.n~~"buff"!ritem )jep~m~'ll,v;:llable'l'):· ahtl:;o'rle'tf~rl![ti6n.('t~ejri~ve. Buffer iteip"j: ! 
~-~li~-~-~,,,.,w..~_.J,,.~ ...... ~tr~- ,..-.,t~~,,.-M<.~..,.,,~ .. i.,,,"" ~ "'-~·~J>.. ,,,. ... ~--""~,,,,,,,.,._ """"""""· -~ 

, . 
Figure 12.30 
Relatlonships between 
the Sets Of sequential, 
concurrent, and parallel 
programs. 

12.6 Using Threads for Parallelism 

Thus far in our study of concurrency, w.e have assumed, concurrent threads exe­
cuting on uniprocessor systems. However, most modem machines have multi-core 
processors. Concurrent programs often run faster on such machines because the 
operating system kernel schedules the cohcurrent threads in parallel on multi­
ple cores, rather than sequentially on a single core. Exploiting such parallelism 
is critically important in applications such as busy Web servers, database servers, 
and large scientific codes, and it is. becoming increasingly useful in mainstream 
applications such as Web browsers, spreadsheets, and document processors. 

'Figure 12.30 shows the set relationships between sequential, concurrent, and 
parallel programs. The set .of· all programs can be partitioned into the disjoint 
sets of sequential and concurrent programs. A sequential-program is .written as a 
single logical flow. A concurrent program is written as multiple concurrent flows. 
A parallel program is a concurrent program running.on multiple processors. Thus, 
the set of parallel programs is a proper subset of the set of concurrent programs. 

A detailed treatment of parallel programs is beyond our scope, but studying 
a few simple example programs:will help you un_derstand.some important aspects 
of parallel programming,For example, consider how we might sum the sequence 
of integers 0, ... , n.- 1 in parallel. Of course, there is a.closed-form solution for 
this particular•problem, but nonetheless it is•a concise and easy-to-.understand ex­
emplar that will 'allow us to make some interesting points about parallel programs. 

The most straightforward approach for assigning work to different threads is 
to partition the sequence into t.d.isjoint regions and then assign each oft different 

I 
I 

II I 
11 

I 



1014 Chapter 12 Concurrent Programming 

threads to work on its own region. For simplicity, assume that n is a multiple oft, 
such that each region has n/t elements. Let's look at some of the different ways 
that multiple threads might work on their assigned regions in parallel. 

The simplest and most straightforward option is to have the threads sum into 
a shared global ~ariable that is protected by a mutex. Figure 12.31 shows how we 
might implement this. In lines 28-33, the main thread creates the peer threads 
and then waits for them to terminate. Notice that the main thread passes a small 
integer to each peer thread that seryes as a unique thread ID. Each peer thread 
will use its thread ID to determine which portion of the se,quence it should work 
on. This idea of passing a small unique thread ID to the peer threads is a general 
technique that is used in many parallel applications. After the peer threads have 
terminated, the global variable gsum contains the final sum. The main thread then 
uses the closed-form solution to verify the result (lines 36-37). 

Figure 12.32 shows the function that e11ch peer thread executes. In line 4, the 
thread extracts the thread ID from the thread argument and then uses this ID, to 
determine the region of the sequence it should work on {lines 5--0). In lines 9-13, 
the thread iterates over its portion of the sequence, updating the shared global 
variable gsum on each iteration. Notice that we are careful to protect each update 
with P and V mutex operations. 

When we run psum-mutex on a system with four cores on a sequence of size 
n = 231 and measure its running time (in seconds) as a function of the number of 
threads, we get a nasty surprise: 

Number of threads 

Version 1 2 4 8 16 

psurn-mutex 68 432 719 552 599 

Not only is the program extremely slow when it runs sequentially as a single 
thread, it is nearly an' order of magnitude slower when it runs in parallel as 
multiple threads. And the performance gets worse as we add more cores. The 
reason for this poor performance is that the synchronization operations ( P and V) 
are very expensive relative to the cost of a· single memory update. This highlights 
an important lesson about parallel programming: Synchronization overhead is 
expensive and should be avoided if possible. If it cannot.be avoided, the overheaa 
should be amortized by as much useful compufation as possible. 

·One way to avoid synchronization•in our-example program is to have each 
peer thread compute its partial sum in a private va)'iable that is not shared with 
any other thread, as shown in Figure 12.33. The main thread (not shown) defines 
a global array called psum, and each peer thread i accumulates its partial sum in 
psum [i] . Since we are careful to give each peer thread a unique memory location 
to update, it is not necessary to protect these updates with mutexes. The only 
necessary synchronization is that the main thread must wait for all of the children 
to finish. After the peer threads have terminated, ~he main thread sums up the 
elements of the psum vector to arrive at the final result. 



SectLon 12.6· Using rnreads for Parallelism 1015 

------,------------------'---- code/condpsum-mutex.c 

#illclude "csapp.h 11 

#define MAXTHREADS 32 \ ~ ' 
1 

2 

3 

4 

5 

6 

7 

void *sum_IliU.tbx(void *vargp); /* Thread routi4~,;'/ 

/* Global shared variables */ 
long gsum = O; /• Global sum •/ 

8 long nelems_per_thread; /* Number of elements to sum */ 
9 sem_t mutex; /* Mutex to protett.glob~l sum*/ 

10 

11 int main(int argc,. char **a+gv) 
12 { 

13 long i, nelerns. log_nelems, nthreads, myid[MAXTHREADS]; 
14 pthread_t tid[MAXTHREADS]; 
15 

]6 /~ Get input argum~~s •/._ 
17 if (argc != 3) { 

'1s printf("Usage: %s <nthreads> <log_Ileleful!:S:\flti, argv[O]); 
19 exit(O); 
20 

21 

22 

23 

24 

25 

26 

} , 
nthreads = atoi(argv[l]); 
rogcnelems = atoi(argv[2])~ 

nelems = (1L << log_nelems); 
nelems_per_thread = nelerns I 
sem_init(&mutex, 0, 1); 

nthreads; 

27 /*Create peer threads~and~wait for them to finish*/\ 
28 for (i = Oj' i < nthreads;· i++) { 

myid[i] = i; 29 

30 Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]); 
31 } 

32 for (i = O; i < nthreads; i++) 
33 Pthread_join(tid[i], NULL); 

/* Check final answer */ 
if (gswn != (nelems • (nelems-1))/2)_ 
' 

34 

35 

~6 
37 

38 

printf("Error: result=%ld\n 11
, gsum); 

' 
39 exit(O); 
40 } 

J 

------------------------- code/conc/psum-mutex.c 

Figure 12.31 Main routine forpsum-mutex. Uses multiple threads to sum the elements 
of a sequence into a shared global variable protected by a mutex. 

i 
I i 



1016 Chapter 12 Concurrent Programming 

--------------------------------- code/condpsum-mutex.c 

1 /* Thread routine for psum-mutex.c •/ 
2 void •sum._mutex(void •vargp) 
3 { 

4 long myid =•((long •)vargp); I• Extract the thread ID •/ 
s long start = myid * nelems_per_thread; /* Start element index •/ 
6 long end = start + nelems_per_thread; /• End element index •/ 
7 long ii 
8 

9 for (i = start; i < end; i++) { 

10 P(&mutex); 
11 gsum += i; 
12 V(&mutex); 
13 } 

14 

15 } 
return NULL; 

--------------------------------- code/condpsum-mutex.c 

Figure 12.32 Thread routineforpsum-mutex. Each peer thread sums into a shared global variable protected 
by a mutex. 

---------------------------------- code/condpsum-array.c 

1 /•Thread routine for psum-array.c •/ 
2 void •sum_array(void •vargp) 
3 { 

4 long myid =•((long •)vargp); /•Extract the thread ID•/ 
5 long start = myid * nelems_per_thread; /* Start element index •/ 
6 long end = start + nelems_per_thread; /•End element index~•/ 
7 long i; 

8 

9 for (i = start; i < end; i++) { 
10 psum[myid] += i; 
11 } 

12 

13 } 

return NULL; 

---------------------------------- code/condpsum-array.c 

Figure 12.33 Thread routine for psum-array. Each peer thread accumulates its partial sum in a private 
array element that is not shared with any other peer thread. 



Section l2.6 Using Threads for P.arall~lisrn 1OJ7 

Whe,n we run psum-array on our four-core system, we se'i that it runs orders 
of ma~nitude faster than psum-mutex: • 

I 
~ r 

Number of threads 

Vez:sioh 1 2 4 8 16 !l 
psum-mutex 68.00 432.00 719.00 552.00 599.00 
psum-array 726 3.64 1 .. 9i 1.85 l.84 

In Ch'!J'ter 5, we learned how to use local variables to eliminate unnecessary 
memory referen~e~. Figure 12.34 sho;w~ how we can· apply this P!ini:iple by having 
each peer thread ,a~umulate ,its partial sum into a local varia.ble rather than 
a global variable. When, we run ~sum-local on our four-core machine, we get 
another order-of-magnitude decrease in running time: 

Number of threads 

Version 1 
., 

2 1" 4 8 16 
.. .d 

n~.0~ psum-mutex 68.00 432.00 552.00 599.0Q 
psum-array 7.26 3.64 1.91 1.85 1.84 
psum-local 1.06 o,~4. Q,28 ·Q.2~ 0.30 

·• ,, i) I 

"' '• ,. " , 
--,~. -,~.---~,.~.,•• --~.~ .. ~---.----~----7,-,,.,.~---~- code/condpsum-local.c 

2 

3 

4 

~.I* .'Thread .roµt~p.e; for p..smp-local .'c */ 
void *sum_local(void *Var.ip) 
{ r ail •1 ,t , 

ldng~myid =*((long *)v.irgp); 
rn 

/* Extract1>the:threa'd1 ID */ 
5 'I long start = myid * nelems_per_thread; /*.!;tart el8ment index */ 
6~ long end ~start + llelems_per_thread; /* End elemefit inde± */ 
7' lol.i.g i~1 ~sum:~ 6; 
8 l 1, 

~9· for (i = start; i <"dnd; i++) { 

10 sum += i; 

!1 
L~ 

13 

14 } 

} 

psum[myid] = vsum; 

return NULL; 

' Jr 

'• 

"' '" 
--------------~~-~------------- code/condpsum-local.c 

Figure 12.34 Thread routine for psum-local. Each peer thread accumulates its partial sum in a local 
variable. t< 

I 

I ! 
I 

I 
I 

l , I 
! 
I 



1018 <thapter'12 Concurrent Programming~ 

Figure 12.35 
Performance of psum­
local (Figure 12.34). 
Summing a sequerice of 
z3! elements using four 
processor cores. 

1.2 

1.0 

~ 0.8 

" E 

. 
~ 

\ 

"' 

; 0.6 

~ iii 0.4 

0.2 

0 

0.5~ 

-, 
2 

0.28 v 

. ' -, 

4 

Threads 

0.29 0.3 
~ 

., ,, 
-

8 16 

An important lesson to take away from this exercise is that writing paralleJ 
programs is tricky. Seemingly-small changes to the code have a significant impact 
on peiformance. ' r· 

Characterizing tne· Performance of Patallel Programs 

Figure 12.35 plots the total elapsed running time of the psum-local program in 
Figure 12.34 as a function of the number of threads. In each case, the program 
runs on a system with four processor cores and sums a sequence of n = 231 ele­
ments. We see thliCnlnning time decreases as we increase the number of tlifeads, 
up to four threads, at which point it levels off and even starts to increase a 
little. ..,. 

In the ideal case, we would expect the running time to decrease linearly with 
the number<of,cores. That is, we would expect running time to drop by half each 
time we double the num)Jer of. threads. This is inde~d the case until we reach 
the point (t > 4) where each of the four cores-is busy running at least one thread. 
Running time actually increases a bit as we increase the number of .threads because 
of the overhead of context switching multiple threads on the same core. For this 
reason, parallel programs are often written so that each core runs exactly 01ie 
thread. 

Although absolute running time is the ultimate measure ofany program's 
performance, there are some useful relative measures that .can provide insight 
info how well a parallel program is exploiting potential parallelism. The speedup 
of a paraliel progratn·is typically defined as ' 

T1 
Sp=­

TP 
' where pis the number of processor cores and Tk is the running time on k cores. This 

formulation is sometimes referred to as strong scaling. When T1 is the execution 



Section 12.6 Using Threads for Parallelism 

Threads (t) 1 2 4 8 16 
Cores (p) .. 1 2 4 4 T ':}!._, 4 

Running 'time (Tp) 1.06, 0.54 0.28 0.29 0.30 

Speedup (Sp) 1 1.9 3.8 3,.7 3.5 

Efficiency ( E p) 10Q% 98% 95_% 91.% 88% 

Figure l2.36 Speed~p and parallel e~i~iencyfor the execution times in 
Ffgur~ i 2'.3s. 
' ~ r " fJ I 

time of a sequential version of the program, then SP is called the absolute speedup. 
When T1 is the execution time of the parallel version of the program running on 
one core, then SP is called the relative speedup. Absolute speedup is'a truer mea­
sure of the benefits of parallelism than relative speedup. Parallel programs often 
suffer from synchronization overheads, even when they run on one processor, and 
these overheads can artificially inflate the relative speedup numbers because they 
increase the size of the nume~ator, On the other hand, absolute speedup is mofe 
difficult to measure than relative speedup because measuring absolute speedup 
requires two different versions of the program. For complex parallel codes, creatl 
ing a separate sequential version might not be feasible, either because the code is 
too complex or because the source code is n<?t available. 

A.,related measure, known as efficiency, is defined as 

I 

and is typically reportefi·as jl 'percentage in the rang'< (0, 100]. Efficiency is a .me~-
sure of .the overhea,d, due to parallelizatipn . .Progr~ms with high efficiencY, are 
spending more.pme doing.useful work and less time sxncp.roµizing and commu­
nicating than programs with low efficiency. 

Fig1ne 12.36, shows the,different speeduR and efficiency me'\~ures for ,our 
example parallel sum program. Efficiencies over 90 percent such as these are very 
good, ~ut do not be ~ooled. We wer~ -aqle to achieve high ;fficiency ~ec,ef)lse pur 
problem was triviallr, easy to paHllelize. II) practice, this is not usually the case. 
Parallel programrriing has been an active area of research for decades. With the 
advent of commodity multi-core machines whose core coun,t is doubling every few 
years, parallel programming continues to be a deep, difficult, and active area of 
rese~rch.. h 

There is, another view of speedup, kn, own as weak scaling, whicJi .incre&ses 
the problem size along with the number o,f processors, sucn that the amount of 
work performed on each processo~. is i}eld. constant ~s the number of processors 
increases, With this fofmµlation, speedup i)nd .efficiency are ei<pressed A t.erms 
of the total amount of work accomplished per unit•time. For example, if we can 
doublelhe number of processors and do twice the.amount.of work per hour, then 
we are enjoying linear speedup and 100 percent efficiency. 

1019 

I 
l 

j 



1020 Chap\er 12 Concurrent Programming 

Weak scaling is often a truer measure than strong scaling because it more 
accurately reflects our desire to use bigger machines to do more work. This is 
particularly true for scientific codes;where the problem size can be easily increased 
and where bigger problem sizes translate directly to better predictions' of nature. 
However, there exist applications whose sizes are not so easily increased, and for 
these applications strong scaling is more appropriate. For example, the amount of 
work performed by real-time signal-processing applications is often dete,rmined 
by the properties of the physical sensors that are generating' the signals .. ~yanging 
the total amount of work requires using different physical sensors, which might riot 
be feasible or necessary. For these applications, we typically want to use parallelism 
to accomplish a fixed amount of work as quickly as possible. 

EiJlf!I~iltimMi2~!biBmUllil~#a!ifui3'.!ii!i~~i9ii~:tll 
Fill:in th~Nanks fof'the parallel program in the following table. Assume strong 
scaling. 

Threqds (t) 1 2 4 
Cores (p) 1 2 4 

Running time ·c TP) 12 8 6 
Speedup (Sp) 1.5 

Efficiency ( E p) 100% ---- '50o/o 

12.7 Other Concurrency Issues 

You probably noticed that life got much more complicate.d once we were asked 
to synchronize accesses to shared data. So·far, we have tboked at techniques for 
mutual exclusion and producer'consumer'sy'nchrdhizatiob., out this is only the tip 
of the iceberg. SynchrortiZation is a fundamentally difficult problem that raises 
issues that simply do not arise in orqinary sequential programs: 1,his section fs a 
survey (oy no means complete) of fome of th_e' issues you need to be. aware of 
when you wiite concurrent programs. To'k'eepthitigs concrete, we will couch our 
discussion in terms of threads. Keep in'\11\~\l. however, that these ~re iypical·of the 
issues that arise when concurrent flows of_any'kinq manipulate shared resources. 

12.7.1 Threjld Safety 

Wheµ we program with threads, we must be careful to write functions that have a 
property called thfead safety. A furtction is said to be thread-safe if ahd only if it will 
always -produce correct results when called repeatedly from multiple concurreht 
threads. If a function is·not thread-'safe, !lien we'say it is thread-unsafe. 

We can identify four (nondisjoint) classes' of thread'.urisafe functions: .. 
' " Class 1: Functions.that Yio 7lOt protect shared.variables. We have already en-

countered this problem with the thread fµrlction in Figure 12.16, which 



Section 12,7 <:Other Con~urfency Issues 1021 

-~--~~~------~------------ code/condrand.c 

2 

3 

4 

5 

unsigned next_Seed = 1; 

I* rand - feturn pseudorandom integer in the range O~ .32767 */ 
unsigned rand(void) 
{ 

6 next_seed = next_seed*1103515245 + i2543; 
7 return (unsigned)(next_seed>>16) •% 32768; 
8 } 

9 

10 /* srand - set the initial seed for rand() !/ 
11 yo~~H .~rand,(unsigned new_seed) 
12 { 

13 

14 } 
next~seed'-= new_seed; 

--------------------------code/condrand.c 

Figure 12.37 A thread-unsafe pseudorandom number generator. (Based·on [61]) 

, 

J• 

•' 

l. 

invocation depends on an.intermediate result from the previous iteration. 
Wli.en we call rand repeatedly from-a single thread after seeding it with a 
call to srand, we.can expect a repeatable sequence of numbers. However, 

·1his assumption no longef.holds if multiple threads•are calling rand. 
•The only way to make a function such as rand thread-safe is t'o rewrite 

it so that it does not use any static data, relying instead on the caller 
to pass the state iI)formhtion in argument~. ,T(:ie clisadyantag~ is that the 
progtammer is now forced to change thy code in the calling routine as 
well: I11a1arge program wl;tere there are pqtentiallyhundreds of different 
can sites,, making.such 'modific~dons cou1Ci be nontrivial and prone to 

, l ' ~ t 
error. · 
,, • I! 

Class ·3:• Functions.1hai•retutn a: pointer • .taia"static variable.,Sbme1functions, 
'such as ctime and gethostbyname, tc\mpute a result iIHfstati"C variable 
and then return.a pointerl to that variable. If we.call such functions from 

., 

" .. 

'" !" 
l" 

! I 
I 

I 

I 

l 
I 



1022 Chapter 12 Concurrent Programming 

--------------------------------- code!condctime-ts.c 

1 char *ctime_ts(const time_t *timep, char *privatep) 
2 { 

3 char *sharedp; 
4 

5 P(&mutex); 

6 sharedp = ctime(timep); 

7 strcpy(privatep, sharedp); /*Copy string from shared to private*/ 
8 V(&mutex); 
9 return privatep; 

10 } 

---------------------------------codelcondctime-ts.c 

Figure 12.38 Thread-safe wrapper function for the C standard library ctime function. This example 
uses the lock-and-copy technique to call a class 3 thread-unsafe function. 

concurrent threads, then disaster is likely, as results being used by one 
thread are silently overwritten by another thread. 

There are two ways to deal with this class of thread-unsafe func­
tions. One option is to rewrite the function so that the ca\Ier passes the 
address of the variable in which to store the results. This eliminates all ~· 
shared data, but it requires the programmer to have access to the function 
source code. 

If the thread-unsafe function is difficult or impossible to modify (e.g., 
the code is very complex or there is no ·source code available), then an­
other option is to use the lock-and-copy technique. The basic idea is to 
associate a mutex with the thread-unsafe function. At each call site, lock 
the mutex, call the thread-unsafe function, copy the result returned by 
the function to a private memory location, and then unlock the mutex. 
To minimize changes to the caller, you should define a thread-safe wrap­
per function that performs the lock-and-copy and then replace all calls 
to the thread-unsafe function with calls to the wrapper. For example, 
Figure 12.38 shows a thread-safe wrapper for ctime that uses the lock­
and-copy technique. 

Class 4: Functions that call thread-unsafe functions. If a function f calls a thread­
unsafe function g, is f thread-unsafe? It depends. If g is a c)ass 2 function 
that relies on state across multiple invocations, then f is also thread­
unsafe and there is no recourse short of rewriting g. However, if g is a 
class 1 or class 3 function, then f can still be thread-safe if you protect 
the call site and any resulting shared data with a mutex. We see a good 
example of this in Figure 12.38, where we use lock-and-copy to write a 
thread-safe function that calls a thread-unsafe function. 



f 
I 

Figure, l2.39 
Relationships between 
the sets of, reentrant, 
thread-sate, and th~ead­
unsafe fynctions:. 

All functions 

Reentrant 
functions 

Section 12.7 Other,ConcurrencY, ls.sues 1023 

~~~~~~~~~~~~~~~~~~~~~~~~~code/conc/rand-r.c 

/* rand_r - return a pseudorandom integer on 0 .. 32767 */
2 int r<µ}d_D(unsigned int' *nextp)1 '•

3 {

4

5 <I '

6 }

•nextp = •nextp • 1l'o3515245 +'12345;
retuln ·(unsigned inti'{•nextp I 65536) ., % 32768;

rl

&igure 12.40 rand_r: A reerttrant version of the.rand function from Figure'12.37. ,,

12.7.2 Reentrancy '·
, 1, ~ 1 (IJ d
Thei;e is .~!himeortal\t cl.as~ 9f tlµ-ead-s¥:e functions, known as reentrrmt func:ion~1
that ll[~. characterized ~y thy,propertY. thaf they do,not r,eference any sr3!:,':d data
when they an;.cahed by JUUitipie

1
thre'l\ls. A,lth_ough the tenns (hread~safe and

reentrant are sometim7~ used .(incorrectjy),as sy~onyms, there,i,s ii ci<;!lf techniclll
distinc\ion \hat is,,worth ,presevJn&-.figure 12.39 ,shows 1qe, s,et ~elatiopshjp,s be­
tween ryentran\, th'readrsf!fe, .and thread-unsafe functions. The set of ail functioµs
is partitioned int~ th~ ctlsj~lnt sets of \hread-s'afe an~ thread-unsafe

1

t4ncti~ns.'The
set of reentrant functions is a prop~r'subset of the thread-safe functl~ns. '

Reentrant functions are typically more efficient than non-reentrant iliread­
safe functions because they require no synchronization operations. Furthermore,
the only way to convert a class 2 threllc!:unsafe funs;tion into a thread-safe one is
to rewrite it so that it, is reentrant. For example, Figure 12.40 shows a reentrant
version of the rand function from Figure 1237. The key· idea is that we have
replaced the static next variable with a pointer that is passed in by the caller: ·

Is it possible to inspect the code of some function and declare a priori that it is
reentrant? Unfortunately, it depends. If ail function arguments are passed by value
(i.e., no pointers) and all data references are td local automatic stack variables (i.e.,
no references to stafic br global variables), then the function is explicitly reentrant;
in the sense that we can assert its reentrancy regardless of how it is called.

However, if we loosen our 'assumptions a bit and allow some parameters in
our otherwise explicitly reentrant function to be passed by reference (i.e80we
allow them to pass pointers), then we have an implicitly reeiztranf function, in
the sense that it is only reentrant if'the cailing'threads are carefUPto pass pointers

'ij I

'

l,1;

I

I
I
I

I
I !
I I
l I

'
!,

I
I
I

1024 Chapter 12 Concurrent Programming

to nonshared data. For example, the rand_r function in Figure 12.40 is implicitly
reentrant. 1 J'

We always use the term reentrant io j'nclude both explicit and .implicit re­
entrant functions. However, it is important to.realize that reentrancy is sometimes
a property of both the caller and the callee, and not just the callee alorie.

ms5!?€ifiroli1EMtiiR'U~Si'.itiM ~'it~mer ~ft££:1~~11811!
The ctime_ts function in Figure 12.38 is thread-safe but not reentrant. Explain.

12.7.3 Using Existing Library Functions in Threaded Programs

Most Linux functions, including the fµnctions•c,lefined in. the standard C library
(such as malloc, free, realloc,.printf, and'scf.llf), are threa.d-safe, with only
a few exceptions. Figure 12.41 lists some common exceptions. (See [110] for a
complete list.) The strtok function is a deprecated function (one whose use is
discouraged) for parsing strings. The asctime, ctime, and localtime functions
are popular functions for converting· back and forth between,different time and
date formats. The·gethostbyaddr, gethostbyname, and inet_ntoa functions
are obsolete network programming ftmctions that have been repla'ced by the
reentrant getaddrinf o,.getnameinfo, and inet_ntop functions, respectively (see
Chapter 11). With the exceptions of rand and strt9k, they-are of the class 3 variety
that i;eturn a pointer to a static variable. If we need to eall 'one nf these'ftihctions ili
a threaded program, the least disruptiv~ ~pproach to the calleris to lock' and copy.
Howe\?er, the lock-ahd-copy approach ~as a number of disad'vantages. Ffrst;the
additional synchr6nizatlon'slow~ doWil the piogra'.m. Second, functi'ons that return
pointers fo'c'omplh $tructures of structureJrequife a deep copy 'ofthe structures
in order to' col<y the entire structure liierarchy. Third, the lbck :and-copy approach

l J p I

will not work for a class 2 thread-unsafe function such as rand' that'relles'on' static
state across calls.

Thread-unsafe function

ranq
sti:"tok , ,.
asctime
ctime
ge'l;hostbyaddr
gethostbyname ,
inet_ntoa

lotaltime 1

Thread-unsafe" class
1, ' I

('

2
2

?
3
3

3
3

, 3
I ~\. ' '>'

•1 ...

• ,..rr

Linux thread-safe version

rand_r
strtok_r

.51-sctime_r

c:tipe_r 1,

gethostbyqddr_r
gethostbyname_r
(none)
localtime_r

"

Figure, 12.41 .fq!]lrpo,n thread-unsafe library·funct)qns.

HJ I

Section 12.7 .Qther Concurrency Issues 1025

Therefore, Linux systems prdvide reentrant versions of most thread-unsafe
functicms. The names•of the reentrant versions always end with the _r suffix. For
example, the reentrant version of asctime is called g.sctime!,_r. •We recommend
using these functions whenever possible.

12.7.4 Races

A race occurs when the correctness of a program depends on one thread reaching
point x in its control flow before another thread reaches point y ,,Races usually
occur because programmers assume that threads will take some particular trajec­
tory thrbugh the execution state space,. forgetting the 'golden rule; that thre"aded
programs mustlwork' correctly for any feasible trajectoryi

l\'h'example is the easiest way to understand the nature-of races. Consider the
simple program in·Figure 12.42. The 'main-thread create&r.four peer threads and
passes a pointer to a 'unique integer ID t6 each one. Each p<"er thread copies the

\, " ·I

2

3

4
5 ·!
6!

7

8

9

10

11

/••WARNING: Thfs code is 'buggy!° •/
#in'a.ude 11 csaP~~h"' 1

#define N 4
ti'

void •thread ~oid' :.vargp) ;
' "

int main()
J JI•

pthread_t tid[N];
int i;

..

..

12

13
14

15

16

17

18

1~

20

for (i = O; i < N; i+T)
Pthread_create(&tid[i], NULL, thread, &i);

21

for (i = O; i < N; i++)
Pthread_join(tid(i],

exit(O);

"
/* Thread' rout

0

iiie •/
vojd !thre&d(void •vargp)
{

NULL);

22 int myid = •((int *)Vargp) i
23 printf (~'J!ello from ~hread I %d\n'•! ''myid)·i
24 retur,n NULL ;i
25 1.1..} ,,

Fig_ure 12.42 A progfam with a race.

.,

lj \!

J

..

..

II r

l
I
I
I
~

\
'
I
I

t

J 026 Chapter 12 Concurrent Programming

ID passed in its argument to a·local variable.(line 22) and then prints a message
containing the ID. It looks simple enough, but.when we run this program.en our
syste'm;·we get the following incorrect result: " ,, ,. ~ ,,

linux> ./race
Hello from thread 1
Hello from thread 3
Jlello from thread 2
H9llo from thread 3 ,, 11,..

•1

I

The prp):)lem is caus!'d by,a.race IJet:.v~en ea~h peer thread,.and,the main
thread. Can you spot the race.? Here i<t.wi)at happens . .\Yijen the main thread
creates a peer thread.i.n line 13, it pas;;es a point~r to the'loca! stack·,wriable
i. ·At this point, .the ,race is on l)~twe!'n the ·n!'xt increment; of i in line. 12 and
\.Qe dereferencing.and assignment.of the argument in line124 .. IJ the peer thread
executes line 22 before the maip thread increments i in line 12, then the myid
variable gets the correct ID. Otherwise, it will contain the ID of some other thread.
Tu(;. ~cary thing is that whether we get the corr~ct answer depends .on how the
kernel schedules the execution of the threads. On our system it fails, but on other
systems it might work correctly, leaving the programmer 'blissfully uriaware of a
serious bug. ,,.

:ro eliminate the race, we can dynamical,ly allocate a separate block for eac;h
integer ID and pass the thread routine a pointer to.this l;Jl9ck, as.sho}".n,/n Fig­
ure 12.43 (lines 12-14). Notice that the thread routine must free the'block in order
to avoid a memory leak.

When we run this program on our system, we now get the correct result:

linux> ./norace
Hello from thread 0
Hello f rOm thread 1
Hello from thread 2
Hello f tom thread 3

~ti·

!fiii,i:lc~.2.h!filll'lj iiil1::Efi1"':lliib}ila9e-JQJ23;;:_; J'"'···,' ~~;'~1£:1
In Figure 12.43, we might be tempted to free the allocated memory block immedi­
ately after line 14 in the main thread, instead of freeing· it in the peer thread. But
this would be a bad idea. Why? '

l ' ' , ~ '

tfiatti~.tt~1fi'l!i4ifu1§h'ij~9';~~~ ·::J
A. In Figure 12.43, we eliminated the race by allocating "a separate block for

each integer ID. Outline a different approach that does not call the malloc
or fre~ functions.

B. What are the advantages and qisadvantages of t"'is approach?
J ... l.

i

I
i·
I

r
~

l
I

Section 12.7 Other Concurrency Issues <1027

------------;---------,,---- Code/condnorace.c
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25::,

26

27

28

#include 11 csapp.h" "
#define N 4

void *thread(void *vargp)j

int main()
{

pthread_t tid[N];
int i, *ptr;

~--

for (i = O; i < N; i++) {
ptr = Malloc(sizeof(int));
*ptr=i; ,\
Pthread_create(&tid[i], NULL, thread, ptr);

}

for (i = O; i < N; i++)
Pthread_join(tid[i],

exit(O);
NULL);

}

I f
I* Thread routine */
void *thread(void *variJ>)
{

int myid =•((int •)vargp);

•F.ree (vargp); .•

' '

pr:itutf ("Hello'.: fiom• th;t:.ead _Jod\n". myid) ;'
, .; return NULL ; t • " ·< .~

}
ft ... ~

--------~--------------'----, -,-,-.code/cond1J.,orace.c

Figufe'12.43 ' • ~ , ,,, l TJ , '•t •'1 t
A correct version of the program m Figure 12.42 without a race.

)~ . '· " ' ' Dea~locks' " •l « If I <'

r I ' 1<

Semaplrores introduce the•):>otential for a nasty kind of run-time error, dilled
deadlock, whete a 'collection ohhreads is blocked, waiting•for a•condition'that
Will never be true.· The· progress graph 'is ·an invaluable: tool• for·understanding
deadlock. For'exantple; Figure 12.44'shows the progress gmph for a pair. of th'reads
that use two semaphores for mutual exclusion. From this graph, we·.:an glean some
important insights about deadlock:

) (' •l,,-f{Jj

• The·programmer has incorrectly ordered the. p. and V operations such• that
" the forbiddelj region.s forithe. two semaphores overlap. If some,execution

trajectory happens to reach the deadlock stated, then no further progress is

l
I,

I
I
I

,,
I

i I
I

1028 Chapter 12 Concurrent Programming

Thread 2
A trajectory that does not deadlock

V(s) r----···

Initially
s=1
1~1·

t
V(t) t

t
P(s)

P(t)
Deadlock

region

A trajectory that deadlocks

P(s) P(t) V(s)

Figure 12.44 Progress graph f9r a program that ca~ deadlock .•.

possible because the overlapping forbidden regions block progress in every
legal direction. In other words, the program ·is deadlocked because each
thread is waiting for the other to do a V operation that will never occur.

• The overlapping forbidden regions induce a set of states called the deadlock
region. If a trajectory·happens to touch-a state in the deadlock region, then
deadl01;k is inevitable. Trajectories can enter deadlock regions, but they can

''), ' , ~ , ' ~t '- ,~ # ~ 1< i I\ } ' •

never leave.
• Deadlock is an especially difficult issue because it is not always predictable.

Some lucky execution traje~tories will skirt the deadlock~egion, ,1yhile other~
will be trapped by it. Figure 12.44 shows an example of each. The iciplications

·~ .for a programmer are scary. You might run the same program a thousanc\ times
without any problem, but then' the next time it deadlocks. Or•the program
might work fine on one machine but deadlock on_,another. Worst of all,
the error is oftel'l·not repeatable because. different executions have different
trajectories. '1 ,

Programs deadlock for many reasons, and preventing them is a difficult prob­
lem in general. However; when binary semaphores are used for mutual exclusion,
as in Figure 12.44, then you can apply the following si)p.ple and effective rule to
prevent deadlocks: ,\ ' .. ')' n "

~
(

t
i
{

I
~

(

r
I

S~ction 12._7 Other Concurrel'lcy Issues Q 029

Thread 2 "

V(s)

V(t)

P(t) : '
_,

1· '/

P(s)
~-~

.! Initially
s=1
1=1

>--------~-..... -----~'''--"'---'""''"'' l Thread 1
.P(s) · · ·• P(t) V(s) V(f) '• ,of ., '

Figure]2.45 Progress graph for a deadloc{!t~e!' P.togram'.
' 1 tn

0, t1 ,_ l

Mutex lock ordering rule: Given •rutotal ordering,bfi all mutexes, a program is
deatj.Iock-free if each thread acquires·its~mutexes ,in order and releasestthem in
reverse order. t·~ ~.ar

, Jr i , ~

For,exmm1Ie, v.;e ~an fix the d~adlosk in J;;igur~J+.44.bY, loc)<\µg,~ fir~t.-.then t,
iq11ach 11Jre1td. f,igure 12.45 sho~s tqe resulting p,rogress,graph.

,(J! 1 _i ' t •1

~~~~1!(sB'}Qfi;m!liiP:3~~i.~~*fii1 
~ :.._l~ ' Iii }f1' I r• ;fJ '"'"' 
consider me following program, which attemp.ts to use ~ pa'.ir of semaphores for 
m'Utuai exclUSion:'l ... I f •; ,JJ 

~ I , f!l'r "")( 

tili tially: s = 1, t = •0'.1 

Thread 1: 
P(s); 
V(s); 

1
,P(t).; 

V(t); 

h • ) •'.J 

Thread 2: 
P(s); 
V(s); 

P,(t/;' 
V(t>); 

I '>11 • 

,A. Draw the prog~ess,i;raph for thi~ prggran;i. 

B. Does it always·peadlock? 

., 

•, 

' I 
I 

I ,, 

I 
I 

I 
' u. 



1030 Chapter 12 Concurrent Progra[llming 

C. If so, what simple change to the initial semaphore values will eliminate the 
potential for deadlock? 

D. Draw the progress graph for the resulting deadlock-free program. 

12.8 Summary 

A concurrent program consists of a collection of logical flows that overlap in time. 
In this chapter, we have studied three different mechahisms for building concur­
rent programs: processes, I/O multiplexing, and threads. We used a concurrent 
network server as the motivating application throughout. 

Processes are scheduled automatically by the kernel, and because of their 
separate virtual address spaces, they require explicit IPC mechanisms in order 
to share data. Event-driven programs create their own concurrent logical flows, 
which are modeled as state machines, and use I/O multiplexing to explicitly sched­
ule the flows. Because the program runs in a single process, sharing data between 
flows is fast and easy. Threads are a hybrid of these approaches. Like flows based 
on processes, threads are scheduled automatically by the kernel. Like flows b,ased 
on I/O multiplexing, threads run in the context of a single process, and .thus can 
share d~ta quickly and easily. , 

Regardless of the concurrency mechanism, synchronizing concurrent accesses 
to shared data is a difficult pro,bleip.. The I? and V operations on semaphor,es have 
been developed to help deal with this problem. Semaphore operations can be used 
to provide mutually exclusive access to shared data, as well as to schedule access to 
resources such as the bounded buffers in producer-consumer systems and shared 
objects in readers-writers systems. A concu~rent pre threaded echo server provides 
a compelling example of these usage scenarios for semaphores. 

Concurrency introduces other difficult issues as well. Functions that are called 
by threads must have a pro~etty krlown as thread safeiy. We have identified 
four classes of thread-unsafe functions, along with suggestions' for rr!akihg them 
thread-safe. Reentrant functions are the proper subset of thread-safe functions 
that do not access any shared data. Reentrant functions are often more efficient 
than non-reentrant..functions, bec'luse they do not ~\'quire any sync)ironization 
primitives. Soine other difficult issues that arise in concurrent programs are races 
and deadlocks. Races occur when programmers make incorrect assumptions about 
how logical flows are scheduled. Deadlocks occur when a flo'Y is waiting for an 
event that will never happen. 

Bibliographic Notes 

Semaphore operations were introduced by Dijkstra [31]. The progress graph 
concept was introduyed by Coffman [23] and later formalized by Carson and 
Reynolds [16]. The readers-writers problem was introduced by Courtois et ljl [25]. 
Operating systems texts describe classical syncl\ronization probfems sucfi 'as the 
dining philosophers, sleeping barber, and cigarette smokers problems in more de-



1,1 ,, ·Home'work'ProblemS 1031 

tail [102, 106, 113]. The book by Butenhof [15] is a comprehensive·descriptibh'of 
the Posix threads interface .. The paper by Birrell [7] is an' excellent introductipn to 
threads programming and its pitfalls. The book by Reinders [~OJ describes a C/Q:+.+ 
library that simplifies the design and implementation of th~eaded programs. S,ev­
eral texts cover the fundamentals of parallel programn\ing on multi-core sys­
tems [47, 71]. Pugh identifies weaknesses with the way lhaHav'a t!lreads interact 
through memory and proposes replacement m.em~ry models [88]. Gustaf8on pro­
posed the weak-scaling speedup model [43] as an alternative to strong scaling. 

, ' :;.J 
Homework Problem~1 

•f, 
,, ~ 

12.16 + I r•J • 1•" 

Write a version of ll.~110. c (Figure 12.13)'that creates and'reaps n joinable peer 
threads, where n is a command-line argument. 1 " 

12.17 • 
A. The pro grain in Figure 12.46 has a bug. The 'thread'i~ supposed to sleep for 

1 second and then print a string. 'However, wheri'{\.e run it on onr system, 
n6tljing 1prints:'Why? l 

,..f• , .Jl • ~~ 

B. You can fix this bug by replacing the exit functiop in ljpe 10 wi\h on,e of two 
different Pthreads function calls. Which ones? 

' .. 
------------------------- code/conc/hellobug.c 

2 

3 

/* WARNING: This code is buggy! */ 
#include 11 csapp.h 11 

void •thread(v,9id *vargp); 
4, .... t l I' 

5 int main() 
6 { 

7 pthread_t tid; 
8 
9 Pthread_create(&tid, NULL, thread, NUil); 

10 exit(O); 
11 •• } ,J 

12 

13 

14 

\5 
16 

/* Thread routine *I 
void *thread(void *vargp) 
{ 

Sleep(!); 
17 printf("Hello, world!\n"); 
18 return NULL; 

•I • 

"' 
------'-' -....,,-------------..,,------ cO'de!conclhe1z10£ug~c 

I ' Ji ,. • r ' • 

19 } 

Figure 12.46 Buggy program for Problem 12.17. 

I 

I. i 

'" 



1032 Chapter 1 ~" .Concurrent Programming 

12:18 • 
Using. the progress graph in· Figure 12.21, cl~ssify the following trajectories as 
either safe or unfafe. 

~. ' " ,. 
A. Hl> L2, U2, 11!> Li, S2, Ui, Si, Tl> T2 

'•I I 

B. Hz, Hl> .lfl> ffi, ,\'i. Lz, Tl> Uz, Sz, Tz 

C. Hi. Li. H1: Lt, Ut, Sz; Ui. Si, Tl> T2 l• 

12.19 •• 
The solution to the first readers-writers problem in Figure 12.26 gives.a somewhat 
weak priority to readers becau~e a writer le~ving its critla!' section mighi'restart 
a waiting writer,instead of a waifing reader. beriye ,a solution that gives str~nger 
priority to re,aders, wl:je~!' a writer leaving it,s critic&l s~ctiop will alway~, r~sta~t.~ 
waiting reader if.one exists. "'I~ ,, 

12.20 ••• ' Consider a s,iyi.p\er yar)flp.t of the readers-~riters problem·wher,y,_there are ,a,t Jl10St 
N readers. Derive a solq,tion that gives equal.priority to read~rs and writers, in the 
sense that pending readers and writers have an equal chance 9f being. ,granted 
access to the .. resource,. Hint: You can solv!" this problem using a sin~le counting 
semaphore Jnil,a single nforex. '" ~' ' 

' ' 

12.21 •••• 
Derive a solution Jo the second readers-writers problem, which favors writers 
instead of readers. 

12.22 •• • 
Test your upderstanding of the select fu!lction•by modifying the server in Fig­
ure 12.6 so that it echoes at most one text line per iter,ation of the main server 
loop. ' " 

12.23 •• 
The event-driven concurrent echo S".'rvet in F\gyre 12.8 is flawed becal,lse·a mali­
~ious client can deny service to other clients by sending a.partjal text line. Write 
an improved version of the server that can handle these partial text lines without 
blocking. 

12.24 • 
The functions in the Rm I/O package (Section 10.5) are thread-safe. Are they 
reentrant as well? 

' 1, 

12.25 • 
~n th:\pret)lreaged concurr~nt echo server in Figure 12.28,·'?ach thread call~ the 
ec&o.:cnt function (Figure 12.29). Is echo_cnt thread-safe? Is it reentrant? Why 
or why not? "' 



Homework Problems 1033 

12.26 ••• 
Use the lock-and-copy technique toimplemen~ a thryad-safe non-reentrant ver, 
sion of gethostbyname called gethostbyname_ts. A correct solution will use a 
deep copy of the hostent structure protected by a mutex. 

12.27 •• ' ' 
Some network programming texts suggest the following approach for reading and 
writing sockets: Before interacting with the client, open two standard I/O streams 
on the same open connected socket descriptor, one for reading and one for writing: 

FILE *fpin, *fpout; ,., 

fpin = fdopen(sockfd, 11 r"); 
fpout' = fdopen(s'ockfd, 11 w11J; )f 

When the server finishes interacting with the client, Clb~e both streams as follows: 
v 

fqose(fpin); 
fqose(fpout); 

> ' 
However,. if you try this approach in a concurrent.server based on threads; 

you will create a deadly race con.dition. Explain. 

12.2s • r " " 
In Figure l~.4,5, do.es sw,appi11g !l;te, order Rf. t!Je two .V. operatioqs haye any effect 
m;i whether or, not the program deadlocKs? Justify yoµr answer by drawing the 
progress grall'1s for the four possjble cases: 

Ca~~ 1 Case2 Case3 Case4 

Thread 1 Thread2 Thread 1 Thread 2 Thread 1 1Jtread2 Thread 1 Thread 2 

P(s) P(s) P(s) P(s) P(s) 

P(t) P(t) 'P(t) p(i)· - P(t) 

V(s) V(s) V(s) V(t) V(t) 

V(t) V(t) V(t) V(s) V(s) 

12.29 • 
Can the following program deadlock? Why or why not? 

~ 11 I 

Initially: a= 1, b = 1, c = 1. 

Thread 1: 
P(a); 
P(b); 

V(b); 

P(c); 
V(c); 

V(a); 

Thread 2: 
P(c); 
P(b); 

V(b); 

V ( c) ;_ 

P(s) P(s) P(s) 

P(tl P(t) P(t) 

V(s) V(t) V(t) 

Vet) V(s) V(s) 

j 

~ I 

I 
I,, 

l 
I· 

I 
I 



1034 Chapter 12 Concurrent Programming 

12.30 • 
C?onsider the following program that deadlocks. 

I I 

Initially: a= 1, b = 1, c = 1. 

Thread 1: Thread 2: Thread 3: 
P(a); I I f(c) ;• P(c); 

·P(b); •P(b); V(c); 

V(b); .v(b); P(b); ., 
P(c); V(c); P(a); 

V(c); P(a); V(a); 

V(a); V(a); V(b); 
) i· lit 

A. For each thread, list the pairs of mutexes that it holds ·simultaneously, 

B. If a < b < c, which threads violate the mutex lock ordering rule? 

C. For these threads, show a new lock ordering that guarantees freedom from 
deadlock. 

12.31 ·~· 
Implement a version of the standard I/O fgets function, called tfgets, thattimes 
out and returns NULL if it does not receive an input line on standard inpuf within 
5 seconds. Your function should be implemented in a package called tfgets­
proc. c using processes, signals, and nonlocal jumps. It should not use tlie Linux 
alarm function. Tesfybur solution using the oiiver pi'o'gran\. in'Figure 12.47. · 

,. J -.. i 

, .. 
" 

--------'----------------- codelcondtfgets·main.c 

#include 11 csapp.h 11 

2 

3 char *tfgets(char *S, int ~ize, FILE *stream); 
4, 

5 int main () 
6 { 

7 char buf[MAXLINE); 
8 

9 

10 

if (tfgets(buf, MAXLINE, stdin) 
printf("BOOM!\n"); 

11 else 
12 printf( 11 %s 11

, bl.if); 
13 

14 exit(O); 
15 } 

1' 
NULL) 

--------------.-------....,..--~-'- code/condtfgets·main.c 

Figure 12.47 Driver program for Problems 12.31-12.33. 



Homework Problems 1035 

12.32 ••• 
Implement ·a. version oLthe ,tf gets function from Problem 12.31·thar11ses the 
select1 function. Your •function should be implemented in a. package; called 
tf gets-select. b.,_ Test your solution. using the •driver. program from Problem 
12.31. You may assume that standard input is-assigned-to descriptor 0. 

12.33 ••• 1lJ' J 

Implement a threaded version of the tfgets function from Problem 12.31. Your 
function should be implemented in a package F.'!gl'~ tfg<t)'J,-threafl; c.,T.est rimr 
solution using the driver program from Problem 12.31. 

,..,'"1 {.. 1• o.JIV 

)2,34,,+++ . '" ' ' ' L ",.•If 
W~jte a paralle\ tl\r~adeq,ver~ion of an N •X Wf matrix 111ultipifcatien kerq111. Com1 
pare the per.formance to th,e sequ~ntial case. . : , 'l 

12.35 +++ f• A» ' 

Implement a concGrrent versio~ of the 1iNY Web~erver based on processes. Your 
solution should create a new child process for e,a,h nev,: connection ~equ'<s,t. ses1 
your solution usino a·real Web browser. 

p, , )'I r 1 • 

12:3li ••• " ' ' . "I' •l Ii " 

Implement a concurrent version of the 1iNY Web server based oh 1/0 mulfiplexiiig. 
Test your solution using a real Web browser. ' 

,.,~ <" r •1 1 "" 

12.37 ••• 
Implement a concurrent•version of the 1iNY'Web server based on threads. Your 
solution should create a new thread for. each new connection request. Test your 
solution using a•real Web.br,owser" P i, 

12.38 •••• 
Implement a concurrent prethreaded version pf the 1i>1Y Wel]_se.)'cver.;yoµr solu• 
ti on s,hould dynall\ically; il)crease or .decrease the_number otthreads.in n;smmse to 
the i;:urnol\! load. One stra\~gy is to double tl].e,numb~r 9( thread~ 'Yh!'n \Ji.e ,bu!fe.~ 
becomes full, and halve the number of thread~ when the, pJ.!ff'.llc becomes empt}'> 
Test your solution using a real Web browser. 

-~·~ ,r ,,,w 
12.39 •••• • 
A Web proxy is a ~rogram that acts as a i:nfddlemari'iJ6't~een a'Web ser!ver ana 
browser. Insteacl.'o{ ~onta~tin~ the server dire'ctly' to get a Web p1 ~ge, tbe b~6~sef 
( • ff/'>,;' ~ I ' J • ' 

contacts the prp,~y. \vhich fo5'Xards the request ~o fhe server., "(.!\en pie server 
replies to the prhxy,' the proxy sends the reply to the broi:vser. For tfi\s !a.\J'. YOl\,wjll 
write a simple Web proxy that filters and logs requests: · 

A. In the first part of the lab, you will set up.the.proxy to accept requests,-p11rse 
the HTTP, forward the req4ests to the server, and•return the results to the 
browser. Your proxy should logtlie URLs of all requests in a log file on disk, 
'and it should.also block requests tO' any·URk ·contained in"a filter file on 
disk. 

,, 
I 
I 

l 
I 

I 
I 
ii 

~ 
I 

I 
I: 
I 

l 

.I 

11 

I· 

I 

I 



Chapter 121 Concurrent Programming 

B. In the second part of the lab, you will upgrade your proxy to.deal with 
multiple open corlriections at once by spawning.a'separate thread. to handle 

. each request. While your proxy.is waiting foria;reinote,;erver to respond to 
·a request so that it can,serve one browser, it should be working on a pending 
request from another browser. 

Check your proxy solution using a real Web browser. 

Solutiohs to Practice Problems 

Solution to Problem 12.1 (page 975) 
When µie parent forks the child, it gets a copy of the connected ~e~criptor; a\ld 
the reference cdlint for the associated file table is incremented"frorrl 1to2.'When 
the parent closes its copy of the descriptor; the reference count \s decremented 
from 2 to 1. Since the kernel will not close a file until the reference counter in its 
file table gqes to 0, the c\lild'~ end of the fOnl)ec;tion st~ys open. · 

1 

Solution to Problem 12.2 (page 975) 
) 

When a process terminates for any reason, the kernel closes all open descriptors. 
Thus, the child's copy of the connected file descriptor will be closed automati9ally 
when the child exits. . ' . ,, 
Solution to Problem 12.3 (page 980) 
Recall that a. descriptor is ready for reading if a request to read 1 byte from 
that descriptor would not block. JP EOE becomes true on a descriptori then ,the 
descriptor is ready for reading-because the·read operation will return immediately 
with a zero return code indicating EOF. Thus, typing Ctrl+D causes the select 
function to return with descriptor 0 in the ready set. 

Solution to Pr6blem 12.'4 '(page 984) " ,p 

We reinitialize the pool. ready _set variable before every call to select becalise 
it serves a'.s'l56th an input arlcl output <itgument. On input, it contains the read set. 
0n' output, it contailis the' ready' se~. ' ' " 

" 

. ' 
Solution to Problem .. 12,6 (page 995) 
The main idea here ·is that stack variables are,private, whereas global 'and static 
variables 'are shared. Static variables suclf .as cnt •are a little tricky because the 
sharing is Jimited ,to the ·functions within their scope-in this case, the thread 
routine. .... 



Solutions to Practice Problems J 037 

A. Here is the table: 
~ ,) 

) ' 

" !• " " Referenced by 'variable'''' 1 ~ j • 
1 1 

~~~~~~~~~~~~~~~~~~ 

instance main thread? peer t,hread'O?"- peer thread 1? "
ptr yes yes ' \ yes ,
cnt no yes yes

no no
/

i.m yes
msgs.m yes yes yes
myid.pO no yes .! ilO n

myiq.,\'1 no no yes

" Notes:
• •ptr 'A global variable that is written by the main thread and read by the

"' Ii' • d) 0
' 1 • • peer t rea s. J 1• •\1

crit '.A statit variable wiih·only one instance in memory· that is read and.
written by the two peer threads: ' '• ' '

i . m. \Ii' lbbll 'automatic variable stored on the stack of the main 'thread.
, .Even though its vajµe is passed to the peer threads, th" peer threads

never refere)l<;e it on the stack, and t)ms. it is pot shared.
msgs. m A local automatic variable stored on the main thread's stack and

referenced indirectly through ptr by both peer threa'i:ls.
myid. pO.and my id. pi Instances of a.local automatic variable residing on

.the stacks of peer threads 0 and l; respectively.

B.' Varlables)>tr, cnt, and msgs are referenced by more'tharl cine thread' and
thus are sliated. · ,.,.

+, '

'Solution to Pr~blem 12.7 (pa~e'998) «· ' ''
' J 1 ';> 'f ('I •

1117 imJ?ortf\l)t idea here is th,a~ ,you cannot make ~ny assumP,tions about the
prderin.~ thalJ)i.e. kernel cho,qses when it schedules your thr<?acJs.

..
Step Thread Instr. %rdx1 %rdx2 cnt

1 1 H1 0

i1 ' 2 1 0 0 '•

3 2 Hi 0
4 2 Li 0 0
5 2 Ui 1 0
6 2 Si 1 1
7 1 U1 1 1
8 1 S1 1 1
9 1 T1 1 1

10 2 Ti 1 1
''11".., ,.

Variable cnt has a final incorrecl value of 1.

I
!" ·1

I

r

"II

II!

l
Iii

I

I

·1

1038 Chapter 12 Concurrent Programming

Solution to Problem 12.8 (page 1001)
This problem is a simple test of your understanding of safe and unsafe trajectories
in progress graphs. Trajectories such as A and C that skirt the critical region are
safe and will produce corr5'ct results.

A. Hi. Lh Ul> SI> H2, L2, U2. S2, T2, Ti: safe

B. H2, L 2, H1, LI> Ul> SI> Tl> U2, S2, Ti: unsafe

C. Hi, H2, L2, Uz, Sz, LI> Ul> SI> Ti. T2: safe

Solution to Problem 12.9 (page 1006)

A. p = 1, c = 1, n > 1: Yes, the mutex semaphore is necessary because the
producer and consumer can concurrently access thio buffer.

B. p = 1, c = 1, n = 1: No, the mutex sejilapflore is not necessaty in this case,
because a nonempty buffer is equivalent to a full \iuffer. When the buffer
contains an itejll, the prod!!cer is blocke(l. When the buffer is empty, the
consumer is blocked. So at any point in time, only a single ,thread can access
the buffer, and thus mutual exclusion is guaranteed with9ut qsing the mutex.

C. p > 1, c > 1, n = 1: No, the mutex semaphore is not necessary in this case
either, by the same argument as the previous case:

Solution to Problem 12, 10 (page 1008)
Suppose that a particular semaphore implementation uses a LIFO stack of threads
for each semaphore. When·a thread blocks on a semaphore in a P operation, its ID
is pushed onto the stack. Similarly, the V operation pops the top thread ID from
the stack and restarts that thread. Given this stack implementat\9~. an adversarial
writer in its critical section could simply wait until another writer blocks on the
semaphore before releasing the semaphore. In this scenario, a waiting reader
might wait forever as two writers passed control back and forth. ' ·t

Notice that although it might seem more intuitive to use a FIFO queue rather
than a LIFO stack, using such a stack is not incorrect and does rldt vlolate tlie
semantics of the P and V operations.

Solution to Problem 12.11 (page 1020)
This problem is a simple sanity check of your understanding of speedup and
parallel efficiency:

Threads (t) 1 2 4
Cores (p) 1 2 4

Running time (Tp) 12 8 6
Speedup (Sp) 1 1.5 2
Efficiency'(E P) 100% 75% 50%

Solution to Problem 12.12 (page 1024)
The ctime_ts function is not reentrant, because each invocation shares the same
static variable returned by the ctirlie function, However, it is thread-safe be-

:
r
I

·~

Solutions to Practice Problems .lJ 039

cause the accesses to the shared variable are protected by P and· V operations,
and thus are mutually excl!!.sive.

' .
Solution to Problem 12.13 (page 1026)
If we free the block immediately after the call to pthread_create in line 14, then
we will introduce~ new race, this time between the call to free in the, main thread
and the assignmeht statement ,in line ·24 of the-thread routine. -

Solution to Problem 12.14 (page 1026)
I

A. Another approach is to pass the integer i directly, rather than passing a
pointer to i:

for (i = O; i <·N~ i++)
Pthread_creat~(&tid[i], NULL, thread, (void •)i);

In the thread routine, w~ cast the argument back to an int and assign it to
my id:

int rnyid = (int) vargp;

B. The advantage is that it reduces overliead by elimiria\ing the calls to malloc
and free. A significant disadvantage is that ,jt assumes ~~t pointer? are. at
feast as large as ints. While this assumption is"trfie·l'or all modern systems,
it might'not be true for legacy or future systems.

Solution to Problem 12.15· (page 1029)

A. The progress graph for tl'te original program is shown in Figure'12.48 on the
next page.

B. The program always deadlocks, since any feasible trajectory ls eventually
trapped.in a deadlock state.

C. To eliminate the deadlock potential, initialize the binary semaphore t to 1
instead of 0.

D. The progress graph for the corrected program is shown in Figilre lZ.49.

I
111 I

f'I
i ' ,, I
I

I I
"
•j

I

I
I

\,

I

I
I

__ l.

Chapter 12 Concurrent Programming

Initially
s=1
t~o

Thread:2

'· ~ .

P(I)

'I

V(s)

P(s)

1-----..-.,------.-~-----"'""----'--.._ Thread 1
F'(s) 1 ••• • v\s) P(t) V(t)

Figure 1 Z.48
J1 J JT f, > 1 t • J

Progress, g~ap,~ for,a program that d~adlocks.

Initially
s=1
~1

Thread 2

!•
V(t)

·-i. t)

P(t)
,

.)

V(s)

P(s)

I--~-------~-----~------ Thread 1
P(s) V(s) P(t) V(t)

Figure 12.49 Progress graph for the corrected deadlock-free program.

'·

,

h

Errot Handlihg

' , .
Programmers should always check the error codes returned hy system-level func-
tions. There are many subtle ways that things can go wrong, and it only makes
sense to use the status information that the kernel is a,ble to p,rovide us. Unfortu1
nately, programmers are often reluctant to do error checking because it clutters
tneir Code, tUFning a single line of code' into a multi-line conditional 'statement'.
.qrroi' Cliecking is also 'eonfusing because different functions indicate errors in dif­
ferent'ways.

We were faced with a similar probleq1 when Writing thi& text. On the one hand,
we would like our code examples to be concise and simpie to read. On the other
harld, we do not want to giv'elstudents the wrong impression that it is OK to skip
error checking. To resolve these issues, we have adopted afl'approach based on
error-handling wrappers that was pioneered by W. Richard Stevens in his network
programming tdt [110].

The idea ls' that given some base system-level function foo,_->ye define a
wrapper function Foo with identical arguments, but with the first letter capitalized.
The wrapper calls the'base function and checks for errors: If it detects an error, the
wrapper prints an informative message and terminates the process. Otherwise, it
returns to the caller. Notice that if there are no errors, the wrapper behaves exactly
like the base function. Put ai;tother way, if a prograip runs correctly with wrappers,
it will run correctly if we render the first letter of each wrapper in lowercalie and
recompile .

. The wrappers are packaged in a single source file (c.~itPP. c) that is compiled
and linked into each program. A separate he~der file (csapp.h) contaips th,e
function prototypes for the wrappers.

ThiS'appendix gives a tutorial on-the different kinds of error handling in-Unix
systems and gives.examples of the different styles of error-handling wrappers.
Copies of the csapp. h and csapp. c files are available at the CS:APP Web site.

1041

' -
I '

\.

• ,

1042 Appendix A Error Handling

2

3

4

A.1 Error Handling in Unix Systems

The systems-level function calls that we will encounter in this book use three
different styles for returning errors: Unix-style, Posix-style, and GAI-style.

Unix-Style Error Handling

Functions such as for): and wait that were deyeloped in the early days of Unix (as
well as some older Posix functions) overload:the function return value with both
error codes and useful results. For example, when the Unix-style wait function
encounters an error (e.g., there is no child process to reap)·, it returns -1 and sets
the global variable errno to an error code that indicates the cause of the error. If
wait completes successfully, then it return; the'use'h{1 result, which is the PID of
the reaped child. Unix-style error-handling code is typically of the following form:

1 if ((pid = wait(NULL)) < 0) {
2 fprintf (stderr, "wait error: %s\n", strerror(errno));
3 exit(O);
4 }

The strerror function returns a text description for a particular value of
' V I

errno.

Posix-Style Error Handling

Many 9f ,the newer Posix functions ~uch as Pthreads use the .r,etµrn value only
to indicate success (zero) or failure·(nonz<;ro). Any useful.results are returned
in function arguments that are passed by reference. We refer to this apprpach as
Posix-style error haµ[l,ljng. F)i>r eli'ample,.(he Posix-style pthread_qe9-1;~fm;iction
i,ndicates success or failure with its returp value and returns the ,ID, pf the.newly
created thread (th~ usefqJ result), by reference, in its first argument. Posix-sryl~
error;handling code is typically of,t~e following form:

if ((retcode = pthiead_create(&tid,
fprintf (stderr, 11 pthread_cre?-te
exit(b);

}

NULL, thread, ,NlJLL)l != OJ'{
'I • • '' f

error: %s\n 11 , tstrer.ror(retcode));

J•

"· The strerror function returns a text description for a particular value of
re'tcode-:.. 1~ 11

'I

GAi-Styie Error Handling

The getaddi:info (GAI) and,getnameinfo,func~ions return zero on succes~ and
a "nonzero value on failure. G<\'.I 'error-handliffg code is typically 0°f the follow-
• ~ , ,.. rl L.

mg form:
,./ ' , ,, ,,

if ((i:-etcode =•getaddriiifo(host, service; &hints, &result)) != o):~{
2 ~fprintf (si:derr, 11 getaddrinfo erro"r: %ft\n 11

, .gAi.!st~error (retcotie)) i

3 exit(O); ' " •1 "'

4 }

Section A.2 'E(ror-Handling Wrappers 1043

Tl,ie gai~strerror function returns a text description for a particular value
ofretcode.

Summary of Error-f3,epor):irig. functions

Thoughout this book, we use the following error-reporting functions tb 'accommd-
date different error-handling styles. '

'. >'
#include 11 csapp.h 11

void unix_error(~har •msg);
,.

void posix_error(int code, char •msg)j
void gai_error(int code, char *msg)j
void app_error(char *msg); ,

Returns: nothing

! .
As their names suggest, the unix_error, posix_error, and gal.-e+ror functions
report Unix-style, Posix-style, and GAI-style errors and then terminate. The app_
error function is included as a "Convenience for application errors. It simply prints
its input and then terminates. figur~ A.1 shows the code for th!(e~rpr,reporting
functions. ·

A.2 Error-Handling Wrappers

Here are some examples of the different error-handling wrappers.-

Unix-style error-handling wrappers. Figure A.2 shows the wrappeY(or tl{e Utlix­
style wait function. If the wait returns with an error, the wrapper prints
an informative message and then exits. Otherwise, it returns a PID to the
caller. Figure "A.3 shows the wrapperior the Unix-style kill function.
Notice that this function, unlike wait, returns void on success.

Posix-sty/e error-handling wrappers. Figure A.4 shows the wrapper for the
Posix-style pthread_detach function. Like most Posix:style functions, it
does not overload useful result~ with error-return codes, s,o !he wrapper
returns void on success.

CAI-style error-handling wrappers. Figure A.5 _shows th~ error-handling wrap­
per for the GAI-style getaddrinfo function.

...

!
I

I
t
I

!
I
I

1044 Appendix A Error Handling

----~-------~---------~~---- code/srdcsapp.c

void unix_error(char *msg) /* Unix-style error */
2 {

}

fprintf(stderr,
exit(O); ,

"%s: %s\n", msg, 'strerror(errno)) ;•

, 1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

void posix_error(int code, char *msg) /* Posix-style error */
{

}

fprintf(stderr, n%s: %s\n 11
, msg, strerrqr(cpde));

exit(O);

void gai_~rror(int code, char *msg) I* Getadd.rinfo-style error */
{'c.

fprintf(stderr, 11 %s: %s\n", msg, gai_strerror(code));

exit(O); '
}

void app_error(cliar *m~g) /* Application error' *I
{

21 fprintf(stderr, 11 %s\n 11
, msg);

22 exit(O);
23 }

'•

-----------~---------------- code/srdcsapp.c

Figure A, 1 Error-reporting functions.

'"
•l ~·

---,------------~-------,-,,.,,---~-code!srdcsapp.c

2

pid_t Wait(int .*status)
{

3 pid_t pj.d;
4

5

6

7 "
8 }

if ((pid wait(status)) <' 0)
unix_error(11 Wait error 11

);

l?eturn p"id;'

)'

.,,

---------------------------- codelsrdcsapp.c

Figure A.2 Wrapper for Unix-style wait function.

Section A.2 Error-Handling Wrappers 1045

-------------------------- code/srdcsapp.c

void Kill(pid_t pid, int signum)
2 {

3 int re;
4

5 if ((re = kill(pid, signum)) < 0)
6

7 }
unix~error("Kill error 11

);

---------------------------- code/srclcsapp.c

Figure A.3 ,Wrapper for Unix-style kill function.

---------------------------- code/srdcsapp.c

1 void Pthread_detach(pthread_t t}d) {
2 int re;
3

4 if ((re = pthread_detach(tid)) != 0)
5 posix_error(rc. 11 Pthread_detach error 11

);

6 }

---------------------------- code/srdcsapp.c

Figure A.4 Wrapper for Posix-style pthread_detach function.

------------------------------------code/srdcsapp.c

yoid Getaddrinfo(const char *node, const char *service,
2 const struct addrinfo *hints, Struct addrinfo **res)
3 {

4 int re;
5

6 if ((re = getaddrinfo(node, service, hints, res)) != 0)
7 gai_error (re, 11 Getaddrinfo error 11);

8 }

--------------------,------------------codelsrc/csapp.c

Figure A.5 Wrapper for GAi-styie getaddrinfo function.

I
!
1·

i.

References

[1]

[2]

[3]

[4]

[5]

··J•

Advanced Micro Devices, ''Inc. Software
dptlmiziition Guide fof AM_D6f P'rocessors,
2005. Publication Number 25112.

Advancc;d, IV!jcro Devises,., Jpc. Altfp64
Architecture Programmer's Manual, Volume
1: Appli~ation Programming,.2013. Publication
Numqer 24592.

Advanced Micro Devices, Iqc. AMD64
Architecture Programmer's Manf,la/, Volume
3: General-Purpose and System Instructions,
2Q13. Publication Number 24594.

Advanced Micro Devices, Inc. AMD64
Architecture Programmer's Manual, VOiume

.A:.128-Bit and 256-Bit Media Instructions, 2013.
Publication Number 26568.

K. Arnold, J. Gosling, and D. Holmes. The
J aviJ. Prbgrarriming 'Llinguage, ~Fourfh EditiOn.
Pfentice Hall, 2005.. 1

[6] T. Berpers-Lee, R'. Fie)ding, and H. Frystyk.
' Hypertext transfer protocol - HTTP/1.0. RFC

1945, 1996. •' ~· "'
f t• 1<

[7J A. Birrell. An introduction to programming
with threads. Tec]jnical Report 35, Digital
Sxstems Research Center, 1989.

\.... • • l •

(8] "" A. Birrell, M. Isard, C. Thacker, and T. Wobber.
A design for high-performance flash disks.
SIGOPS Operating Systems Review 41(2):88-
93, 2007. , ,

[9] G. E. Blellocli, J. T. Fineman, P. B. Gibbons,
and H. V. Simhadri. Schedulihg irregular
paraJ1el coµiputations on hierarchical .c~ches.
In Proceediflgs of tji~ 2J[[l, Syw>.osiurn on
Parallelis171 in Algorithms qlJ.tJ. 4rchitectures
(.\;PAA), pages 35?-366. ACM, June 2011.

[10] S. Borkar. Thousand core chips: A technology
perspective. In Proceedings of the 44th Design
Automation Conference, pages 746--749. ACM,
2007.

[11]

[12]

[13]

[14]

[15]

[16]

[17J

[18]

D. Bovet 3nCi M: Cesati. u'nderstanding the
Lin'Jx 1J<emel, Third Edition. O'Reilly Media, . ' {'

Inc., 2005.

A. Demke Brown and T. Mowry. Taming the·
memory hogs: Using compil~r-Piserteci ;ele3ses
to manage physical memory intelligently. In
Proce~dings of the,'[th .~ymposium O{l, C?perating
Systems Design and lf[1plementation (OSDI),
pages 31-44. Usenix, October 2000.

R. E. Bryant. Term1level verificati9n of a
pipelined CJSC microprocessor. Techpical
Report CMU-CS-05-195, Carn~gie .Mellon
University, School of Compute~ ScieIJce, 2005.

,R. E.'Btyant and D.R. O'Ha'uaron. Introducing
computer~systems from a progiammeu's
perspective. In Prol:eedings Of the Technical
~ymposium on Compute;, ~£iF'Ire fiducation
(SJQCSE), pages,90-94. ACM, l;'<;bruar~ 2001.

D. Butenhof. Programming with Poslf, Threads.
Addison-Wesley,, 1997.

S. Carslin and'P.'Reyno,lds-,The geometry of
semaphore programs. ACM Transactions on
Programming Languages and Systems 9(1):25.
53, 1987 J' ' "
' ~ A ,, J. B. Carter, W. C. Hsieh, L.B. Stoller,.M. R.
~~anson, L. Zhail_.g, E. L. Brunvand, A. Davis,
C.-C: Kuo, R. Kuramkote, M, A. Parker,
L. 5chaelicke, and T. Tateyama. Impulse:
B,uifdin'g aJ.slliart'er mk:mory•con"'troller. In
Proc~eil.ings o'f the 5th International Symposium
on High' Performance Computer Architecture
(HPCA), p~ges 70779. ACM, January 1999.

K'.. Chang, D. Lee, Z. Chishti, A. Ala'meldeen,
c: Wilkerson, Y. Kim, and 0. Miltlu. Improving
DRAM perfclimance'by parallelizing' refreshes
with accesses. In Proceedin~s of the 20th
International Symfjosium on High-Performance
Computer Architecture (HPCA). ACM,
February 2014.

1047

. '

1048 References

[19] S. Chellappa, F. Franchetti, and M. Pilschel. variants. In Proceedings of the 3rd International
How to write fast numerical code: A small in- Symposium on High Perfonnance Computing
troduction. In Generative and Transformational (ISHPC), volume 1940 of Lecture Notes in
Techniques in Software Engineering II, volume Computer Science, pages 26-31. Springer-
5235 of Lecture Notes in Computer Science, Verlag, October 2000.
pages 196-259. Springer-Verlag, 2008. [30] E. Demaine. Cache-oblivious algorithms and

[20] P. Chen, E. Lee, G. Gibson, R. Katz, and data structures .. In ~ecture Notes from the EEF
D. Patterson. RAID: High-performance, Summer School on Massive Data Sets, J3RICS,
reliable secondafy storage. ACM' Computing University of Aarhus, Denmark, 2002.
Surveys 26(2):145-185, June 1994. [31] E. W. Dijkstra. Cooperating sequential

[21] S. Chen, P. Gibbons, and T. Mowry. Improving processes. Technical Repdrt EWD-123,
index performance through prefetching. In Technological University, Eindhoven, ihe
Proceedings 1of the'2001 ACM SIGMOD Netherlands, 1965.
International Conference on Management of [32] C. Ding and K. Kennedy. Improving cache
Data, pages 235-246. ACM, May 2001. perfOrmance of dynamic applications through

[22] T. Chilimbi, M. Hill, and J. Lams. Cache- data and computation reorganizations at
conscious structure layout. In Proceedings of run time. In Pfoceedings of the 1999 ACM
the 1999 ACM Conference on Programming Conference on Programming Language 'Design
Language Design and Implementation (P LD I), and Implementation (PLDI), pag~s 229-241.
pages 1-12. ACM, May 1999. ACM, May 1999.

[23] E. Coffman, M: Elphick, and A. Shoshani. [33] M. Dowson. The Ariane ':5 software failure.
System deadlocks. ACM Computing Surveys SIGSOFT Software Engineering Notes 22(2):84,
3(2):67-78, June 1971. 1997.

[24] D. Cohen. On holy wars and a plea for peace. [34] U. Drepper. User-level IPv6 programming
IEEE Computer 14(10):48-54, October 1981. introduction. Available at http://w"lw.akkadia

[25] P. J. Courtois, F. Heymans, and D. L. Parnas. .org/drepper/userapi-ipv6.html, 2008.

Concurrent control with '1readers" and [35] M. W. Eichen and J. A. Rochlis. With micro~
' "writers." Communications of the ACM scope and tweezers: An analysis of the Internet

14(10):667--Q68, 19'71. virus of November, 1988. In Proceedings of the

[26] C. Cowan, P. Wagle, C. Pu, S. Beattie, and IEEE Symposium•on Research in Security and

J. Walpole. Buffer overflows: Aftacks and Privacy, pages 326-343. IEEE, 1989.

defenses, for the vulnerability of the decade. In [36] ELF-64 Object File Format, Version l.5 Draft2,
DARPA Information Survivability Conference 1998. Available at http://www.uclibc.org/docs/
and Expo (DISCEX), vblume 2, pages 119-129, elf-64-gen.pdf.
March2000. [37] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,

[27] J. H. Crawford. The i486 CPU: E;xycµting L. Masinter, P. Leach, and T. Berners-Lee.
instr,uctions in one clock cycle. (I;EE Micro Hypertext transfer.protocol - H_TTP/1.1. RFC
10(1):27-36, February 1990. 2616, 1999.

[28] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. [38] M. Frigo, C. E. Leisersorl, H. Prokop, and
A performance comparison of contemporary S. Ramachandran~ Cache-oblivious algorithms.
DRAM archites\ures. In Proceedings of the In Proceedings of1he 40th IEEE Symposium
26th International Symposium on Computer on Foundations of Computer Science (FOCS),
Architecture (!SCA), pages 222-233, ACM, pages 285-297. IEEE, A,ug!'st 1999.
1999. [39] M. Frigo and V. Strumpe'n. The cache complex-

[29] B. Davis, B. Jacob; and T. Mudge. The new itY of multi threaded cache oblivious algorithms.
DRAM interfaces: SDRAM, RDRAM, and In Proceedings of the 18th Symposium ofi Para!-

le/ism in Algorithms.and Architectures (SPAA},
'.pages 271-280. ACM, 2006. 1 •'

(40] G. Gibs9n, D. Nagle, K. Amiri, J. Butler,
F. Chang, H. Gobioff, C. Hardin, E. Riedel,
D. Rochberg, and J. Zelenka. A cost-effective,
high-bandwidth storage ar~liJt~cJure. In
Proceedings of the 8th fntemational Conference
on Architectural Support for Programming
Languages and Operating Systems (A!)PLOS),
pages 92-103. ACM, October 1998.

J~ ~

[41] G. Gibson ~9.d R. Van M,eter. Network at!ached
storage architecture. Co11Jmunications of the

" ACM 43(p):37-45, ;November 2000.

[42] Google. IPv6 Adoption. Available.at http://
www.google.com/intl/enlipv,6/stat~tics.IJ,tml.,

(43] J. Gustafson. Reevaluating Amdahl's law.
Communications ofthe ACM 31(5):532-533,
August 1988. " '

(44] L. Gwennap. New aigorithm improves branch
prediction. Micropfo'cessor Report 9(4), March
1995.

[45] 1'S. P. Harbison a11ct·G: L. Steel~,' Jr. C, A ''
Reference Manual, Fifth Edition. Prentice Hall,
7p02.

[46] J. L. Hennessy and D. A. Patterson. Computer
lArchitecture:.A.Quantitative Approach, Fifth
Edition. Morgan •Kaufll).ann,i2011.

[47] .M. Herlihy and N"Shavit. The·Art of Multi-.
processor Programming. Morgan Kaufmann,
2008.

(48] /-. C .. A. R. Hoare.Monitors: An operating system
·structuring _c,on(ept. Cqmmunications of the
A.GM 17(19);549-~57, October 1974.

(49]

[50]

Intel Corporation'.< Intel 64 and IA-32 Ar­
chitectures Optimization Reference Manual.
Available.at http://~~ntel.com/content/'
www/us/en/processors/architectures-software­
developer-manuals.html.

• ' I
Intel Co\poratio,n. Intel 64 and IA-32 Ar-
chitectures Software Developer's Manuql,
Volume 1: Bllsic Architecture. Available at
http://www.intel.com/content/Wwv./us/eri/
processors/architecturi;s-software-developer-
manuals.html. 1·

[51 J Intel Corporation. Intel 64 and IA-32 .Ar-
1 chitectures Software Developer's Manual,

[52]

[53]

[54]

[55]

[56]

[57]

[58]

References .1049

Volume 2: lnstru~tion. Set Reference. Avb.ilable
at http://www.intel.com/content/ww..,,/us/en/•
p,rocessors/architectures-software-deve

1
loper­

manuals.html. ,
Intel Corporation. Intel 6.4 amt [A-32 Architec­
tures Software Developer's Manual, Volume 3a:
System ProiTamniing Guide; Part 1. Available
at http:fi;.ww.intel.com/con\ent/www/us/en/
processors/architectllres-s6ftw~re-developer­
manuals.htihl.

'htel Corporation. Intel :jolid-State f:>rive 730
Series: ProdUct Specification. Available at

' • i ' '•\ http://www.intel.com/content/www/us/en/solid-
sta te-driv'es/ssd: 730-series-spec.htme'

' \ ..
Intel Corporation. Tool Interfafe Standards
Portable Formats Specification, Version 1.1,
1993. 'OrCier number 24f597. 1

F. Jones, B. Prince, R. Norwood, J. Bartigan,
W. Vogley, C. Hart, and D. Bondurant.
Memory-a ne'* era of fast dynamic RAMs
(fotvideo applications). IEEE Spec/rum, pages
43-45, October 1992.

Ri'Jones' and R. Lins: -G'a~bage Collection:.
Algorithms for Automatic Dynamic Memory
ffanqg~ment. 'Xiley, 1996. ••

M. Kaashoek; D. Engler, G. Ganger, H. ~riceo.
·R. Hunt, D. Maziers, T. Pinckney, R. Grimm,
J. Jannotti, and K. MacKenzie. Application
performani;e 'and flexibility on Exokernel
systems. Jn Proceedings of the 16th ACM
sJmn<;sium on, Operating System Principles
(SOSP), pages 52-65. ACM, October 1997.

R. Kati Jnd G. Borriellq. Contemporary Logic
Design, S"eC~nd~Edii(o·n.' Prentice H,ll, 2005.

[59] B. W. Ker!lig!ian.and.R, Pike. The Practice of

[60]

[61]

...
[62]

[63]

Programming. Addison-Wesley, 1999.

B. Ker,nighan and D. Ritchie._ Th~ C Progr°'m­
ming .Language, First Edyion. Pr<in.tice Hall,
1978.

B. Kernighan and D. Ritchie. Thi1C Program­
ming Language, Second Edition. Prentice Hall,

" 1988.

Michael Kerrisk. Thf· Linux P~ograrnniing
Interface. No Starch Press, 201Q. " '

T. Kilburn, B. Edwards, M. Lanigan, and
F. Sumner. One-level storage system.~IRE

'

I
I

I
l

I

1050 References

Transactions on Electronic Computers EC- (76] E. Marshall. Fatal error: How Patriot over-
11:223-235, April 1962. looked a Scud. Science, page 1347, March 13,

(64] D. Knuth. The Art of Computer Programming, 1992.

Volume 1: Fundamental Algorithms, Third (77] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell.
Edition. Addison-Wesley, 1997. System V application binary interface AMD64

(65] J. Kurose and K. Ross. Computer Networking: A architecture processor supplement. Technical

Top-Down Approach, Sixth Edition. Addison- Report, x86-64.org, 2013. Available at http://

Wesley, 2012. www.x86-64.org/documentation_folder/abi-O
.99.pdf.

(66] M. Lam, E. Rothberg, and M. Wolf. The
(78] J. Morris, M. Satyanarayanan, M. Conner, cachf performance and optimizations of

blocked algorithms. In Proceedings of the J. Howard, D. Rosenthal, and F. Smith. Andrew:

4th International Conference on Architectural A distributed personal computing environment.

Support /Or Programming Languages and Communications of the ACM, pages 184-201,

Operating Systems (ASPLOS), pages 63-74. March 1986.

ACM, April 1991. (79] T. Mowry, M. Lam, and A. Gupta. Design

(67] D. Lea. A memory allocator. Available at and evaluation of a compiler algorithm

http://gee.cs.oswego.edu/dVhtml/malloc.html, for prefetching. In Proceedings of the 5th

1996. International Conference on Architectu'ral

(68] C. E. Leiserson and J. B. Saxe. Retiming
Support for Progra!flming Languages and
Operating Systems (ASP LOS), pages 62-73.

synchronous circuitry. Algorithmica 6(1--6), ACM, October 1992.
June 1991.

(69] J. R. Levine. Linkers and Loaders. Morgan
(80] S. S. Muchnick. Advance4 Compiler Design and

Kaufmann, 1999.
Implementation. Morgan Kaufmann, 1997.

(70]
[81] S. Nath and P. Gibbons. Online maintenance of

David Levinthal. Performance Analysis Guide very large random samples on flash storage. In
for Intel Core i7 Processor and Intel Xeon Proceedings ofVLDB, pages 970-983. VLDB
5500 Processors. Available at https://software Endowment, August 2008 .
. intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf. (82] M. Overton. Numerical Computing with IEEE

(71] C. Lin and L. Snyder. Principles of Parallel
Floating Point Arithmetic. SIAM, 2001.

Programming. Addison Wesley, 2008. (83] D. Patterson, G. Gibson, and R. Katz. A case for

(72] Y. Lin and D. Padua. Compiler analysis of
redundant arrays of inexpensive disks (RAID).
In Proceedings of the 1998 ACM SIG MOD

irregular memory accesses. In Proceedings of International Conference on Management of
the 2000 ACM Conference on Programming Data, pages 109-116. ACM, June 1988.
Language Design and Implementation (PLDI),
pages 157-168. ACM, June 2000. (84] L. Peterson and B. Davie. Computer Networks:

(73] J. L. Lions. Ariane 5 Flight 501 failure. Technical
A Systems Approach, Fifth Edition. Morgan

Report, European Space Agency, July 1996.
Kaufmann, 2011.

(74] S. Macguire. Writing Solid Code. Microsoft
(85] J. Pincus and B. Baker. Beyond stack smashing:

Press, 1993. Recent advances in exploiting bu~fer overruns.
IEEE Security and Privacy 2(4):20-27, 2004.

(75] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhal, and
(86] S. Przybylski. Cache and Memory Hierarchy W. W. Hwu. Compiler code transformations for

supersCalar-based high-performance systems. Design: A Performance-Directed Approach.

In Proceedings of the 1992 ACM/IEEE Morgan Kaufmann, 1990.

Conference on Supercomputing, pages 808-817. (87] W. Pugh. The Omega test: A fast and practical
ACM, 1992. integer programming algorithm for depen-

' , dence analysis. Communications 'of the A<;'M
35(8):102-114, August 1992. ,,

(88]

(89]

(90]

(91]

(92]

(93)

(94]

W. Pugh. Fixing the Java memory model. In
Pr'oceedings of the ACM Conference oq Java
Grande, pages 89-98. ACM, June 1999.

' ,
J. Rabaey, A. <;:haJ\drakasan, and B. Nikolic.
Digital Integrated Circuits~.A, De~igr; Perspec­
tive, Sec.end Edi!ion. Prent,ife,Hall,, 2003.

J. Reinders. Intel Threading Building Blocks.
O'Reilly, 2007. . •

D. Ritchie. The evolution of the Unix time­
shaling system. AT&T Bell'La7ibralories
Technica/>Joumal 63(6"1'art ·2ti:577-1593,
·October 1984. ' ..

' D. Ritchie. The deyelopll)ent of tl\e C language.
In Proceedings of the 2nd ACM SIGJ;LAN,
Conference on History of Programming
Languages, pages 201-208. ACM, April 1993.

D. Ritchie and K. Thompson. The Unix time­
sharing system. Communications of the ACM
17(7):365-367, July 1974.

M. Satyanarayanan, J. Kistler, P. Kumar,
M. Okasaki, E. Siegel, and D. Steere. Coda:
A highly available file system for a distributed
workstation environment. IEEE Transactions
on Computers 39(4):447-459, April 1990.

(95] J. Schindler and G. Ganger. Automated disk
drive characterization. Technical Report CMU­
CS-99-176, School of Computer Science,
Carnegie Mellon University, 1999.

[96) F. B. Schneider and K. P. Birman. The
monoculture risk put into context. IEEE
Security and Privacy 7(1):14--17, Janu~ry 2009.

(97) R. C. Seacord. Secure Coding in C and C++,
Second Edition. Addison-Wesley, 2013.

(98) R. Sedgewick and K. Wayne.Algorithms, Fourth
Edition. Addison-Wesl'ey, 2011.

[99] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effec­
tiveness of address-space randomization. In
Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS),
pages 298-307. ACM, 2004.

References q 051

(100] J. P . .Shen and M. Lipasti. Modern Processor De'
sign~ Fundamentals of Superscalar Processors.
McGraw Hill, 2005.

(101] B. Shriver'llhl:YB'.•Smitli'. The Anatomy of a
· High-1Performance'MicrbproCessor: A Systems

Perspective. Il~EI; Computer Sogiety, 1998.

(102) A. Silberschatz, P. Galvin, 'and 'G. Gagne.
Oj:i£fatlng Systems Concepts, Ninth Edition.
Wiley, 2014.

' j • \

[1 O~) .R. Sk'eel. Roundoff error and the Patriof missile.
SIAM, News 25(4):11, July 1992.

v
[104) -A. Smith. Cache memories. ACM Computing

Surviiys 14(3), SeptemW:r 1982.

[105] "E: H. Spafford. The Internet worm pro'gram:f
An analysis.:ffechnical Report CSD' TR-823,

'Department of Computer Science, Purdue
University, 1988.
' r ~ 'l f '

[106] W. Stallings. Operating SystemsJ':'terna_(s and
Design Principles, Eighth Edition. Prehtice
Hall, 2014.

(107) W. R. Stevens. TCP/IP Illustrated, Volume 3:
TCP for Transactions, HTTP, NNTP and the
Unix Domain Protocols. Addison-Wesley, 1996.

(108] W. R. Stevens. Unix Network Programming:
Interprocess Communications, Second Edition,
volume 2. Prentice Hall, 1998.

(109] W.R. Stevens and K. R. Fall. TCP/IP Illustrated,
Volume 1: The Protocols, Second Edition.
Addison-Wesley, 2011.

[110) W. R. Stevens, B, Fenner, and A. M. Rudoff.
Unix Network Programming: The Sockets
Networking AP!, Third Edition, volume 1.
Prentice Hall, 2003.

[111] W. R. Stevens and S. A. Rago. Advanced
Programming in the Unix Environment, Third
Edition. Addison-Wesley, 2013.

[112) T. Stricker and T. Gross. Global address
space, non-uniform bandwidth: A memory
system performance characterization of parallel
systems. In Proceedings of the 3rd International
Symposium on High Performance Computer
Architecture (HPCA), pages 168-179. IEEE,
February 1997.

i

'~ I

1052 References

[113] .A. S. Tanenbaum and H. Bos. Modern
·Operating Systems, Fourth Edition. Printice
Hall, 2015.

[114] A. S. Tanenbaum and. It• \)'etherall, Computer
Networks, Fifth Edition.,I:rentic~ Hall, 2010.

[115] K. P. Wadleigh ahCI I. L. Crawford. Software
Optimization for High..-Performance Comput­
ing:.C~e~tfng_Faster A_pplications. Pni1,1tl1e Hall,
2000.

[116] J. F. Wakerly. Digital Design Principles and
Practices, Fourth Edition. Prehtice Han, 2005.

l I h

[117] M. V. Wilkes. Slave memories and dynamic
storage ~allocation. IEEE TransaC:tions."'·on
Electronic Computers, EC-1~\2), April 1965.

[118] P. Wilson,M. Johnstone, M. Neely, and D> Boles.
Dynamic"storag~ allocation: A survey and
critical review. In Internationa(Workshop on
Memory Management, volume QB6_of,Lecture
Notes in Computer Science, page~s 1-116.
'Spri~ger-Vcrrlag, 199~. •

, '

·'' t

,., ..

.,

..
" "

[119] M. Wolf and M. Lam. A data locality algorithm.
In Proceedings of the 1991 ACM Conference
on Programming Language Design. and

1 < ' , 'J
Implementation" (PLDI), pages 30-'!4,_June
1991. . ·'

[120) G. R. Wright and W. R. Stevens. TCP/IP
Illustratell, Volume 2: The Implementation.
Addison-Wesley, 1995'.

[121] J. Wylie, M.''.Bigiigg, J. Strunk~'b. Ganger,
H. Kiliccote, and.P. Khosla. Sutvivable
information Storage systen'i,s. IEEE Computer
33:61-68, August 2000.

;f, }' l

[122] T.-Y.,Y~l,\,~pd :y;. N. Pat\. Alter[l,ati~e implemen­
tation ·o~ lVfO;-le':el,~daptive brcinch prediction.
In Proceedings of the 19th Annual International
Symposium on Computer Architecture (/SCA),
pages \\5'!-461. !ACM, •1998.

"'

I•

·''

"

'

,.

,,
.J.l.i

, J,

...

'

I

"•

. ' ...

Index
"

•I

"
., ' ,• ' "

" "
'· ' I

Page,numbers of ,defining references are italicized. Entries.,that belong to a hard-
ware or software systertrare followed by a tag' in brackets that identifies the system,
along with a brief description to jog your memory. Here is the !jst of tags and tli~jr
meanings.

' [CJ C language construct
(C Stdlib]
(CS:APP]
[HCL]
[Unix]
[x86-64]
[Y86-64]

C standard library function
Program or fun~ion developed in this text
HC,L lagg,vage construct
Unix program, function, variable, or constant
x86-64 machine~language instruction

• ..i.

Y86-64 macJ:!ine-language iqstruction
Ji• ,i'

! [HCL] Nar operatiqh, ;m
$for immediate operands, 181
& [C] address of operatiOn

·'

local variables, 248
log!c gates, 371 ~
pointers, 48, 188, 257, 277

• [C] deref6rence poinier operation,
'188 '

-> [C] dereferenc;;e and select field
' '' operation, 2f:i6

. {periods) in dotted-decimal notation,
926

I I '[HCL] oR operation.,p.r
< operator for left hoinkies, 909
<<"put to" operator (C++), 89b
> operator for right h6inkies, 909
>>"get from" operator (C++), 890
+~ (two's-complement additi6n),'60,

90
•

1 (two's,.-complement multiplica-, w ' _,,
tion), 60, 97

-~ (two's-complenient negatioii.), 60,
95

+~(unsigned addition), 60,,85,~89
·~(unsigned multiplication), 6p,'96
-~ (unsigned negation), 60, 89

8086 rnicr'oproce~or, 167

"

8087 ftpating-point coprocessor, 109,
137,167

80286 microprocessor, 167

. a archive files, 686
a. out object file', 673
Abel, Niels Henrik, 89
abelian group, 89 ,
ABI (application bin'ary irilerface),

310 •

abort exception class, 726
1

aborts, 728 '"
absolute addressing relocation tYpe,

691, 693-694 '
absollite pathnames, 893
absolute speedup of parallel programs,

1019 '
abstract operation modei for 'Core i7,

525-531 '
abstractions, 27
accept '[Unix] waif. for client

connection fequest, 933, 936,
<)36-937

access
disks, 597-600
IA32registers,179-180
main memory, 587-589'
x86-64 registerS

~

i. ('_ '
data moverilehl, 182-189
operand specifiers, 180-182'

access permission bits, 894
1

access time for disks, 593, 593-595
accumulator variabl~ exp3.nsion, 570
accumulators, multiple, 536-5~1
Acorn RISC machine (ARM)

ISAs, :l52'
processor architecture, 363

actions, signal, 762 n
active sockets,~935
actuator arms: 592
acyclic networks, 374
adapters, 9, 597
ADD [instruction class] add, 192
add_client !Unction,. 981, 983
add every signaf to signal set

instruction, 765
add instruction, 192
ADD operation in execute stage;'408
add signal to signal Set instiuction, 765
adder [CS:APP] CG! adder, 955
addition • ' ' ' '

floating point, 1Z2-124,202
two's complement, 90,,9j\'-'95
unsigned, 84-90; 85.
Y86-64, 356

additive inverse, .52 ·

.I

I

I
I
I
I

,,

1054 Index

addq [Y86-64] add, 356, 402
address exceptions, status code for,

404
address of operator (&) [CJ

local variables, 248
logic gates, 373
pointers, 48, 188, 257, 277

address order of free lists, 863
address partitioning in caches, 615,

615--Q16 ' ,
address-space layout randomization

(ASLR), 285, 285-286 "
address spaces, 804

child processes, 741
linear, 804
private, 734
virtual, 804-805

address translation, 804
caches and VM integration, 817
Core i7, 826-828
end-to-end; 821-825
multi-level page tables, 819-821
optimizing, 830
overview, 813--816
TLBs for, 817-819

addresses and addressing
byte ordering, 42-49
effective, fi9d J' ~, , ,

fiat, 167 '
internet, 922
invalid address status code, 364
1/0 devices, 598
IP,924,92S-927
machine-level programming, 170::-

171
operands, 181 •

1
out of bounds. See bµffer overflow
physical vs. virtual, 803-8"04
pointers, 257, 277 '
procedure return, 240
segmented, 287-28~ t1

sockets, 939, 933-934
structures, 265-267; '
symbol relo'cation, 690-691
virtual, 804
virtual memory, 34
Y86-64, 356, 359

addressing modes, 181
adjacency matrices', 660
ADR [Y86-64] status code incJicating

invalid address, 364
Advanced

1
Micro Devices (AMD)',

165, 168
Intel compatibility, 168 1
x86-64. See x86-64 fuicroproces~ors

Advanced Research Projects
Administration (ARPA), 931

advanced vector extensions (AVX)
instructions, 294, 546-547

AFS (Andrew File System), 610
aggregate data types, 171
aggregate payloads, 845
%al [x86-64] low order 8 of register

%rax,1,180
alarm [l.J nix 1 schedule alarm to self,

762, 763
algebra, Boolean, 50-53, 52
aliasing memory, 499, 500
.align directive, 366
alignment

data,273,273-276
memo;ry blocks, 844 ,,

alloca [Unix] stack storage allocation
function, 285, 290, 324

allocate and initialize bounde'd buffey
function, 1007

allocate heap block function, '860,
861 '

allocate heap storage function, 840
allocated bit, 848
allocated blocks

vs. free, 839
placement, 849

allocation
blocks, 860
dynamic memory, See dynamic

memory allocation
pages, 810

allocators
block agocation, 860

1
,

block freeing and coalescing, 860
free list creation, 857-859
free list manipulation, 856-857.
general design1 854-856

11

practice probfems, 8.()1~62
requirements and goals, 844-845
styles, 839-840 '

Alpha (Compaq Comp~ier C9rp.)
RISC processors, 363 ~ ,

alternate representations of sig"'ri'ed
integers, 68

ALUADD [Y8~-64] funytion code for
addq instruction, 404

ALUs (arithmetic/logic units), ii?
combinational circuits, 380
in execute stage, 385
sequential Y.86-64 implementation,

408-409
always taken branch prediction

strategy, 428

,,,.
' AMD (Advanced Micro Devices),

165, 168
Intel compatibility, 168
microprocessor data alignment, 276
x86-64. See x86-64 microprocessors

Amdahl, Gene, 22
Amdahl's law, 22, 22-24, 562, 568
American National Standards

ln~titute (ANSI), 4~35 •
ampersands (&}address.Operator, 248

local addr~sses, 2A8 1

logic gates: 373
pointers, 48, 188, 257, 277

AND [instruction classJ and, 192
antl'instruction?·l92

•AND operations 1

Boolean, 51-52
execute stage, 40~
HCL expiessions, 374-375
logic gates, 373 1

,logical, 56-57
AND Packed double precision

".l~i\slructioft, 305 t

AND packed single precision
instruction, 305

andq [Y86-64] and, 356
A.ndreesen,fylarc,949
Andrew File System (AFS), 61Q
anonymous files, 833 1

ANSI (A.merican National St<ind~ds
Institute), 4, 3S:

AOK [Y86-64] status code for normal
operation, 363

app_error [CS:APP] reports
application errors, 1043

application binil'rY in!~rface (ABI),
310 '

apPtications, loadi'ng and linking
shar~q libraries from, 701-703

AR Linp~ archiver, 686, 713
arbitrary size arithmetic, 85
Archimedes, 140
architecture

floating-point, 293, 293-296
Y86. See Y86-64 instructio~~et

architect,ure
archives, 686
areal density of dis~s. 591
areas

shared, 834
swap, BJ3
virtual memory' 830

arguments "
execve function, 750
Web servers, 953-954

arithmetic, 33, 191
discussion, 196-197
floating-point code, 302-304
integer. See integer arithmetic
latency and issue time, •523
load effective address, 191-193
pointers, 257-258, 873
saturating, 134
shift operations, 58, 104--106, 192,

194-196 '(• "
special, 197-200
unary and binary, 194--196

arithmetic/logic units (ALUs), 10
combinational circuits, 380
in execute stage, 385

,sequential Y86-64 implementation,
408-409

ARM (Acorn RISCmachine),43
ISAs, 352
processor architecture, 363

ARM A 7 microprocessor, 353
arms, actuator, 592
ARPA (Advanced Research Rrojects

Administration), 1931
ARPANET, 931
arrays, 255 r

basic principles, 255-257
declarations, 255-256, 263
DRAM,582
fixed-size, 26ct.-262
machine-code representation, 171
nested, 258-260
pointer arithmetic;257-258
pointer relationships, 48, 277
stride, 606
variable~size, 262-265

ASCII standard, 3
character codes, 49
limitations, 50

asctirne function, 1024
ASLR (address-space .Jayout

randomization), .285, 285-286
asrn directive, 178,
assembler directives, 366
assemQ_lers,~5, 5, 164, 170
assemblr code, 5, 164

with C programs, 289-290
formatting, 175-177 .J

Y86-64, 359 "·
assembly phase, 5 •"
associate sock:ef address with

descriptoi function, 935, 935
associative caches, 624---626
associative memory, 625
associativity

c'aches, 633

floating-point addit\on, 123-124
asterisks (*) dereference pointer

operation, 188, 257, 277
asymmetric tanges in two's­

complement representation,
66, 77

async-signal-safe function, 766
async-signal safety, 766
asynchronous interrupts, 726
atomic read&""and writes, 770
ATT assembly code format, 177, 294,

311
argument listing, 306
condition codes, 201-202
cqo instruction, 199
vs. Intel, J 77
operands, 181, 192 "'
Y86-64, 356

automatic variables, 994
AVX (advanced vector extensions)

instructions, 276, 294, 546-547
%ax [x86-64] lowtorder 16 bits of

register %rax, 180

B2T (binary to two's-complement,
conversion), 60, 64, 72, 97

B2U (binary to unsigned conversion),
60,62, 72,82,97

background processes, 753, 753-756
backlogs for listening sockets, 935
backups for disks, 611
backward compatibility, 35
backward taken, forward not taken

(BTFNT)' branch prediction
str-,tegy, 428

bad pointers and virtual memory,
870-871

badcnt. c (CS:APP] improperly
,synchronized program, 995--999,
996

bandwidth,read,639
Barracuda 7400 drives, 600
base pointers, 290
base registers, 181
bash [Unix] Unix shell program, 753
basic blocks, 569
Bell Laboratories, 35
Berkeley sockets, 932
Berners-Lee, Tim, 949
best-fit block plaCement policy, 849,

849
bi-endian ordering convention, 43
biased number encoding, 113, 113-117
biasing in division, 106 /
big-endian ordering convention, 42,

42-44

Index 1055

bigrams statistics, 565
bijections, 64, 64 l•.L
/bin/kill program, 760
binary files, 3, 891
binary notlltion, 32
binary points, 110, 110-111
binary representations

conversions
with hexadecimal, 36-37
signed and unsigned,J'0-76
to two's complement, 64, 72-73,
97
to unsigned, 62-63

fractional, 109-112 -f

machine language,' 194
binary semaphores, 1003.
binary tree stru'cture, 27().i.071
bind [Unix] associate socket address

with descriptor, 933, 935, 93~
binding, lazy, 706
binutils packag.e, 713

• bistable memofy·cells, 581
bit-level operations, 54-56
bit representation expansion, 76-80
bit vectors, 51, 51-52
bits, 3

overview, 32
union access to, 271-272

bitwise operations, 305.-306 ·1

%bl [x86-64] low order 8pf register
%rbx,180

block and unblock sigrials instruction,
765 c

block devices, 892
block offset bits, 616
block pointers, 856
block size

caches,633
minimum, 848

blocked bit vectors, 759
blocked signals, 758, 759, 764-765
blocking

signals, 764-765
for temporal !Ocality, 647

blocks
aligning, 844
allocated, 839, 849
vs. cache lines, 634
caches,611,611-612,615,633
coalescing, 850-851, 860
epilogue, 855
free lists, 847--849
freeing, 860 ,'
heap,839
logical disk, 595, 595-596, 601
prologue, 855

1-1

I
I

I
I' t

f .

I

I .
I
i

1056 Index

blocks (continued)
referencing data in, 874-875
splitting, 84~50

bodies, response, 952
bool [HCL] bit-level signal, 374
Boole, George, 50
Boolean algebra and functions, 50

HCL, 374-375
logic gates, 373
properties, 52
working with, 50--53

Boolean rings, 52
bottlenecks, 562

profilers, 565-568
program profiling, 562-564

bottom of stack,.190
boundary tags, 851;851-854, 859
bounded buffers,d004, 1005-

1006
bounds

latency, 518, 524
throughput; 518, 524•

%bp [x86-64] low order 16 bits of
register %rbp; 180

%bpl [x86-64] low order 8 of register
%rbp,180

branch prediction, 519, 519
misprediction handling, 443-444,
performance, 549-.553
Y86~64 pipelining, 428

branch prediction logic, 215..
branches, conditional, 172, 209

assembly form, 211
condition codes, 201-202.
condition control, 209-213
DlOVes,214-220,550--553
switch, 232-238

break command
in GDB, 280
with switch, 233

break mul tstore command in GDB,
280

breakpoints, 279-280
bridged Ethernet, 920, 921
bridges

Ethernet, 920
I/O, 587

browsers, 948, 949
. bss section, 674
BTFNT (backward taken, forward

not taken) branch prediction
strategy, 428

bubbles, pipeline, 434, 434-435,
459-460

buddies, 865
buddy systeDls, 865, 865

buffer overflow, 279
execution code regions limits for,

289-290 •
memory-related bugs, 871
overview, 279-284
stack corruption detection ,for,

286-289
stack randomization for, 284-286
vulnerabilities, 7

buffered 1/0 functions, 898-902
buffers ' rr

bounded,1004,1005-1006
'ead,898,900-901
store, 557-558
streams, 911

bus transactions, 587
buses, 8, 587

designs, 588, 598
I/0,596
memory,587

bypassing for data hazards, 436-439
byte data conneC'tions.·in hardware

diagrams,398
byte order, 42--49

disassembled code, 209
network, 925
unions, 272

bytes, 3, 34
copying, 133
range, 36 -
register operations, 181
Y86 encoding, 359-360

%bx [x86-64] low order 16 bits of
register i.rbx, 180

C language
bit-level operations, 5¥-56
floating-point representation,

124-126
history, 35
logical operations, 56-57
origins, 4
shift operations, 57-59.
static libraries, 684-688

C++ language-, 677.
linker symbols, 680
objects, 266-267 ,,
software exceptions, 723-724,,786

. c source files, 671
C standard library, 4-.5, 6
Cl 1 standard, 35
C90 standard, 35
C99 standard, 35

fixed data sizes, 41 •.t
integral data types, 67

cache block offset (CO), 823

cache blocks, 615
cache-friendly code, 633--039, 634
cache lines

cache sets, 615
vs. sets and blocks, 634

cach6-oblivious algorithms, 649
cache set index (CI), 823'
cache tags (CT), 823
cached pages, 806
caches and cache memory, 610, 615

address translation, 823 •.~

anatomy, 631
associativity, 633
cache-friendly code, 633--039, 634
data,520,631,631
direct-mapped. See,direct-mapped

caches
DRAM,806
fully ass9ciative, 627--628•
hits, 612
importance, 11-14 1

instruction, 518, 631, 631 .~

lo>ality in, 605, 643--047, 810
managing, 613,
memory mountains, 639t-6'43
misses, 470, 612, 612--013 ,;
organization, 615--617
overview, 610--612
page allocation, 810
page faults, 808, 808--809
page hits, 808
page tables/ 806-808, 807
performance, 533, 631--033,,639--047
practice problems, 628--630
proxy,952
purpose, 580
set associative, 624, 624--626
size, 632
SRAM,806
symbols, 617
virtual mentory with, 805-811, 817
write issues, 630--631
write strategies, 633
Y86-64 pipelining; 469-470

call [x86-64] procedure call, 241-242,
357

call [Y86-64] instruction,404, 428
callee procedures, 251 l
callee-save registers, 251, 251-252
caller procedures, 251
caller-save registersf 251, 251-252
calling environments, 783
calloc function [C Stdlib] memory

allocation
declaration, 134 1

dynamic memory allocation, 841

security vulnerability, 100-101
callq [x86-64] procedure call, 241
calls, 17, 727-728

error handling, 737-738
Linux/x86-64 systems, 730-731
in performance, 512..-513

canary values, 286-287
canceling mispredicted branch

handling, 444
capacity

caches, 615
disks, 591, 59t-592
functional units, 523

capacity misses, 613
cards, graphics, 597
carriage return (CR) charactefs, 892
carry flag condition code, 201, 306
CAS (column access strribe) requests,

583
case expressions in HCL, 378, 378
casting, 44 ~

eXplicit, 75
floating-point values, 125
pointers, 278, 854
signed values, 70-71' ,,

catching signals, 758, 761, 763
cells ~ •

DRAM, 582, 583
SRAM,581

central processing units (CPUs), 9,
9-10

Core i7. See Core i7 microproces-
sors

early instruction sets, 361
effective cycle time, 602
embedded, 363
Intel. See Intel micfoprocessors
logic design. See togic design
many-core, 471
multi-core, 16, 24-25, 168, 605, 972.
overview:'352-354
pipelitiing. See pipelining
RAM,384
sequential Y86 implementation.

See sequential Y86-64
implementation

superscaiar: 26, 471, 518.
trends, 602-603"
Y86. See Y86-64 instruction set

archite'cture
Cerf, Vinton, 931.
CERT (Computer Emergency

Response Team), 100
CF [x86-64] carry flag condition code,

201,306

CGI (common gateway interface)
program, 953, 953-955 r

CGLadder function, 955
chains, proxy, 952 i~

char [C] data types, 40, 61
character codes, 49
character divices, 892 1

check_clients function, 981, 984
child processes, 740

creating, 741-7ii3
default behavior, 744
error conditions, 745-746
exit status, 745 1i1
reaping,743, 743-749
wai tpid function, 746--o749

CI (cache set index), 823
circuits

combinational, 374, 374-380
retiming, 421
sequential, 381

CISC (complex instruction set
computers),361, 361-363

%cl [x86..64J low order 8 of register
%rcx,180

Clarke, Dave, 931
classes

data hazards, 435
exceptions, 726-728
instructions, 182
size, 863
storage, 994-995

clear bit in descriptor set macro, 978
clear descriptor set macro, 978
clear signal set instfuctiofl\ 765
client-server model, 918, 918--919
clienterrot [CS:APP] TINY helper

'function, 959-960
clients

client-server model, 918
telnet; 21

clock signals, 381
clocked registers, 401-402 ,,
clocking in logic design, 381-384
close [Unix] close file, 894, 894-895
close operations for files, 891, 894-895
close shared library function, 702
closedir functions, 905
cltq [x86-64] Sign e~tend %eax to

%rax,185
cmova [x86-64] move if unsigned•

greater, 217
cmovae [x86-64] move if unsigned

greater or equal, 217
cmovb [x86-64] move if unsigned less,

217

Index 1057

cmovbe [x86-6<1-J move if,unsigned less
or equal, 217 • 1

cmove [Y86-64] move when equal,35Z
cmovg [x86-64] move if greater, 217,

357
cmovge [x86=64] move if greater or

equal, 217, 357
cmovl [x86-64J move if less, 217,357
cmovle [x86-64] move if less or equal,

217,'357
cmovna [x86-64 J move if not unsigned

greater; 217
cmovnae [x"86-64] move if unsigned

greater or equal, 217
cmovnb [x86-64] move if not unsigned

less, 217
cmovnbe [x86-64J move if not unsigned

less~dr equal, 217
cmovne [x86-64] move if not equal,

217,'357
cmovng [x86-64] move if not greater,

217
cmovnge [x86-64] move if not greater

or equal, 217
cmovnl [x86 ... 64] move if not less, 217
cmovnle [x86-64] move if not less or

equal, 217
cmovns [x86-64] move.if nonnegative,

217
cmovnz [x86-64] move if not zero, 217
cmovp [x86-64] move if even parity,

324
cmovs [x86-64] move if negative, 217
cmovz [x86-64] move if zero, 217
CMP [instruction class J Compare, 202 '-­
cmpb [x86-64] compare byte, 202
cmpl [x86-64] compare double word,

202
cmpq [x86-64 J compare double word,

202
cmpw [x86-64] compare word,'202
cmtest script, 465 ,..
CO (cache block offset), 823
coalescing blocks, 860

with bonodary tags, 851-854
free, 850
memory,847

Cocke, John, 361
code

performance strategies, 561-562
profilers, 562-564
representing, 49-50
self-modifying, 435 '··
Y86 instructions, 358\ 359-360!

code motiori, 508

I ~
II

I

II ~
I I

~:

,.,

/

1058 Index

code segments, 696, 697--69&
Cohen, Danny, 43
Cold caches, 612
cold misses, 612
Cold War, 931
collectors, garbage1 839, 866

basics, 866-867
conservative,867,869-870
Mark&Sweep, 867-870

column access strobe (CAS) requests,
583

column-major sum function, 636
combinational circuits, 374, 374-380
combinational pipelines, 412-414,

460-462
common gateway interface (CGI)

prograin,953,953-955•
Compaq Computer .Corp. RISC

processors, 363
compare byte instruction, 202
compare double precision, 306
compare double word instruction, 202
compare instructions, 202
compare single precision, 306
compare word instruction,~207
comparison operations for fioating-

point code, 306-309
compilation phase, 5,
compilation systems, 6, 6-7
compile time, 670
compile-time interpositioning, 708-

709
compiler drivers, 4,•671-672
compilers, 6, 164

optimizing capabilities and.
limitations, 498-502

process, 169-170
purpose, 171

complement instruction, 192
complex instruction set computers

(e!SC), ~61, 361-363
compulsory misses, 612 J•

computation stages in pipelining,
421-422

computed goto, 233
Computer Emergency Response

Team (CERT), 100
computer systems, 2
concurrency, 972

ECFfor, 723
flow synchronizing, 776-778
and parallelism, 24
run, 733
thread-level, 24-26

concurrent execution, 733

concurrent flow, 733, 733-734
concurrent processes, 15, 16
concurrent programming, 972-973

deadlocks,1027-1030
with UO Inultiplexing, 978-985
library functions in, 1024-1025
with processes,• 973-97,7
races, l'b25-1027
reentrancy issues, 1023-1024
shared variables, 992-995
summary, 1030
threads, 985-992

for parallelism, 1013-1018
safety issues, 1020--1022

concurrent'"pfbgrams1972
concurrent servers, 972

based on prethreading, 1005-1013
based on-processes, 974-975
based on threads, 991-992

condition code registers, 171
hazards, 435
SEQ titning, 401-402

condition codes, 201, 201-202
accessing, 202-205
x86-64, 201
Y86-64, 355-357

condition variables, 1010
conditional branches, 172, 209

assembly form, 211
condition codes, 201-202
condition control, 209-213
InOves,214-220,550-553
switch, 232-238

conflict mi:Sses, 613, 622-624
connect [Unix] establish connection

with server\ 934, 934-935
connected descriptors, 936, 936-937
connections

EOFon, 948
Internet, 925, 929-931
UO devices, 596-597
persistent, 952

conservative garbage collectors, 867,
869-870

constant words in Y86-64, 359
constants

floating-point code, 304-305
free lists, 856-857
maximum and minimum valtles, 68
multiplication, 101-103
for' ranges, 67-68
Unix, 746

content
dynantlc, 953-954
serving, 949

Web, 948, 949,950,
context switches, 16, 7";16-737
contexts, 736 "'.I

processes, 16, 732
thread, 986, 993

continue command, 280
Control Data Corporation 6600

processor, 522
control dependencies in pipelining,

419,429
control flow, 722

exceptional. See exceptional control
How (ECF)

logical, 732, 732-733
machine-language procedures, 239

control hazards, 429
control logic blocks, 398, 398, 405, 426
control logic in pipelining, 455

control mechanism combinations,
460-462

control mechanisms, 459..!460
design testing and verifying, 465
implementation, 462-464
special cases, 455-457
special conditions, 457-459

control structures, 200--201
condition codes, 200--205
conditional branches,,209-213
conditional move instructions, 1

214-220
juinpS, 205-209
loops. See loops
switch statements, 232-238

control transfer, 241-245, 722
controllers

disk, 595, 595-596
I/O devices, 9 rr

memory, 583, 584
conventional DRAMs, 582-584
conversions • ,

binary
with hexadec,imal, 36-37
signed and unsigned, 70--76
to two's complement, 64, 72-73,
97

to unsigned, 62-63
ftoating point, 125, 296-301
lowercase, 509-511
number systems, 36-39

convert active socket to listening
socket function, 935

convert application-to-network
function, 926

convert double precision to integer
insti:uction, 297

r
1·
f

l
~
I

i

i'

convert double precision ta quad-word
integer instruction, 297

convert double to single precision
instruction, 299

convert host and service names
'function, 937, 937-940

convert host-to-network long function,
925

convert host-to-network short
function, 925

convert integer to double precision
instruction, 297

convert integer to single precision
instruction, 297

convert network-to-application
function, 926

convert network-to-host long function,
925

convert network-to-host short
function, 925

convert packed single to packed
double precision instruction, 298

convert quad-word integer to double
precision instruction, 297

convert quad-wordintege:i; to single
precision instruction, 291

convert quad word to oct word
instruction, 198

convert single precision to integer
instruction, 297

convert single precision to quad-word
integer instruction, 297

convert single to double precisiorl
instruction, 298

convert socket address to host and
service names function, 940,
940-942

copy _el_ements function, 100
copy file descriptor function, 909
copy _from_kernel function, 86-87
copy-on~write technique, 835, 835-836
copying

bytes in memory, 133
descriptor tables, 909
text files, 900

Core 2 micrOprocessors, 168, 588
Core i7 microprocessors, 25

abstract operation-model, 525-531
address translation, 826--828
caches, 631
Haswell, 507
memory mountain, 1?4-l
Nehalem, 168
page table entries, 826-828
QuickPath interconnect, 588

virtual memory, 825-828
core memory, 757
cores in multi-core processors, 168,

605,972
correct signal handling, 770-774
counting semaphores, 1003
CPE (cycles per element), metric, 502,

504,507-508
cpfile [CS:APP] text file copy1900
CPI (cycles per instruction)

five-stage pipelines, 471
in performance analysis, 464-468

CPUs. See central processing units
(CPUs)

cqto [x86-64] convert quad word to
oct word, 198, 199

CR (carriage return) characters, 892
CR3 registt!r, 826
Cray 1 supercomputer, 353
create/change environment variable

function, 752
create child process function, 740,.,

741-743
create thread function, 988
critical path analysis, 498
critical paths, 525, 529
critical sections in progress graphs,

1000 "'
CS:APP I

header files, 746
wrapper functions, 738, 1041

csapp.c [CS:APP] CS:APPwrapper
functions, 738, 1041

csapp.h [CS:APP] CS'APP header
file, 738, 746,1041

csh [Unix] Unix shell progFa'.m, 753
CT (cache tags), 823
ctest script, 465
ctime function, 1024 1.1

ctirne_ts [CS:APP] thread!.safe non-
reentrant wrappe11ior ctime,
1022

Ctrl+Ckey
nonlocal jumps, 785
signals, J58, 761, 795

Ctrl+Z key, 761, 795
current working directory, 892
cvtsd2ss [x86-64] convert double to

single precision, 299
cvt;;ss2sd [x86-64J convert single to

double precision, 298.
cycles per element (CPE) metric, 502,

504,507-508
cycles per instruction (CPI)

five-stage pipelines, 471

Index 1059

in performance analysis, 464--468
cylinders

disk, 591
spare, 596

%ex [x86-64] low order 16 bits of
register r.rcx,..180

d-caches (data caches), 520, 631
data •1

conditional transfers, 2;11-220
forwarding, 436--439, 437
sizes, 39-421

data alignment, 273, 273-276
data caches (d-caches), 520, 631
data dependencies in pipelining, 419,

429-431
data-flow graphs, 525-530
data formats in machine.,level

programming, 177-179
data hazards, 429 o,t

avoiding, 441-444
classes, 435
forwarding for, 436-439
load/use, 439-441
stalling, 433-436
Y86-64 pipelining, 429-433

data memory in SEQ timing, 401
data movement instructions, 182-189
data references

locality, 60()...{i07
PIC, 704--705

. data section, 674
data segments, 696
data structures, 265;

data alignment, 273-276'
structures, 265-269
unions, 269-273

data transfer, procedures, 245-248
data types. See types
database transactions, 919 "..
datagrams, 924
DDD debugger with graphical user

interface, 279
DDR SDRAM (double data-rate

synchronous DRAM), 586
deadlocks, 1027, 1027-1030
deallocate heap storage function, 841
. debug section, 675 •,
debugging, 279-280
DEC [instruction class] decrement, 192
decimal notation, 32
decimal system conversions, 37-39
declarations

arrays, 255-256, 263
pointers, 41

ii,.,

"

"I
I

Iii

I 'I
11 . j

1060 Index

declarations (continued)
public and private, 677
structures, 265-269
unions, 269-273

decode stage .
instruction prol::.essing, 385, 387-397
PIPE processor, 449-453
sequential processing, 400
Y86-64 implementation, 406-408
Y86-64 pipelinihg, 423

decoding instruCti'ons; 519
decrement instruction, 192, 194
deep copies, 1024 ,,
deep pipelining, 418-419 ';
default actions with signal, 762
default behavior for child processes,

744
default functjon code, 404
deferred cOalescihg, 850
#define [C] preproce§sor directive
delete command, 280
delete environment variable function,

752
DELETE method in HTTP, 951
delete signal from signal set

instruction, 7{i5
delivering signals, •758
deliVe'i'ytmechanisms for protocols,

922, ,j

demand paging, 810 "
demand-zero pages, 833
demangling process (C++ and Java),

680,680
denormalized floating-point value,

114, 114--116
dependencies

control in pipelining systems, 419,
429

data in pipelining systems, 419,
429-431.

reassociation transformations, 542
write/read, 557-559

dereferencing pointers, 48, 188, 257,
277,870--871

descriptor sets', 97-7, 978
descriptor tabre~, 907, 909
descriptors, 891 ...

connected and listening, 936,
936-937

socket, 934 .;'
destination hosts, 922
detach thread function, 990
detached threads, 989
detaching threads, 989-990
%di [x86-64] low order 16 bits of1,

register %rdi, 180

diagrams
hardware, 398
pipeline, 413

Digital Equipmeflt Corporation, 56
Dijkstra, Edsger, 1001-1002
%dil [x86-64] low order 8 of register

%rdi, 180
DIMM (dual inline memory module),

584
direct jumps, 206
direct-mapped cache's, 617

conflict misses, 622.o...624
example, 619--621
line matching, 618
line replacement: 619
set selection, 61&
word selection, 619

direct memory access (DMA), 11, 598
directives, assembler, 176, 366
directories

description, 891, 891-892
reading contents, 905-906

directory streams, 905
dirty bits

in cache, 630
Core i7, 827

dirty pages, 827
disas command, 280
disassemblers, 44, 69, 173, 173-174
disks, 589

accessing, 597-600
anatomy, 600
backups, 611
capacity, 5911 59)-592
connecting, 596-597
controllers, 595, 595-596
geometry, 590-591
logical blocks, 595-596
operation, 592-595
trends,•602

distributing software;701
division

floating-point, 302
instructions, 198-20Q
Linux/x86-64 system errors; 729
by powers of 2, 103-407

di vq [x86-64] unsigned divide, 198,
200

%dl [x86-64] low order 8 of register
,J.rdx, 180

dlclose [Unix] close shared library,
702

dlerror [Unix] report shared library
error, 702.-'

DLL (dynamic link library),699
dlopen [Unix] open shared libary, 701

dlsym [Unix] •get addr;ess of shared
library symbol, 702

DMA '(direct memory access), ll, 598
DMA transfer, 598
DNS (domain name system), 928
do [C] variant of while looP, 220-223
do-while statement, 220 "l ·r·
doit [CS:APP] TINY helper function,

956,958,958--959
dollar signs ($) for immediate

opera,nds, 181
domain names, 925, 927-929
domain name system (DNS), 928
dotprod [CS:APP] vector dot product,

622
dots(.) in dotted-decimal notation,

926
dotted-decimal notation, 926, 926
double (C] double-precision floating

point, 124, 125
double [C] integer data type, 41
doUble data-rate synchronotls DRAM

(DDR SDRAM), 586
double floating-point declaration, 178
double-precision ciddition instruction,

302
double-precision division instruction,

302
double-precision maximum

instruction, 302
double-precision minimum

instruction, 302 1.

double-precision· multiplication
instruction, 302

double-precision representation
c, 41, 124-126
IEEE, 113, 113
machine~level data, 1781

double-precision square root
instruction, 302

double-precision subtraction
instruction, 302

double word to quad word instruction,
199

double words, 177
DRAM. See dynamic RAM (DRAM)
DRAM arrays, 582
DRAM cells, 582, 583 · '
drivers, compiler;4, 671<--672
dual inline memory modtde (DIMM),

584
dup2 [Unix] copy file descriptor, 909
duplicate symbol names, 680--684
dynamic code, 290
dynamic content, 701, 953-954
dynamic link libraries (DLLs), 699

dynamic linkers, 699
dynamic linking, 699, 699-701
dynamic memory allocation

allocated block placement, 849
allocator design, 854-856
allocator requirements and goals,

844-845
coalescing free'blocks, 850--851
coalescing with boundary tags,

851-854
explicit free lists, 862-863
fragmentation, 846
heap memory requests, 850
implementation issues, 846-847
implicit free lists, 847-849
malloc and free functions, 840--

843
overview, 839-840
purpose, 843-844
segregated free lists, 863-865~
splitting free blocks, 849-850

dynamic memory ...allocators, 839-84(}<
dynamic RAM (DRAM)1 9, 582;

,caches,806,808,808-809
conventional, 582-584
enhanced, 585-580 1' ;'

historical popularity, 586
modules, 584, 585
vs, SRAM, 582
trends, 602-603

dynamic Web content, 949
%dx [x86-64] low order 16 bits of

register %rdx, 180

E-way
0
set associative caches, 624--625

%eax [x86-64] low order 32 bits of­
register '%rax, 180>.

%ebp [x86-64] low order 32'bits ofJ
1 .. register %rbp, 180

'%ebx [x86-64J low order 32 bits of
re'gister %rbx, 180

ECF. See, exceptional control flow
(ECF)

ECHILD return cod6; 746-747
echo [CS:APP] read and echo input

lines, 947
echo function, 281-282, 287
echo_cnt (CS:APP] ~unting version

of echo, 1012
echoclient. c [CS:APP] echo'client,

944-945
echoserveri. c [CS:APP] iterative

echoserver,936--937,947
echoservert. c [CS:APP] concurrent

echo server basea on threads,
991

echoservert_pre ~c [CS:APPJ
prethreaded concurrent echo
server,1011

%ecx [x86-64] low order 32 bits of
'register %fCx, 180 ,•

i.edi [x86-64] low order 32 bits'of
register %rdi, 180

EDO DRAM (extended' data out
DRAM),,586·

%edx (x86-64] low order 32 bits of
register %rdx, 180

EEPROMs (electrically erasable'
programmable ROMs), 587

effective addresses, 181, 690
effective cycle time; 602
efficiency of parallel programs, 1019,

1019
EINTR return code, 746
electrically erasable programmable

ROMs (EEPROMs),"587 ,,
ELF. See executable and linkable

format (ELF)
EM64T processors, 168

· embedded 'processors, 363
encapsulation, 922
encodings in machine-level

programming, 169-170
code examples, 172-175~
code overview, 170--171
formatting, 1'75-177
Y86-64jnstructions, 358-360

end-of-file (EOF) condition, 891, 948
end of line (EOL) indicators,..892
entry points,.696, 697-698
environment variables lists, 751-752
EOF (end-of-file) condition, 891,.948
EOL (end of line) indicators, 892
ephemeral po'ftS', 930
epilogue blocks, 855
EPIPE error return code, 964
erasable programmable ROMs

(EPROMs), 587
errno [Unix] Unix error variable,

1042
error-correcting codes for memory,

582
error handling

system calls, 737-738
Unix systems, 1042-1043
wrappers,738, 1041;1043-1045

error-reporting functions .. 737
errors

child proce'sses, 7.45--7't6
link-time, 7
off-by-one: 872/
race,776,776-778

Index 1061

reporting, 1043 1

synch'ronization, 995'• 1•

%esi [;_86-64] low order 32 bits of
register %rsi, 180 '

%esp [x86-64] low orde~,32 bits of
stack pointer register %rsp, 180

establish connection with server
functions, 934, 934-935, 942-944

establish 'listening socket' function,
944,944

etest script, 465 l

Ethernet segments, 920, 920.
Ethernet technology, 920 '
EUs (execution units), 518, 520
eval [CS:APPJ shefl helper,routine,

75~, 755 < ,
event-driven programs, 980 •

based on 1/0 multiplexing, 980--985
based on threads, 1013

eventS, 723 '\
scheduling, 763
state machines, 980

evicting blocks, 612 1.

exabytes, 39
excepting instructioris,r445
exception handlers, 724, 724
exception handling

in in'.struction processing, 385
Y86-64, 363-364, 444-447

exception numbers, 725 '• r
exception table base registers, 725
exception tables, 725, 725
exceptional control flow (ECF), 72f

exceptions, 723-731
importance, 722-723 ~·
nonlocal jumps, 781-786
process control: See processes
signals. See sigq.als.
summary, 787
system call error handling, 737-738

exceptions, ~3
anatomy, 723.:...724 ,r"·
asynChronous, 726
classes, 726-728 •1"
data alignment, 276
handling, 724-726
Linux/x86-64 systems, 729-731
status code for, 404
synchronous, 727 ·•
Y86, 356

exclamation points. ! for NOT

operation, 373
EXCLUSIVE-OR Boolean operation,.51
exclusive-or instruction

x86-64, 192
Y86-64,356

' ,,
ij

I
j
l

1062 Index

EXCLUSIVE-OR operation in execute•
stage, 408 • 1

exclusive-or packed double precision,
instruction, 305 1 •,.,

exclusive~or paCked single precision
instruction, 305

executable <ind linkable format (ELF),
673

executable object files, 695-696
headertables,674,696
headers, 674-675
relocatiOn< 690
symbol tables, 675-679

executable code, 170
executable object files, 4

creating,' 672
description, 672
fully linked, 696
loading, 697-698
running, 7-8

executable object programs, 4
execute access, 289
execute disable bit, 827
execute stage

instruction processing, 385, 387-397
PIPE processor, 453-454
sequential processing, 400
sequential Y86-64 implementatiOn,

408--409
Y86,:-64 pipelining, 423

execution
concurrent, 733
parallel, 734
speculative,519,519,549-550
tracing, 387, 394-395, 403

execution code regions, 289-290
execution units (EUs), 518, 520
execve [UnixJ load program, 750

arguments and environment
variables, 750--752

child processes, 699,.701
ioading programsf697' •
running programs, 753-756
virtual memory, 836-837

exit [C Std.lib) terminate process, 739
exit status, 739, 745 •1:r 1

expanding bit representation, 76-80
expansion slots, 597
explicit allocator requirements anct

goals, 844-845
explicit dynamic memory allocators,

839-840
explicit free lists, 862-863
explicit thread termination, 988
explicit waiting for, signals, 778-781
explicitly reentrant functions, 1023
exploit code, 284

exponents in floating-point
representation, 112

extend_heap [CS:APPJ allocator:
extend heap, 858

extended data out DRAM (EDO
DRAM),586

extended precision floating-point
represdntationr 137, 137

external exceptions in pipelining, 444
external fragmentation, 846, 846

fall through in switch statements, 233
false fragmentation, 850
fast page mode DRAM (FPM

DRAM),585 "
fault exception class, 726
faulting instructions, 727
faults, 728

Linux/x86-64 systems, 729, 832-833
Y86-64 pipelinin'g caches, 470

FD_CLR [Unix] clear bit in descriptor
set, 977, 978

FD_ISSET [Unix]. bit turned on in
descriptor set, 977; 978, 980

FD_SET (Unix] set bit in descriptor set,
977,978

FD_ZERO [Unix] clear descriptor set,
977,978

feedback in pipelining, 419-421, 425
feedback paths, 396, 419
fetch file metadata function, 903
fetch stage 1 1

instruction processing, 384, 387-397
PIPE processor, 447-449
SEQ;404-406
sequential processing, 400
Y86-64 pipelining, 423

fetches, locality, 607-608
fgets function, 282
Fibonacci (Pisano), 32
field-programmable gate arrays

(FPGAs), 467
FIF0s;977 <
file descriptors, 891
file position, 891
file tables, 736, 906
FILE type, 911
filenames, 891
files, 19

as abstraction, 27 t

anonymous, 833
binary, 3
metadata, 903-Sl04
object. See object files
register, 10, 171, 358--359, 382-383,

401,521
regular, 833

sharing, 906--908
system-level 1/0. ~ee system-level

110
types, 891-893
IJnix,890,89()..891

FINGER command, 284
f ingerd daemon, 284
finish command, 280
firmware, 587
first-fit block placement policy, 849,

849
first-level domain names, 927
first readers-writers problem, IQOB
fits, segregated, 863 ,' 864-865 1'

five-stage 'pipelines, 471 r•

fixed-size arithmetic, 85
fixed-size arrays, 260--262
fixed-size integer types, 41, 67
flash memory, 587
flash translation layers, 600--601
flat addressing, 167
fl.oat [CJ single-precision floating

point, 124'
float floating-point declaration,..178
floating-point code•

architecture, 293, 293-296
arithmetic opefations, 302-304
bitwise operations, 305-306
comparison operations, 306-309
constants, 304-305
movement and conversion

•operations, 296-301 •
observations, 309
in procedures, 301-302

floating-point representation and
programs, 108-109

arithmetic, 33
C, 124-126
denormalized values, 114, 114-116
encodings, 32
extended precision, 137, 137
fractional binary numbers, 109-112
IEEE, 112-114
nonrl.alized value, 113-114
operations, 122-124 ,,,.
overflow, 127
pi, 140
rounding, 120, 120--422
special values, 1 rs
support, 40'
x87 processors, 167

floWs)
concurrent,733, 733-734
control, 722
logical; 732,,732-733
parallel, 734
synchronizing, 776-778

flushed instructions, 522
FNONE [Y86-64J default function code,

404,
footers of blocksr 851
for [CJ general loop" stat~ment,

228-232
guarded-do translation, 225
jump-to-middle translation, 223

forbidden regions, 1003
foreground processes, 753
fork [Unix] create child process, 740

child processes, 701
example, 741-J43
running programs, 753-756
virtual memory, 836

fork. c [CS:APP] fork example, 741
formal verification' ,in pipelining,,.466
format strings, 47
formats for machine-Iev~l data,

177-179
formatted disk capacity, 596
formatted printing, 47
formatting

disks, 596
machine-level code, 175-177

forwarding
for data hazards, 436-'.439
load,477

forwarding priority, 451-452
FPGAs (field-programmable gate

arrays), 467
FPM DRAM (fast page mode

DRAM),585
fprintf [C Stdlib] function, 47
fractional binary numbers, 109-112
fractional floating-point representa-

tion, 112-120, 137
fragmentation, 846 I I

dynamic memory allocation, 846
false, 850

frame pointers, 290
frames

Ethlifnet, 920
stack, 240, 240--241, 276, 290--293

free blocks, 839 •r > ~i·
coalescing, 850!851
splitting, 849--S50

free bounded buffer function, 1007
free [C Stdlib] deallocate heap

storage, 841, 841-843
interpositioning libraries, 708
wrappers for, 711

free heap block function, 860
free heap blocks, referencing data in,

874--;!75
free lists

creating, 857-859

dynamic memory allocation, 847-
849

explicit, 862-863
implicit, 848 1·

manipulating, 856-857
segregated, 863-865

free software, 6
free up getaddrinfo resources function,

937
freeaddrinfo [Unix] free up

getaddrinfo resources, 937,
938

FreeBSD open-source operating
system, 86-87

freeing blocks, 860
Freescale

processor family, 352 ,,
RISC design, 361

front side bus (FSB), 588
fstat [Unix} fetch file metadata, 903
full duplex connections, 929
full duplex streams, 912
fully associative caches, 626

line matching and word selectidll,
627-628

set selection, 627
fully linked executable object files,,

696
fully pipelined functional units, 523
function calls

performance strategies, 561
PIC, 705-707

function part in Y86-64 instruction
specifier, 358

functional units, 520-521, 523-524
functions

pointers to, 278
reentrant, 766, 1023
static libraries, 684-688
system-level, 730
thread-safe and thread-unsafe,.

1020, 1020--1022
wrapper, 711
in Y86 instructions, 359

gai_error [CS:APPJ reports GAi- "'
style errors, 1043

gai_strerror [Unix] print
getaddrinfo error message,
938

GAi-style error handling, 1042,
1042-1043

gaps between disk sectors, 590, 596
garbage, 866 L

garbage collection, 840, 866
garbage cqllectors, 840, 866

basics, 866-867

Index J063

cons&vative, 867, 869""-1
870

Mark&Sweep, 867-870
overview, 865-866

gates, logic,{373 J

GCC (GNU compiler collection)
compiler

code formatting, 175-176
inline assembly, 178
options, 35
working with, '168-169 '•1

GDB GNU debugger, 173, 279, 279--
280

general protection faults, 729
general-purpose registers, 179, 179-

180
geometry of disks, 590-591
get address of shared library symbol

function, 702
"get from" operator (C++), 890
GET method in HTTP, 951
get parent process ID function, 739
get process group ID function; 759
get process ID function, 739
get thread ID function, 988
getaddrinfo (Unix} convert host and

service names, 937, 937-940
getenv [C StdlibJ read environment

variable, 751
gethostbyaddr [Unix] get DNS host

entry, 1024
gethostbyname [Unix] get DNS host

entry, 1024
getnameinfo [Unit] convert socket

address to host and service
naines,940,940--942

getpeername function [C Stdlib]
security vulnerability, 86--87

getpgrp (Unix] get process grout> ID,
759

getpid [Unix] get process ID, 739
getppid [Unix] get parent process

ID, 739
getrusage [Unix} function, 811
gets function, 279, 281-282
GHz,(gigahertz), 502
giga-iilstructions per secpnd (GIPS),

413
gigabytes, 592
gigahertz (GHz), 502
GIPS (giga-instructions.per second),

413
global IP Internet. See Internet
Global Offset Tuble (GOT), 705,

705-707
global syinbols, '675
global variable mapping, 994-995

1064 Index

GNU compiler collection. See ace
(GNU compiler collecti6n)
compiler'

GNU project, 6
GOT (global offset table), 705,

705-707 ! ,I<)')

goto [C] control transfer statement,

210, 233 "'
goto code, 210 [
GPROF Unix profi~er, 562, 562-563
gradual underfioYl,.J15 .J

granularity of concurrency, 985
graphic user interfaces for debuggers,

279
graphics adapters, 596
graphs

data-ftow, 525-530
process, 741, 742
progress. See progress graphs
reachability, 866

greater than signs>,
deferencing operation, 266
"get from" ope:r'ator, 890
right hoinkies, 909

groups
"labelian, 89

process, 759
guard values, 286
guarded-do translation, 225

. h header files, 686
half1pr'ecision floating-point

representation, 137, 13'f
halt [Y86-64] halt instruction

execution, 357
code for, 404-405
exceptions., 364,~444--447
in pipelining, 462

handlers "
exception, 724, 724
interrupt, 726
signal, 758, Z63

handling signals (
blocking and unblocking, 764-765
portable, 774-775

hardware caches. See caches and cache
~•memory •

hardwire control language (HCL),
372

Boolean expressions,1374-375
integer expressions, 37~380
logic gates, 373 ·

hardware description langtiages
(HDLs), 373,A67

hardware exceptions,L724
hardware interrupts, •726

hardware management, 14-15
hardware organization, 8

buses, 8
1/0 dli.vices, 9
main memory, 9
processors,9-10

hardware registers, 381-384
hard'ware-structure for Y86-64,

396--400 '
hardware units,,396-398, 401
hash tables, 567-568
Haswell microarchitecture, 825
Haswell microprocessors, 168, 215,

294,507,521,523
hazards i_n pipelining, 354, '129

avoiding, 441-444
classes, 435
forwarding for, 436-439 •1

load/use, 439-441
overview, 429-433
stalling for, 433-436

HCL (haqlware control language);
372

•Boolean expressions, 37~375
integer expressions, 376-380
logic gates, 373

HDLs (hardware description
languages), 373, 467

head crashes, 593
HEAD method in HTTP, 951
header files

static libraries, 687
~ystem, 746 l.

header tables in ELF, 674, 696
headers r

blocks, 847
Ethernet, 920
request, 951
response, 952

heap,18,l&--19,839
dynamic memory allocation, 839-

840
Linux systems, 697
referencing data in, 874-875
requests, 850

hello [CS:APP] C hello program, 2,
10-12

help command, 280
helper junctions, sockets interface,

942-944
Hennessy, John, 361; 47li
heterogeneous data structures, 265

data alignment, 273-2?6 f ... {<

structures, 2,65-269 Qc.:'I ">

unions, 269-273 .ii

hexadecimal (hex) notation, 36, 36-39
'A

hierarchies
'domain name, 927
storage devices, 14, 14, 609-614

high-level design performance~
strategies, 561 ,.

hit rates, 631
hit time, 631
hits

cache,612,631
write, 630

hl t [x86-64] halt instruction
execution, 357

HLT [Y86-64] status co4e indicating
halt instruction, 364

hoinkies, 909, 910 ' .J

holding mutexes, 1003
Hornet. Williarq, 530
Homer's method, 530' '",,
host bus adapters:-597
host bus interfaces, 597
host entries, 928
host information program command,,

926
HOSTNAME command, 926
hosts

client-server model, 919
network, 922 J,

number of, 930 'i ,,

sockets interface, 937-942
htest script: 465 .
HTML (hypertext markup language),

948, 94&--949 '
htonl [Unix] convert hosr-to-network

long, 925
htons [Unix] convert host-to-network

short, 925
HTIP. See hypertext transfer protocol

(HTTP)
hubs, 920 ,
hyperlinks, 948 ,,.,,
hypertext markup language (H'FML::),

948, 94&--949 ,,,,
hypertext transfer protocol (HTTP),

948 i' ~
Qynamic content, 953-954
methods, 951-952•
requests, 951, 951-952
responses,952,952-953
transactions, 950--951

hyperthreading, 24, 168
Hypeqtansport interconnect,.588

i-caches (instruction caches), 518, 631
. i source files, 671
i386 microprOcessor, 167
i486 microprocessor, 167

IA32 (Intel' Architecture 32-bit)
microprocessors, 45, 168

'machine language, 165--166
registers, 179-180

iaddq [Y86-64] immediate add, 369
IBM

Freescale microprocessors, 352, 361
out-of-order processing, 522
RISC.design, 361-363

!CALL [Y86-64] instruction code for
call instruction, 404

ICANN (Internet Corporation for
Assigned Names and Numbers),
927

icode (instruction coae), 384,,405
ICUs (instruction control units), 518
identifiers, register, 358
idi vl [x86-64] signed divide, 199
idivq [x86-64] signed divide, 198
IDs (identifiers)

processes, 739-740
register, 358-359

IEEE. See. Institute for Electrical and
Electronics Engineers (IEEE)

if [C] conditionaJ..statement1 211-213
ifun (instruction function), 384, 405
!HALT (Y86-64] instruction code for

halt instruction, 404
IIRMOVQ (Y86-64] instruction code for

irmovq instruction, 404
ijk matrix multiplication, 644--646, 645
IJXX (Y86-64] instruction code for

jump instructions, 404
ikj matrix multiplication, 644-646, 645
illegal instruction exceptions, 404
imem_error signal, 405
immediate add instruction, 369
immediate coalescing, 850
immediate offset, 181·
immediate operands, 181
immediate to~register move

instruction, 356
implicit dynamic memory allocators,

840 l

implicit free lists, 847.-849, 848
implicit thread termination, 988
implicitly reentrant functiOnS, 1023
implied leading 1representation,114
IMRMOVQ [Y86-64] instruction code for

mrmovq instructioO., 404
IMUL [instruction class] niultiply, 192
imulq [x86-64] signed multiply, 198,

198 11.

in [HCL] set membership test, 381
in_add.r [Unix] IP address structure,

925

INC [instiuction class] increment, <192
include files, 686
#include[€] preprocessor directive,

170
incq instruCtibn, 194
increment instruction, 192, 194
indefinite integer values, 125
index. html file, 950 t.

index registers, 181
indexes for direct-mapped caches,

622-624
indirect jumps, 206, 234 "'
inefficiencies in loops, 508-512
inet_ntoa [Unix] convert network-

to-application, 1024
inet_ntop (Unix] convert network­

to-application, 926
inet_pton [Unix] convert

application-to-network, 926~ ,r
infinity

constants, 124
representation, 114-115

info~frame command, 280
info registers command, 280
information, 2-4
inforination access with x86-64

registers, 179-180
data movement, 182-189
operand specifiers,• 180--182

information storage, 34
addressing and byte ordering142-49
bit-level operations, 54-56 l
Boolean algebra, 50--53
code,49-50
data sizes, 39--42
disks. See disks
floating point. See floating-point

representation and programs•'
hexadecimal, 36-39' •• H
integers. Sl!e integers. J J'

locality .. See locality
logical operations, 56-57
memoi"y. See memory
segregated: 863
shift operations, 57-59
strings, 49
summary, 648

ini t function, 74.3
init_pool function, 981', 983
initial state in progress graphs, 999
initialize nonlocal handler jump

function, 783
initialize nonloc<il jurlip.functions, 783
initialize read buffer function, 898,

.900
initialize semaphore function, 1002

Index

initialize threhd function, 990)
initializing threads, 990

1065

inline assembly, 118~ 1,

inline substitution, 501
inlining, 501
INOP (Y86-64] instruction code for

nap instruction, 404
input events, 980
input/output. See I!O (input/output)
insert item in bounded buffer function,

1007
install portable handler function, 775
installing.signal handltfrs, 763
Institute for Electrical and Electronics

Engineers (IEEE)
description, 109
floating-point representation and

programs, 112-114
denonnalized,114
normalized,,113-114
special values, 115
Standard 754, 109,

·standards, 109
Posix standards, 16l

instr_ valid "signal, 405-406
instruction caches (i-caches), 518, 631
instruction code (icode),,384, 405
instrflction control units (IGUs}, 518
instruction function (ifun), 384, 405
instruction-level parallelism, 26, 497,

518, 562 -·
instruction memory in SEQ timing,

401
instruction set architectures (IS As),

10,27, 170,352
instruction set simulators, 366
instructions

classes, 182
decoding, 518
excepting~ 445 T.

fefoh locality: 607--Q08
issuing, 427-428 .;,
ju111p, 10,205-209
load, 10
low-level. See machine..level

programr'ning
move,214-220,550-553
operate, 10
pipelining, 468-469, 549
privileged, 735
store, 10
update, 9-10 '•
Y86-64. See Y86-64 instruction set

architectllre
instructions per cycle (IPC), 471
int [CJ integer data type, 40

~II

I

1066 Index

int [HCL] integer signal, 376
int data types, integral, 61
INT_MAX constant; maximum,signed

integer, 68 t
INT_MIN constant, minimum signed

integer, 68
int32_t [Unix] fixed-size, 41
integer arithmetic, 84, 192

division by powers of 2, 103-107
multiplication by constants, 101-

103
overview, 107.,..108
two's corfiplemenLaddition, 90-95
two's complement multiplication,

97-101
two's complement negation, 95
unsigned addition, 84-90 ',

integer bits in floating-point
representation, 137

integer expressions in HCL, 376-380
integer indefinite values, 125
integer operation instruction, 404
integer registers in x86-64, 179-180
integers, 32, 59-60

arithmetic operations. See integer
arithmetic

bit-level operations, 54-56
bit repre~entation expansion,, 76-80
byte order, 43-44
data types, 6Ch62
shift 'operations, 57-59
signed and unsigned conversions,

70-76
signed vs. unsigned guidelines,

83-84
truncating, 81-82
two's complement representation,

64-70
unsigned encoding, 62--64

integral data types, 60, 60--<-62
integration of caches1and VM, 817
Intel assembly-code format, 177, 294,

311
Intel Corporation, 165
Intel micro'processors

8086,26,167
80286, 167
Core 2, 168, 588
Core i7. See Core i7 microptoces-

sors
data alignment, 276
evolution, 167-168
floating1.point representation, 137
Haswell, 168, 215, 294, 523
i386, 167
i486, 167

nbrthbridge and southbridge
chipsets, 588 ,,o

out-of-order . .processirlg1 522
Pentium, 167
Pentium II, 167 "
Pentium III; 167-168
Pentium 4, 168
Pentium 4E, 168
PentiumPro, 167, 522
Sandy Bridge, 168 ,
x86-64. See x86-64 microprdcessors
Y86-~4. See Y86-64 instruction set

architecture
interconnected networks (internets),

921, 921-922
interfaces

bus, 588
host bus, 597

interlocks, load, 441
internal exceptions in pipelining, 444
internal fragmentation, 846
internal read function, 901
International Standards Organization

(ISO), 4, 35
lnternet, 921

connections, 929-931
domain names; 927£.929
IP addresses, 925-927
organization, 924-925
origins, 931

internet addresses,r922
Internet Corporation for Assigned

Names and Numbers (!CANN),
927

Internet domain names, 925
Internet Domain Survey, 930
Internet hosts, number of, 930·
Internet Protocol (IP), 924
Internet Software Consortium, 930
Internet worms, 284
internets (interconnected.networks),

921, 921-922 d
interpositioning libraries, 707.~ 707-

708
compile-time, 708-709
link-time, 708, 710
run-time, 710-712

interpretation of bit patterns, 32
interprocess communication (IPC),

977
interrupt handlers, 726
interruptions, 764
interrupts,.726, 72fr72!1
interval coftnting schemes, 564
INTN _MAX [C] maximum value of

N-bit signed data type, 67

INTN _MIN [C] minimum value of•
N-bit signed data type,. 67

intN _t [C] N-bit signed integer data
type, 67

<int types. h> fixed-size integer
types, 198

invalid address status code, 364
invariants: semaphore, 1002
1/0 (input/output), 9, 890

memory-mapped, 598
ports, 598
redirection, 909, 909-.910 J

system-level. See system-level 110
Unix, 19, 890, 890-891

1/0 bridges, 587
1/0 buses, 588, 596, 598
1/0 devices, 9

addressing, 598
connecting, 596---597 1•

I/0 multiplexing, 973
concurrent progtamtning with,

978-985
event-driven·servers based on:

980-985
pros and cons, 985

IDPL [Y86-64J instruction code for
integer ,opexation instruc~ion,
404

IP (Internet Protocol), 924~
IP address structure, 925, 926
JP addresses, 924, 925-927
IPO (instruCtions Per cycle); 47t
IPC (interprocess communication),

977 i'

iPhone SS, 353
IPOPQ [Y86-64] instruction code for

popq instruction; 404
IPUSHQ [;y86-64] instruction code for

pushq instruction; 404
1Pv6,925
IRET [Y86-64] instruction code for

ret instruction, 404
IRMMOVQ.[Y86-64]Jnstruction code for

rmmovq instruction, 404
irmovq [Y86-64] immediate to r.egi~ter

move, 356, 404
IRRMDVQ [Y86-64] instruction code for

rrmovq insn;-uction, 404
ISAs (instruction set~architectures),

10,.27, 170,352
ISO (Inter'national Standards

Organization), 4, 35
ISO Cl! C standard, 35
ISO C90 C standard, 35 ,, 1
ISO C99 C standard:35, 41\ 324.

integral data types, 67

static libraries, 684-v-688
isPtr function, 869
issue time for arithmetic operations,

523 'J

issuing iristructions, 427-428
iterative servers, 946
iterative sorting routines,·567•

ja [x86-64] jump if unsigned greater,
206

j ae [x86-64] jump if unsigned greater
or equal, 206

Java language, 677 v
byte code, 310 "
linker symbols, 680 ,.1

numeric ranges, 68
objects, 266-267
software exceptions, 723-..724, 786
threads, 1030

Java monitors, 1010
Java Native Interface (JNI), 704
jb (x86-64] jump if unsigned less, 206
jbe [x86-64] jump if unsigned less or

equal, 206
je (Y86-64] jump when equal, 35{•,

394
jg (x86-64] jump if greater, 206, 357
jge (x86-64] jump if greater or.equal,

206, 357.
jik matrix multiplication, 644---646, 645
jki matrix multiplication, 644-646, 645
jl [x86-64] jump if less, 206,357
j-le (x86-64] jump if less or equal, 206,

357
jmp [x86-64] jump unconditionally,

206,357
jna [x86-64] jump if not unsigned

greater, 206
jnae [x86-64J jump if unsigned greater

or equal, 206
jnb [x86-64] jump if not unsigned less,

206
jnbe [x86-64] jump if not unsigned

less or equal, 206
jne [x86-64] jump if.not equal, 206,

357
jng (x86-64] jump if not greater, 206
jnge [x86-64J jump if not greater or

equal, 206
JNI (Java Native Interface), 704
jnl (x86-64] jump if not less, 206
jnle [x86-64] jump if not less or equal,

206
jns [x86-64] jump~if nonnegative, 206
jnz [x86-64J jump if not zero, 206
jobs, 760

joinable threads, 989
jp [x86-64] jump when parity flag set,

306
js (x86-64] jump ifnegative, 206
jtest scriptt465
jump if greater instruction, 206, 357
jump if greater 6r equal instruction,

206,357
jump if less instruction, 206, 357
jump if less or equal instruction, 206,

357
jump if negative instruction, 206
jump if nonnegative instructiOn, 206
jump if not equal instruction, 206, 357
jump if not greater instruction, 206
jump if not greater or equal

instruction, 206
jump if not less instruction, 206'
jump.if not less or.equal instruction,

206
jump if not unsigned greater

instruction, 206
jump if not unsigned Jess instruction,

206
jump if not unsigned less or,equal

instruction, 206
jump if not zero instruction, 206
jump if unsigned greater instruction,

206
jump if unsigned greater or equal

instruction, 206 '}
jump if unsigned less 'instructiori, 206
jump if unsigned less or equal

instruction, 206 "
jump if zero instruction, 206
jump instructions, 10, 205-209, 404,

direct, 206
indirect, 206, 234
instruction code.for, 404
nonlocal, 723, 781, 781-786
targets, 206

jump tables, 233, 234-235, 725
jump-to-middle translation, 223
jump unconditionally instruction, 206,

206 h

jump when equal instruction, 357
jump when parity fiag'Set instruction,

306 ,,
just-in-time compilation, 290, 310•J
jz (x86-64] jump if zero, 206

k x 1 loop unrollin'g, 531
k x la loop unrolling, 544
k x k loop unrolling,,539-540
K&R (C book), 4
Kahan, William, 109

Kahn, Robert, 931
kernel mode

index l067

exception handlers, 72(11
processes, 734-736, 735
system calls, 728

kernels, 17, 19, 698
exception numbers, 725 ..,t "
virtual memory; 830-831

Kernighan, Brian, 2, 4, 16, 35, 278, 914
Kerrisk, Michael, 9141
keyboard, signals from, 760-761
kij matrix multiplication, 644--646, 645
kill [Unix] send signal, 761
kill command in GDB debugger, 280
kill. c (CS:APP] kill example, 761
kji matrix multiplication, 644-646, 645
Knuth, Donald, 849, 851
ksh [Unix] Unix shell program, 753

1 suffix, 179
L1 cache, 13, 615
U cache, 13, 615
L3 cache, 615
labels for jump instructions, 205
LANs (local area networks), 920,

920-922
last-in, first out discipline, 189.
last-in first-out (1.IFO) free list order,

863
latency

arithmetic operations, 523, 524
disks, 594
instruction, 413
load operations, 554-555~
pipelining, 412

latency bOunds, 518, 524
lazy binding, 706
LD Unix static linker, 672
LO-LINUX.SO linker, 699 • r.
LD_PRELOAD environment variable,

710-7J2
LDD tool, 713
LEA instruction, 102
leaf procedures, 241
leaks, memory, 875, 992
leaq [x86-64] load effective address,

191,191-192,277
least-frequently-used {LFU)

replacement pdlicies,_626
least-recently-used (LRU) replace­

ment policies, 612, 626
least squares fit, 502, 504
leave [x86-64] prepare stack for

retuni instruction, 292
left hoinkies (<), 910
length of strings, 83

1068 Index

less than signs <
left hoinkies, 909
"put to" operator, 890

levels
optimization, 498
storage,609--610

LF (line feed) characters, 892
LFU (least-frequently-used)

replacement policies, 626
libc library, 911
__ libc_start_main,698
libraries

in concurrent programming, 1024-
1025

headerfiles, 83 "
interpositioning, 707, 707-712
shared,19,699,699-701
standard 1/0, 911
static, 684, 684-688

LIFO (last-in first-out) free list order,
863

<limits. h> file for numeric, limit.
declarations, 67--68, 77 ,.,

line'feed (LF) characters, 892
line matching

direct-mapped caches, 618
fully associative caches, 626

, .set associative caches, 625--626
line replacement

direct-mapped caches, 619
set assoC"iative caches, 626

. line section, 675
linear address spaces, 804•
link-time errors,,7
link-time interpositioning, 708, 710
linkers and linking, 5, 164, 170

compiler drivers, 671-672
dynamic, 699, 699-701
library interpositioning, 707,

707-712
object files, 673, 673--674

executable,695-698
loading, 697--Q98
relocatable, 674-675 "
tools for, 713

overview, 670---071
position-independent code, 704-

707
relocation, 689-695
shared libratieS from applications,

701-703
static, 672 i·
summary, 713-714
symbol resolution, 679-689
symbol tables, 675--Q79
virtual memory for, ~11-812

linking phase, 6
links in directories, 891
Linux operating system, 20, 45

code segments, 697-698
dynamic linker interfaces, 702
hndELF,673
exceptions, 729-731
files, 891-893
signals, 756
static libraries, 685-686
virtual memory, 830-833

Lisp language, 85
listen ~nix] convert active socket

to listening socket, 935
listening descriptors, 936-937
listening sockets, 935
little-endian ordering convention, 42,

42-44
load effective address instruction,

191-193,277
load forwarding in PIPE, 477
load instructions,~ 10
load interlocks:Ml
load operations

example, 588
process,519-520

load penalty in CPI, 467
load performance of memory: 554-555
load program function, 750
load-store architecture,in CISC vs.

RISC, 362
load time for code, 670
load/use data hazards, 439, 439..!441
loaders, 672, 697
loading

concepts, 699
executable object files, 697-698
process, 697
programs, 750--752
shared libraries from applications,

701-703
virtual memory for, 812

local area networks (LANs), 920,
920-922

local automatic variables, 994
local registers, 527~
local static variables, 994, 994-995
local storage

registers, 251-253
stack, 248-251

local symbols, 676
locality, 13, 580, 604-605

blocking foP, 647
caches,643--Q47,810
exploiting, 647
forms, 604, 614

instruction fetches, 607-608
program data references, 606-607
su01mary,608-609r

local time function, 1024
lock-and-copy technique, 1022, 1022
locking mutexes ')

lock ordering rule, 1029
for semaphores, 1003

logic design, 372
combinational circuits, 374-380,

413
logic gates, 373, 373
memory and clocking, 381-384
set membership, 380--381

logic gates, 373
logic synthesis, 355, 373, 467
logical blocks •'

disks, 595, 595-596
SSDs, 601

logical control flow, 732, 732-733
logical operations, 56-57, 191

<'discussion, 196-197 l
load effective address, 191-193
shift, 58, 104, 192, 194-'19&
special, 197-200
unary and binary, 194

long [C] integer data type, 40-41,
61~62

long double (C] extended-precision
floating point, 125, 137

long double floating-point
declaration, 178

long words in machine-level data, 179
longjmp (C Stdlib] nonlocal jump,

723, 783, 783
loop registers, 527
loop unrolling, 502, 504, 531

Corei?,572
k x 1,531 ..
k x la,544
k x k, 539-540
overview, 531-535
with reassociation transformations,

541-543
loopback addresses, 928
loops, 220

do-while; 220--223
for,228-232
inefficiencies, 508--512
reverse engineering, 222
segments{526-527., 1f.,

for spatial locality, 643--647r
while,.223-228

low-level instruction~ .• See' machine­
level programming

low-level optimizations, 562

lowercase conversions, 509-511
LRU (least-recently-used) replace-

ment policies, 612, 626
ls command, 892
lseek [Unix] function, 896-897
lvalue (C) assignable value for

pointers, 277

Mac OS X (Apple Macintosh)
operating system, 27

machine checks, 729
machine code, 164
machine-level programming

arithmetic. See arithmetic
arrays. See arrays
buffer overflow. See. buffer overflow
control. See control structures
data-flow graphs from, 525-529
data formats, 177-;;179
data movement instructions, 182-

189
encodings,169-177
floating point. See floating-point

.... code
GDB debugger, 279-280·
heterogeneous data structures.;See

heterogeneous data structures
~historical perspective, 166-169
information ac;cess, 179-180. l'

instructions,· 4
operand specifiers, 180-182
o\rervie.w, 164-166
pointer principles;278
procedures. See procedures
x86-64. See x86-64 microprocessors

rrtacros for storage allocators, 856---
857 ff·

main memory, 9
accessing, 587-589
memory modules, 584

main threads, 986,
malloc [C Stdlib] allocate h(fap

storage, 35, 324, 697/ 839--840,
840

alignment with, 276
declaration, 134-135 •,
dynamic memory allocation, 840-

843
interpositioning lib~aries, 708.
wrappers for, 711

man ascii command, 48
mandatory alignment, 276
mangling process"(C++ and Java), 680
many-core processors, 471
map disk-object into memory {unction,

837

mapping
memory. See memory mapping
variables, 994-995

mark phase in Mark&Sweep, 867
Mark&Sweep algoiithm, 866·
Mark&Sweep garbage collectors, 867,

867-870
masking operations, 55
matrices

adjacency, 660 1 nt
multiplying, 643-<i47

maximum floating-point-instructions,
302·

maximum two's complement number,
66

maximum unsigned number function,1
63 •!r

maximum values, constants for, 68
McCarthy, John, 866
McIIroy, Doug, 16
media instructions, 294
mem_1ni t [CS:APP] heap model, 855
mem_sbrk [CS:APP] sbrk emulator,

855
m~mbership, set, 38Q-381
memcpy [Unix] copy bytes from one

region of memory to another,
133o1 tt',

memory,580
accessing, 587-589
aliru;ing, 499, 500
associative; 625· l

caches. See caches and cache
memory

copying bytes in, 133
data alignment in, 273-276
data hazards, 435
design, 384
dynamic. See dynamic memory

allocation
hazards, 435,
hierarchy, 14, 14;609-614
leaks, 876, 992
load performance, 554-555
in logic design, 361-364 f

machine-language procedures, 239
machine-level programming, 170
main, 9,S84, 587-589
mapping. See memory mapping
nonvolatile, 587
performance, 553-561
pipelining, 469-470
protecting, 289, 812-813
RAM. See random.access memory

(RAM)
ROM,587

threads, 993-994
trends, 602-604

Index 1069

viftual. See virtual memory (VM)
Y86,356

memory buses, 587
memory controllers,.583, 584
memory management units (MMUs),

804, 807
memory-mapped VO, 598
memory mapping,,812

areas, 833: 833
execve {unction, 836--837
fork function~ 836
in loading, 699 "
objects, 833-836
user-level, 837-839

memory mountains, 639
C~re i7 micr6processors, 641
over.view, 639-643

memory references
operands, 181
out of bounds. See buffer overflow
in performance, 514-517

memory stage
instruction processing, 385, 337..:.397
PIPE processor, 454-455
sequential processing, 400
sequential Y86-64 implementation,

409-411
Y86-64 pipelining,.423

memory system, 580
memory utilization, 845, 845
memset function, declaration, 134-135
metadata, 903, 903-904
metastable states, 581
methods

hypertext transfer protocol, 951-
952

objects, 267
micro-operations, 519
microarchitecture, 10, 517
microprocessors. See central

processing units (CPUs)
Microsoft Windows ojJerating system,

45
MIME·(multipurpose internet mail

extensions) types, 949
minimum block size, 848
minimum floating-point instructions,

302
minimum two's complement number,

66 IC I

minimum values
constants, 68
two's complement representation,

66

\

j

1070 Index

mispredicted branches
handling, 443-444
performance penalties, 467, 520i

549-553
miss rates, 631
misses, caches, 470, 612

kinds, 612--013
penalties, 632, 806
rates, 631

mkdir command, 892,
mm_coalesce [CS:APP] allocator:

boundary tag coalescing, 860
mm_free [CS:APP] allocator: free

heap block, 860
mm-ijk [CS:APP] matrix multiply ijk,

645
mm-ikj [CS:APP] matrix multiply ikj,

645
mm_ini t [CS:APP] allocator: initialize

heap,858
mm-jik [CS:APP] matrix multiply jik,

645
mm-jki [CS:APP] matrix multiply jki,

645
mm-kij [CS:APP] matrix multiply kij,

645
mm-kj i [CS:APP] matrix multiply kji,

645
mm_malloc [CS:APP] allocator:

allocate heap,block, 860, 861
r:tmap [Unix] map disk obje~t into

memory, 837, 837-839
MMUs (memory management units),

804,807
MMX media instructions, 167, 294
Mockapetris, Paul, 931
mode bits, 735
modern processor performance,

518-531
modes

kernel, 726, 728
processes, 734-736, 735
user, 72fJ, 728

modified sequential processor
implementation, 421--422

modular arithmetic, 85-86,..89
modules

DRAM, 584, 585
object, 673

monitors, Java, 1010
monotonicity assumption, 846
monotonicity property, 124
:tvloore,G-ordon,169
Moore's Law, 169, 169
MOSAIC browser, 949
motherboards, 9

Motorola RISC processors, 363
MOV [instruction class] move data, 182,

182-183 i<

movabsq [x86-64}move absolute quad
word, 183, 183

movb [x86-64] move byte, 183,
move absolute quad word instruction,

183,183
move aligned, packed double

precision instruction, 296
move aligned, packed single precision

instruction, 296 l

move and sign-extend instruction, 184,
185

move byte instruction, 183
move data instructions, 182-189
move double precision instruction,

296
move double word instruction, 183
move if even parity instruction, 324
move if greater instruction,.217, 357
move if greater or equal'inStruction,

217,357·
move if less instruction, 217, 357
move if less or equal instruction, 217,

357,
move if negative instruction, 217
move if nonnegative instruction, 217
move if not equal instruction, 21 "i/,

357
move if not greater instruction, 217
move if not greater or equal

instruction, 217
move if not less instruction, 217
move if not less or equal instruction,

217'''
move if not unsigned greater

instruction, 217
move if not unsigned less instruction,

217
move if not unsigned less or equal

instructiofi, 217
move if not zero inStructidn~..-217
move if unsigned greater instruction,

217
move if unsigned greater or.equal

instruction~ 217
move if unsigned less instruction, 217
move if unsigned less •of' equal

instruction, 217
move if zero instruction, 217
move instructions, conditional; 214-

220, 55Cl-553'
move quad word instruction, 183
move sign-extended byte to double

word instruction, 185

move sign-extended byte to quad
word instruction, 1.85

move sign-extended byte to word
instruction, 185

move sign-extended double word 1o·
quad word instruction, 185

move sign-extended word to double
word instruction, 185

move sign-ex1erlded word to quad
word ihstruction, 185

move single precision instruction~'296
move when equal instruction, 357
move with zero extension instruction,

184,184
move word instruction, 183~
move zero-extended byte to~double

word instruction, 184
move zero-extended byte to quad

word instruction, 184
move zero-extended byte to word

instruction, 184
move zero-extended word to double

word instruction, 184 ;'
move zero-extended word to quad

word instruction, 184
movement operations, floating-point

code, 296-301 '
movl [x86-64] move double word, 183
movq [x86-64] move quad word, 183
Mo vs [instruction class] move and

sign-extend, 184, 185
movsbl [x86-64] move sign-extended

byte to double word, 185
movsbq [x86-64] move sign-extended

byte to quad word, 185
movsbw [x86-64] move sign-extended

byte to word, 185
movslq [x86-64] move sign-extended

double word to quad word, 185
movswl [x86-64] move sign-extended

word to double word, 185
movswq [x86-64] ruove sign-extended

, word tO quad word, 185
movw [x86-64] move word, 183
MOVZ [instruction class] move with,

zero extension, 184, 184
movzbl [x86-64] move zero-extended

byte to double word, 184
movzbq [x86-64] move zero-extended

byte to quad word, 184
movzbw [x86-64] move zero-extended·

byte to word, 184 ,,,
movzwl'[x86-64] move zero-ext6nded

word to double word, 184
movzwq•[x86-64] move zero-extended

word to quad word, 184 "

mrmovq instruction, 404
mulq [x86-64] unsigned multiply, 198,

198
multi-core processors, 16, 24-25, 168,

605,972 '; ,
multi-level page tables, 819-821
multi-threading, 17-18,25
Multics, 16
multicycle instructions, 468-469
multidimensional arrays, 258---260 ~

multiple accumulators in parallelism, 1
536-541

multiple zone recording, 592
multiplexing, UO, 973

concurrent programming with,
978-985-

event-driven servers based on,
980-985

pros and cons,.985
multiplexors, 374, 374-375

HCL with case expression, 378
word-level, 378---380

multiplication
constants, 101-103
floating point, 124,,302
instructions, 198
matrices, 643--647
two's complement, 97-101
unsigned, 96-97, 198; 198

multiply instruction, 192
multiported random access memory,

382
multiprocessor systems, 24
multipurpose internet mail extensions

(MIME).types, 949 :
multitasking, 733
multiway branch statements, 232-238
munmap (Unix] unmap disk object, 83!{
mutexes ~

lock ordering rule, 1029
Pthreads, 1010
for semaphores, 1003

mutual excluSion
progress graphs, 1000
semaphores for~ 1002-1004

mutually exclusive access, 1000

\n (newline character), 3, 89Ji
n-gram statistics, 565 ,
named pipes, 892
names

doil!ain,925,927-929
mangling and demangling processes

(C++ and Java), 680, 680
protocols, 922
types,47

Y86-64 pipelines, 427
NaN (not a number)

constants, 124
floating point, 306
representation,114,115

nanoseconds (ns), 502
National Science Foundation.(NSF)1

931 '
need_regids signal, 405
need_valC signal, 405
NEG [instruction class] negate, 192·
negate,instruction; 192 •,,• '
negation, twb's complement, 95
negative overflow, 90, 90-91 u

nested arrays, 258---260
nested structures, 268
network adapters, 597·
network byte order, 925
network clients, 21, 918 1:,

Network Eile System (NFS), 610
network programming, 918

client-server model; 918-919
Internet. See Internet
networks, 919-923
sockets interlace. See sockets_

interface
summary, 964-965
TINY Web server, 956-964
Web servers, 948-956,

network servers, 21, 9,18
I}etwor~s, 20-21

acychc,374
LANs, 920, 920-922,
WANs, 921, 921-922

never taken (NT) branch prediction
strategy,'428

newline character (\n)4 3, 891
next-fit block placement policy, 849,

849
nexti command, 280 ,.
NFS (Network File System), 610
NM tool, 713
no-execute (NX) memory protection,

289
no operation nap instruction, 286,'404

instruction code for, 405 i
pipelining, 430-431 ,,
in stack randomization, 286

no-write-allocate approach, 630
nodes, root, 866
nondeterminism, 748
nondeterministic behavior, 748
nonexistent variablestreferencing, 874
nonlocal jumps, 723, 78), 781-7.86
nonuniform,partitioning, 416--418
nonvolatile memory, 586

Index 107,1

nop [x86-64] no operation instruc.,tion,
286, 404 ,j,

instruction code for, 405 ,,-!
pipelining, 430-431 tr
in stack randomization, 286

nop sleds, 286
norace. c [CS:APPJ Pthreads

program without a race, 1027
normal operation status code, 364, 404
normalized values, floating-point, 113,

113-114
northbridge chipsets, 588
not a number (NaN)

constants, 124
floating point, 306
representation, 114, 115

NOT [instruction class) complement,
192

NOT operation
Boolean, 51-52
C operators, ~6-,57
logic gates, 373

ns (nanoseconds), 502..,
NSF (National Science Foundation),

931
NSFNET,931
NSLOOKUP..program, 928
ntohl [Unix) convert networjc-to-h,o,sJ

long,.925
ritohs [Unix] convert.network-to-host

short, 925
number systems.conversions. See•

conversions
numeric limit declarations, 77
numeric ranges

C standards,,61
integral types, 60-62
Java standard, 68

NX (no-execute) memory protection,
289

. o files, 173, 672
-01 optimization flag, 170
-02 optimization flag, 170
OBJDUMP GNU machine-code file I

reader,173,279,692, 713
object code, 170, 173
object files, 173

executable. See executable object
files

formats, 673
forms, 673
relocatable, 5,·672, 673--675
shared, 673
tools, 713

object modules, 673

" '

fl
I'

I

11

I

I
' ' ,.
I'
I

1072 Index

obje"cts
C++ and Java, 266
memory-mapped, 833-836
private, 834, 834
progralli, 34
shared,699,833-836
as struct, 266-267

oct word, 197, l\J.7-198
OF [x86-64] ·overfldw flag condition

code/201, 355
off-by-one errors, 872
offset~

GOTs, 705, 705-707
memory references, 181
PPOs,814
unions, 270'
VPOs,.Sr4

-Og optimization flag, 170, 563
one-operand multiply instructions,

198 r 'f, I

ones'-complement representation, 08
open [Unix] open file,'891, 893-895
open_clientfd [CS:APP] establish

cohnection with server, 942,
942-944

open_listenfd [CS:APP] establish a
listening socket, 944, 944

Open operations for files, 891, 893-895
open shared library function,•701
openc.source operating systems, 86-87
opendir functions, 905
operand specifiers, 180--182
operate instruction, 10
operating systems~OS), 15 ••

files, 19
hardware management, 14L 15
kernels, 19
Linux, 20, 45 ''
processest.15-17
threads, 17-18
Unix,35
virtual memory, 18-19
Windows,45

operations r
bit·level, 54-56 ~J '

logic!l, 56-57
shift, 57-59

aptest script, 465
optimization

address translation, 830
compiler, 170
levels, 498
program perform"ance. See

performance
optimization blockers, 496-497, 500
OPTIONS method, 951

OR (instruction class] or, 192
OR operation

Boolean, 51-52
C operators, 56--57
HCL expreSsions, 374-375~
logic gates, 373 1 1 r

order; bytes; 42-49
disassembled code, 210
network, 925
unions, 272

origin servers, 952
OS. See operating systems (OS)
Ossanna, Joe, 16
out·of~bounds ine1mory references.

See buffer Overflow
out·of~order execlltion, 518•

five·stage pipelines, 471
history, 522

overflow <'f

arithmetic, 87, 87-89, 134
buffer. See buffer ovetfiow 1

11

floating·poiti.tfvalues, 127
identifying, 92-93
infinity representation, 115
multiplication, 102
negative, 90, 90-91
operations, 32
positive, 90, 90-91

overflow flag conllition code, 201, 355
overloaded funCtio'ns (C++ and Java),

680

P semaphore operation, 1001, 1001-
1002

P [CS:APP] wrapper function for
Posix sem_ wait, 1002

P6 microarchitecture, 167
PA '(physical addresses), 803

vs. virtual, 803-804
Y86-64, 356

packageS,processor,825
packet headers, 922
packets, 922 ,,,.,
padding

alignment, 274-275
blocks, 847

page faults
DRAMcaches;808\ 808-809
Linux/x86·64 systems, 729, 832-

833
memory caches, 470 •"CT
pipelining caches; 808•

page frames, 805
page hits in cci.Ch"'es, 808
page table base regl.sters (PTBRs),

814 •' t I

page table entries (PTEs), 807,
807-808

Core.i7, 826-828
1LBs for, 817-821, 823

page table entry addresses (PTEAs),
817 '•

page tables, 736, 823
caches,806-808,807
multi·level, 819-821

paged~in pages, 809
paged-out pages, 809
pages

allocation, 810
demand zero, 833
dirty, 827
physical, 805, 805-806'
SSDs, 601'

"

virtual, 289, 805, 805-806 Pv
,p paging

demand,810
description, 809

parallel execution, 734
parallel flows, 734, 734
parallel programs,' 1013
parallelism, 24(536

instruction.level, 26, 497, 518, 562
multiple accumulators·, 536--541
reassociation transformations,

541-546
SIMD, 26, 546-547·
thread·level, 26
threadsfor,1013-1018

parent direCtories, 892
parent processes; 739,'739-740
parity flag coriOition"cdde, '178, 306
parse_uri [CS:APP] TiNYJlelper

function, 960
parseline [CS:APP] shell helper

<Toutine, 756
partitioning

addresses, 615--616
nonuniform' in pipelining, 416-418

passing data
machine-language procedures, 239
pointers to structures, 266

pathnames, 893
Patterson, David, 361, 471
pause [Dnix] suspend until signal

arrives,'J750
payloads

aggregate, 845
Ethernet, 920

• protocol, 922 "
PC. See program couilters (PCs)
PC.relative addressing

jumps,207,207-209

f
i
I

f symbol references, 690, 692--693
Y86-64, 359

PC selection stage in PIPE processor:
,447-449

PC update stage
instruction processing, 385, 387-395
sequential processing, 400
sequential~Y86-64 implementation,

411
PCI (peripheral component

interconnect), 598
PC!e (PC! express), 598
PE (Portable Executable) format, 673•
peak utilization metric, 844-845, 845
peer threads; 986
pending bit vecJors, 759
pending signals, 758
Pentium II microprocessor, 167
Pentium III microprocessor, 167-168
Pentium 4 microprpcessor, 168
Pentium 4E microprocessor, 168 1

Pentium microprocessor, 167
PentiumPro microprocessor, 167, 522
performance, 6

Amdahl's law, 22-24,
basic strategies, 561-562
bottlenecks, 562-568
branch prediction and mispredic­

tion penalties, 549-553
caches,553,631-633,639-647
compiler capabilities and

limitations, 498-502
expressing, 502-504
limiting factors, 548-553
loop inefficiencies, 508-51~
loop unrolling, 531, 531-535
;nemory,553-561
memory references, 514-517
modern processors, 518-531
overview, 496--498
parallelism. See parallelism
procedure calls, 512-513
program example, 504-508
program.profiling, 562-564
register spilling, 54&-549
results.summary, 547-548
sequential Y86-64 implementation,

412
'summary, 568-569.
Y86-64 pipelining, 464-468

periods(.) in dotted-decimal notation,
926

persistent connections-in HITP, 252
PF [x86-64J parity flag condition code,

178, 306
physical address spaces, 804

physical addresses (PA), 803
vs. virtual, 803-804
Y86-64 356·

physical p~ge numbers (PPNs), 814
physical page offset (PPO), 814
physical pages (PPs), 805, 805"806
pi in floating-point representation, 140
PIC (position-independent code), 704

data references, 704-705
function calls, 705-707

picoseconds (ps), 413, 502
P!Ds (process IDs), 739
pins, DRAM, 582-583
PIPE- processor, 421, 422, 426-430
PIPE processor stages, 43~40, 447

decode and write-back, 419-453
execute, 453-454
memory, 454-455
PC selection alld fetch, 447-449

pipelining, 26, 215, 412
bubble, 434
combinational, 412-414
deep,418-419
diagram, 413
five-stage, 471
functional units, 523--524
instruction, 549
limitations, 416-418
nonuniform partitioning, 416--418
operation, 414-416
registers, 413, 427
store operatjon, 555-556
systems with feedback, 419--421
Y86-64. See Y86-64 pipelined

implementations
pipes, 977
Pisano, Leonardo (Fibon{lcci), 32
placement

memory blocks, 847, 849
policies, 612, 849

platter~ disk, 590, 591
PLT (procedure linkage table). 706,

706-707
PMAP tool, 786
point-to-point connections, 929
pointers, 34 !1t

arithmetic, 257-258, 873
arrays relationship to, 48, 277
block, 856
creating, 48, 188
declaring, 41
dereferencing, 48, 188, 257, 277,

870-871
examples, 188
to functions, 278
machine-level data, 177

principles, 278
role, 36
stack, 239
to structures, 266

Index 101'3

,virtual memory, 870-873
void*, 48

polynomial evaluation, 530, 530,
572-573

pools of peer threads, 987
pop instructions in x86-64 models, 372
pop operations on stack, 189, 189-191
popq (Y86-64] pop instruction, 190,

190, 357
behavior of, 371
code for, 404
run-time stack, 239

portability and data type size, 41
Portable Executable (PE) format, 673
portable signal handling, 774-775
ports

Ethernet, 920
Internet, 930
110,598
register files .. 382 1

, pos (Y86-64] directive, 366
position-indep~ndent code (PIC), 704

data references, 704-705
function calls, 705-707

positive overflow, 90, 90--91
posix_error (CS:APPJ reports

Posix-style errors, 1043
Posix standards, 16
Posix-style error handling, 1042, 1043
Posix threads, 987, 987-9.88
POST method, 951-953
Power PC

processor family, 352, 361
RISC design, 361-363

powers of2, division by, 103-107
PPNs (physical page numbers). 814
PPO (physical page offset), 814
PPs (physical pages), 805, 805-806
precedence of shift operations, 59
precision, floating-point, 113, 137
prediction

branch,215
mispredictionpenalties, 549--553
Y86-64 pipelining, 422, 427-429.

preempted processes, 733
prefetching mechanism, 641-642
prefix sums, 502, 503, 561,573
prepare stack for return instruction,

292
preprocessors,5, 170
prethreading, 1005-1013, 1008
primary inputs in logic gates, 374

I .,,
h
I

l074 Index

principle of locality, 604, 604
print command, 280
print getaddrinfo error mesSage

function, 938
printf [C Stdlib] formatted printing

function
formatted printing, 47
numeric values with, 75

printing, formatted, 47~
priorities

PIPE processor forwarding sources,
451-452

write ports, 408
private address spade, 734
private areas, 834
private copy-on-write structures, 836
private declarations (C++ and Java);

677
private objects, 834, 834
privileged instructions, 735
/proc filesystem, 735, 735-736, 786
procedure linkage table (PLT), 706,

706-707
procedure return instruction, 357
procedures,238-239

call performance, 512-513
control transfer, 241-245
data transfei, 245-248
floating-point code in, 301-302
recursive, 253--255
register usage conventions, 251-253
run-time stack, 239-241

process contexis,'76, 736 i'

process graphs, 741, 742
process groups, "759 r
process IDs, 739
process tables, 736
processes, 15, 732, 738

background, 753
child, 740
concurrent ftow,..,732-734, 733
concurrent programming with,

973-977
concui;:rent s'"ervers based .on,

974--975 ,,
context switches, 736-737
creating and terµiinating;JJ39-743
default behavior, 744
error conditions, 745-746
exit status, 745
foreground,~753
group, 759
IDs, 739-740
loading programs, 699, 750--752
overView, 15-17

parent, 739, 740
preempted, 733
private address space'; 734
Vs. programs, 753'
pros and cons: 975
reaping, 743, 743-749
running programsf'l'50--756
sleeping, 749-750
tools, 786-787
user and kernel modes, 734-735
wai tpid functioh, 746-749
zombie, 743

processor-memory gap, 13, 604
processor package's, 825
processor states, 723
processors~ See central processing

units (CPUs)
producer-consumer pr6blem, 1004,

1005-1006
profilers code, 497
profiling, program, 562-564
program counters (PCs), 9, 44

in fetch stage, 384
hazards, 435
machine-language procedutes~ 239
%rip, 171
SEQ timing, 401
Y86-64 instruction set architecture,

356
Y86-64 pipelining; 423, 427-429

program data refere"nCes locality,
606-607

program' header tables, 696, 696
program registers

clocked, 381-384
data hazards, 435
Y86-64, 355-356

programmable ROMs (PROMs), 587
programmer-Visible state, '355, 355-

356
programs

code and data, 18
concurrent. See concurrent

programming o-1
forms, 4-5
loading arid running, 750--752
machine-level. See inachine-level

programming
objects, 34
vs. processes, 753~
profiling, 562-564
running,10-12,753-756
Y86-64, 364--370

progress graphs, 999, 999-1001
deadlock regions, 1027-1028,'1028 ,,

forbidden regions, 1003
limitations, 1004

prologue blocks, 855 '•
PROMs (programmable ROMs), 587
protection, memory, 812-813
protoc6I softwarei 922
protocols, 922
proxy cacheS, 952.- 1

proxy chains, 952
ps (picoseconds), 413, 502
PS tool, 786
pseudorandom number generator

functions, 1021
psum-ai-l-ay. c [CS:APP] parallel sum

program using array, 1016
psum-local. c [CS:APP] parallel sum

program using local variables,
1017

psum-routex. c [CS:APP] parallel sum
program using mutex,iJ.015

PTBRs (page table: base registers),
814 ,

PTEAs (page table entry addresses):!
817

PTEs (page table entries), 807,
807-808

Core i7, 826-828
TLBsfor,817-821,823

pthread_cancel [Unix] terminate
anotherthread,989

pthread_create [Unix] cre3.te a
thread;988

pthread_detach [Unix] detach
thread,990,990

pthread_'exi t [Unix] terminate
current thread, 989

pthread_j oin [Unix] re3.p a thread,
989

pthread_onc!e [Unix]~initializ<!•a
thread, 990, 1012 .,. •V'

pthread_self [Unixtget thread ID,
988

Pthreads,987,987-988,1010
public declarations (C++ and Java),

677
push instruCtions in x86-64 models1

·372 "')'
push operations on stack, 189, 189-191
pushq [x86-64] push quad word, 173,

190, 190, 357 ' l" '
Code for, 404 r;

processing steps, 370--371, ·392
run-time stack, 239

PUT method in HTIP, 951
"put to" operator (C++), 890

qsort function, 566
quad words, 177
QuickPath interconnect, 588, 826
quit command, 280 "! ,,
R_X86_64_32 (absolute addressing),

691
R_X86_p4_PC32 (PC-relative

addressing), 690
symbol table entry, 677
and Unix, 67,3 l

%r8 [Y86-64] program register,. 180,
355

%r8d [x86-64] low order 32 bits of
register %r8, 180

%r8W" [x86-64] low order 16 bits of
register %r8:•180

%r9 [Y86-64] program register, 180,
355

%r9d [x86-64] low order 32 bits of
register f.r9, 180

%r9w [x86-64] low order 16 bits of
register %r9, 180 1.f

%r10 [Y86-64] program registl:r; 180,
355

%r10d [x86-64] low order 32 bits of
register %r10, 180 1

%r10w [x86-64] low order 16 bits of
register,%r10, 180 t

%r11 [Y86-64] program register, 180,
355

%r11d [x86-64] low order 32 bits of
register %r1t, 180

0/.rllw [x86-64] low order 16 bits of
register %r11, 180

%r12 [Y86-64] program register, 180,
355

%r12d [x86-64] low order 32 bits of
register %r12, 180

i'.r12w [x86-64] low order 16 bits of
register %r12, 180

%r13 [Y86-64] program register, 180,
355

%r13d [x86-64] low order 32 bits of
register·%r13, 180 .i

%r13w [x86-64] low order 16 bits of
register %r13, 180

%r14 [Y86-64] program register, 180,
355

%r14d [x86-64] low order 32 bits of
register %r14, 180

%r14w [x86-64] low ordeL 16 bits of
registen%r14, 180

, %r15 [x86-64] program register, 180,
355

%r15d [x86-64] low order 32 bits of
register %r15, 180

%r15w [x86-64] low order 16 pits of
register %r15, 1-801

race. c [CS:AP.P] program.with a
race, 1025

race conditions, 776, 992
concurrent programming, 1025,

1025-1027
signals, 776---778

RAM. See random access memory
(RAM)

rand [CS:APP] pseudorandom
number generator, 1021, 1024

rand_r function, 1024
random access memory (RAM), 381,

581 1<
dynamic. See dynamic. RAM

(DRAM)
multiported, 382
processors, 384
SEQ timing, 401
static. See static RAM (SRAM)

random operations in SSDs, 600
random replatement policies, 612 .i

ranges
asymmetric, 66, 77 ' ~
bytes, 36
constants for, 67-68
data types, 40
integral types, 60-.62
Java standard, 68

RAS (row access strobe) requests, 583
%rax [Y86-64J program register, 180,

355
%rbp [Y86-64] program register, 180,

355
%rbx (Y86-64] program register, 180,

355
%rcx [Y86-64] program register, 180,

355
%rdi [Y86-64] program register, 180,

355
%nix [Y86-64] program register, 180,

355
reachability graphs, 866
reachable nodes, 866
read access, 289.. J.

read and echo input'fines function,•
947

read bandwidth, 639
read environment variable function,

751
read/evaluate steps, 753
read [Unix] read file', '895, 895--897

Index 10Z5

read-only memory (ROM), 586
read-only register, 527
read operations

buffered, 898, 900-901
disk sectors, 597-599
file metadata, 903-904 i:
files, 891, 895-897
SSDs, 601
unbuffered, 897--898
uninitialized memory, 871

read ports, 382
read_requesthdrs [CS:APPJ 'TINY

helper function, 960
read sets, 978
read throughput, 639 1,,.
read transactions

descriptions, 587
example of, 588-589

read/write heads, 592
readdir functions, 905,.,
READELF GNU of:\Jject file reader, 678,

713
readers-writers problem, 1006, 1008
reading

directory contents, 905-9061'
disk sectors, 597 (,

readline function, 903
readn function, 903
ready read descriptors, 978
ready sets, 978 .I

realloc function, 841
reap thread function, 989
reaping

child processes, 743, 743-749
threads, 989

rearranging signals in pipelining,
426--427

reassociation transformations, 541,
541-546,570

receiving signals,,758, 762-764
recording density, 591
recording zones, 592
recursive procedures, 253-255
redirection of 1/0, 909, 909-910
reduced instruction set Computers

(RISC),361
v. CISC, 361-363
SPARC processors, 471

reentrancy issues, 1023-1024
reentrant functions, 766, 1023 i,

reference bits, 827
reference counts, 906 .~
reference machines, 50'Z ,r x
referencing

data in free heap blocks, 874-875

1076 Index

referencing (continued)
nonexistent variables, 874

refresh, DRAM, 582
regions, deadlock, 1027-1028, 1028
register files, JO. 358

contents, 382-383, 521
purpose, 358-359
SEQ timing, 401

register identifier (ID), 358-359
register operands, 181
register specifier bytes in Y86-64

instruction, 358
register to memory move instruction,

356
register to register move instruction,

356
registers, 9

clocked, 381
data hazards, 435
data transfer, 245-248 1

hardware, '381-384
local, 527
local storage, 251-253
loop, 527
pipeline, 413, 427
program,355-356;381-384,435
read-only, 527
register files, 171
renaming, 522
spilling, 548-549
updating conventions, 179
write-only, 527
x86-64 integer, 179, 179-180
Y86-64, 359, 422-426

regular files, 833, 891
. rel. data section, 675
. rel . text section, 675
relabeling signals; 426--427
relative pathnames,•893
relative speedup in parallel programs,

1019
reliable connections; 930
relocatable object files, 5, 672, 673-

675
relocation, '673, 689-690

algorithm, 691
entries, 690, 690-=691
PC-relative references, 692-Q93
practice ~problems/694-'-695

remove item from bounded buffer
function, 1007

renaming registers, 522
rep [x86-64] string repeat instruction

used as no-op, 208
replacerri'ent policies, 613
replacing blocks, 612

report shared library error function,
702

reporting errors,.1043
request headers in HTIP,'951
request lines in HzyP, 951
requests

client-server model, 918
lflfP,951,951-952

requests for comments (RFCs), 965
reset configuration in pipelining, 460
resident sets; 810
resources

client-server model, 918
shared,1004-1008 •

RESP [Y86-64] register ID for %rsp,
404

response bodies in lfITP, 952
response headers in HTIP, 952
response lines in HTTP, 952
responses

client-server model, 918
lflTP, 952, 952-953

restart. c'[CS:APP] nonlocal jump
example, 785 ,1

restrictions, alignment: 273-276
ret [Y86-64] procedure return, 3b7
ret [x86-64] return from procedure

call,208,241-242
ret instruction, 404

processing steps, 395
Y86-64 pipelining, 428-429, 455-

457, 461-462·
retiming circuits, 421
retirement units, 521 t

retq [x86-64] return from procedure,
241 . I

return addresses, 241
predicting, 429
procedures, 240

return penalty in CPI, 467
reverse engineering

loops, 222
machine code, 165

revolutions per minute (RPM): .590,
RFCs (requests for comments),'965
ridges in memory mountains,1 641
right hoinkies (>), 910
right shift operations, 57-58, 192
rings, Bdolean, 521
RIO [CS:APP] Robust 1/0 package,

897
buffered functions, 898-902
origins, 903
unbuffered fuhctions, 897-898

rio_read [CS:APR] jntemal.read
function, 901

rio_readinitb [CS:APP] init read
buffer, 898, 900

rio_readlineb [CS:APP] robust
buffered read, 898, 902

rio_readn [CS:APP] robust
unbuffered read, 897, 897-899,
901,903

rio_readnb [CS:APP] robust
buffered read, 898, 902

rio_t [CS:APP] read buffer, 900
rio_writen [CS:APP]'robust' J,

unbuffered write, 89fo, 897-899,
903

rip [x86-64] program counter, 171
%rip program counter, 171
RISC (reduced ·instructi,on set

computers), 361
vs. CISC, 361-363
SPARC processors, 471

Ritchie; Dennis, 2, 4, 16, 35, 914
rmdir command, 892
rmmovq ["Y86-64] register'to memory

move, 356, 390, 404
RNONE-[¥86-64] ID for ipdicating no

register, 404
Roberts, Lawrence, 931
robust buffered readrf'unctions, 898,

902
Rob~st 1/0 (Rio) package, 897

buffered functions, 898-902
origins, 903
unbuffered functions, 897-898

robust unbuffered read function, 897,
897-899

robust unbuffered write function, 897,
897-899

. rodata section, 674
ROM (read-only memory), 586
root directory, 892
root' nodes, 866
rotating disks term, 591
rotational latency of disks;594
rotational rate of disks, 590
round-down mbde, 121, 121
round-to-even mode, 120, 120-121,

124 1;. rl
round-to-nearest mode, 120, 120
round-toward-zeto mode, J20, 120-

121
round-up mode, 121{121
rounding

in division, 105-106
ftoating-poinbrepresentation,

120--122
rbunding modes, 120, 120-122
routers, Ethernet, 921

routines, thread, 987
row access strobe (RAS) requests, 583
row-major array order, 258, 606
row-major sum function, 635, 635
RPM (revolutions per minute), 590.
rrmovq [Y86-64] register to register

move,356,404 1

%rsi [x86-64J program register, 180
%rsp [Y86-64] stack pointer program

register! 79--180,.,355
run command; 280
run concurrency, 733
run time

interpositioning, 710--712
linking, 670
shared libraries, 699
stacks, 171, 23~-241

running
in parallel, 734
processes, 739 ' ,.. ,,
prograllls,10-12, 750-756

. s assembly language files, 672
SA [CS:APP] shofthf!nd for struct

sockaddr, 933 < •

SADR [Y86-64] status code fori address
exception, 404

safe optimization, 498, 498-499
safe signal handling, 766-770
safe trajectories in progress graphs,

1000
safely emit error message and

terminate instruction, 766,
768

safely emit long int instructiqn, 766,
768

safely emit string instructio~n, 766, 768
SAL [instruction class] shift left, 192
salb [x86-64] shift left, 195
salq [x86,64] shift left, 195
salw [x86-64] shift left, 195
Sandy Bridge microprocessor, 168
SAOK [Y86-64] status code for normal

operation, 404f -'I

SAR {instruction class J shift arithmetic
right, 192, 195

SATA interfaces, 597
saturating arithmetic, 134
sbrk [C Stdlib] extend the heap, 841,

841
emulator, 855
heap memory, 850

Sbuf [CS:APP]•shared bounded
buffer package, 1005, 1006

sbuf_deinit (CS:"A.PP] free bounded
buffer, 1007

sbuf_init [CS:APP] allocate and init
bounded buffer, 1007

sbuf_insert [CS:APP] insert item in
a bounded buffer, 1007

slfuf_remove{CS:APP] remove item
from bounded buffer, 1007;

sbuf_t [CS:APPJ bounded buffer
used by SBUF package, 1006

scalar 'code performance summary,
547-548

scalar format data, 294
scalar.instructions, 296
scale factor in memory references, 181
scaling parallel programs, 101~,

1019-1020•
scanf function, 870---871
schedule alarm to self function, 762
schedulers, 736 •1

scheduling, 736 I •
events, 763
shared resources~ 1004-1008

SCSI interfaces, 597 ·
SDRAM (synchronous DRAM), 586
secon'd-level domain nameS', 928
second readers-writers problem, 1008
sectors, disk, 590, 590--592

access time, 593....!595
gaps,596
reading, 597-599

security monoculture, 285
security vulneraj::>ilities: 7

getpeername function, 8~7,
XDR library, .100

seeds for pseudorandom nufnber
generatdrs, 1021

seek operations, 593, 891
seek time for disks, 593, 593
segmentation faults, 7·29
segmented addressing, 287-288
segments

code,696,697-698
data, 696
Ethernet, 920, 920
loops, 526-527
virtual memory, 830 ~

segregated fits, 863; 864-865
segregated free lists, 863--865
segregated storage, 863
select [Unix] wait for 1/0 eventst

977
self-loops, 980
self-modifying code, 435 t"

sem_ini t [Unix] initialize semaphore,
1002

sem_post [Unix}V operation, 1002
sem_wait [Unix] P operation, 1002

Index 1077

!e!llaphores, 1001, 1001-1002
concurrent server example, 1005-

1013
for mutual exclusion, 1002~J_004
fori-scheduling shared resources,

1004-1008.
sending signals,,735, 759-762
separate compilation, 670
SEQ+ pipelined implementations,

421,421-422
SEQ Y86-64 processor deSign~

· See sequential Y86-64
implementation

sequentiaLcir'cuits, 381 •:..
sequential execution, 200--201
sequential operations in SSDs, 600
sequential reference patterns, 606
sequential Y86·64 implementation,

384,4:,1
decode and write.back stage,

406-408
execute stage, 408-409
fetch stage, 404-406
hardware structure, 396--400
instruction processing stagest

384-395
memory stage, 409-411 ~ .>

PC update stage, 411
performance, 412
SEQ+ implementations, 421,

421-422
timing, 400-403

serve_dynamic (CS:APP]/fINY
helper function, 963-964

serve_static [CS:APf] TINY helper
function, 961-963

servers, 21
client·server model, 918
concurrent. See concurrent servers
network, 21
Web. See Web servers.

service conversions in sockets
interface, 937-942

services in client-server model, 918
serving

dynamic content, 953--954
Web content, 949

set associative caches, 624
tine matching and word selection,

625-626
line replacement, 625
set selection, 625, 625

set bit in descriptor set macro, 978
set index bits, 615, 615--616
set on equal instruction, 203
set on greater instruction, 203

" I·

;I
,I

•"

]078 Index

set on greater or equal instruction, 203
set on less instruction, 203
set on less or equal instruction, 203
set on negative instruction, 203
set on nonneghtive instruction, 2b3
set on not equal instruction, 203
set on not greater itfstruction, 203
set on not greater or equal instruction,

203
set on not less instruction, 203
set on not' less or equal instruction,

203
set on not zero instruction, 203
set on unsigned greater instruction,

203
set on unsigned greater or equal

instruction, 203
set on unsigned less instruction, 203,
set on unsigned less or equal

instrUction, 203
set on unsigned not greater,instruction,

203
set on unsigned not less instruction,

203
set on unsigned not Jess or equal

instruction, 203
set on zero instruction, 203
set process group ID function, 759
set selection

direct-mapped caches, 618
fully associative caches; 625
set associative caches, 625

seta [x86-64] set on unsigned greater,
203

setae Lx86-64]'Se't on unsigned greater
or equal, 203

setb [x86-64] set on unsigned less, 203
set be [x86-'64] set on unsigned less or

equal, 203
sate [x86-64] set on equal, 203
setenv [Unix].create/change

environment variable, 752
setg [x86-64] set 'On greater, 203
setge [x86-64] set on greater or equal,

203
setjmp [C Stdlib] init nonlocal jump,

723, 781, 783
setjmp.c [CS:APP] nonlocal jump

• example, 784
setl [x86-64] set on less, 203
setle [x86-64] set on less or equal,

203
setna [x86-64] set on unsigned not

greater, 203
setnae [x86-64] set on unsigned not

less or equal, 203

setnb [x86-64] set on unsigned not
less, 203

setnbe [x86-64] set on unsigned not
less or equal, 203

setne [x86-64] set oi\ not equal, 203
setng [x86-64] set on not greater, 203
setnge [x86-64] set on·not greater or

*equal, 203 '
setnl [x86-64] set on not less,·203
setnle [x86-64] set on not 1€ss or

equal,203
setns [x86-64] set on nonnegative,

203
setnz [x86-64] s~ on not zero, 203
setpgid [Unix] set process group ID,

759
sets'

vs. cache lines, 634
membership, 380-381>

sets [x86-64] set on negative, 203
setz [x86-64] set on zero, 203
SF [x86-64] sign flag condition code,

201, 355 ,
sh [Unix] Unix shell program, 753
Shannon, Claude, 51
shared areas, 834
shared libraries, 19,' 699

dynamic linking with, 699-701
loading and linking from

applications, 701'-703
shared object files, 673
shared objects, 699, 833'>-836, 834
shared resources, scheduling, 1004-

1008
shared variables, 992-995, 993
sharing

files, 906-908
virtual memory for1 812

sharing . c [f:S:APP] sharing in
Pthreads programs, 993

shellex.c [CS:APP] shell main
routine, 754

shells, 7, 753
shift arithmetic right instruction, 192
shift left instruction, 192
shift logicai right instruction, 192
shift operations, 57; 57-59

for division, 103-107
machine.language, 194-196
for multiplication, 101-103
shift arithmetic right instruction,

192 .
shift left instruction, 192
shift logical right instruction, 192

SHL [instruction class] shift left, 192,
195

SHLT [Y86-64] status code for halt,
404

short counts, 895
short {C] integer data type, 40, 61
SHR [instruction class] shift logical

right, 192, 195
%si [x86-64] low order 16 bits of

register %rsi, 180i
side effects, 500 ..(
sig_atomic_ttype,770
sigaction [Unix] install portable

handler, 775
sigaddset [Unix] add signal to signal

set, 765
sigdelset [Unix] delete signal from

signalset, 765
sigemptyset [Unix] clear a signal set,

765
sigfillset [Unix] add every signal

to signal set, 765
sigint. c [CS:APP} cafches-SIGINT

signal, 763
sigismember [Unix] test signal set

membership, 765
siglongjmp [Ullix] init nonlocal

jump, 783, 785
sign bits

floating-point representation, 137
two's compleillent repre'sentation,

64
sign extension, 77, 77, 183-184
sign flag condition code, 201, 355
sign-magnitude representation, 68
Signal [CS:APP] portable version of

signal, 775
signal handlers, 758

installing, 763
writing, 766-775
Y86-64, 364

signal 1 . c [CS:APP] flawed 'signal
handler;771 ,,..

signal2. c [CS:APP] fiawed signal
handler, 772

signals, 722, 756-.758
blocking and unblocking, 764--765
correct handling, 770--774
enabling and disabling, 52
flow synchronizing: 776---778
portable handling, 774--775
processes, 739
receiving, 762, 762-764
safe handling, 766-770
sending, 758, 759-762'
terminology, 758-759
waiting for, 778-781

Y86-64 pipelined implementations,
426-427

signed [C] integer data type, 41
signed divide instruction, 198, 199
signed integers, 32, 40, 61-62, 67

alternate representations, 68
shift operations, 58
two's complement encoding, 64--70
unsigned conversions, 70-76

signed multiply instruction, 198, 198
signed number representation

guidelines, 83-84
ones' complement, 68
sign magnitude, 68

signed size type, 896 ,),
significands in floating-ppint ,,

representation,,112
signs for floating-point representation,

112, 112-113
SIGPIPE signal, 964
sigprocrnask [Unix] block and

unblock signals, 765, 781
sigsetjmp [Unix] init nonlocal,

handler jump, 781, 785
sigsuspend [Unix] wait for a signal,

781
%sil [x86-64] low order 8 of register

Y.rsi, 180.
SimAquarium game, 637-638
SIMD (single-instruction, multiple­

data) parallelism126, 294, 546,
547

SIMD streaming extensions (SSE)
instructions, 276

simple segregated storage, 863,
863-864

simplicity in instruction processing,
385

simulated concurrency, 24
simultaneous multi-threading, 25
single-bit data connections, 398
single-instruction, multiple-data .1

(SIMD) parallelism, 26, 294,
546-547

single-precision floating-point
representation ,•

IEEE,113, 113
machine-level data, 178
support for, 41

SINS [Y86-64] status code for illegal
instruction exception, 404

sio_error [CS:APP] safely emit
error message and terminate,
766, 768

sio_ltoa [CS:APPJ safely emit stfing,
768

sio_putl (CS:APPJ safely emit long
int, (66, 768

sio_puts [CS:APPJ safely emit string,
766, 768

sio_strlen (CS:APPJ safely emit
string, 768

size
blocks, 848
caches, 632-633
data, 39-42
word,8,39

size classes, 863
size_t [Unix] unsigned size type for

designating sizes, 44, 83-84, 86,
99, 896 rl

SIZE tool,.713
sizeof [CJ compute size pf object, 45,

129-131, 133
slashes (/)for root directory, 892
sleep [Unix] suspend pr.ocess,'749
slow system calls, 774
. so shared object file, 699
sockaddr [Unix] generic socket

address structure, 933
sockaddr _in [Unix] Internet-style

socket address structure, 933
socket addresses, 930
socket descriptors, 912, 934
socket function, 934
socket pairs, 930
sockets, 892, 930 ...
sockets interface, 932, 932-933

accept function, 936,:-937
address structures, 933-934
bind function, 935
connect function, 934-935
example, 944-947
helper functions, 942-944
host and service conversions,

937-942
listen function, 935
open_clientfd function, 934-935
socket function, 934 ..

Software Engineering Institute; 100
software exceptions

C++~and Java, 786
ECF for, 723-724
vs. hardware, 724

Solaris Sun Microsystems operating
system, 16, 45

solid state disks (SSDs), 591, 600
benefits, 587
operation, 600--602

sorting performance, 566--567•
source files, 3
source hosts, 922

Index 1079

source programs, 3
southbridge chipsets, 588
SoYiet Union, 931
%sp (x86-64J low order 16 bits of stack

pointer register /.rsp, 180
SPARC

five-stage pipelines, 471
RISC processors, 363
Sun Microsystems processor, 45

spare cylinders, 596
spatial locality, 604

caches,643-647
exploiting, 614

special arithffietic operations, 197-200
special control conditions in. Y86-64

pipelining
detecting, 457-459
handling, 455-457

specifiers, operand, 180-182
speculative execution, 519, 519,

549-550
speedup of parallel programs, 1018,

1018-1019
spilling, register, 548---549
spin loops, 778
spindles, disks, 590
%spl [x86-64] low order 8 of stack

pointer register,%rsp, 180
splitting

free blocks, 849-850
memory blocks, 847

sprintf [C Stdlib] function, 47,,282
Sputnik, 931
sqrtsd [x86-64] double-precision

square root, 302
sqrtss [x86-64J single-precision

square root, 302
square root floating-point instructions,

302
squashing mispredicted branch

handling, 444
SRAM (static RAM), 13, 581, 581-582

cache. See caches and cache memory
vs. DRAM, 582
trends, 602-603

SRAM cells, 581
srand [CS:APP] pseudorandom

number generator seed, 1021
SSDs (solid state disks), 5911600

benefits: 587 "
operation, 600--602

SSE (streaming SIMD extensions)
instructions, 167-168, 2941

alignment exceptions, 276
parallelism, 546-547

ssize_t [Unix] signed size type, 896

1080 Index

stack corruption detection, 286-289
stack frames,' L40, 240--241

alignment on, 276, ·
/ variable-size, 290--293
stack pointers, 239
stack protectors, 286-287

"
stack randomization, 284-286
stack storage allocation function, 290,

324
stacks, 19, 189, 189--191

bottom, 190
buffer overflow, 871
with execve function; 751-752·
local storage, 248-251
machine-level programming, 191
overflow. See _buffer overflow
recursive pro'Cedures, 253-255
run time, 239-241
top, 190
Y86-64 pipelining, 429

stages, SEQ, 384--395
Clecode and write-back,1406-408
exec\Jte, 408-409 'l ~
fetch, 404-406
memory stage, 409-411
PC update, 411

stalling 1

for data hazards,t 442
pipeline, 433-436, 459-460

Stallman, Richard, 6!·16
standard C library, 4,~5
standafd error files, 891
standard UO library, 911, 911
standard input files, 891
standard output files, 891
Standard Unix Specification, 16
_start, 698
starvation in readers-writers problem,

1008
stat [Unix] fetch file metadata, f

903-904
state machines, 980
states 1'

bistable memory, 581
deadlock, 1027 ·
prOcessor, 723
programmer-visible, 355, 355-356
progress graphs, 999
state machines, 980,

static libraries, 684, 684=-688 f• 1

static linkers, 672
static linking, 672
static RAM (SRAM), 13,'581-582

cache. Sei caches and' cache memory
vs. DRAM, 582

trends, 602-603
static [C] variable'and function

attribute, 676; 677 ;994
static variables, 994, 994-995
static•We6 content, 949
status code registers, 435
status codes

HTIP,953
Y86-64,363--364,364

status messages in HITP, 953
status register hazards, 435
STDERR_FILENO [Unix] constant for

standard error descriptor, 891
stderr stream, 911
STDIN_FILENO [Unix] codstant for

standard input descrii)tor, 891
stdin stream, 911 •_,
stdint. h file, 67 !

<stdio. h> [Unix] standard 1/0
library header file, 84, 86 't·

stdlib, 4, 4-5 'I

STDOUT_FILENO [Unix] constant for
st<indard output descriptor, 891

stdout stream, 911 •
stepi command, 280
stepi4 command;'280
Stevens, W. Richah:l, 903, 914, 965,

1041
stopped processes, 739
storage. see also information storage

device hierarchy, 14
registers, 251-253 .,,,_
stack, 248-251

storage classes for variables, ·994-995
store buffers, 557-558 •••
store instructions, 10
store operatidns

example, 588
processors,•521

store performance of memory~ 555-
561 r

STRACE tool, 786
straight-line code, 200--201
strcat [C Stdlib] string concatencition

function, 282
strcpy [C Stdlib] string copy functibn,

282 l

streaming SIMD extensions (SSE)
instructions, 169-168, 294

alignment exceptions, 276
parallelism, 54()....547

streams; 911
buffers, 911
directory, 905
full duplex, 912

strerror function, 738
stride-1 reference patterns, 606··
stride-K reference patterns, 606
string~concatenation function, 282
string wcop)r function, 282
string generation function, 282
strings 'J

in buffe'i overflow, 279, 281
length, 83
lower~ase conversions;509--511
representing, 49

STRINGS tool, 713
STRIP tool, 713
strlen [C StdlibJ string length

function, 83, 509-511
strong scaling, 1019
strong symbolS, '680
. strtab section, 675
strtok [C Std lib] string function, 1024
struct [CJ structure data typb, 265•1
structures

address, 933-934
heterogeneous. See heterogeneous

data structiires
machine-leVeI programming, 171

SUB [instruction class] subtract, 192
subdomains, 927.
subq [Y86-64] subtract, 356:.388
substitution, inline, 501
subtract instruction, 192
subtract opeiation in execute stage,

408
subtraCtion, floating-point, 302
sumarraycols [CS:APFJ column­

major sum, 636
sumarrayrows [CS:APP] row-major

sum, 635, 635
sumvec [CS:APP] vector sum;-634,

635-636
Sun Microsystems, 45

five-stage pipelines, 471
RISC processors, 363
security vulnerability,.100

supercells, 582, 582-583
superscalar~processors, 26,.471, 518
supervisor mode, 735
surfaces, disks, 590, 595
suspend process function, 749
suspend ,until signal arrives function,

750
suspended processes, 739
swap areas: 833
swap files, 833
swap space, 833
swapped-in pages, 8,09

' ,
<

swapped-out pages, 809 ,l
swapping pages, 809
sweep phase in Mark&Sweep garbage

collectors, 867
Swift, Jonathan, 43
switch [CJ multi way branch

statement, 232-238
switches, context, 736--,737
symbol resolution, 673, 679

duplicate symbol names, 680-684,
static libraries, 684-688

symbol tables, 675, 675--079
symbolic links, 892
symbolic methods, 466
symbols

address translation, 814
caches, 617
global, 675
local, 676
relocation, 689-695
strong and weak, 680

. symtab section, 675
synchronization

flow, 776-778
Java threads, 1010
progress graphs, 1000
threads, 995-999

progress graphs, 999-1001
with semaphores. See sema­
phores

synchronization errors, 995
synchrono,us DRAM (SDRAM), 586
synchronous exceptions, 727
I sys filesystem, 736
syscall function, 730 /
system bus, 587
system calls, 17, 727, 727-728

error handling, 737-738
Linux/x86-64 systems, 730-731
slow, 774

system-level functions, 730
system-leyel I/Q

closing files, 894-895
file metadata, 903-904
vo·redirection, 909-910
opening files, 893-895
'packages summary, 911-913
reading files, 895-897 L

RIO package, 897-903
sharing files, 906-908
standard, 911
summary,913-914
Unix !JO, 890--891
writing files, 896---!397

system startup.function, 698

System V Unix, 16
semaphores, 977
shared memory, 977,,.

T2B (two's complement to binary
conversion), 60, 65, 71

'

T2U (two's complement to unsigned
conversion), 60, 71, 71-73. •

1

tables "•
descriptor,907,909
exception, 725,.725 1

GOTs, 705, 705-707
hash,567-568
header,674,696 /
jUIDp,233,234-235,725
page, 736,806-808,807,819--821,

823
program header, 696, 696
symbol, 675, 675--079

tag bits, 615, 616
tags, boundary,851,851--854,859
Tanenbaum, Andrew S., 20
target functions in jnterpositioning

libraries, 708
target~ jump, 206, 206-209
TCP (Transmission ControlProtocol),

924
TCP/IP (nansmissicrn Control

ProtocoVInternet Protocol),
924

tcsh [Unix) Unix shell program~ 753
TELNET remote login program, 950,

950-951
temporal locality, 604

blocking for, 647
exploiting,..614

terminate another thread function,

989 '"
terminate current thread function, 989
terminate process function, 739'
terminated processes, 739
terminating

processes, 739-743
threads, 98&-989.

TEST [instruction class J Tust, 202
test byte instruction, 202
test double word instruction, 202
test instructions, 202
test quad word instruction, 202 •1

test signal set membership instruction,

765 '·
test word instruction, 202
testb [x86-64] test byte, 202
testing Y86-64 pipeline design, 465
testl [x86-64] test double word, 202

Index 1081

testq [x86-64].test quad word, '202
testw [x86-64] test word, 202
text files, 3, 891, 892, 900
text lines, 891, 898 'f\.
text representation

ASCII, 49
Unicode, 50

. text section, 674
Thompson, Ken, 16
thrashing

direct-mapped caches,.622, 622-623
pages, 810

thread contexts, 986, 993
thread IDs (TIDs), 986
thread-level concurrency, 24-26
thread-level parallelism, 26
thread routines, 987, 988
thread-safe functions, 1020, 1020-1022
thread-unsafe functions, 1020, 1020-

1022
threads,17,18,973,985-986

concurrent server based on, 991-
992

creating, 988
detaching, 989-990
execution model, 986-987
initializing, 990
library functions for, 1024-1025
mapping variables in, 994-995
memory models, 993-994
for parallelism, 1013-1018.
Posix, 987-988
races, 1025-1027
reaping, 989
safety issues, 1020-1022
shared variables with, 992..-995, 993
synchronizing,995-999

progress graphs, 999-.1001
with semaphores. See sema­
phores

terminating, 988---989
thre~stage pipelines, 414-416
throughput, 524

dynamic memory allocators, 845
pipelining for. See pipelining
read, 639

throughput bounds, 518, 524
TIDs (thread IDs), 986
time slicing, 733
timing, SEQ, 400-403
TINY [CS:APP] Web server, 956,

956-964
1LB index (TLBI), Sn
TLB tags (1LBT), 817, 823
TLBI (1LB index), 817

'

1082 Index

TLBs (translation lookaside buffers),
470, 817, 817-825' .,

TLBT (TLB tags),.817~ 823
TMax (maximum two's Coffiplement

nuIIlber),60,65,66
TMin (minimum two's complement

nuIIlber), 60, 65, 66, 77
top of stack, 190, 190
TOP tool, 786
topological sorts.of vertices, 742
Torvalds, Linus, 20
touching pages, 833
TRACE Illethod, 951
tracing execution, 387, 394-395, 403
track density of disks; 591
tracks, disk, 590, 595
trajectories in progress graphs, 1000,

' 1000
transactions'

bus, 587, 588-589
client-server model, 918
client-server vs. database, 919
HTTP, 950-953

transfer time for disks, 594
transfer units, 612 1'

transferring Control, 241-245
transformations, reassociation, 541,

541-546,570
transistors' in Moore's1Law, 169
trat)sitions

progress graphs~1999
state machines, 980

translating programs, 4-5
translation

address. See address translation
swi tcl:t statements,'233

translation lookaside buffers E'tLBs).
470! 817. 817-'1!25

Transmission 'Control Protocol (TCP),
924

Transmission Control Protocol/
Internet Protocol (TCP/IP),
924

trap excepti6n class';4727
traps, 727;727-728
tree height reduction, 570
tree strucfure, 270--271
truncating numbers, Sf-82
two-operand multiply instructions,

198 .,
two-way parallelism~536-537
two's-complement representaticin

addition, 90--95 '
asymmetric range, 66, 77
bit-level representation, 96

encodings, 32
minimum value, 65
multiplication, 97-101
negation, 95
signed and unsigned conversions,

70-74
signed numbers, 64, 64-70

typedef [CJ type definition, 44, 47
types

conversions. See conversions
floating point, 1-24-126
integral, 60, 60-62
machine-level, 171, 177:..173
MIME,949
naming,47
pointers, 3'6, 277
pointers associated with, 34

U2B (unsigned to binary conversion),
60,64,71,74

U2T (unsigned to two's-complement
conversion), 60, 71, 73, 82

ucomisd [x86-64}compare double
precision, 306 r

ucomiss [x86-64] Compare single
precision, 306

UDP (Unreliable Datagram
Protocol), 924

UINT _MAX constant, maximum
unsigned integer, 68

UINTN _MAX [C] m'aximum-value of
N-bit unsigned data type, 67

uintN _t [C] N-bit unsigned integer
data type, 67

um.ask function, 894-895
UMax (maximum unsigned rturhber),

63,66--67
unallocated pages, 805
unary operations, 194
unblocking signals, 764-765
unbuffered input and output, 897-898
uncached pages, 806
unconditional jump instruction, 357
underflow, gradual; 115
Unicode characters, 50
unified caches, 631
uniform resource identifiers'(URis),

951
uninitialiied memory, reading, 871
uni6ns, 44, 269-273
uniprocessor systems, 16, 24
United States, ARPA creation in, 931
universal resource locators (URLs),

949 "
Universal Serial Bus (USB), 596

Unix 4.xBSD, 16, 932,
unix_error [CS:APP] reports Unix­

style errors, 738, 738, 1043
Unix !PC, 977
Unix operating systems, 16, 16, 35

constants, 746
error handling, 1043,·1043
1/0, 19, 890, 890-891 ,

Unix signals, 759
unlocking mutexes, 1003
unmap disk object function, 839'
unordered, floating-point comparison

outcome, 306
unpack and interleave low packed

double precision instruction,.298
unpack and interleave low packed

single precision instruction, 298
Unreliable Datagram Protocol

(UDP),924
unrolling

k x 1, 531
k x la, 544
k x k, 539-540
loops,502,504,531,531-535,572

unsafe regions in progress graphs;
1000

unsafe trajectories ln progress graphs,
1000

unsetenv [Unix] delete environment
variable, 752

unsigned [C] integer data type, 41, 61
unsigned representatiohs, 83--84

•addition, 84-90
conversions, 70-76 1•

division, 198, 199
encodings, 32, 62-64
integers, 40
maximum value, 63
multiplication, 96-97, 198, 198

unsigned size type, 896
update instruCtions, 9-10
URis (uniform resource identifiers)/'

951
URLs (univei'sal resource locators),

949
USB (Universal serial Bus), 596
user-level memory mapping, 837-839
user mode, 726

processes, 734-736, 735
regular functions in, 728

user stack, 19
UTF-8 characters, 50

V [CS:APP] wrapper function for
Posix sem._post, 1002

v-node tables: 906
V semaphore"operation,.·1001, 1Dp1-:o

1002
VA. See virtual addresses (VA)
vaddsd [x86-64] double-precision

addition, 302 :iu -,
vaddss [x86-64] single-precision

addition, 302
VALGRIND program, 569
valid bit

cache li~!f, 615 !
page tables, 807

valueS', pointers, 36, 277
vandpd [x86-64] and packed double

precision, 305 1•1 ~

vandps [x86-64] and packed single
precision', 305 1

variable-size stack.frames, 290--293
variable-size arrays, 262-265 Y

variables •· ' .. T , •

mapping, 994-995
nonexistent; 874
shared,992-995,993
storage classes, 994--9951

VAX computers (Digital Equipment
Corporation), Boolean
operations, 56

vcvtps2pd [x86-64] convert packed
single to packed double
precision, 298

vcvtsi2sd [x86-64] convett integer to
double precision, 297

vcvtsi2sdq [x86-64] convert quad­
word integer to double precision,
297

vcvtsi2ss [x86-64] convert integer to
single precision, 297

vcvtsi2ssq [X861h4] convert quad­
word .integer to single precisiont
297

vcvttsd2si [x86-64] convert double
precision to integer, 297

vcvttsd2siq•[x86-64J convert double
precision to quad-word integer,
297

vcvttss2si.[x86-64J convert single
precision to integer, 297

vcvttss2siq [x86-64] convert single
precision to quad-word integer,
297 t

vdivsd [x86-64] double-precision
division, 302

vdivss [x86-64] single-precision
division, 302

vector data types, 26, 504-507

vector dot product function, 622
vector registers, 171, 546
vector sum function, 634, 635--1i36
vectors, bit, 51, 51-52
verification in pipelining" 466 "'v
Verilog hardware description language

for logic design, 373 h .u
Y86-64 pipelining impJementation,

467 .
vertical bars l I for OR operation, 373
VHDL hardware description.._

language, 373 ,1 ,

victim blocks, 612 J,,1

Video RAM (VRAM), ~86
virtual address spaces: 18, 34, 804
virtual addresses (VA)

machine-level programming, 170.
171

vs. physical, 803-804
Y86-64, 356 '

virtual machines
as abstraction, 27
Java byte code, 310

virtual memory (YM)', 15, 18, 34,
802 ,.

as abstraction, 27 J- _,r1

addressspaces,804-805
address-translation. See address

translation
bugs, 870-875
for caching, 805-811

1

characteristics, 802--803
Core i7, 825-828 .1

dynamic memory alloc3.tioh. See
dynamic memory allo~ation

garbage collection, 865--870 .I

Linux, 830-833
in loading, 699
managing, 839
mapping. See memory mapping
for memory management, 811.-812
for memory protection,.812.--813
overview, 18--19 .X
physical vs. virtilal addre.sses,"'r

803-804 y
summary,875-876

virtual page.numbers (VBNs), 8/4
virtual page offset (VPO), 814.
virtual pages (VPs), 289, 805, 805-806
viruses, 285-286
VLOG implementation of Y86-64

pipelining, 467
VM. See virtual memory (VM)
vmaxsd [x86-64] double-precision

maximum, 302

Index 1083

vmaxss [x86-64] single-precision~ """'
maximum, 302

vminsd [x86-64] double-precision
minimum, 302

vminss [x86-64] single·precislon
minimum, 302

vmovapd [x86~64] move aligned,
packed double precision,,296

vmovaps [x86-64] move aligned!
packed single precision, 296

vmovsd [x86-64] move double
precision, 296

vmovss [x86·64J move single precision,
296

vmulsd [x86-64] doublet-precision
multipliccition, 302

vmulss [x86-64] single-precision
multiplication;302

void* [C] untyped pointers, 48
volatile [C] volatile type.qualifier,

769-770
VP (virtual pages), 289, 805,<805-806
VPNs (virtual page numbers), 814!
VPO (virtual page offset), 814 ':
VRAM (video RAM), 586. •
vsubsd [x86-64] double-precision,•

subtraction, 302
vsubss [x86-64J single-precision

subtraction;t302
1 VTUNE program, 569· "" r

vulnerabilities, security, 86-87
vnnpcklpd [x86-64] unpack and

interleave lowpack~d double
precision, 298

vunpcklps [x86-64] nnpack and
interleave low packed single
precision, 298

vxorpd [x86-64]•EXCLUSIVE-OR packed
double precision, 305

vxorps [x86·.64] EXCLUSIVE-OR packed
single precision,.305

wait [Unix] wait for child process, 746
wait for child process functions, 744,

746-749 '
wait for client connection request:,

function, 936, 936-937
wait for signal instruction, 781
wait. h file, 746
wait Sets, 744, '244
waiting for signals, 778-781
wai tpid [Unix] wait for child process,

743, 746-749
waitpidl [CS:APP] waitpid

example, 747

1084 Index

waitpid2 [CS:APP] Yaitpid
example, 749

WANs (wide area networks), 921,
921-922

warming up Cl,lches, 612
WCONTINUED constant, 744
weak scaling, 1019, 1020
weak symbols, 68(),
wear leveling logic, 601
Web clients, 948, 948
Web servers, 701, 948

'basics, 948-949
dynamic content, 953-954
HITP transactions, 950-953
1lNY example, 956-964
Web content, 949-950

Well-known ports, 930
well-known service names, 930
while [C] loop statement, 223-228
wide area networks (WANs), 921,

921-922
WIBEXITED constant, 745
WIFEXITSTATUS constant, 745
WIFSIGN?\LED constant, 745
WIFSTOPPED constant, 745
WindowS Microsoft operating system,

27,45
wire names in hardware diagrams, 398
WNOHANG constant, 744-745
word-level combin3tional circuits,

376-380
word sel~ction

direct-mapped caches,'619
fully associative caches;627--628
set associative caches, 625-626

word size; 8, 39
words, 8, 177
working sets, 613, 810
world-wide data connectidnS in

hfirdware diagrams, 398
World Wide Web, 949
worni. programs, 284-286
wrapper functions, 711

error handling, 738,1041, 1043-1045
interpositioning libraries, 708

write•access, 289
write-allocate approach, 630
write-back approach, 630
write-back stage

instruction processing, 385, 387-397

PIPE processor, 449-453
sequential processing, 400
sequential Y86-64 implementation,

406-408
write (Unix] write file, 895; 896-897
write hits, 630
write issues for caches, 630-631
write-only re'gister, 527
write operations for files, 891, 896-

897
write ports

priorities, 408
register files, 382

write/read dependencies, 557-559
write strategies for caches, 633
write-through approach, 630
write transactions,.·587, 588-589
wri ten function, 903
writers in readers-writers problem,

1006,1008
writing

signal handlers, 766-775
SSD oprations, 600

WSTOPSIG constant, 745
WIERMSIG constant, 745
WUNTRACED ,constant, 744-745

x86 Intel microprocessor line, 166
x86-64 instruction set architecture vs.

Y86-64,'360
x86-64 microprocessors, 168

array access'; 256
cOnditional move instructions,

214-220
data alignment, 276
exceptions·; 729-731 "
Intel-compatible 64-bit micropro-

cessors, 45
machine language, 165-166
registers

data movement, 182-189
operand specifiers, 180-182

vs. Y86-64, 365-366
x87 microprocessors, 167
XDR library security vulnerability,

100
%xmm [x86-64] 16-byte media register.

'subregion of .YMM, 295
%xmm0, return floating-point value

register, 299, 301

XMM, SSE vector registers~ 29~296
XOR,[instruction class] EXCLUSIVE-OR,

192
xorq [Y86-64] EXCLUSIVE-OR, 356

Y86-64 instruction set architecture,
353-354,

details, 370--372
exception handling, 363-364
hazards, 435
instruction encoding, 35g.....360
instruction set, 356-358
programmer-visible state, 355-

356
programs, 364-370
se'quential implementation.

See sequential Y86-64
implementation

vs. x86:64, 360 ,,. ,
Y86-64 pipelined implementations,

421
computation stages, 421-422
control logic. See,controi lbgic in

pipelining
exception handling, 444-447
hazards. See hazards in pipelining
memory system interfacing, 469-

470 t~,

multicyCle-instructions, 468-469
performance analysis, 464-468
predicted values, 427-429
register insertions, 422-426
signals, 426-427
stages. See PIPE processor stages
testing, 465
verification;466 ,.,,
Verilog, 467'

YAS Y86-64 asserrlbler, 366
YIS Y86-64 instruction set simulator,

366
%ymm [x86-64] 32-byte•media registe>,

295 Jt •

YMM, A VX vector registers, 294-296

zero extension, 77
zero flag condition code, 201, 306, 355
ZF [x86-64] zero flag condition code,

.201, 306, 355
zombie processes, 743, 743-744, 770
zones, recording, 592

,,

Computer Organization and Architecture I Computer Systems

www.pearsonhighered.com

ISBN 978-0-13-409266-9

I Ill I 90 0 00

9 780134 092669111111

	Front Cover
	Preface
	Table of Contents
	Chapter 1: A Tour of Computer Systems
	1.1: Information Is Bits + Context
	1.2: Programs Are Translated by Other Programs into Different Forms
	1.3: It Pays to Understand How Compilation Systems Work
	1.4: Processors. Read and Interpret Instructions Stored in Memory
	1.5: Caches Matter
	1.6 Storage Devices Form a Hierarchy
	1.7: The Operating System Manages the Hardware
	1.8: Systems Communicate with Other Systems Using Networks
	1.9: Important Themes
	1.10: Summary
	Bibliographic Notes
	Solutions to Practice Problems

	Part I: Program Structure and Execution
	Chapter 2: Representing and Manipulating Information
	2.1: lnformation Storage
	2.2: Integer Representations
	2.3: Integer Arithmetic
	2.4: Floating Point
	2.5: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 3: Machine-Level Representation of Programs
	3.1: A Historical Perspective
	3.2: Program Encodings
	3.3: Data Formats
	3.4: Accessing Information
	3.5: Arithmetic and Logical Operations
	3.6: Control
	3.7: Procedures
	3.8: Array Allocation and Access
	3.9: Heterogeneous Data Structures
	3.10: Combining Control and Data in Machine-Level Programs
	3.11: F!oating-Point Code
	3.12: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 4: Processor Architecture
	4.1: The Y86-64 Instruction Set Architecture
	4.2: Logic Design and the Hardware Control Language HCL
	4.3: Sequential Y86-64 Implementations
	4.4: General Principles of Pipelining
	4.5: Pipelined Y86-64 Implementations
	4.6: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 5: Optimizing Program Performance
	5.1: Capabilities and Limitations of Optimizing Compilers
	5.2: Expressing Program Performance
	5.3: Program Example
	5.4: Eliminating Loop Inefficiencies
	5.5: Reducing Procedure Calls
	5.6: Eliminating Unneeded Memory References
	5.7: Understanding Modern Processors
	5.8: Loop Unrolling
	5.9: Enhancing Parallelism
	5.10: Summary of Results for Optimizing Combining Code
	5.11: Some Limiting Factors
	5.12: Understanding Memory Performance
	5.13: Life in the Real World: Performance Improvement Techniques
	5.14: Identifying and Eliminating Performance Bottlenecks
	5.15: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 6: The Memory Hierarchy
	6.1: Storage Technologies
	6.2: Locality
	6.3: The Memory Hierarchy
	6.4: Cache Memories
	6.5: Writing Cache-Friendly Code
	6.6: Putting It Together: The Impact of Caches on Program Performance
	6.7: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Part II: Runinng Programs on a System
	Chapter 7: Linking
	7.1: Compiler Drivers
	7.2: Static Linking
	7.3: Object Files
	7.4: Relocatable Object Files
	7.5: Symbols and Symbol Tables
	7.6: Symbol Resolution
	7.7: Relocation
	7.8: Executable Object Files
	7.9: Loading Executable Object Files
	7.10: Dynamic Linking with Shared Libraries
	7.11: Loading and Linking Shared Libraries from Applications
	7.12: Position-Independent Code (PIC)
	7.13: Library lnterpositioning
	7.14: Tools for Manipulating Object Files
	7.15: Summary
	Bibliographic Notes
	Homework Problems

	Chapter 8: Exceptional Control Flow
	8.1: Exceptions
	8.2: Processes
	8.3: System Call Error Handling
	8.4: Process Control
	8.5: Signals
	8.6: Nonlocal Jumps
	8.7: Tools for Manipulating Processes
	8.8: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 9: Virtual Memory
	9.1: Physical and Virtual Addressing
	9.2: Address Spaces
	9.3: VM as a Tool for Caching
	9.4: VM as a Tool for Memory Management
	9.5: VM as a Tool for Memory Protection
	9.6: Address Translation
	9.7: Case Study: The Intel Core i7/Linux Memory System
	9.8: Memory Mapping
	9.9: Dynamic Memory Allocation
	9.10: Garbage Collection
	9.11: Common Memory-Related Bugs in C Programs
	9.12: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Part III: Interaction and Communication between Programs
	Chapter 10: System-Level I/O
	10.1: Unix I/O
	10.2: Files
	10.3: Opening and Closing Files
	10.4: Reading and Writing Files
	10.5: Robust Reading and Writing with the RIO Package
	10.6: Reading File Metadata
	10.7: Reading Directory Contents
	10.8: Sharing Files
	10.9: I/O Redirection
	10.10: Standard I/O
	10.11: Putting It Together: Which I/O Functions Should I Use?
	10.12: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 11: Network Programming
	11.1: The Client-Server Programming Model
	11.2: Networks
	11.3: The Global IP Internet
	11.4: The Sockets Interface
	11.5: Web Servers
	11.6: Putting It Together: The TINY Web Server
	11.7: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Chapter 12: Concurrent Programming
	12.1: Concurrent Programming with Processes
	12.2: Concurrent Programming with I/O Multiplexing
	12.3: Concurrent Programming with Threads
	12.4: Shared Variables in Threaded Programs
	12.5: Synchronizing Threads with Semaphores
	12.6: Using Threads for Parallelism
	12.7: Other Concurrency Issues
	12.8: Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Appendix A: Error Handling
	A.1: Error Handling in Unix Systems
	A.2: Error-Handling Wrappers

	References
	Index
	Back Cover

