
(To appear in ALGORITHMICA)

On–line construction of suffix trees 1

Esko Ukkonen

Department of Computer Science, University of Helsinki,

P. O. Box 26 (Teollisuuskatu 23), FIN–00014 University of Helsinki, Finland

Tel.: +358-0-7084172, fax: +358-0-7084441

Email: ukkonen@cs.Helsinki.FI

Abstract.

An on–line algorithm is presented for constructing the suffix tree for a

given string in time linear in the length of the string. The new algorithm has

the desirable property of processing the string symbol by symbol from left to

right. It has always the suffix tree for the scanned part of the string ready.

The method is developed as a linear–time version of a very simple algorithm

for (quadratic size) suffix tries. Regardless of its quadratic worst-case this

latter algorithm can be a good practical method when the string is not too

long. Another variation of this method is shown to give in a natural way the

well–known algorithms for constructing suffix automata (DAWGs).

Key Words. Linear time algorithm, suffix tree, suffix trie, suffix automa-

ton, DAWG.

1Research supported by the Academy of Finland and by the Alexander von Humboldt

Foundation (Germany).

1

1. INTRODUCTION

A suffix tree is a trie–like data structure representing all suffixes of a

string. Such trees have a central role in many algorithms on strings, see

e.g. [3, 7, 2]. It is quite commonly felt, however, that the linear–time suffix

tree algorithms presented in the literature are rather difficult to grasp.

The main purpose of this paper is to be an attempt in developing an

understandable suffix tree construction based on a natural idea that seems

to complete our picture of suffix trees in an essential way. The new algorithm

has the important property of being on–line. It processes the string symbol

by symbol from left to right, and has always the suffix tree for the scanned

part of the string ready. The algorithm is based on the simple observation

that the suffixes of a string T i = t1 · · · ti can be obtained from the suffixes

of string T i−1 = t1 · · · ti−1 by catenating symbol ti at the end of each suffix

of T i−1 and by adding the empty suffix. The suffixes of the whole string

T = T n = t1t2 · · · tn can be obtained by first expanding the suffixes of T 0

into the suffixes of T 1 and so on, until the suffixes of T are obtained from

the suffixes of T n−1.

This is in contrast with the method by Weiner [13] that proceeds right–

to–left and adds the suffixes to the tree in increasing order of their length,

starting from the shortest suffix, and with the method by McCreight [9] that

adds the suffixes to the tree in the decreasing order of their length. It should

be noted, however, that despite of the clear difference in the intuitive view

on the problem, our algorithm and McCreight’s algorithm are in their final

form functionally rather closely related.

Our algorithm is best understood as a linear–time version of another

algorithm from [12] for (quadratic–size) suffix tries. The latter very elemen-

tary algorithm, which resembles the position tree algorithm in [8], is given in

Section 2. Unfortunately, it does not run in linear time – it takes time propor-

tional to the size of the suffix trie which can be quadratic. However, a rather

transparent modification, which we describe in Section 4, gives our on–line,

linear–time method for suffix trees. This also offers a natural perspective

2

which makes the linear–time suffix tree construction understandable.

We also point out in Section 5 that the suffix trie augmented with the

suffix links gives an elementary characterization of the suffix automata (also

known as directed acyclic word graphs or DAWGs). This immediately leads

to an algorithm for constructing such automata. Fortunately, the resulting

method is essentially the same as already given in [4–6]. Again it is felt

that our new perspective is very natural and helps understanding the suffix

automata constructions.

2. CONSTRUCTING SUFFIX TRIES

Let T = t1t2 · · · tn be a string over an alphabet Σ. Each string x such that

T = uxv for some (possibly empty) strings u and v is a substring of T , and

each string Ti = ti · · · tn where 1 ≤ i ≤ n + 1 is a suffix of T ; in particular,

Tn+1 = ε is the empty suffix. The set of all suffixes of T is denoted σ(T).

The suffix trie of T is a trie representing σ(T).

More formally, we denote the suffix trie of T as STrie(T) =

(Q∪ {⊥}, root, F, g, f) and define such a trie as an augmented deterministic

finite–state automaton which has a tree–shaped transition graph representing

the trie for σ(T) and which is augmented with the so–called suffix function

f and auxiliary state ⊥. The set Q of the states of STrie(T) can be put in

a one–to–one correspondence with the substrings of T . We denote by x̄ the

state that corresponds to a substring x.

The initial state root corresponds to the empty string ε, and the set F of

the final states corresponds to σ(T). The transition function g is defined as

g(x̄, a) = ȳ for all x̄, ȳ in Q such that y = xa, where a ∈ Σ.

The suffix function f is defined for each state x̄ ∈ Q as follows. Let

x̄ 6= root. Then x = ay for some a ∈ Σ, and we set f(x̄) = ȳ. Moreover,

f(root) =⊥.

Auxiliary state ⊥ allows us to write the algorithms in the sequel such

that an explicit distinction between the empty and the nonempty suffixes

3

(or, between root and the other states) can be avoided. State ⊥ is connected

to the trie by g(⊥, a) = root for every a ∈ Σ. We leave f(⊥) undefined. (Note

that the transitions from ⊥ to root are defined consistently with the other

transitions: State ⊥ corresponds to the inverse a−1 of all symbols a ∈ Σ.

Because a−1a = ε, we can set g(⊥, a) = root as root corresponds to ε.)

Following [9] we call f(r) the suffix link of state r. The suffix links will

be utilized during the construction of a suffix tree; they have many uses also

in the applications (e.g. [11, 12]).

Automaton STrie(T) is identical to the Aho–Corasick string matching

automaton [1] for the key–word set {Ti|1 ≤ i ≤ n + 1} (the suffix links are

called in [1] the failure transitions.)

Fig. 1. Construction of STrie(cacao): state transitions shown in bold

arrows, failure transitions in thin arrows. Note: Only the last two layers of

suffix links shown explicitly.

4

It is easy to construct STrie(T) on–line, in a left–to–right scan over T as

follows. Let T i denote the prefix t1 · · · ti of T for 0 ≤ i ≤ n. As intermediate

results the construction gives STrie(T i) for i = 0, 1, . . . , n. Fig. 1 shows the

different phases of constructing STrie(T) for T = cacao.

The key–observation explaining how STrie(T i) is obtained from STrie(T i−1)

is that the suffixes of T i can be obtained by catenating ti to the end of each

suffix of T i−1 and by adding an empty suffix. That is,

σ(T i) = σ(T i−1)ti ∪ {ε}.

By definition, STrie(T i−1) accepts σ(T i−1). To make it accept σ(T i), we must

examine the final state set Fi−1 of STrie(T i−1). If r ∈ Fi−1 has not already

a ti–transition, such a transition from r to a new state (which becomes a

new leaf of the trie) is added. The states to which there is an old or new

ti–transition from some state in Fi−1 constitute together with root the final

states Fi of STrie(T i).

The states r ∈ Fi−1 that get new transitions can be found using the suffix

links as follows. The definition of the suffix function implies that r ∈ Fi−1 if

and only if r = f j(t1 . . . ti−1) for some 0 ≤ j ≤ i− 1. Therefore all states in

Fi−1 are on the path of suffix links that starts from the deepest state t1 . . . ti−1

of STrie(T i−1) and ends at ⊥. We call this important path the boundary path

of STrie(T i−1).

The boundary path is traversed. If a state z̄ on the boundary path does

not have a transition on ti yet, a new state zti and a new transition g(z̄, ti) =

zti are added. This gives updated g. To get updated f , the new states zti

are linked together with new suffix links that form a path starting from state

t1 . . . ti. Obviously, this is the boundary path of STrie(T i).

The traversal over Fi−1 along the boundary path can be stopped imme-

diately when the first state z̄ is found such that state zti (and hence also

transition g(z̄, ti) = zti) already exists. Let namely zti already be a state.

Then STrie(T i−1) has to contain state z′ti and transition g(z′, ti) = z′ti for

all z′ = f j(z̄), j ≥ 1. In other words, if zti is a substring of T i−1 then every

suffix of zti is a substring of T i−1. Note that z̄ always exists because ⊥ is the

5

last state on the boundary path and ⊥ has a transition for every possible ti.

When the traversal is stopped in this way, the procedure will create a new

state for every suffix link examined during the traversal. This implies that

the whole procedure will take time proportional to the size of the resulting

automaton.

Summarized, the procedure for building STrie(T i) from STrie(T i−1) is as

follows [12]. Here top denotes the state t1 . . . ti−1.

Algorithm 1.

r ← top;

while g(r, ti) is undefined do

create new state r′ and new transition g(r, ti) = r′;

if r 6= top then create new suffix link f(oldr′) = r′;

oldr′ ← r′;

r ← f(r);

create new suffix link f(oldr′) = g(r, ti);

top← g(top, ti).

Starting from STrie(ε), which consists only of root and ⊥ and the links

between them, and repeating Algorithm 1 for ti = t1, t2, . . . , tn, we obviously

get STrie(T). The algorithm is optimal in the sense that it takes time pro-

portional to the size of its end result STrie(T). This in turn is proportional

to |Q|, that is, to the number of different substrings of T . Unfortunately,

this can be quadratic in |T |, as is the case for example if T = anbn.

Theorem 1 Suffix trie STrie(T) can be constructed in time proportional to

the size of STrie(T) which, in the worst case, is O(|T |2).

3. SUFFIX TREES

Suffix tree STree(T) of T is a data structure that represents STrie(T) in

space linear in the length |T | of T . This is achieved by representing only a

subset Q′ ∪ {⊥} of the states of STrie(T). We call the states in Q′ ∪ {⊥}

6

the explicit states. Set Q′ consists of all branching states (states from which

there are at least two transitions) and all leaves (states from which there are

no transitions) of STrie(T). By definition, root is included into the branching

states. The other states of STrie(T) (the states other than root and ⊥ from

which there is exactly one transition) are called implicit states as states of

STree(T); they are not explicitly present in STree(T).

The string w spelled out by the transition path in STrie(T) between two

explicit states s and r is represented in STree(T) as generalized transition

g′(s, w) = r. To save space the string w is actually represented as a pair

(k, p) of pointers (the left pointer k and the right pointer p) to T such that

tk . . . tp = w. In this way the generalized transition gets form g′(s, (k, p)) = r.

Such pointers exist because there must be a suffix Ti such that the tran-

sition path for Ti in STrie(T) goes through s and r. We could select the

smallest such i, and let k and p point to the substring of this Ti that is

spelled out by the transition path from s to r. A transition g′(s, (k, p)) = r

is called an a–transition if tk = a. Each s can have at most one a–transition

for each a ∈ Σ.

Transitions g(⊥, a) = root are represented in a similar fashion: Let Σ =

{a1, a2, . . . , am}. Then g(⊥, aj) = root is represented as g(⊥, (−j,−j)) =

root for j = 1, . . . ,m.

Hence suffix tree STree(T) has two components: The tree itself and the

string T . It is of linear size in |T | because Q′ has at most |T | leaves (there is

at most one leaf for each nonempty suffix) and therefore Q′ has to contain at

most |T |− 1 branching states (when |T | > 1). There can be at most 2|T |− 2

transitions between the states in Q′, each taking a constant space because

of using pointers instead of an explicit string. (Here we have assumed the

standard RAM model in which a pointer takes constant space.)

We again augment the structure with the suffix function f ′, now defined

only for all branching states x̄ 6= root as f ′(x̄) = ȳ where y is a branching

state such that x = ay for some a ∈ Σ, and f ′(root) =⊥. Such an f ′ is

well–defined: If x̄ is a branching state, then also f ′(x̄) is a branching state.

These suffix links are explicitly represented. It will sometimes be helpful

7

to speak about implicit suffix links, i.e. imaginary suffix links between the

implicit states.

The suffix tree of T is denoted as STree(T) = (Q′ ∪ {⊥}, root, g′, f ′).

We refer to an explicit or implicit state r of a suffix tree by a reference

pair (s, w) where s is some explicit state that is an ancestor of r and w is

the string spelled out by the transitions from s to r in the corresponding

suffix trie. A reference pair is canonical if s is the closest ancestor of r (and

hence, w is shortest possible). For an explicit r the canonical reference pair

obviously is (r, ε). Again, we represent string w as a pair (k, p) of pointers

such that tk . . . tp = w. In this way a reference pair (s, w) gets form (s, (k, p)).

Pair (s, ε) is represented as (s, (p + 1, p)).

It is technically convenient to omit the final states in the definition of a

suffix tree. When explicit final states are needed in some application, one

gets them gratuitously by adding to T an end marking symbol that does

not occur elsewhere in T . The leaves of the suffix tree for such a T are in

one–to–one correspondence with the suffixes of T and constitute the set of

the final states. Another possibility is to traverse the suffix link path from

leaf T̄ to root and make all states on the path explicit; these states are the

final states of STree(T). In many applications of STree(T), the start location

of each suffix is stored with the corresponding state. Such an augmented tree

can be used as an index for finding any substring of T .

4. ON–LINE CONSTRUCTION OF SUFFIX TREES

The algorithm for constructing STree(T) will be patterned after Algo-

rithm 1. What has to be done is for the most part immediately clear. Fig. 2

shows the phases of constructing STree(cacao); for simplicity, the strings as-

sociated with each transition are shown explicitly in the figure. However, to

get a linear time algorithm some details need a more careful examination.

We first make more precise what Algorithm 1 does. Let s1 = t1 . . . ti−1,

s2, s3, . . . , si = root, si+1 =⊥ be the states of STrie(T i−1) on the boundary

8

path. Let j be the smallest index such that sj is not a leaf, and let j′ be the

smallest index such that sj′ has a ti–transition. As s1 is a leaf and ⊥ is a

non–leaf that has a ti–transition, both j and j′ are well–defined and j ≤ j′.

Now the following lemma should be obvious.

Fig. 2. Construction of STree(cacao)

Lemma 1 Algorithm 1 adds to STrie(T i−1) a ti–transition for each of the

states sh, 1 ≤ h < j′, such that for 1 ≤ h < j, the new transition expands

an old branch of the trie that ends at leaf sh, and for j ≤ h < j′, the new

transition initiates a new branch from sh. Algorithm 1 does not create any

other transitions.

We call state sj the active point and sj′ the end point of STrie(T i−1).

These states are present, explicitly or implicitly, in STree(T i−1), too. For ex-

ample, the active points of the last three trees in Fig. 2 are (root, c), (root, ca),

(root, ε).

Lemma 1 says that Algorithm 1 inserts two different groups of ti–transitions

into STrie(T i−1):

(i) First, the states on the boundary path before the active point sj get a

transition. These states are leaves, hence each such transition has to expand

9

an existing branch of the trie.

(ii) Second, the states from the active point sj to the end point sj′ , the

end point excluded, get a new transition. These states are not leaves, hence

each new transition has to initiate a new branch.

Let us next interpret this in terms of suffix tree STree(T i−1). The first

group of transitions that expand an existing branch could be implemented

by updating the right pointer of each transition that represents the branch.

Let g′(s, (k, i−1)) = r be such a transition. The right pointer has to point to

the last position i−1 of T i−1. This is because r is a leaf and therefore a path

leading to r has to spell out a suffix of T i−1 that does not occur elsewhere in

T i−1. Then the updated transition must be g′(s, (k, i)) = r. This only makes

the string spelled out by the transition longer but does not change the states

s and r. Making all such updates would take too much time. Therefore we

use the following trick.

Any transition of STree(T i−1) leading to a leaf is called an open transition.

Such a transition is of the form g′(s, (k, i − 1)) = r where, as stated above,

the right pointer has to point to the last position i− 1 of T i−1. Therefore it

is not necessary to represent the actual value of the right pointer. Instead,

open transitions are represented as g′(s, (k,∞)) = r where ∞ indicates that

this transition is ‘open to grow’. In fact, g′(s, (k,∞)) = r represents a branch

of any length between state s and the imaginary state r that is ‘in infinity’.

An explicit updating of the right pointer when ti is inserted into this branch

is not needed. Symbols ∞ can be replaced by n = |T | after completing

STree(T). In this way the first group of transitions is implemented without

any explicit changes to STree(T i−1).

We have still to describe how to add to STree(T i−1) the second group

of transitions. These create entirely new branches that start from states sh,

j ≤ h < j′. Finding such states sh needs some care as they need not be

explicit states at the moment. They will be found along the boundary path

of STree(T i−1) using reference pairs and suffix links.

Let h = j and let (s, w) be the canonical reference pair for sh, i. e., for

10

the active point. As sh is on the boundary path of STrie(T i−1), w has to be

a suffix of T i−1. Hence (s, w) = (s, (k, i− 1)) for some k ≤ i.

We want to create a new branch starting from the state represented by

(s, (k, i−1)). However, first we test whether or not (s, (k, i−1)) already refers

to the end point sj′ . If it does, we are done. Otherwise a new branch has to be

created. To this end the state sh referred to by (s, (k, i−1)) has to be explicit.

If it is not, an explicit state, denoted sh, is created by splitting the transition

that contains the corresponding implicit state. Then a ti–transition from sh

is created. It has to be an open transition g′(sh, (i,∞)) = s′h where s′h is

a new leaf. Moreover, the suffix link f ′(sh) is added if sh was created by

splitting a transition.

Next the construction proceeds to sh+1. As the reference pair for sh was

(s, (k, i−1)), the canonical reference pair for sh+1 is canonize(f ′(s), (k, i−1))

where canonize makes the reference pair canonical by updating the state and

the left pointer (note that the right pointer i − 1 remains unchanged in

canonization). The above operations are then repeated for sh+1, and so on

until the end point sj′ is found.

In this way we obtain the procedure update, given below, that trans-

forms STree(T i−1) into STree(T i) by inserting the ti–transitions in the second

group. The procedure uses procedure canonize mentioned above, and pro-

cedure test–and–split that tests whether or not a given reference pair refers

to the end point. If it does not then the procedure creates and returns an

explicit state for the reference pair provided that the pair does not already

represent an explicit state. Procedure update returns a reference pair for the

end point sj′ (actually only the state and the left pointer of the pair, as the

second pointer remains i− 1 for all states on the boundary path).

11

procedure update(s, (k, i)):

(s, (k, i− 1)) is the canonical reference pair for the active point;

1. oldr ← root; (end–point, r)← test–and–split(s, (k, i− 1), ti);

2. while not(end–point) do

3. create new transition g′(r, (i,∞)) = r′ where r′ is a new state;

4. if oldr 6= root then create new suffix link f ′(oldr) = r;

5. oldr ← r;

6. (s, k)← canonize(f ′(s), (k, i− 1));

7. (end–point, r)← test–and–split(s, (k, i− 1), ti);

8. if oldr 6= root then create new suffix link f ′(oldr) = s;

9. return (s, k).

Procedure test–and–split tests whether or not a state with canonical ref-

erence pair (s, (k, p)) is the end point, that is, a state that in STrie(T i−1)

would have a ti–transition. Symbol ti is given as input parameter t. The test

result is returned as the first output parameter. If (s, (k, p)) is not the end

point, then state (s, (k, p)) is made explicit (if not already so) by splitting a

transition. The explicit state is returned as the second output parameter.

procedure test–and–split(s, (k, p), t):

1. if k ≤ p then

2. let g′(s, (k′, p′)) = s′ be the tk–transition from s;

3. if t = tk′+p−k+1 then return(true, s)

4. else

5. replace the tk–transition above by transitions

g′(s, (k′, k′ + p− k)) = r and g′(r, (k′ + p− k + 1, p′)) = s′

where r is a new state;

6. return(false, r)

7. else

8. if there is no t–transition from s then return(false, s)

9. else return(true, s).

12

This procedure benefits from that (s, (k, p)) is canonical: The answer to

the end point test can be found in constant time by considering only one

transition from s.

Procedure canonize is as follows. Given a reference pair (s, (k, p)) for

some state r, it finds and returns state s′ and left link k′ such that (s′, (k′, p))

is the canonical reference pair for r. State s′ is the closest explicit ancestor

of r (or r itself if r is explicit). Therefore the string that leads from s′ to r

must be a suffix of the string tk . . . tp that leads from s to r. Hence the right

link p does not change but the left link k can become k′, k′ ≥ k.

procedure canonize(s, (k, p)):

1. if p < k then return (s, k)

2. else

3. find the tk–transition g′(s, (k′, p′)) = s′ from s;

4. while p′ − k′ ≤ p− k do

5. k ← k + p′ − k′ + 1;

6. s← s′;

7. if k ≤ p then find the tk–transition g′(s, (k′, p′)) = s′ from s;

8. return (s, k).

To be able to continue the construction for the next text symbol ti+1, the

active point of STree(T i) has to be found. To this end, note first that sj is

the active point of STree(T i−1) if and only if sj = tj · · · ti−1 where tj · · · ti−1

is the longest suffix of T i−1 that occurs at least twice in T i−1. Second, note

that sj′ is the end point of STree(T i−1) if and only if sj′ = tj′ · · · ti−1 where

tj′ · · · ti−1 is the longest suffix of T i−1 such that tj′ · · · ti−1ti is a substring

of T i−1. But this means that if sj′ is the end point of STree(T i−1) then

tj′ · · · ti−1ti is the longest suffix of T i that occurs at least twice in T i, that is,

then state g(sj′ , ti) is the active point of STree(T i).

We have shown the following result.

Lemma 2 Let (s, (k, i−1)) be a reference pair of the end point sj′ of STree(T i−1).

Then (s, (k, i)) is a reference pair of the active point of STree(T i).

13

The overall algorithm for constructing STree(T) is finally as follows.

String T is processed symbol by symbol, in one left-to-right scan. Writ-

ing Σ = {t−1, . . . , t−m} makes it possible to present the transitions from ⊥
in the same way as the other transitions.

Algorithm 2. Construction of STree(T) for string T = t1t2 . . .] in alphabet

Σ = {t−1, . . . , t−m};] is the end marker not appearing elsewhere in T .

1. create states root and ⊥;

2. for j ← 1, . . . ,m do create transition g′(⊥, (−j,−j)) = root;

3. create suffix link f ′(root) =⊥;

4. s← root; k ← 1; i← 0;

5. while ti+1 6=] do

6. i← i + 1;

7. (s, k)← update(s, (k, i));

8. (s, k)← canonize(s, (k, i)).

Steps 7–8 are based on Lemma 2: After step 7 pair (s, (k, i− 1)) refers to

the end point of STree(T i−1), and hence, (s, (k, i)) refers to the active point

of STree(T i).

Theorem 2 Algorithm 2 constructs the suffix tree STree(T) for a string

T = t1 . . . tn on–line in time O(n).

Proof. The algorithm constructs STree(T) through intermediate trees STree(T 0),

STree(T 1), . . . , STree(T n) = STree(T). It is on–line as to construct STree(T i)

it only needs access to the first i symbols of T .

For the running time analysis we divide the time requirement into two

components, both turn out to be O(n). The first component consists of the

total time for procedure canonize. The second component consists of the

rest: The time for repeatedly traversing the suffix link path from the present

active point to the end point and creating the new branches by update and

then finding the next active point by taking a transition from the end point

14

(step 8 of Alg. 2). We call the states (reference pairs) on these paths the

visited states.

The second component takes time proportional to the total number of the

visited states, because the operations at each such state (create an explicit

state and a new branch, follow an explicit or implicit suffix link, test for

the end point) at each such state can be implemented in constant time as

canonize is excluded. (To be precise, this also requires that |Σ| is bounded

independently of n.) Let ri be the active point of STree(T i) for 0 ≤ i ≤ n.

The visited states between ri−1 and ri are on a path that consists of some

suffix links and one ti–transition. Taking a suffix link decreases the depth (the

length of the string spelled out on the transition path from root) of the current

state by one, and taking a ti–transition increases it by one. The number

of the visited states (including ri−1, excluding ri) on the path is therefore

depth(ri−1) − depth(ri) + 2, and their total number is
∑n

i=1(depth(ri−1) −
depth(ri) + 2) = depth(r0) − depth(rn) + 2n ≤ 2n. This implies the second

time component is O(n).

The time spent by each execution of canonize has an upper bound of the

form a + bq where a and b are constants and q is the number of executions

of the body of the loop in steps 5–7 of canonize. The total time spent by

canonize has therefore a bound that is proportional to the sum of the number

of the calls of canonize and the total number of the executions of the body

of the loop in all calls. There are O(n) calls as there is one call for each

visited state (either in step 6 of update or directly in step 8 of Alg. 2.). Each

execution of the body deletes a nonempty string from the left end of string

w = tk . . . tp represented by the pointers in reference pair (s, (k, p)). String w

can grow during the whole process only in step 8 of Alg. 2 which catenates ti

for i = 1, . . . , n to the right end of w. Hence a non–empty deletion is possible

at most n times. The total time for the body of the loop is therefore O(n),

and altogether canonize or our first component needs time O(n). 2

15

Remark 1. (due to J. Kärkkäinen) In its final form our algorithm is

a rather close relative of McCreight’s method [9]. The principal technical

difference seems to be, that each execution of the body of the main loop of

our Algorithm 2 consumes one text symbol ti whereas each execution of the

body of the main loop of McCreight’s algorithm traverses one suffix link and

consumes zero or more text symbols.

Remark 2. It is not hard to generalize Algorithm 2 for the following dy-

namic version of the suffix tree problem (c.f. the adaptive dictionary matching

problem of [2]): Maintain a generalized linear–size suffix tree representing all

suffixes of strings Ti in set {T1, . . . , Tk} under operations that insert or delete

a string Ti. The resulting algorithm will make such updates in time O(|Ti|).

5. CONSTRUCTING SUFFIX AUTOMATA

The suffix automaton SA(T) of a string T = t1 . . . tn is the minimal DFA

that accepts all the suffixes of T .

As our STrie(T) is a DFA for the suffixes of T , SA(T) could be obtained

by minimizing STrie(T) in standard way. Minimization works by combining

the equivalent states, i. e., states from which STrie(T) accepts the same set

of strings. Using the suffix links we will obtain a natural characterization of

the equivalent states as follows.

A state s of STrie(T) is called essential if there is at least two different

suffix links pointing to s or s = t1 · · · tk for some k.

Theorem 3 Let s and r be two states of STrie(T). The set of strings ac-

cepted from s is equal to the set of strings accepted from r if and only if the

suffix link path that starts from s contains r (the path from r contains s) and

the subpath from s to r (from r to s) does not contain any other essential

states than possibly s (r).

Proof. The theorem is implied by the following observations.

The set of strings accepted from some state of STrie(T) is a subset of the

suffixes of T and therefore each accepted string is of different length.

16

A string of length i is accepted from a state s of STrie(T) if and only if

the suffix link path that starts from state t1 · · · tn−i contains s.

The suffix links form a tree that is directed to its root root. 2

This suggests a method for constructing SA(T) with a modified Algo-

rithm 1. The new feature is that the construction should create a new state

only if the state is essential. An unessential state s is merged with the first

essential state that is before s on the suffix link path through s. This is

correct as, by Theorem 3, the states are equivalent.

As there are O(|T |) essential states, the resulting algorithm can be made

to work in linear time. The algorithm turns out to be similar to the algo-

rithms in [4–6]. We therefore omit the details.

Acknowledgements. J. Kärkkäinen pointed out some inaccuracies in the ear-

lier version [10] of this work. The author is also indebted to E. Sutinen,

D. Wood, and, in particular, S. Kurtz and G. A. Stephen for several useful

comments.

References

1. A. Aho and M. Corasick, Efficient string matching: An aid to biblio-

graphic search, Comm. ACM 18 (1975), 333–340.

2. A. Amir and M. Farach, Adaptive dictionary matching, in Proc. 32nd

IEEE Ann. Symp. on Foundations of Computer Science, 1991, pp. 760–

766.

3. A. Apostolico, The myriad virtues of subword trees, in Combinato-

rial Algorithms on Words (A. Apostolico and Z. Galil, eds.), Springer–

Verlag, 1985, pp. 85–95.

4. A. Blumer & al., The smallest automaton recognizing the subwords of

a text, Theor. Comp. Sci. 40 (1985), 31–55.

17

5. M. Crochemore, Transducers and repetitions, Theor. Comp. Sci. 45

(1986), 63–86.

6. M. Crochemore, String matching with constraints, in Mathematical

Foundations of Computer Science 1988 (M.P. Chytil, L. Janiga and V.

Koubek, eds.), Lect. Notes in Computer Science, vol. 324, Springer–

Verlag, 1988, pp. 44–58.

7. Z. Galil and R. Giancarlo, Data structures and algorithms for approx-

imate string matching, J. Complexity 4 (1988), 33–72.

8. M. Kempf, R. Bayer and U. Güntzer, Time optimal left to right con-

struction of position trees, Acta Informatica 24 (1987), 461–474.

9. E. McCreight, A space–economical suffix tree construction algorithm,

Journal of the ACM 23 (1976), 262–272.

10. E. Ukkonen, Constructing suffix trees on–line in linear time, in Algo-

rithms, Software, Architecture. Information Processing 92, vol. I (J.

van Leeuwen, ed.), Elsevier, 1992, pp. 484–492.

11. E. Ukkonen, Approximate string–matching over suffix trees, in Com-

binatorial Pattern Matching, CPM’93 (A. Apostolico, M. Crochemore,

Z. Galil, and U. Manber, eds.), Lect. Notes in Computer Science, vol.

684, Springer–Verlag, 1993, pp. 228–242.

12. E. Ukkonen and D. Wood, Approximate string matching with suffix

automata, Algorithmica 10 (1993), 353–364.

13. P. Weiner, Linear pattern matching algorithms, in IEEE 14th Ann.

Symp. on Switching and Automata Theory, 1973, pp. 1–11.

18

